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Abstract—Statistical shape modeling is an established technique and is used for a variety of tasks in medical image processing, such

as image segmentation and analysis. A challenging task in the construction of a shape model is establishing a good correspondence

across the set of training shapes. Especially for shapes of cylindrical topology, very little work has been done. This paper describes an

automatic method to obtain a correspondence for a set of cylindrical shapes. The method starts from an initial correspondence which is

provided by cylindrical parameterization. The quality of the obtained correspondence, measured in terms of the description length, is

then improved by deforming the parameterizations using cylindrical b-spline deformations and by optimization of the spatial alignment

of the shapes. In order to allow efficient gradient-guided optimization, an analytic expression is provided for the gradient of this quality

measure with respect to the parameters of the parameterization deformation and the spatial alignment. A comparison is made between

models obtained from the correspondences before and after the optimization. The results show that, in comparison with

parameterization-based correspondences, this new method establishes correspondences that generate models with significantly

increased performance in terms of reconstruction error, generalization ability, and specificity.

Index Terms—Point correspondence problem, statistical shape models, tubular structures, minimum description length, image

segmentation, image shape analysis.

Ç

1 INTRODUCTION

SHAPE correspondences and the derived statistical shape
models have a wide range of applications in medical

image computing [1], [2]. They have been used to analyze
shape differences between different classes of objects, for
example, the lateral ventricles of schizophrenics versus a
healthy group [3]. They have also been employed to gain
more knowledge about the anatomical variability of certain
organs or bones as, for example, the human ear canal [4].
Such knowledge can in turn be used to reconstruct
malformed, missing, or fractured bone structures [5]. A
widespread application of statistical shape models is their
use as prior knowledge in automatic image segmentation
[6], [7], [8]. The probability density function of the shape is
estimated from a set of manual segmentations. This
knowledge is then used to guide the segmentation process
of an unseen instance and to restrict the segmentation result
to the class of plausible shapes.

The major hurdle in the construction of a statistical shape
model is establishing a dense correspondence over the
surfaces of a large set of training shapes. These correspon-
dences should be of high quality, i.e., the correspondence

should match anatomically equivalent points over the
surfaces. If this requirement is not met, artificial modes of
variation are introduced into the shape model and this has a
negative effect on the performance of the model when used
for image segmentation or interpretation [9].

For 2D shapes, a correspondence between the boundary
curves of the individual shapes is often defined by manual
landmarking [10]. Although this approach is feasible, it
turns out to be a time-consuming and error-prone task. In
principle, the approach can be extended to 3D, but it
becomes highly impractical due to the large amount of
landmarks that need to be located and the increased level of
difficulty in pinpointing them. Several approaches have
been proposed to automate this labor-intensive procedure.

A relatively simple but effective approach is to establish
the sought-after correspondence by means of surface para-
meterization [11], [12], [13], [14], [15], [16], [17]. Thereby, a
one-to-one map is constructed between each surface of the set
and some common, predefined, and usually mathematically
simple parameter domain, such as a planar disc or a sphere.
For each surface, the obtained one-to-one map associates a 2D
parameter coordinate with each point of the 3D surface. The
surface-to-surface correspondence is then defined by the
assigned parameter values, i.e., points between the surfaces
correspond when they share the same parameters.

Although the parameterization approach produces valid
correspondences, there is still room for improvement. The
parameterization of each shape in the training set is done
independently of the other shapes; thus, correlations
between the shapes are not taken into account. When an
approach takes this extra information into account, it can
obtain better correspondences. Surface parameterization
can provide a good initial correspondence for such a
method. Davies et al. developed such a correspondence
method in [18]. They use the description length of the
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derived shape model as a measure of correspondence
quality and optimize the correspondences with respect to
this criterion. To date, their minimum description length
(MDL) approach is considered the method of choice for the
construction of correspondences [9].

Most of the aforementioned techniques focus on sets of
surfaces of spherical topology since these are prevalent in
biomedical image processing, e.g., kidneys, liver, and brain
ventricles. Nonetheless, the developed principles can be
translated to surfaces of other topologies. More specifically,
this paper deals with the translation of these principles to
sets of surfaces of cylindrical topology, such as the trachea,
cochlear channels, aortic aneurysms, and the rectum. For
such surfaces, the cylinder is the natural choice for the
parameter domain. An initial correspondence is obtained by
specialized cylindrical parameterization techniques. Fol-
lowing this, the correspondence is improved by an
optimization framework that adopts the MDL criterion as
a measure of correspondence quality.

The remainder of this paper is organized as follows:
Related work is discussed in Section 1.1. An overview of the
correspondence method is given in Section 2. Parameteriza-
tion of surfaces of cylindrical topology is discussed in
Section 3. The measure of correspondence quality, namely,
description length, is treated in Section 4. Section 5 details
the procedure of how an initial correspondence is obtained,
and Section 6 elaborates on the correspondence optimiza-
tion. Experimental results of applying the method to a
number of phantoms and real data sets are presented and
discussed in Section 7. Section 8 concludes the paper.

1.1 Related Work

Parameterization of surfaces with disc-like topology onto a
planar convex region has been addressed in [11]. A
parameterization technique to parameterize surfaces of
spherical topology onto the sphere has been developed by
Brechbühler et al. [12] and is known as SPHARM. This was
later used to model the shape of brain structures for
segmentation [6] and analysis [3]. Conformal parameteriza-
tion techniques for surfaces of spherical topology were
introduced in [19], [20], [21]. A more efficient alternative to
SPHARM, utilizing a progressive surface representation, was
provided by Praun and Hoppe [13]. Based on this spherical
parameterization technique, Huysmans et al. have devel-
oped a cylindrical parameterization technique to parameter-
ize tubular surfaces onto the cylinder in a progressive way
[14]. Conformal parameterization of surfaces of cylindrical
topology was addressed in [22], [23], and [24]. Algorithms for
more complex topologies (genus-n) have also been proposed
[15], [16], [17], but, from a correspondence optimization point
of view, these algorithms are suboptimal since they rely on a
heuristic or manually defined surface chartification. In [25],
Ricci flow is used to construct a seamless periodic tiling of a
genus-n surface in the plane, sphere, or hyperbolic space and
it is known as the universal covering space. The obtained map
is angle preserving and can be used to construct harmonic
maps between surfaces of the same topology [32].

In [26], Kottchef and Taylor used the determinant of the
landmark covariance matrix as an optimization objective.
Based on their ideas, Davies et al. developed an MDL
formulation for the assessment of correspondence quality

for 2D curves [18], which was later simplified by Thodberg
[27]. The method for building MDL correspondences has
been extended to surfaces of spherical topology [28], which
was later improved by Heimann et al. [29] in terms of
computational efficiency. Horkeaw and Yang applied the
MDL principle to surfaces of disc-like topology [30], and an
extension to more complex topologies was obtained by
cutting surfaces into topological discs prior to optimization
[31]. This, of course, constrains the optimization along the
cuts. In the recent work of Li et al. [32], a globally optimal
map, in terms of harmonic energy, is obtained between two
surfaces sharing arbitrary complex topology. An extension
of their method to populations of surfaces and to other
correspondence metrics, e.g., MDL, is, however, not
addressed. Recently introduced point-based correspon-
dence techniques can also handle arbitrary topology. In
[33], Ferrarini et al. use self-organizing maps to obtain a
pairwise correspondence between each population member
and a template. In [34], Cates et al. use particle systems to
optimize geometry sampling and groupwise correspon-
dence with respect to an information-theoretic measure
comparable to MDL. Point-based correspondence techni-
ques are promising but problems occurring with highly
convoluted surfaces still need to be addressed.

Little work has been done in shape modeling for
cylindrical surfaces. In [35], de Bruijne et al. proposed an
improved modeling scheme for tubular objects. They used a
manually determined correspondence. Some of the pre-
viously discussed techniques could be employed to build a
correspondence for a set of cylindrical shapes. For example,
the spherical MDL framework can be applied when the
holes of the cylindrical shapes are closed but this can result
in an invalid correspondence at the boundaries and this
approach will not perform well for elongated surfaces [36].
The correspondence methods that rely on chartification [16],
[31] could also be applied to cylindrical surfaces, but,
obviously, the performance of the chartification heuristic
will influence the final quality. The method proposed in this
paper does not suffer from these drawbacks since, here, the
description length minimization method is translated
specifically to treat sets of surfaces of cylindrical topology.

2 METHOD OUTLINE

The method treated in this paper constructs a dense surface
correspondence together with an optimal spatial alignment
for an arbitrary population of cylindrical surfaces. It
proceeds in two steps. First, a correspondence is derived
from the surface parameterizations by alignment of the
surfaces and parameterizations. The result is referred to as
the rigid correspondence. Then, the rigid correspondence is
improved by applying local, nonrigid, deformations to the
parameterizations while keeping the surfaces optimally
aligned. The finally obtained correspondence is referred to
as the nonrigid correspondence. An overview of these two
steps can be found in Fig. 1.

The input to the method is a set of ns triangle surfaces
fM1; . . . ;Mnsg of cylindrical topology. Each surface Mi is
defined by a tuple ðVi; TiÞ, where Vi is the set of
nVi vertices fvvi1; . . . ; vvinVi

g with vvij 2 IR3 and Ti is the set
of nTi triangles fti1; . . . ; tinT g.
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The construction of the rigid correspondence is covered
by the flow chart in Fig. 1a and presented in detail in
Section 5. The rigid correspondence, denoted as

fxx1; . . . ; xxnsg, is obtained by parameterization of the
surfaces Mi, followed by rigid alignment of the surfaces
and their parameter spaces. The spatial transformations for

638 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 4, APRIL 2010

Fig. 1. (a) Flow chart visualization of the rigid correspondence construction. First, each surface is equipped with a cylindrical parameterization and
approximated with a b-spline surface. Then, the surfaces are brought into a reference coordinate system by alignment of their principal axes. This is
followed by the alignment of the parameter spaces of the surfaces by optimization w.r.t. the correspondence quality, i.e., model description length.
Finally, the rigid correspondence is obtained after a second optimization where both the spatial and parameterization alignment parameters are set
free. (b) Flow chart visualization of the nonrigid correspondence improvement. The correspondence is improved by simultaneously optimizing the
parameters of the spatial alignments and the b-spline parameterization deformations w.r.t. the correspondence quality. The optimizations are
performed at multiple resolution levels sequentially, starting at the lowest level with coarse deformations and gradually adding more detail with each
new level. Finally, the nonrigid correspondence is obtained.



the alignment of the surfaces are denoted as ���ð� j ����

i Þ and
the parameterization transformations for the parameter
space alignments are denoted as ���ð� j ����

i Þ. In order to
avoid convergence to local minima, the optimal parameters,
�̂���

i and �̂���

i , of these transformations are obtained by a
number of consecutive optimizations with respect to the
MDL correspondence quality criterion, denoted as �. The
construction pipeline for the rigid correspondence com-
prises following steps:

1. A cylindrical parameterization xx�i is constructed for
each surface Mi. It constitutes a one-to-one map
between the surface Mi and the open-ended
cylinder C2

h of height h.
2. A smooth b-spline approximation ~xx�i is constructed

for each surface. The b-spline representation results
in smooth optimization objectives and provides a
multiresolution representation of the surface.

3. An initial spatial alignment of the surfaces is
obtained by alignment of their principal axes.

4. While keeping the spatial alignment fixed, an
alignment of the parameterizations is determined
by optimization with respect to MDL.

5. Both the spatial and parameter space alignments are
improved by simultaneous optimization with
respect to MDL.

In order to obtain the rigid correspondence, the optimal
spatial transformations and parameterization transforma-
tions are applied to the b-spline approximations of each of
the parameterized surfaces:

xxi ¼ ���
�
� j �̂���

i

�
� ~xx�i � ���

�
� j �̂���

i

�
: ð1Þ

The construction of nonrigid correspondence is covered
by the flow chart in Fig. 1b and is presented in detail in
Section 6. The nonrigid correspondence is obtained as an
improvement of the rigid correspondence by applying a
nonrigid b-spline transformation to the parameter space of
each surface and simultaneously optimizing their spatial
alignment. Again, the MDL correspondence criterion was
used as the optimization objective. For reasons of efficiency
and in order to avoid local minima, the optimization is done
successively at a number of resolution levels. With each
resolution level L, the grid size mL

uð0Þ
�mL

uð1Þ
for the b-spline

approximation ~xxLi of xxi and the grid size nL
uð0Þ
� nL

uð1Þ
for the

b-spline parameterization deformation ��Lð� j ���L

i Þ are
doubled, allowing for a more detailed correspondence
improvement. Also, the number of landmarks nLp used to
calculate the shape model is increased and the convergence
tolerance becomes more strict. The spatial transformation
��ð� j ���L

i Þ is rigid and has optimal parameters ���L

i . The
optimization of a resolution level L is initialized with the
result from the previous resolution level L� 1. The final
correspondence is obtained from the optimal transforma-
tion parameters, �̂��L

i and �̂��L

i , of the last resolution level:

x̂xLi ¼ ��
�
� j �̂��L

i

�
� ~xxLi � ��L

�
� j �̂��L

i

�
: ð2Þ

From the final correspondence fx̂x1; . . . ; x̂xnsg, a map
from surface Mi to surface Mj can be obtained by
composition of the inverse of parameterization x̂xi with the

parameterization x̂xj, i.e., qq ¼ x̂xj � x̂x�1
i ðppÞ, where pp 2 Mi

and the corresponding point qq 2 Mj.

3 SURFACE REPRESENTATION

3.1 Parameterization

Starting from a cylindrical surfaceMdefined by its verticesV
and triangles T , a parameterized version xx ofM is obtained
by assigning a unique pair of cylindrical coordinates to each
point of the surface M. Usually, the parameter coordinates
are only defined explicitly at the vertices of M and the
extension over the triangles is implied by barycentric
interpolation of the parameter coordinates at the vertices.
To be more precise, for surfaces of cylindrical topology, the
parameterization xx is a homeomorphic function from C2

h to
the surfaceM, i.e.,

xx : ½0; 2�� � ½0; h� ! M � IR3

: uu! xxðuuÞ;

where C2
h denotes the open-ended 2D cylinder of length h

with unit radius, which is parameterized by an angular
coordinate uð0Þ and an axial coordinate uð1Þ, i.e.,
uu ¼ ðuð0Þ; uð1ÞÞ. For xx to be a homeomorphism, it must be a
bijective, continuous function, and have a continuous
inverse. If the topology of M is consistent, such a home-
omorphism can always be obtained although a solution is
not unique. This can be seen from the fact that the
composition xx � �� of any automorphism �� of the cylinder
with the parameterization xx of the surfaceM again is a valid
parameterization of the same surface. The particular solution
that a parameterization technique will propose is usually the
result of the minimization of an energy functional. Different
functionals result in different parameterizations, the quality
of which depends on the actual application.

In order to obtain good correspondences between
surfaces, a parameterization technique should create similar
maps for similar surfaces. In addition, it is also desirable
that it retains relative areas and angles as much as possible
(i.e., distortion). When the parameterizations systematically
suffer from large area distortions, undersampling of parts of
the surface can occur in the final correspondence. For a
tubular surface with an approximately constant width, the
use of an harmonic parameterization technique is recom-
mended, e.g., [22], [23]. The harmonic cylindrical para-
meterization is uniquely defined as the solution of a system
of linear equations. As a consequence, it is computationally
very efficient. However, it fails to keep area distortions
within acceptable bounds when a large variation in cross-
sectional diameter is present. For these cases, the progres-
sive nonlinear cylindrical parameterization technique from
[14] is a better alternative. It allows control over the trade-
off between angle and area distortions, at the cost of
increased computation time. See Fig. 2 for a comparison of
the two methods.

3.2 B-Spline Representation

Since the surfaceM is a piecewise linear surface, the partial
derivatives of the surface coordinates with respect to the
parameter coordinates ( @xx

@uð0Þ
and @xx

@uð1Þ
) are discontinuous at

the triangle boundaries, excluding boundaries between
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coplanar triangles. This is undesirable since these partial
derivatives are utilized in the gradient-guided optimization
of the correspondences. Using cubic b-splines, approxima-
tion of xx will result in a surface ~xx that is C2 continuous
within the b-spline patches and C1 continuous at the patch
boundaries. By varying the number of control points used
for the approximation, a multiresolution representation of
the surface can be obtained. Moreover, evaluation of the
b-spline representation ~xx is much faster than evaluation of
the triangle-based representation xx. This is because point
location in a regular grid is far more efficient than point
location in a triangulation. A good b-spline approximation
of xx can be achieved with a number of control points much
lower than the original number of vertices that xx comprises,
resulting also in better memory efficiency.

The approximation uses a 2D tensor product b-spline
surface. The cubic b-spline kernel, denoted by �, is defined
as in [37]:

�ðuÞ ¼
1
6 ð3juj

3 � 6u2 þ 4Þ; juj 2 ½0; 1½;
1
6 ð2� jujÞ

3; juj 2 ½1; 2½;
0; juj 2 ½2;1½:

8<
: ð3Þ

The b-spline surface is defined by a uniform grid of knots
K ¼ fkkijg positioned on the cylinder C2

h and a correspond-
ing grid of control points P ¼ fppijg in IR3. An example knot
grid is shown in Fig. 4a. The b-spline surface then has the
following form:

~xxðuujK;P Þ ¼
Xmuð0Þþ1

i¼�1

Xmuð1Þ

j¼�1

�
uu� kkij

��

� �
ppij; ð4Þ

where muð0Þ is the number of knots in the uð0Þ-direction and

muð1Þ is the number of knots in uð1Þ-direction that are within

the range ½0; 2�� � ½0; h�. The 2D cubic b-spline kernel �ðuuÞ
is separable, i.e., �ðuuÞ ¼ �ðuð0ÞÞ�ðuð1ÞÞ, and the grid spacing

is denoted as �� ¼ ð 2�
n
uð0Þ
; h
n
uð1Þ�1Þ. The division in the

argument of the b-spline kernel is executed element-wise.

In order to obtain a closed and smooth surface at the

parameter boundary uð0Þ ¼ 2�, the control points satisfy the

following conditions:

pp�1;j ¼ ppm
uð0Þ�1;j;

ppm
uð0Þ ;j

¼ pp0;j;
ppm

uð0Þþ1;j ¼ pp1;j:

8<
: ð5Þ

Least-squares fitting is used in order to find a set of

muð0Þ ðmuð1Þ þ 2Þ control points that provides a good approx-

imation to the surface xx. For this purpose, a set of

mp uniformly distributed parameter locations is chosen on

the cylinder: UUmp ¼ fuu1; . . . ; uump
g � C2

h. Using these para-

meter locations, the approximation error can be determined

as the sum of the squared distances between the points on

the original surface and the points on the approximating

surface at corresponding parameter locations. The set of

control points P̂ for which this error is minimal is regarded

as the optimal set in a least-squares sense:

P̂ ¼ arg min
P

Xmp

i¼1

k~xxðuuijK;P Þ � xxðuuiÞk2: ð6Þ

The minimum is found as the solution of the system

BP ¼ X, where X is an mp � 3 matrix having surface points

fxxðuuiÞg as its rows, P is an muð0Þ ðmuð1Þ þ 2Þ � 3 matrix

having the control points fppijg as its rows, and B is an

mp �muð0Þ ðmuð1Þ þ 2Þ matrix. Note that Bkl is the contribu-

tion of the lth control point Pl to the approximation of the

kth surface point Xk. The solution is obtained efficiently

from the normal equations BTBP ¼ BTX [38]. In Fig. 3, a

surface is shown together with four cylindrical b-spline

approximations obtained using an increasing number of

control points.

4 CORRESPONDENCE QUALITY MEASURE

In this work, the quality of the correspondence of a set of

surfaces is measured by the description length of the shape

model that was built from the correspondence. The actual

computation of the description length can be divided into

three steps. First, each surface is represented with a set of

corresponding landmarks. Then, the point distribution

model (PDM) is calculated from these landmarks. This

PDM consists of a mean surface, a set of shape modes, and

the variance expressed by each of these modes. Finally, the

description length is calculated from the obtained shape

mode variances. The following three sections expound

these steps.
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Fig. 2. A qualitative comparison of the harmonic parameterization
method with the nonlinear parameterization method. The parameteriza-
tion of each surface is visualized by the blue and red lines, which
correspond to the iso-uð0Þ and iso-uð1Þ lines of the cylinder, respectively.
(a) Two parameterizations of a surface with a large variation in cross-
sectional diameter are shown. It is clearly visible that the harmonic
parameterization (right) has large-area distortions at the bulge com-
pared to the nonlinear method (left), so the nonlinear method is
preferred for this kind of surface. (b) Two parameterizations of a surface
with an approximately constant cross-sectional diameter are shown. For
this surface, both methods can be used since they perform approxi-
mately equally well.

Fig. 3. Approximation of a parameterized surface using a b-spline
surface with an increasing number of control points (indicated as
muð0Þ �muð1Þ ).



4.1 Statistical Modeling

In order to build a statistical shape model or a point

distribution model [1] for a set of ns surfaces fMig, a

correspondence needs to be established and the surfaces

have to be aligned in a common reference coordinate
system. Suppose that fxxig are the parameterizations that

express this correspondence in the common reference

coordinate system. Then, the goal of statistical shape

modeling is to capture the shape present in the set of
surfaces with a probability density function. Here, a

distribution is assumed that is symmetric about its mean,

namely, a multivariate Gaussian distribution and the actual

distribution parameters are obtained using principal com-
ponents analysis (PCA) [39].

In this work, the computation of the PCA is done by means

of singular value decomposition (SVD). This is more efficient

than the traditional method where an eigenvalue decom-

position of the large covariance matrix is used. The SVD
method also allows the computation of the partial derivatives

of the shape mode variances w.r.t. the landmark positions,

which is important for the gradient-based optimization. A

matrix representation of the set of surfaces fxxig is obtained
by sampling each surface at a set of uniformly distributed

cylindrical parameter locations UUnp ¼ fuu1; . . . ; uunpg. For

each surface, the coordinates of the np landmarks are

concatenated and a 3np row vector _xxi, representing the
surface xxi, is obtained:

_xxi ¼
�
xxiðuu1Þ . . . xxi

�
uunp
��
: ð7Þ

The landmark matrix XX is then obtained from the ns shape
vectors as XX ¼ ½ _xxT1 . . . _xxTns �, resulting in a matrix of dimen-

sions 3np � ns. The mean shape vector �xx is computed as

�xx ¼ 1

ns

Xns
i¼1

_xxi; ð8Þ

and the row-centered landmark matrix is obtained by
subtracting this mean shape from each column of XX, i.e.,

XXc ¼
�

_xxT1 � �xxT . . . _xxTns � �xxT
�
: ð9Þ

Now, let the SVD of the centered landmark matrix be
defined as

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ns � 1
p XXc ¼ PSQPSQT ; ð10Þ

wherePP is a 3np � 3np orthonormal matrix containing the left
singular vectors ppj as its columns, SS is a 3np � ns diagonal
matrix where the diagonal elements are the singular values�j
in descending order, andQQ is an ns � ns orthonormal matrix
with the right singular vectors qqj as its columns. The ns � ns
surface covariance matrix DD is defined as

DD ¼ 1

ns � 1
XXT
c XXc ¼ QSQS2QQT ; ð11Þ

and its SVD can be calculated efficiently. The first
m columns of PP , denoted as PPm, contain the m shape
modes ppj and are obtained from the SVD of DD as

PPm ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ns � 1
p XXcQSQS

�1
m ; ð12Þ

where SSm is the matrix that contains the first m rows of SS.
The first m corresponding shape mode variances �j are also
obtained from (11) as the first m squared nonzero singular
values �2

j .
Using the obtained shape modes ppj and the correspond-

ing mode variances �j, a new shape instance _xx can be
obtained by adding a linear combination of the principal
shape modes to the mean surface:

_xx ¼ �xxþ
Xns�1

j¼1

ppjbj; ð13Þ
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Fig. 4. (a) A 3� 4 grid of knots on C2
h. The knots 		i;�1 and 		i;4 ensure that the cubic b-spline can be evaluated over the whole domain of C2

h (indicated
as the shaded area) and the knots 		�1;j, 		3;j, and 		4;j make the b-spline periodic in the uð0Þ-direction. (b) An example grid of b-spline control points
overlayed on the knot grid. Together these define a cylindrical parameterization transformation. The shape of the transformation is controlled by the
displacements 

ij from the corresponding knots 		ij.



where bj is the contribution of the jth principal shape
mode to _xx. Equation (13) defines a shape space spanned
by the shape parameters bj and with the mean shape as
the origin. The bounds on the shape parameters of the
shape space are usually chosen as a small multiple of the
standard deviation of the point cloud along that direction,
i.e., �3

ffiffiffiffiffi
�j

p
� bj � þ3

ffiffiffiffiffi
�j

p
.

In what follows, �� will denote the function that maps a
set of corresponded surfaces to the mode variances of their
derived shape model:

ð�1; . . . ; �ns�1Þ ¼ ��ðxx1; . . . ; xxns jUUnpÞ: ð14Þ

4.2 Description Length

In the work of Davies et al. [18], a correspondence measure
for curves and surfaces is introduced which is regarded as
the current standard for correspondence optimization.
Their measure is adopted here but in a simplified form.
The original measure is based on the minimum description
length principle: The sampled surfaces are coded in a
message where the encoding is determined by the PCA
model built from the correspondence. The total message
length of the encoded surfaces, together with the encoded
model, determines the quality of the model, and therefore,
also the quality of the correspondence. In this way, a trade-
off is made between model complexity and goodness-of-fit.
Over the years, the MDL measure has been tuned and, in
this work, the simplified MDL measure, introduced by
Thodberg [27], is used. It is a function of the shape mode
variances �j and is defined as follows:

�ð�1; . . . ; �ns�1Þ ¼
X
�i	�c

1þ log
�i
�c

� �
þ
X
�i<�c

�i
�c
; ð15Þ

The free parameter �c is set to be the expected noise
variance in the data. The variation captured by all modes
with an eigenvalue (variance) below �c is thus considered
noise. As can be seen from the first and the second term in
(15), respectively, the benefit of decreasing normal modes is
logarithmic, while for noise modes, it is constant. Further-
more, the quality measure � goes to zero when all
eigenvalues go to zero, i.e., it favors compact models. Also,
both � and its partial derivatives @�

@�i
are continuous. This is

an attractive property for optimization. Note that shorter
description length, i.e., a lower value of �, indicates better
quality of correspondence.

4.3 Gradient of Description Length

The L-BFGS minimizer used in this work requires not
only the value of the objective � but also the gradient r�.
In this section, the gradient with respect to the landmark
positions xij is derived. In [40], Ericsson and �Aström explain
how to obtain the partial derivatives of the description
length � w.r.t. centered the landmark positions xcij. Their
derivation is based on a result obtained by Papadopoulo and
Lourakis in [41]. This result is a simple expression, in function
of the elements pik of PP and qkj of QQ, for the derivative of the
singular values �k of Xc w.r.t. the matrix values xcij, namely,

@�k
@xcij
¼ pikqkj: ð16Þ

The partial derivatives of the description length w.r.t. the
noncentered landmarks xij can be obtained as:

@�

@xij
¼
X
�k	�c

1

�k

@�k
@xij
þ
X
�k<�c

1

�c

@�k
@xij

: ð17Þ

The derivatives of the shape mode variances �k can be
refined into:

@�k
@xij
¼ 2�kpikqkj �

2

ns
�kpik

X
|

qk|; ð18Þ

where (16) was used, together with the fact that

@xc{|
@xij
¼

1� 1
ns
; if { ¼ i and | ¼ j;

� 1
ns
; if { ¼ i and | 6¼ j;

0; if { 6¼ i:

8<
: ð19Þ

Hereby, the gradient of the description length w.r.t. the
landmarks is obtained. The gradient with respect to the
transformation parameters �� can be obtained by multi-
plying the landmark gradient with the Jacobian of the
function that maps the transformation parameters to the
landmark positions.

5 RIGID CORRESPONDENCE

Establishing an initial correspondence for a set of surfaces
fM1; . . . ;Mnsg starts by parameterizing each surface onto
the cylinder. The parameterized piecewise linear surfaces
fxx�1; . . . ; xx�nsg are then approximated using b-splines, result-
ing in the smooth surfaces f~xx�1; . . . ; ~xx�nsg. Details on this can
be found in Section 3. The approximation uses a grid of
m�
uð0Þ
�m�

uð1Þ
control points. It was observed that accurate

approximations are achieved with a grid size of the order
32� h

2� 32 for all surfaces considered in this work. An initial
correspondence, denoted by fx̂x�1; . . . ; x̂x�nsg, is obtained from
the b-spline surfaces after applying a spatial alignment
���ð� j �̂���

i Þ and parameter space rotation ���ð� j �̂��

i Þ to each
of the surfaces ~xx�i . The optimal transformation parameters
�̂���

i and �̂��

i are determined by optimization w.r.t. the model
description length �. The objective � contains multiple local
minima, and therefore, suitable initialization for the
transformation parameters is required. First, the spatial
transformation parameters are initialized by principal axes
alignment of the surfaces. This is followed by initialization
of the parameterization rotation parameters by running a
description length optimization for the parameterization
rotations while keeping the spatial transformation para-
meters fixed. Finally, starting from these initial parameters,
the full optimization of the description length, where both
spatial transformation parameters and parameterization
rotation parameters are set free, is executed. This results
in the desired rigid correspondence fx̂x�1; . . . ; x̂x�nsg. An
overview of establishing a rigid correspondence is given
in the flow chart of Fig. 1a.

5.1 Spatial Alignment Initialization

The spatial transformation ���ð� j ���� Þ : IR3 ! IR3, used for
the alignment of the surfaces, is a 3D rigid transformation. It
is composed of a 3D rotation around the surface center
followed by a 3D translation. The rotation is parameterized
by a unit quaternion qq ¼ ðw; qx; qy; qzÞ 2 S3, where S3 is the
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three-sphere. In order to be of unit length, the quaternion
should adhere to the following constraint:ffiffiffiffiffiffiffiffi

qqqqT
p

¼ 1: ð20Þ

Quaternion parameterization for rotation does not suffer
from the singularities encountered with Euler angles. The
translation is parameterized by a 3D vector tt ¼ ðtx; ty; tzÞ.
The transformation ��� is thus controlled by seven para-
meters: ���� ¼ ðqq; ttÞ.

Let

x̂x�i
�
� j ����

i

�
¼ ���

�
� j ����

i

�
� ~xx�i ð21Þ

be a shorthand notation for the surface obtained after
applying the spatial transformation ��� to the surface ~xx�i , for
given parameters ����

i . Then, the parameters f����

1 ; . . . ;����

ns
g

are chosen so that the surfaces	
x̂x�1
�
� j ����

1

�
; . . . ; x̂x�ns

�
� j ����

ns

�

have their principal axes aligned with the axes of the reference
coordinate system. The translation vector tti for surface ~xx�i
centers the surface at the origin of the coordinate system, i.e.,

tti ¼ ��vvi ¼ � 1

nVi

XnVi
j¼1

vvij;

where �vvi is the average of the vertices vvij of surface ~xx�i . The
rotation for the surface is obtained using singular value
decomposition. Let VV i ¼ ½ðvvi1 � �vviÞT . . . ðvvinVi � �vviÞT �T be the
matrix that has the centered vertices of Mi as its rows and
let the singular value decomposition of the coordinate
covariance matrix be defined as 1

nVi�1VV
T
i VV i ¼ UUiSS

2
i UU

T
i . Then,

UUi is the rotation matrix that aligns the principal axes of the
surface with the reference coordinate axes. Note that the
rotation matrix UUi is not uniquely defined since the singular
vectors are defined up to their sign. Thus, there are eight
possible rotations, from which four can be eliminated since
they produce a mirrored surface. From the four remaining
rotations, the one is chosen that best matches a reference
surface Mr in terms of the following error:

Xnp
j¼1

�
D
�
x̂x�i
�
uuj j ����

i

�
;Mr

��2
; ð22Þ

where Dðpp;MÞ measures the distance from pp to the closest
point on M. The quaternion qqi that represents the best
rotation together with the translation tti forms the initializa-
tion for the spatial transformation parameter set, i.e.,
����

i ¼ ðqqi; ttiÞ.

5.2 Parameterization Alignment Initialization

The parameterization transformation ���ð� j ��� Þ, used to
align the parameterizations, is a parameter space rotation
and it is controlled by a single parameter ��� 2 ½0; 2��,
defining the angle of rotation. The transformation has the
following form:

���ð� j ��� Þ : C2
h 7! C2

h; ð23Þ

: uu 7!
�
uð0Þ þ ��� ; uð1Þ

�
: ð24Þ

Similar to (21), a shorthand notation for the surface obtained
after applying the spatial and parameterization transforma-
tion for given parameters ����

i and ����

i is as follows:

x̂x�i
�
� j ����

i ;��
��

i

�
¼ ���

�
� j ����

i

�
� ~xx�i � ���

�
� j ���

i

�
: ð25Þ

The initial values for the parameterization rotation para-
meters f���

1 ; . . . ;���
ns
g are then obtained by solving the

following optimization problem:

arg min
���
i ;8i

� � �
�

. . . ; x̂x�i
�
� j ���

i ;��
��

i

�
; . . . j UUn�

�
; ð26Þ

where the ����

i are the initial spatial alignment parameters
obtained in the previous section.

5.3 Full Alignment

Now, starting from the initial spatial transformation para-
meters f����

1 ; . . . ;����

ns
g and the initial parameterization

rotation parameters f���

1 ; . . . ;���
ns
g, obtained in the previous

two sections, the full description length minimization with
rigid transformations can be solved:

arg min
����
i ;��

��
i ;8i

� � �
�

. . . ; x̂x�i
�
� j ����

i ;��
��

i

�
; . . . j UUn�

�

þ �
�

ns

X
j

��
�
����

j

�
:

ð27Þ

Here, the regularization term �� ð����

j Þ penalizes parameter

sets with a quaternion that violates (20). The penalty for a

quaternion qq is measured as ð1�
ffiffiffiffiffiffiffiffi
qqqqT

p
Þ2. The regulariza-

tion term attains its minimum when all quaternions are in

S3 and smoothly penalizes any deviation from this. In all

of the experiments, a regularization factor �� ¼ 106 was

used. The parameters that solve (27) are denoted

f�̂���

1 ; �̂
��

1 ; . . . ; �̂���

ns
; �̂��

ns
g and they provide the final rigid

correspondence fx̂x�1ð� j �̂�
��

1 ; �̂�
��

1 Þ; . . . ; x̂x�nsð� j �̂�
��

ns
; �̂���

ns
Þg.

6 NONRIGID CORRESPONDENCE

In the previous section, a rigid correspondence fxx1; . . . ; xxnsg
was produced by applying the optimal rigid spatial
transformations and rigid parameterization transformations
to the parameterized surfaces. An improvement over this
rigid correspondence can be obtained by allowing local
deformations of the parameterizations. Such local deforma-
tions can be realized by a nonrigid parameterization
transformation. Here, a cylindrical b-spline parameteriza-
tion deformation ��L is used, where L indicates the level of
resolution of the deformation. The spatial transformation ��
is the same as in Section 5. The optimal nonrigid
parameterization deformations, together with the spatial
transformation parameters, are determined by optimiza-
tion. The optimization is done at increasing levels of
resolution, sequentially, to avoid convergence to a local
optimum. The flow chart in Fig. 1b gives an overview of the
multiresolution correspondence optimization.

At every resolution level L, the optimal transformation

parameters for that level are determined in the following

manner: First, each surface xxi, obtained from the rigid

correspondence procedure, is approximated with a

b-spline surface, denoted as ~xxLi . The approximation uses
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an mL
uð0Þ
�mL

uð1Þ
grid of control points. Here, mL

uð0Þ
¼ 3 
 2L�1

and mL
uð1Þ
¼ b h2�mL

uð0Þ
c are used; thus, the resolution is

approximately isotropic and doubled from one level to

the next. Each surface ~xxLi is transformed according to the

spatial transformation parameters ���L

i and parameteriza-

tion transformation parameters ���L

i as follows:

x̂xLi
�
� j ���L

i ;��
�L

i

�
¼ ��

�
� j ���L

i

�
� ~xxLi � ��L

�
� j ��L

i

�
: ð28Þ

The level-L b-spline parameterization transformation ��L is
defined by a grid of nL

uð0Þ
� nL

uð1Þ
control points. Similar to the

approximation b-spline, the transformation b-spline has an
isotropic resolution that is doubled at each new level, i.e.,
nL
uð0Þ
¼ 3 
 2L�1 and nL

uð1Þ
¼ b h2� nLuð0Þ c. Using the notation from

(28), the optimal level-L transformation parameters are
determined by solving the following optimization problem:

arg min
���L

i ;���L

i ;8i
� � �

�
. . . ; x̂xLi

�
� j ���L

i ;��
�L

i

�
; . . . j UUnLp

�

þ �
�

ns

X
j

��
�
���L

j

�
þ �

�

ns

X
j

��
L�

���L

j

�
:

ð29Þ

Here, �� is the regularization for the spatial transformations,
as defined in Section 5.3, and ��

L
is the regularization for the

parameterization deformations in order to avoid overfitting.
The experimentally determined regularization constants are
�� ¼ 106 and �� ¼ 0:2. The set of parameter coordinates UUnLp

used to estimate the shape covariance matrix contains nLp ¼
250 
 4L�1 parameter locations. Thus, the number of samples
per area increases fourfold with every new level. This
mirrors the doubling of the resolution of the surface
approximation and parameterization transformation. Note
that the optimal transformation parameters for the optimi-
zation problem of level L� 1 are used to initialize the
parameters of current level L. To initialize the b-spline
parameterization transformation parameters ���L

j from �̂��L�1

j

the b-spline upsampling technique from [42] is used. The
initialization of the spatial transformations is trivial, i.e.,
���L

j ¼ �̂��L�1

j . In this work, three levels of resolution were
used, and thus, the optimal transformation parameters
f�̂��3

1 ; �̂
�3

1 ; . . . ; �̂��3

ns
; �̂�3

ns
g of the third-level optimization pro-

blem are the final transformation parameters. These provide
the final correspondence fx̂x1; . . . ; x̂xnsg.

In the following two sections, the actual form of the
parameterization transformation will be detailed and a
suitable regularizer is introduced.

6.1 Reparameterization Transformation

The parameterization space C2
h is deformed using a para-

meterization transformation ��Lðuuj���LÞ, where L denotes the
level of resolution. The transformation is an automorphism
of the parameter space, i.e., ��L constitutes a continuous one-
to-one map of C2

h. The space of possible reparameterizations
is spanned by the transformation parameters ���L . Different
bases can be used to represent a reparameterization function
[18], [28], [29], [43]. In this work, ��L is a 2D cubic b-spline
function with knot positions on a regular grid. Such a
representation has a number of convenient properties:
1) Cubic b-spline deformations are C2 continuous with
respect to their parameters within the patches and C1

continuous at the patch boundaries. This is required for

efficient, gradient-guided optimization. 2) It has compact
support which makes it fast to evaluate and allows local
control. And 3) it can be used in a multiresolution method by
refining the grid that controls the shape of the deformation.

The b-spline deformation function ��L is defined by a set
of knots KKL ¼ f		Lijg and a set of control point displacements
���L ¼ f

Lijg:

��Lðuuj���LÞ

¼
XnLuð0Þþ1

i¼�1

XnLuð1Þ
j¼�1

��
uu� 		Lij

��L

 !�
		Lij þ 

Lij

�
modð0Þ 2�;

ð30Þ

where the modulo operator, modð0Þ, acts on the first
coordinate of the parameter space and keeps the deformed
parameter within the bounds ½0; 2��. �� is the 2D separable
cubic b-spline kernel from (3). The knots and the corre-
sponding control points are arranged on a regular nL

uð0Þ
�

nL
uð1Þ

grid on the cylinder C2
h. The spacing between the knots

is denoted as

��L ¼ 2�

nL
uð0Þ

;
h

nL
uð1Þ
� 1

 !
:

The following constraints on the control point displace-
ments 

ij make sure that ��L is periodic and continuous at
the parameter boundary uð0Þ ¼ 2�:



�1;j ¼ 

n
uð0Þ�1;j;



0;j ¼ 

n
uð0Þ ;j;



1;j ¼ 

n
uð0Þþ1;j;

8<
: 8j: ð31Þ

In order to make ��L one-to-one along the boundaries of C2
h,

the following constraints are also enforced:



ð1Þ
i;�1 ¼ �


ð1Þ
i;1 ;



ð1Þ
i;n

uð0Þ
¼ �
ð1Þi;n

uð0Þ�2;



ð1Þ
i;0 ¼ 0;



ð1Þ
i;n

uð0Þ�1 ¼ 0;

8>>>>><
>>>>>:

8i: ð32Þ

In this work, the same arrangement of knots KKL is used
for the reparameterization of each surface xxk. Only the
control point displacements ���L

k ¼ f


L
ij;kg differ from surface

to surface. Fig. 4a shows a 3� 4 cylindrical grid of knots in
an unfolded view and Fig. 4b shows a grid of control points
for that knot grid, where the control points are obtained by
adding the control point displacement to the knot location,
i.e., 		Lij þ 

Lij. Observe that both the knots and the control
points reside on the parameter domain C2

h. The b-spline
function ��L thus defines a reparameterization function of
the cylindrical parameter domain C2

h.

6.2 Reparameterization Regularization

From (30), it can be seen that the reparameterization
transformation ��L is a linear combination of translated
versions of the cubic b-spline kernel ��. As a result, the
reparameterization transformation is C2 continuous within
the patches and C1 continuous at the patch boundaries. The
inherent smoothness of the b-spline transformation is
convenient but it does not avoid overfitting by the b-spline
transform. Overfitting is perceived as an irregular local
deformation and occurs in regions where � is insensitive to

644 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 4, APRIL 2010



local deformations, e.g., when a b-spline kernel is not
supported by any landmark samples in the calculation of ��.

To counter these irregularities, a regularization term is
introduced, denoted as ��. For b-splines, a number of
regularization terms have been used in the past [44], [45].
Here, a simple regularizer is chosen that measures the
Dirichlet energy of the parameterization displacement
function. This displacement function, denoted by %%, can be
easily derived from (30):

%%ðuu j ���Þ ¼
Xnuð0Þþ1

i¼�1

Xnuð1Þ
j¼�1

�
uu� 		ij

��

� �


ij: ð33Þ

The regularization term �� for the deformation is then
defined as

�ð���Þ ¼
Z Z

C2
h

@%%ðuuj���Þ
@uð0Þ











2

þ @%%ðuuj���Þ
@uð1Þ











2

 !
duu: ð34Þ

In what follows, �i
uðcÞ
¼ �ðuðcÞ

�ðcÞ
� iÞ is used as a shorthand

notation and the prime mark symbol denotes the derivative.
Substituting the b-spline transformation into (34) results in:

�ð���Þ

¼
X
ij

X
kl



ij


T
kl

1

�ð0Þ
2

Z 2�

0

�i
0

uð0Þ�
k0

uð0Þdu
ð0Þ
Z h

0

�j
uð1Þ
�luð1Þdu

ð1Þ
�

þ 1

�ð1Þ
2

Z 2�

0

�iuð0Þ�
k
uð0Þdu

ð0Þ
Z h

0

�j
0

uð1Þ
�l
0

uð1Þdu
ð1Þ
�
:

ð35Þ

From this, the derivatives of the smoothness energy w.r.t.
the control point displacements are easily derived:

@�

@

ð0Þ
kl

¼ 2
X
ij



ð0Þ
ij

1

�ð0Þ
2

Z 2�

0

�i
0

uð0Þ�
k0

uð0Þdu
ð0Þ
Z h

0

�j
uð1Þ
�luð1Þdu

ð1Þ
�

þ 1

�ð1Þ
2

Z 2�

0

�iuð0Þ�
k
uð0Þdu

ð0Þ
Z h

0

�j
0

uð1Þ
�l
0

uð1Þdu
ð1Þ
�
:

ð36Þ

Equations (35) and (36) can be evaluated analytically, and as
a result, they can be used efficiently with a gradient-based
optimization method.

7 RESULTS AND DISCUSSION

7.1 Data Sets

In this work, six populations of surfaces were used to test
the proposed correspondence method. Three of these are
phantom populations, each consisting of 30 surfaces: a
population of disks where the position of the disk on the
cylinder is variable, a population of beams with varying
width and depth, and a population of cylinder-like bent
surfaces with an elliptic cross section where the width and
height of the cross section are variable together with the
amount of bending. A sample surface of each of these
populations is shown in Fig. 5a. There are also three
populations of real, ct-scanned surfaces: a population of
25 clavicles, a population of 23 tracheas, and a population of

50 aortic sections with a thrombus. A sample surface of each
of the real populations can be found in Fig. 5b. All surfaces
of these populations have cylindrical topology except the
clavicles, which are of spherical topology. The clavicles are
made cylindrical by puncturing both ends of the clavicle.

7.2 Performance Measures

In what follows, different correspondences will be con-
structed for the aforementioned populations. The quality of
the established correspondences is evaluated by deriving a
PCA model from the correspondence and reporting
performance measures for the obtained model. The perfor-
mance of a model is measured here by the compactness,
reconstruction ability, generalization ability, and specificity
of the model. The performance measures are reported for
the full k-mode model and all restricted m-mode, m < k,
versions of the PCA model. In a comparison, the corre-
spondence having the best performance measures, for its
derived model, is considered the best correspondence.

Now, given a set of surfaces fM1; . . . ;Mnsg, let the
correspondence be denoted as fxx1; . . . ; xxnsg and the derived
shape model as _xxm, where m is the number of modes of the
shape model. Then, the compactness of a model is measured
as the cumulative variance:

CðmÞ ¼
Xm
i¼1

�i; ð37Þ

where �i is the variance of the ith shape mode. The
reconstruction ability indicates how good a model is able to
reconstruct the surfaces that were used to build the model.
It is measured as the average approximation error after
fitting the model to each of the surfaces fM1; . . . ;Mnsg:

RðmÞ ¼ 1

ns

Xns
i¼1

min
���� ;bb

Dð��ð���� Þ � _xxmðbbÞ;MiÞ; ð38Þ

where ���� are the parameters of the rigid transformation �� ,
bbare the model parameters, andDðxx; yyÞmeasures the average
closest point distance from surface yy to surface xx. The optimal
parameters ���� and bb, resulting in the best model-to-surface
fit, are determined iteratively by alternately estimating ����

and bb in a least-squares sense. The generalization ability of a
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Fig. 5. From each of the six considered surface populations, one random
surface is shown here. Each surface is textured with the isocontours of
its parameter coordinates obtained after parameterization. (a) Three
populations of synthetic surfaces in clockwise order are cylinders, disks,
and beams. (b) Three populations of real surfaces in clockwise order are
clavicles, tracheas, and thrombi.



model determines how well the model generalizes to unseen
instances of the modeled class. It is measured as the average
approximation error after fitting leave-one-out versions of the
model to the left out surfaces:

GðmÞ ¼ 1

ns

Xns
i¼1

min
���� ;bb

Dð��ð���� Þ � _xxmi ðbbÞ;MiÞ; ð39Þ

where _xxmi is the m-mode model where the ith surface was
left out, i.e., it is built from the corresponded surfaces
fxx1; . . . ; xxi�1; xxiþ1; . . . ; xxnsg. The model specificity measures
how much random samples,generated by the model
resemble the original surfaces:

SðmÞ ¼ 1

nt

Xnt
i¼1

min
j;����

D
�
��ð���� Þ � _xxm

�
bbmi
�
;Mj

�
; ð40Þ

where the bbmi are the random Gaussian model parameters
for the sample of the ith trial and nt is the number of random

samples used to estimate the specificity. Note that the model
performance measures from [18] result in a bias toward the
MDL-optimized models. The model performance measures
in (38), (39), and (40) do not suffer from this drawback. The
compactness measure from (37) is closely related to the
MDL-measure, and therefore, biased. It is, however,
reported here because it contains important information of
how a model captures the variation of a population.

7.3 Rigid versus Nonrigid Correspondence

The surfaces of each of the six phantom and real
populations were parameterized using the progressive
parameterization technique of [14]. The chosen height h of
the cylinder for each of the populations can be found in
Table 1. From the parameterized surfaces, a 16� 16 h

2�
b-spline representation was computed for each surface
using mp ¼ 10:000 points. This was followed by the
construction of the rigid correspondence. The number of
landmarks to estimate the covariance was np ¼ 4;000 for all
populations. Starting from the rigid correspondence, the
nonrigid correspondence was calculated. In this construc-
tion, a b-spline regularization factor of �� ¼ 0:2 was used
for all populations. Three levels of scale were used for the
b-spline surface, the reparameterization transformation,
and the number of landmarks. On the coarsest scale, a
4� 4 b-spline surface, together with a 4� 4 reparameter-
ization transformation, was the covariance matrix that was
estimated based on 250 landmarks. At each new resolution
label, the values are increased as detailed in Section 6. All
optimizations problems were solved with the L-BFGS
routine [46]. For the alignment initialization (26) and full
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TABLE 1
Ideal, Rigid, and Nonrigid Correspondence Results

Fig. 6. A visualization of the modes of models obtained with the approach of this paper. The color coding represents the frobenius norm of the
landmark covariance matrix and is a measure of the local variability of the surface. On the left, the first three modes are shown for the three CT-
scanned populations: trachea, clavicle, and thrombus. For each mode i, the average shape �xx is shown together with the positive and negative offset
in the direction of mode i: �xx� 3bbi

ffiffiffiffiffi
�i
p

. On the right, the modes of model for the disk population are shown. On the top, the b-spline-optimized model is
shown. At the bottom, the model of the rigid correspondence is shown. Clearly, the b-spline optimization dramatically improved the correspondence.



alignment (27), a gradient tolerance of 0.01 was used to
determine convergence. For the multiresolution correspon-
dence optimization (29), a gradient tolerance of 0:01� 2�L

was used. The quality of the obtained correspondences was
assessed using the aforementioned model performance
measures. The results are shown in Fig. 7 for the phantom
populations and in Fig. 8 for the real populations.

In Fig. 7, the ideal (intuitive), the rigid, and the nonrigid
correspondences for the phantom populations are com-
pared. For the disk population, it can be seen that the
nonrigid and the ideal correspondence are of comparable
quality. The rigid correspondence, on the other hand, is
much worse. This is due to the fact that the parameteriza-
tion technique maps the disk part of the surfaces to a
different location in the parameter space. The nonrigid
correspondence improvement, on the other hand, moves

the disks to the same part of the parameter space and this
results in an optimal correspondence. See Fig. 6 for a
visualization of the rigid and b-spline-optimized model.
The improved compactness of the nonrigid over the ideal
correspondence can be attributed to the reduced area that
the disk part of the surface for the nonrigid correspondence
takes in the parameter space. For the beam population, the
quality of the correspondences is comparable, with a slight
advantage for the ideal, since the parameterization techni-
que already generates a good correspondence. The most
notable difference is the improved specificity of the ideal
model, which is due to the fact that the other models can
generate samples with rounded corners. For the cylinders
population, it can be seen that the nonrigid correspondence
is an improvement over the ideal, which is mainly due to
the improved spatial alignment of the surfaces.
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Fig. 7. The model performance measures, together with the standard error, for the phantom populations. From left to right: beams, disks, and
cylinders populations. From top to bottom: compactness, reconstruction, generalization, and specificity measure. In each graph, a comparison is
made of the ideal correspondence (green), the rigid correspondence (red), and the nonrigid correspondence (black). For each model, the first
m modes are shown that capture 99 percent of the total variance in the model.



In Fig. 6, a visualization of the first few modes of the

models of the CT-scanned populations can be found. In

Fig. 8, the model performance measures for the rigid and

the nonrigid correspondence are shown for the CT-scanned

populations. It is more difficult to analyze these results

because there is no ideal correspondence available. It can

be seen though that the rigid correspondence generates

good models for all three populations and that the nonrigid

correspondence is a significant improvement in most cases.

Compared to the clavicle and trachea populations, the

approximation errors for the thrombi population errors are

higher. This can be attributed to the large variability that is

present in the thrombi population, together with the lower

resolution of the ct-scans, that is 0:5� 0:5� 0:5 mm3 versus

0:5� 0:5� 2:0 mm3.

In Table 1, the MDL values for the ideal (when available),
the rigid, and the nonrigid correspondences can be found
for all populations. It can be seen that the b-spline
correspondence optimization always succeeds in decreas-
ing the MDL-value. Such a decrease indicates that the
resulting shape model became less complex. This is most
apparent for the disk population: The five modes of the
rigid model (MDL-value of 17.2) are reduced to a single
mode by the b-spline optimization (MDL-value of 4.6).
Table 1 also reports the execution time for the construction
of the correspondences once the parameterizations are
obtained. About 10 percent of the time is taken by the rigid
correspondence construction. The correspondences for the
phantom populations are constructed more efficiently
compared with the CT-scanned populations. This is because
the phantom shape models are relatively simple, i.e., they
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Fig. 8. Different model performance measures, together with the standard error, for the real data sets. From left to right: clavicles, tracheas, and
thrombi populations. From top to bottom: compactness, reconstruction, generalization, and specificity measure. In each graph, the rigid
correspondence (red) is compared to the nonrigid correspondence (black). For each model, the first m modes are shown that capture 99 percent of
the total variance in the model.



have a small number of modes. The construction for the CT-
scanned populations takes a couple of hours. Together with
the construction of the parameterizations, a correspondence
can easily be established overnight.

7.4 Influence of Parameters

In this section, the influence of the method parameters on

the resulting correspondence is investigated. Fig. 9 shows

the model performance parameters for the clavicle popula-

tion when using different values for the most important

parameters: 1) the b-spline deformation regularization

controlled by factor �� in (29); 2) the number of landmarks

to estimate the shape covariance matrix, controlled by np in

(14); and 3) the number of scale levels L for the b-spline

surface approximation, the b-spline parameterization trans-

form, and the landmarks.
In the first column of Fig. 9, the influence of the b-spline

regularization factor �� is shown and it can be seen that, as

expected, lower regularization, i.e., smaller ��, generates

better models. However, the regularization cannot be

lowered too much since then irregularities can appear. No

irregularities were noted with regularization factors �� �
0:2 for all considered populations.
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Fig. 9. Influence of the method parameters on the model performance for the clavicle data set. Left: influence of the b-spline deformation
regularization factor ��. Seven models with regularizations from �� ¼ 0:05 to �� ¼ 1:6 are compared. The rigid case, i.e., �� ¼ 1, is provided as a
reference. It can be observed that models with less regularization tend to perform better. However, too low values for �� may result in irregularities.
Middle: influence of the number of landmarks np used in the estimation of the shape covariance matrix. Four models are shown with number of
landmarks from nLp ¼ 31 
 4L�1 to nLp ¼ 250 
 4L�1. It can be seen that the performance is insensitive to this parameter. However, for certain
populations, using too few landmarks may result in degraded models due to undersampling of highly variable surface regions. Right: influence of the
multiresolution scheme. The scheme encoded as aD-bO-cL uses a levels for the b-spline deformation, b levels for the surface approximation, and
c levels for the number of landmarks. It can be observed that the single resolution scheme 1D-1O-1L generates a degraded model and that the other
schemes result in comparable models. The full scheme 3D-3O-3L is preferred because it is computationally less expensive.



In the second column of Fig. 9, it can be seen that the
influence of the number of landmarks np is negligible for
the clavicle population. It can, however, happen that using
too few landmarks results in undersampling of highly
variable parts of the surface, which, in turn, will result in a
degraded correspondence. This was observed for the
thrombi population, where nLp ¼ 250 
 4L�1 landmarks gen-
erated a significantly better correspondence than nLp ¼
31 
 4L�1 landmarks (result not shown). Using fewer land-
marks reduces computation time, but it can also result in a
degraded correspondences.

In the last column of Fig. 9, the model performance
measures for different multiscale schemes are shown, and
in Table 2, the corresponding MDL values are listed. Four
different schemes are shown: 1D-1O-1L optimizes the
correspondence using a single resolution, 3D-1O-1L uses
three resolution levels for the deformations, 3D-3O-1L uses
three levels for the deformations and the surfaces, and
3D-3O-3L is the full multiresolution scheme using three
levels for the deformations, the surfaces, and the land-
marks. It can be seen that, for the clavicle, the single-scale
scheme generates a degraded correspondence and the three
other schemes generate comparable correspondences. How-
ever, the full three-scale scheme is considerably faster. For
the disk population, the performance degradation of the
single-scale method was even more notable since, as
opposed to the three other schemes, it did not successfully
correspond the disk parts of the surface (result not shown).

8 CONCLUSIONS

In this work, the minimum description length approach for
shape modeling was translated to surfaces of cylindrical
topology. The proposed method establishes an alignment
and a correspondence for a population of surfaces of
cylindrical topology. It generates a rigid correspondence
based on cylindrical surface parameterizations and an
improved correspondence using multilevel b-spline repar-
ameterizations. Care was taken to ensure that the objective
functions are differentiable with respect to the alignment
and reparameterization parameters and, where necessary,
an expression for the gradient was provided. It was shown
that the method produces correspondences that agree with
the intuitive correspondence and that the derived shape
models generate small approximation errors.

The cylindrical correspondence method of this paper,
together with the spherical correspondence methods from
[28] and [29], and the disc-like correspondence method of
[30] already cover a wide range of biomedical surfaces.
However, it would be interesting to extend the method to
other topologies. The method of this paper can be trivially
extended to surfaces of genus-1 topology,where the torus can

be used as the parametric domain. More complex topologies
can be treated by decomposing the surfaces in a consistent set
of discs and tubes. Populations of tubular structures with
bifurcations could be handled well with this approach.
However, arbitrary complex surfaces will suffer from the
boundary constraints imposed by the surface decomposi-
tion. The development of a method that can handle arbitrary
topology, without constraints, is a very challenging problem
to be solved in the future.
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