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Abstract—Spherical markers are commonly used by phantom-
based calibration methods for X-ray CT systems. Defining the
position of the marker centers is therefore crucial to estimate
the geometry parameters accurately. Although marker bearing
structures are often built from materials of low X-ray attenuation,
they still overlap with the marker in projection images. This
complicates accurate determination of the marker centers.
In this work, we explore the technique of Deep Learning to
extract the marker center coordinates from the calibration
projections. By training a Deep Learning network for each
marker center coordinate, 2D positions of the marker are derived.
With simulated as well as real experiments, it is shown that
the trained Deep Learning networks can be used to accurately
estimate the marker positions, and hence also the geometry of
the X-ray CT system.

Index Terms—Deep Learning, calibration, cone-beam CT.

I. INTRODUCTION

X-ray CT geometry calibration using phantoms often relies
on spherical markers to calibrate the geometry parameters.
In general, calibration procedures align the analytically cal-
culated markers’ orbits with the centers extracted from the
calibration phantom radiographs, it is therefore important to
define the centers of the markers on the calibration projection
as accurately as possible. Several effects caused by the cone-
beam X-ray geometry that hinder the extraction of the marker
center positions were addressed in the work of Desbat et al.
[1] including magnification, stretch, and asymmetrical factors.
Desbat et al. [1] addressed three possible factors that generate
asymmetrical marker projections in the X-ray radiographs. In
that study, the calibration radiographs were first segmented
to obtain the binary images containing the marker regions
only. Marker centroids were calculated as center-of-masses
of the marker regions. Sawyer et al. [2] located the marker
centers by fitting a Gaussian and a projection of a sphere
for corresponding marker projections. In both works, X-ray
attenuation of the marker bearing structure on the projection
data, was not taken into account. It was also difficult to
accurately segment or to fit a fitting function for asymmetrical
marker regions.
In the work presented by Liu et al. [3], the marker centers were
extracted by firstly applying a grey-value threshold to remove
non-marker structure as much as possible. Afterwards, several
iterations of erosion followed by dilation filters were applied
to remove narrow stripes of the supporting material. Finally,
a circular Hough transform was used to locate the center of

each marker on the X-ray radiograph. The procedure requires
the diameters of the markers to be known.
In our previous work [4], we presented a technique based on
the normalized cross correlation (NCC) between the markers
and a template to define region-of-interests (ROIs) around
the markers on the calibration data. This was followed by a
subsample matching process to locate the center of the markers
more precisely. The extracted center positions were then used
to calibrate a real X-ray CT system [5].
In this paper, we propose Deep Learning to extract the
calibration marker centers for which two neural networks are
trained separately for each of 2D center coordinates on the pro-
jection. We validate our method on simulated and experimental
calibration use cases and compare to the conventional NCC ap-
proach. The paper is structured as follows. Section II presents
our methodology to generate the training dataset along with the
process to extract the bead centers accurately using BeadNet.
Section III discusses the simulation experiments that were
performed to validate our proposed procedure as well as the
experiments and results using real LEGO phantom datasets.
Finally, further discussion and conclusions are presented in
section IV.

II. METHODOLOGY

A. Geometry estimation

Fig. 1 shows the stereoscopic X-ray system used in this
study: The 3-Dimensional DYnamic MOrphology using X-
rays (3D2YMOX) system that is designed for morphological
and biomechanical research on animals [5]. Fig. 2 demon-
strates the LEGO phantom (Fig. 2a) and its X-ray radiograph
acquired with the 3D2YMOX system (Fig. 2b). The geometry
of this modular system can be described by six parameters
to parameterize detector translations

{
∆xd,∆yd,∆zd

}
and

detector orientations
{
θd, φd, ηd

}
in 3D space.

In addition, six more parameters were needed to de-
fine the object’s orientations {θo, φo, ηo} and translations
{∆xo,∆yo,∆zo} with respect to the rotation axis coordinate
system. As has been discussed in [4], the geometry calibration
procedure involved iteratively minimizing the total Euclidean
norm between the reference and measured coordinates across
all projections and marker centers. Knowledge of the position
of the marker centers is key for accurate estimation of the
X-ray system’s geometry.
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Fig. 1. The 3D2YMOX system.

(a) (b)

Fig. 2. A real LEGO calibration phantom (a) and its X-ray projection from
the 3D2YMOX system (b).

B. BeadNet

In the conventional method [4], the center of each bead is
estimated from the center-of-mass (COM) of its corresponding
region of interest (ROI), which is extracted from the calibration
projections. However, cone-beam effects and the overlapping
projection of the holding structure on the ROIs complicate the
COM calculation. It calls for a robust method that can handle
different cone-beam geometry effects as well as asymmetric
ROIs and derive center locations more accurately.
The center estimation procedure can be described as finding
a mapping model F that takes the marker ROIs x as inputs
with parameters W and returns the corresponding center coor-
dinates. W is obtained through an optimization process that
minimizes the difference between F (x, {W }) and ground-
truth center coordinates (ugt, vgt).

Ŵ = arg min
W

{
[F (x, {W })− (u′, v′)]

2
}

(1)

In Eq. (1), F represents any Deep Learning model that learns
abstract features from the input ROIs and maps them to
the center coordinates of the bead in the ROI considering
t being the hyperbolic tangent function and t(ugt) = u′,
t(vgt) = v′. Two Deep Learning models (BeadNet) were
trained separately for each center coordinate regression. The
goal of BeadNet is to find a suitable abstract feature to map a
marker ROI to its corresponding center coordinates. Choosing
a feature learning model is important to have accurate
center inference. Resnet-50 [6] emerges as a Deep Learning
model that is trained on more than million images for object
classifications. Resnet-50 is 50 layers deep and is divided

into five convolution layers. We exploited the robustness of
the pre-trained Resnet-50 model in learning object abstract
features to continue training for our marker center extraction.
To this end, two BeadNets were trained at a learning rate of
0.01 using an adaptive learning rate optimizer with a batch
size of 40 ROIs.

Strategy to generate training dataset

The generation of training data is one of the key steps for
applications of Deep Learning. The X-ray energy spectrum
can be different for each acquisition. Hence, the training
dataset included projections of the calibration phantom
simulated with different X-ray source spectra. Moreover, as
the cone-beam X-ray CT system was parameterized using
12 degrees-of-freedom, the training dataset needs to mimic
a variety of possible geometry configurations, which are
common settings of the 3D2YMOX system. A set of 400
projections were simulated for each of 120 angles covering
360◦ rotation. For each set, the object and detector orientations
and translations were modified by a random value generated
from a uniform distribution in the intervals of [−10, 10]◦ and
[−30, 30] mm, respectively. The object yaw φo was generated
randomly up to 200◦ simulating varied orientations of the
calibration phantom. A 1100 mm source-detector distance
(SDD) along with varied source-object distances (SODs) were
simulated for typical positions of the sources, the object, and
the detectors of the 3D2YMOX system.
Reference marker center orbits that correspond to the
simulated geometries were calculated analytically with which
25 ROIs were extracted around each marker from every
simulated radiograph using reference marker positions.
The training dataset contains the marker ROIs and their
corresponding ground-truth center coordinates. In this work,
the ROIs were at a size of 39 × 39 pixels that mainly cover
center patches of the marker projections.

III. EXPERIMENTS AND RESULTS

A. Generation of experimental datasets

The training and simulated datasets were generated
using the LEGO phantom STL models and the ASTRA
CAD projector toolbox [7]. The system vector geometry
was calculated with respect to the geometry misalignment
parameters for every projection angle using the ASTRA
Toolbox [8], [9]. Then, the ASTRA CAD projector
simulated X-ray radiographs of the phantom with a 150 keV
polychromatic spectrum, the predefined vector geometries,
and a detector pixel size of 142 µm, which corresponds to
the pixel size of the 3D2YMOX system.
The validation dataset containing 44 simulated sets were
generated mimicking different X-ray cone-beam geometries.
Corresponding marker ROIs along with the initial marker
center coordinates were extracted to feed the trained BeadNets
so as to estimate the center coordinates more accurately.
Two more simulated datasets were generated for 3D CT
reconstruction evaluations including a set of the calibration
phantom and a set of a test phantom projections. These two
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datasets were simulated with the same detector translation
and orientation parameters but different randomly generated
object positions and orientations.

Validation of BeadNet using simulated datasets

The bead centers were extracted from the validation
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Fig. 3. Estimation errors of the translation (a) and the orientation (b)
parameters using the conventional method (red) and BeadNet (blue) to extract
the marker centers.

dataset with conventional NCC method and BeadNet. From
the extracted bead trajectories, the X-ray system’s geometry
was then estimated. Fig. 3 shows the geometry estimation
errors from the NCC and BeadNet method. As shown in
this figure, the geometry parameters are more accurately
estimated when relying on the BeadNet marker center
estimates compared to NCC based estimation. The translation
parameters are calibrated with average errors of 130 µm
from BeadNet method, while conventional method yields
mean error of up to 1000 µm. The orientation parameters are
also estimated close to the GTs by BeadNet inferred marker
centers with mean error of less than 0.1◦ while mean error
from conventional method is of 0.25◦. These estimates show
that BeadNet yields accurate marker positions for geometry
calibration.

Reconstruction from simulated phantom projections

In practice, multiple objects are usually scanned in a
same geometry setting. That is, the sources and detectors
are placed in a fixed position in terms of the detector

(a) (b) (c)

Fig. 4. Cross-sections of the reconstructed volume using simulated phantom
dataset before (a) and after geometry calibration with the conventional
technique (b) and BeadNet (c). Zoomed versions from the red squares are
shown in Fig. 5.

(a) (b)

Fig. 5. With the conventional method, misalignment artifacts still appear
at the edges of the bricks in the reconstruction (a), while the artifacts are
substantially reduced in the CT slice using BeadNet (b).

translations
{

∆xd,∆yd,∆zd
}

and orientations
{
θd, φd, ηd

}

in the acquisition while the target objects are altered to
acquire different datasets. The geometry was calibrated with
the calibration phantom dataset for the reconstruction a test
phantom, which was also built from LEGO bricks, to assess
3D CT quality and to anticipate the artifacts caused by the
remaining geometry misalignments.
Fig. 4 shows the cross-sections of a real phantom
reconstruction before (Fig. 4a) and after (Fig. 4b, Fig. 4c)
geometry alignment. The vertical translation of the detector
∆yd was estimated more accurately using the marker orbits
obtained with BeadNet. This is why the two axial slices shown
in Fig. 4b and in 4c do not coincide but are shifted vertically
in the 3D CT volumes. Apparent artifacts can be observed
in the reconstructed slices before correcting the geometry
(Fig. 4a), while the brick structure is clearly revealed in
Fig. 4b and 4c. These images demonstrate that the misaligned
geometry was substantially compensated in the reconstruction.

Reconstruction from real test phantom projections

The geometry of the 3D2YMOX system was calibrated
with a real LEGO phantom. The calibration data were firstly
flatfield and log corrected before they were undistorted
to remove the pincushion distortion due to the intensifier
curvature [10], and the sigmoidal distortion caused by the
magnetic field generated during the stage rotation [11]. The
bead center trajectories were extracted by the conventional
method and BeadNet, and used to estimate the geometry
parameters.
In this validation, the geometry was corrected for the
misalignments before reconstructing a real test dataset
obtained in the same geometric configuration with that
the calibration projections were acquired. Fig. 6 shows the
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(a) (b) (c)

Fig. 6. Cross-sections extracted from the reconstructions of a LEGO test
phantom before (a) and after geometry calibration using conventional method
(b) and BeadNet (c) to extract the marker centers. Without compensating the
geometry misalignment, the internal brick structures are distorted (a). In (b,
c), the artifacts are considerably reduced revealing sharp edges and apparent
shapes of the LEGO bricks. Moreover, the artifacts are better suppressed in (c)
than in (b) as highlighted in red and shown in Fig. 7b and Fig. 7a, respectively.

(a) (b)

Fig. 7. Misalignment artifacts still appear at the edges of the LEGO bricks
and distort the shapes in the conventional method (a), while the edges are
better recovered and sharper in the CT slice using BeadNet (b).

reconstructed slices of the test phantom before (Fig. 6a) and
after (Fig. 6b, Fig. 6c) calibration. The reconstructed volume
before compensating the geometry misalignment suffered
from severe artifacts in the form of blurred edges of the
LEGO bricks. In Fig. 6b and Fig. 6c, however, the shapes and
edges of the bricks are well recovered in the reconstruction.
This demonstrates that our estimation algorithm is capable of
calibrating a real X-ray CT system. Moreover, the artifacts
are better suppressed in Fig. 6c than in Fig. 6b as highlighted
in red and displayed in Fig. 7a and Fig. 7b, respectively.
Additionally, Fig. 8 shows the accumulated intensity profiles
that were plotted through the center rows (dashed red) in the
ROIs Fig. 7a and Fig. 7b from the conventional NCC method
(orange) and BeadNet (blue). The line plots indicate that the
contrast was slightly improved in the reconstruction from
BeadNet method.

IV. DISCUSSION & CONCLUSION

In this paper, we presented a robust method to extract
the centers of the spherical calibration markers on the X-
ray radiographs using Deep Learning. Simulation experiments
demonstrated that BeadNet can deliver better estimation of
the marker centers and consequently the geometry parameters
were estimated more accurately. After geometry misalignment
correction, the misalignment artifacts were significantly sup-
pressed from the 3D CT volume. From the marker center orbits
extracted by BeadNet the geometry parameters are calibrated,
and hence we obtain better quality of the CT reconstructions
compared to the results with conventional NCC method.
The reconstruction from the real datasets acquired from the
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Fig. 8. Intensity profiles plotted through the rows (dashed boxes) in Fig. 7a
and Fig. 7b.

3D2YMOX system demonstrated that BeadNet can accurately
extract the center of the markers on the real X-ray projections.
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