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Abstract

BACKGROUND: In computed tomography (CT), the source-detector

system commonly rotates around the object in a circular trajectory. Such

a trajectory does not allow to exploit a detector fully when scanning elon-

gated objects.

OBJECTIVE: Increase the spatial resolution of the reconstructed

image by optimal zooming during scanning.

METHODS: A new approach is proposed, in which the full width of

the detector is exploited for every projection angle. This approach is based

on the use of prior information about the object's convex hull to move the

source as close as possible to the object, while avoiding truncation of the

projections.

RESULTS: Experiments show that the proposed approach can sig-

ni�cantly improve reconstruction quality, producing reconstructions with

smaller errors and revealing more details in the object.

CONCLUSIONS: The proposed approach can lead to more accurate

reconstructions and increased spatial resolution in the object compared

to the conventional circular trajectory.
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1 Introduction

In most X-ray computed tomography (CT) acquisition setups, the source-detector

system rotates around the object in a well-de�ned and geometrically simple man-

ner. In micro-CT imaging, for example, a circular source-detector trajectory is

by far the most popular one. The radius of such a trajectory is often chosen

so as to avoid truncation in the acquired projections. That is, the radius is

chosen large enough so that for each angle the full projection of the object is

captured by the detector. However, for elongated objects, a circular trajectory

does not allow to exploit the detector optimally. In [15], it was shown that non-

planar trajectories yield visually better reconstructions than circular trajectories

in applications of tomosynthesis to breast imaging. In single photon emission

computed tomography (SPECT), non-circular orbits have been shown to reduce

uniformity artefacts [14], to improve resolution [3, 11], contrast, edge de�nition,

and uniformity [5]. Nevertheless, the use of non-conventional trajectories is still

almost unexplored.

To improve reconstruction quality, a new approach is proposed in which the

full width of the detector is exploited for every projection angle. To this end,

projections are taken from the smallest possible distances to the object, while

avoiding truncation. This is achieved by calculating the source position for

every projection angle based on prior knowledge about the convex hull of the

object. The proposed approach is integrated into an algebraic reconstruction

framework. Possible applications of this approach include scanning devices with

�exible acquisition geometries and mobile tomography devices. Objects with

substantial di�erences in their dimensions, such as electronic components, can

especially bene�t from scanning based on the proposed approach.

Prior knowledge about the object can come in various forms. A total-

variation (TV) minimization algorithm exploits sparsity of image derivative
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magnitude to address the few-view, limited-angle and bad-bin reconstruction

problems [12]. In interior tomography, prior knowledge of the grey values within

a small area inside the object is often readily available and can lead to more

clinically feasible imaging [13]. In CT scanning protocols assuming repeated

imaging, results of the initial scan(s) can be involved into the reconstruction of

the consecutive scans allowing to signi�cantly reduce the number of projections

required [1]. Information about the edges of the object is shown to improve the

reconstruction quality in the case of the few-view problem [4]. Finally, prior

knowledge about the grey values of each of a few materials forming the ob-

ject allows to use Discrete Algebraic Reconstruction Technique (DART), which

can yield accurate reconstructions from a small number of projections or from

a small angular range [2]. In all above-mentioned cases, prior knowledge is

involved during the reconstruction. Our approach, on the contrary, uses the

convex hull of the object as a source of information about the geometry of the

object to optimise the acquisition. In practice, an approximation of the convex

hull of the object can be built from a preparatory scan used to plan the scanning

procedure or from CAD models (for industrial objects) [9].

The structure of this paper is as follows. In Section 2 our approach is ex-

plained. Section 3 describes experiment setups and presents reconstruction re-

sults. The approach is discussed in Section 4. Finally, conclusions are drawn in

Section 5.

2 Approach

The idea of the proposed variable distance approach (VDA) is to acquire a pro-

jection for a particular projection angle by placing the X-ray source as close as

possible to the object, while avoiding truncation. In contrast to the circular tra-

jectory approach (CTA), which keeps the source-object distance constant, VDA
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allows to fully use the detector and obtain more information from this angle. To

calculate the smallest possible source-object distance, prior information about

the object must be exploited. In our simulations, we use the convex hull of the

object to calculate this distance.

Consider a cone-beam CT setup with a circular trajectory and a �at-panel

detector (Fig. 1), where the source-detector distance is constant. Let (x, y, z)

be a Cartesian coordinate system in R3 which is �xed with respect to the object

and let O denote the centre of rotation. For a given projection angle, denote the

source position on the circular trajectory with S and the corresponding positions

of the detector corners (in sequential order) with D1, D2, D3, D4. Suppose that

the source-detector system can be shifted along the line l containing O and S.

Consider a point P belonging to the pyramid SD1D2D3D4, which assures

that the point P is projected onto the detector. The source position closest

to the point P while avoiding truncation, say S′, then corresponds to a case

when P belongs to one of the faces of the pyramid S′D′1D
′
2D
′
3D
′
4 except for

D′1D
′
2D
′
3D
′
4, where S

′D′1D
′
2D
′
3D
′
4 is obtained from SD1D2D3D4 by translation

along l. Denote s =
−→
OS, p =

−−→
OP and the normal vectors of the faces SD1D2,

SD2D3, . . . , SD4D1 as n1, n2, . . . , n4, respectively. Assume that P belongs

to S′D′iD
′
i+1 (1 ≤ i ≤ 4, D′5 ≡ D′1 for ease of notation), which has ni as its

normal vector. Then, the position vector r of any point in the plane containing

S′D′iD
′
i+1 (and P ) can be found from

ni · (r − p) = 0. (1)

The intersection of l and the plane de�ned by (1) is si,P = ti,Ps, such that

ni · (si,P − p) = 0, (2)
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which brings one to

ti,P =
ni · p
ni · s

. (3)

S′ can be found as
−−→
OS′ = tPs, where

tP = max
1≤i≤4

ti,P (4)

Consider A1A2 . . . An (n ≥ 4), the convex hull of the object. In our exper-

iments, we suppose that the convex hull is a polyhedron, but the idea can be

easily adapted to other cases. The closest possible source position S′ for this

convex hull can be expressed as
−−→
OS′ = ts, where

t = max
P∈{Ai,A2,...,An}

tP . (5)

From Eq. (5), the source position that is closest to the object while truncation is

avoided can be computed. Repeating this procedure for every projection angle

yields the desired trajectory.

3 Experiments

3.1 Noiseless simulations in two dimensions

Simulation experiments were run using three phantom images (Fig. 2) to demon-

strate the proposed approach. Phantom 1 (Fig. 2a) is a Siemens star-like phan-

tom. Phantoms 2 and 3 (Fig. 2c and 2e) represent a fragment of foam and a

fragment of pencil CT image, respectively. Reconstructions were performed on

a square reconstruction grid of 1024 × 1024 pixels while the size of the each

phantom was 2048 × 2048 pixels to reduce the e�ect of the pixelation on the

reconstructions. A number of m equiangular fan beam projections were com-
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puted from the original phantoms using Joseph's projection method [8]. The

source trajectory for VDA was calculated according to Eq. (5). It is shown

in Fig. 2 together with the source trajectory for CTA and the detector centre

trajectories. In CTA the source was placed at the distance corresponding to

the maximum distance used in VDA. A detector with n = 1024 elements was

used. The reconstructions were built with 300 iterations of the Simultaneous

Iterative Reconstruction Technique (SIRT) [6]. Values outside the convex hull

were not involved in the reconstruction. All experiments presented in the paper

were implemented using the ASTRA toolbox [10].

The quality of the reconstructions was assessed by calculating the mean

squared errors (MSEs) according to

MSE
(
Ĩ , I
)
=

1

|C|
∑

(i,j)∈C

(
Ĩ (i, j)− I (i, j)

)2
, (6)

where Ĩ denotes the reconstruction upsampled by splitting each pixel into 2× 2

pixels and I is the original phantom with the convex hull C. Table 1 shows

the obtained numerical results. Fig. 3 shows the examples of reconstructions of

Phantom 1 using CTA and VDA. These reconstructions suggest that VDA can

yield visually better reconstructions, providing clearer feature borders, e. g. for

vertical ray-like parts of the phantom (Fig. 3b and Fig. 3d). From Table 1, it

is clear that VDA is only slightly outperformed by CTA when reconstructing

Phantom 3 from 200 projections, providing notably better �gures for MSE in

the remaining cases.

To further compare the proposed approach with its conventional counterpart,

the modulation transfer functions (MTFs) of CTA and VDA were calculated as

follows. First, the two-dimensional discrete Fourier transforms of the phantom

and the reconstructions obtained using CTA and VDA were computed. Next,

the magnitudes of the Fourier coe�cients for the reconstructions were divided
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by the corresponding magnitudes of phantom's Fourier coe�cients. Finally, the

results were integrated for each frequency. Fig. 3e presents the resulting MTFs

for Phantom 1, which con�rm the ability of the proposed approach to produce

reconstructions with improved spatial resolution compared to CTA.

3.2 Noiseless simulations in three dimensions

Experiments were performed using two phantoms (Fig. 4). Phantom 4 (Fig. 4a)

is in fact low resolution version of Phantom 1 (Fig. 2a) stacked 512 times and

intersected with an ellipsoid having axial ratios 0.95 : 0.3 : 0.3. Phantom 5

(Fig. 4b) represents the same ellipsoid with a lattice-like structure consisting

of voxel representations of spheres inside. Reconstructions were performed on

a cubic reconstruction grid of 256 × 256 × 256 voxels while the size of each

phantom was 512 × 512 × 512 voxels. A number of m equiangular fan beam

projections were computed from the original phantoms using Joseph's projection

method [8]. The source trajectory for VDA (Fig. 4c) was calculated according

to Eq. (5). In CTA the source was again placed at the distance corresponding

to the maximum distance used in VDA. The detector had 256 × 256 elements.

The reconstructions were built with 300 iterations of SIRT. Values outside the

convex hull were not involved in the reconstruction.

The quality of the reconstructions was assessed by a three-dimensional ana-

logue of Eq. (6). Fig. 5 and Fig. 6 present the resulting reconstructions. Fig. 5d

and Fig. 6d present the di�erence

D
(
ĨCTA, ĨV DA, I

)
=
∣∣∣ĨCTA − I∣∣∣− ∣∣∣ĨV DA − I∣∣∣ (7)

showing, which approach produces the results closer to the phantom. Table 2

represents the obtained numerical results. Visually, the results for VDA seem

to be of better quality compared to the results for CTA. In particular, star rays
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are better distinguishable in the central part of the image and seem to have bet-

ter vertical borders in the VDA reconstruction than in the CTA reconstruction

(Fig. 5) of Phantom 4. For Phantom 5, inclusions near the tips of the ellipsoid

are better distinguishable in the VDA reconstruction (Fig. 6). Interior of the

phantom looks more uniform on the VDA reconstruction (Fig. 6c) than on the

CTA reconstruction (Fig. 6b), whose artefacts might be confused with actual

object features. The di�erence image (Fig. 6d) con�rms these observations. Nu-

merical results in Table 2 show that in terms of MSE VDA clearly outperforms

CTA on both phantoms. The presented results suggest that VDA can provide

an ability to better handle small features in the objects than CTA.

3.3 Simulations with noise

In order to evaluate the proposed approach in more realistic situations the ex-

periments shown in Sections 3.1 and 3.2 were extended with noise simulations

as follows. Consider a monochromatic X-ray tube which emits Ns photons to-

wards a detector element with the area of 1 square unit placed perpendicularly

to the beam (to the line connecting the point x-ray source and the centre of the

element) at the distance of ds from the source. Then, the average number of

photons reaching the detector element E at the distance of d is

N = N0e
−

∫
µ(ξ)dξ = N0e

−A = N0e
−k

∫
g(ξ)dξ =

Nsd
2
sS cosα

d2
e−k

∫
g(ξ)dξ, (8)

where A is the ray integral calculated for the detector element E with no noise

introduced, g (ξ) is the grey level of the phantom in the point ξ, k is the scaling

coe�cient which matches g (ξ) with the attenuation coe�cient µ (ξ) of the object

(k is assumed to be 1/100 in our simulations), N0 is the number of photons

emitted towards the considered detector element of the area of S with α being

the angle between the normal of the element and the beam (scattered photons

9



were ignored). Then, the actual number of photons N ′ counted by E can be

selected according to Poisson statistics [7]. The noisy ray integral for the element

E can be calculated by

A′ = − ln
N ′

N0
. (9)

For each phantom from Sections 3.1 and 3.2, Eq. (8) and Eq. (9) were applied

to the noiseless projections to obtain K = 10 noisy sets of projection data

(values Ns = 105 and Ns = 106 were used to represent di�erent noise levels

and ds was equal to the source-object distance used in CTA in all simulations

of this section). For each noisy projection dataset the reconstructions were

built as described earlier and the mean values of MSE
(
Ĩ , I
)
over these K

reconstructions were gathered into Table 3, from which we see that VDA can

yield better results in the presence of noise than CTA. For none of these cases,

the latter outperforms VDA numerically, yielding reconstructions with visually

similar or lower quality as it was already described in Section 3.2 in noiseless

simulations.

3.4 Real experiment

To mimic a tomographic system with variable source and detector position, the

following experiment was conducted using a desktop micro-CT system SkyScan-

1172 (Bruker-MicroCT, Belgium). A piece of a pencil with a diameter of 7 mm

and a length of 15 mm was used as an elongated object. For this object, seven

full-angle datasets were obtained, each containing 600 images of 880×666 pixels,

with the source-object distances ranging from 80.77 to 117.01 mm. The source-

detector distance was 216.392mm. A dataset obtained from the biggest distance

was used during the reconstruction with CTA. Based on the CTA reconstruction,

an approximate convex hull for VDA was created. In VDA for each projection

angle the closest possible source position was calculated for this convex hull
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according to Eq. (5) and a projection was chosen from the dataset obtained from

the smallest distance bigger than or equal to the distance from the calculated

source position to the centre of rotation. Resulting trajectories are presented in

Fig. 7.

Both the CTA and VDA reconstructions were performed on the 880× 880×

666 voxels reconstruction grid with a voxel size of 19.4 μm using 700 iterations of

SIRT. Fig. 8 presents the reconstructions. Visually, both reconstructions seem

to have comparable quality. However, in the enlarged portions of the reconstruc-

tions shown in Fig. 9a-9b a border between wood and graphite seems to have

better contrast in the VDA reconstruction and two dense particles in the middle

of the image are easier visually distinguishable. Fig. 9c presents the reconstruc-

tion of the same region obtained with NRecon software (Bruker-MicroCT) from

the dataset with the smallest source-object distance, the voxel size is 13.4 μm.

As the region lies far from the edge of the region-of-interest, artefacts caused

by the truncated projections are negligible in this part of the NRecon recon-

struction. We therefore consider the NRecon reconstruction as the ground truth

for this region. This reconstruction shows that the above mentioned di�erences

in the CTA and VDA reconstructions are not the artefacts of the latter, but

rather the features truly presented in the object. Hence, experimental studies

agree with the simulations described in Section 3.2, showing the ability of VDA

to produce reconstructions which are superior to those produced by CTA in

realistic setup.

4 Discussion

The proposed approach allows to exploit prior knowledge of the object's shape

and size to optimize the detector usage and to obtain more detailed information

when scanning an elongated object, increasing the reconstruction quality. An
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approximate convex hull of the object can be created from a preparatory scan

(in clinical CT), a series of pictures of the object in optical range (in micro-

CT) or a CAD model (in industrial CT). Implementation of the source position

selection algorithm is straightforward and easily adaptable to various setups,

e. g. systems with constant object-detector distance (rather than a system with

constant source-detector distance, considered in the paper). The data collected

can be immediately reconstructed with an algebraic reconstruction procedure,

while analytical methods require rebinning, possibly leading to loss of quality.

Possible applications of the proposed approach include mobile tomographical

devices for use in the �eld and tomography of objects that have substantial

di�erences in all three dimensions, such as electronic components. Currently

these objects are imaged in helical or cone beam stacked mode and the source-

object distance is de�ned by the second biggest dimension, no matter how small

the third one is. Use of the variable distance approach will allow to better

exploit the dimension di�erences in this case.

5 Conclusion

We proposed the variable distance approach for fan and cone beam CT scanning.

This approach is based on the modi�cation of the classic circular trajectory

according to prior information about the object's convex hull which is used

to take projections from as small as possible distances to the object for every

projection angle providing that the truncation is avoided. Our experiments

showed that the proposed approach can lead to more accurate reconstructions

with lower errors. Reconstruction of the real dataset demonstrated an ability of

the approach to reveal more details in the object compared to the conventional

circular trajectory.
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Table 1: MSE of the reconstructions of Phantoms 1�3 (shown in Fig. 2)

CTA VDA

Phantom 1
m = 30 9.10× 10−2 7.25× 10−2

m = 200 1.46× 10−2 1.35× 10−2

Phantom 2
m = 30 7.66× 10−2 7.47× 10−2

m = 200 1.34× 10−2 1.31× 10−2

Phantom 3
m = 30 1.58× 10−3 1.48× 10−3

m = 200 3.45× 10−4 3.47× 10−4
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Table 2: MSE of the reconstructions of Phantoms 4�5 (shown in Fig. 4)

CTA VDA

Phantom 4
m = 200 2.27× 10−2 1.99× 10−2

m = 500 1.97× 10−2 1.66× 10−2

Phantom 5
m = 200 2.82× 10−3 2.38× 10−3

m = 500 2.77× 10−3 2.29× 10−3

17



Table 3: MSE of the noisy reconstructions of Phantoms 1�5, as described in
Section 3.3

CTA VDA

Phantom 1, Ns = 105
m = 30 1.07× 10−1 8.04× 10−2

m = 200 1.88× 10−2 1.86× 10−2

Phantom 1, Ns = 106
m = 30 9.26× 10−2 7.33× 10−2

m = 200 1.51× 10−2 1.42× 10−2

Phantom 2, Ns = 105
m = 30 8.06× 10−2 8.00× 10−2

m = 200 1.84× 10−2 1.73× 10−2

Phantom 2, Ns = 106
m = 30 7.71× 10−2 7.53× 10−2

m = 200 1.39× 10−2 1.35× 10−2

Phantom 3, Ns = 105
m = 30 6.34× 10−3 6.28× 10−2

m = 200 4.82× 10−3 4.07× 10−3

Phantom 3, Ns = 106
m = 30 2.16× 10−3 1.96× 10−3

m = 200 8.05× 10−4 7.33× 10−4

Phantom 4, Ns = 105
m = 200 2.40× 10−2 2.07× 10−2

m = 500 2.02× 10−2 1.70× 10−2

Phantom 4, Ns = 106
m = 200 2.28× 10−2 2.00× 10−2

m = 500 1.98× 10−2 1.66× 10−2

Phantom 5, Ns = 105
m = 200 4.05× 10−3 3.25× 10−3

m = 500 3.27× 10−3 2.64× 10−3

Phantom 5, Ns = 106
m = 200 2.95× 10−3 2.47× 10−3

m = 500 2.82× 10−3 2.32× 10−3
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Fig. 1: Geometry of trajectory calculation in VDA
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Fig. 2: Phantoms 1�3, 2048 × 2048 pixels (a, c, e), and the corresponding
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corresponding error images (c, d) and the modulation transfer function (e),
m = 30
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Fig. 4: Cross sections of Phantoms 4 (a) and 5 (b, windowed to [0.45, 0.55] for
better visual contrast), 512 × 512 × 512 pixels, by the plane z = 0.5, and the
trajectories used in reconstruction (c) (in the plane z = 0)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: Cross sections of Phantom 4 (a) and its CTA (b) and VDA (c) recon-
structions by the plane z = 0.5, corresponding error images (e, f), a di�erence
image (d) as de�ned by Eq. (7), and magni�ed cross sections of Phantom 4 (g),
its CTA (h) and VDA (i) reconstructions by the plane x = −6.5
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: Cross sections of Phantom 5 (a) and its CTA (b) and VDA (c) recon-
structions by the plane z = 0.5, corresponding error images (e, f), a di�erence
image (d) as de�ned by Eq. (7), and magni�ed cross sections of Phantom 5 (g),
its CTA (h) and VDA (i) reconstructions by the plane x = −137.5 ((a-c) and
(g-i) windowed to [0.45, 0.55] for better visual contrast)
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Fig. 7: Trajectories used for reconstruction of the pencil
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(a)

(b)

Fig. 8: Reconstructions of the central (containing optical axis) slice of the pencil
with CTA (a) and VDA (b)
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(a) (b) (c)

Fig. 9: Comparison of the CTA and VDA reconstructions of the pencil. Enlarged
fragments of the CTA (a) and VDA (b) reconstructions of the central slice
(Fig. 8), and the same region reconstructed with NRecon software (Bruker-
MicroCT) (voxel size 13.4 μm) (c)
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