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Abstract: The overall importance of x-ray phase contrast (XPC) imaging has grown substantially
in the last decades, in particular with the recent advent of compact lab-based XPC systems. For
optimizing the experimental XPC setup, as well as benchmarking and testing new acquisition
and reconstruction techniques, Monte Carlo (MC) simulations are a valuable tool. GATE, an
open source application layer on top of the Geant4 simulation software, is a versatile MC tool
primarily intended for various types of medical imaging simulations. To our knowledge, however,
there is no GATE-based academic simulation software available for XPC imaging. In this paper,
we extend the GATE framework with new physics-based tools for accurate XPC simulations.
Our approach combines Monte Carlo simulations in GATE for modelling the x-ray interactions
in the sample with subsequent numerical wave propagation, starting from the GATE output.
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1. Introduction

X-ray phase contrast (XPC) computed tomography (CT) is well known for its ability to generate
contrasts that are complementary to conventional absorption contrast (AC). The introduction
of compact lab-based systems for phase sensitive imaging has boosted research in XPC in the
past decade, and a multitude of applications has risen, covering a broad field ranging from
(bio)medical imaging (e.g., soft tissue) to materials science (e.g., low-density materials) [1].
Fibrous or porous materials, found in biological tissue (e.g., dentinal tubules in teeth) and
advanced composite materials (e.g., fiber reinforced polymers) are often of particular interest,
in order to relate the inner microstructure to their macroscopic properties. By exploiting the
so-called dark field contrast (DFC) [2], information about the microstructure can be revealed even
when the structures are not resolvable by the detector. DFC, which is attributed to small-angle
scattering in the sample, is closely related to phase contrast and both can be measured in a single
experiment with, for example, a grating-based interferometer (GBI) [3]. The imaging principle
of such interferometers is based on the Talbot effect and GBIs are a valuable tool for acquiring
PC images with conventional sources [4]. In practice, a GBI does not directly measure the phase
but its first derivative, and the generated contrast is therefore referred to as differential phase
contrast (DPC). In addition to the DPC and DFC images, this method also yields the conventional
AC image.

When investigating new CT acquisition and reconstruction procedures, computational x-ray
simulations are a valuable tool for benchmarking and testing. GATE [5], an open source
application layer on top of the Geant4 [6] simulation software, is a versatile Monte Carlo (MC)
tool for various types of medical imaging simulations, including CT [7]. Unfortunately, tools for
XPC imaging are currently not available within GATE.

As for XPC simulations, a number of different approaches have been proposed, based on either
numerical wave propagation [8,9], MC simulations [10,11], or a combination of both [12,13].
More recently, the combination of analytical and empirical input data has been explored to
reduce simulation times [14]. The latter approach, however, does not include dark field imaging.
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Therefore, we propose a combination of Monte Carlo simulations in GATE for modelling the x-ray
interactions in the sample, and subsequent numerical wave propagation, towards the detection
plane. This paper builds upon earlier work by Peter et al. [13], where this combination is
employed. To this end, we extend the existing GATE framework with additional tools for the
purpose of XPC simulations. We review the principles of grating-based XPC CT and discuss the
simulation framework. Finally, we show and discuss the simulation results.

2. Methods

In this section, we will first briefly address the imaging principles underlying grating-based
interferometry in Section 2.1, as well as the general GATE framework (Section 2.2), followed by
a discussion concerning the simulation approach and the corresponding additions to GATE. The
concept of using a consecutive combination of MC simulation and wavefront propagation for
XPC was originally introduced by Peter et al. [13], where egs++ was chosen as MC framework.
In this paper, we will pave the way for the simulation of advanced contrast modalities using
GATE’s versatile macro interface. Moreover, we will address aspects that were unexplored in
their work, e.g. 2D radiography including advanced phantom design (Section 3). Different
approaches to the wavefront construction will be presented, as well as a thorough investigation of
the implementation of phase stepping and phase retrieval.

2.1. Principles of grating-based interferometry

A grating-based interferometer relies on a coherent x-ray source that emits x-rays towards a
detector. On their path to the detector, the x-rays encounter two gratings: G1 and G2 [15], as
shown in Fig. 1. Synchrotron facilities meet the requirement of coherence, but lab sources do not.
This can, however, be overcome by introducing a third grating (G0, not shown) before the first
one (G1), as will be discussed further in this section. The first grating (G1) in Fig. 1 generates an
interference pattern at regular distances with the same period as that of grating G1, or a fraction
thereof. This pattern is known as the Talbot carpet and the distances dn at which it occurs are
accordingly known as (fractional) Talbot distances [16,17]:

dn = n
1
η2

g21
2λ

, (1)

where n is an integer called the Talbot order, λ is the wavelength of the radiation and g1 is the
pitch of the first grating G1. If G1 is an amplitude grating or a π/2-shifting phase grating, then
η = 1; if G1 is a π-shifting phase grating, η = 2. Amplitude gratings will exhibit maximum
fringe contrast at even Talbot orders, while phase gratings do so at odd Talbot orders.

Fig. 1. Schematic overview of a grating-based interferometer (not to scale).

As mentioned earlier, it can be shown [18] that by inserting an additional absorption grating
(G0) in front of the x-ray source, a sufficiently strong interference pattern can be generated, even
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if incoherent sources are used for imaging [4]. The slits of the source grating will act as an array
of mutually incoherent sources, which, due to their reduced individual widths are each in itself
small enough to be sufficiently spatially coherent. By carefully scaling the distances between the
three gratings, the interference patterns caused by the individual slits will coincide at a specific
Talbot distance. The coinciding patterns all incoherently contribute to a single detectable pattern.
For the sake of simplicity, we will assume in the following that the source already is coherent.
Placing an object in the beam will distort the wavefront, causing the interference pattern

to change. As the fringes of the interference pattern are not resolvable by the detector, these
changes cannot be measured directly. Therefore, an absorbing analyser grating (G2) is placed
directly in front of the detector, which has a pitch that matches the periodicity of the undistorted
interference pattern at that position. By shifting this grating along x (Fig. 1), the portion of
the interference pattern intensity that is being transmitted varies. This generates for every
detector pixel an intensity curve that oscillates as a function of the x-translation of G2, hereby
effectively translating the undetectable phase modulation into a detectable intensity modulation.
The parameters defining these curves can be retrieved from a set of images taken at different G2
positions xg, a procedure known as phase stepping, using a phase retrieval algorithm [19].

In the ideal case, the modulation of the intensity can be modeled by a triangle wave [20]. The
triangular wave function fTW is given by

fTW =
2
π

arcsin (sin x), (2)

and the ideal case model is written as

I(i, j, xg) = a0(i, j) + a1(i, j)fTW

[
2π

xg
g2
+ φ1(i, j) + π

]
, (3)

where g2 denotes the pitch of the analyser grating G2. The phase factor +π is introduced to match
the interpretation of φ1 in Eq. (3) to the interpretation in Eq. (4), as the latter is more common in
literature.
Due to system imperfections such as variations in the widths and periodicity of the gratings,

detector imperfections, polychromaticity, and mainly the incoherence of the source, the intensity
will be blurred in real-life measurements [20] (Fig. 2). Therefore, the phase stepping curve
corresponding to detector pixel (i, j) is typically described by a cosine function [3,21]:

I(i, j, xg) = a0(i, j) + a1(i, j) cos
[
2π

xg
g2
+ φ1(i, j)

]
. (4)

By estimating the model parameters a0, a1, and φ1 from the intensity modulation curve with
object in the beam (Is(i, j, xg)) as well as from the intensity modulation curve without object in
the beam (Ir(i, j, xg)), the AC (T), DPC (∇xΦ) and DFC (V) images can be calculated in every
pixel [3]:

T(i, j) =
a0,s(i, j)
a0,r(i, j)

, (5)

∇xΦ(i, j) =
g2
λd

[
φ1,s(i, j) − φ1,r(i, j)

]
, (6)

V(i, j) =
a1,s(i, j)/a0,s(i, j)
a1,r(i, j)/a0,r(i, j)

, (7)

with d the distance between G1 and G2. The AC signal is hence the constant offset of the phase
stepping curve, while the first derivative of the phase of the wavefront is related to the phase shift
of the intensity modulation curve compared to the reference curve. The DFC signal is determined
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by the relative amplitude of the curve, which can be understood as a measure of how visible the
interference pattern is. Increased scattering will result in increased blurring of the interference
pattern, thereby reducing the stepping curve’s amplitude, which is why the DFC signal is often
referred to as the “visibility”.

Fig. 2. (left): Ideal case triangular phase stepping curves. (right): Cosine shaped phase
stepping curves.

The phase retrieval, which is the estimation of the function parameters from the phase stepping
measurements, can be performed through different procedures. In real measurements, the
parameters can be estimated from a least squares fit of a sine (or cosine) to the measured points
[20]. Alternatively, Eq. (4) can be treated as the first order approximation of a Fourier series [3].
In order to interpret the simulation results without the influence of detector effects, the

simulations are performed without realistic detector modelling. Without loss of generality, we
will continue with the ideal case imaging conditions, and therefore Eq. (3) is used for fitting
whenever phase retrieval is performed. In Appendix A, a practical method is presented for
automated fitting of Eq. (3) to phase stepping data.

2.2. GATE

GATE is a MC platform developed since 2001 by the OpenGATE collaboration and was first
publicly released in 2004. Initially, the main goal of the platform was the modelling of planar
scintigraphy, single photon emission computed tomography (SPECT), and positron emission
tomography (PET) acquisitions [5]. The features of the platform have been enhanced over the
years, resulting in regular releases of new versions of the software. In this way, GATE stays
consistent with regular Geant4 public releases while being upgraded. The GATE architecture
consists of a Geant4 kernel surrounded by three specific layers. Firstly, the core layer defines the
basic simulation elements such as geometry, source, and physical processes. The next layer is
the application layer, using the basic elements of the core layer, to model objects and processes
specific to the imaging applications. Finally, GATE has a user layer, providing a scripting
environment to set up a simulation without any C++ coding. Despite regular advances in the
list of GATE functionalities, for example with respect to CT [7], XPC has not been taken into
account apart from our preliminary work [22].

2.3. Extension of the GATE source code

GATE forms the first part of the simulation pipeline, where the x-ray interactions in the phantom
are simulated (Section 2.3.1). After these interactions, the x-rays are collected in a discretized
wavefront at a virtual plane behind the phantom (Section 2.3.3). These modifications were
implemented in GATE version 8.0. In the second part of the simulation, the constructed wavefront
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interacts with the gratings and is propagated towards the detector (Section 2.4.1). Here, phase
stepping is performed. A schematic overview of the simulation flow is shown in Fig. 3.

Fig. 3. Schematic overview of the implemented simulation framework.

2.3.1. Introducing phase effects in GATE

As mentioned in the introductory section, the physics related to the absorption effects is already
present in GATE. However, as described in [13], taking phase effects into account requires
the photons to have an additional property (a phase or optical path) and the inclusion of an
additional physics process. In order to define these, each material in the simulation is associated
with its complex index of refraction, n = 1 − δ + iβ, more specifically the decrement of its real
part, δ. This was implemented in such a way that the user can easily add this property to the
GATE material database on request by specifying a set of δ-values in the macro (a GATE script
configuring a simulation) for a custom energy range:

/gate/refractiveindex/setRefractionIndex ′name′ ′E1′ ′d1′

/gate/refractiveindex/setRefractionIndex ′name′ ′E2′ ′d2′

...

The material name is denoted by ’name’. Next, the energy and δ values are specified. These
values can be extracted fromdata tables [23], or directly fromhttp://henke.lbl.gov/optical_constants/.
Having defined the material properties for PC, a phase φ is associated with each photon p. When
travelling through a certain material, the phase added to the photon’s original phase is given by:

φ = kp
∫
δ(r)ds, (8)

where kp is the photon’s wave number in vacuum and the integral is calculated over the path
followed by the photon. Tracking of the optical path length was done using the processGate
library [24]. Furthermore, the physics library of GATE was extended with an x-ray refraction
process. At the boundary between one material (with refractive index decrement δ1) and another
(with refractive index decrement δ2), the photon undergoes a deterministic refraction process,
governed by Snell’s law [10]

(1 − δ1) sin θ1 = (1 − δ2) sin θ2. (9)

with θ1 the angle between the direction of the incoming photon in the first material and the
surface normal, and θ2 the angle between the direction of refracted photon in the second material

http://henke.lbl.gov/optical_constants/
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and the surface normal. The refraction process (named XrayRefraction) was implemented in the
GATE source code, and can be activated in the macro, similar to other physics processes:

gate/physics/addProcess XrayRefraction

2.3.2. Introducing surface roughness

Since refraction is included in our GATE simulations, the roughness of the surface at which
it occurs must be considered. To this end, we propose to use a simplified but effective model.
For the refraction process, the key aspect of surface roughness in refraction processes, is the
local orientation of the surface normal. Hence, the roughness modelling can be simplified, by
introducing local variations in the surface normal with respect to the mean surface, using a
stochastic model. The local surface normal undergoes a slight deflection from its original position
every time a photon hits, and the direction for the deflection is drawn uniformly from the full
4π solid angle. The magnitude follows a Gaussian distribution, expressing the expectation that
smaller deviations are more likely than larger ones. Other probability distributions could be of
interest depending on e.g. the designed phantom, but such a discussion exceeds the scope of our
work. This surface roughness model was applied to the simulations described in Section 3.2 and
Section 3.3. We note that our approach to model the surface roughness is similar to the already
present treatment of optical photons in GATE for e.g. explicit modelling of scintillator effects.

2.3.3. Wave front construction in GATE

After interacting with the phantom, the photons arrive at a virtual plane, positioned directly behind
the phantom. To compute the actual X-ray wavefront in that plane, the photons are coherently
added, based on their position, energy, and phase. In GATE, this is achieved by defining a
physical detector plane directly behind the phantom, which acts as a virtual intermediate detector.
This plane is not the actual detector in the simulation, but only serves to switch from a particle
representation to a wave representation. Subsequently, for each photon, the position where it
first hits the virtual detector plane is determined, and this position is used to assign the photon
to a certain wavefront pixel. In this way, the wavefront is generated in GATE, one photon at a
time. Rather than adding intensities, as one would do for standard absorption imaging, complex
amplitudes are added. In this way, interference effects are accounted for in the final part of the
simulation, where the wave propagation and the interaction with the gratings is implemented
(Section 2.4.1).

In GATE, the wavefront construction is done by discretizing the two-dimensional virtual plane
into Nx × Ny pixels of size ∆x × ∆y. To coherently add the photons arriving at the same pixel,
the photons are assigned complex wave amplitudes Ψ. Given that every photon p represents a
position in the plane r, an energy E, and a phase φ, we write p→ p{r,E, φ}. Using this notation,
we transform the particle representation to a wave representation at position r:

p{r,E, φ} ⇐⇒ p{r,Ψ(E, φ)}, (10)

where
Ψ(E, φ) =

√
E exp (−iφ). (11)

The position r determines to which pixel of the wavefront a certain photon contributes. If we
write r = (rx, ry) and define the continuous coordinates of the central point of pixel (x, y) as
(xc, yc), the condition for arriving at a certain pixel is given by

p{r,Ψ(E, φ)} ∈ P(x, y)

⇐⇒

(
rx ∈ [xc − ∆x/2, xc + ∆x/2[

)
∧

(
ry ∈ [yc − ∆y/2, yc + ∆y/2[

)
,

(12)

where P(x, y) is the set of photons arriving at wavefront pixel (x, y).
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Assuming N(x, y) photons arrive in pixel (x, y) and using the photons’ wave representations,
the coherent addition of the complex amplitudes Ψn is written as:

D(x, y) =
N(x,y)∑
n=1
Ψn =

N(x,y)∑
n=1

√
En exp (−iφn). (13)

In Eq. (13), D(x, y) denotes the complex wavefront amplitude resulting from the contributions of
the N(x, y) photons arriving at pixel (x, y). By adding complex wave amplitudes rather than only
phases, both the gained phase and the photon energy of each photon are taken into account when
determining the contributions to the total complex amplitude of the wavefront. The employed
complex amplitude summation allows to simulate interference effects at the point of transition to
a wavefront, in order to construct the correct initial state of the wavefront. The sum is formulated
as:

D(x, y) =
N(x,y)∑
n=1

√
En cos φn − i

N(x,y)∑
n=1

√
En sin φn. (14)

In our implementation, the real and imaginary part of the wavefront is stored in two data vectors,
rather than its energy and phase. However, both representations are completely equivalent.

The user defines the number of pixels in the gridded plane with the following macro commands

/gate/processGate/setGridX ′number of pixels′

/gate/processGate/setGridY ′number of pixels′

The corresponding dimensions are defined using

/gate/processGate/setPhysicalGridX ′size′

/gate/processGate/setPhysicalGridY ′size′

However, deciding on the grid spacing requires careful thought. Indeed, taking the numerical
wavefront propagation described in Section 2.4.1 into account, the pixel size of the wavefront
must allow sampling the smallest structures in the simulation [9].
In total, three such grids are generated as output: the real part, the imaginary part and the

number of arriving photons:

/gate/processGate/setOutputNameReal ′filename′

/gate/processGate/setOutputNameImag ′filename′

/gate/processGate/setOutputNameCounts ′filename′

The wavefront construction is initialised in the macro using

/gate/processGate/enableGrid

As was the case for the XrayRefraction process, the wavefront construction relies on the
processGate library for the collection of photons at the virtual plane.

2.4. Processing GATE output

In the second part of the simulation, the resulting wavefront from GATE interacts with grating
G1 and is further propagated towards G2 (Section 2.4.1). After interacting with G2, the detection
takes place and phase stepping is performed.



Research Article Vol. 28, No. 22 / 26 October 2020 / Optics Express 33397

2.4.1. Wavefront propagation

The GBI system is modelled as a sequence of three events. The first event is the interaction
of the wavefront with the first grating G1, which we will assume to be a phase grating. This
interaction introduces a phase modulation in the wavefront. Subsequently, the resulting wavefront
propagates through free space (second event) towards the absorption grating G2 and the detector,
which form the final part of the imaging system. In our work, this three-step imaging protocol
was implemented in MATLAB. Hence, the binary files containing the real and imaginary vectors
of the wavefront are first loaded in MATLAB and reshaped to the original size of the wavefront.

An ideal G1 phase grating is constructed by using a superposition of two identical rectangular
Dirac combs, of which one is shifted along the x-direction by the grating bar width and multiplied
by an exponential phase factor exp (iφ) [25]. This yields a grating that has 100% transmission
over its full range, but introduces a phase shift of φ in a regular pattern. For Talbot-interferometry,
this phase shift is either π or π/2. Mathematically, a phase grating with bar width b and pitch g1
is expressed as

G1(x) = comb
(
x
g1

)
∗

( [
rect

( x
b

)
∗ δ(x)

]
+

[
rect

( x
b

)
∗ δ(x − b)

]
exp (iφ)

)
, (15)

where ∗ denotes the convolution operator, the comb function can be written as

comb
(
x
g1

)
=

+∞∑
n=−∞

δ(x − ng1), (16)

and

rect
( x
b

)
=

{
1, x ∈

[
− b

2 ,
b
2
[

0, otherwise
. (17)

The effect of G1 on the wavefront is subsequently simulated through a pointwise multiplication
of the wavefront with the 2D extension of the G1(x) function. Straightforward implementation
is achieved through the built-in MATLAB function pulstran. Propagation of a wavefront is
described with the Huygens-Fresnel principle [26]. Assuming the Fresnel-approximation holds,
the propagation of the wavefront is described using a propagator kernel h as follows:

D(x1, y1, z) =
∫ +∞

−∞

∫ +∞

−∞

D(x, y, 0)h(x1 − x, y1 − y)dxdy. (18)

Eq. (18) yields the complex amplitude D(x1, y1, z) of the wavefront at position (x1, y1) after
propagating a distance z. The convolution kernel is given by

h(x, y) =
exp (ikz)

iλz
exp

[
ik
2z

(
x2 + y2

)]
. (19)

For numerical applications, Eq. (18) cannot be used directly and requires discretization, which
involves sampling of the convolution kernel. Assuming sampling is performed in Fourier space,
we introduce the discrete formulation of the propagation [27]:

D(x, y, z) = exp (ikz)DFT−1
©«exp


−iz

(
k2x + k2y

)
2k

 DFT [D(x, y, 0)]
ª®®¬ , (20)

where DFT denotes the discrete Fourier transform and kx and ky are discrete sampling positions
in Fourier space, with grid spacings ∆kx and ∆ky. The latter are given by

∆kx =
2π

Nx∆x
, (21)
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∆ky =
2π

Ny∆y
. (22)

Computing Eq. (20) yields the new wavefront at propagation distance z. For our numerical
simulation, the effect of G2, with bar width b2 and pitch g2, is simulated in a similar way as was
done for G1. Moreover, since G2 is an absorption grating, only one Dirac comb is needed:

G2(x) = comb
(
x
g2

)
∗ rect

(
x
b2

)
. (23)

The effect of this grating on the wavefront is subsequently applied through pointwisemultiplication
of the propagated wavefront intensity with the 2D extension of G2(x). In this way, we obtain the
final intensity at the detector, required for generating the phase stepping images.

2.4.2. Phase stepping and detection

Finally, for simulating detection of the intensity, a detector pixel size pd is defined. Since
pd ≥ ∆x,∆y, the wavefront intensity |D(x, y)|2 is integrated over every detector pixel. Such a
detector pixel will overlap with many wavefront pixels, meaning the integration corresponds to a
summation over those wavefront pixels that overlap with a certain detector pixel. As a result,
phase stepping images are generated by repeatedly shifting the G2 array (with periodic boundary
conditions) over a number of wavefront pixels, corresponding to the desired displacements of the
grating. For every shifted position of G2, the intensity arriving at the detector is recalculated and
a phase stepping image is generated.

2.4.3. Subpixel phase stepping

The discrete nature of the phase stepping procedure in 2.4.2 imposes certain limitations on the
accuracy with which the phase stepping can be performed. Indeed, as both the grating and the
wavefront are defined on the same discrete grid, the smallest meaningful shift is determined by
the pixel size of the grid. The same is true for the definition of the pitch of G2.
In some occasions, the desired shift cannot be expressed by an integer number of pixels.

Therefore, we propose to use a subpixel phase stepping approach to omit these restrictions.
In order to do this in practice, a fractional transmission between 0 and 1 is assigned to every
wavefront pixel, rather than exactly 0 or 1 as was done in the pixel based procedure described
above.

To determine the correct transmission factor Ftrans in a certain pixel (x, y) of the wavefront, we
propose to calculate the difference Ftrans = PG2 (x1) − PG2 (x0), where PG2 (x) is given by

PG2 (x) =
1

2∆x

[
g2
4
fTW

(
2π
g2

x
)
+ x

]
. (24)

Here, it is assumed that x0 and x1 are the real world coordinates of the wavefront pixel boundaries
along the stepping direction. For convenience, assume x0 = 0 for pixels (x, y) = (1, y). The
rationale for this procedure is understood by considering G2(x) as a modified square wave.
First, assume fSW(x) denotes a regular square wave as shown in Fig. 4 and given by

fSW(x) = sgn(sin x). (25)

The primitive function of fSW(x) is, up to a constant term, given by (π/2)fTW(x) and is also
shown in Fig. 4.

Subsequently, we transform fSW(x) toG2(x) by adding an offset of 1 and dividing the result by 2.
In this way, the square wave has a minimum value of 0 and a maximum value of 1, expressing the
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Fig. 4. (left): Square wave with period 2π, mean 0 and amplitude 1. (right): The primitive
function of the square wave, up to a constant.

transmission of the grating. The desired periodicity is attained by the transformation x→ 2πx/g2.
Therefore, we write

G2(x) =
1
2

[
1 + fSW

(
2π
g2

x
)]

. (26)

In addition, the area under the G2(x) curve within a pixel must express the transmitted fraction in
that pixel. Assume for example that ∆x = g2/2 and that a certain pixel is perfectly aligned with a
transmitting grating line. The surface under the curve in the pixel is then simply the width ∆x
times 1, yielding a value of ∆x. However, as G2(x) in this pixel is fully transmitting, G2(x) must
be scaled such that this calculation yields 1. In order to achieve this, we scale G2(x) with a factor
1/∆x:

G2(x) =
1

2∆x

[
1 + fSW

(
2π
g2

x
)]

. (27)

Integration yields: ∫
G2(x)dx =

1
2∆x

∫
dx +

1
2∆x

∫
fSW

(
2π
g2

x
)

dx. (28)

Since the last term corresponds to the primitive of the square wave, we get∫
G2(x)dx =

1
2∆x

[
g2
4
fTW

(
2π
g2

x
)
+ x

]
+ const. (29)

This result equals, up to a constant, PG2 (x) as defined in Eq. (24). The transmitted fraction in a
pixel is thus determined by calculating the area under G2(x) over the range of the pixel, or in
other words, by computing the definite integral of G2(x). By definition, we have:

Ftrans =

∫ x1

x0
G2(x)dx (30)

=
1

2∆x

[
g2
4
fTW

(
2π
g2

x1
)
+ x1

]
−

1
2∆x

[
g2
4
fTW

(
2π
g2

x0
)
+ x0

]
(31)

= PG2 (x1) − PG2 (x0). (32)
The integration constants cancel out in the definite integral, and we obtain a straightforward way
to precalculate the transmitted fraction in every pixel. Indeed, given that the pixel size ∆x is fixed,
Ftrans(m, n) is simply computed as Ftrans(m, n) = PG2 (m∆x) − PG2 ([m − 1]∆x). This is evaluated
directly for every pixel in the wavefront. The effect of phase stepping is incorporated by shifting
PG2 (x) accordingly.
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2.5. Alternative wavefront generation using ROOT

When building the wavefront in GATE, the wavefront resolution and number of contributing
photons are fixed as soon as the MC simulation is initialised. Changing these parameters thus
requires a new simulation. Alternatively, all photon-tracking data generated with GATE, including
position, energy, and phase of each photon, can be saved as a tree-structure in ROOT-format [28].
To combine the data holding information about those three parameter, the ROOT environment is
used. A ROOT-program written in C++ was applied to the tree-structure in order to coherently
add the photon contributions.
An advantage of separating the MC simulation and the wavefront construction, is that the

sampling parameters of the wavefront are, in that case, independent of the MC simulation.
Changing the wavefront grid size therefore does not require a new MC experiment. Following
this approach, however, the output size of the GATE simulations depends on the number of
photons, increasing rapidly as more photons are generated. Thus, the gained flexibility comes at
the cost of large amounts of intermediate ROOT-data and the inclusion of an additional step in
the procedure (three instead of two), where a loop over all photons saved in the ROOT-file is
required to build the wavefront. Which of the two aforementioned approaches is the most suitable
one therefore highly depends on whether the user requires flexibility or computational efficiency.

3. Experiments

3.1. Validation tests

To validate the performance of our proposed x-ray phase contrast simulator, three distinct tests
were run. First, the simulated intensity profile resulting from refracting a parallel 20 keV beam at
a spherical phantom in GATE was compared to the theoretically expected profile (as in [10]).
The simulated sphere with radius 100 µm was homogeneous, made of water and was assigned
δ = 2.0 · 10−6 to ensure a visible refraction effect. In total, 20 · 106 photons were considered in
GATE for the generation of the profile.

Subsequently, the phase gained by the photons was compared with the expected result from the
theoretical model. For this, a GATE simulation was performed with 105 parallel beam photons at
25 keV. Between source and detector, a homogeneous 4 mm × 4 mm epoxy layer was placed,
with a thickness of depoxy = 1 mm. The detector size was 5 mm × 5 mm and the expected number
of photons travelling through the epoxy layer was therefore approximately 62 · 103.
Finally, the propagation method was tested by propagating a plane wave, starting from the

phase grating, assuming 25 keV x-rays and an induced phase-shift of π. The n-th fractional
Talbot distance dn is then given by [17]:

dn = n
g21
8λ

, (33)

where g1 is the grating pitch, which was assumed to be 4 µm. The pattern was simulated up until
the 7th fractional Talbot distance.

3.2. Radiography

In this section, the simulation of a 2D radiograph is demonstrated, using the described workflow.
Prior to discussing the simulation, the GATE phantom used in this simulation is briefly described.

3.2.1. Phantom

The phantom was a simplified model for a carbon fiber reinforced polymer (CFRP), which is
an advanced composite material used in many industrial applications. A CFRP consists out of
a number of bundles of carbon fibers, embedded in a resin, often epoxy. The combination of
low density materials and strongly ordered microstructures makes CFRPs interesting objects for
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XPC (including DFC) imaging. For our experiments, a phantom was constructed containing
12 fiber bundles, arranged in layers with pairs of two. Bundles in the same layer were parallel
and the orientation in each layer alternates between horizontal and vertical. The cross section of
the bundles was elliptical in shape with short and long axes lengths of 112.5 µm and 675 µm,
respectively, and the resin material was epoxy. The phantom as represented in GATE is shown in
Fig. 5.

Fig. 5. CFRP phantom as seen in GATE, showing a front view (a), side view (b) and a
zoomed in image (c). A central FOV of 5 mm × 5 mm of the front view is used for the
simulation.

For practical reasons, the size was limited in terms of thickness (2 mm) and field of view
(5 mm × 5 mm). In order to take the small angle scatter into account, the microstructure was
modelled down to the scale of individual carbon fibers [29]. The number of fibers in a bundle
was determined through the number density ρN :

ρN =

(
1
πr2f

) (
1 +
ρf

ρr

(
1
cf
− 1

))−1
. (34)

Here, rf is the radius of a single fiber, ρf the mass density of the fiber material, ρr the resin
mass density, and cf the carbon fiber weight fraction. The positioning of the fibers in the bundle
was done in a randomized way, allowing the generation of 12 unique bundles for the phantom.
Assuming a weight fraction of 0.60 and a fiber radius of 3.5 µm, this resulted in approximately
2570 fibers per bundle, of which the positions were determined by Poisson disc sampling [29].
The phantom as a whole contained over 30,000 individual fibers. Given that the dark field signal
is orientation dependent [2], we expect to observe differences between horizontal and vertical
fiber bundles in the simulation result.

If the fibers aremodeled as perfectly smooth cylinders in GATE, the refraction at each individual
fiber will generate an intensity profile similar to the one shown in Fig. 7. The superposition of
many of these perfect refraction events can, due to the low overall absorption of the phantom
materials, result in artefacts as the positive peaks at the edges will dominate the contrast. This
can be resolved by introducing surface roughness of the fibers as discussed in 2.3.2. Surface
roughness is a contributing factor in the CFRP manufacturing process, making it a relevant
feature for our simulation model [30,31]. Despite the fact that this model is strictly speaking
not completely accurate with respect to individual fibers, we argue that it suffices for our goals,
as the most important effect of the surface roughness is taken into account. The scale at which
we expect the local surface normal variations to occur is submicrometer [32], and the potential
differences between using the stochastic model and using a well defined map of local variations
is therefore unlikely to have any effect on the global result. Furthermore, it should be noted that
the error propagation in this case does not differ from that of conventional Geant4. The surface
roughness model essentially just adds a randomisation to a computational step that would occur
anyway, namely the calculation of the surface normal vectors at the intersection points.
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3.2.2. Simulation

The simulation was performed in GATE with 250 · 109 parallel beam photons at an energy of
25 keV. For the wave propagation, a π-shifting phase grating with a pitch of 4 µm was chosen.
The matching absorption grating at the first fractional Talbot distance therefore had a pitch of
2 µm [17]. The wavefront pixel size was set to 0.1 µm × 0.1 µm to keep the sampling well
below the fiber size, resulting in a 50,000 × 50,000 grid. For the GATE simulation, we used the
Hopper HPC cluster installed at the University of Antwerp (https://www.uantwerpen.be/en/core-
facilities/calcua/infrastructure/). The wave propagation part was performed on a local server with
16 (dual) cores. While performing the phase stepping, images were collected from the 50,000 ×
50,000 grid on a 250 × 250 detector. These phase stepping images were subsequently inserted in
the phase retrieval algorithm (see Section 2.1) to finally yield the transmission image, visibility
map (DFC) and DPC image.
In addition, a second radiography simulation was performed. The experimental conditions

were identical to those in the simulation described above, but with a slightly tilted phantom
(rotation around the optical axis). As was already mentioned, the dark field contrast is orientation
dependent, meaning the simulation results with a rotated phantom are expected to differ from
those of the previously described experiment, despite the fact that experimental conditions and
phantom were identical.

3.3. Computed tomography

In the following, the simulation of sinograms for CT is demonstrated, using the described
workflow. We limited the study to 2D sinograms to keep the computation times reasonable. As
was done in Section 3.2, a brief description of the phantom used in the simulation is given prior
to demonstrating our results. For the tomographic reconstruction of the simulated sinograms, the
open source ASTRA-toolbox was used [33–35].

3.3.1. Phantom

The phantom used for the CT simulation, which is also based on CFRP properties, is shown in
Fig. 6. This phantom contained three cylinders consisting of carbon. Two cylinders, one with a
radius of 1 mm and one with a radius of 150 µm, were solid, whereas the third cylinder, also
having a 150 µm radius, was filled with 700 fibers with radius 3.5 µm to simulate microstructure.
These fibers were identical to those in Section 3.2.1 and were positioned following the same
position sampling procedure. The three cylinders were embedded in an epoxy cylinder (radius 5
mm). Since the solid cylinders were homogeneous, the DFC signal is expected to be small. The
fiber bundle, on the contrary, is expected to induce a strong DFC signal. In real XPC experiments,
DFC reconstructions are a valuable tool, for example to determine fiber orientations inside a
sample.

3.3.2. Simulation

In the simulation experiments, 30 · 109 photons were simulated in a parallel beam in GATE
at an energy of 25 keV. For the wave propagation, we assumed a π-shifting phase grating
(G1) with a pitch of 4 µm. The matching absorption grating (G2) at the first fractional Talbot
distance therefore had a pitch of 2 µm. To investigate the effect of surface roughness on the AC
image, sinograms were simulated both with and without surface roughness. For each of the two
simulations, 200 equiangular projections were simulated over an angular range of 180◦. Five
phase steps were simulated for every orientation.

https://www.uantwerpen.be/en/core-facilities/calcua/infrastructure/
https://www.uantwerpen.be/en/core-facilities/calcua/infrastructure/
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Fig. 6. GATE phantom used for the CT simulation.

Fig. 7. (left): Simulated and theoretical normalised intensity profiles resulting from
refraction at a spherical phantom with δ = 2.0 · 10−6. (right): Phase gained by 105 parallel
beam photons at 25 keV, of which a subset of 62% crossed a 1 mm thick epoxy layer with
δepoxy = 3.43593 · 10−7.

4. Results

4.1. Validation tests

The theoretical [10] as well as the simulated intensity profile are shown in Fig. 7, where the 300
pixels are each 1 µm wide. As can be observed from that figure, the simulated results match the
theoretical expectations. The fluctuations in the simulated profile are due to the photon statistics
resulting from the MC simulation. The simulation was performed with a 300 × 300 pixels
detector. This means that, on average, we would expect each background pixel to collect about
200 photons. Increasing this number by simulating more photons at the source would lower the
noise in the intensity profile, at the cost of a longer simulation time.The results of the simulation
with the epoxy layer are shown in Fig. 7. From the model and the fact that δepoxy = 3.43593 · 10−7
at 25 keV, the gained phase was expected to be ∆φ = kpδepoxydepoxy = 43.5. It can be seen that
the simulation results in a correct fraction of photons with the expected phase gain, being 43.5.
The other photons have not crossed the phantom and thus did not gain any phase, expressed by
the peak at a phase gain of zero. This demonstrates that the phase gained during the simulation
corresponds to the theoretically predicted phase.
Finally, the wave propagation was evaluated. As expected, a Talbot carpet is observed when

visualising the wavefront intensity as a function of the distance from the grating. The resulting
pattern is shown up to the 7th fractional Talbot distance in Fig. 8, covering a field of view of
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approximately 20 µm × 200 mm. The pattern matches the Talbot distances calculated from
Eq. (1), indicated on the horizontal axis.

Fig. 8. Simulated wavefront intensity up to the 7th fractional Talbot distance for a 25 keV
plane wave after interaction with a 4 µm pitch π-shifting grating.

4.2. Radiography

The final images of the CFRP phantom with horizontal and vertical bundles (after phase retrieval)
are shown in Fig. 9. Note that the horizontal fiber bundles are not visible in the DFC and DPC
images. This is because the fiber bundles are oriented perpendicular to the grating bars, and
the interferometer is only sensitive to phase variations perpendicular to the bar orientation. In
contrast to the horizontal bundles, the vertical fiber bundles are clearly visible in both DPC and
DFC. The internal structure of the fiber bundles shows in all contrasts. Note that the DPC image
suffers from phase retrieval artefacts caused by the scattering at the fibers [3,29]. The DFC signal
is clearly lowered because of scattering in the vertical bundle.

Fig. 9. Simulated images for the CFRP phantom shown in Fig. 5. A) transmission image,
B) DFC image, and C) DPC image. The horizontally oriented fiber bundle is not visible in
the DFC and DPC images.

Furthermore, the dark field signal or visibility is known to be dependent on the so-called
autocorrelation length of the grating-interferometer setup [36–38]. The dependency is related
to the size and shape of the scattering structures in the object. Microspheres are a well studied
case [38]. To demonstrate this effect, the simulated radiograph from the phantom shown in
Fig. 5 was obtained for three different propagation distances: the first, third and fifth fractional
Talbot distance. In Fig. 10, we demonstrate the evolution of the visibility while increasing the
propagation distance, hereby effectively changing the autocorrelation length of the simulated
setup [38]. The notable decrease in visibility with increasing propagation distance clearly
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indicates that the dark field signal indeed shows a strong dependency on the autocorrelation
length.

Fig. 10. Simulated visibility for the phantom shown in Fig. 5, acquired at A) the first
fractional Talbot distance, B) the third fractional Talbot distance, and C) the fifth fractional
Talbot distance. Note that the scaling of the grey values in these images differs from the
scaling in Fig. 9.

In the second simulation, the fiber bundles were slightly rotated, tilting them away from their
perfectly horizontal and vertical orientations. The corresponding images are shown in Fig. 11.
As can be observed, the horizontal bundles now show up in both the DPC and the DFC image. A
more faint appearance is observed however, in comparison to the vertical bundles, as the latter
still resulted in a stronger phase variation and scatter component along the sensitivity direction
of the simulated interferometer. As can be seen in the images, the discretization of the tilted
bundles on the 250 × 250 grid has caused visual degradation in the images.

Fig. 11. Simulated images for the CFRP phantom shown in Fig. 5, but with a slightly tilted
phantom. A) transmission image, B) DFC image, and C) DPC image. The horizontally
oriented fiber bundle is now visible in the DFC and DPC images.

4.3. Computed tomography

The simulated projection data (sinograms) with surface roughness, resulting from the phase
retrieval, are shown in Fig. 12.

Fig. 12. Simulated sinograms for A) absorption contrast; B) differential phase contrast; and
C) dark field contrast.
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From the DFC sinogram, it is immediately clear that the cylinder with microstructure yields a
strong dark field signal due to the small angle scatter of the X-rays. As the cylinder edges reflect
X-rays, the coherence is also locally disturbed and they show up in the dark field sinogram for the
larger cylinders. In the DPC sinogram, the edge enhancement effect is also visible. From the
sinogram, tomographic images, shown in Fig. 13, were reconstructed with the ASTRA toolbox.

Fig. 13. CT reconstructions of the sinograms shown in Fig. 12.

As expected from the sinogram, the fiber bundle gives a strong dark field signal in the CT
reconstruction. In addition, the edges of the cylinders are enhanced in the DFC image. Slight
differences are visible between the smaller solid cylinder and the fiber bundle in both the
absorption and the phase contrast reconstruction. As the reconstructed phase contrast image is
no longer proportional to the derivative of the phase shift, the edge enhancement disappears
after reconstruction. The AC sinogram and reconstruction from the simulation without surface
roughness are shown in Fig. 14.

Fig. 14. Simulated AC sinogram and corresponding tomographic reconstruction for the
phantom described in Section 3.3.1, without surface roughness of the fibers. The red arrow
indicates the affected fiber bundle in both the sinogram and the reconstruction.

To illustrate how the computation time scales with the complexity of the phantom, the plot in
Fig. 15 shows the computation time for a simulation with 106 photons for a total amount of fibers
ranging from 100 to 30 000. The latter being the approximate number of fibers in the phantom
used for the radiographs. The following data points were collected: 100, 500, 1000, 2000, 5000,
10 000, 15 000, 20 000, 25 000, and 30 000 fibers. From the plot, a linear increase in computation
time can be observed. For clarity, only the MC computation time was considered, as the time
required for the wavefront propagation is independent of the number of fibers in the phantom.
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Fig. 15. Computation time for the MC simulation for a constant number of 106 photons,
but a varying amount of fibers in the phantom.

5. Discussion

The validation tests demonstrate the correctness of the key simulation elements: photon refraction
(Fig. 7), phase shifting (Fig. 7), and wavefront propagation (Fig. 8). In Fig. 7, the refraction
introduces a positive and a negative peak at the phantom edge, since photons are deflected
outwards. As the intensity scales with the square of the number of photons, the contrast between
the increased number of photons outside and the decreased number of photons inside the sphere
becomes amplified when plotting the intensity rather than the counts. Indeed, the positive
peak in Fig. 7 is significantly larger than its negative counterpart. Two properties contribute
to the magnitude of the observed peaks in the intensity profile: monochromaticity and surface
smoothness. A reduction in either of those is expected to potentially smear out the peaks, as
in both cases the spread in photon propagation directions increases. Simulation experiments
(not shown here) revealed that the effect of polychromaticity is negligible, based on which we
decided to focus on introducing surface roughness in the simulations. The simulated radiographs
in Fig. 9 and Fig. 11, show that our GATE-based XPC simulation framework is indeed able to
generate the different types of contrast: the transmission image shows the higher absorption in
the fiber bundles, whereas the invisible horizontal bundles in the DPC and DFC images reflect
the absence of scatter and phase gradient along the x-direction in those bundles, respectively.
The fiber bundles in the phantom do appear non-smooth in the images. This is explained by the
fact that, for our parallel beam geometry, projecting the 5 mm × 5 mm FOV on a 250 × 250
detector results in each pixel representing 20 µm × 20 µm of the FOV. As the fibers are 7 µm in
diameter, this caused the structure of the superposed fiber bundles to show through in the images.
In addition, as the fibers are perfectly straight in this simulation, the discretization on the detector
pixel grid is expected to introduce partial volume or aliasing effects. These effects are apparent
in Fig. 11.
The sinogram data in Fig. 12 show the expected absorption effects. In the DPC and DFC

images, the expected edge enhancement is present. Furthermore, the DFC signal of the fiber
bundle is very strong. The CT reconstructions in Fig. 13 show similar streaking and edge effects
in the DFC image, as reported by Peter et al. [13], although the phantom used in that study was
not specifically focussed on CFRP properties. The difference between epoxy (matrix) and carbon
(cylinders and fibers) is visible in both the AC and DPC images. For the CT simulation, the
detector pixel size was 50 µm, which is significantly larger than the fiber diameter, resulting in
less aliasing effects in comparison to the radiographs of Section 4.2.
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Surface roughness was taken into account through a stochastic model, which ignores the
specific surface of individual fibers but allows to simulate the general effect the roughness has
on the projection data in a computationally efficient way. In Fig. 14, the AC sinogram and its
tomographic reconstruction are shown for a simulation with the phantom from Section 3.3.1,
but without introducing surface roughness. In other words, the individual fibers are all perfectly
smooth. As can be seen from the figure, the absorption contrast in the fiber bundle is severely
impacted. This effect can be understood from the intensity profile shown in Fig. 7. Towards
the edges of the sphere, the intensity drops at the inner side of the edge, while a positive peak
appears just outside of the sphere. These peaks are present because photons are refracted away
from the sphere [10].
The same effect occurs in the individual fibers in the fiber bundle, and this is the origin of

the unwanted effect shown in Fig. 14. Indeed, since the phantom contains over 700 fibers, a
superposition of many of these amplified intensity peaks is created. Due to this effect, the average
intensity originating from the fiber bundle is expected to be higher compared to the same amount
of material but concentrated in a single cylinder. For strongly absorbing phantoms, this effect
might go unnoticed. The phantom used in this study for the CT simulation however, consists of
only low absorbing materials. This allows the effect to dominate the contrast, hereby severely
underestimating the absorption. In this case, the underestimation leads to an apparent drop in
attenuation at the fiber bundle in the tomographic reconstruction, as seen in Fig. 14.

Recently, an advanced digital phantom was presented by Sung et al. to demonstrate the phase
contrast simulation of a human thorax based on a full wave simulation approach [39]. To this
end, the authors assumed the refractive index of the phantom to change gradually within the
imaged object and at the boundaries, allowing the use of an approximated solution to the wave
equation known as the first Rytov approximation [40,41]. Their work is primarily oriented
towards free-space propagation phase contrast imaging, however a procedure for combining the
calculated attenuation and phase maps to generate a differential phase contrast image was also
demonstrated. As opposed to the method presented in our work, this did not include modelling of
the interferometer. An advantage of incorporating the interferometer explicitely in the simulation,
is that this allows analysis of the phase stepping images, which are of interest when exploring
phase retrieval methods. In [40], the possibility of using the full wave approach as a forward
model for tomography is briefly discussed. Given the computational requirements inherent to the
MC part of our work, it is practically unfeasible to use our presented tool for this same purpose.
On the other hand, the MC part allows for detailed modelling of photon-matter interactions
such as Compton scatter and photoelectric absorption, relying on their respective physical cross
sections. Furthermore, tracking the individual refraction events of photons at microstructures is
an important feature of the MC part for accurate modelling of the small angle scatter underlying
the dark field image formation process. By passing the output of the MC part to the wave optics
part, both particle and wave properties are present in the simulations. Dark field contrast images
were not simulated in [39] and details smaller than approximately 125 µm were not (yet) included
in their phantom, whereas microstructures well below 10 µm were taken into account in our work
to simulate small angle scattering. It should, however, be noted that, while the work presented in
[39] focuses on the phase contrast modality, our work intends to explore the dark field contrast
modality as well, which could explain the difference in presented methodology. Indeed, an as
accurate as possible phase contrast image at a human scale clearly benefits from exploiting the
wave properties to a maximum, whereas a Monte Carlo approach is more suited for the detailed
modelling of the small angle scatter underlying the dark field contrast. The latter is also gaining
increasing interest with respect to medical applications such as lung imaging [42].

Several improvements to our simulation framework can be considered. Firstly, we did not focus
on incoherent radiation and the need of grating G0 for lab-based cone beam sources. Adequate
modelling of G0 as part of the MC simulation requires interference effects to be considered
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explicitly in the MC part [11] and was out of scope of this study. Secondly, polychromaticity
was not included in the simulation experiments. Although not shown, it can easily be taken
into account in the propagation part of the framework by integrating over the energy spectrum
[8]. Lastly, MC simulations are notoriously known to be computationally expensive and our
simulation framework is no exception. Adding additional refraction interactions to every photon
trajectory certainly prolongs the simulation time. Despite our efforts to at least reduce the data
output storage requirements (Section 2.4) and the use of a computer cluster, this is still a mayor
limitation. Improving the computational efficiency is, therefore, important future work. An
efficient GPU implementation of the simulation code could therefore substantially decrease the
computation time. Despite the abovementioned shortcomings, the results shown in this study
demonstrate the ability of our simulation framework to generate phase contrast CT projection
data of realistic phantoms, paving the way for simulation studies on phase contrast system design,
acquisition strategies, phase retrieval and reconstruction.

6. Conclusion

In this work, we extendedGATE, a framework forMonte Carlo basedmedical imaging simulations,
with novel tools to simulate X-ray phase contrast imaging. The GATE output was post-processed
for wave front propagation to allow grating-based imaging. The implementation was validated
by comparing the simulation results to the expected theoretical results and we found these to
be matching. Furthermore, 2D radiography simulations were presented as well as sinogram
simulations for CT reconstruction. Realistic CFRP phantoms were designed and it was shown that
the resulting simulations exhibit the relevant properties of an actual CFRP sample, demonstrating
that the framework can generate the most important effects in phase and dark field imaging. To
our best knowledge, this is the first time a 2D dark field image for a CFRP-like phantom was
simulated with such detailed fiber modelling at this scale (5 mm × 5 mm FOV).

A. Triangle wave phase retrieval

In the absence of grating and detector imperfections, polychromaticity, and incoherence, the phase
stepping curve is described by a triangular model. Hence, a triangular wave form (cfr Eq. (3))
was fitted to the measured phase stepping points following a least squares optimization procedure.
For simplicity, we consider only a single pixel and therefore omit the explicit notation of pixel
indices (i, j). Since proper initialization of the parameters a0, a1 and φ1 generally improves the
optimization performance, we will first describe an automated procedure for finding such starting
values.

Suppose that only four measurements (four steps) are available, sampled over a single period
of the phase stepping curve, for initial estimation of the three parameters of a triangle wave. First,
as a single period of a triangle wave shows either two or three consecutive slopes, at least two of
these four measurements are situated on the same slope. This means that one of the slopes can be
easily estimated and, as a result, all other slopes are also known. It is not immediately known
which points lie on the same slope, but this is deduced by calculating the slopes between adjacent
measurements. Indeed, the points lying on the same slope are found by extracting the steepest
slope from the set of calculated slopes, as the slope connecting points lying on a different side of
the triangle will always be less steep.
Having assigned the same slope to these two points residing on the same side of the triangle,

the slope for the neighbouring points can be computed. If we connect a neighbouring point to the
last know point, and the slope corresponds to the one found for the known point, the neighbouring
point is assumed to lie on the same side and is assigned the same slope. If no correspondence
can be found, the neighbouring point must lie on the other side of the triangle and therefore is
assigned the opposite slope. Using periodic boundary conditions, the first and last point in the
series can also be considered to be neighbours. Generally speaking, due to the periodicity, every
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point can be shifted by ±2π, allowing to move it to an equivalent position that is closer to its
neighbour than π. This means that, in case the adjacent measurements are more than π apart, we
find the equivalent position at the same side of the triangle as the neighbouring point. In this way,
we are able to assign a slope to every point.

Subsequently, the points and slopes are used to find an estimate of the height and position of
the extrema of the phase stepping curve. These estimates are the crucial element for finding the
starting values, as the position of the peak leads to an estimate of the phase shift φ1, whereas the
mean of the extrema yields an estimate of a0, which in turn leads to an estimate of the amplitude
a1. This searching procedure is fully automated, and leads to appropriate starting values for the
fitting procedure.
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