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Although many studies are starting to use voxel-based analysis (VBA) methods to compare diffusion tensor
images between healthy and diseased subjects, it has been demonstrated that VBA results depend heavily on
parameter settings and implementation strategies, such as the applied coregistration technique, smoothing
kernel width, statistical analysis, etc. In order to investigate the effect of different parameter settings and
implementations on the accuracy and precision of the VBA results quantitatively, ground truth knowledge
regarding the underlying microstructural alterations is required. To address the lack of such a gold standard,
simulated diffusion tensor data sets are developed, which can model an array of anomalies in the diffusion
properties of a predefined location. These data sets can be employed to evaluate the numerous parameters
that characterize the pipeline of a VBA algorithm and to compare the accuracy, precision, and reproducibility
of different post-processing approaches quantitatively. We are convinced that the use of these simulated data
sets can improve the understanding of how different diffusion tensor image post-processing techniques
affect the outcome of VBA. In turn, this may possibly lead to a more standardized and reliable evaluation of
diffusion tensor data sets of large study groups with a wide range of white matter altering pathologies. The
simulated DTI data sets will be made available online (http://www.dti.ua.ac.be).

© 2009 Elsevier Inc. All rights reserved.
Introduction

Diffusion tensor magnetic resonance imaging (DTI) is a unique
medical imagingmodality that provides estimates of the directionality
as well as the magnitude of water diffusion (Basser et al., 1994).
Recently, several studies demonstrated that diffusion tensor (DT)
derived metrics have the potential for revealing subtle white matter
(WM) differences in awide range of pathologies and neuropsychiatric
conditions (Rovaris and Filippi, 2007; Bozzali and Cherubini, 2007;
Cherubini et al., 2007). In this context, fractional anisotropy (FA),
which is a normalized measure of the degree of diffusion anisotropy,
and mean diffusivity (MD), i.e. the average amount of diffusion, are
generally examined and have been related to the integrity of WM
bundles (Beaulieu, 2002). However, to increase the utility of DTI in
both research and the daily clinical routine, large scale, quantitative
DTI studies of different pathologies are required to further investigate
the effect of microstructural WM alterations – induced by a given
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disorder – on the spatial location, the extent, and the magnitude of
diffusion related DTI changes.

In order to compare diffusion properties across subjects quantita-
tively, many studies perform a region of interest (ROI) analysis, in
which these ROIs are marked on locations that have been associated
with abnormalities for a given pathology (Molko et al., 2001; Abe et
al., 2002; Wang et al., 2003; Kubicki et al., 2002; Kumra et al., 2004;
Kubicki et al., 2003; Westerhausen et al., 2003; Snook et al., 2005,
2007). Although this approach is straightforward and has gained its
merits in earlier studies, several drawbacks prevent it from being the
analysis tool of choice for large scale, standardized DTI studies. These
drawbacks include the labor intensity of the method, a restricted
reproducibility due to the observer dependent ROI placement,
difficulties to outline the complex 3D WM architecture by 2D ROIs,
and the dependence of the results on the a priori hypothesis that is
made regarding the spatial location and extent of the differences.
Combined with the subject group and disease heterogeneity, includ-
ing confounding factors such as age, sex, handedness, disease state,
etc., these aforementioned limitations can explain the inconsistency of
the published diffusion values that were derived by the ROI analysis,
as for example in the study of patients with Multiple Sclerosis (MS)
(Hasan et al., 2005; Ciccarelli et al., 2003; Cercignani et al., 2002;
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Pfefferbaum et al., 2000; Bammer et al., 2000; Griffin et al., 2001; Ge et
al., 2004; Yu et al., 2007).

To mitigate the limitations of the ROI approach, an automated
voxel-based analysis (VBA) is increasingly being used to study DT
alterations for many diseases. In VBA, all data sets are spatially
normalized to a certain template, whereafter a voxel-by-voxel
statistical comparison between the control subjects and the patients
is performed (Ashburner and Friston, 2000). In this way, the whole
brain is tested for control-patient differences without any a priori
hypothesis of the expected spatial location of the abnormalities to be
made. Furthermore, although the VBA approach is computationally
more intensive, it is far less laborious compared to the ROI method. In
addition, the user-dependency of the ROI approach is replaced by a
parameter-dependency in VBA, making the subsequent quantitative
analysis more reproducible and standardized. However, for example
in the published DTI studies of patients with schizophrenia, there is no
general correspondence between the findings (Agartz et al., 2001;
Foong et al., 2002; Ardekani et al., 2003; Burns et al., 2003; Szeszko et
al., 2005; Kubicki et al., 2005; Ardekani et al., 2005; Buchsbaum et al.,
2006; Jones et al., 2007; Douaud et al., 2007; Seok et al., 2007;
Karlsgodt et al., 2007; Kyriakopoulos et al., 2007; White et al., 2007).
Significant FA differences between healthy subjects and schizophrenia
patients were reported in a large range of white matter structures,
such as for example the cerebellar peduncle (Seok et al., 2007;
Kyriakopoulos et al., 2007), cortico-spinal tracts with schizophrenia
(Douaud et al., 2007), internal capsule with schizophrenia (Kubicki et
al., 2005; Buchsbaum et al., 2006), genu of the corpus callosum with
schizophrenia (Ardekani et al., 2003; Douaud et al., 2007), splenium
of the corpus callosum with schizophrenia (Ardekani et al., 2003;
Douaud et al., 2007; Kyriakopoulos et al., 2007), forceps major with
schizophrenia (Agartz et al., 2001; Kyriakopoulos et al., 2007), body of
the corpus callosum with schizophrenia (Douaud et al., 2007),
superior longitudinal fasciculus with schizophrenia (Kubicki et al.,
2005; Buchsbaum et al., 2006; Seok et al., 2007; Kyriakopoulos et al.,
2007), and cingulum (Kubicki et al., 2005; Seok et al., 2007). The
subject group and disease heterogeneity across the different studies,
including confounding factors such as age, sex, handedness, disease
state, etc., can partially explain these observed discrepancies. How-
ever, methodological differences in implementation of VBA are
possibly even more decisive for explaining the variances in the VBA
results of different studies.

Jones et al. (2005, 2007) and Zhang et al. (2007) demonstrated
that different VBA results were obtainedwhen different coregistration
techniques, smoothing kernels, statistics, etc. were implemented
during the VBA analysis of the same subject group. Since the location
and extent of the underlying microstructural degradation was not
known a priori in these studies, quantitative information regarding
the accuracy, precision, or reliability of the obtained VBA results
cannot be provided. As such, these studies clearly demonstrate the
need for a gold standard for validating different post-processing
methods and their relative merits.

To address the lack of ground truth knowledge regarding the
underlying microstructural alterations, in this work, simulated DTI data
sets are developed, which allows for modeling of anomalies in the
diffusion properties of a predefined location and in a predefined number
of voxels. In this context, an important requisite for the validity of the
simulated DTI data sets is to model the induced pathology by simulating
these diffusion properties accurately and realistically (Leemans et al.,
2005b). To the best of our knowledge, this is the first framework that
allows for constructing simulated DTI data sets with ground truth
information of pathology. These simulated DTI data sets can be used to
investigate the reliability, accuracy, andprecisionof aVBAorROI analysis.

In addition, theeffectof thedifferentparameters andpost-processing
steps that are involved in thepipeline of a VBA analysis can be examined,
which could lead to a more reliable, standardized, and consistent post-
processing of DT images for studying different pathologies.
Methods

Ground truth framework

In this work, simulated DTI data sets are constructed that contain a
ground truth pathologywith a predefined location, extent, and level of
tissue degradation. In Fig. 1, a general overview of the construction of
these simulated DTI data sets is presented and can be summarized as
follows:

(a) H healthy subject and P pathology DTI data sets are acquired.
(b) The N (whereN=H+P) DTI data sets are transformed to the

Montreal Neurological Institute (MNI) space with an affine
transformation.

(c) Based on the N images in MNI space, a population specific atlas
is constructed for the H healthy subjects.

(d) The atlas forms the fundamental data set of the ground truth
method and is replicated N times.

(e) In P atlases, the diffusion properties are altered to introduce a
pathology in certain voxels.

(f) The diffusion properties are modified to include inter-subject
variability.

(g) All data sets are transformed to their native space.
(h) Noise is added to the data sets.

In the following sections, these steps are described in more detail.

Native images
The ground truth method is based on the acquisition of H diffusion

tensor data sets of healthy subjects and P diffusion tensor data sets of
subjects with a certain pathology (Fig. 1a). These native healthy subject
and pathology data sets will be referred to as Oh (with h=1,…, H) and
Op (withp=H+1,…,H+P), respectively. In general, the subject data of
the entire group will be denoted as Oi (i=1, …, N), with N the total
number of subjects: N=H+P. When not explicitly specified that the
diffusionweighted (DW) images or the diffusion tensor components are
used, the subject data Oi reflect both the DW images and the diffusion
tensor components. With DW images, we refer to the set of 60 diffusion
images, one for each gradient direction.

Atlas construction
A first step in the framework of the simulated data sets is the

construction of a population specific DTI atlas based on the N native
images (Figs. 1b and c). This process involves different steps, as
described in Van Hecke et al. (2008), and can be summarized as
follows (see also Fig. 1i):

• From the EPI MNI template, a custom FA based template was
constructed as described in Jones et al. (2002). All subjects data
Oi (with i=1, …,N) are spatially normalized to this custom FA
MNI template with an affine transformation of the FA images
using MIRIT (Multimodality Image Registration using Informa-
tion Theory), incorporating the preservation of principal direc-
tion (PPD) tensor reorientation strategy (Alexander et al., 2001;
Leemans et al., 2005a;Maes et al., 1997). The transformed images
will be referred to as Ih and Ip, or more generally as Ii (see Fig. 1b).

• Non-affine deformation fields Tji of data set Ii to data set Ij
(i,j=1, …, N, i≠ j) are calculated for each image of the subject
group (see Fig.1i). For the non-affine image alignment procedure,
a coregistration algorithm based on a viscous fluid model and
mutual information is used, which has been optimized to
incorporate all DT information (Van Hecke et al., 2007;
D'Agostino et al., 2003).

• The deformation fields Tji (with j=1, …, N and j≠ i) are
averaged for each image Ij Ti = 1

N − 1

P
j Tji

� �
. The deformation

fields Ti characterize the anatomical variation between image Ii
and all other data sets of the subject group.



Fig. 1. A schematic overview of the ground truth method is presented. On the left, the main steps of this method are displayed in (a)–(h), including the construction of a population-
based atlas, the introduction of a pathology, inter-subject variability, and noise, and the deformation of the images to native space.More specific information about the different steps is
provided in (i)–(p). All data sets Oi, Ii, Ai, A⁎i, Ai′, Si′ and Si contain both the DW images and the diffusion tensor components. The healthy subject data sets are coloured in green, whereas
the pathology subject data sets are coloured in red.
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• The deformation fields Ti are applied to all DW images of data sets
Ii. After estimating the diffusion tensor from the transformed DW
images, the PPD reorientation strategy is applied to obtain the
correct diffusion tensors (Alexander et al., 2001). From these
reorienteddiffusion tensors, theDW imagesDWk that correspond
to this new space are recalculated using the following equation:

DWk = DW0 � e−bkD; ð1Þ

with DW0 the non-diffusionweighted image, bk the diffusion gradient
information along direction k, and D the diffusion tensor. At this stage,
if D is known, or modeled with a predefined pathology, then DWk can
be recalculated using this diffusion equation (Jones and Basser, 2004).
This back projection approach to simulate DW images from a
predefined tensor is explained in detail in Jones and Basser (2004).
In doing so, the DW images can be averaged appropriately, since the
corresponding DW images of different subjects are situated in the
same space. The resulting DTI data sets in atlas space are referred to as
Ĩi (Ĩi=Ti(Ii)) (see Fig. 1i). More specifically, the healthy and pathology
subject data sets in atlas space are referred to as Ĩh and Ĩp, respectively.

• The atlas A is constructed by a voxel-wise averaging of the DW
images of the Hhealthy data sets in atlas spaceĨh followed by a
recalculation of the diffusion tensors (see Fig. 1i). Note that the
application of an iterative estimation procedure to construct the
population-based DTI atlas A did not significantly improve the
accuracy of the diffusion tensor atlas (Van Hecke et al., 2008).

Notice that a healthy subject atlas is constructed, since only the H
data sets of thehealthy subjects in atlas space Ĩh are averaged to compute
this atlas. As such, the diffusion properties of the pathology subjects
are not included in the atlas. However, notice that the data sets of these
P pathology subjects are still used during the atlas construction to
calculate the deformation fields Ti (i=1, …, N). Hence, an atlas is
constructed that represents a structural averaged image of the whole
subject group, including the pathology subjects, but only containing
diffusionproperties of thehealthy subjects. This population specific atlas
is regarded as the fundamental image in our ground truth VBA
methodology and will be referred to as A (see Fig. 1c). All simulated
data sets will be constructed from this atlas A. To this end, A is replicated
N times, resulting in N times the same atlas data set Ai=A (see Fig. 1d).

Introducing pathology
In DTI, aWMpathology can present itself generally in two different

ways: as amore global morphological anomaly on the one hand and as
local changes in diffusion properties on the other hand. In the former
case, WM structures are altered due to the presence of brain atrophy,
the growth of a tumor, or changes in ventricle size, etc. Commonly,
these anomalies can also be detected on conventional MR images.
The resulting WM deviations can be visualized with diffusion tensor
tractography, a virtual reconstruction of the WM fiber pathways
(Basser et al., 2000; Lee et al., 2005; Catani, 2006).

Since the changes in local diffusion properties can be related to
changes in organization of the underlying microstructure, they can
provide sensitive markers of brain WM integrity, which is not always
available with conventional MR examinations. These diffusion para-
meters can quantify the underlying mechanisms leading to neurolo-
gical dysfunction in WM disorders, such as demyelination or axonal
breakdown to a certain extent (Beaulieu, 2002). Note, however, that –
although the diffusion properties can be related to WM breakdown –

the specific relationship between WM changes and pathology is still
poorly understood. Despite this limitation, most DTI studies of
pathologies examine these diffusion discrepancies using an ROI or
VBAmethod. Therefore, in this framework, these diffusion alterations,
which can be associated with a neurologic disorder, are introduced in
different WM structures of the ground truth data sets, which are
subsequently regarded as belonging to the pathology group.
Although further studies are needed, recent work suggests that
demyelination and axonal degeneration cause an increase of the
average of the second and third eigenvalues (the transverse
diffusivity, λ⊥

A) and a decrease of the first eigenvalue (the longitudinal
diffusivity, λ||

A), respectively (Song et al., 2002, 2003, 2005; Budde et
al., 2007; Schwartz et al., 2005; Harsan et al., 2006). In our work, these
measures are therefore used to simulate axonal damage, myelin
injury, or a combination of both in the DTI data sets. Notice that, in
addition to the location and extent of the pathology, the level of tissue
degradation, as reflected by the diffusion properties, can also be
controlled in the simulated pathology data sets.

For each pathology data set, the eigenvalue alterations are
introduced in the longitudinal λ||

A and transverse λ⊥
A eigenvalue

images of the atlas data sets Ap (p=1, …, P), which are subsequently
regarded as the pathology group, resulting in the eigenvalue images λ||

and λ⊥ (see Figs. 1e and j):

λO rð Þ = λA
O rð Þ + ΔλO rð Þ

λ8 rð Þ = λA
8 rð Þ + Δλ8 rð Þ

: ð2Þ

The magnitude of the microstructural breakdown that is simulated in
the longitudinal and transverse eigenvalue images is defined as Δλ||

(r) and Δλ⊥(r), respectively, where r describes the location and size of
the different voxel clusters in which a pathology is introduced for the
longitudinal and transverse eigenvalue images. Note that Δλ||(r) and
Δλ⊥(r) can be defined for each data set separately. The microstruc-
tural breakdown, represented byΔλ||(r) andΔλ⊥(r), is introduced as a
percentage change of the original values λ||

A and λ⊥
A. Note that Δλ||(r)

and Δλ⊥(r) can be modeled more specifically to constrain changes in
FA and MD. For example, a FA decrease can be simulated while
keeping the MD constant.

Since the purpose is to introduce eigenvalue alterations, and not to
change the main direction of diffusion, care has to be taken that the
transverse diffusivity does not become larger than the longitudinal
diffusivity. The altered eigenvalue images λ|| and λ⊥ are subsequently
used to redefine the new diffusion tensors. Note that in this model of
introducing pathology, the diffusion eigenvectors are not modified
and that radial diffusion symmetry is assumed, i.e., the second and
third eigenvalues are changed in the same way. After the modification
of the diffusion tensor, the DW images are recalculated. The resulting
data sets Ap

⁎ represent the atlas images with an additional simulated
pathology in certain voxels (see Fig. 1e). The data sets that are
regarded as the simulated healthy subject images are not altered
during this step of the processing pipeline: Ah

⁎=Ah.

Introducing inter-subject variability
Even if data sets of different healthy subjects are acquired in the

same scanner and with the same acquisition parameters, a significant
inter-subject variance can be observed in these images. Many
variables, such as age, sex, handedness, etc. of the subjects are
known to contribute to this variability in the DT properties (Huster et
al., 2009; Hsu et al., 2008). Therefore, most VBA and ROI studies
circumvent these sources of variation by a careful selection of the
subject groups. However, due to the inherent anatomical and
physiological variability across subjects, the inter-subject variance is
still present in the DTI data sets. In order to create more realistic DT
images in our ground truth framework, this inter-subject variability
should be integrated to both healthy Ah

⁎ (h=1, …, H) and pathology
Ap⁎ (p=1, …, P) data sets.

Analogously to the WM pathology, the inter-subject variability can
present itself as a morphological WM variability or as variances of the
diffusion properties. Examples of the former are the shape variance of
the corpus callosum and the difference in the frontal WM architecture
across healthy subjects. The latter source of inter-subject variability is
more subtle, but will affect the statistics when different diffusion



Table 1
A short explanation of the symbols that are used throughout this paper.

Symbol Explanation

A Population specific atlas, fundamental dataset of the framework
A⁎p P atlases containing apathology
A′h H atlas data sets containing inter-subject variability
A′p P atlas data sets containing pathology and inter-subject variability
E Eigenvectors of the K×K matrix
h h=1,…,H
H Number of simulated healthy subject DTI data sets
i i=1,…,N
I Affinely transformed images to MNI space
Ĩ Non-rigidly transformed data sets I to the population specific atlas space
K Number of DTI data sets that issued to calculate the inter-subject variability
l Number of estimated DT parameters
Λ Eigenvalues of the K×K matrix
M K×2V matrix containing all data for the estimation of the inter-subject

variability
N Total number of simulated DTI data sets: N=H+P
O Originally acquired DTI data sets
p p=1,…,P
P Number of simulated pathology subject DTI data sets
Qk K data sets transformed to the atlas A to estimate the inter-subject variability
R K×1 vector defined as zero-mean, unit variance, Gaussian distributed

variables
ro Noise reduction factor of the processing pipeline
rt Theoretical noise due to estimating DTs from the DW images
S′h H simulated healthy subject DTI data sets in native space
S′p P simulated pathology subject DTI data sets in native space
Sh H simulated healthy subject DTI data sets in native space with appropriate

level of noise
Sp P simulated pathology subject DTI data sets in native space with appropriate

level of noise
σa Noise that has to be added to simulated data sets
σf Level of noise in simulated images after adding σn to original data sets
σn Level of added Rician noise on original data sets to estimate noise reduction

of processing pipeline
σo Estimated noise level on the original DTI data sets
T Deformation field
ThA H deformation fields from the atlas to the H images Ih
TpA P deformation fields from the atlas to the P images Ip
u Number of DW images in one DTI data set
V Number of atlas voxels for which FAN0.2
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properties are compared between subject groups. Simulation of this
type of inter-subject variance was obtained using a principal
component analysis (PCA) on the longitudinal and the transverse
eigenvalue images, since they contain all the information regarding
the local diffusion properties. Variances in the local directional
diffusion information, which can be considered as morphological
WM variabilities, will be accounted for in a later step of the ground
truth method. New longitudinal and transverse eigenvalue samples
are produced from an estimated distribution, as explained as follows
(see Fig. 1k):

• First, the DT atlas A is masked by thresholding the FA map. An FA
threshold of 0.2 was used to suppress areas consisting of cerebro-
spinal fluid (CSF) and deep gray matter (GM) in the analysis
(Smith et al., 2006).

• K healthy subject DTI data sets are acquired to estimate the inter-
subject variance of the diffusion properties. These K data sets are
coregistered non-affinely to the DTI atlas A, resulting in the data
sets Qk (k=1, …, K) (see Fig. 1k).

• Subsequently, a vector is constructed as a concatenation of the
masked longitudinal and transverse eigenvalue images of all data
sets Qk (k=1, …, K). Hence, a 2V-dimensional vector is obtained
for each data set Qk, with V the number of voxels included in the
mask.

• Let M represent a K×2V matrix, containing all the data. This data
wasmade zero-mean by subtracting themean 2V-vector for every
row. In other words, the mean longitudinal eigenvalue image is
subtracted from the K longitudinal eigenvalue images. The same is
done for the transverse eigenvalue images. Since K《2V, the K-
dimensional subspace is used to generate new samples. For this,
the eigenvalue decompositionMMT=EΛET is calculated, with E an
orthogonal matrix containing the eigenvectors, and Λ a diagonal
matrix containing the eigenvalues of a (K×K) matrix.

• A new random sample R is generated as a K×1 vector which is
defined as zero-mean, unit variance, Gaussian distributed
random variables. This sample is projected to the 2V-dimen-
sional space using 1ffiffiffi

K
p MT ER

• Finally, the mean vector is added to these samples, which are
then distributed according to the K original ones.

In this way, inter-subject variability is added to the longitudinal
and transverse eigenvalues of both the healthy and pathology data
sets, followed by a recalculation of the diffusion tensors and the DW
images. The resulting healthy and subject pathology data sets are
referred to as A′h and A′p, respectively (Table1).

Constructing the simulated data sets
As described in the paragraphs 3 and 4, the local diffusion

properties were altered to include a pathology and inter-subject
variability in the simulated DTI data sets. However, the resulting DT
images are still situated in the atlas space of image A.

Realistic, simulated DTI data sets of different individuals are
created by generating non-affine deformation fields that warp the
data sets Ah′ and Ap′ to their respective subject spaces. These
transformations are obtained by calculating the non-affine deforma-
tion fields between the atlas A and the native data sets Ii in the affine
MNI space (see Fig. 1l). Since realistic deformation fields, derived from
the coregistration of A to different healthy subjects Ih, are used to
transform the images Ah′, the inter-subject variability of the WM
structures in native space is also taken into account appropriately.
Structural WM pathologies and inter-subject variability of the WM
structures are also included in the transformed images Ap′, since P
deformation fields are obtained from the coregistration of A to the DTI
data sets of the pathology subjects Ip.

In order to increase the accuracy of the inter-subject warps and to
decrease the dependency of the spatial information of the simulated
data sets on a single coregistration algorithm, three different image
normalization methods are combined to compute a more general
deformation field:

1. The aforementioned viscous fluid model, including all DT infor-
mation during the image alignment, is used to obtain the defor-
mation fields TiA1 between the atlas A and the native data sets Ii.

2. The deformation fields TiA2 are computed using a coregistration
approach that is based on free-form deformations and B-
splines, which is included in software packages as IRTK (Image
Registration Toolkit) and FSL (FMRIB Software Library — www.
fmrib.ox.ac.uk/fsl) (Rueckert et al., 1999).

3. The deformation fields TiA3 are obtained by a linear combina-
tion of (7×8×7) basis functions as is included in the SPM
package (Ashburner and Friston, 1999).

Note that TiA1 is obtained by incorporating all DT information during
the coregistration,whereas FAmaps are employed to obtain both TiA

2 and
TiA
3 . The total non-affine transformation of the atlas A to each native
images Ii is calculated as the average of the three deformation fields:

TiA =
1
3

X3
j = 1

Tj
iA

These deformation fields are applied to the DW images of the data sets
Ah′ and Ap′, followed by a calculation of the diffusion tensors and a
tensor reorientation. The accordingly obtained simulated DTI data
sets will be referred to as Sh′=ThA(Ah′) (h=1, …, H) and Sp′=TpA(Ap′)
(p=1,…, P), or as Si′ (i=1,…, N) when referred to the simulated data
sets in general.

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl


Fig. 2. In (a), axial FA slices of six randomly selected native DTI data sets are shown. Three of these images, O1, O2, and O3, are healthy subject DTI data sets. On the other hand, images
O4, O5, and O6, are obtained fromMS patients. In (b)–(i), the processing pipeline is illustrated using these data sets. Finally, in (i), the simulated images in affine space are visualized.
Notice that these should resemble the native DTI data sets in affine space, as shown in (b).

697W. Van Hecke et al. / NeuroImage 46 (2009) 692–707



698 W. Van Hecke et al. / NeuroImage 46 (2009) 692–707
Introducing noise
In order to obtain realistic, simulated DTI data sets, a realistic

amount of noise should be included in the images. To this end, the
noise level in the native images is estimated with the method
described in Sijbers et al., (2007). In their approach, a histogram of the
Rayleigh distributed background intensities of the DW images is used
to estimate the noise level, which will be referred to as σo. A similar
noise level should be observed in the simulated images. In order to
obtain realistic, simulated DTI data sets, a realistic amount of noise
should be added to the DW images of the simulated data set S′ (in
native space). In addition, since the noise is Rice distributed in MRI,
realistic noise in the resulting simulated images also needs to be Rice
distributed (Henkelman, 1985; Gudbjartsson and Patz, 1995).

The noise level is reduced in the simulated data sets due to the
complete processing pipeline that is used to construct these images.
One of the sources of this noise reduction is the interpolation step
during the image transformation (Rohde et al., 2005). In addition, the
noise is reduced since an averaged atlas is used as the fundamental
data set in the ground truth method. Finally, an important noise
reduction is caused by the decreased dimensionality in parameter
space when the diffusion tensors are calculated from the DW images.

In order to calculate the noise level that has to be added to the
simulated DTI data sets Si′, the noise reduction during the processing
pipeline should be estimated. To this end, extra Rician noise with
variance σn

2 is added to the DW images of the native data sets Oi. These
data sets are subsequently used to construct the simulated DTI data
sets Si′n as described in the previous paragraphs. Thereafter, the
resulting noise variance is estimated from the difference between the
original simulated data sets Si′ and the simulated data sets Si′n that
were constructed from original images Oi with extra noise:

σ2
f = E SVni −SVi

� �2h i
; ð3Þ

in which the expectation E was replaced by a regional average. Finally,
the noise reduction factor of this processing pipeline is computed as
ro=σn/σf.

To obtain simulated DW images with a similar noise standard
deviation as in the original images Oi (i.e. σo), the amount of noise
that has to be added (σa) to the simulated data sets, is given by:

σa =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

o − σo =roð Þ2
q

: ð4Þ

However, it is important to note that the noise already present in Si′
can be explained by the diffusion tensors, i.e., it completely adds to the
variance of the diffusion tensor estimates. Since in the further
processing, the DTs and not the DW images are of interest, the final
noise level of the simulated DTs should be equal to the noise level of
the DTs computed from the original images Oi. Since the dimension-
ality in parameter space is reduced by estimating the DTs from the DW
images, a theoretical noise reduction rt is expected:

rt =
ffiffiffiffiffiffiffiffiffi
u= l

q
; ð5Þ

with u the number of DW images and l the number of estimated DT
parameters. Taking into account the reduction factor rt, the noise
standard deviation that has to be added to Si′ becomes:

σa =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

o − σo:rt =roð Þ2
q

: ð6Þ

After adding the Rician distributed noise with noise level σa to the
DW images of simulated data sets Sh′ and Sp′, they are referred to as Sh
and Sp, respectively.

The resulting simulated healthy subject and pathology data sets,
which contain a realistic amount of noise, are referred to as Sh (h=1,…,
H) and Sp (p=1,…, P), respectively, or as Si (i=1,…,H+P) in general.
Subjects and data acquisition

In thiswork,100 DTI data setswere acquired on a 1.5 TMR system. 80
of these images were obtained from a healthy subject group (age range:
18–65 years, 32 M, 48 F). In addition, 20 data sets were obtained from
patientswithMultiple Sclerosis (MS) (age range: 20–42 years, 6M,14 F).

Axial diffusion tensor imageswere obtainedusing an SE-EPI sequence
with the following acquisition parameters: TR: 10.4 s; TE: 100 ms;
diffusion gradient: 40 mT m−1; FOV=256×256 mm2; number of
slices=60; voxel size=2×2×2 mm3; b=700 s mm−2; acquisition
time: 12 min 18 s. Diffusion measurements were performed along 60
directions with 10 b0-images and a nonlinear diffusion tensor estimation
procedure was used based on the Levenberg–Marquardt optimization
method (Jones, 2004b). DTI post-processing and visualization were
performedwith the diffusion toolbox ‘ExploreDTI’ (Leemans et al., 2009).

Examining the effect of image alignment and tissue degradation on VBA
results

40 simulated data sets were generatedwith a specific level of noise
and inter-subject variability to investigate the effect of coregistration
and level of pathology on the sensitivity of the VBA results. Several
levels of pathology (predefined increase of the transverse eigenvalues
λ⊥) were simulated in the splenium of the corpus callosum (size: 54
voxels in 4 consecutive axial slices) for 20 data sets (Ardekani et al.,
2003; Barnea-Goraly et al., 2003; Park et al., 2004; Simon et al., 2005;
Kyriakopoulos et al., 2007; Douaud et al., 2007).

TwoVBAanalyseswereperformeddemonstrating thesubtle changes
in outcome of regions with a significant FA difference between healthy
and diseased subjects due to imperfections in coregistration:

Analysis 1:. The predefined deformation fields to transform the
simulated data sets to native space were applied to invert the data
back to atlas space. In doing so, perfect spatial alignment is guaranteed
taking into account the effects of data interpolation, allowing for the
computation the effective levels of pathology (that is, prior to adding
noise and inter-subject variability).

Analysis 2:. The data sets in native space (as in Analysis 1, but with
noise and inter-subject variability added) are coregistered to the atlas
using the non-rigid coregistration approach (Van Hecke et al., 2007).

For both analyses, the FA data were smoothed with a Gaussian
kernel (3 mm FWHM) and a parametric t-test (the data were
normally distributed according to the Lilliefors test) was used to
compare the FA values between the healthy and the pathology data
sets, followed by the Benjamini–Hochberg post-hoc correction for
multiple comparisons (Benjamini and Hochberg, 1995). To quantify
the VBA results, the sensitivity – calculated as the ratio of the number
of true positives with the sum of the number of true positives and false
negatives – is computed for both analyses and repeated 10 times,
whereby the noise distribution as well as the inter-subject variability
distribution is re-sampled.

Experiments and results

From the 100 (=H+P+K) acquired DTI data sets, 20 (=P) were
obtained from pathology subjects with MS. The 20 (=H) healthy
subject data sets were age- and sex-matched with the MS patient
images. The remaining 60 (=K) healthy subject data sets were used to
construct the inter-subject variability maps.

Native images

To illustrate the processing pipeline of the ground truth method,
axial FA slices of six randomly selected native DTI data sets, colour



Fig. 3. On the left, different WM structures are displayed in which a simulated pathology is introduced. For each WM structure, the number of voxels in which a pathology is
introduced is given for this example. In addition, references of studies are given that found a significant difference of the diffusion properties in this specificWM structure. The voxels
in which the diffusion properties are altered are marked in white on the different axial slices of the DTI atlas.
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encoded for the main diffusion direction, are displayed in Fig. 2a.
Three of these (left) were acquired from healthy volunteers, whereas
the other three (right) were obtained from MS patients.

Atlas construction

Apopulation specific atlaswas constructed from thenativeDTI data
sets, as explained in theMethods section. As illustrated in Fig. 2b, these
data sets were warped affinely to MNI space, followed by the trans-
formation to the atlas space by the use of averaged deformation fields.
Thereafter, an atlas was computed with a minimal deformation to all
images of the subject group, as shown in Fig. 2c (Van Hecke et al.,
2008). This DTI atlas, which is regarded as the fundamental data
set of the ground truth method, was reproduced 40 (=H+P) times
(see Fig. 2d).

Introducing pathology

Based on the reported results in the DTI literature, a predefined
microstructural breakdownwas introduced in different voxel clusters
of the simulated pathology data sets (see Fig. 2e). As can be seen in
Fig. 3, these selected WM structures and voxel clusters are coloured
in white on different axial slices of the atlas data set. References to
DTI studies in which the diffusion measures in these WM structures
were observed to be significantly different between control subjects
and patients are added to this Fig. (Park et al., 2004; Anjari et al.,
2007; Sach et al., 2004; Sage et al., 2007; Hubl et al., 2004; Borroni et
al., 2007; Xie et al., 2006; Nagy et al., 2003; Molko et al., 2004; Simon
et al., 2005; Padovani et al., 2006; Seok et al., 2007; Kyriakopoulos et
al., 2007; Douaud et al., 2007; Kubicki et al., 2005; Buchsbaum et al.,
2006; Barnea-Goraly et al., 2003; Ardekani et al., 2003). In addition,
the number of voxels in which the diffusion properties are modified
in this example are also presented in Fig. 3.

An example of different levels of tissue degradation in the
splenium of the corpus callosum is given in Fig. 4a and enlarged in
Fig. 4b. The corresponding tensors are displayed in Fig. 4c. The degree
Fig. 4. An example is provided of the introduction of a pathology in the splenium of the corpu
The splenium is shown in more detail in (b). In (c), the diffusion ellipsoids of the splenium
of microstructural breakdown is here defined as a percentage of the
original longitudinal and transverse eigenvalues in each voxel.

Introducing inter-subject variability

Inter-subject variability was estimated from 60 (=K) healthy
subject DTI data sets. Examples of the images in atlas space that
include inter-subject variability of the diffusion properties are shown
in Fig. 2f. In Fig. 5, the inter-subject variance of the longitudinal and
transverse eigenvalues is depicted, as reflected by the coefficient of
variation, which is the standard deviationmap of an eigenvalue image,
normalized by the average of the different eigenvalue images. An axial,
coronal, and sagittal slice of the FA map is shown in Fig. 5a. In Fig. 5b,
the inter-subject variance of the longitudinal eigenvalues is depicted
for the same axial, coronal and sagittal slices. Analogously, the inter-
subject variance of the transverse eigenvalues is visualized in Fig. 5c. A
high inter-subject variance is depicted in a bright colour, whereas a
low inter-subject variance is depicted in a dark colour.

Constructing the simulated data sets

After generating the simulated DTI data sets in atlas space, a
predefined set of deformation fields is applied to these data sets to
transform them to native space. (see Fig. 2g). A qualitative example of
the image correspondence between the simulated and the native DTI
data sets is shown in Fig. 6. In Fig. 6a, axial FA slices of five randomly
selected native DTI data sets are displayed. Axial FA slices of the
corresponding simulated data sets are visualized in Fig. 6b. After
overlaying the blue coloured native FA image and the red coloured
simulated FAmap, corresponding voxels with similar FA values will be
coloured purple, as visualized in Figs. 6c–e.

In order to obtain a quantitative measure of the spatial image
correspondence between the native and the simulated data sets, ROIs
were manually drawn in different WM structures on the both the
native and the simulated data sets (see Fig. 7). First, these ROIs,
delineating the capsula externa, corpus callosum, cerebellar peduncle,
s callosum. In (a), the axial slices are displayed for different levels of tissue degradation.
are visualized.



Fig. 5. In (a), an axial, sagittal, and coronal slice of the FA map are displayed. A measure of the inter-subject variability of the longitudinal and the transverse eigenvalues is shown in
(b) and (c), respectively. This measure is calculated as the standard deviation of the eigenvalue images that result from the PCA analysis, weighted by the average of these images.
High and low inter-subject variances are represented by a bright and a dark colour, respectively.
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and posterior limb of the internal capsule, are drawn twice on the
native data sets to test the reproducibility. These ROIs are marked in
red and blue, as indicated in Fig. 7. Thereafter, the sameWM structures
are delineated on the simulated data sets, and marked in green.
Finally, the red and blue voxels as well as the red and green voxels
are overlaid. In the case that a voxel is selected by the red and the
blue ROI, it will be given a purple colour, describing the reproducibility
of the manual ROI delineation. Analogously, voxels appear yellow
when they are present in both red and green ROIs, describing the
image correspondence between the native and the simulated data
sets. A quantitative measure for the ROI correspondence is calculated
as the percentage of voxels that are present in both ROIs related to
the total number of selected voxels in both ROIs. This measure is
computed for the aforementioned ROIs in all 40 corresponding native
and simulated data sets resulting in the boxplots of Fig. 7. The dif-
ference between both overlap measures was not statistically sig-
nificant, demonstrating the high spatial correspondence between the
simulated and the native DTI data sets for these large well-defined
WM structures.

In order to evaluate the tensor correspondence between the native
and the simulated data sets, the overlap of eigenvalue–eigenvector pairs
(OVL) is computed (Basser and Pajevic, 2000). This measure calculates
the scalar product between corresponding eigenvectors, weighted by
the magnitude of the corresponding eigenvalues. The minimumvalue 0
indicates no overlap and the maximum value 1 represents complete
overlap of the diffusion tensors. In Fig. 8a, the OVL measure between an
native data set and its corresponding simulated data set is calculated for
four randomly selected data sets and overlaid on the FA map of the
native images. As can be observed in Fig. 8a, a high OVL is found in the
major WM structures. In Fig. 8b, a histogram of the OVL values is
displayed for these four data sets. All voxels with an FA value above 0.4
were included in this histogram. Finally, a scatter plot of the OVL and the
FA values is displayed in Fig. 8c, demonstrating the high tensor
correspondence in the major WM structures with a high FA.
Introducing noise

After applying the method of Sijbers et al. (2007) to the 40 native
DTI data sets Oi, a noise level σo=18±1was found. Extra noise with a
σi of 7 was added to the native images to estimate the observed noise
reduction factor of the processing pipeline. After processing these
images, the reduced noise level in the simulateddata setswas observed
to be σf=1.6. Consequently, the noise reduction factor of the
processing pipeline to construct the simulated data sets is ro=σi/
σf=4.3.

In order to create simulatedDT images that have the samenoise level
as the native images, extra noise has to be added to the DW images of
data sets Si. To obtain simulatedDWI imageswith a similar noise level as
in the original images (i.e.18±1), the noise that has to be added should

have a σa =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

o − σo =roð Þ2
q

= 17:5. However, as explained in the
previous section, only the noise on the estimated diffusion tensors is
important for the further processing and interpretation of the data sets.
The variance of the noise that should be added to the simulated images
therefore becomes σa =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

o − σo:rt =roð Þ2
q

= 12:2. Examples of sim-
ulatedDTI data sets that include a realistic level of noise are visualized in
Fig. 2h.

Examining the effect of image alignment and tissue degradation on
VBA results

In Fig. 9, the VBA results of Analysis 1 and Analysis 2 are displayed
for different levels of tissue degradation, expressed as a percentage of
effective FA change. One of the axial slices, inwhich the pathologywas
simulated, is shown in Fig. 9a. In Fig. 9b, the VBA results of the
splenium are shown qualitatively for analyses 1 and 2 for different
levels of simulated pathology. The voxels, in which ground truth
pathology was introduced, are given a purple colour. The subgroup of
these voxels that were found as statistically significant in the VBA



Fig. 6. The spatial image correspondence is represented visually for 5 randomly selected native data sets and their corresponding simulated data sets. The axial FA slices of these
native and simulated data sets are visualized in (a) and (b), respectively. The FA maps of the native and the simulated data sets are colour encoded in blue and red, respectively. By
overlaying these colour encoded images, the corresponding voxels with a similar FA value will be purple as can be seen on the axial, coronal, and sagittal slices, in (c), (d), and (e),
respectively.
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analysis are coloured in blue. For an effective FA decrease of 7%, 10%,
13%, 16%, 19%, and 21%, different results were obtained between both
analyses: in Fig. 9c, these differences in sensitivity are displayed for
the different levels of simulated pathology.

Discussion

In this work, a novel framework is presented for the construction
of simulated DTI data sets, which include a predefined pathology. An
increasing number of researchers apply VBA methods to analyse DTI
data of control subjects and patients (Park et al., 2004; Anjari et al.,
2007; Sach et al., 2004; Sage et al., 2007; Hubl et al., 2004; Borroni et
al., 2007; Xie et al., 2006; Nagy et al., 2003; Molko et al., 2004; Simon
et al., 2005; Padovani et al., 2006; Seok et al., 2007; Kyriakopoulos et
al., 2007; Douaud et al., 2007; Kubicki et al., 2005; Ardekani et al.,
2005; Buchsbaum et al., 2006; Barnea-Goraly et al., 2003; Ardekani et
al., 2003). However, studies suggest that the VBA results are not
always accurate and disease specific, since they depend on the
parameter settings and implementations of the post-processing
method (Jones et al., 2007; Zhang et al., 2007; Jones et al., 2005;
Bookstein, 2001; Davatzikos, 2004). In this context, our framework
allows one to estimate the accuracy, precision, and reliability of
different post-processing approaches for detecting changes in diffu-
sion properties with different predefined magnitudes and locations
quantitatively.

The processing pipeline of the ground truth framework was based
on the acquisition of 80 (=H+K) healthy subject and 20 (=P) MS
patient DTI data sets. The MS patient data sets were included in the
analysis in order to introduce morphological anomalies, such as
enlarged ventricles or a thinned corpus callosum in our simulated
data sets in order to increase the resemblance of the simulated study
with realistic situations. For example, the inclusion of simulated DTI
data sets with a morphological pathology in a VBA might hamper
the coregistration accuracy, and thereby the reliability of the statis-
tical analysis. However, it should be mentioned that the unknown
alterations of the diffusion properties, which are present in the native
DTI data sets of the MS patients, were not included in the simulated
data sets. As such, the population specific atlas, which is considered as
the fundamental image of our framework, only contains the diffusion
information of the healthy subjects, although it is located in the atlas
space of all subjects (i.e., both healthy subjects and MS patients).

As can be observed, for example, in Fig. 3, the population specific
atlas particularly contains reliable information within the main WM
structures. Since a large variability of the peripheral WM and the GM



Fig. 7. ROIs are drawn twice in the capsula externa, the corpus callosum, the cerebellar peduncle, and the posterior limb of the native data sets, as displayed in red and blue. After overlaying these ROIs for eachWM structure, voxels will appear
purple, when they are included in both ROIs. The percentage of overlap is given on the right. Analogously, ROIs are delineated in the sameWM structures of the simulated images, and displayed in green. The voxels that are included in the ROI of
the native data set and of the simulated data set are then coloured yellow. Again, the percentage of overlap of these ROIs are shown on the right for the different WM structures.

703
W
.Van

H
ecke

et
al./

N
euroIm

age
46

(2009)
692

–707



Fig. 8. The overlap of eigenvalue and eigenvector pairs (OVL) is calculated between 4 native images and their corresponding simulated data sets. In (a), this OVL measure is
superimposed on the axial FA slices of the native data sets. A histogram of this OVL is calculated including all voxels with an FAN0.4, as shown in (b). In (c), a scatter plot of the OVL
measure and the FA value is displayed, demonstrating the higher tensor correspondence in WM structures with a high FA.
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structures exists in the DTI data sets across different subjects, this
information is less reliable in the atlas. This large inter-subject
variability is also illustrated in Figs. 5b and c, showing the inter-
subject variances, as calculated by a PCA analysis on 60 (=K) healthy
subjects, of the longitudinal and transverse eigenvalue maps,
respectively. Since these peripheral WM structures are not reliably
present in the fundamental atlas data set, no pathology diffusion
alterations are introduced in the peripheral WM structures of the
simulated DTI data sets. In this context, it should be mentioned that in
VBA studies of different pathologies, all results in the peripheral WM
should be interpreted very cautiously.

Examples of voxel clusters, in which microstructural breakdown is
simulated by changes in the diffusion characteristics, are visualized in
Fig. 3. Obviously, the magnitude, the spatial location and size of the
pathology can be chosen differently from this example and can be
modified to address specific issues and validate specific hypotheses. In
addition, the nature of the pathology (for example, constant MD and
FA increase or MD and FA increase, etc.) can be modified to simulate
specific pathologies. Furthermore, it should be mentioned that the
exact location of the pathology can be varied across the pathology
subjects to simulate more complex configurations.

After including a pathology and inter-subject variability, the
simulated DTI data sets are still embedded in the population specific
atlas space. In order to simulate a realistic situation, these DTI data sets
should be located in a native space. To his end, deformation fields
were used to transform the simulated data sets to their native space.
Since, in this work, realistic deformation fields were adopted to
transform the atlas image to the individual space, the spatial
correspondence of the simulated data sets with realistic DT images
will depend on the accuracy of these deformation fields. Therefore,
inaccuracies in the image alignment to the native DT images are
reduced by the use of a population specific DTI atlas as the
fundamental DTI data set. The magnitude of the deformation fields
from the atlas to the native images is then minimized, thereby
reducing potential coregistration errors. To further minimize these
image alignment inaccuracies, three different image normalization
techniques were applied to estimate the deformation fields between
the atlas and the native DTI data sets. These deformation fields were
subsequently averaged and used to transform the simulated data sets
to their native space. In addition, the use of averaged deformation
fields prevents the generated transformations of being biased toward
a family of deformations that can be generated by one particular
warping algorithm. Finally, the use of averaged deformation fields to
construct the simulated data sets enhances the tensor correspondence
between the native data sets and the simulated images, since the
effect of tensor reorientation inaccuracies is reduced (Van Hecke et al.,
2007, 2008).

After the transformation of the DT images to an individual space
and the subsequent addition of a realistic amount of noise, simulated
DTI data sets are constructed. The images can then be used to
quantitatively evaluate different DTI post-processing approaches,
since all the aspects of the pathology are known a priori. In this
way, different implementation issues and parameter settings of the
VBA methods can be examined separately. As shown by our example
(Analysis 1 vs. Analysis 2), it is clear that the ground truth framework
can be applied to investigate the effect of coregistration on the
sensitivity of VBA results. Key to comparing a specific aspect of the
VBA pipeline using this simulation approach is to keep all other
predefined parameters and methods identical. In this example, for
instance, when investigating the adverse effects of coregistration, not
only the levels of noise and inter-subject variability, the size of
smoothing kernel, and the applied statistical tests were the same, also
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the actual transformation steps were included to consider the partial
volume averaging artifacts due to interpolation, which are also
present during actual coregistration. The analysis was also restricted
to the splenium of the corpus callosum. Although not shown in this
manuscript, other WM structures showed similar but non-trivial
behavior, mainly being dependent on both the shape and size of the
induced pathology and the WM structure itself. With these simulated
VBA analyses, coregistration methods can be compared or even
optimized by fine-tuning user-defined parameters.

The proposed framework for simulating DTI data sets serves to
evaluate the effect of different DTI processing strategies – and their
parameter settings – on the sensitivity and specificity of VBA results.
In principle, the following general aspects and processing steps within
such a DTI based VBA pipeline can be investigated:

• The applied diffusion gradient sampling scheme (Jones, 2004a);
• Motion and distortion correction of the DW images, e.g., with or
without b-matrix rotation (Leemans and Jones, In press);

• Diffusion tensor estimation approaches (Koay et al., 2006);
• DTI coregistration for spatial normalization and atlas construction;
• Data smoothing (the DW images, the tensor components, the FA
maps, etc.);

• Application of parametric vs. non-parametric statistics;
• Post-hoc analyses, such as multiple comparisons correction.

Each these processing steps (each with their own set of ‘tunable’
parameters) will contribute to the overall variability (in terms of
accuracy and precision) of the final VBA result. Note, however, that
it is important to realize that their relative contribution in this
variability may differ significantly. In this context, this simulation
framework will help to identify the bottlenecks in the VBA pipeline
(e.g., the choice of the kernel size for data smoothing may affect the
VBA outcome more than the choice of the diffusion tensor estimation
approach).

Despite its virtues, the presented framework of constructing
realistic, simulated DTI data sets has some limitations. In our
study, only the longitudinal and transverse eigenvalues can be
altered to simulate the assumed effects of axonal degeneration and
demyelination, respectively. However, the exact relation between
microstructural breakdown and diffusion tensor properties is not
known, partly due to the inadequacy of DTI to resolve multiple fiber
populations. In addition, in the pathology simulation, radial diffusion
symmetry is assumed, i.e., the second and third eigenvalues are
changed in the same way. Furthermore, the diffusion orientation
information, reflected by the eigenvectors, are not altered. Another
limitation is that the inter-subject variability was estimated using a
procedure in which a Gaussian distribution was assumed. Although
this assumption cannot be verified directly, we believe that this
Gaussianity may still be valid by using a large amount of data sets for
the estimation of a realistic inter-subject variability. Finally, since
deformation fields between the atlas and the native data sets were
used to construct the simulated images, the spatial information of
these simulated images is defined by the native data sets. In future
work, we intend to generalize this procedure by increasing the
number of native data sets for the construction of more simulated data
sets, as described in Xue et al. (2006).
Fig. 9. VBA results for a ground truth pathology in the splenium of the corpus callosum.
In (a), the ground truth pathology is shown on an axial slice of the atlas FA map. The
VBA results after a simulated perfect spatial alignment (Analysis 1) and after non-rigid
coregistration (Analysis 2) are visualized in (b). The voxels in which a ground truth
pathology is introduced are coloured in purple, whereas the significant voxels are
coloured in blue. In (c), the VBA sensitivity is displayed for different levels of tissue
degradation, as presented by the corresponding effective FA decrease.
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Conclusion

In this work, a framework for constructing simulated DTI data sets
with a predefined pathology is presented. These data sets can be
employed in studies to evaluate the accuracy, precision, and
reproducibility of different VBA algorithms quantitatively. We are
convinced that this will lead to an improved understanding of the
reliability and shortcomings of these post-processing methods to
study different WM altering pathologies.
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