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Abstract—Ring artifacts are a type of reconstruction artifact
that is common in X-Ray CT. Recently, methods based on
deep learning have been proposed to reduce ring artifacts in
reconstructed images. These methods are dependent on the choice
of reconstruction algorithm and often rely on a polar coordinate
transformation. Methods that directly operate in sinogram space
do not feature this dependency, do not require a coordinate
transformation while also operating in the space where ring
artifacts originate.

In this paper, we propose a deep neural network with a custom
loss function that operates exclusively in sinogram space for ring
artifact reduction. Results on real and simulated data show that
our method has similar or better performance compared to other
ring artifact reduction techniques that also operate exclusively
in sinogram space.

Index Terms—Deep learning, Tomography, Ring Artifact

I. INTRODUCTION

R ING artifacts are a type of reconstruction artifact that is
common in X-ray CT. They appear as a series of lines

that overlay the sinogram. Ring artifacts typically originate
from the X-ray hardware. In a synchrotron, for instance, the
X-ray detector, source and/or the monochromator may cause
ring artifacts [1, 2] due to variations in detector element
sensitivity [3, 4], defective elements [5], changes in sensitivity
between flatfield corrections [4], insufficient flatfield correc-
tion [5], variable (non-linear) response to beam hardening
[4–6], dusty or damaged scintillator screens [5, 7], varying
scintillator thickness [2, 4, 8], imperfections in the optical
coupling system [2] and drift or mechanical vibrations of a
monochromator [2]. After tomographic reconstruction, these
deviations appear as (partial) concentric circles [4] (see Fig. 1).
As these rings have an adverse effect on further image analysis,
it is desirable to reduce them.

Common methods that attempt to reduce ring artifacts
can be categorized in three groups: methods that operate in
sinogram space (e.g. [1–3, 5, 7, 8]), image space (e.g. [3, 4,
9]) or both spaces (e.g. [10–12]).

Recently, deep learning methods have been proposed to
reduce ring artifacts in CT images [11–13]. Wang, Li, and
Enoh [11] use a generative adversarial network with adver-
sarial loss, perceptual loss and a unidirectional relative total
variation loss. Reconstructed images are first transformed from
cartesian to polar coordinates as a preprocessing step. The

Figure 1: Artifacts on sinogram and reconstructed image.

method by Chao and Kim [9] also operates in image space
with use of polar coordinates. Ring artifacts are first detected
by using a smoothing operation, after which a trained radial
basis function neural network is applied to reduce the artifacts
on a pixel-basis. Finally, Fang, Li, and Chen [12] combined
both spaces in their work to estimate an artifact map, which
is subsequently subtracted from the initial reconstruction.

Multiple disadvantages are encountered when using meth-
ods that operate exclusively in image space. One is the need for
correctly selecting the center for the coordinate transformation.
A second limitation arises when working with reconstructed
images of low quality. Few-view or limited angle CT are ex-
amples where the reconstructed image quality is significantly
degraded and the artifacts have a less distinct pattern. A final
limitation when working exclusively in image space relates to
the fact that ring artifacts originate in sinogram space. They
can be viewed as signals that are local, i.e. at some detector
channel. After tomographic reconstruction, this locality is lost.
Finally, the appearance of ring artifacts in image space depends
on the tomographic reconstruction method that was applied to
obtain the image. This dependency implies that separate deep
neural networks need to be trained for different reconstruction
algorithms as the reconstruction of a sinogram with the same
line artifact may vary significantly depending on the choice of
algorithm.

To avoid the above mentioned, a deep learning approach
is proposed that works exclusively in sinogram space. To the
best of our knowledge, deep learning has not yet been applied
to sinogram preprocessing for ring artifact reduction. The
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Figure 2: Network architecture

proposed method is independent of the choice of reconstruc-
tion algorithm, does not rely on a coordinate transformation
and operates in the space where the artifact originates. To
achieve this, a deep neural network, similar to U-Net [14], is
implemented and trained on simulated data. Results on both
simulated and real data are compared to other methods that
operate in sinogram space. Our findings support the relevance
of exclusively using sinograms in ring artifact reduction.

II. METHODOLOGY

Similar to other papers that operate in sinogram space to
reduce metal artifacts [15, 16], a deep neural network was
implemented that is based on a U-Net architecture [14]. A
deep neural network (DNN) is a model that consists of several
processing units also known as layers. These layers could
be convolution/deconvolution, pooling/unpooling, and dense
operations. In the current study, a DNN similar to U-Net
was implemented (Fig. 2) to process sinogram data as to
reduce ring artifacts. It is a fully convolutional DNN with a
downsampling operation after every three convolutional layers.
Downsampling is accomplished by using a 3×3 convolutional
operation with a stride equal to 2. Note that the number of
channels is doubled after each downsampling operation in
order to preserve the information flow throughout the network.
The second half of the network consists of deconvolution and
upsampling layers to recover the signal back to the input
size. Note that every upsampling operation is followed by a
1×1 convolutional layer. There are several skip connections
inside the network architecture indicated by yellow arrows
in Fig. 2. The skip connections are not used in the original
implementation and make the model more parameter-efficient.
The skip connections transfer the high-frequency bands from
the early stages into the deeper layers which plays an important
role in preserving the sharpness of the output. The ReLU
activation function [17] is applied after each convolution,
except for the last layer which has no activation function.

The parameters were optimized using a combined loss
function. The first component, l1, is a normalized L1 loss
between the network output and the target tensor, defined

by Eq. (1), with N the number of samples and y and ŷ the
expected and predicted result, respectively.

l1 =

∑N
n=1|yn − ŷn|∑N

n=1|yn|
(1)

The second loss, l2, is given by Eq. (2) wherein a normalized
L1 loss is computed after convolving the difference between
the predicted and expected result with the vertical kernel, w,
of the Sobel operator.

l2 =

∑N
n=1

∣∣w ∗ (yn − ŷn)
∣∣

∑N
n=1|w ∗ yn|

(2)

The final loss function, l, is the weighted summation of the
two separate components as shown in Eq. (3).

l = αl1 + βl2 (3)

Normalizing the loss functions allows to easily set and un-
derstand their relative contribution. Our results were acquired
with weights α and β set to 0.8 and 0.2, respectively. These
values were selected through experimentation.

The Adam optimizer [18] was utilized in the training
procedure with an initial learning rate equal to 3× 10−3 and
other hyperparameters left to their default values. A dynamic
learning rate was used during training, reducing the learning
rate by 10% if the loss on training data had not decreased in
the 5 previous epochs. The model was built in Python version
3.6 using Tensorflow version 2.0 [19] as the framework of
choice and was trained for 180 epochs on a NVIDIA Tesla
K80 GPU using a batch size of 128.

III. EXPERIMENTS

A. Dataset

In order to provide the training database, ring artifacts were
simulated on clean images. To this extent, images from the
The Cancer Imaging Archive [20] were used (45640 medical
images, resized to 256 by 256 pixels). Every image, no
matter the modality, was included in the dataset. This ensured
that the network observed a large variation of sinograms
during training. Fig. 1 shows an example of a sinogram with
simulated ring artifacts and the reconstructed image.

The 6th International Conference on Image Formation in X-Ray Computed Tomography

487



Sinograms were simulated in a parallel beam set-up through
use of the ASTRA Toolbox [21] and line artifacts were added
onto them. To accurately model statistical parameters of the
artifact magnitude, the available datasets from Tomobank [22]
with ring artifacts were analyzed. A smoothing method, part
of the Tomopy toolbox [23], was applied to an image as to
strongly reduce ring artifacts. By comparing the smoothed
and original image, a normal distribution for the mean artifact
magnitudes was estimated. Corresponding variances were esti-
mated as well. To generate artifacts, a mean artifact magnitude
value was randomly sampled from the estimated distribution
for every detector channel. Variances for each mean artifact
magnitude were computed, resulting in normal distributions
for every affected detector channel. The resulting normal
distributions were randomly sampled to generate ring artifacts
for all projection angles. Finally, the artifacts were added onto
the artifact-free sinogram. The dataset was split in a training,
validation and test set with 42240, 1000 and 2400 samples,
respectively.

B. Evaluation

The performance of our method in terms of peak signal-
to-noise ratio (PSNR) and structured similarity (SSIM) [24]
was compared to that of four other methods that operate
in sinogram space: wavelet-Fourier filtering (FW) [25], the
generalized Titarenko’s algorithm (TI) [26], a based filtering
approach (BF) [1] and a smoothing filtering. Out of all the
available methods in the Tomopy library, these four were
selected based on their better performance on real samples
with ring artifacts.

Ring artifacts in 2400 simulated sinograms were suppressed
using our approach and the four reference methods. These
samples were not seen by the neural network during training.
The simulation principle, however, was the same as for the
training samples. In all evaluations, filtered backprojection was
used as the reconstruction technique. PSNR and SSIM were
subsequently computed for the reconstructed images.

To assess the effect of the proposed method on real data,
it was tested on real sinograms of a bone sample, alongside
with the reference methods. The sample was acquired with
TESCAN XRE’s UniTOM XL scanner using a cone beam
set-up.

IV. RESULTS

A. Simulated data

Fig. 3a shows PSNR values for the different ring artifact
reduction algorithms. Our method has a median PSNR that is
at least 2dB higher than the reference methods. These results
show that our method is able to reduce ring artifacts to a larger
extent relative to the other methods. The variation seen in the
results is small compared to other methods, with the exception
of the generalized Titarenko’s algorithm. These results indicate
that our method performs well on sinograms that belong to a
variety of images (differing in contrast and brightness values
for instance).

Similar observations can be made when considering the
SSIM values (Fig. 3b). In general, the best results are still

achieved with a deep learning approach. The SF, FW and BF
approach show a larger variance, while also having a lower
median. The generalized Titarenko’s approach shows a similar
range of scores like the other methods when using SSIM as
metric.

(a) (b)

Figure 3: PSNR (a) and SSIM (b) values for different ring
artifact reduction techniques.

B. Real data

Fig. 4 illustrates the results of all methods on real data. In
this case, only a visual comparison can be made, as no ground
truth is available. All methods are able to reduce ring artifacts
to a comparable degree. The thin ring artifacts are largely
reduced in all cases. However, there are still some (newly
introduced) artifacts present. Most notable is the remaining
presence of the thicker ring artifacts for all methods. These
types of artifacts are not included in the simulation data and
are consequently not reduced by the neural network.

Figure 4: The unprocessed reconstruction (INPUT) as well as
five different ring artifact reduction techniques applied to a
reconstruction of a real sample with ring artifacts.

.

V. DISCUSSION

In this paper, a U-Net-like deep neural network for sinogram
preprocessing was proposed to prevent ring artifacts in the
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reconstructed image. On a simulated dataset of 2400 samples,
unseen by the neural network, significantly higher PSNR
and SSIM values were reached compared to four reference
methods. These results indicate that our method was able to
reduce ring artifacts to a larger degree.

Due to the lack of a dataset consisting of the same sinograms
with and without ring artifacts, data was simulated in this
work. Nevertheless, visual assessment of ring artifact reduction
on a real sample showed results comparable to other methods
that operate in sinogram space. This is an indication that our
method is able to generalize beyond simulated data and can
also be applied to real data. However, despite our best attempts
to accurately model ring artifacts, they inevitably differ from
real world samples. The presence of thicker rings in Fig. 4
illustrates this problem. Consequently, caution has to be taken
when making interpretations on performance for real data,
based on the results for simulated data.

In future work, ring artifact reduction methods operating in
image space will be included in the study. Ring artifacts will
also be simulated more realistically, for instance by including
thicker bands. This will allow us to see whether or not ring
artifacts can be reduced to a larger degree.
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