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Abstract—Accurate estimation of the fractional abundances of
intimately mixed materials from spectral reflectances is generally
hard due to a highly nonlinear relationship between the measured
spectrum and the composition of the material. Changes in the
acquisition and the illumination conditions cause variability
in the spectral reflectance, further complicating the spectral
unmixing procedure. In this work, we propose a methodology
for unmixing intimate mixtures that can tackle both nonlinearity
and spectral variability. A supervised approach is proposed that
characterizes the nonlinear data manifolds by high-dimensional
Bézier surfaces. To deal with spectral variability, a manifold
transformation procedure is designed.

To generate Bézier surfaces, training samples are required that
are uniformly distributed throughout the data manifold. For this,
we recently generated a hyperspectral dataset of intimate mineral
powder mixtures by homogeneously mixing five different clay
powders (Kaolin, Roof clay, Red clay, mixed clay, and Calcium
hydroxide) in laboratory settings. In total 330 samples (325
mixtures and five pure materials) were prepared. The ground
fractional abundances of these mixtures uniformly cover the
five-dimensional probability simplex. The spectral reflectances
of these samples were acquired by multiple sensors with a large
variation in sensor types, platforms, and acquisition conditions.
Experiments are conducted both on simulated and real intimate
mineral powder mixtures. Comparison with a number of un-
supervised unmixing methods demonstrates the potential of the
proposed approach.

Index Terms—Hyperspectral, spectral variability, nonlinearity,
mixing models, mineral powder mixtures, Bézier surface

I. INTRODUCTION

Hyperspectral unmixing aims to estimate the fractional
contributions (abundances) of spectra of pure materials (end-
members) within a pixel’s field of view. This is generally
achieved by minimizing the error between the observed spec-
tral reflectance and the spectrum generated by a specific
mixing model. In the remote sensing community, the linear
mixing model (LMM) [1] is the most popular mixing model.
This model assumes that every incident light ray interacts
with a single, pure material within the pixel’s instantaneous
field of view before it reaches the sensor. To account for
the physical constraints of non-negativity and the sum-to-one
requirement for fractional abundances, the Fully Constrained
Least Squares Unmixing procedure (FCLSU) was introduced
[2], [3]. The LMM demonstrates excellent performance in
situations characterized by extensive flat regions on the Earth’s
surface, with well-defined and separate areas containing dis-
tinct endmembers.
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Deep learning has significantly transformed linear unmixing
through the widespread use of deep autoencoder architectures.
In these structures, the input consists of reflectance spectra,
and the output consists of reconstructed spectra. The encoder
is responsible for converting the input spectra into fractional
abundances, and subsequently, the decoder transforms these
abundances back into reconstructed spectra through linear
layers, with the endmembers serving as the weights. In [4], au-
toencoders applied to hyperspectral unmixing are categorized
into five distinct groups: (a) Sparse nonnegative autoencoders
[5]; (b) Variational autoencoders [6], [7]; (c) Adversarial
autoencoders [8], [9];(d) Denoising autoencoders [10]; (e)
Convolutional autoencoders [11], [12]. In [13], unmixing using
deep image prior [13] was proposed for linear unmixing.
In [14], a convolutional autoencoder is combined with a
transformer. In [15], a powerful linear unmixing approach
was proposed that integrates the spatial correlation among
neighboring pixels with the geometric characteristics of the
linear simplex.

However, the effectiveness of the LMM diminishes in
scenarios when hyperspectral images are acquired from the
Earth’s surface featuring complex geometric structures. In
such cases, incident light rays may interact with multiple
pure materials within a pixel before reaching the sensor.
Consequently, the acquired reflectance spectra become highly
nonlinear combinations of the reflectances of the individual
endmembers. To tackle this challenge, nonlinear unmixing
models have been developed [16].

A widely explored category of nonlinear unmixing models
is the category of bilinear models. These models assume that
the incident light interacts with a maximum of two pure
materials before reaching the sensor, introducing an additional
mixing term in the linear model through the Hadamard product
between the endmembers. The Fan model [17] is a variant
of this approach. The major limitation of this model is that
it does not perform well on linearly mixed datasets. To
overcome this limitation, extensions such as the polynomial
post-nonlinear mixing model (PPNM) [18], the generalized
bilinear model (GBM) [19], and the linear-quadratic model
(LQM) [20] have been introduced. These models incorporate
hyperparameters to characterize the balance between linear
and nonlinear terms. To capture higher-order interactions of
incident light before reaching the sensor, various nonlinear
mixing models have been developed, including the multilinear
mixing model (MLM) [21], the p-linear (p > 2) mixture model
(pLMM) [22], [23], [24], etc.). The approach presented in
[25] transforms the task of solving bilinear mixing models
into a linear one by exploiting the geometric characteristics of
bilinear mixing models. The most advanced nonlinear mixing
models include physics-based radiative transfer models, fre-
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quently utilized for modeling spectral reflectances of intimate
mixtures. These models conceptualize the medium as a half-
space filled with particles characterized by known densities
and distributions of physical attributes. In the remote sensing
community, the Hapke model is the most popular one. It was
specifically crafted to explain the interaction between light and
intimately mixed materials [26], [27]. This model predicts the
areal fractions of materials within the mixture by converting
reflectance spectra into their single-scattering albedos and then
applying linear unmixing.

Although regularly applied in linear unmixing, a limited
number of studies explored the potential of deep autoencoder
architectures for nonlinear unmixing. The majority of deep
learning-based nonlinear unmixing methods are built upon
autoencoder architectures grounded in PPNM [28], [29]. A
nonlinear low-rank tensor unmixing algorithm was introduced
in [30] to solve the generalized bilinear model. In [31],
an autoencoder network based on MLM was proposed for
unsupervised hyperspectral unmixing. In [32], a dual-stream
network was proposed to solve an extended multilinear mixing
model.

In [33], the inherent nonlinearity in the data was modeled
via deep autoencoder networks. Recently, in [34], a nonlinear
unmixing approach was proposed employing the Hapke model
in conjunction with convolutional neural networks.

Efforts to comprehend the nonlinearity within a mixture
have been made through the application of supervised machine
learning techniques [35], [36], [37], [38]. For instance, in
[37], [38], a mapping between measured spectra and linearly
mixed spectra was learned by employing training samples and
a supervised regression algorithm. Subsequently, the FCLSU
procedure is implemented to deduce the fractional abundances
from mapped spectra of test samples. However, a significant
drawback of such supervised approaches is their limited gen-
eralizability [39]. These models may not perform well on
test samples that lie on different data manifolds from the
training set. This often occurs due to variability in measured
spectra due to variations in illumination conditions, distance,
and orientation from the sensor and is often described as
external spectral/endmember variability [40][39]. These effects
often cause a (global or pixel-based) scaling of the spectral
reflectance. Additional forms of external variability may arise
across various datasets, such as those acquired from different
sensors or when different white calibration panels are used.
These factors result in a wavelength-dependent variation in
the measured spectra.

Various algorithms address external spectral/endmember
variability. These algorithms can be categorized into two
groups: methods based on endmember bundles and those em-
ploying physical and statistical models ([41], [42], [43]). The
first category of algorithms establishes a collection of multiple
spectral signatures (endmember bundles) to characterize each
endmember class ([44]). These endmember bundles can be
derived from the hyperspectral image through the implemen-
tation of endmember bundle extraction methods ([45], [46],
[47]). As indicated in [48], endmember bundles do not fully
represent all variations among endmembers in hyperspectral
images. The second category of algorithms addresses spectral

variability by either incorporating additional variability terms
in the linear mixing model ([49], [50], [51]) or relying on a
statistical representation of the endmembers ([52], [53], [54]).
In [55], an algorithm is devised to bridge the gap between
endmember bundle-based methods and parametric physics-
based models. Meanwhile, in [56], spectral variability was
addressed as a denoising problem.

There is scarce research in the literature specifically ded-
icated to addressing spectral variability in the context of
nonlinear unmixing. In [57], [58], bilinear models were ex-
tended by incorporating a scaling term to address external
spectral variability. In [59], a band-wise scaling of the LMM is
suggested to account for either spectral variability in the linear
case or to perform nonlinear mixing. In [60], endmembers
were modeled by a normal distribution to mitigate the impact
of endmember variability in bilinear models. In [61], an
approach called neighbor-band ratio unmixing (NBRU) was
introduced for estimating fractional abundances from mineral
mixtures, and its robustness against endmember variability was
verified.

In general, the inversion of a model that simultaneously
addresses spectral variability and nonlinearity tends to be non-
convex. Most of the proposed models have large amounts of
hyperparameters, posing challenges for accurate abundance
estimation. Additionally, depending on a single model makes
a method inflexible, especially in cross-sensor scenarios. In
[39], it was demonstrated that the nonlinearity of a dataset
undergoes changes by data manipulation only when the cur-
vature of the manifold is altered. However, existing nonlinear
mixing models lack scaling invariance because the spectral
reflectance is a nonlinear function of both the endmembers and
fractional abundances. The nonlinearity of a dataset undergoes
changes due to intrinsic spectral/endmember variability. This
phenomenon commonly arises when there are changes in the
chemical or geometric properties, such as variations in grain
size distributions of the materials.

To tackle both nonlinearity and external spectral variability,
we recently developed a robust supervised unmixing method
tailored for the nonlinear hyperspectral unmixing of binary
intimate mixtures [39]. This method utilizes the geodesic
distance between endmembers and binary mixed spectra as
a representation that is invariant to variations in sensor type.
To tackle scaling effects due to the variation in illumination
conditions, distance, and orientation from the sensor, the
representation was obtained in the unit hypersphere. The
success of this method suggests that external variability does
not change the intrinsic nonlinearity of the dataset, although
the spectral reflectance of the same sample acquired by two
different sensors lies on two different data manifolds.

For data manifolds generated by mixtures of more than two
pure materials, an accurate determination of geodesic distances
is infeasible. This limits the extension of our method [39] to
higher dimensional data manifolds (where the number of pure
materials exceeds 2). To tackle this challenge, in this study, we
utilized the properties of Bézier surfaces to reconstruct higher
dimensional nonlinear data manifolds. Reconstruction of a
Bézier surface requires training samples represented as control
points (spectral reflectances). The process of estimating the
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fractional abundances of test samples involves minimizing the
reconstruction error between the input spectrum and the Bézier
surface. To address spectral variability caused by variation in
sensor type, we learn a transformation function between the
training and test data manifolds by leveraging the spectral
reflectance of the pure materials (endmembers). We should
note that the proposed method cannot tackle intrinsic spectral
variability.

A. Contributions and Novelties

The contribution of the proposed method is five fold.
1) Generalization by characterizing any nonlinear data man-

ifold: Unlike existing mixing models that are valid only
for a specific type of mixing scenario, the proposed
method utilized the spectral reflectances of control points
to reconstruct the data manifold. This leads to a general-
ized model that can cope with various nonlinear mixing
scenarios.

2) Tackling spectral variability: The proposed method not
only characterizes the nonlinearity of the dataset but
also tackles the spectral variability caused by variation
in sensor type. Except for the methodology proposed in
[39], none of the state-of-the-art methods can accurately
perform both tasks together.

3) Tackling scaling effects of mixtures: In [39], the random
scaling effects were tackled by projecting the dataset
onto the unit hypersphere. This is in itself however a
nonlinear transformation. Such a nonlinear transforma-
tion affects the original mixing model assumption. To
overcome this issue, random scaling effects of mixed
spectra are tackled in the reflectance space by utilizing
the spectral reflectance of endmembers acquired at the
same acquisition conditions.

4) Reconstruction of spectral reflectance of test samples:
Unlike the methodology proposed in [39], this method
not only estimates the fractional abundances of test
samples but can also accurately reconstruct their spectral
reflectance.

The rest of the paper is structured as follows: Section II
is dedicated to prior work. We present some popular mix-
ing models and the supervised geodesic unmixing approach.
Section III provides a detailed explanation of the proposed
methodology. In Section IV, we describe the simulated dataset
and real intimate mineral powder mixtures on which our
methodology is validated. In Section V, we outline the ex-
periments and present the results, followed by a discussion
in Section VI. The conclusion of this work is presented in
Section VII.

II. RELEVANT PRIOR WORK

A. Hyperspectral mixing models

The spectral reflectances of the hyperspectral dataset
Y({yi}Ni=1 ∈ Rd

+) composed of d spectral bands and N
samples can be modeled as:

yi = F (E,ai) + ηi, (1)

with p endmembers E({ej}pj=1 ∈ Rd
+) and their fractional

abundances A({ai}Ni=1 ∈ Rp
+), F is a nonlinear function

and ηi represents Gaussian noise. By shaping function F , any
mixing model can be derived.

1) Linear mixing model: The linear mixing model recon-
structs the input spectrum by linearly combining endmembers
and the fractional abundances:

yi = Eai + ηi, (2)

When the non-negative and sum-to-one constraints are con-
sidered, the FCLSU estimates the fractional abundances by
minimizing ∥yi −Eai∥2 s.t.

∑
j aji = 1, ∀j : aji ≥ 0.

2) Bilinear mixing models: Bilinear mixing models have
been designed to explain secondary reflections of the incident
light before reaching the sensor. In [17], the Fan model is
derived through the first-order Taylor series expansion of a
general nonlinear mixing function:

yi = F (Eai) + ηi

= Eai +

p−1∑
j=1

p∑
k=j+1

ajiakiej ⊙ ek + ηi (3)

where ⊙ is the elementwise multiplication of two vectors. As
we already mentioned in the introduction section, the primary
disadvantage of the Fan model is its limited performance when
applied to linearly mixed data. GBM [19], PPNM [18], and
LQM [20] are developed to generalize the bilinear mixing
model to the linear case. We like to clarify that these models
are mathematical models and allow spectrum reflectances of
materials to have values outside of the physical range [0,1].

3) Multilinear mixing models: To consider higher-order
reflections of the incident light before reaching the sensor,
MLM [21] and the p-linear (p > 2) mixture model [22], [23],
[24] have been proposed.

4) Hapke model: The Hapke model [26], [27] is designed
to describe the optical properties of intimately mixed mineral
powders. In the context of intimate mixtures, the incident light
undergoes multiple interactions with particles before reaching
the sensor. The major assumption of the Hapke model is that
the particles are significantly larger than the wavelength of
light, are spherical, and scatter light isotropically. In general,
this model assumes that information regarding the physical
characteristics of the material (such as particle size and surface
roughness) and the real and imaginary parts of the optical
indexes are known a priori. In [62], this model was simplified
for remote sensing applications. This simplified version of the
Hapke model establishes a relationship between the bidirec-
tional reflectance yi and the single scattering albedos (SSA)
wi ∈ Rd

+ through the following equation:

yi = F (E,ai) + ηi

=
wi(

1 + 2µ
√
1−wi

) (
1 + 2µ0

√
1−wi

) + ηi

=
WEai(

1 + 2µ
√
1−WEai

)(
1 + 2µ0

√
1−WEai

) + ηi(4)

where µ = cos(θe) and µ0 = cos(θi) represent the cosines
of the angles with the normal of the outgoing and incoming
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radiation, respectively and WE({wE
j }

p
j=1 ∈ Rd

+) represents
the SSA of endmembers. The SSA of a material is the ratio
of photons scattered by the material to the total number of
photons affected by that material:

wE
j =

sj
sj + aj

(5)

where sj and aj are the scattering and absorption spectra of
the material.

B. Supervised geodesic unmixing

In [63], a distance geometric framework for nonlinear
hyperspectral unmixing was developed. A commonly used
data-driven approach for approximating geodesic distances on
a manifold involves constructing a nearest-neighbor graph on
the data. The geodesic distance between any two points is then
defined as the shortest path distance along the graph. We have
demonstrated in [39] that when the curvature of the manifold
is non-constant, the relationship between the geodesic distance
and the fractional abundance is nonlinear. To tackle this
challenge, we have developed a robust supervised geodesic
unmixing approach that can accurately estimate the fractional
abundances of binary mixtures by combining spectral mixture
modeling with a supervised nonlinear regression approach
[39], [64].

III. NONLINEAR UNMIXING USING A BÉZIER SURFACE

A. Hyperspectral data modeling using a Bézier surface

Existing nonlinear mixing models either oversimplify the
intricate interaction between the incident light and material
or, by considering various interactions, inherently become
complex and non-invertible. Furthermore, the parameters of
nonlinear mixing models (e.g., bilinear models) are typically
challenging to interpret and to relate to the actual frac-
tional abundances. On the other hand, supervised machine-
learning algorithms proposed in [36], [37], [38] have limited
generalizability. Although the supervised geodesic unmixing
approach of [39] tackles these challenges, it is limited to binary
mixtures.

To extend the methodology proposed in [39] to higher order
mixtures, in this work, we will utilize the properties of higher
dimensional Bézier surfaces. A Bézier surface is a nonlinear
surface that can be reconstructed by the interpolation of a set
of control points (reflectance spectra). A general nth order
Bézier surface has (n+p−1)!

n! (p−1)! control points Ci1,···ip , where p

denotes the number of endmembers, and
∑

ik = n, ik ≥ 0:

y = F (E,a) =
∑
i1

· · ·
∑
ip

n!∏p
k=1 ik!

(
p∏

k=1

aikk

)
Ci1,···ip

(6)
As an example, take ternary mixtures, for which the Bézier
surface is defined as:

y = F (E,a) =
∑
i

∑
j

∑
k

n!

i!j!k!
ai1a

j
2a

k
3Ci,j,k (7)

where i + j + k = n, i, j, k ≥ 0. y is the reconstructed
spectrum of a mixture with fractional abundances given by

a = [a1, a2, a3]
T . The fractional abundances obey both the

non-negativity and the sum-to-one constraint. The higher the
value of n, the better the reconstruction.

To further enhance clarity, we show a nonlinear data man-
ifold in Fig.1(a). As can be observed, there are 36 control
points (blue circles) to fit a 7th-order Bézier surface. Among
them, three control points are endmembers (C7,0,0, C0,7,0 and
C0,0,7). The indices can be used to determine the ground truth
fractional abundance of a control point. For example, the frac-
tional abundance of the control point C2,2,3 is calculated as
[i/n, j/n, k/n]T = [2/7, 2/7, 3/7]T . Endmembers are defined
by having only one non-zero index, whereas binary mixtures
are characterized by having only two non-zero indices. For
instance, binary mixtures include C0,4,3, C2,5,0, C2,0,5 and
so forth. In Fig. 1 (b), we depict the fractional abundances
of the control points of a Bézier surface of order n = 7.
As depicted, the fractional abundances of the control points
uniformly span the probability simplex.

Estimating the fractional abundances of any test spectrum
then boils down to minimization of the reconstruction error
between the input spectrum (y) and the spectrum generated
by applying Eq. (7):

â = argmin
a

∣∣∣∣∣
∣∣∣∣∣y −

∑
i

∑
j

∑
k

n!

i!j!k!
ai1a

j
2a

k
3Ci,j,k

∣∣∣∣∣
∣∣∣∣∣
2

(8)

s.t. :
p∑

l=1

al = 1,∀l : al ≥ 0

In this study, we aim to minimize Eq. (8) using the opti-
mization toolbox fmincon, which is designed for finding the
minimum of a constrained nonlinear multivariable function.
The optimization process will employ the sequential quadratic
programming algorithm.

We like to clarify that, the proposed method can be easily
generalized to mixtures with p > 3. Note that the proposed
approach not only allows estimating the fractional abundances
from the spectral reflectance of an unknown mixture using
Eq. (8), but is also capable of reconstructing the spectral
reflectance of a mixture of known composition, using Eq. (7).

1) Approximating linearly mixed datasets using a Bézier
surface: When the order of the Bézier surface is n = 1, the
Bézier surface boils down to the linear simplex. For ternary
mixtures:

y =
∑
i

∑
j

∑
k

1!

i!j!k!
ai1a

j
2a

k
3Ci,j,k

= a11a
0
2a

0
3C1,0,0 + a01a

1
2a

0
3C0,1,0 + a01a

0
2a

1
3C0,0,1

= [C1,0,0,C0,1,0,C0,0,1][a1, a2, a3]
T (9)

where C1,0,0, C0,1,0, and C0,0,1 denote endmember 1,
endmember 2, and endmember 3, respectively.

2) Approximating bilinearly mixed datasets using a Bézier
surface: When the order of the Bézier surface is n ≥ 2, the
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(a)

(b)

Fig. 1: (a) Nonlinear data manifold, represented by a 7th-order
Bézier surface. Labels for some specific control points have
been incorporated; (b) The ternary diagram of three material
mixtures.

Bézier surface can approximate bilinearly mixed datasets. For
ternary mixtures, in the case of order n = 2, one obtains:

y =
∑
i

∑
j

∑
k

2!

i!j!k!
ai1a

j
2a

k
3Ci,j,k

= a21a
0
2a

0
3C2,0,0 + 2a11a

1
2a

0
3C1,1,0 + 2a11a

0
2a

1
3C1,0,1+

a01a
2
2a

0
3C0,2,0 + 2a01a

1
2a

1
3C0,1,1 + a01a

0
2a

2
3C0,0,2

= [C2,0,0,C0,2,0,C0,0,2][a
2
1, a

2
2, a

2
3]

T + 2a1a2C1,1,0+

2a1a3C1,0,1 + 2a2a3C0,1,1 (10)

where C2,0,0, C0,2,0, and C0,0,2 denote endmember 1, end-
member 2, and endmember 3, respectively. C1,1,0, C1,0,1, and
C0,1,1 describe a bilinear mixture of endmember 1 and end-
member 2, endmember 1 and endmember 3, and endmember
2 and endmember 3, respectively. The ground truth fractional
abundances of these three control points are respectively

[0.5, 0.5, 0]T , [0.5, 0, 0.5]T , and [0, 0.5, 0.5]T . When control
points in itself are generated by the linear mixing model, this
bilinear model again boils down to the linear mixing model:

y = [C2,0,0,C0,2,0,C0,0,2][a
2
1, a

2
2, a

2
3]

T + 2a1a2(0.5C2,0,0+

0.5C0,2,0) + 2a1a3(0.5C2,0,0 + 0.5C0,0,2)+

2a2a3(0.5C0,2,0 + 0.5C0,0,2)

= (a21 + a1a2 + a1a3)C2,0,0 + (a22 + a1a2 + a2a3)C0,2,0

+ (a23 + a1a3 + a2a3)C0,0,2

= (a21 + a1a2 + a1(1− a1 − a2))C2,0,0 + (a22 + a1a2+

a2(1− a1 − a2))C0,2,0 + (a23 + a1a3 + (1− a1 − a3)a3)

C0,0,2

= [C2,0,0,C0,2,0,C0,0,2][a1, a2, a3]
T (11)

3) Approximating a complex data manifold using a Bézier
surface: When the nonlinearity of the dataset is complex,
a Bézier surface of higher order is required. One such
example is a dataset generated by the Hapke model. To
demonstrate that the proposed method indeed can charac-
terize nonlinear surfaces generated by the Hapke model, in
Fig. 2, we show the PCA-reduced original and reconstructed
data manifolds. To generate this manifold, three endmem-

bers;
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0.2 0.6 0.2

0.2 0.2 0.6


 were mixed nonlinearly using

the Hapke model. The fractional abundances were generated
uniformly (see Fig. 1) to reconstruct a Bézier surface of order
7. As can be observed, the reconstructed data points (using
the ground truth fractional abundances) almost overlap with
the true data points. Since the method attempts to generate a
smooth surface, small deviations in the positions of the control
points (except for the endmembers) occur.

Fig. 2: The PCA-reduced data manifolds generated by the
Hapke model. Magenta, blue, and cyan circles denote binary
mixtures, while the black circles denote ternary mixtures.
Reconstructed data points are denoted with dots.
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B. Tackling spectral variability

Although the proposed approach can accurately characterize
the nonlinearity of a hyperspectral dataset, it is susceptible
to spectral variability induced by variations in illumination
conditions and acquisition conditions.

1) Tackling random scaling effects: We first treat the situa-
tion in which identical acquisition conditions are applied for all
mixtures. This is the situation where a single sensor is applied,
and the calibration procedure, illumination conditions, and
illumination and viewing angles do not change when acquiring
spectra from all mixtures.

In that scenario, the measured bidirectional reflectance may
suffer from random scaling effects, due to variations in scat-
tering properties of mixtures with varying composition. In Fig.
3(a), we show the PCA reduced data manifold of the ternary
mixtures of Kaolin, Red clay, and Ca(OH)2 acquired by an
ASD spectroradiometer (see [65] for detailed information).
Even though the ground truth fractional abundances of these
mixtures uniformly cover the probability simplex (see Fig.
1), it is not reflected in the data manifold (see Fig. 3(a))
due to random scaling effects in the measured bidirectional
reflectance.

One approach to address this challenge is to acquire hemi-
spherical reflectance instead of the bidirectional reflectance
that is measured in remote sensing applications. This is
however limited to laboratory settings by using an integrating
sphere. In [39], random scaling effects were tackled, by
projecting all data points onto the unit hypersphere (i.e.,
dividing the spectra by their length). Although this approach
worked well for binary mixtures, for higher order mixtures it
can reduce the intrinsic dimensionality of the dataset if the
spectral angles between the endmembers are low. In this way,
mixtures of three pure materials may be projected onto the
curve connecting two endmembers.

In this work, we will ignore the anisotropic effects of the
bidirectional reflectance and assume that the measured bidi-
rectional reflectance is a scaled version of the hemispherical
reflectance. In a linear mixture, random scaling effects can be
removed by projecting the spectrum generated by the linear
model and the test spectrum yi on the unit sphere and minimiz-

ing the reconstruction error between them:
∥∥∥ yi

∥yi∥ − Eai

∥Eai∥

∥∥∥2,
s.t.
∑

j aj = 1, ∀j : aj ≥ 0. From the obtained abundances, a
reconstructed spectrum ŷi = Eai is obtained.

When the mixture is nonlinear, our proposed approach is to
scale the measured spectrum such that it lies closest to the one
reconstructed by the linear model. This is done by minimizing:
∥sryi − ŷi∥2, s.t. sr > 0. The corrected spectral reflectance
of the input spectrum yi is then given by sryi. In Fig. 3(b),
the data manifold of the ternary mixture after correction is
shown.

2) Tackling spectral variability caused by variations in
acquisition conditions: For any supervised method, the major
challenge is to make the learned model generalizable to a
dataset acquired at different acquisition conditions. In remote
sensing, the measured directional reflectance is dependent
on the incident and reflectance angle, causing scaling ef-
fects on the measured reflectance. Topographical variations

(a)

(b)

Fig. 3: PCA reduced data manifold (ASD spectroradiometer)
of ternary mixtures of Kaolin, Red clay, and Ca(OH)2; (a)
Before removing random scaling effects; (b) After removing
random scaling effects. The curves represent the reconstructed
data manifold with the Bézier approach.

cause similar effects. Variations due to sensor type and white
calibration panel often cause wavelength-dependent effects
in the measured dataset [65]. Since white calibration and
spectral calibration contain only linear operations [66], an
affine transformation is sufficient to learn the relationship
between two data manifolds.

Therefore, we can assume that, although the spectral re-
flectance of the same sample acquired at different acquisition
conditions lies on different data manifolds, the relationship
between these manifolds is linear:

x1 = Tx2 + b, (12)

where x1 and x2 represent the spectrum of a mixture in data
manifold 1 and 2 respectively, T is an invertible matrix and b
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represents a translation vector. Both T and b can be combined
to define an affine transformation matrix:x1

1

 =

T b

0T 1

x2

1

 (13)

where 0 is a vector containing zeros.
We now assume that we have a manifold containing training

data (i.e., the control points and their fractional abundances),
and a test data point that lies on a different manifold, due
to spectral variability (e.g., a mixture measured by another
sensor). To estimate the affine transformation matrix between
these 2 manifolds, we require the endmember spectra of both
manifolds. The endmembers of the training manifold and the
endmembers of the test manifold are denoted as Etrain and
Etest, respectively. We also require the incenters of the linear
simplices spanned by these endmembers. The incenter c of
a linear simplex spanned by p endmembers is the center of
the largest possible hypersphere that can be inscribed in the
simplex [67]. The fractional abundances of the incenter are
given by:

acj =
Vj∑p
k=1 Vk

, (14)

where Vj is the volume of the sub simplex spanned by Ej =
[e1, . . . , ej−1, ej+1, . . . , ep]:

Vj =
√

(−1)p−1· cmd (Ej)
2p−2(p−2)! ,

where cmd is the cayley menger determinant,

cmd (Ej) =

det
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where d2m,k is the Euclidean distance between endmembers
em and ek. The incenter of the data simplex is then given by
c = Eac.

Because, the transformation between the training and test
manifolds cannot be performed directly in the reflectance
space, we will describe the manifolds in a PCA-reduced
space. The dimension of the PCA reduced space is defined
by the number of endmembers. The transformation between
the training and test manifolds is obtained by minimizing the
following equation:

argmin
T,b

∣∣∣∣∣
∣∣∣∣∣
PCA(Etrain)TEtrain PCA(Etrain)T ctrain

1T 1

 (15)

−

T b

0T 1

PCA(Etest)TEtest PCA(Etest)T ctest

1T 1

 ∣∣∣∣∣
∣∣∣∣∣
2

F

where ctrain and ctest denote the incenters of the training and
test data simplices, 1 is a vector containing p ones and the
operator PCA estimates the p principal components of the
input matrix.

Algorithm 1: Bézier supervised unmixing (BSU)
Input: Ytrain({yi}Ni=1 ∈ Rd

+), Etrain({el}pl=1 ∈ Rd
+),

Ytest({yi}Mi=1 ∈ Rf
+), Etest({el}pl=1 ∈ Rf

+)

Output: Ŷtest({yi}Mi=1 ∈ Rd
+), Âtest({ai}Mi=1 ∈ Rp

+)
Manifold transformation (Begin)

Estimate the affine transformation matrix between the training
and test data manifolds (see Eq. (15))

Manifold transformation (End)
for o← 1 to M

Âtest
o : = Estimate the fractional abundance of each test sample

by applying Eq. (16)
Ŷtest

o : = Reconstruct the spectral reflectance of each test sample
by applying Eq. (7)

C. Bézier supervised unmixing

Once the transformation matrix is estimated, the proposed
method estimates the fractional abundances of the mixture
from the test manifold by minimizing the following optimiza-
tion equation:

â = argmin
a

∣∣∣∣∣
∣∣∣∣∣
T b

0T 1

PCA(Etest)Tytest

1


−

PCA(Etrain)T
∑

i

∑
j

∑
k

n!
i!j!k!a

i
1a

j
2a

k
3Ci,j,k

1

 ∣∣∣∣∣
∣∣∣∣∣
2

(16)

s.t. :
p∑

l=1

al = 1,∀l : al ≥ 0

The proposed methodology will be referred to as Bézier
supervised unmixing (BSU). The pseudo-code of the proposed
method is shown in Algorithm 1.

IV. HYPERSPECTRAL DATA DESCRIPTION

1) Relab dataset: This dataset comprises spectra of care-
fully crafted mineral mixtures from the NASA Reflectance
Experiment Laboratory (RELAB) at Brown University [68].
The selected binary mixtures involve five minerals: Alunite
(Al), Anorthite (An), Bronzite (Br), Olivine (Ol), and Quartz
(Qz). The binary combinations include An-Br, Br-Ol, Ol-An,
and Qz-Al, each offering three mixtures with mass ratios of
approximately 25%, 50%, and 75%. It’s worth noting that
these minerals share comparable grain sizes (around 100 µm)
and densities (approximately 3 g/cm3), resulting in volumetric
and areal fractional abundances that closely align with these
mass ratios. Fig. 4 shows endmembers obtained from the
Relab dataset. The rationale behind choosing these mixtures
is that the Hapke model accurately estimates their fractional
abundances.

2) Simulated Dataset: A simulated hyperspectral dataset
comprising 450×450 pixels (see Fig. 5(b)) is generated
through the nonlinear combination of five endmembers (as
shown in Fig. 5 (a)). The spectral reflectances of five pure ma-
terials (Kaolin, roof clay, red clay, mixed clay, and Ca(OH)2)
are acquired by a PSR-3500 spectral evolution spectrometer.
This sensor generates spectra of 1024 bands, ranging from
345 nm to 2504 nm with a step size of 2 nm. The Hapke
model serves as the nonlinear mixing model in this context.
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Fig. 4: Endmembers obtained from the Relab dataset.

This hyperspectral image contains 36 squares of 25 × 25
pixels with different randomly chosen quinary mixtures. The
remaining background pixels also have random fractional
abundances. Because the proposed method requires ground
truth control points (spectra), another set of Hapke simulated
spectra is generated by utilizing endmembers acquired by an
ASD spectroradiometer (see Fig. 5 (a)). The ASD spectrora-
diometer produces spectra with 2151 bands, covering a range
from 350 nm to 2500 nm, and bands are spaced 1 nm apart.
This simulated dataset is applied to generate a 7th-order Bézier
surface.

3) Multisensor hyperspectral dataset of intimate mixtures:
In [65], we prepared an extensive multisensor hyperspectral
dataset of intimate mixtures by homogeneously mixing five
pure clay powders, i.e., Kaolin, Roof clay, Red clay, mixed
clay, and Ca(OH)2. We prepared a total of 325 mixtures.
To prepare these mixtures, all possible clay combinations
were considered, i.e., 10 binary combinations, 10 ternary
combinations, 5 quaternary combinations, and one quinary
combination. The ground truth fractional abundances of these
mixtures uniformly cover the five-dimensional simplex, with
a step size of 14.286 % mass ratios. The generated samples
correspond to the control points of a Bézier surface of order 7.
In the case of binary clay combinations, six distinct mixtures
were created for each combination. For ternary, quaternary,
and quinary clay combinations, we generated 15, 20, and
15 unique mixtures, respectively. We refer again to Figure
1, where the uniformly sampled fractional abundances for a
ternary clay combination were presented. The three different
types of clay are situated at the vertices of the simplex, where
all binary mixtures are located along the lines connecting
two types of clay, while ternary mixtures are found within
the interior of the simplex. Even though ground truth frac-
tional abundances were given by construction, X-ray powder
diffraction, and X-ray fluorescence elemental analysis were
performed to verify that the generated intimate mixtures were
sufficiently homogeneous.

These 325 mixtures and five pure clay powders were

(a)

(b)

Fig. 5: Simulated dataset: a) Endmembers acquired by PSR-
3500 spectral evolution (full line) and ASD spectroradiometer
(dashed line) b) Band number 640 (1451 nm) of the simulated
image.

scanned with both the ASD spectroradiometer and the PSR-
3500 spectral evolution spectroradiometer. The spectral re-
flectances of the five pure clay samples acquired by these
two different sensors are shown in Fig. 5(a). The radiance
spectra from the intimate mixtures acquired by these sensors
were converted into reflectance by calibration with a white
calibration panel.

Given that the distance between the sample and the sensors
in handheld devices is only a few centimeters, differences in
sample compaction and clay densities cause slight variations
in sample height of the order of a few millimeters, leading to
a scaling effect in the measured spectra. These scaling effects
are taken care of by the proposed procedure to tackle random
scaling effects.

V. EXPERIMENTS AND RESULTS

The performance of BSU was evaluated and compared with
the following unmixing methods: Linear unmixing: FCLSU
[2], Bilinear unmixing: PPNM [18] and nonnegative tensor
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factorization (LR-NTF) [30], Multilinear unmixing: MLM
[21], the neighbor-band ratio unmixing approach NBRU [61],
and the Hapke model [27]. For these six methods, the utilized
endmembers are the ones, acquired by the hyperspectral sen-
sors. The proposed approach BSU uses training samples from
one sensor as control points to generate a Bézier surface.

All quantitative comparisons are provided by the abundance
root mean squared error, i.e. the error between the estimated
fractional abundances (Â) and the ground truth fractional
abundances (A):

Abundance RMSE (AE) =

√√√√ 1

pn

p∑
k=1

n∑
i=1

(
Âki −Aki

)2
×100

(17)
where p and n denote the number of endmembers and the
number of mixed spectra, respectively.

We have performed experiments under two distinct experi-
mental conditions, each demanding unique applications of the
datasets. In the first experimental condition, no sensor-specific
variability is introduced. In the second experimental condition,
the proposed method is validated for its invariance to spectral
variability caused by applying different sensors.

A. Experimental condition 1: no variability in acquisition
conditions

1) Relab dataset: In the first experiment, the goal is to
unmix the binary intimate mixtures of the Relab dataset. The
training samples that are required to generate Bézier surfaces
are produced by utilizing the Hapke model. In the next step,
the fractional abundances of the real binary mixtures (see
Section IV-1) are estimated by applying Eq. (8). In Fig. 6, we
show the obtained AE with respect to the order of the Bézier
surface. As expected, the error decreases when the order of
the Bézier surface increases. The AE obtained by the Hapke
model on this dataset is also shown for comparison. Except
for the binary mixture of Quartz and Alunite, the proposed
method can compete with the Hapke model itself using Bézier
surfaces of order less than 10. Since the Hapke model was used
to generate the Bezier surface, the results in principle at best
approach those of the Hapke model itself. However, because
the Hapke model does not perfectly explain the Relab data, our
approach may outperform it. We applied a Bézier surface of
order 7 to estimate the fractional abundances of the real binary
mixtures and compared the results with the mixing models
(FCLSU, PPNM, LR-NTF, MLM, NBRU, and Hapke model).
Table I shows the AE of the competing methods. Except for
the Hapke model, NBRU, and BSU, none of the methods could
perform well for this dataset. It’s noteworthy to observe that
the proposed method outperforms the Hapke model on the
Ol-An binary mixtures.

Real-life applications on material recognition require one
Bézier surface that can characterize most of the mixtures of
interest. In that case, the method has to accurately estimate
the fractional abundances of mixtures without having prior
knowledge of the number of endmembers in the mixture. A
non-zero estimated abundance value for a certain material then
denotes the presence of that material in the mixture.

Fig. 6: Relab data: AE obtained by the proposed method in
function of the order of the Bézier surface (full line) and the
Hapke model (dashed line).

TABLE I: AE of the unmixing methods on the binary intimate
mixtures of the Relab dataset. The best performances are
shown in bold.

FCLSU PPNM LR-NTF MLM NBRU Hapke BSU

An-Br 19.50 22.61 21.26 19.50 4.95 1.03 2.89

Br-Ol 16.13 13.95 13.13 13.05 3.61 1.21 1.65

Ol-An 13.65 13.20 9.99 11.21 3.89 2.39 1.07

Qz-Al 24.73 26.25 27.77 24.73 14.48 3.57 6.07

To demonstrate the effectiveness of this approach, in the
next experiment, we applied the Hapke model to generate
a 5-endmember data-manifold, with the endmembers from
which the measured binary mixtures are generated. In the
next step, a Bézier surface of 7th-order is produced from this
simulated data, after which the proposed method is validated
on all true binary mixtures, without having prior knowledge
of which endmembers form the binary mixtures. In Fig. 7,
we show the estimated fractional abundances by the proposed
method overlaid on the ternary diagram with An, Br, and Ol
as endmembers. In the figure, the red arrows point to the true
position of the fractional abundances. As can be observed, the
estimated fractional abundances lie close to the true ones on
the ternary diagram. Additionally, the estimated abundances
align with the faces (lines connecting binary mixtures) of the
ternary diagram. For comparison, the results of the FCLSU,
PPNM, LR-NTF, MLM, NBRU, and Hapke model, with all
5 minerals as endmembers, are shown in Table II. Except for
the Hapke model and NBRU none of the mixing models could
perform well for this dataset.

TABLE II: AE of the unmixing methods on the binary intimate
mixtures of the Relab dataset, when all 5 minerals are used
as endmembers. The best performances are shown in bold.

FCLSU PPNM LR-NTF MLM NBRU Hapke BSU

Al-An-Br-Ol-Qz 13.25 12.91 13.33 12.72 5.26 2.18 2.54
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Fig. 7: Relab data: unmixing results of proposed method
overlaid on the ternary diagram with Anorthite, Bronzite, and
Olivine as endmembers. Here, the red arrows point to the true
position of the fractional abundances.

As mentioned in the methodology section, the proposed
method not only accurately estimates the fractional abundances
but can also accurately reconstruct spectral reflectances of
mixtures. In Fig. 8, we show reconstructed spectra (dashed
lines) by the proposed method overlaid on the true ones
(full lines) for the Relab data. As expected, the reconstructed
spectra perfectly match the true ones.

2) Multisensor hyperspectral dataset: In the following ex-
periment, we use the ASD spectroradiometer dataset. All
mixtures serve as control points to generate a 7th-order Bézier
surface. In Fig. 9, we show an example generated data man-
ifold of ternary mixtures of Kaolin, Red clay, and Ca(OH)2.
From the generated 7th-order Bézier surface, the control points
required to generate Bézier surfaces of orders between 1-7 are
extracted. Then, the fractional abundances of the true mixtures
are estimated by applying Eq. (8).

In Fig. 10, we show the mean AE (average over different
clay combinations) with respect to the order of the Bézier
surface. Except for the quinary mixtures (only one clay
combination), standard deviations are shown as well. Similar
to the results on the Relab dataset, the error decreases when
the order of the Bézier surface increases.

B. Experimental condition 2: variability in acquisition condi-
tions

In the second group of experiments, we validate the ap-
proach to situations with spectral variability due to the use of
different sensors.

1) Simulated dataset: In this experiment, the simulated
image (generated by the PSR-3500 spectral evolution end-
members and the Hapke model, see Fig. 5(a)) is unmixed using
the proposed approach. In order to investigate the robustness
of the proposed method in the presence of noise, Gaussian
noise at different signal-to-noise ratio (SNR) levels was added

to the spectra. The training data is provided by the manifold
generated by the ASD spectroradiometer endmembers (see
Fig. 5(a)) and the Hapke model. In Fig. 11, we show the
estimated abundance maps and the absolute difference between
ground truth and estimated maps (SNR=50 dB). For a com-
parison, the abundance maps estimated by FCLSU, PPNM,
and MLM are shown as well. As can be observed, except
for the proposed method, none of the competing methods
could produce accurate abundance maps. Table III shows
the obtained AE’s on this dataset. As can be observed, the
proposed method considerably outperforms the competing
techniques. This demonstrates that the proposed approach is
able to tackle spectral variability caused by the use of different
sensors. The error of the proposed method increases for SNR
values lower than 40 dB. To further improve the performance
of the proposed method in high noise scenarios, a denoising
algorithm such as a parameter-free hyperspectral restoration
technique ([69]) can be used as a prepossessing tool. After
applying this method, we managed to decrease the error of
the proposed method from 10.11% to 4.19% for the dataset
with SNR of 30 dB.

TABLE III: AE of the unmixing methods on the simulated
dataset for different noise levels. The best performances are
shown in bold.

FCLSU PPNM LR-NTF MLM NBRU BSU

30dB 14.62 15.41 15.14 14.82 26.52 10.11

35dB 14.46 14.41 14.89 14.50 25.08 7.38

40dB 14.66 14.40 15.12 14.64 23.64 4.78

45dB 14.80 15.51 15.37 14.78 19.74 4.52

50dB 14.82 14.58 15.47 14.80 15.60 3.36

2) Multisensor hyperspectral dataset: In the final exper-
iment, the generated Bézier surfaces are obtained by control
points from the ASD spectroradiometer dataset and the method
is validated on the mixtures from the PSR-3500 spectral
evolution spectrometer. In Table IV, the results for all the
mixtures are shown. For a comparison, the results of the
FCLSU, PPNM, LR-NTF, MLM, NBRU, and Hapke models
are shown as well. As can be observed, the proposed method
outperforms the competing techniques. Even though the Hapke
model was developed to characterize intimate mixtures, its
performance was the lowest among the competing methods.
In Fig. 12, we show estimated fractional abundances on the
PSR-3500 spectral evolution spectrometer data overlaid on the
ternary diagram of the mixtures of Kaolin, Mixed clay, and
Ca(OH)2. As can be observed, except for a few mixtures, the
estimated fractional abundances are close to the true ones. For
these ternary mixtures, the AE is 4.85 %.

VI. DISCUSSION

From the experiments, the following general conclusions
can be drawn:

• In general, the LMM is not suitable for describing the
spectral reflectances of intimate mixtures of mineral pow-
ders. Its AE for intimate mixtures varies between 10-25
%.
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(a) (b)

(c) (d)

Fig. 8: Relab data: reconstructed spectra (dashed lines) versus true ones (full lines). (a) Anorthite and Bronzite binary mixtures;
(b) Bronzite and Olivine binary mixtures; (c) Olivine and Anorthite binary mixtures; (d) Quartz and Alunite binary mixtures.

TABLE IV: Mean AE of the unmixing methods on the
PSR-3500 spectral evolution spectrometer dataset. The best
performances are shown in bold.

FCLSU PPNM LR-NTF MLM NBRU Hapke BSU

Binary 7.05 5.44 7.39 6.57 12.48 15.50 5.12

Ternary 9.77 9.93 9.45 8.84 15.09 22.64 5.80

Quaternary 10.80 11.55 10.30 10.01 15.30 22.02 6.27

Quinary 11.02 11.04 10.62 10.43 15.03 18.34 9.75

• Similar to the LMM, the bilinear models, such as PPNM
and LR-NTF, did not perform well in estimating the frac-
tional abundances of intimate mixtures. This suggests that
these models cannot accurately describe the interaction of
light with intimate mixtures.

• Even though the MLM outperformed the LMM for esti-

mating fractional abundances of some intimate mixtures,
the obtained AE’s are still too large to rely on the method.

• The Hapke model can accurately estimate the fractional
abundances of intimate mixtures only when the particles
are significantly larger than the wavelength of light, are
spherical, and scatter light isotropically. These criteria
are fulfilled by the Relab dataset (see Section V-A1),
resulting in an excellent performance on this dataset. On
the other hand, it could not outperform the LMM on
the Multisensor hyperspectral dataset of intimate mixtures
(see Section V-B2). This result suggests that the Hapke
model is less suitable for analyzing more complex mix-
tures.

• While NBRU outperformed the FCLSU, PPNM, LR-
NTF, and MLM models on the Relab dataset, its perfor-
mance on the other datasets did not exhibit a significant
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Fig. 9: PCA reduced data manifold (ASD spectroradiometer)
of ternary mixtures of Kaolin, Red clay, and Ca(OH)2. Here,
black dots denote the true data points, while red dots denote
reconstructed ones.

improvement over these models.
• BSU outperformed the other techniques in all experi-

ments except on the Relab dataset (see Section V-A1)
where the Hapke model slightly outperformed BSU, the
reason being that the Hapke model itself was used to gen-
erate the Bézier surface in that experiment. Although the
performance of the proposed method could be enhanced
by employing a higher-order Bézier surface (see Fig. 6),
for the sake of consistency, the order of the Bézier surface
was set to 7 for all the experiments.

• Unlike the current nonlinear mixing models, BSU demon-
strated its capability to address both nonlinearity and
spectral variability concurrently (see Section V-B).

• The proposed method not only accurately estimated
the fractional abundances of intimate mixtures but also
accurately reconstructed their spectral reflectances (see
Fig. 8). This displays the effectiveness of the developed
methodology.

• The major obstacle for implementing the proposed
method in real-life applications lies in generating a suffi-
cient number of control points to accurately characterize
the Bézier surface. A general nth order Bézier surface has
(n+p−1)!
n! (p−1)! control points. Even though prior information
regarding the endmembers is often available, the required
order of a Bézier surface is governed by the complexity
of the mixtures. Based on our extensive experiments,
we found that a Bézier surface of order n = 7 is
sufficient for the majority of intimate mixtures. When the
nonlinearity of the mixture is low, essentially constituting
an almost linearly mixed dataset, the 7th-order Bézier
surface simplifies to the linear simplex (see Eq. 11),
requiring only the p endmembers as control points.

• Despite the potential for using this method for material
recognition, the significant uncertainty in the estimated
fractional abundances (1-9%) by the proposed method

presents a challenge for accurately detecting targets with
low fractional abundances (<1%) in intimate mixtures.

• In the experimental section, we employed two approaches
to generate control points: a) Simulation of spectral
reflectance of intimate mixtures: On the Relab dataset,
the Hapke model was utilized to simulate the spectral
reflectances of the control points. The generated surface
was validated on the measured dataset; b) Generation of
real intimate mixtures: When the interaction of light with
the mixtures can not be described by a mixture model,
real mixtures prepared in a laboratory setting are required.
In our work, we generated real intimate mixtures by
homogeneously mixing pure clay powders. The spectral
reflectances of the control points are then acquired by
a sensor of choice to generate the Bézier surface. For
data acquired under different acquisition conditions, no
control points, except for the endmembers are required,
as the manuscript describes a procedure to map this data
manifold to the generated Bézier surface.

• In theory, the method should be applicable in remote sens-
ing settings, by transforming a data manifold to one that
is generated in lab conditions. However, this comes with
great challenges. First, it should be known which mate-
rials are present, and their endmember spectra should be
available. Moreover, intrinsic spectral variability between
the datasets should be minimal, and most importantly,
there is no way of validating the obtained results, because
there is no ground truth available. Creating ground truth
references for nonlinear unmixing of real spaceborne and
airborne hyperspectral remote sensing images is a very
difficult and challenging task. Overcoming this obstacle
is essential for making the method directly applicable
in remote sensing settings. One potential solution lies in
simulating the spectral reflectances of the required control
points. This can be achieved through the use of physically
based Ray-Tracing models [70]. On the other hand,
advanced radiative transfer models exist in the literature
that can describe the interaction of light with intimate
mixtures, such as soils and geological samples. While
these models may lack invertibility, they remain useful
for simulating spectral reflectances of control points. In
future work, we will explore the possibility of integrating
the proposed method with these models to unmix remote
sensing data.

• All methods were developed in MATLAB and ran on an
Intel Core i9-12900KF CPU, 3.19 GHz machine with 16
cores. The runtime for all unmixing methods applied to
the Relab dataset (17 mixtures), the Simulated dataset
(450 × 450 = 202500 mixtures), and the Multisensor
hyperspectral dataset (330 mixtures) is presented in Table
V. FCLSU stands out as the fastest algorithm, while
LR-NTF was slowest among the evaluated techniques.
The generation of a 7th-order Bézier surface for the
five endmember mixtures (Simulated dataset) using the
proposed method took less than one second. Addition-
ally, the estimation of the fractional abundances required
approximately 4.5 milliseconds for each test sample.
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(a) (b)

Fig. 10: AE (ASD Spectroradiometer) obtained by the proposed method in function of the order of the Bézier surface. (a)
Binary mixtures; (b) Ternary mixtures; (c) Quaternary mixtures; (d) Quinary mixtures.

TABLE V: Processing time (in seconds) of the unmixing
techniques applied to different datasets.

FCLSU PPNM LR-NTF MLM NRBU Hapke BSU

Relab 0.001 0.05 0.78 0.03 0.09 0.10 0.34

Simulated 16.26 652.80 15762.55 775.29 2880.39 - 898.40

Multisensor 0.02 0.92 20.40 0.62 4.83 2.46 4.06

VII. CONCLUSION

This paper introduces a methodology designed for the
precise estimation of fractional abundances in intimate mix-
tures, with an additional feature of invariance to variations in
acquisition conditions. The proposed approach is a supervised
approach that characterizes the nonlinear data manifolds by
high-dimensional Bézier surfaces. Validation of the proposed
method was conducted on datasets generated under laboratory
conditions and in cross-sensor scenarios. The results showed

that the proposed method not only accurately estimated the
fractional abundances of intimate mixtures but also faithfully
reconstructed their spectral reflectances in different unmixing
scenarios including, single senor, spectral variability, and
multiple sensors for intimate mixtures of up to five materials
confirming the generalization ability of the proposed method.
The experimental results confirmed that the proposed method
simultaneously copes with the nonlinearity and spectral vari-
ability. This demonstrated the effectiveness of the proposed
methodology.
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Fig. 11: Simulated dataset (SNR 50dB)- Ground truth (GT), estimated abundance maps, and absolute difference with the GT
for the four different unmixing methods on the Hapke simulated dataset.

Fig. 12: Unmixing results (PSR-3500 spectral evolution spec-
trometer) overlaid on the ternary diagram of the mixtures of
Kaolin, Mixed clay, and Ca(OH)2. Here, the red arrows point
to the true position of the fractional abundances.
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[20] I. Meganem, P. Déliot, X. Briottet, Y. Deville, and S. Hosseini, “Lin-
ear–quadratic mixing model for reflectances in urban environments,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1,
pp. 544–558, 2014.

[21] R. Heylen and P. Scheunders, “A multilinear mixing model for nonlinear
spectral unmixing,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 54, no. 1, pp. 240–251, Jan 2016.

[22] A. Marinoni and P. Gamba, “A novel approach for efficient p-linear
hyperspectral unmixing,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 6, pp. 1156–1168, Sep. 2015.

[23] A. Marinoni, J. Plaza, A. Plaza, and P. Gamba, “Nonlinear hyperspectral
unmixing using nonlinearity order estimation and polytope decomposi-
tion,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 8, no. 6, pp. 2644–2654, June 2015.

[24] A. Marinoni, A. Plaza, and P. Gamba, “Harmonic mixture modeling for
efficient nonlinear hyperspectral unmixing,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 9,
pp. 4247–4256, Sep. 2016.

[25] B. Yang, B. Wang, and Z. Wu, “Nonlinear hyperspectral unmixing
based on geometric characteristics of bilinear mixture models,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp.
694–714, 2018.

[26] B. Hapke, R. Nelson, and W. Smythe, “The opposition effect of the
moon: Coherent backscatter and shadow hiding,” Icarus, vol. 133, no. 1,
pp. 89 – 97, 1998.

[27] B. Hapke, “Bidirectional reflectance spectroscopy: 1. theory,” Journal
of Geophysical research, vol. 86, pp. 3039–3054, 1981.

[28] M. Zhao, L. Yan, and J. Chen, “Lstm-dnn based autoencoder network
for nonlinear hyperspectral image unmixing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 15, no. 2, pp. 295–309, 2021.

[29] M. Zhao, M. Wang, J. Chen, and S. Rahardja, “Hyperspectral unmixing
for additive nonlinear models with a 3-d-cnn autoencoder network,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp.
1–15, 2022.

[30] L. Gao, Z. Wang, L. Zhuang, H. Yu, B. Zhang, and J. Chanussot, “Using
low-rank representation of abundance maps and nonnegative tensor
factorization for hyperspectral nonlinear unmixing,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2022.

[31] T. Fang, F. Zhu, and J. Chen, “Hyperspectral unmixing based on
multilinear mixing model using convolutional autoencoders,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1–16,
2024.

[32] M. Li, B. Yang, and B. Wang, “Emlm-net: An extended multilinear
mixing model-inspired dual-stream network for unsupervised nonlinear
hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 62, pp. 1–16, 2024.

[33] M. Wang, M. Zhao, J. Chen, and S. Rahardja, “Nonlinear unmixing of
hyperspectral data via deep autoencoder networks,” IEEE Geoscience
and Remote Sensing Letters, vol. 16, no. 9, pp. 1467–1471, 2019.

[34] B. Rasti, B. Koirala, and P. Scheunders, “Hapkecnn: Blind nonlinear
unmixing for intimate mixtures using hapke model and convolutional
neural network,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 60, pp. 1–15, 2022.

[35] G. Foody, “Relating the land-cover composition of mixed pixels to artifi-
cial neural network classification output,” Photogrammetric Engineering
and Remote Sensing., vol. 62, no. 5, p. 491–499, 1996.

[36] G. Licciardi and F. D. Frate, “Pixel unmixing in hyperspectral data
by means of neural networks,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 49, pp. 4163–4172, 2011.

[37] B. Koirala, R. Heylen, and P. Scheunders, “A neural network method
for nonlinear hyperspectral unmixing,” in IEEE Intern. Geosci Remote
Sens. Symp., 2018, pp. 4233–4236.

[38] M. Koirala, B.and Khodadadzadeh, C. Contreras, Z. Zahiri, R. Gloaguen,
and P. Scheunders, “A supervised method for nonlinear hyperspectral
unmixing,” Remote Sensing, vol. 11, no. 20, p. 2458, Oct 2019.

[39] B. Koirala, Z. Zahiri, A. Lamberti, and P. Scheunders, “Robust super-
vised method for nonlinear spectral unmixing accounting for endmember

variability,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 59, no. 9, pp. 7434–7448, 2021.

[40] L. Drumetz, J. Chanussot, C. Jutten, W. Ma, and A. Iwasaki, “Spectral
variability aware blind hyperspectral image unmixing based on convex
geometry,” IEEE Transactions on Image Processing, vol. 29, pp. 4568–
4582, 2020.

[41] L. Drumetz, J. Chanussot, and C. Jutten, “Chapter 2.7 - variability of
the endmembers in spectral unmixing,” in Hyperspectral Imaging, ser.
Data Handling in Science and Technology, J. M. Amigo, Ed. Elsevier,
2020, vol. 32, pp. 167 – 203.

[42] B. Somers, G. P. Asner, L. Tits, and P. Coppin, “Endmember variability
in spectral mixture analysis: A review,” Remote Sensing of Environment,
vol. 115, no. 7, pp. 1603 – 1616, 2011.

[43] A. Zare and K. C. Ho, “Endmember variability in hyperspectral analysis:
Addressing spectral variability during spectral unmixing,” IEEE Signal
Processing Magazine, vol. 31, no. 1, pp. 95–104, 2014.

[44] D. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, and R. Green,
“Mapping chaparral in the santa monica mountains using multiple
endmember spectral mixture models,” Remote Sensing of Environment,
vol. 65, no. 3, pp. 267 – 279, 1998.

[45] B. Somers, M. Zortea, A. Plaza, and G. P. Asner, “Automated extraction
of image-based endmember bundles for improved spectral unmixing,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 5, no. 2, pp. 396–408, 2012.

[46] T. Uezato, R. J. Murphy, A. Melkumyan, and A. Chlingaryan, “A novel
endmember bundle extraction and clustering approach for capturing
spectral variability within endmember classes,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 54, no. 11, pp. 6712–6731, 2016.

[47] C. A. Bateson, G. P. Asner, and C. A. Wessman, “Endmember bundles: a
new approach to incorporating endmember variability into spectral mix-
ture analysis,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 38, no. 2, pp. 1083–1094, 2000.

[48] T. Uezato, R. J. Murphy, A. Melkumyan, and A. Chlingaryan, “A
novel spectral unmixing method incorporating spectral variability within
endmember classes,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 54, no. 5, pp. 2812–2831, 2016.

[49] L. Drumetz, M. Veganzones, S. Henrot, R. Phlypo, J. Chanussot, and
C. Jutten, “Blind hyperspectral unmixing using an extended linear
mixing model to address spectral variability,” IEEE Transactions on
Image Processing, vol. 25, no. 8, pp. 3890–3905, 2016.

[50] P. Thouvenin, N. Dobigeon, and J. Tourneret, “Hyperspectral unmixing
with spectral variability using a perturbed linear mixing model,” IEEE
Transactions on Signal Processing, vol. 64, no. 2, pp. 525–538, 2016.

[51] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented linear
mixing model to address spectral variability for hyperspectral unmixing,”
IEEE Transactions on Image Processing, vol. 28, no. 4, pp. 1923–1938,
2019.

[52] A. Halimi, N. Dobigeon, and J. Tourneret, “Unsupervised unmixing
of hyperspectral images accounting for endmember variability,” IEEE
Transactions on Image Processing, vol. 24, no. 12, pp. 4904–4917, 2015.

[53] Y. Zhou, A. Rangarajan, and P. D. Gader, “A gaussian mixture model
representation of endmember variability in hyperspectral unmixing,”
IEEE Transactions on Image Processing, vol. 27, no. 5, pp. 2242–2256,
2018.

[54] Y. Zhou, E. B. Wetherley, and P. D. Gader, “Unmixing urban hyper-
spectral imagery using probability distributions to represent endmember
variability,” Remote Sensing of Environment, vol. 246, p. 111857, 2020.

[55] T. Uezato, M. Fauvel, and N. Dobigeon, “Hyperspectral unmixing with
spectral variability using adaptive bundles and double sparsity,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57, no. 6, pp.
3980–3992, 2019.

[56] D. Hong and X. X. Zhu, “Sulora: Subspace unmixing with low-rank
attribute embedding for hyperspectral data analysis,” IEEE Journal of
Selected Topics in Signal Processing, vol. 12, no. 6, pp. 1351–1363,
2018.

[57] A. Halimi, P. Honeine, and J. M. Bioucas-Dias, “Hyperspectral unmixing
in presence of endmember variability, nonlinearity, or mismodeling
effects,” IEEE Transactions on Image Processing, vol. 25, no. 10, pp.
4565–4579, 2016.

[58] A. Halimi, J. M. Bioucas-Dias, N. Dobigeon, G. S. Buller, and
S. McLaughlin, “Fast hyperspectral unmixing in presence of nonlinearity
or mismodeling effects,” IEEE Transactions on Computational Imaging,
vol. 3, no. 2, pp. 146–159, 2017.

[59] L. Drumetz, B. Ehsandoust, J. Chanussot, B. Rivet, M. Babaie-Zadeh,
and C. Jutten, “Relationships between nonlinear and space-variant linear
models in hyperspectral image unmixing,” IEEE Signal Processing
Letters, vol. 24, no. 10, pp. 1567–1571, 2017.



16

[60] W. Luo, L. Gao, R. Zhang, A. Marinoni, and B. Zhang, “Bilinear normal
mixing model for spectral unmixing,” IET Image Processing, vol. 13,
no. 2, pp. 344–354, 2019.

[61] K. Siebels, K. Goı̈ta, and M. Germain, “Estimation of mineral abundance
from hyperspectral data using a new supervised neighbor-band ratio
unmixing approach,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 58, no. 10, pp. 6754–6766, 2020.

[62] J. F. Mustard and C. M. Pieters, “Quantitative abundance estimates
from bidirectional reflectance measurements,” Journal of Geophysical
Research: Solid Earth, vol. 92, no. B4, pp. E617–E626, 1987.

[63] R. Heylen, D. Burazerovic, and P. Scheunders, “Non-linear spectral
unmixing by geodesic simplex volume maximization,” IEEE Journal of
Selected Topics in Signal Processing, vol. 5, no. 3, pp. 534–542, 2011.

[64] B. Koirala, Z. Zahiri, and P. Scheunders, “A robust supervised method
for estimating soil moisture content from spectral reflectance,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13,
2022.

[65] B. Koirala, B. Rasti, Z. Bnoulkacem, A. d. L. Ribeiro, Y. Madriz,
E. Herrmann, A. Gestels, T. D. Kerf, S. Lorenz, M. Fuchs, K. Janssens,
G. Steenackers, R. Gloaguen, and P. Scheunders, “A multisensor hyper-
spectral benchmark dataset for unmixing of intimate mixtures,” IEEE
Sensors Journal, pp. 1–1, 2023.

[66] S. A. Trim, K. Mason, and A. Hueni, “Spectroradiometer spectral
calibration, isrf shapes, and related uncertainties,” Appl. Opt., vol. 60,
no. 18, pp. 5405–5417, Jun 2021.

[67] R. Heylen, D. Burazerovic, and P. Scheunders, “Fully constrained least
squares spectral unmixing by simplex projection,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4112–4122, 2011.

[68] J. F. Mustard and C. M. Pieters, “Photometric phase functions of
common geologic minerals and applications to quantitative analysis of
mineral mixture reflectance spectra,” Journal of Geophysical Research,
vol. 94, pp. 13 619–13 634, 1989.

[69] B. Rasti, M. O. Ulfarsson, and P. Ghamisi, “Automatic hyperspectral im-
age restoration using sparse and low-rank modeling,” IEEE Geoscience
and Remote Sensing Letters, vol. 14, no. 12, pp. 2335–2339, 2017.

[70] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering:
From Theory to Implementation, 3rd ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2016.

Bikram Koirala (Member, IEEE) received the M.S.
degree in geomatics engineering from the University
of Stuttgart, Stuttgart, Germany, in 2016, and the
Ph.D. degree in development of advanced hyper-
spectral unmixing methods from the University of
Antwerp, Antwerp, Belgium, in 2021.

In 2017, he joined the Vision Lab, Department
of Physics, University of Antwerp, as a Ph.D. Re-
searcher, where he is currently an FWO Postdoctoral
Researcher. His research interests include machine
learning and hyperspectral image processing.

Behnood Rasti (M’12–SM’19) received the B.Sc.
and M.Sc. degrees in electronics and electrical en-
gineering from Electrical Engineering Department,
University of Guilan, Rasht, Iran, in 2006 and
2009, respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Iceland, Reykjavik, Iceland, in 2014. He was a
Valedictorian as an M.Sc. Student in 2009. In 2015
and 2016, he was a Postdoctoral Researcher with
Electrical and Computer Engineering Department,
University of Iceland. From 2016 to 2019, he was a

Lecturer with the Center of Engineering Technology and Applied Sciences,
Department of Electrical and Computer Engineering, University of Iceland.
From 2022 to 2023, he was a Principal Research Associate with Helmholtz-
Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany. He is currently a
Senior Research Scientist with Faculty of Electrical Engineering and Com-
puter Science, Technische Universität Berlin. His research interests include
signal and image processing, machine/deep learning, remote sensing, and
artificial intelligence. Dr. Rasti was a Humboldt Research Fellow in 2020
and 2021. He was the recipient of the Doctoral Grant of the University of
Iceland Research Fund “The Eimskip University Fund” and the “Alexander
von Humboldt Research Fellowship Grant” in 2013 and 2019, respectively.
He is an Associate Editor for IEEE Geoscience and Remote Sensing Letters
(GRSL).

Zakaria Bnoulkacem holds a M.Sc. in Surveying
Engineering and Geomatics from the Agronomic
and Veterinary Institute Hassan II (IAV Hassan II)
in Rabat, Morocco. Currently he is enrolled as a
Ph.D. researcher at the University of Antwerp’s De-
partment of Physics’ VisionLab. His main research
subject is material characterization using spectral
reflectance for intimate mixtures.

Paul Scheunders (M’98) received the M.S. degree
and the Ph.D. degree in physics, with work in the
field of statistical mechanics, from the University
of Antwerp, Antwerp, Belgium, in 1986 and 1990,
respectively. In 1991, he became a research asso-
ciate with the Vision Lab, Department of Physics,
University of Antwerp, where he is currently a
full professor. His current research interest includes
remote sensing and hyperspectral image processing.
He has published over 200 papers in international
journals and proceedings in the field of image pro-

cessing, pattern recognition, and remote sensing. Paul Scheunders is Deputy
Editor-in-Chief of the IEEE Transactions on Geoscience and Remote Sensing
and has served as a program committee member in numerous international
conferences. He is a senior member of the IEEE Geoscience and Remote
Sensing Society.


	Introduction
	Contributions and Novelties

	Relevant Prior Work
	Hyperspectral mixing models
	Linear mixing model
	Bilinear mixing models
	Multilinear mixing models
	Hapke model

	Supervised geodesic unmixing

	Nonlinear unmixing using a Bézier surface
	Hyperspectral data modeling using a Bézier surface
	Approximating linearly mixed datasets using a Bézier surface
	Approximating bilinearly mixed datasets using a Bézier surface
	Approximating a complex data manifold using a Bézier surface

	Tackling spectral variability
	Tackling random scaling effects
	Tackling spectral variability caused by variations in acquisition conditions

	Bézier supervised unmixing

	Hyperspectral data description
	Relab dataset
	Simulated Dataset
	Multisensor hyperspectral dataset of intimate mixtures


	Experiments and Results
	Experimental condition 1: no variability in acquisition conditions
	Relab dataset
	Multisensor hyperspectral dataset

	Experimental condition 2: variability in acquisition conditions
	Simulated dataset
	Multisensor hyperspectral dataset


	Discussion
	Conclusion
	References
	Biographies
	Bikram Koirala
	Behnood Rasti (M’12–SM’19)
	Zakaria Bnoulkacem
	Paul Scheunders


