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Diffusion tensor tractography
(VBM) has been increasingly applied to detect diffusion tensor (DT) image
abnormalities in patients for different pathologies. An important requisite for a robust VBM analysis is the
availability of a high-dimensional non-rigid coregistration technique that is able to align both the spatial and
the orientational DT information. Consequently, there is a need for an inter-subject DTI atlas as a group
specific reference frame that also contains this orientational DT information. In this work, a population based
DTI atlas has been developed that incorporates such orientational DT information with high accuracy and
precision. The proposed methodology for constructing such an atlas is compared with a subject based DTI
atlas, in which a single subject is selected as the reference image. Our results demonstrate that the
population based atlas framework is more accurate with respect to the underlying diffusion information.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI or DTI) is
becoming increasingly important in neuroscience research since it can
probe the structure and properties of the brain white matter (WM)
tissue in vivo and non-invasively (Basser et al., 1994). The potential of
DTI to expose WM pathways, consisting of axon bundles, is based on
the fact that water molecules have a larger probability to diffuse along
the axonal structures than perpendicular to them (Beaulieu, 2002).
The virtual reconstruction method of WM pathways, also referred to
as diffusion tensor tractography, is becoming a valuable diagnostic
tool for a large number of neuropathological diseases (Bammer et al.,
2003; Toosy et al., 2003; Abe et al., 2004; Pagani et al., 2005). In
addition, quantitative diffusion properties have shown to be sensitive
markers for studying a wide range of WM altering pathologies
(Rovaris and Filippi, 2007; Fellgiebel et al., 2007). In this context, the
fractional anisotropy (FA), which is a normalized measure of the
degree of anisotropy, and the mean diffusivity (MD), i.e. the averaged
amount of diffusion, are generally examined.

Diffusion parameter alterations are commonly detected by a user-
defined region of interest (ROI) analysis, requiring a manual or semi-
ysics, University of Antwerp,
ax: +32 3 820 22 45.
cke).
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automatic segmentation of the structures of interest (Snook et al.,
2005). Such ROI measurements can be quite laborious and can be
confounded by a lack of reproducibility due to an inter- or intra-
operator variability in the delineation of the ROIs. Furthermore, a ROI
analysis can only detect diffusion parameter differences in regions
that were a priori hypothesized to be associated with the studied WM
disorder. Also, the spatial location and the extent of diffusion tensor
parameter differences are generally not known in advance. Therefore,
an increasing number of studies incorporate voxel-based morpho-
metry (VBM) strategies evaluate changes in diffusion of WM altering
pathologies (Ashburner and Friston, 2000). In a VBM analysis,
statistical tests are performed for each voxel separately. Hence, the
whole brain is checked for patient–control differences, without any a
priori hypothesis being made about the spatial location and extent of
the parameter alterations.

An important requisite for a reliable statistical analysis in a VBM
study is that, after the DT image alignment to a common atlas space,
spatially overlapping voxels of different subjects correspond to the
same anatomical structure. It is generally assumed that affine
transformations, which consist only of global translations, rotations,
shearing, and scaling factors, cannot deal with the local morphological
discrepancies between different subjects (Bürgel et al., 2006). In order
to minimize local differences in brain shape across subjects non-rigid
coregistration algorithms are required. However, since the local
variability of the human brain across subjects can be very large,
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image alignment inaccuracies may be present after the non-linear
warping of the images to atlas space, potentially affecting the VBM
statistics (Bookstein, 2001; Jones et al., 2007). In addition, the
coregistration of DT images is particularly challenging compared to
aligning scalar images, since in DT images each voxel is represented by
a symmetric second rank tensor, i.e. the six components describing the
three-dimensional diffusion process (Basser and Pierpaoli, 1996).

It has been reported that small spatial alignment inaccuracies,
whichmay be present after the non-rigid coregistration, can introduce
substantial tensor reorientation errors. However, several studies have
shown that incorporating all DT information during coregistration and
applying an appropriate tensor reorientation strategy can improve
both the spatial and orientational DT image alignment (Park et al.,
2003; Van Hecke et al., 2007; Alexander et al., 2001). Consequently, a
single subject or an atlas that is going to be used in a DTI VBM analysis
as a reference image for coregistration should also contain this multi-
component DT information.

Most VBM studies utilize a standard reference image, such as the
MontrealNeurological Institute (MNI) atlas,whichwas constructed from
the affine transformation of 305 MR images of normal subjects to the
stereotactic space defined by Talairach and Tournoux (1988). The
advantage of a standard template such as the MNI atlas is that it
contains coordinate, anatomic, and cytoarchitectonic labels and that the
VBMresults canbe compared in a standardwayacrossmany studies that
employed the this atlas. However, since this atlas is not study-specific, it
might fail to provide a good representation of the given population,
thereby potentially resulting in alignment errors after coregistration of
the study group images to this reference space. Furthermore, since the
MNI atlas is anMR atlas, many DTI based VBM studies utilize only the T2
weighted image information of different subjects to drive the coregis-
tration to theMNI space. This introducesWM alignment errors, because
no DT information is considered during the warping procedure (Park
et al., 2003). In some studies, the deformation field which was acquired
by the coregistrationof anatomicalMR images is subsequentlyapplied to
the FA maps to create an FA template, whereto all data sets are warped
(Kyriakopoulos et al., 2007).

In other VBM studies, a single subject data set of the image group is
selected as the reference or template image (Jones et al., 2002; Smith
et al., 2006; Douaud et al., 2007). Although such an atlas is study-
specific, it might fail to be a good representative of the whole subject
group. Furthermore, the unique brain topology of this single subject
can differ significantly from the brain topology of the other subjects in
the image group, especially when patients with certain WM disorders
are included in the analysis. Guimond et al. (2000) introduced an atlas
construction methodology based on the coregistration of all subjects
to a single subject data set which is selected as the initial reference
image, followed by the averaging of all these coregistered images in
the space of this initial reference image. Finally, the resulting atlas is
transformed with a deformation field that is equal to the average
deformation of the initial reference image to all other images of the
subject group. A previously reported disadvantage of this atlas
construction method is that the resulting atlas can inherently contain
unique features of the selected initial reference image, which results
in a local topological bias (Wang et al., 2005).

During DTI atlas construction, Jones et al. (2002) incorporated FA
maps for the affine coregistration of 10 subjects to a single subject
image, which was previously transformed to the SPM T2-weighted
template. Wakana et al. (2004) created a WM and tractography atlas
based on a high-spatial-resolution DTI data set. Dougherty et al.
(2005) and Müller et al. (2007) used T2-weighted and non-diffusion
weighted images, respectively, for the image alignment during the
atlas construction. Goodlett et al. (2006) applied the methodology of
Joshi et al. (2004) to construct an atlas which was based on the
alignment of scalar DT images. In their atlas method, the most
representative template image is calculated as the data set that
requires the minimum amount of transformation to each of the
anatomical images. At each iteration, the updated template estimate is
computed by the voxel-wise averaging of the deformed images.
Ardekani and Sinha (2006) extended the atlas methodology that was
developed by Guimond et al. (2000) to DT images, thereby using FA
and MD images as information during the image alignment. Park et al.
(2003) incorporated all DT information in their coregistration
technique for the atlas construction, which was based on the
methodology of Guimond et al. (2000). Other coregistration methods
incorporate tensor reorientation as part of the image alignment
optimization (Cao et al., 2005, 2006; Zhang et al., 2006). Zhang et al.
(2007) incorporated tensor information during the image alignment
to construct an atlas based on the method of Joshi et al. (2004).

In this work, a study-specific DT atlas is constructed whereby the
magnitudes of the deformation fields that are needed to warp the
different images to the atlas are minimized. This atlas is unbiased
towards a single subject topology, since no single subject is selected as
the initial reference data set. In addition, the directional diffusion
information is reliably present in the DTI atlas model. Since it is very
hard to objectively evaluate an atlas of a certain image group, a ground
truth methodology is introduced to evaluate both the accuracy and
precision of the spatial and orientational information in the atlas. In
addition, inter-subject atlases are constructed based on the data sets
of 20 healthy subjects to evaluate the different atlas frameworks in a
realistic situation. Our results indicate that the atlas construction
method affects the accuracy and the precision of the diffusion
information in the final atlas.

Methods

Data acquisition

Diffusion tensor images of the brain were acquired with an 1.5 T
MR scanner (Siemens, Erlangen, Germany) from 20 healthy subjects (8
males and 12 females), with a mean age of 25±3 years (19–30 years).
An informed consent was signed by all participants.

Axial diffusion tensor images were obtained using an SE-EPI
sequence with the following acquisition parameters: TR: 10.4 s; TE:
100ms; diffusion gradient: 40mTm−1; FOV=256×256mm2; number of
slices=60; voxel size=2×2×2 mm3; b=700 s mm−2; acquisition time:
12 min 18 s. Diffusion measurements were performed along 60
directions with 10 b0-images for a robust estimation of FA, tensor
orientation, andMD (Jones, 2004). DTI post processing, tractography, and
visualization were performed with the diffusion toolbox ‘ExploreDTI’
(Leemans et al., 2005a). In this toolbox, the deterministic streamlinefiber
tracking approach is used for our purposes (Basser et al., 2000).

DTI coregistration

Global (affine) coregistration
In order to correct for global morphological differences, the DTI

data sets were aligned to MNI space using an affine coregistration
methodology. In this method, the FA images were used to estimate the
affine transformation parameters, based on the maximization of
mutual information (Maes et al., 1997).

For the remainder of the article, all images are considered to be
aligned with an affine transformation to the MNI space, including a
preservation of the principle direction (PPD) based tensor reorienta-
tion to realign the tensors with the underlying microstructure
(Alexander et al., 2001).

Local (non-rigid) coregistration
After affine coregistration, the different images of the subject

group were aligned using a recently developed non-rigid DTI
coregistration technique (Van Hecke et al., 2007). In this coregistration
approach, the images are modeled as a viscous fluid, which imposes
constraints on the local deformation field during normalization



Fig.1. A schematic overview of the subject and the population based atlas methodology is depicted for 5 DT images in I and II, respectively. In I(A) and II(A), the FAmaps, color-encoded for themain diffusion direction, are shown after the affine
deformation to the MNI space. In the subject based atlas framework, a single subject image is selected as the initial reference image (i.e., I1 in this Figure). The deformation fields of all data sets to this reference image are calculated and denoted
as T1j, with j=2,…, 5. In addition, the mean inverse deformation fieldT1 = 1

4∑j≠1Tj1 of the reference image to all other images is computed, with NS the number of subjects. Subsequently, as shown in (B), all images Ij are warped to the SB atlas
spacewith a combined deformation field— containing the deformation field to the reference image, T1j, and themean deformation field of the reference image to the final atlas space, T1. Finally the data sets in the SB atlas space are averaged to
construct the SB atlas, as displayed in (C). In the population based atlas, non-rigid deformation fields are calculated between all images. Subsequently, for every image Ii, the mean deformation field Ti is calculated as the average transformation
to all other images. This mean deformation field is applied to the corresponding data sets, including a tensor reorientation, resulting in the DT images of (B). The DW images of these data sets are averaged, resulting in the population based atlas,
as represented in (C).
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(D'Agostino et al., 2003). At each iteration, the determinant of the
Jacobian is constrained to reduce the chance of forcing the underlying
anatomical microstructure in an anatomically non-physical way. This
viscous fluid model was optimized for the coregistration of multiple
DTI information components (Van Hecke et al., 2007).

As mentioned by several investigators, tensor reorientation
inaccuracies might be introduced after a non-rigid, high-dimensional
transformation (Alexander et al., 2001; Van Hecke et al., 2007). These
orientational alignment inaccuracies are caused by local coregistration
errors that hardly affect the spatial alignment result, but on the other
hand can have a severe impact on the accuracy of the subsequent
tensor reorientation. In this context, it is important that the atlas
construction framework minimizes this effect of the orientational
alignment inaccuracies on the final atlas result.

DTI atlas construction

In the following sections, the multi-component DT images of the
different subjects are denoted as Ii (with i=1, …, NS, and NS the
number of subjects). The deformation field that warps image Ij to
image Ii, is then defined as Tij. The proposed atlas construction
Fig. 2. In (A), the same axial slice of 5 different simulated data sets are displayed. These data
deformation fields, as shown in (B), and averaged to construct the SB atlas and the PB atlas, a
FAi,SB and FAi,PB, respectively (i=1, …, 5), and the FA maps of the SB and the PB atlas are de
displayed in (D), and its FAmap is denoted as FAGT. The FA accuracy is calculated for each voxe
The OVL accuracy is computed as the OVL between an atlas and the ground truth image for ea
of the SB and PB atlases is calculated as the standard deviation of the FAmaps of the images in
atlas space and its resulting atlas. This is denoted as OVLi,SB and OVLi,PB for the SB and the PB a
precision of the SB and the PB atlases is obtained.
framework, referred to as the population based (PB) atlas method, will
be compared to the atlas construction framework of Guimond et al.
(2000) which is referred to as the subject based (SB) atlas method. The
latter method was utilized in the work of Ardekani and Sinha (2006)
and Park et al. (2003) to construct a DTI atlas.

Subject based atlas method
The SB atlas methodology is based on the calculation of the non-

rigid transformations Tij of all data sets Ij to a specific data set Ii of the
subject group, which was selected as the initial reference image.
Thereafter, the mean deformation field of the initial reference image Ii
to all other data sets Ij of the group (with j=1, …, NS) is computed as:

Ti =
1

NS−1
∑
j
Tji: ð1Þ

This is the transformation of the initial subject space to the average
space of the population. Next, all images Ij of the subject group are
transformed with one deformation field – constructed as the
consecutive application of the deformation fields Tij and Ti, noted as
TiBTij – directly to the final atlas space. This concatenation of
deformation fields includes an interpolation of the vector fields.
sets are subsequently transformed to the SB and the PB atlas space with the appropriate
s displayed in (C). The FA maps of the images in the SB and PB atlas space are denoted as
noted as FASB and F APB, respectively. An axial slice of the golden standard data set is
l as the absolute value of the FA difference between an atlas and the ground truth image.
ch voxel, and denoted as OVLSB,GT and OVLPB,GT for the respective atlases. The FA precision
their respective atlas space. Finally, the OVL is computed between all images in a specific
tlas, respectively (i=1,…, 5). By averaging of OVLi,SB and OVLi,PB over the factor i, the OVL



Table 1
The median and interquartile range (IQR) of different quantitative evaluation measures
for different atlases as evaluated with the ground truth methodology

SB atlas PB atlas

Median IQR Median IQR

C 0.221 0.046 0.152 0.034
FA accuracy 0.094 0.089 0.067 0.061
FA precision 0.052 0.041 0.049 0.035
OVL accuracy 0.983 0.038 0.994 0.011
OVL precision 0.931 0.082 0.976 0.040
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However, by combining the two non-rigid transformations, only one
image interpolation and tensor reorientation step is now included to
construct the final atlas.

Ĩj = TiBTij
� �

Ij
� �

j = 1; N ;NSð Þ: ð2Þ

After transformation of the DWIs to the atlas space, a PPD based
tensor reorientation is performed to realign the tensors with the
underlying microstructure (Alexander et al., 2001). Subsequently, the
DWIs are recalculated from these reoriented diffusion tensors, in
order to obtain the correct diffusion signals in each voxel. Note that
in this process the b-matrix is not rotated. Also note that log-
Euclidean metrics are preferred when the interpolation is performed
on the DTs (Arsigny et al., 2006). Finally, the DWIs of the images Ĩj are
averaged to compose an SB atlas in the average space of population.
Since the DWI intensities are corrected to represent the diffusion
signal in the atlas space, and given the assumption that the
coregistration performed well, averaging the DWIs within a single
Fig. 3. In (A), an axial, sagittal, and coronal slice of the ground truth image are shown. The co
diffusion anisotropy. The same axial, sagittal and coronal slice of the SB and the PB atlas, ar
visually, the FA intensity map of the golden standard image is given a red color, whereas the
these images, a yellow color appears in the corresponding voxels with similar FA values.
diffusion gradient direction across different subjects is allowed.
Subsequently, the diffusion tensors of the atlas are estimated from
these averaged DWIs. This atlas construction framework is elucidated
in Fig. 1 (I).

Population based atlas method
In the PB atlas framework, non-rigid deformation fields Tij need to

be calculated between all images Ii and Ij (with j=1, …, NS). Note that
only NS (NS−1) /2 non-rigid deformation fields are calculated, since
the transformation of Ii to Ij can be computed as the inverse
transformation of Ij to Ii. Subsequently, all NS images Ii are transformed
to the average space of the population with a specific mean
deformation field Ti that is calculated as the average deformation of
this data set Ii to all other images (as in Eq. (1)). After trilinear
interpolation of the DWIs, PPD based tensor reorientation, and
recalculation of the DWIs, NS images Ĩi are constructed in a way that
each of them require the least amount of deformation to all other
images in the group. Finally, the DWIs of these data sets Ĩi are averaged
to compose the PB atlas (Seghers et al., 2004; Wang et al., 2005).
Notice that, in analogy of the SB atlas framework, only one tensor
reorientation and one interpolation step are included in the PB atlas
method, i.e. after the transformation of the NS images Ii. The
construction of the PB atlas is illustrated in Fig. 1 (II).

Atlas evaluation methodology

A general problem in the evaluation of an atlas is to find the
optimal representation of a certain group of images. When SB and PB
atlases are constructed from the same subject group, it is very difficult
lor is encoded for the diffusion direction and the image intensity is proportional to the
e visualized in (B) and (C), respectively. In order to evaluate the image correspondence
FA intensity map of the atlases are given a green color. Consequently, after overlaying
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to interpret them visually and to compare them quantitatively. The
synthetic data sets that are constructed in this work are based on a
single subject DTI data set I, as elucidated in the following steps.

1. First, the DWIs of this single subject data set I are deformed with 10
predefined sinusoidal deformation fields Ti (i=1, …, 10). All
deformation fields differ from each other in amplitude, frequency,
and direction. The maximal relative voxel displacement was
7 voxels.

2. The DTs are calculated from these deformed DWIs and reoriented
using the PPD technique (Alexander et al., 2001). It has been
demonstrated on a synthetic DTI data set that only a very small
tensor reorientation error is made when these smooth, non-rigid
deformation field are applied (Van Hecke et al., 2007; Leemans et
al., 2005b). Therefore, it can be assumed that the tensors of the
deformed images are well aligned with their underlying
microstructure.

3. The DWIs are recalculated from these reoriented DTs. In this way,10
new DT images Ii are defined (i=1, …, 10).

4. Next, 10 deformation fields are defined as the inverse of the first 10
transformations (Tj = T−1

j−10, j=11, …, 20).
5. Analogously to step 2 and 3, 10 deformed DTI data sets Ij were

constructed (j=11, …, 20). As a result, the total vector sum over all
deformation fields equals zero in each voxel: ∑20

i = 1Ti = 0.

Consequently, an atlas that is constructed based on these 20
deformed data sets Ii (i=1,…, 20), should closely resemble the original
single subject image, since the total vector sum of all deformation
fields is zero in each voxel. In this way, the original single subject
Fig. 4. The absolute value of the FA difference between the ground truth image and the at
visualized for the axial, sagittal, and coronal slice for the SB and the PB atlas in (A) and (B), re
precision, calculated as the FA standard deviation of all images that compose the atlas (i.e., hig
respectively. The histograms and boxplots of the FA precision are depicted in (G) and (H),
image is representative for the 20 deformed images. It will therefore
be referred to as the ground truth or golden standard image. Notice
that, in deforming the single subject DTI data set with sinusoidal
deformation fields, the topology, or the architecture of WM
connections, is not altered. The potential bias that exists in the SB
atlas methodology by selecting a certain initial reference image with
unique topological features will therefore not be present in this
evaluation method. Furthermore, the quantitative diffusion proper-
ties – such as the FA – are the same in all simulated images. After
this evaluation, atlases are constructed based on the DTI data sets of
20 different healthy subjects. The quantitative measures that are
used for the evaluation of the atlases are expounded in the
following section.

Quantitative evaluation measures

The atlas methodologies are compared using both a framework
with simulated DTI data sets and actually measured human brain DTI
data sets of different subjects. The quantitative measures which are
calculated to evaluate the atlases are elucidated in the following
paragraphs.

Deformation field difference C
When synthetic data sets are used to construct an atlas, the

theoretical deformation fields Si between the original data set I and
the different data sets of the image group are known. Therefore, a
value C is computed for each voxel to compare these predefined
transformations Si with the deformation fields that are obtained
lases is given. This measure of FA accuracy (i.e., low values represent high accuracy) is
spectively. In (C) and (D), the FA accuracy histograms and boxplots are displayed. The FA
h precision is reflected by low values), is shown in (E) and (F) for the SB and the PB atlas,
 whereby the SB and PB atlas results are colored in green and blue, respectively.
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during coregistration to transform the simulated data sets to the final
atlas space for the different atlas frameworks:

C = kS−Tk
kSk + kTk: ð3Þ

Here, S represents the predefined deformation field and T the
deformation field that is obtained to compute the DTI atlas. The latter
equals the averaged deformation field Tj in the PB atlas framework and
the combination of deformation fields Tij and Ti in the SB atlas
framework, when image Iiwas the initial reference image. Themedian
of values C across all voxels can then be interpreted as an overall
measure of the transformation field correspondence. When this
median is 0, the final deformation field exactly equals the theoretical
deformation field, representing a perfect spatial alignment. On the
other hand, when the median of all Cs is 1, the final deformation field
is the opposite of the theoretical deformation field, resulting in the
worst alignment. This measure C is computed to compare all
simulated deformation fields Sj with the corresponding deformation
fields that are used during the atlas construction, resulting in a
quantitative measure of the deformation field correspondence for the
different atlas frameworks.

Error in FA
The absolute value of the FA difference between an atlas and the

golden standard data set is calculated and referred to as the FA accuracy
of this atlas. In addition to measuring the FA accuracy of the atlases, the
FA precision is calculated for each voxel as the standard deviation of the
FA values across the images Ĩi that are averaged to compose the atlases.

The FA accuracy and FA precision results of the SB and the PB atlas
are compared statistically, using a Wilcoxon matched pairs signed
Fig. 5. The overlap of eigenvalue–eigenvector pairs between the DTs of the golden standard
each voxel for the SB and the PB atlas in (A) and (B), respectively. In (C) and (D), the OVL accur
OVL between all images that compose the atlas on the one hand and the atlas itself on the oth
SB and the PB atlas is depicted, respectively. The corresponding histograms and boxplots ar
rank test. In order to exclude voxels originating from deep GM and CSF
in this statistical analysis, only voxels with an FAN0.25 are included in
this analysis. Note that only the precision measures can be calculated
to compare the atlases of the real subject group. The calculation of the
FA accuracy and precision is elucidated in Fig. 2.

Error in overlap of eigenvalue–eigenvector pairs (OVL)
In order to evaluate the orientational DT information of the atlases,

the OVL between tensors D(λ,e) and D′(λ′, e′); is calculated (Basser and
Pajevic, 2000):

OVL =
1
NV

∑
V

∑3
i = 1λiλ

′
i εi � ε′i
� �2

∑3
i = 1λiλ

′
i

; ð4Þ

with NV the total number of selected WM voxels, and λi, λi′, and e i, e i′
eigenvalue–eigenvector pairs of a corresponding voxel. The minimum
value 0 indicates no overlap and the maximum value 1 represents
complete overlap of the DTs. In contrast to the FA accuracy and
precision, orientational information is included in the OVL evaluation
metric.

Analogously to the FA accuracy and precision, the OVL accuracy
and OVL precision are defined. The OVL accuracy is calculated for each
voxel as the OVL between an atlas and the ground truth image. In
order to measure the precision of the orientational correspondence in
each voxel, the OVL is calculated between the final atlas result on the
one hand and all the deformed images Ĩi that are averaged to compose
this atlas on the other hand. Since they already represent a deviation
from the atlas, these OVL measures are subsequently averaged for
every voxel to compute the OVL precision for each atlas framework.
The OVL accuracy and OVL precision results of the SB and the PB atlas
are compared statistically, using a Wilcoxon matched pairs signed
image and the DTs of the atlases (high values represent a high accuracy) is presented in
acy histograms and boxplots are visualized. The OVL precision is calculated as the mean
er hand (high values represent a high precision). In (E) and (F), the OVL precision of the
e shown in (G) and (H).



Fig. 6. The cortico-spinal tracts of the ground truth image are visualized in (A). An FA
threshold of 0.25 and a maximal angle between consecutive points of 30° are used
during the fiber tracking. The seed ROIs are defined on an axial slice, as depicted in (B).
The same ROIs were used to define the seeding voxels for the tractography on the
atlases. The cortico-spinal tracts of the SB and the PB atlas are shown in (C) and (D),
respectively. For a better visual comparison of the tracts, the cortico-spinal tracts of the
golden standard data set are given a red color, whereas the cortico-spinal tracts of the
different atlases are given a green color.

Fig. 7. The quantitative results of the tract correspondence are shown in (A), (B), and (C).
In (A), a general tract similarity metric is shown for different WM pathways. A higher
value of the tract similarity metric represents a better tract correspondence. The
corresponding segment ratio R and the mean Euclidean distance between correspond-
ing segments D are presented in (B) and (C), respectively. Note that an upper limit for
the tract similarity measure is added. This upper limit is created by deforming the
simulated images with a deformation field that is exactly opposite to the theoretical
deformation field that was used to compose these images. The error bars were very
small, cluttered the figure, and were therefore not added to the figure.
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rank test. The computation of the OVL accuracy and the OVL precision
is explained in Fig. 2.

Fiber tract correspondence
SinceDT inaccuracies– causedbysmall, local coregistration errors–

are propagated along the fiber bundles, fiber tract correspondence can
be used as a more sensitive marker to assess DT atlas correspondence.
According to Ding et al. (2003), the similarity between a pair of fibers Fi
and Fj can be defined as follows:

Sij = Rcse−Dij=C : ð5Þ

Dij is the mean Euclidean distance between corresponding
segments of the two fiber tracts Fi and Fj (Ding et al., 2003). Rcs
represents the corresponding segment ratio, defined as the ratio of the
length of the corresponding segment Lcs to the overall length of the
pair of fibers (Ding et al., 2003). Thereby, the corresponding segment
Lcs is defined as the part of a fiber Fi (i.e. Li) that has point-wise
correspondence to the part of another fiber Fj (i.e. Li).

Rcs =
Lcs

Li + Lj−Lcs
: ð6Þ
When the corresponding segment ratio is 0, there is no tract
overlap. In the case of a perfect overlap of the fiber tracts, the
corresponding segment ratio is 1. The coefficient C in Eq. (5) regulates a
trade-off between D and Rcs. In our work, C is chosen to be 1 voxel
width,which is also the case in the article ofDinget al. (2003). Note that
similar tract similarity measures have been proposed in other papers
(Corouge et al., 2004; O'Donnell andWestin, 2007). In order to obtain a
more objective interpretation of the results, an upper limit for the tract
similarity measure is created. To this end, the simulated data sets are
deformed with a deformation field that is exactly opposite to the
theoretical deformation field that was used to compose these images.
In thisway, an atlas is constructed, using a perfect image alignment, but
still including partial volume effects caused by interpolation.

Results

In Table 1, the deformation field difference C, the FA accuracy and
precision, and the OVL accuracy and precision are presented for the SB
and the PB atlas, whichwere constructed from the simulated data sets.
As can be observed, the deformation field difference is lower for the PB
atlas construction framework compared to the SB method (pb10−6).
The median and the interquartile range (IQR) of the FA accuracy,



Fig. 8. The FA precision of the inter-subject SB and PB atlas are displayed in (A) and (B), respectively. The FA precision is superimposed on an axial, sagittal, and coronal slice of the PB
atlas. In (C) and (D), the corresponding FA precision histograms and boxplots are depicted. The inter-subject OVL precision is visualized for the SB and the PB atlas in (E) and (F),
respectively. In (F) and (G), the OVL precision histograms and boxplots are presented.
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FA precision, OVL accuracy, and OVL precision are also displayed in
Table 1. These results are also visualized in Figs. 4 and 5.

An axial, sagittal, and coronal FA slice of the ground truth image,
the SB, and the PB atlas are depicted in Figs. 3 (A), (B), and (C),
respectively. The image correspondence can be evaluated visually, by
overlaying the red colored FA intensity map of the golden standard
data set and the green colored FA intensity maps of the atlases. As can
be observed in Fig. 3, the highest spatial correspondence with the
ground truth image is obtained by the PB atlas.

In order to study the FA accuracy of the different atlases, the
absolute value of the FA difference between the atlases and the
golden standard data set is calculated for each voxel as explained in
Fig. 2, and scaled between 0.1 and 0.2. The FA accuracy of the SB
and the PB atlas are displayed in Figs. 4 (A) and (B), respectively. The
highest FA accuracy or the lowest FA difference is detected for the
PB atlas, as shown qualitatively by the histograms and boxplots in
Figs. 4 (C) and (D), respectively. The Wilcoxon matched pairs signed
rank test demonstrates that this FA accuracy difference is statisti-
cally significant (pb10−15). The FA precision results of the SB and the
PB atlas are displayed in Figs. 4 (E) and (F), respectively. Analogously
to the FA accuracy results, the PB atlas outperforms the SB atlas
with respect to the FA precision. Histograms and boxplots confirm
these findings (see Figs. 4 (G) and (H)), which are statistically
significant (pb10−10).

In order to evaluate the preservation of the orientational informa-
tion during the atlas construction, the OVL accuracy is measured at
each voxel (see Fig. 5). A higher OVL accuracy is observed for the PB
atlas compared to the SB atlas (see Figs. 5 (A), (B), (C), and (D)).
Analogously to the OVL accuracy results, the highest OVL precision is
observed for the PB atlas, as illustrated in Figs. 5 (E), (F), (G), and (H).
These differences in the OVL accuracy and precision are statistically
significant (pb10−10).
In Fig. 6 (A), the cortico-spinal tracts of the golden standard image
are visualized. The ROIs that are used to obtain these tracts are shown
on an axial slice in Fig. 6 (B). These ROIs are also utilized to define the
fiber tractography seed points of the atlases (see Figs. 6 (B) and (C)). In
Figs. 6 (B) and (C), the cortico-spinal tracts of the SB and the PB atlas
are shown, respectively. An FA threshold of 0.25 and a maximal angle
between consecutive points of 30 are used for fiber tracking (Basser et
al., 2000). In order to allow a better visual comparison of the fiber
pathways, the green colored cortico-spinal tracts of the ground truth
image and the red colored cortico-spinal tracts of the different atlases
are overlaid. The tract similarity measure of Ding et al. (2003) is
evaluated for several WM tracts to quantify the tract correspondence
(Fig. 7). The corresponding segment ratio R and the mean Euclidean
distance between corresponding segments D are presented in Figs. 7
(B) and (C), respectively. The quantitative tract correspondence
measures confirm the voxel-based tensor correspondence results of
Fig. 5 and the visual tract results of Fig. 6, demonstrating the highest
tract accuracy for the PB tracts.

In Fig. 8, the inter-subject FA precision results of the SB and the PB
atlas are superimposed on the axial, sagittal, and coronal FA slice of
the PB atlas, as presented in (A) and (B), respectively. Figs. 8 (C) and (D)
shows the corresponding histogram and boxplot. As can be seen in
Figs. 8 (E), (F), (G), and (H), the OVL precision of the PB atlas is higher
compared to the OVL precision of the SB atlas (pb10−10).

The tractography results of the corpus callosum are shown for 20
subjects in Fig. 9 (A). The callosal fiber tracts reconstructed from the SB
and the PB atlas are visualized in Figs. 9 (B), (C), respectively.

Discussion

Recently, Jones et al. (2005, 2007) and Zhang et al. (2007)
demonstrated the dependence of VBM results on the selection of



Fig. 9. In (A), the corpus callosum tracts of 20 different subjects are displayed. The corpus callosum tracts of the SB and the PB atlas, constructed from these 20 images, are shown in (B)
and (C), respectively.
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the smoothing kernel, coregistration technique, and other choices in the
in the pipeline of a VBM analysis. Furthermore, it has been shown in the
researchof cortical atrophy that theVBMresults dependon the selection
of the reference system (Shen et al., 2005, 2007). In order to enhance the
reliability of a VBM analysis of DT images, a study-specific DTI atlas
shouldbeconstructedwhich canbe regarded asa good representation of
the subject group andwhich contains the relevant diffusion information
in a reliable way. Although, the problem of atlas construction has been
extensively studied and validated for scalar-valued images, similar
studies for DT images are lacking (Wang et al., 2005; Kochunov et al.,
2001; Rohlfing et al., 2004; Joshi et al., 2004; Lorenzen et al., 2006;
Studholme and Cardenas, 2004; Christensen et al., 2006).

In many VBM studies of DT images, an affine atlas is utilized as the
reference image. However, since the data sets that are averaged to
construct an affine atlas are only globally aligned, relevant, local
diffusion information can be partially lost. In our work, the developed
non-rigid atlases were also compared with an affine atlas (results not
shown). As expected, the non-rigid atlases outperformed the affine
atlas with respect to the accuracy and precision of the spatial and
orientational diffusion information.
Many of the DTI atlases in VBM studies are based on the
coregistration of T2 weighted, non- diffusion weighted images, or FA
maps. Consequently, the tensor information is not reliably present in the
atlas, since it is not fully taken into account during the image alignment.
As a result, this tensor information cannot be used during the image
alignment of different data sets to such an atlas in a VBM analysis.

In our work, the full DTwas incorporated during the coregistration.
However, similar atlases were also constructed using FA based image
alignment (results not shown). We demonstrated using the simulated
data sets that the accuracy and precision of these atlases were
significantly lower compared to the atlases that were constructed
using the full DT during coregistration. As expected, the OVL accuracy
and precision decreased when only FA information was used for
coregistration. Many VBM studies of DT images incorporate structural
T2 weighted or non-diffusion weighted images to drive the image
alignment during the atlas construction or the VBM analysis, thereby
discarding valuable WM information, which is reflected by the
diffusion tensor.

In almost all VBM studies of DT images, the standard MNI atlas is
utilized as the reference system (Borroni et al., 2007; Seok et al., 2007;
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Snook et al., 2007). Since this is not a study-specific atlas, large
deformation fields might be necessary to warp the data sets of the
subject group to this atlas. Consequently, image alignment inaccura-
cies might be introduced, which can affect the accurateness of the
VBM results. In other studies, the reference system is based on a
detailed representation of a single subject's anatomy, as is the case in
the SB method (Park et al., 2003, 2004; Jones et al., 2002). The chosen
data set then acts as a template to which the images of other subjects
are coregistered. Subsequently, the transformed images of all subjects
in the group are averaged, resulting in a new atlas. Thereafter, this
atlas is transformed to a more representative atlas space, to minimize
the magnitude of the deformation fields between the data sets of the
subject group and the atlas. However, the choice of one image as a
template unavoidably biases the atlas topology because of the
substantial inter-subject variations in brain anatomy and WM
morphology (Wang et al., 2005).

In this work, the optimal initial reference image for the SB
approach was selected by evaluating the image correspondence – as
calculated by the MI – between all data sets Ij of the image group and
the golden standard data set. Obviously, this way of selecting the
optimal initial reference image is not possible in an inter-subject
setting, since no ground truth is available. One possible solution to this
problem is to use an iterative approach for the SB atlas construction,
whereby in the second iteration the atlas result of the first iteration is
employed as the reference image, as suggested by Guimond et al.
(2000). This strategy was also applied in this work, but did not lead to
significant improvement of the final atlas. Another possibility to find
the most typical subject for a given image group is to define the image
that has a minimal mean distance to all other images — as calculated
from the averaged deformation fields of each data set to all other data
sets (Smith et al., 2006). In this way, the amount of warping of all
images of the subject group to the initial reference data set is
minimized. In order to calculate this mean distance to all other image
for every data set, all images have to be aligned to each other, making
this approach as computational intensive as the PB atlas method.
Since, in our study, all images were aligned to each other to construct
the PB atlas, this strategy of finding the optimal initial reference image
was applied in the SB atlas framework.

In contrast to the SB method, the PB framework is unbiased
towards the brain topology of a single subject. However, the PB atlas
construction method is computational intensive, since deformation
fields are calculated between all subjects. On a Pentium(R) D CPU
3 GHz with 2 GB of RAM, and using a Matlab 7 platform (MathWorks,
Natick, Mass), the computation time for the PB atlas for 20 data sets
was approximately 12 h. Computation time is approximately propor-
tional with the square of the number of subjects.

Recently, group-based atlas frameworks, which consider all
subjects in the population simultaneously, have been introduced to
construct a population specific atlas. These methods might be
advantageous in terms of finding the global optimum, since all data
sets are iteratively optimized to minimize the discrepancies between
these images. In the work by Studholme and Cardenas (2004), a cost
function is optimized with the aim of maximizing the similarity
between all images, while penalizing displacement of the reference
space from the average shape. Christensen et al. (2006) present a
method for synthesizing average 3D anatomical shapes using
deformable templates based on averaging transformations. Joshi
et al. (2004) developed an algorithm for the simultaneous registration
of subjects using large deformation diffeomorphisms. Goodlett et al.
(2006) applied this framework of Joshi et al. (2004) to scalar diffusion
measures. Lorenzen et al. (2006) also adapted the large deformation
diffeomorphism framework for group-based coregistration, but
utilized a probabilistic segmentation of the images instead of the
images intensities.

An important limitation in the evaluation of atlases and image
coregistration is the lack of knowledge regarding the optimal
representation of a given group of subjects. One approach of
evaluating image correspondence is to define landmark points in
different data sets. However, besides its labor-intensity, this method
has a restricted reproducibility due to the intra- and inter-observer
variability in the placement of the landmarks. In addition, it is hard to
capture the complex 3D anatomical structures by the placement of
landmarks on 2D slices. Moreover, this validation analysis is restricted
to the anatomical structures that are delineated. Finally, this method
can only provide information regarding the spatial accuracy of the
image alignment, and not regarding the accuracy and validity of the
orientational DT information in the atlas. Since recently developed
coregistration techniques are incorporating multi-component DT
information to obtain an optimal image alignment, it is important
that this DT information is accurately represented in the atlas. In this
context, the accuracy and precision of orientational DT information
needs to be evaluated as well.

In order to tackle the limitations of the landmark based
evaluation approach, a ground truth method was introduced,
which allows one to evaluate the accuracy and precision of the
spatial and orientational DT information in every brain voxel.
Furthermore, since all data sets are constructed by deforming the
same single subject image with different deformation fields, the
unknown inter-subject variability of the diffusion properties cannot
introduce a bias in this evaluation method. A reduced accuracy and
precision of the spatial and orientational diffusion properties in the
atlases are therefore produced by spatial and orientational image
alignment inaccuracies, interpolation artifacts, or the atlas construc-
tion framework, and not by variances in the topology and the
diffusion measures across subjects. Consequently, the higher FA
accuracy and precision that were observed in the PB atlas reflect the
higher robustness of the PB atlas method against imperfect image
alignment, compared to the SB approach (see Table 1). This better
spatial image alignment in the PB method and the use of averaged
deformation fields to transform the data sets in the PB atlas
framework, result in a higher OVL accuracy and precision in the PB
atlas compared to the SB atlas. These averaged deformation fields
are less susceptible to tensor reorientation inaccuracies which are
caused by small spatial image alignment imperfections (Van Hecke
et al., 2007). In this context, the DTI coregistration approaches of
Cao et al. (2005, 2006) and of Zhang et al. (2006), which incorporate
the tensor reorientation as part of the image alignment optimiza-
tion, might improve the orientational accuracy and precision of the
DTI atlas.

In order to validate the different atlas frameworks for acquired
brain DTI data sets, inter-subject atlases were constructed based on
the data sets of 20 healthy subjects. Obviously, the presence of inter-
subject variability of the WM topology and the diffusion properties
complicate the evaluation of the inter-subject atlases. In Fig. 9, the
callosal fiber tracts of the atlases were compared visually with the
callosal pathways of the different subjects that compose the inter-
subject image group. Qualitatively, the tract results of the PB atlas
appear to provide the best expected averaged representation of the
corpus callosum of these 20 subjects.

In summary, different strategies for constructing WM atlases
from a set of DT images have been compared in this article. To the
best of our knowledge, this work represents the first attempt at
understanding the relative merits of two atlas construction
strategies which were previously developed for scalar-valued
images. The spatial and orientational diffusion information of
these atlases were evaluated using both simulated and real DTI
data sets. Our results indicate that the PB atlas provides the most
robust representation for a group of subjects. We believe that the
use of the proposed study-specific, population based DT atlas with a
reliable incorporation of all DT information, can reduce the image
alignment inaccuracies and thus increase the reliability of the
statistical tests in a VBM analysis.
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