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Samenvatting

Computertomografie (CT) is een niet-invasieve beeldvormingsmethode waarbij het

inwendige van een object gevisualiseerd wordt uitgaande van een aantal X-stralenfoto’s

die vanuit verschillende hoeken werden opgenomen. De techniek kan toegepast

worden bij verschillende modaliteiten, gaande van een typische X-stralen CT scan-

ner tot elektronenmicroscopie en synchrotrons.

Vaak zijn er slechts weinig X-stralenfoto’s beschikbaar, waardoor de beeldrecon-

structie bemoeilijkt wordt en waardoor artefacten verschijnen in het CT beeld.

Beperkte data problemen komen voor in verschillende CT toepassingen. In medis-

che CT is het opportuun om slechts een beperkt aantal projecties op te nemen

om de door de patiënt geabsorbeerde stralingsdosis zo laag mogelijk te houden. In

elektronenmicroscopie kan het monster vaak slechts over een beperkt hoekbereik

geroteerd worden wegens mechanische beperkingen en is het aantal projectiehoeken

vaak beperkt om schade aan het monster (veroorzaakt door de elektronenstraal)

te vermijden. Bij dynamische CT is het tijdsinterval om voldoende projectiedata

over het volledige angulaire bereik op te nemen vaak groot in vergelijking met het

tijdsinterval waarin substantiële veranderingen plaatsvinden binnen het gescande

object. Dit impliceert dat, om onscherpe reconstructies te vermijden, slechts een

beperkt aantal projecties opgenomen kunnen worden per tijdspunt, waardoor er

een reconstructieprobleem met beperkte data ontstaat.

In deze thesis worden verschillende verbeterde CT beeldreconstructiealgoritmes

voorgesteld, allen met het doel nauwkeurige reconstructies te genereren op basis

van slechts een beperkt aantal X-stralenfoto’s. De verbetering wordt bereikt door

gebruik te maken van lokale modellen van het te scannen object. Een betere

modellering van het object en/of reconstructieprobleem resulteert in een verbeterde

kwaliteit van het CT beeld. In het eerste deel van deze thesis, bestaande uit

enkel hoofdstuk 2, wordt deze aanpak gëımplementeerd voor stationaire poreuze

objecten. In het tweede deel verandert de focus naar dynamische CT, waarbij

de voorgestelde aanpak toegepast wordt op structureel veranderende objecten,

tomografie van vloeistofstromen en perfusie CT, in respectievelijk hoofdstuk 3, 4

en 5. Het derde deel bevat de algemene conclusies en appendices. In wat volgt

zullen de verschillende hoofdstukken verder toegelicht worden.

Hoofdstuk 1 – Introductie

In dit hoofdstuk wordt de lezer bekend gemaakt met de noodzakelijke technische

achtergrond en de notatie die gebruikt wordt doorheen de thesis. Zowel stationaire

als dynamische CT komen aan bod.
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SAMENVATTING

Deel I: Stationaire CT

Hoofdstuk 2 – Reconstructiemethode voor verbeterde porositeit kwantificatie
van poreuze materialen

In dit hoofdstuk wordt een op voorkennis gebaseerde reconstructiemethode gëın-

troduceerd voor poreuze materialen. Het algoritme wordt gevalideerd in de con-

text van elektronenmicroscopie, een vaak gebruikte beeldvormingstechniek voor

onderzoek naar het verband tussen de structuur en de eigenschappen van nano-

materialen.

Met een conventionele werkwijze is het kwantitatief interpreteren van elek-

tronentomografieresultaten niet eenvoudig. In het bijzonder wordt de accurate

kwantificatie van de poreuze ruimte bemoeilijkt door artefacten die gëıntroduceerd

worden in zowat elke stap van de conventionele werkwijze, i.e., acquisitie, recon-

structie, segmentatie en kwantificatie. Bovendien vereisen de meest voorkomende

conventionele werkwijzen subjectieve input van de gebruiker.

In dit hoofdstuk wordt het PORES algoritme (“POre REconstruction and Seg-

mentation”) gëıntroduceerd, het is een op maat gemaakte, integrale aanpak voor

de reconstructie, segmentatie en kwantificatie van poreuze materialen aan de hand

van CT. In de PORES werkwijze wordt een reconstructie berekend door simultaan

de poriën te classificeren en tegelijkertijd de overblijvende regio te reconstrueren

door de fout ten opzichte van de opgemeten projectiedata te minimaliseren. Deze

reconstructie kan dan onmiddellijk gebruikt worden in de overblijvende stappen

van het PORES algoritme, wat resulteert in nauwkeurige individuele kwantificatie

van de poriën en accurate statistieken over de porieverdeling binnen het volledige

sample. Het voorgestelde algoritme werd uitgebreid gevalideerd met zowel gesi-

muleerde als opgemeten experimentele data.

Deel II: Dynamische CT

Hoofdstuk 3 – Regiogebaseerde iteratieve reconstructie

In dit hoofdstuk wordt een reconstructiemethode voorgesteld voor lokaal in de tijd

veranderende objecten, i.e., objecten die dynamische veranderingen ondergaan in

slechts een lokale regio binnen het object. De focus is in dit hoofdstuk gericht op

structureel veranderende objecten.

In tegenstelling tot reconstructiemethodes voor continu veranderende objecten,

waar de continüıteit tussen reconstructies op verschillende tijdspunten opgelegd

kan worden via een deformatiemodel of regularisatie, berekenen huidige methodes

voor het reconstrueren van discreet of structureel veranderende objecten doorgaans

onafhankelijke reconstructies op de verschillende tijdspunten. De kwaliteit van
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zulke reconstructies is gelimiteerd door het feit dat er slechts een beperkt aantal

projecties beschikbaar zijn per tijdspunt.

Vertrekkende vanuit de observatie dat er in het gescande object regio’s bestaan

die onveranderd blijven doorheen de tijd, wordt in dit hoofdstuk een reconstruc-

tiemethode voorgesteld die deze regio’s automatisch bepaalt en deze kennis ge-

bruikt in een algebräısche reconstructiemethode. Het voorgestelde algoritme werd

gevalideerd met gesimuleerde data en experimentele µCT-data. Uit de validatie-

experimenten blijkt de geschiktheid van het voorgestelde algoritme om structureel

veranderende objecten preciezer te reconstrueren in vergelijking met huidige tech-

nieken.

De in dit hoofdstuk voorgestelde techniek vormt de basis voor de dynamische

reconstructiealgoritmes uit hoofdstuk 4 en 5.

Hoofdstuk 4 – Een iteratief CT reconstructiealgoritme voor het beeldvormen
van snelle vloeistofstromen

Het onderzoek van vloeistofstromen in vaste media door middel van CT-beeldvorming

heeft vele toepassingen, onder andere in de olie-industrie en in biomedisch en

milieu-onderzoek. Om bewegingsartefacten te vermijden moeten huidige experi-

menten vaak beperkt worden tot het beeldvormen van trage vloeistofstromen. Dit

is een groot nadeel aan de techniek in zijn huidige vorm.

In dit hoofdstuk wordt een nieuwe iteratieve reconstructietechniek voorgesteld

die verbeterde temporele/spatiale resolutie toelaat bij het beeldvormen van vloei-

stofstromen door vaste media. Het voorgestelde algoritme maakt gebruik van

voorkennis op twee manieren. Analoog aan hoofdstuk 3 wordt er in de eerste

plaats aangenomen dat het in de tijd veranderende object bestaat uit stationaire

(het vaste medium) en dynamische regio’s (de vloeistofstroom). Ten tweede wordt

het attenuatieverloop in een specifiek voxel binnen de dynamische regio gemodel-

leerd aan de hand van een stuksgewijs constante functie, wat in overeenstemming

is met de werkelijke oprukkende scheidingslijn tussen de vloeistof en de lucht.

Kwantitatieve en kwalitatieve resultaten van verschillende simulatie experi-

menten en een experiment met neutronentomografiedata tonen aan dat, in verge-

lijking met huidige state-of-the-art methodes, het voorgestelde algoritme toelaat

reconstructies te berekenen op basis van een substantieel minder aantal projecties

zonder kwaliteitsverlies. Hieruit volgt dat de voorgestelde techniek toelaat de tem-

porele resolutie substantieel op te drijven en bijgevolg snellere vloeistofstromen te

beeldvormen.
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Hoofdstuk 5 – Iteratieve reconstructie voor lage dosis bij cerebrale perfusie CT

Cerebrale perfusie CT (PCT) is een krachtige techniek voor het niet-invasief beeld-

vormen van hemodynamische informatie in de hersenen. Stralingsblootstelling ten

gevolge van het herhaaldelijk scannen van de hersenen gedurende het perfusiepro-

ces is echter een groot nadeel. In de literatuur zijn reeds verschillende recon-

structiealgoritmes voorgesteld die toelaten de geleverde dosis te verlagen terwijl

de reconstructiekwaliteit behouden blijft. Deze methodes zijn ofwel afhankelijk

van een vooraf opgenomen beeld van hoge kwaliteit (waardoor opnieuw extra do-

sis gëıntroduceerd wordt) of leggen perfusiespecifieke modelaannames op over het

ganse reconstructiedomein (waarbij er geen rekening gehouden wordt met de spec-

ifieke eigenschappen van verschillende lokale regio’s binnen de hersenen).

In dit hoofdstuk wordt het Local Enhancement Steered Tomography (LEST)

algoritme voorgesteld. In het algoritme wordt aangenomen dat de hersenen regio’s

bevat die niet veranderen in de tijd (de schedel en alles daarbuiten) en bovendien

wordt de temporale relatie tussen reconstructies op verschillende tijdspunten in de

dynamische regio’s (weefsel en bloedvaten) benut. Daarenboven wordt de vorm

van de arteriële input functie (AIF) onafhankelijk geoptimaliseerd op basis van de

projectiedata op tussentijdse iteraties.

Het LEST algoritme werd uitgebreid gevalideerd met gesimuleerde en klinische

data en de resultaten werden vergeleken met vaak gebruikte en state-of-the-art

methodes. Kwantitatieve en kwalitatieve resultaten tonen aan dat het LEST algo-

ritme, in vergelijking met de andere methodes, toelaat de radiatiedosis substantieel

te verlagen met behoud van beeldkwaliteit.

Deel III: Conclusies en Appendices

Hoofdstuk 6 – Conclusies

In dit hoofdstuk wordt een samenvatting en algemene conclusies gegeven omtrent

het werk dat voorgesteld werd in deze thesis.

Appendix

In de appendix wordt een klein zijproject omtrent een algoritme voor automatis-

che schaduwkunstcreatie toegelicht. Schaduwkunst draait om het uitzonderlijke

artistieke effect waarbij één of meerdere verrassende schaduwen geworpen worden

vanuit een ogenschijnlijk niet gerelateerd object. De meeste schaduwkunstarti-

esten maken zulke beeldwerken op basis van trial-and-error, een methode die zeer

moeilijk wordt als het doel is om meerdere onderling verschillende schaduwen te

creëren vanuit eenzelfde object. In deze appendix wordt een uniek computer algo-

ritme (gëınspireerd door CT-reconstructiealgoritmes) voorgesteld dat de mogeli-
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jkheid heeft zulke driedimensionale objecten automatisch te berekenen, gegeven

een aantal gewenste schaduwen.
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Summary

Computed Tomography (CT) is a powerful tool for non-destructive imaging in

which an object’s interior is visualized by reconstructing a set of projection images.

The technique can be applied in various modalities, ranging from a typical X-ray

CT scanner to electron microscopy and synchrotron beamlines.

Often, only limited projection data is available, which makes the reconstruction

process more difficult and results in reconstruction artifacts if standard techniques

are employed. Limited data problems can arise in a variety of applications. In

medical CT, the acquisition of only a limited number of projections is beneficial

to reduce the radiation dose delivered to the patient. In electron tomography, the

sample can only be rotated over a limited tilt range due to mechanical constraints

and the number of acquisition angles is often relatively small to avoid beam dam-

age. In dynamic CT, the time to acquire sufficient projection data over the full

angular range is often long in comparison to the time interval in which substan-

tial changes inside the scanned sample occur. This implies that, in order to avoid

blurry reconstructions due to the time-varying nature of the sample, only a limited

amount of projections can be acquired per time frame, resulting in a limited data

problem.

In this thesis, various improved reconstruction algorithms are proposed, all

with the goal of achieving adequate image quality with only few projection images.

The improvement is mainly due to the introduction of local models, specific to the

problem at hand, into the reconstruction process. By more accurately modelling

the sample, the reconstruction problem becomes more determined, which generally

results in improved reconstruction quality. In the first part of this thesis, which

consists solely of Chapter 2, this approach is implemented for stationary porous

samples. Next, in part II, the focus changes to dynamic CT, where the approach

is applied to structurally changing samples, fluid flow tomography and perfusion

CT, in Chapter 3, 4 and 5, respectively. Part III contains the conclusions and the

appendices. In what follows, the various chapters of this thesis are summarized.

Chapter 1 – Introduction

This chapter introduces the reader to the necessary technical background and

notation of this thesis. Both classical and dynamic CT are discussed.
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Part I: Stationary CT

Chapter 2 – Reconstruction method for improved porosity quantification of
porous materials

In this chapter, a prior knowledge based reconstruction algorithm for porous sam-

ples is introduced. It is validated in the electron tomography setting, which is

currently a versatile tool to investigate the connection between the structure and

properties of nanomaterials.

With standard approaches, a quantitative interpretation of electron tomogra-

phy results is still far from straightforward. Especially accurate quantification of

pore-space is hampered by artifacts introduced in all steps of the processing chain,

i.e., acquisition, reconstruction, segmentation and quantification. Furthermore,

most common approaches require subjective manual user input.

We introduce the PORES algorithm (“POre REconstruction and Segmenta-

tion”); it is a tailor-made, integral approach, for the reconstruction, segmentation,

and quantification of porous materials. In the PORES processing chain, a recon-

struction is calculated by simultaneously classifying the interior region to the pores

while reconstructing the remaining region by reducing the error with respect to

the acquired projection data. This reconstruction can be directly plugged into the

remaining processing chain of the PORES algorithm, resulting in accurate indi-

vidual pore quantification and full sample pore statistics. The proposed approach

was extensively validated on both simulated and experimental data, indicating its

ability to generate accurate statistics of porous materials.

Part II: Dynamic CT

Chapter 3 – Region-based iterative reconstruction

In this chapter, a reconstruction method is introduced for locally time-varying

objects, that is, objects that change dynamically only in a local region inside the

object. The focus of this chapter is on structurally changing objects.

In contrast to reconstruction methods for continuously changing objects, where

the continuity between reconstructions at different time points can be enforced by

a deformation model or regularization techniques, current methods for the recon-

struction of discretely or structurally changing objects usually calculate indepen-

dent reconstructions at different points in time. The quality of such reconstructions

is limited by the fact that only a small number of projections are available at each

time point, thereby also limiting the time resolution.

Starting from the observation that there exist regions within the scanned object

that remain unchanged over time, we introduce an iterative optimization routine

that can automatically determine these regions and incorporate this knowledge

xvi



SUMMARY

in an algebraic reconstruction method. The proposed algorithm was validated

on simulation data and experimental µCT data, illustrating its capability to re-

construct structurally changing objects more accurately in comparison to current

techniques.

The technique introduced in this chapter, forms a basis for the dynamic recon-

struction algorithms in Chapter 4 and 5.

Chapter 4 – An iterative CT reconstruction algorithm for fast fluid flow imaging

The study of fluid flow through solid matter by CT imaging has many applications,

ranging from petroleum and aquifer engineering to biomedical, manufacturing and

environmental research. To avoid motion artifacts, current experiments are often

limited to slow fluid flow dynamics. This severely limits the applicability of the

technique.

In this chapter, a new iterative CT reconstruction algorithm for improved tem-

poral/spatial resolution in the imaging of fluid flow through solid matter is in-

troduced. The proposed algorithm exploits prior knowledge in two ways. Firstly,

analogously to Chapter 3, the time-varying object is assumed to consist of sta-

tionary (the solid matter) and dynamic regions (the fluid flow). Secondly, the

attenuation curve of a particular voxel in the dynamic region is modeled by a

piecewise constant function over time, which is in accordance with the actual ad-

vancing fluid/air boundary.

Quantitative and qualitative results on different simulation experiments and

a real neutron tomography dataset show that, in comparison to state-of-the-art

algorithms, the proposed algorithm allows reconstruction from substantially fewer

projections per rotation without image quality loss. Therefore, temporal resolution

can be substantially increased and thus fluid flow experiments with faster dynamics

can be performed.

Chapter 5 – Iterative reconstruction for low-dose cerebral perfusion CT

Cerebral perfusion X-ray computed tomography (PCT) is a powerful tool for non-

invasive imaging of hemodynamic information throughout the brain. However,

because PCT requires the brain to be imaged multiple times during the perfusion

process, radiation dose is of major concern. Various reconstruction algorithms that

allow for lowering the dose while maintaining image quality have been proposed in

the literature. These methods either depend on a prior high quality image (which

again introduces extra dose) or enforce perfusion specific model assumptions glob-

ally (not taking into account the specific properties of different regions throughout

the reconstructed volume).

In this chapter, we propose the Local Enhancement Steered Tomography (LEST)
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method. It assumes that the brain volume has stationary regions over time (bone

and void space) and exploits the temporal relation between the different time

frames in the dynamic region (brain vessels and tissue). Furthermore, the shape

of the arterial input function (AIF) is independently optimized based on the pro-

jection data at intermediate iterations.

The LEST algorithm is extensively validated with simulation and real clinical

experiments and its performance is compared to commonly used methods and

the state-of-the-art prior image constrained compressed sensing (PICCS) method.

Quantitative and qualitative results show that LEST is able to substantially reduce

the radiation dose while maintaining image quality in comparison to these methods.

Part III: Conclusions and Appendices

Chapter 6 – Conclusions

This chapter summarizes and provides general conclusions about the work pre-

sented in this thesis.

Appendix

In the appendix, a small side-project about automatic algorithms for shadow art

creation is described. Shadow art involves the exceptional artistic effect of sur-

prising shadows that are shed from a seemingly unrelated sculpture. Most shadow

artists construct these sculptures in a trial-and-error-fashion, a method that be-

comes particularly difficult if the goal is to shed multiple distinct shadows from

a single object. In our approach, a unique computer algorithm (inspired by CT

reconstruction techniques) was designed, which has the ability to calculate such

three-dimensional objects automatically, given a set of desired shadows.

xviii
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CHAPTER 1. INTRODUCTION

In this chapter, a short introduction to computed tomography (CT) and X-ray

physics is given. CT is an advanced imaging technique that allows for non-invasive

visualization of the interior of a scanned object. In Fig. 1.1, the typical steps

involved in CT imaging are described. In a first step, see Fig. 1.1a, X-ray projection

images (also known as Röntgen photos or radiographs) are acquired at different

angles from an object of interest. All steps involved in this acquisition process

are described in Section 1.1. The second step in CT imaging is the reconstruction

step, which is conceptually visualized in Fig. 1.1b and thoroughly explained in

Section 1.2. In Section 1.3, the concepts of the previous section are extended to

dynamic CT, where the object is no longer assumed to be stationary throughout

the acquisition process. Finally, the introduction is finalized in Section 1.4 by

enumerating some important applications of CT imaging.

(a) The first step: Projection data is acquired at different angles
from an object under interest.

(b) The second step: From the projection data, the unknown at-
tenuation values of the object are to be calculated.

Figure 1.1: A conceptual visualization of the steps involved in CT imaging.
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1.1. ACQUISITION PROCESS

This introductory chapter is a basic introduction to tomography. A more de-

tailed overview of tomography can be found in [1, 2].

1.1 Acquisition process

In this section, a brief introduction to the CT acquisition process is given. First,

in Section 1.1.1, the necessary X-ray physics are discussed. A description of the

law of Beer-Lambert, which is a simple model for the data acquisition step, is

given in Section 1.1.2. Finally, in Section 1.1.3, diffferent projection geometries

are discussed.

1.1.1 X-rays: generation, matter interaction and detection

X-rays are a form of electromagnetic radiation with an energy range between 100

eV and 100 keV. They were first discovered by Wilhem Röntgen in 1895, who

named it X-radiation to signify the (at that time) unknown type of radiation [3].

X-rays can be described with a wave model or a particle model. In this thesis,

X-rays will be mostly modelled with a particle model, i.e., they consist of discrete

bundles or packets of energy, referred to as photons or X-ray quanta.

X-ray generation

In medical and µCT scanners, X-rays are typically generated within a vacuum

tube. A standard vacuum tube consists of a cathode and an anode, over which a

high voltage is applied. Thermionic emission sets electrons free from the cathode,

accelerating them through the high voltage such that they hit the anode surface at

high speed. When the fast electrons enter the anode surface, multiple interactions

take place, resulting in a conversion of the electron kinetic energy into X-ray

radiation and heat. The emitted X-rays have a spectrum that typically resembles

the spectrum illustrated in Fig. 1.2 [4, 1]. The shape of the spectrum can be

explained by the physical mechanisms that are responsible for the production of

X-rays in the X-ray tube:

� Fast electrons can be diffracted and slowed down once they enter the an-

ode surface. Due to the charged particles being decelerated (often multiple

times), electromagnetic waves (in our case: X-rays) are radiated in a contin-

uous range of energies. This phenomenon is known as bremsstrahlung and

corresponds to the smooth part of the spectrum in Fig. 1.2. The amount of

deceleration is directly linked to the energy level of the emitted X-ray photon.

If an electron directly collides into the nucleus of an anode atom, all the elec-
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Figure 1.2: A typical conceptual representation of the X-ray spectrum in a medical CT
scanner with an acceleration voltage of 120 keV.

tron’s energy is conversed into X-ray radiation, a process that corresponds

to the upper energy limit in the emitted spectrum (see Fig. 1.2).

� X-rays can also be generated from a direct interaction of fast electrons with

the inner shell electrons of the anode’s surface. If an inner shell electron

is kicked out of the atom by a collision with a fast electron, an outer shell

electron will take its place, a process that is accompanied by the emission of

a photon. Since the binding energy difference between the same two shells

is always constant, the emitted X-ray quanta resulting from this process can

only have energy at a few discrete values. This creates a few sharp peaks in

the emitted X-ray spectrum, known as characteristic emission.

The area on the anode that is hit by the fast electrons and from which the X-rays

are emitted is called the focal spot. To obtain high resolution radiographs, a small

focal spot size is desirable. The effect of the focal spot size is illustrated in Fig. 1.3.

In this figure, the penumbra is conceptually visualized, it is a blurry region at the

edge of the scanned object’s projection, which is due to partial absorption/illumi-

nation of the X-rays originating from the source with a larger spot size. Since only

1% of the kinetic energy of the fast electrons is conversed into X-rays while the

remaining 99% goes into heat, the maximum heat capacity of the focal spot area

is the major limiting factor for the focal spot size. If the heat delivered during a

single exposure exceeds the focal spot heat capacity, the anode surface can melt.

For this reason, a common technique is to continuously rotate the anode, thereby

spreading the heat over a larger surface. Other, more advanced, techniques exist

4
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Figure 1.3: Illustration of the effect of a large focal spot size (left part of the figure) in
comparison to a small focal spot size (right part of the figure).

as well, such as the liquid metal jet anode, where a continuous flow of liquid metal

replaces the solid anode [5].

In synchrotron facilities, X-rays are produced in a different manner [6]. The

path of the high energy electrons that are contained within the storage ring is

bended (corresponding to a radial acceleration), resulting in the production of

X-rays. Among many other, a great advantage in synchrotron facilities is that

monochromatic X-ray beams (i.e., X-rays of a single energy level) can be pro-

duced at a high photon flux. To generate a proper photon flux in medical and

lab-based CT systems, one has to work with polychromatic X-ray beams, consist-

ing of photons within a continuous range of energies (see Fig. 1.2).

In the remainder of this thesis, the intensity of an X-ray beam (which is defined

as the energy arriving at a surface of one square meter each second) is denoted

by I(η,E), where η represents the distance travelled along the X-ray path and E

the energy bin. Often, a monochromatic X-ray beam is assumed, in which case

the intensity is proportional to the number of photons and its intensity is denoted

simply by I(η). The X-ray beam intensity at the source position is denoted by

I(0) = I0.

5
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X-ray matter interaction

As X-rays pass through an object, various scattering and absorption events result

in a decreased intensity at the end of the object [7, 1]. This decreased intensity

is described via the object’s attenuation coefficient µ, which models all physical

mechanisms that lead to attenuation of the X-ray beam. The radiation intensity

of a monochromatic beam after passing a distance 4η through a thin slice of

homogeneous material with attenuation coefficient µ is described as follows:

I(η+4η) = I(η)− µ(η)I(η)4η
�� ��1.1

= I(η) (1− µ(η)4η) .
�� ��1.2

These equations have two intuitively different interpretations. In Eq. 1.1, one

can observe that the difference in intensity after passing through the thin slice

is proportional to the attenuation coefficient and the distance travelled through

the slice. Another interpretation is given by Eq. 1.2, where (1− µ(η)4η) can be

seen as the probability of a single photon of passing through the thin slice and

I(η) (1− µ(η)4η) as the expected number of photons that pass through the slice.

X-ray detection

A crucial part of a CT system is the detection of the transmitted X-rays, i.e.,

the beam intensity I after it passed through the object. Various types of X-ray

detection technologies are described in [1]. Conventional X-ray detectors integrate

the total number of photons in each detector pixel over a short period of time

(the exposure time), without obtaining information about the energy of individual

photons. An alternative is energy-resolved photon counting with dual energy de-

tection [8] or multiple energy thresholds [9], providing the additional capability of

counting individual photons based on their detected energies.

1.1.2 The law of Beer-Lambert

The law of Beer-Lambert is an important law that is often exploited in the theory

of computed tomography. It relates the attenuation of light (in our case X-rays) to

the properties of the material through which the light is propagating. The Beer-

Lambert law states that a monochromatic X-ray with radiation intensity I0 that

propagates a distance s through a material with distance dependent attenuation

coefficient µ(η) has a remaining intensity given by

I(s) = I0e
−

∫ s
0
µ(η)dη.

�� ��1.3

The law is conceptually visualized in Fig. 1.4.
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Figure 1.4: Illustration of the Beer-Lambert law.

The law of Beer-Lambert can be derived as follows. Let η be the axis parallel

to the direction of the X-ray beam (see Fig. 1.4). Rearranging the terms in Eq. 1.1

gives
I(η+4η)− I(η)

4η
= −µ(η)I(η),

�� ��1.4

which results in
dI

dη
(η) = −µ(η)I(η)

�� ��1.5

after taking the limit for4η → 0. Eq. 1.5 is an ordinary linear differential equation

which can be solved by rearranging the terms and multiplying the equation with

the integrating factor e
∫ η
0
µ(η′)dη′ , leading to

dI

dη
(η)e

∫ η
0
µ(η′)dη′ + µ(η)I(η)e

∫ η
0
µ(η′)dη′ = 0.

�� ��1.6

Applying the product rule backwards, this simplifies to

d

dη

(
I(η)e

∫ η
0
µ(η′)dη′

)
= 0.

�� ��1.7

Integrating both sides of this equation, leads to∫ s

0

d

dη

(
I(η)e

∫ η
0
µ(η′)dη′

)
dη =

∫ s

0

0 dη
�� ��1.8

⇔ I(s)e
∫ s
0
µ(η′)dη′ − I(0)e

∫ 0
0
µ(η′)dη′ = 0

�� ��1.9

⇔ I(s)e
∫ s
0
µ(η′)dη′ = I(0)

�� ��1.10

⇔ I(s) = I(0)e−
∫ s
0
µ(η′)dη′ .

�� ��1.11

This completes the derivation, since Eq. 1.11 is equivalent to Eq. 1.3.

The law of Beer-Lambert is particularly of interest because it can be trans-
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formed to a linear relation between the measured data and the attenuation coeffi-

cients of the object. That is, Eq. 1.3 can be rewritten as

− ln

(
I(s)

I0

)
=

∫ s

0

µ(η)dη.
�� ��1.12

If the incoming beam intensity I0 is known, which is almost always the case in

practical applications, the left hand side of Eq. 1.12 is fully known. The process

of dividing the measured intensity by the incoming beam intensity I0 is known as

flat field correction. In the remainder of this thesis it is assumed that the available

projection data is always in its preprocessed form − ln (I(s)/I0).

1.1.3 Projection geometries

A projection geometry refers to the set-up and position of detector and source.

Without intending to cover a full oversight of all possible projection geometries,

some common projection geometries are described here.

In the 2D case, a parallel beam geometry and fan beam geometry are the most

common. In the parallel beam geometry all rays in a single projection are parallel

to each other, as is visualized in Fig. 1.5a. In a fan beam geometry, all rays start

from a single point source and reach the detector in equidistantly spaced detector

points, see Fig. 1.5b. In 3D, the parallel beam (see Fig. 1.5c) and cone beam (see

Fig. 1.5d) are the 3D analogue of the 2D parallel beam and fan beam geometry,

respectively. If cone beam projections are acquired in a circular trajectory, the term

circular cone beam geometry is utilized. A helical cone beam geometry refers to

cone beam projections that are acquired in a helical trajectory (a geometry that

is quite common in medical CT).

1.2 Reconstruction methods

The goal of a reconstruction method is to find the distribution of attenuation co-

efficients within the scanned object based on the measured projection data (see

Fig. 1.1b). In what follows, different types of reconstruction methods are described.

These can be roughly subdivided into three classes. Analytical reconstruction me-

thods (Section 1.2.1) model the object’s attenuation coefficients as a function of

its spatial coordinates and exploit various analytical properties of the forward pro-

jection model in order to generate a reconstruction. In algebraic reconstruction

methods (Section 1.2.2), the object is modelled on a discrete pixel/voxel grid and

the reconstruction problem is reduced to a large system of linear equations. In

a final class of methods, i.e., statistical reconstruction methods (Section 1.2.3),

8
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(a) 2D parallel beam (b) 2D fan beam

(c) 3D parallel beam (d) 3D cone beam

Figure 1.5: Illustration of different projection geometries for the 2D and 3D case.

various statistical properties of the acquisition process are exploited and typically

some likelihood function, incorporating these statistical properties, is optimized.

In what follows, all methods are described for the 2D case, i.e., a 2D object

from which one-dimensional projections are acquired. For algebraic and statistical

methods, the extension to the 3D case is straightforward, but will not be described

here. The more difficult extension to 3D for analytical methods will also not be

discussed here, since this thesis deals with algebraic reconstruction methods.

1.2.1 Analytical reconstruction methods

In the analytical approach, the object’s attenuation coefficients are described as a

function f : R×R→ R that maps the spatial coordinate (x, y) to its corresponding

local attenuation coefficient µ. In Section 1.2.1.1 and Section 1.2.1.2, the Radon

transform and the Fourier slice theorem are introduced. The latter makes a re-

markable connection between the analytical projections and the two-dimensional

9
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Figure 1.6: Schematic overview of the analytical projection model and the Fourier slice
theorem. The one dimensional Fourier transform of the projection data at angle θ yields a
slice through the Fourier domain, which is perpendicular to the projection direction.

Fourier transform of f(x, y). These concepts lead to the Filtered Backprojection

(FBP) reconstruction algorithm in Section 1.2.1.3. This section is finalized by

briefly discussing some other analytical reconstruction methods in Section 1.2.1.4.

1.2.1.1 Radon transform

The projection process in tomography consists of straight rays traversing the object

f at a certain angle and a certain distance from the center of the detector to the

ray (this is illustrated in the left part of Fig. 1.6). A particular line L(r, θ) at

a counter-clockwise angle θ from the y-axis and at a signed distance r from the

origin is defined as follows:

L(r, θ) = {(x, y) ∈ R2 | x cos θ + y sin θ = r}.
�� ��1.13

Remember that the log- and flat-field-corrected projections are theoretically given

by a line integral of the attenuation coefficients, see Eq. 1.12. Therefore, a partic-

ular projection value pθ(r) is defined as the line integral through f(x, y) over the

line L(r, θ):

pθ(r) =

∫
L(r,θ)

f(x, y)ds.
�� ��1.14

10
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The Radon transformR is the transformation that maps the object function f(x, y)

to the complete set of projection values, i.e.,

f(x, y)
R↔ {pθ(r) | θ ∈ [0, π[, r ∈ R}.

�� ��1.15

Eq. 1.15 implies that (Rf)(θ, r) = pθ(r).

1.2.1.2 Fourier slice theorem

The Fourier slice theorem for two dimensions is conceptually visualized in Fig. 1.6.

The theorem states that the one-dimensional Fourier transform of a parallel beam

projection of f(x, y) at a certain angle is exactly the same as the slice through the

Fourier transform F (u, v) which is perpendicular to the projection direction. The

Fourier slice theorem is stated more precisely in the following theorem:

Theorem. Let f : R × R → R : (x, y) 7→ f(x, y) be a two-dimensional function

and define its projection pθ(r) : R → R : r 7→ pθ(r) as in Eq. 1.14. Denote the

two-dimensional Fourier transform of f(x, y) as F (u, v) and the one-dimensional

Fourier transform of pθ(r) as Pθ(q). Then the following equality holds:

F (u, v)|u=q cos(θ)
v=q sin(θ)

= Pθ(q).
�� ��1.16

Proof. The proof of the Fourier slice theorem is straightforward after assuming

that θ = 0. This can be assumed without loss of generality. Indeed, if the theorem

applies for θ = 0, then the theorem is also valid for any θ 6= 0, since a rotation is

the spatial domain corresponds to exactly the same rotation in Fourier space. It

is hence sufficient to prove that F (q, 0) = P0(q).

The line integral p0(r) corresponds to

p0(r) =

∫
L(r,0)

f(x, y)ds =

∫ ∞
−∞

f(r, y) dy
�� ��1.17

since L(r, 0) is the line x = r. The Fourier transform of f(x, y) is

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−2πi(xu+yv) dx dy.
�� ��1.18
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Figure 1.7: Parallel beam projections yield a radial filling of values in the Fourier space.

Evaluated in u = q and v = 0 this becomes

F (q, 0) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−2πixq dxdy
�� ��1.19

=

∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dy

]
e−2πixqdx

�� ��1.20

=

∫ ∞
−∞

p0(x) e−2πixqdx
�� ��1.21

= P0(q).
�� ��1.22

This concludes the proof.

This theorem has some important consequences. In theory, if enough projec-

tions pθ(r) can be acquired, the Fourier domain of the object can be fully sampled.

A simple inverse Fourier transform could hence suffice to reconstruct the object

function f(x, y). In practice however, projections are given in a finite number of

detector pixels and can only be acquired at a finite number of angles. Assuming

a parallel beam projection geometry (i.e., all rays in a single projection image are

parallel to each other), the Fourier space of the object f(x, y) is radially sampled,

as is illustrated in Fig. 1.7. To use the fast Fourier transform (FFT) algorithm

[10] to perform the inverse Fourier transform in an actual implementation, the

radially sampled Fourier space must be resampled on a regular grid. Therefore,

interpolation is necessary. However, this introduces large interpolation errors in

the higher frequency part of the spectrum, since samples are only sparsely available

in this region. These high spatial frequencies correspond to fine details in the ob-

ject function, and since they are less accurately represented after the resampling,
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image quality is seriously degraded. In the next section, an analytical method that

compensates for the fact that points in Fourier space are more densely sampled

near the origin is introduced.

1.2.1.3 Filtered Back Projection (FBP)

The Filtered Back Projection (FBP) reconstruction method is based on the fol-

lowing analytical formula:

f(x, y) =

∫ π

0

{∫ ∞
−∞

Pθ(q)|q|e2πiq(x cos θ+y sin θ)dq

}
dθ.

�� ��1.23

Before proving this formula, its different components are explained. As can be

observed from Eq. 1.23, the FBP formula gives rise to a simple two step approach

for calculating a reconstruction of the scanned object based on the measured pro-

jection data:

1. Filter the projection data pθ(r) by multiplying its Fourier transform Pθ(q)

with |q| and calculating the inverse Fourier transform. This step corresponds

to the inner integral in Eq. 1.23.

2. For a particular location in the image domain (x, y), sum up all the filtered

projection data that corresponds to the lines x cos θ + y sin θ with θ ∈ [0, π].

This step corresponds to the outer integral in Eq. 1.23.

This approach can be turned into a practical algorithm, keeping the following in

mind:

� Since projection data is acquired at a finite number of detector pixels, and

thus only available at discrete locations, the Fourier and inverse Fourier

transform are performed with the FFT algorithm. Also, the formula is only

evaluated at discrete locations in the spatial domain, typically on the pixel-

coordinates of a pixel grid. Therefore, in a practical implementation, the

entire formula in Eq. 1.23 is discretized by changing the integrals to sums.

� Projection data needs to be acquired over the full angular range [0, π], cor-

responding to the outer integral in Eq. 1.23. Also, the scanned object must

be fully inside the field of view, so that pθ(r) and hence also Pθ(q) is available

on its entire domain, thereby ensuring that the inner integral in Eq. 1.23 can

be calculated. If these assumptions are violated, the reconstructed image

will contain artifacts.

� In a practical implementation, the FBP formula Eq. 1.23 is never evaluated

individually at different locations in the spatial domain. Typically, the FBP

13
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formula is evaluated simultaneously at all pixel coordinates by first filtering

the projection data with the high pass filter |q| (in Fourier space) and subse-

quently summing all backprojections of each projection onto the pixel grid.

A backprojection simply places the values of the projection pθ(r) (with r

describing the signed distances to all rays in a single projection defined by

the fixed angle θ) at all pixels that coincide with the line x cos θ+y sin θ = r.

This implies that the FBP algorithm as described here is only suitable for a

parallel beam geometry.

The application of the high-pass filter |q| compensates for the high density sampling

ratio in the low frequency domain and the low density sampling ratio in the high

frequency domain (see Fig. 1.7). In the context of FBP, the high pass filter |q| is

usually referred to as the “ramp” filter, because of its shape in the Fourier domain.

The FBP formula can be derived as follows. First, the rectangular coordinate

system (u, v) over which is integrated in the inverse Fourier transform formula,

i.e.,

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2πi(xu+yv) dudv,
�� ��1.24

is changed to a polar coordinate system (q, θ). This is achieved by making the

substitution u = q cos θ and v = q sin θ, which results in

dudv =

∣∣∣∣cos θ −q sin θ

sin θ q cos θ

∣∣∣∣ dqdθ = q dqdθ.
�� ��1.25

The inverse Fourier transform in Eq. 1.24 can now be expressed in polar form as

f(x, y) =

∫ 2π

0

∫ ∞
0

F (q cos θ, q sin θ)e2πiq(x cos θ+y sin θ)q dqdθ.
�� ��1.26

The integral in Eq. 1.26 can be split into two parts by integrating θ from 0 to π

and from π to 2π and further rewritten as follows:

f(x, y) =

∫ π

0

∫ ∞
0

F (q cos θ, q sin θ)e2πiq(x cos θ+y sin θ)q dqdθ

+

∫ π

0

∫ ∞
0

F (q cos(θ + π), q sin(θ + π))e2πiq(x cos(θ+π)+y sin(θ+π))q dqdθ︸ ︷︷ ︸
=

∫ π
0

∫∞
0
F (−q cos θ,−q sin θ)e2πi(−q)(x cos θ+y sin θ)q dqdθ

=
∫ π
0

∫ 0
−∞ F (q cos θ, q sin θ)e2πiq(x cos θ+y sin θ)(−q) dqdθ

=

∫ π

0

∫ ∞
−∞

F (q cos θ, q sin θ)|q|e2πiq(x cos θ+y sin θ) dqdθ.
�� ��1.27
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Substituting the Fourier slice theorem formula (see Eq. 1.16) into Eq. 1.27 leads

to

f(x, y) =

∫ π

0

∫ ∞
−∞

Pθ(q)|q|e2πiq(x cos θ+y sin θ) dqdθ,
�� ��1.28

which completes the derivation of the FBP formula Eq. 1.23.

1.2.1.4 Other analytical reconstruction methods

Various variants on the FBP algorithm have been proposed in literature. Most vari-

ants focus on redesigning the ramp filter |q| in Eq. 1.23. One approach is to train a

neural network that learns an optimal filter for a certain class of objects [11]. An-

other approach consist of approximating algebraic methods (see Section 1.2.2) by

selecting a proper FBP filter [12]. The FBP algorithm described in Section 1.2.1.3

is suitable for a 2D parallel beam geometry. For fan beam, another formula and

approach must be followed [2]. For the 3D case, the Feldkamp (FDK) algorithm is

a common choice for reconstructing from circular cone beam projections [13]. For

helical cone beam CT, other algorithms are available [14].

1.2.2 Algebraic reconstruction methods

In the algebraic approach, the object’s attenuation coefficients are modelled by a

discrete representation of the object function f(x, y), typically on a pixel grid. The

discretization process is presented in Section 1.2.2.1. A well-known algebraic re-

construction method, the simultaneous iterative reconstruction technique (SIRT),

is derived in Section 1.2.2.2. Next, some other algebraic reconstruction methods

are discussed in Section 1.2.2.3. Finally, some practical implementation issues are

addressed in Section 1.2.2.4.

1.2.2.1 Discretization

A typical approach is to represent the scanned object on a pixel (or, in the 3D case,

voxel) grid. This is conceptually visualized in Fig. 1.8, which is the discrete ana-

logue of the left part of Fig. 1.6. In the discretization on a pixel grid, it is assumed

that the object has a constant attenuation value within each pixel. Assuming

the pixel grid consists of N pixels, the object function f(x, y) is approximated as

f(x, y) ≈
∑N
j=1 xjφj with φj the pixel basis function for the jth pixel which is

zero outside the pixel and one inside and xj the constant attenuation value within

the jth pixel. The basis functions φj do not necessarily need to be pixel basis

functions. Other choices are possible as well, e.g., generalized Kaiser-Bessel func-

tions (also known as blobs) [15]. Since the object is modelled by a finite number

of attenuation values, it can be represented as a column vector x = (xj) ∈ RN .

15



CHAPTER 1. INTRODUCTION

}

Figure 1.8: Illustration of the discrete representation of the object and the projection. In
this image, the contribution wij of pixel j to the projection value with index i is represented
as the ray-intersection length of projection line i with pixel j.

In practice, the measured projection data is also discrete, it consists of a fi-

nite number of measured projection values, each one corresponding to a specific

detector pixel at a specific angle. Let M denote the total number of measured

projection values for all angles, which are log-corrected and ordered in a vector

p = (pi) ∈ RM . Denote θi as the counter-clockwise angle from the y-axis and ri
as the signed distance from the origin to the center of the detector pixel corres-

ponding to pi. Following Eq. 1.14, each projection value pi can be modelled as

pi =

∫ 4r
2

−4r2
pθi(ri + r′) dr′ =

∫ 4r
2

−4r2

∫
L(ri,θi)

f(x, y) dsdr′,
�� ��1.29

where4r represents the detector pixel width. In algebraic reconstruction methods,

the forward projection model of Eq. 1.29 is approximated by pi ≈
∑N
j=1 wijxj ,

where wij represents the contribution of pixel j to the projection value with index

i. This is also illustrated in Fig. 1.8. The complete projection data p can then

be simulated by Wx, where W = (wij) ∈ RM×N is a sparse matrix that collects

all weights wij . The weights can be calculated in a variety of ways. The most

precise calculation involves a strip-kernel which is visualized in Fig. 1.9a, where

the weight wij is equal to the fractional area of the jth pixel intercepted by the

ith ray. A computationally faster approximation is given by the line-kernel, where

the weight wij equals the ray-intersection length of the ith ray with the jth pixel

16



1.2. RECONSTRUCTION METHODS

(a) strip-kernel (b) line-kernel

Figure 1.9: Illustration of two different approaches to calculate the weights of the forward
projection matrix W .

(see Fig. 1.9b), or by a linear-kernel [16] (also known as Joseph’s method), where

the contribution of the ray to the projection value is determined by linearly inter-

polating between the two nearest pixels of the intersection of the ray and the row

or column.

Directly solving the system of linear equations Wx = p for an exact solution

x is typically infeasible, since noise and discretization effects render the system of

linear equations inconsistent. Therefore, algebraic methods typically minimize the

projection distance ||Wx− p|| for some norm || · ||.
In this thesis, the projection data acquired from a 2D object is usually repre-

sented as a sinogram. A sinogram collects the projections from a 2D object in a

matrix, where columns typically represents the different detector pixels and the

rows the different projection angles. An example of a sinogram acquired from the

Shepp-Logan phantom [17] is given in Fig. 1.10.

1.2.2.2 Simultaneous Iterative Reconstruction Technique (SIRT)

The simultaneous iterative reconstruction technique (SIRT) is an algebraic recon-

struction algorithm known to converge to a solution of

x∗ = arg min
x

(
||Wx− p||2R

)
,

�� ��1.30
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Figure 1.10: An example of a sinogram acquired with a parallel beam geometry from the
Shepp-Logan phantom. The projections acquired at θ = 0, θ = π/4 and θ = π/2 are
explicitly shown and their connection with the sinogram is illustrated.
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Figure 1.11: The SIRT update process illustrated with the Shepp-Logan phantom.

where R = (rij) ∈ RM×M is the diagonal matrix with inverse row sums of the

projection matrix W (its diagonal elements are given by rii = 1/
∑
j wij) and

||Wx − p||2R = (Wx − p)TR(Wx − p) [1, 18, 19]. Starting from an initial

reconstruction x(0) = 0, the SIRT algorithm iteratively updates the reconstruction

as follows:

x(k+1) = x(k) +CW TR(p−Wx(k)) ,
�� ��1.31

where C = (cij) ∈ RN×N is defined as the diagonal matrix with the inverse column

sums of W (i.e., cjj = 1/
∑
i wij). Before demonstrating the connection between

Eq. 1.30 and Eq. 1.31, the iterative update in Eq. 1.31 is analysed more closely.

The update in Eq. 1.31 is illustrated in Fig. 1.11 and consists of the following

steps:

1. Starting from the current estimate x(k), a forward projection Wx(k) is si-

mulated.

2. The projection difference p−Wx(k) is calculated. This difference indicates

where and how much the simulated projection data Wx(k) is different from

the measured projection data p. It quantifies the reconstruction quality of

the current estimate x(k).

3. The projection difference p −Wx(k) is weighted with the inverse row sum

matrixR. Intuitively, projection value differences corresponding to rays with

a long intersection length with the pixel grid of the reconstruction domain

get a small weight and projection value differences corresponding to rays that

intersect only shortly with the reconstruction domain get a large weight. A

large weight (and hence short ray-intersection length) indicates that the pro-

jection difference in the particular detector pixel has a large influence in the

update. This makes sense, since that ray intersects with only few pixels in
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the reconstruction domain, and thus the projection difference in the corres-

ponding detector pixel is a good indication for how to update the pixels on

that particular ray. If a ray intersects a lot of pixels, the projection difference

is less trustworthy since the projection value is based on the (weighted) sum

of lots of attenuation values along the ray.

4. The backprojected weighted projection difference W TR(p−Wx(k)) is cal-

culated. That is, all projection differences are “smeared back” over the

reconstruction domain by simply assigning the projection difference value of

each ray to all pixels along that ray, weighted with the ray-pixel-intersection

length.

5. The result is weighted with the inverse column sum matrix C. For a par-

ticular pixel, this corresponds to dividing the pixel value of the update by

the combined length of all rays that intersected that pixel. The resulting

update reflects how the reconstruction should be updated in order to reduce

the projection difference.

6. The update is added to the current reconstruction and the algorithm con-

tinues from the first step until a certain stopping criterion is reached. The

stopping criterion can consist of stopping the algorithm after a predefined

number of iterations or after the projection distance has reached a certain

threshold value.

The connection between Eq. 1.30 and Eq. 1.31 can be made as follows. The

normal equations for Eq. 1.30 are given by

W TRWx = W TRp.
�� ��1.32

Preconditioning Eq. 1.32 with C and rewriting the equations gives

CW TRWx = CW TRp
�� ��1.33

⇔ (I − (I −CW TRW ))x = CW TRp
�� ��1.34

⇔ x = (I −CW TRW )x+CW TRp
�� ��1.35

⇔ x = x+CW TR(p−Wx).
�� ��1.36

It follows that Eq. 1.31 is a fixed point iteration scheme derived from Eq. 1.36.

It can be proven that this scheme converges (for a proof the reader is referred to

[18]).
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The SIRT algorithm in Eq. 1.31 can also be written explicitly for each compo-

nent of x, i.e., each pixel’s attenuation value xj :

x
(k+1)
j = x

(k)
j +

1∑M
i=1 wij

M∑
i=1

(
wij(pi −

∑N
h=1 wihx

(k)
h )∑N

h=1 wih

)
∀j

�� ��1.37

1.2.2.3 Other algebraic reconstruction methods

In this section, some other algebraic reconstruction methods are discussed. It

should be noted that the algorithms listed here are merely a small grasp of all

available algebraic reconstruction methods.

Algebraic Reconstruction Technique (ART) [20]: In the ART method, the

update formula is given by

x
(k+1)
j = x

(k)
j +

wij(pi −
∑N
h=1 wihx

(k)
h )∑N

h=1 w
2
ih

∀j,
�� ��1.38

with i the index of the particular projection value that is utilized in iteration k. As

can be observed from Eq. 1.38, ART processes a single projection value at a time

to update the current reconstruction. In a geometric interpretation, the update

formula represents the orthogonal projection of the current reconstruction on the

hyperplane defined by the ith equation in Wx = p. Also note the difference with

SIRT (Eq. 1.37), where all projection values are employed simultaneous to gener-

ate an update for the current reconstruction. The order in which the projection

values are selected has been studied extensively in the past, and various schemes

with different properties are available [21, 22]. Generally, ART converges faster

but is less stable with respect to noise.

Simultaneous Algebraic Reconstruction Technique (SART) [23]: In SART,

all projection values in a single projection are processed together in a single iter-

ation. Let Iθ denote the set of all indices corresponding to projection values in a

single projection at angle θ, then the update formula for SART is given by

x
(k+1)
j = x

(k)
j +

1∑
i∈Iθ wij

∑
i∈Iθ

(
wij(pi −

∑N
h=1 wihx

(k)
h )∑N

h=1 wih

)
∀j.

�� ��1.39

Notice that this algorithm is almost exactly the same as SIRT, with the only dif-

ference that SIRT processes all projection data simultaneous in one iteration while

SART handles one projection at a time. Modifications to SART have been devel-

oped where more than one projections are processed at a time [24].
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Conjugate Gradient Least Squares (CGLS) [25]: In the CGLS method, the

conjugate gradient method is applied to solve the following sparse least-squares

problem:

x∗ = argminx
(
||Wx− p||22

)
.

�� ��1.40

Notice that the norm in the object function of Eq. 1.40 is the standard 2-norm

whereas in SIRT a weighted norm is minimized (see Eq. 1.30).

Regularization methods: Various types of algorithms introduce a regulariza-

tion term U(x) in the objective function. The optimization problem then becomes

x∗ = argminx
(
||Wx− p||2 + λU(x)

)
,

�� ��1.41

where λ > 0 is the regularization parameter that controls the strength of the reg-

ularization. The regularization term U(x) typically reflects some prior knowledge

about the scanned object x. Among many options, popular choices for U(x) in-

clude the total variation penalty [26], smoothness priors [27] and the non-local

means prior [28, 29].

Algorithms for special cases: Many algebraic algorithms have been tailored

specifically to certain applications. These algorithms benefit from exploiting vari-

ous types of prior knowledge about the scanned object, in the sense that artifacts

can be reduced or high quality reconstructions can be reconstructed from only few

projections. In what follows, a few examples of many hundreds of specific case

algebraic algorithms are enumerated.

If the object consist of only a few discrete grey levels, the discrete algebraic recon-

struction technique (DART) has shown great potential for practical applications

[30, 31]. In fact, an entire domain named “discrete tomography” deals with the

reconstructions of such objects [32].

Often, a segmentation of the reconstruction is of interest. Various algorithms

combine the segmentation and the reconstruction step into one algorithm, thereby

simultaneously improving both steps [33, 34].

Specific algorithms have been developed in medical imaging for reducing metal

artifacts, such as the normalized metal artifact reduction (NMAR) [35] and the

frequency split metal artifact reduction (FSMAR) [36] algorithms.

In region of interest (ROI) tomography, the goal is to reconstruct only a small re-

gion inside the object. Often, certain assumptions are made about the region of the

object surrounding the ROI, thereby greatly improving image quality [37, 38, 39].

Another approach consists of changing the acquisition protocol from a step-and-

shoot approach (i.e., stopping the gantry at each acquisition angle to acquire a
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projection) to a continuous gantry rotation. This can be modelled in the recon-

struction algorithm, resulting in algorithms which are particularly useful for ROI

tomography [40].

1.2.2.4 Practical implementation

Algebraic reconstruction methods impose major computational and memory de-

mands. First of all, storing the entire forward projection matrix W into mem-

ory is almost impossible in practical applications, since real projection data can

contain hundreds of projections containing millions of pixels and reconstructed

volumes/images can contain even more voxels/pixels. Therefore, the values of

the matrix W are typically calculated on-the-fly. Secondly, applying the update

operation in Eq. 1.37 pixel by pixel is practically infeasible. For reasonable com-

putation times a GPU implementation is desirable. In this thesis, all forward and

backward projection operations were implemented using the ASTRA toolbox for

tomography [41, 42, 43].

1.2.3 Statistical reconstruction methods

In this section, a short introduction to statistical reconstruction methods is given.

First, in Section 1.2.3.1, it is explained that the number of detected X-ray quanta

follow a Poisson distribution. Next, in Section 1.2.3.2, the expectation maximiza-

tion (EM) algorithm is derived. Finally, a class of more stable statistical algorithms

is described in Section 1.2.3.3.

1.2.3.1 Poisson distributed noise

There are three components in X-ray imaging that can be modelled via statistical

processes (the reader is referred to [1] for more details):

� In a typical detector, X-ray photon detection is a statistically independent

process. Therefore, the detection of multiple photons follows a Binomial

distribution.

� The absorption of photons inside the object are also guided by Binomial

statistics.

� The number of photons that leave the source follows a Poisson distribution.

Because Binomial selection of a Poisson process yields another Poisson process,

the overall statistics can be modelled via a Poisson distribution:

P (Ii|I∗i ) =
(I∗i )Ii

Ii!
e−I

∗
i i = 1, . . . ,M,

�� ��1.42
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where Ii denotes the number of measured X-ray quanta at the ith detector pixel

and I∗i the expected number of detected X-ray quanta1. From Eq. 1.42, it follows

that

P (I|I∗) =
M∏
i=1

(I∗i )Ii

Ii!
e−I

∗
i ,

�� ��1.43

where I and I∗ are the column vectors collecting all the values Ii and I∗i for all i,

respectively.

1.2.3.2 Expectation Maximization (EM)

The underlying idea of the expectation maximization (EM) algorithm [44, 45, 46]

is to maximize the likelihood of acquiring the observed data while varying the

expectation values of the attenuation coefficients of the scanned object. It can be

derived as follows. Substituting the law of Beer-Lambert (i.e., the discrete version

of Eq. 1.3) into Eq. 1.43 results in

L(x∗) := P (I|x∗) =

M∏
i=1

(
I0e
−

∑N
j=1 wijx

∗
j

)Ii
Ii!

e−I0e
−

∑N
j=1 wijx

∗
j
,

�� ��1.44

where x∗ denotes the expected attenuation values for the scanned object. The

product in the likelihood function L(x∗) can be rewritten as a sum by taking its

logarithm to produce the log likelihood function

l(x∗) := ln (L(x∗)) =
M∑
i=1

Ii ln(I0)− Ii
N∑
j=1

wijx
∗
j − ln(Ii!)− I0e−

∑N
i=1 wijx

∗
j

 .�� ��1.45
Note that the maximization of Eq. 1.45 or Eq. 1.44 yields the same result, since the

logarithm is a monotonically increasing function. Therefore, maximizing P (I|x∗)
(which is the goal of the EM algorithm) is equivalent to solving the following

optimization problem:

x̂∗ = arg max
x∗≥0

(l(x∗)) .
�� ��1.46

If the log likelihood function l(x∗) is concave, a global maximum is guaranteed.

The concavity of l(x∗) can be shown by proving the equivalent condition that the

Hessian of l(x∗) is negative semi-definitive. The reader is referred to [45] for a

1This introduces a slight abuse of notation since I0 was already defined in Section 1.1.1. I0
still denotes the radiation intensity at the source (in this case expressed in number of photons),
whereas Ii (i = 1, . . . ,M) denotes the number of measured photons in the ith detector pixel.
Throughout this section, it is assumed that I0 is the same for all detector pixels. However, all
derivations can be easily adapted to account for a detector pixel dependent I0 value.
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proof of this statement. Since a global maximum exists, the Karush-Kuhn-Tucker

(KKT) conditions must be fulfilled. The inequality constraint in Eq. 1.46 can be

written in a more standard form for the KKT conditions as gk(x∗) := −x∗k ≤ 0

for all k = 1, . . . , N . The KKT conditions guarantee the existence of the KKT

multipliers λk ∈ R (k = 1, . . . , N) such that

(1) ∇l(x̂∗)−
N∑
k=1

λk∇gk(x̂∗) = 0
�� ��1.47

(2) gk(x̂∗) ≤ 0 for all k = 1, . . . , N
�� ��1.48

(3) λk ≥ 0 for all k = 1, . . . , N
�� ��1.49

(4) λkgk(x̂∗) = 0 for all k = 1, . . . , N.
�� ��1.50

Condition (1), (2), (3) and (4) are typically referred to as the stationarity condi-

tion, the primal feasibility condition, the dual feasibility and the complementary

slackness condition, respectively. The first condition in Eq. 1.47 is equivalent to

λk = − ∂l

∂x∗k
(x̂∗).

�� ��1.51

Substituting Eq. 1.51 in the third and fourth condition (see Eq. 1.49 and Eq. 1.50)

yields

(3)
∂l

∂x∗k
(x̂∗) ≤ 0

�� ��1.52

(4) x̂∗k
∂l

∂x∗k
(x̂∗) = 0.

�� ��1.53

By calculating the partial derivative of l with respect to x∗k, Eq. 1.53 can be

rewritten as

x̂∗k
∂l

∂x∗k
(x̂∗) = x̂∗k

(
I0

M∑
i=1

wike
−

∑N
j=1 wij x̂

∗
j −

M∑
i=1

Iiwik

)
= 0

�� ��1.54

⇔ x̂∗kI0

M∑
i=1

wike
−

∑N
j=1 wij x̂

∗
j − x̂∗k

M∑
i=1

Iiwik = 0
�� ��1.55

⇔ x̂∗k =
x̂∗kI0∑M

i=1 Iiwik

M∑
i=1

wike
−

∑N
j=1 wij x̂

∗
j .

�� ��1.56
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In terms of the log-corrected projection data pi = − ln
(
Ii
I0

)
, Eq. 1.56 can be

rewritten as

x̂∗k = x̂∗k

∑M
i=1 wike

−
∑N
j=1 wij x̂

∗
j∑M

i=1 wike−pi
.

�� ��1.57

From Eq. 1.57, a fixed point iteration scheme can be derived. Starting from a

non-zero reconstruction x(0) = (x
(0)
k ), each individual pixel is updated as

x
(n+1)
k = x

(n)
k

∑M
i=1 wike

−
∑N
j=1 wijx

(n)
j∑M

i=1 wike−pi
k = 1, . . . , N.

�� ��1.58

The iterative algorithm in Eq. 1.58 is the expectation maximization (EM) algo-

rithm. In summary, the EM algorithm consists of the following steps:

1. Starting from the current estimate x(n), simulate the projection data with

e−
∑N
j=1 wijx

(n)
j for i = 1, . . . ,M .

2. Backproject the simulated projection data. For the pixel with index k, this

is achieved by processing all rays, and for each ray adding the corresponding

simulated projection value multiplied with the intersection length of that

particular ray with pixel k, i.e.,

M∑
i=1

wike
−

∑N
j=1 wijx

(n)
j .

�� ��1.59

3. Also backproject the measured projection data, i.e., e−pi for i = 1, . . . ,M .

In the kth pixel, this corresponds to

M∑
i=1

wike
−pi .

�� ��1.60

4. Compare the backprojected simulated projection data to the backprojected

measured projection data by calculating the ratio∑M
i=1 wike

−
∑N
j=1 wijx

(n)
j∑M

i=1 wike−pi
.

�� ��1.61

5. This ratio is multiplied in a pixel-by-pixel manner with the current recon-

struction x(n) to produce an improved reconstruction x(n+1). The algorithm

returns to step 1 and terminates based on some stopping criterion.
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In practice, the EM algorithm of Eq. 1.58 is rather unstable. Often some regular-

ization term is added to the objective function in Eq. 1.46 in order to improve the

algorithm’s stability. This is discussed in the following section.

1.2.3.3 Maximum A Posteriori (MAP) reconstruction

In contrast to the EM algorithm, where the probability P (I|x∗) is maximized, the

posterior probability P (x∗|I) is maximized with respect to x∗ in the maximum a

posteriori (MAP) approach [47]. With Bayes’ theorem, the posterior probability

P (x∗|I) can be written in function of the conditional probability P (I|x∗):

P (x∗|I) =
P (I|x∗)P (x∗)

P (I)
= P (x∗)

M∏
i=1

P (Ii|x∗)
P (Ii)

.
�� ��1.62

The product in Eq. 1.62 can be transformed into a sum by taking the logarithm

ln (P (x∗|I)) = ln (P (x∗)) +

M∑
i=1

{ln (P (Ii|x∗))− ln (P (Ii))} .
�� ��1.63

Maximization of Eq. 1.63 over x∗ is equivalent to minimizing − ln (P (x∗|I)), i.e.,

x̂∗ = arg min
x∗≥0

(
M∑
i=1

{− ln (P (Ii|x∗))} − ln (P (x∗))

)
,

�� ��1.64

where the irrelevant terms in the objective function were ignored. With the result

in Eq. 1.45 and by ignoring all irrelevant terms, the minimization problem in

Eq. 1.64 can be rewritten as

x̂∗ = arg min
x∗≥0

 M∑
i=1

Ii N∑
j=1

wijx
∗
j + I0e

−
∑N
i=1 wijx

∗
j

− ln (P (x∗))

 .
�� ��1.65

A MAP reconstruction method solves the optimization problem in Eq. 1.65. The

term − ln (P (x∗)) typically represents the state of knowledge about the object x∗.

It is often referred to as the regularization term U(x∗) = − ln (P (x∗)) (see also

the discussion on regularization methods in Section 1.2.2.3). With this notation,

the MAP optimization problem becomes

x̂∗ = arg min
x∗≥0

 M∑
i=1

Ii N∑
j=1

wijx
∗
j + I0e

−
∑N
i=1 wijx

∗
j

+ U(x∗)

 .
�� ��1.66
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A connection with the optimization problem in Eq. 1.41 can be made as follows.

First, rewrite Eq. 1.66 by introducing p∗i =
∑N
j=1 wijx

∗
j :

x̂∗ = arg min
x∗≥0

(
M∑
i=1

(
Iip
∗
i + I0e

−p∗i
)

+ U(x∗)

)
.

�� ��1.67

Next, calculate a second order Taylor expansion of Iip
∗
i + I0e

−p∗i around the log-

corrected measured projection values pi, which results in (see [1] for a detailed

calculation)

x̂∗ = arg min
x∗≥0

(
1

2
(p−Wx∗)TD(p−Wx∗) + U(x∗)

)
,

�� ��1.68

with D = diag(I1, I2, . . . , IM ). The only difference with Eq. 1.41 is the weighting

by the diagonal matrix D. Again, various choices can be made for the regulariza-

tion term U(x∗) [26, 27, 28, 29]. The optimization problem in Eq. 1.68 or Eq. 1.66

can be optimized with a variety of algorithms [47, 27]. In general, algorithms based

on the MAP principle are more stable than EM-like algorithms.

1.3 Dynamic computed tomography

In Section 1.1 and Section 1.2, the classical tomography model was described,

which assumes the scanned object to remain unaltered throughout the entire data

acquisition process. This assumption is no longer valid in dynamic computed

tomography, where projections are acquired from a time-varying object. Each

projection hence corresponds to a different instance of the time-varying object, as

is illustrated in Fig. 1.12.

The most well-known application of dynamic CT can probably be found in

medical CT. The motion of the heart and/or lungs cause tissue to deform during

the imaging process, making the tomography problem a dynamic one [48]. In gated

CT, projections are sorted into several phase bins and a reconstruction is generated

separately for every separate phase bin. The sorting is typically performed with

an external breathing or electrocardiogram (ECG) signal [49, 50, 51]. In order

to improve reconstruction quality, the correlation of reconstructions at adjacent

phases can be exploited by temporal regularization [52, 53]. Approaches without

gating typically incorporate motion models into the reconstruction algorithm [54,

55]. Another medical dynamic CT application is perfusion CT, where a contrast

bolus is injected into the patient’s blood stream and the local concentration changes

in an organ of interest (brain, lung, liver, etc.) are monitored [56]. The same type

of dynamic problems are naturally also encountered in small animal imaging [57].
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Figure 1.12: The effect of a time-varying object on the sinogram, illustrated with the Shepp-
Logan phantom. In the left part of the figure, the sinogram corresponding to a stationary
object is visualized. In the right part of the figure, the effect of a deformation in the same
object on the sinogram is illustrated.

Dynamic CT problems are also frequently encountered in material research. In

pressure tests, an incrementally increasing pressure is applied to a sample, while

simultaneously monitoring the changes inside the sample [58, 59, 60]. Rigid sample

motion, causing the projections to be misaligned, is a typical problem encountered

in electron microscopy [61]. In fluid flow tomography, a (porous) sample is either

immersed with fluid or drained, while continuously visualizing the internal dynamic

processes [62, 63, 64].

Other examples include sample changes (while scanning) due to radiation dam-

age [65, 66], the monitoring of rooth growth over time [67], imaging the solar corona

[68], the investigation of micro-structural changes during development of internal

flesh browning of apples [69], etc.

The remainder of this section focusses on introducing some basic concepts and

notation that will be utilized in later chapters of this thesis. The literature will be

covered more in depth in the introductory section of each chapter that concerns

dynamic CT.

When dealing with time-varying objects, an extra dependency on time is in-

troduced. Therefore, the object’s attenuation coefficient function is represented

by f(x, y, t). The projection value model of Eq. 1.29 hence also includes the time
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dependency, i.e.,

pi =

∫ 4r
2

−4r2

∫
L(ri,θi)

f(x, y, ti) dsdr
′,

�� ��1.69

where ti represents the point in time at which the ith projection value was acquired.

In the algebraic setting, the dynamic object is typically represented as a time

series of images xr ∈ RN , where each r ∈ {1, . . . , R} is the index referring to a

particular point in time (i.e., a time frame) and R is the total number of time

frames. The entire time series is represented by the vertical concatenation of

x1,x2, . . . ,xR, i.e., x̃ := (xT1 ,x
T
2 , . . . ,x

T
R)T ∈ RRN . To reconstruct this time

series of images, projection data is acquired for each time frame by rotating source

and detector multiple times around the object, or, equivalently, by rotating the

object itself in between a fixed source and detector. Standard approaches then

typically reconstruct the object at each time frame individually solely based on

the projection data corresponding to a single 180◦ or 360◦ rotation. For every r ∈
{1, . . . , R}, let pr ∈ RM be the measured projection data corresponding to the rth

time frame. Define W ∈ RRM×N as the forward projection matrix that models all

projection angles andWr ∈ RM×N as the submatrix ofW that models the forward

projection for the rth time frame. Furthermore, let the full vector of measured

projection data p̃ ∈ RRM be the vertical concatenation of p1,p2, . . . ,pR and W̃

the block diagonal matrix consisting of blocks W1,W2, . . . ,WR. In summary, we

have introduced the following notations:

W̃ :=


W1 0 · · · 0

0 W2 0
...

. . .
...

0 0 · · · WR

 ∈ RRM×RN , W :=


W1

W2

...

WR

 ∈ RRM×N

�� ��1.70
and

p̃ :=


p1

p2

...

pR

 ∈ RRM , x̃ :=


x1

x2

...

xR

 ∈ RRN .
�� ��1.71

Analogously to the reconstruction problem for the static case, the goal in dynamic

tomography is to find a reconstruction x̃ that minimizes

||W̃ x̃− p̃||
�� ��1.72

for some norm || · ||. If only few projections are available per time frame, finding

x̃ such that Eq. 1.72 is minimal represents an ill-posed problem. This is mainly
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due to the large null space of the forward operator W̃ and the noise in the mea-

sured projection data p̃. Therefore, directly minimizing Eq. 1.72 for x̃ (e.g., by

applying SIRT separately to the projection data pr for r = 1, . . . , R) will typi-

cally result in a solution x̃ which is fully dominated by noise. This problem can

be alleviated by imposing constraints/models on the reconstruction x̃, resulting

in a smaller solution space, an approach which is employed in this thesis. The

connection between the different time frames xr (with r = 1, . . . , R) is modelled,

thereby basically reducing the degrees of freedom for the reconstruction algorithm

in a model-compliant manner. The more accurately modelled reconstruction prob-

lem results in solutions that are less dominated by artifacts and more accurately

represent the true underlying solution. This rationale is the basic development

principle for the reconstruction algorithms that are introduced in the chapters on

dynamic CT, i.e., Chapter 3, 4 and 5.

As was suggested in the previous paragraph, modelling the connection between

the different time frames can be beneficial. If the information from reconstructions

at different time frames is combined, it becomes important to avoid redundant in-

formation as much as possible. This can be achieved by changing the conventional

acquisition angle selection schemes to more advanced. In what follows, three diffe-

rent ways of selecting the acquisition angles for the projection data corresponding

to each time frame are introduced. Let Mt denote the number of projections ac-

quired per time frame and Md the number of detector elements per projection

(this implies that the total number of projection values per time frame is given

by M = MtMd). Next, denote the projection angle for the lth projection as ωl
(l = 1, . . . ,MtR). This notation allows us to define the following three angle

selection schemes, which are visualized in Fig. 1.13:

(a) Conventional decomposition (b) Binary decomposition (c) Golden ratio decompo-
sition

Figure 1.13: Illustration of three different approaches to select the acquisition angles in
dynamic CT.
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1. Conventional decomposition: For each 180◦ rotation, the same (equiangular)

projection angles are selected. This approach is the most widely used and

suffices if the scanned object is reconstructed independently at each time

frame. The angles are selected as follows

ωl = (l − 1)ω4 l = 1, . . . ,MtR,
�� ��1.73

where ω4 = π/Mt. This angle selection scheme is illustrated in Fig. 1.13a.

2. Binary decomposition: Analogously to the conventional decomposition, the

acquisition angles in each 180◦ rotation are chosen equiangularly. However,

a small angular shift is applied to the starting angle after each 180◦ rotation.

The first Mt equiangular projection angles are chosen as ωl = (l − 1)ω4 ∈
[0, π− ω4] for l = 1, . . . ,Mt. The other projection directions are defined as

ωkMt+l = k(π − ω4) + k
π

R
+ (l − 1)ω4

�� ��1.74

for l = 1, . . . ,Mt, k = 1, . . . , bR/Mtc and kMt + l ≤ MtR. The angles

ω1, ω2, . . . , ω2Mt are schematically displayed in Fig. 1.13b. The small in-

cremental step k πR in Eq. 1.74 ensures that there exist no two projection

directions that are equal modulo π. This is beneficial for reconstruction al-

gorithms that aim at combining information from different time frames. On

the one hand, using the same projection angle (modulo π for parallel beam

and modulo 2π for fan beam) more than once increases the signal-to-noise

ratio (SNR). On the other hand, this will introduce redundant angular in-

formation, since the rays going through stationary regions (that is, regions

inside the object that do not change over time) give the same projection

values (up to noise). This situation is avoided by choosing the projection

angles via Eq. 1.74. Furthermore, Eq. 1.74 guarantees that each subsequent

Mt projection directions cover a range of approximately 180◦, thus avoiding

limited view artifacts.

3. Golden ratio decomposition: In the “golden ratio” scanning scheme, source

and detector are rotated over a fixed angular step of 4ω = π(1 +
√

5)/2

radians to determine the next acquisition angle [70, 71]. More precisely, the

projection angle ωl (l = 1, . . . , RMt) is defined by

ωl =

(
(l − 1)

(1 +
√

5)

2
π

)
mod π .

In the binary decomposition, the user must select the number of projections

per time frame before the experiment starts. The golden ratio scanning
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scheme is more flexible in the sense that it allows the user to select an arbi-

trary number of projections per time frame after the data acquisition, while

still approximately covering equiangular positions over the entire angular

range for each time frame [71]. This allows the user to balance the temporal

and spatial resolution a posteriori, which is a useful property in many appli-

cations. Furthermore, the golden ratio decomposition also ensures that the

same projection angle is never selected twice.

1.4 Applications

In this section, a short overview of different CT applications is given.

� Medical CT: The most well-known application of CT is in the medical

sector, where medical CT devices allow for non-destructively imaging various

parts of the patient’s anatomy. CT is applied to virtually every part of the

human body, including cerebral [72], dental [73], cardiac [74], abdominal [75]

and pulmonary [76] imaging. It is also utilized during image-guided surgery

[77] and radiation therapy [78]. An example of a typical scanner for medical

CT application is given in Fig. 1.14a.

(a) Medical CT: the Philips In-
genuity CT Family scanner

(b) Biomedical CT:
the Bruker-microCT
SKYSCAN 1176 µCT
scanner

(c) Material science: the
FEI Tecnai G2 electron mi-
croscope

Figure 1.14: Three different CT imaging modalities. The resolution limit varies with the
scanning modality: ranging from milimeter resolution scale in the medical CT scanner, to
micrometer and nanometer resolution in the µCT scanner and electron microscope, respec-
tively.
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� Biomedical CT: In biomedical research, the effect of various diseases and

drugs are tested by monitoring small animals by means of CT imaging [57].

A typical µCT scanner for biomedical application is presented in Fig. 1.14b.

� Materials: The discovery, study and design of materials (i.e., material sci-

ence) has benefited greatly from computed tomography technology [79]. Be-

sides regular µCT scanners, electron microscopes [80, 81, 82, 83] and syn-

chrotron facilities are popular imaging modalities for material science. A

typical electron microscope is visualized in Fig. 1.14c. Besides assessing the

internal structure normally, the materials are typically tested under vari-

ous circumstances, e.g., with pressure tests [84] or thermal cycling [85]. The

techniques are applied in geological sciences [86] and petroleum research [87].

� Other: In industry, CT scanning also finds applications for inspection of

products, including flaw detection, metrology and reverse engineering appli-

cations [88, 89]. Another application can be found in automatic control and

explosive detection in luggage [90, 91].

In an exciting application on a large scale, CT even makes it possible to

reconstruct the corona of the sun [68] and the surface of the earth [92].
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CHAPTER 2. RECONSTRUCTION METHOD FOR IMPROVED
POROSITY QUANTIFICATION OF POROUS MATERIALS

2.1 Introduction

Although electron tomography provides valuable three-dimensional visualizations

of the sample under interest, accurate quantification of pore sizes in nanoporous

materials remains a difficult problem, especially if the pores are irregularly shaped.

Quantification of nanoporous materials is important in many applications in

the field of sorption/separation or catalysis, in which size selectivity often plays

an important role [1, 2]. This makes a reliable and accurate knowledge of the pore

size distribution indispensable.

Microporous (d < 2nm) and mesoporous (2nm < d < 50nm) materials are usu-

ally characterized by N2-sorption experiments at a temperature of 77K [3]. How-

ever, the quantification of the pore size distribution based on these measurements

is carried out using models that assume a regular pore size, i.e., cylindrical or

slit-shaped pores. Unfortunately, no model is available for materials with irregular

pores. In this publication, an alternative and reliable approach to determine the

pore size in nanoporous materials is proposed.

Transmission electron microscopy (TEM) is an ideal technique to investigate

nanoporous materials at a local scale, but conventional TEM is limited to pro-

viding two-dimensional (2D) projections of a three-dimensional (3D) microscopy

sample [4]. To measure the pore size distribution, a 3D representation of the sam-

ple is required, which can be obtained using electron tomography. This technique

combines the information of a tilt series of 2D TEM images in a 3D voxel-based

reconstruction [5]. The quality of the 3D reconstruction is of critical importance,

since it influences further quantification. Computing accurate reconstructions from

TEM projection images with classical analytical algorithms such as filter back

projection (FBP) [6] or algebraic algorithms like the simultaneous iterative recon-

struction technique (SIRT) [7] is a difficult task, mainly because of two issues.

First, the limited tilt range of the sample (usually about ±75◦) causes elongation

of the 3D reconstruction and smearing of the voxel values, often referred to as the

“missing wedge” artifact. Secondly, the reconstruction quality also depends on the

number of TEM projection images, which is often relatively small to avoid beam

damage, especially for sensitive materials.

It has been shown recently that the quality of a 3D reconstruction can be im-

proved by incorporating prior knowledge in the reconstruction process. Assuming

that the sample contains just a few a priori known compositions, each occurring in

homogeneous regions, the discrete algebraic reconstruction technique (DART) has

been able to strongly reduce missing wedge artifacts [8, 9]. The partially discrete

algebraic reconstruction technique (PDART) exploits the existence of dense homo-

geneous particles of which the grey value is known by incorporating this knowledge

in the reconstruction algorithm, resulting in more accurate reconstruction quality
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[10]. Other methods minimize the total variation of the reconstruction, where the

sample is assumed to have a sparse gradient, i.e., the number of boundary pixels

in the sample is relatively small compared to the total number of pixels [11, 12].

However, the prior knowledge assumptions incorporated in the reconstruction al-

gorithms of the previous examples are not always applicable to nanoporous materi-

als, since the reconstruction may consist of a continuous range of grey values with

non-sparsity of the gradient image. In this chapter, we propose an approach that

exploits a different kind of prior knowledge, which is related uniquely to porous

materials: the existence of many local regions of void space.

After the reconstruction step, individual pores can be extracted. To that end,

a segmentation step should be applied to separate the pores from the material

matrix. Manually or automatically selecting global thresholds can produce sa-

tisfactory results if there is a clear separation between the background and the

material matrix [13]. However, due to reconstruction artifacts, this separation is

not straightforward in practice. In particular for the segmentation of pores that

are small compared to the voxel size, this approach is error prone. It can therefore

be expected that further analysis of the pores with individual pore statistics such

as size, orientation, eccentricity, etc. will be strongly influenced by the results of

the two previous steps, i.e., reconstruction and segmentation.

To overcome the limitations discussed above, we present a tailor-made, integral

approach, for the reconstruction, segmentation, and quantification of porous nano-

materials: the PORES (“POre REconstruction and Segmentation”) algorithm.

The PORES data processing chain outperforms conventional approaches, since it

is optimized for nanoporous structures. The PORES processing chain starts by

calculating a porous sample specific reconstruction with the new SUPPRESS (“Si-

multaneous Update of Pore Pixels by iterative REconstruction and Simple Segmen-

tation”) algorithm. SUPPRESS reduces artifacts by exploiting prior knowledge

about the porous structure of the material, while automatically classifying the

interior of the pores. The PORES method continues by applying a watershed

algorithm directly to the reconstruction, resulting in accurate segmentation of

the pores. This segmentation permits accurate quantification of individual pores,

which is employed to generate full sample pore statistics.

The PORES method is described in Section 2.2, starting with the reconstruc-

tion algorithm in Section 2.2.1 followed by the segmentation and quantification

approach in Section 2.2.2. In Section 2.3, the method is validated with both sim-

ulation and real experiments. The chapter is concluded in Section 2.4.
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2.2 Method

This section describes the entire PORES algorithm, which is displayed in the

flowchart in Fig. 2.1. It consists of two parts: the reconstruction algorithm (de-

scribed in Section 2.2.1 and displayed in the uppermost part of the flowchart in

Fig. 2.1) and the segmentation and quantification (described in Section 2.2.2 and

displayed in the bottommost part of the flowchart in Fig. 2.1).

2.2.1 Reconstruction

In this section, a novel reconstruction technique is described, which will be referred

to as the SUPPRESS algorithm (“Simultaneous Update of Pore Pixels by itera-

tive REconstruction and Simple Segmentation”). It exploits a prior that comes

naturally for porous materials: the existence of many local regions of void space.

SUPPRESS

apply global 
threshold

initial estimate

sinogram

erode the set of 
void space voxels

calculate one SIRT iteration 
on all voxels outside  

extract 
VOI

apply 
watershed

anisotropic 
diffusion filter

global 
threshold

remove boundary-
intersecting pores

detector pixel
θ

Figure 2.1: Flowchart of the entire PORES algorithm, which consist of the SUPPRESS
reconstruction algorithm and the segmentation protocol. Red pixels indicate the estimate for
void space, indicated by S in the flowchart. The SIRT update is calculated on the all pixels
in the complement of S, i.e., on the green pixels in the illustration.
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Algorithm 1 Pseudo-code for SUPPRESS algorithm

1: x(0) ← initial SIRT reconstruction
2: for k = 1, . . . ,#iterations do
3: S ← segment x(k−1) by applying the global threshold τ
4: S ← erode(S)
5: x(k) ← x(k−1) +CW T

S RS(p−WSx
(k−1))

6: end for

The SUPPRESS algorithm is visualized in the uppermost part of the flowchart in

Fig. 2.1 and pseudo-code is available in Algorithm 1.

In SUPPRESS, iterative update steps are combined with the prior knowledge

that voxels inside void space, i.e., pores and background, should be homogenous

and have a lower grey value than the support material. All steps in SUPPRESS

are displayed in the uppermost part of the flowchart in Fig. 2.1. The algorithm

starts by generating an initial SIRT reconstruction. Next, a conservative set of

void space voxels, S, is estimated with the following two steps. First, the current

reconstruction is segmented by a global thresholding operation, i.e., all pixels with

a grey value smaller than a specified global threshold τ are selected as possible

candidates for the S set. In our approach, τ was chosen as the grey value halfway

between the grey value of void space and the smallest grey value of the support

material. Next, this set is eroded, removing voxels at the boundary. This results in

the set S, which is a conservative estimate for the void space voxels. The erosion

operation reduces the chance that voxels of the material matrix are incorrectly

classified as void space voxels (misclassified voxels are found typically on the edge

between pore-space and material-space), which is essential for the next step in

the algorithm. Based on the assumption that no material is present in the region

defined by S, the reconstruction is then continued by applying a SIRT iteration

solely to the voxels that belong to the complement of S, while keeping the voxels

in S fixed at a grey level of 0 (i.e., no material). Mathematically, this corresponds

to

x(k+1) = x(k) +CW T
S RS(p−WSx

(k)),
�� ��2.1

where k is the iteration number, WS is obtained from the standard projection

matrix W by putting the columns corresponding to the voxels in the set S to

zero, RS is the inverse row sums matrix corresponding to WS and C the inverse

column sum matrix corresponding to W (see Section 1.2.2.2). This procedure

of identifying void space voxels and applying SIRT iterations to the remaining

voxels is repeated until a fixed number of iterations is reached. In Appendix 2-A,

the SUPPRESS algorithm is illustrated on a phantom at different intermediate

iterations and the reader is provided with extra intuition in order to understand
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the different steps of the algorithm.

The key strength of SUPPRESS lies in the fact that the pores (and back-

ground) are identified during the reconstruction process itself. This results in a

more refined estimate for void space at every iteration, which in turn will also

results in more accurate reconstruction quality on the voxels not belonging to void

space. This is due to the fact that the fixing of all voxels in S to the grey level

of 0 actually decreases the number of variables in Wx = p, while maintaining the

same number of equations as the original system, resulting in faster convergence

and more accurate reconstruction quality.

The erosion and threshold parameters of the SUPPRESS algorithm control how

many voxels are included in the S set. A large erosion size or a small threshold will

result in a smaller intermediate void space estimate S, reducing the probability

of falsely classifying material-space voxels as void space voxels during iterations,

thereby increasing the algorithm’s robustness. On the other hand, it is beneficial

to include as many voxels into the S set as possible (without classifying material-

space voxels as void space voxels), because this decreases the number of variables

in Wx = p even more, thereby giving faster convergence and more accurate recon-

struction quality. Selecting the optimal parameters can be done with automatic

procedures such as projection distance minimization schemes [14] or by histogram-

based clustering methods such as Otsu’s method [15]. This is, however, out of the

scope of this chapter, and therefore these parameters were selected manually.

Also note that the void space estimate S will not contain all voxels correspon-

ding to the pores; it will typically contain fewer pixels due to the erosion operation.

This conservative estimate for the pore-space voxels is, however, not the final seg-

mentation of the pores; it rather serves as an input for the segmentation of the

individual pores in the next step which is described in the next section.

2.2.2 Segmentation and quantification

In the approach we present here, we did not only optimize the 3D reconstruction

algorithm, but also the segmentation process. Our segmentation methodology is

displayed in the bottommost part of the flowchart in Fig. 2.1. First, a volume of

interest (VOI) is manually indicated. Next, an anisotropic diffusion filter [16, 17]

(with the diffusion constant function as it is proposed in [17]) is applied to the

reconstruction to reduce noise without compromising the edges. Since the SUP-

PRESS reconstruction contains little or no missing wedge artifacts, the pore-space

can be segmented by global thresholding. Extracting individual pores is a crucial

step, since the pore statistics depend strongly on a good inter-pore separation. A

well-known approach for the removal of the artificially introduced connectivity in

the case of regularly shaped pores, consists of applying the watershed algorithm

to a distance transform of the segmented image [18]. Since this method is in-

50



2.3. EXPERIMENTS AND RESULTS

adequate for irregularly shaped pores, it needs to be adapted. The SUPPRESS

reconstruction provides a conservative estimate of the set of voxels interior to the

pores, i.e., the subset of S that does not correspond to the background. To sep-

arate individual pores, the watershed algorithm can then be applied directly on

the filtered SUPPRESS reconstruction, by flooding regions starting at the grey

value corresponding to void space and stop flooding at the global threshold value

that was used for the pore-space segmentation. In the last step of the segmenta-

tion procedure all pores that coincide with the boundary of the VOI are removed.

Once the segmentation has been computed, the equivalent spherical diameter [19]

is determined for each individual pore, providing a quantitative measurement of

the pore size distribution.

Note that the global threshold for final pore-space segmentation should typi-

cally be chosen larger than the threshold value in the SUPPRESS algorithm. The

threshold in SUPPRESS should be chosen smaller, to prevent material space pixels

to be classified as pore-space pixels during reconstruction.

Also note that the size of the global threshold parameter affects the size of the

pore-space. However, because the SUPPRESS algorithm results in an accurate

reconstruction with a clear distinction between void space and material-space,

the associated pore-space segmentation is less sensitive to changes in the global

threshold parameter (in comparison to other reconstruction algorithms such as

SIRT or FBP).

2.3 Experiments and results

In this section, a range of experiments to evaluate our approach and its corres-

ponding results are discussed. First, in Section 2.3.1, the TEM acquisition set-up

for an aluminosilicate sample is described. Next, various simulation experiments

are reported in Section 2.3.2. In Section 2.3.3, different figures of merit for the

validation of our approach are introduced. In Section 2.3.4, the results of all ex-

periments are reported. Finally, the PORES algorithm is applied to the real data

in Section 2.3.5.

2.3.1 Material and acquisition: aluminosilicate sample

The material under study is an amorphous mesoporous aluminosilicate with a

wormhole-like pore structure and irregularly shaped pores. The exact experimen-

tal conditions and material specifications have been elaborated in [20]. The TEM

samples were prepared by applying drops of ethanol suspension of the powder

sample on a carbon coated copper grid. The tomographic imaging was performed

using high-angular annular dark-field scanning transmission electron microscopy
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Figure 2.2: Example HAADF-STEM projection image (at 0◦ tilt angle) of the aluminosilicate
sample. The tilt axis is indicated with the dashed line.

(HAADF-STEM) [21, 22]. A tilt series was acquired using a FEI Tecnai G2 elec-

tron microscope operated at 200 kV in combination with model 2020 Fischione

Instruments tomography holder and the FEI XPlore3D software package. The

HAADF-STEM images were acquired at the detector inner and outer collection

angles of 72 mrad and 227 mrad with convergence semi-angle of 10 mrad. Each

HAADF-STEM image contains 1024 × 1024 pixels, which have a 2.06 nm inter-

pixel distance. The tilt series was collected over an angular range of ±74◦ with

2◦ increments and is displayed in Fig. 2.2. The projection images were aligned

with an iterative cross-correlation algorithm together with a manual tilt axis ad-

justment implemented in FEI Inspect3D software [23]. The STEM image values

were shifted in order to have a zero grey value corresponding to void space. To

this end, a region where the electron beam clearly encountered void space was

manually indicated in every STEM projection image and subsequently the average

of the detector pixel values in this region was subtracted from the STEM image

values. Reconstructions were calculated on a 1024 × 1024 × 1024 voxel grid of

voxel size 2.06 nm3 in a slice-by-slice manner. The FBP, SIRT and SUPPRESS

reconstructions are displayed in Fig. 2.3.

2.3.2 Material and acquisition: simulation phantoms

In this section, various simulation phantoms are described, each of which was

chosen specifically to validate certain aspects of the SUPPRESS algorithm and
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Figure 2.3: A central slice of reconstructions calculated with different algorithms. (a) FBP
with small and large volume of interest (VOI) indicated. (b) SIRT with 300 iterations and
a positivity constraint. (c) SUPPRESS with 100 initial SIRT iterations, 200 SUPPRESS
iterations and a disk with a two pixel radius as morphological erosion operator.

Figure 2.4: Five examples of the 100 simulation phantoms yielding different pore concentra-
tions.

the complete PORES approach. A first experiment is a direct validation of the

SUPPRESS algorithm by a transmission tomography experiment with various sim-

ulation phantoms that contain different pore-space structures (see Section 2.3.2.1).

In the second experiment, the nanoporous aluminosilicate TEM sample is simu-

lated and the entire PORES processing chain is validated (see Section 2.3.2.2).

For the final simulation experiment HAADF-STEM data was simulated using the

CASINO software package (see Section 2.3.2.3), thereby introducing realistic noise

into the experiment.

2.3.2.1 First set of simulation phantoms

For validating the SUPPRESS algorithm for a series of different pore-space struc-

tures, 100 phantoms similar to the 5 phantoms shown in Fig. 2.4 were generated.

Since these are 2D phantoms, mimicking a slice of a 3D object, their correspon-

ding projections are 1D. The 100 phantoms were generated by introducing random

pores in a fixed material phantom of cylindrical shape. The random pores were
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created by performing a global thresholding operation on different instances of 2D

Perlin noise [24]. In total, 70 equiangular projections between ±72◦ were simula-

ted with a strip kernel [25] and a higher resolution version of the phantom, i.e.,

on a 256 × 256 isotropic pixel grid. Poisson distributed noise was applied to the

simulated projection data, i.e., each individual noise-free projection value was re-

placed by a value sampled from the Poisson distribution defined by an expectation

value (and variance) equal to the noise-free projection value. Reconstructions were

calculated on a 128 × 128 isotropic pixel grid and with a linear projection model

[25].

2.3.2.2 Second simulation phantom

Direct validation of the SUPPRESS reconstruction algorithm and the subsequent

segmentation and quantification of the pore size distribution on the real TEM

data of the aluminosilicate is difficult, since no underlying accurate reference im-

age is available. Therefore, a simulation phantom similar to the aluminosilicate

and corresponding simulated projection data was created as follows. First, from

the HAADF-STEM series of the aluminosilicate, a SUPPRESS reconstruction of

one of the more central slices was calculated on a 1024 × 1024 pixel grid. The

SUPPRESS reconstruction parameters were 100 initial SIRT iterations, 200 SUP-

PRESS iterations and a disk with a two pixel radius as morphological erosion

operator. This reconstruction is displayed in Fig. 2.3c. Starting from this recon-

struction, void space surrounding the sample was manually indicated and assigned

a zero grey value. Subsequently, pores were segmented using the watershed algo-

rithm as described above. The resulting pore-space pixels were also set to zero.

The resulting 1024× 1024 reference image is displayed in Fig. 2.7a. Based on the

reference image, artificial projection data was generated along the same 75 pro-

jection angles as the real tilt series. Poisson distributed noise was applied to the

projection data. With this approach, a reference image is available, and hence an

elaborate validation can be performed.

2.3.2.3 Third simulation phantom

To validate the SUPPRESS algorithm under more realistic noise conditions, HAADF-

STEM projection data was simulated with the CASINO Monte Carlo simulation

software [26, 27] over an angular range of ±90◦ with 2◦ increments. The created

sample is displayed in Fig. 2.5a and consists of pores of ellipsoid shape with diffe-

rent lengths for the semi-principal axes. The material matrix was set to contain

weight fractions of 0.6% Al, 46.0% Si, 0.3% Na and 53.1% O. Reasonable values

for these weight fractions were determined by applying an electron probe micro-

analyzer (EPMA) to the aluminosilicate sample (see Section 2.3.1). The experi-
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(a)

0 50nm

(b)

Figure 2.5: (a) The third simulation phantom. The outer contours are defined by an ellipsoid
with semi-principal-axis lengths of 78 nm, 108 nm and 61.8 nm. (b) An example HAADF-
STEM projection image (at 0◦ tilt angle) that was generated from the third simulation
phantom with the CASINO software. The tilt axis is indicated by the dashed line.

ment was set up with a 200 keV-microscope with a high-angular annular dark-field

detector that collects electrons scattered between 72 and 227 mrad. Furthermore,

a beam semi-angle of 10 mrad was assumed and 60000 electrons were simulated

per detector pixel. Each simulated HAADF-STEM projection image was acquired

by probing the porous sample with a pixel size of 2.06 nm2 in a 116× 116 grid. A

simulated HAADF-STEM projection image is displayed in Fig. 2.5b. Reconstruc-

tions were calculated in a slice-by-slice fashion on a 116×116×116 isotropic voxel

grid.

2.3.3 Figures of merit

For validation, two different measures were utilized. A first figure of merit is the

relative root mean square error (RRMSE). It is defined as

RRMSE =

√√√√∑N
i=1(x̂(i)− x(i))2∑N

i=1(x(i))2
,

�� ��2.2

where x̂ ∈ RN denotes the calculated reconstruction and x ∈ RN denotes the

phantom used to generate the data. Other image quality measures such as the

structural similarity index [28] were considered as well. However, because these
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(a) Simulation phan-
tom

(b) FBP (c) SIRT (d) SUPPRESS

Figure 2.6: A simulation phantom and several different reconstructions. The SUPPRESS
reconstruction has less artifacts than the FBP and the SIRT reconstruction.

measures gave similar results and the RRMSE measure is widely spread (thereby

making a direct comparison of results possible), we chose to focus on the RRMSE

measure throughout this thesis.

Finally, to validate the quality of the pore-space segmentation, the Number

of Misclassified Pixels (NMP) was calculated, which is defined as the number of

pixels that were falsely classified (with respect to the reference image) as either

pore or material, reported in percentage of the total number of image pixels.

These validation measures were calculated on the pixel or voxel grid of the

phantom, hence, whenever necessary, the reconstructions were upsampled to the

resolution of the phantom.

2.3.4 Results of the simulation experiments

2.3.4.1 First set of simulation phantoms

The first set of simulation phantoms (of which 5 examples are displayed in Fig. 2.4)

was reconstructed with FBP, SIRT and SUPPRESS. The SIRT algorithm was ap-

plied with 200 iterations and a positivity constraint. The SUPPRESS algorithm

performed 100 initial SIRT iterations followed by 100 iterations of the main loop.

The erosion operator was chosen to be a disk of 1 pixel radius. One particular

instance of the simulation phantom and a FBP, SIRT and SUPPRESS reconstruc-

tion are shown in Fig. 2.6(a-d), respectively. Fig. 2.6 allows for a first visual

assessment of the reconstruction results. The SUPPRESS has more detail and has

little influence of the limited angular range over which the projection data was

acquired, whereas the FBP and SIRT reconstruction clearly suffer from missing

wedge artifacts, which would hamper further analysis. In total, the experiment

was repeated 100 times, each time with a different phantom instance. The average

56



2.3. EXPERIMENTS AND RESULTS

FBP SIRT SUPPRESS

NMP 10.75%± 0.67% 6.36%± 0.91% 4.12%± 0.88%
RRMSE 0.394± 0.010 0.303± 0.019 0.245± 0.019

Table 2.1: Validation measures for experiment with the first simulation phantom, reported
as mean±std.

results over all experiments are summarized in Table 2.1. Since the RRMSE

assesses the image quality directly and NMP assesses the segmentation directly, it

can be concluded from Table 2.1 that SUPPRESS performs better than SIRT and

FBP.

2.3.4.2 Second simulation phantom

From the simulated projections of the aluminosilicate simulation phantom, FBP,

SIRT and SUPPRESS reconstructions were computed. The SUPPRESS recon-

struction was calculated with the same parameters as described in Section 2.3.2.2

and the SIRT reconstruction was calculated using a positivity constraint and 300 it-

erations. The phantom and the SIRT and SUPPRESS reconstruction are displayed

in Fig. 2.7a, 2.7b and 2.7c, respectively. It is clear that the SIRT reconstruction

suffers from missing wedge artifacts. This is especially visible on the carbon grid,

indicated by the green arrow on top of the SIRT reconstruction in Fig. 2.7b, which

is smeared out in the vertical direction. Furthermore, the SIRT reconstruction has

captured less details in comparison to the SUPPRESS reconstruction, which is

clearly illustrated by observing the difference images with respect to the reference

image in Fig. 2.8.

The experiment as described above was repeated 100 times (every time with

new instances of the Poisson distributed noise) and the calculated statistics were

averaged over all experiments. The results are summarized in Table 2.2. These

quantitative results confirm the visual comparison that was made in Fig. 2.8: The

SUPPRESS reconstruction results in the lowest NMP, indicating its ability to

accurately capture pore-space, and the lowest RRMSE, indicating that the re-

FBP SIRT SUPPRESS

NMP 1.75%± 0.02% 1.45%± 0.03% 1.37%± 0.03%
RRMSE 1.0900± 0.0016 0.2900± 0.0002 0.2280± 0.0002

Table 2.2: Validation measures for experiment with the second simulation phantom, reported
as mean±std.
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Figure 2.7: Visual comparison between (a) the reference image, (b) the SIRT reconstruction
and (c) the SUPPRESS reconstruction. The missing wedge artifacts, indicated on the SIRT
reconstruction by the green arrow, are less pronounced in the SUPPRESS reconstruction.
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Figure 2.8: Absolute difference images between the reference image (displayed in Fig. 2.7a)
and (a) the SIRT reconstruction and (b) the SUPPRESS reconstruction (displayed in Fig. 2.7b
and Fig. 2.7c, respectively). Because of missing wedge artifacts, more erroneous pixels are
observed in the SIRT reconstruction.

construction with the highest quality is generated by the SUPPRESS algorithm.

Also, the full PORES procedure was applied and hence individual pores were ex-

tracted with the procedure as described in Section 2.2.2. Again, after repeating

the experiment 100 times, an average histogram of equivalent circular diameter

(being the 2D analog of the equivalent spherical diameter) was composed, shown

in Fig. 2.9. For this histogram, all pore-sizes were considered, even pores cor-

responding to one single pixel. In practice, these measurements should not be

considered, since they are inaccurate because the size of the feature is comparable

to the pixel size. In this experiment, however, we were able to compare all pore

sizes because of the availability of a ground truth reference image. The histogram

shows that the estimation of small pores based on a regular SIRT reconstruction
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Figure 2.9: Result of PORES procedure in terms of a histogram of equivalent circular diame-
ters. In the figure, SUPPRESS refers to the regular PORES procedure where the SUPPRESS
reconstruction is used as input for the segmentation processing steps and SIRT refers to the
PORES procedure where the SIRT reconstruction was used as input for the segmentation pro-
cessing steps. The green and red curves indicate the absolute difference in relative frequency
per bin, for the SIRT reconstruction and SUPPRESS reconstruction, respectively.
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Figure 2.10: RRMSE (left) and NMP (right) as a function of missing wedge size ω for
the third simulation phantom. For this experiment, the projections were simulated with the
Monte Carlo method from the CASINO software package.

performs significantly worse than based on the SUPPRESS reconstruction.

2.3.4.3 Third simulation phantom

Tilt series with missing wedge were generated based on the tilt series that was si-

mulated over the full angular range of ±90◦ with 2◦ increments. Subsets were taken

from the full angular range dataset, representing the angular ranges±(90−ω)◦ with

2◦ increments, where ω represents the size of the missing wedge. The SUPPRESS

reconstructions were calculated with 100 initial SIRT iterations, 200 SUPPRESS

iterations and a four pixel radius disk as morphological erosion operator. SIRT

reconstructions were calculated using a positivity constraint and 300 iterations.

Calculating the RRMSE and NMP as a function of ω results in Fig. 2.10. From

the RRMSE plot in Fig. 2.10, one can notice that for a small missing wedge (i.e.,
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Figure 2.11: RRMSE (left) and NMP (right) as a function of missing wedge size ω for the
third simulation phantom. For this experiment, the projections were simulated with a simple
linear model and without noise.

ω < 4◦) the reconstruction quality of SIRT is slightly better than for the SUP-

PRESS reconstruction. This can be contributed to the fact that in SIRT the noise

in the projection images is redistributed over the entire reconstruction domain,

whereas the SUPPRESS reconstruction has to distribute it over the smaller set of

voxels outside void space, which can result in a slightly larger RRMSE value in

comparison to a SIRT reconstruction for small missing wedge values. Indeed, if the

same experiment is repeated with projections generated from the phantom with a

simple linear model and without noise (see Fig. 2.11), the SUPPRESS algorithm

no longer suffers from this problem and clearly outperforms SIRT for every missing

wedge size. Although, for the experiment with the realistic Monte Carlo simulated

projections, the reconstruction quality of SIRT is slightly better in comparison to

SUPPRESS for a small missing wedge (which is quantified by the RRMSE plot in

Fig. 2.10), the segmentation quality (which is quantified by the NMP in Fig. 2.10)

is the same. If the missing wedge increases (i.e., ω > 4◦) both reconstruction qua-

lity (RRMSE) and pore-space segmentation (NMP) is better for the SUPPRESS

reconstruction than for SIRT reconstruction. With this increasing missing wedge

size, the advantage of SUPPRESS in terms of reconstructing from projection data

containing a missing wedge becomes increasingly apparent and the noise effects

are no longer dominating.

As an example, the result of the pore-space segmentation of SIRT and SUP-

PRESS reconstructions for a missing wedge of 28◦ is displayed in Fig. 2.12. To

generate Fig. 2.12, the phantom (see Fig. 2.5a) was first voxelized onto the same

116 × 116 × 116 voxel grid as the reconstructions. From the resulting phantom

representation, the pore-space was compared to the segmented pore-space based

on the SIRT and SUPPRESS reconstructions. Voxels that were misclassified in

both segmentations (a total amount of 0.85% of all voxels) are not visualized, since

they do not indicate the difference between both segmentations. From Fig. 2.12, it
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(a) The uniquely misclassi-
fied voxels (0.13% of the to-
tal number of voxels) of the
SIRT-based segmentation in-
terior to the sample’s edge
(i.e., near the pores).

(b) The uniquely misclassi-
fied voxels (0.08% of the to-
tal number of voxels) of the
SUPPRESS-based segmenta-
tion interior to the sample’s
edge (i.e., near the pores).

(c) Uniquely misclassified
voxels of (a) and (b) in
one visualization. The phan-
tom of Fig. 2.5a is super-
imposed to clearly indicate
where exactly the misclassi-
fications are located.

(d) The uniquely misclassi-
fied voxels (0.28% of the
total number of voxels) of
the SIRT-based segmentation
near the sample’s edge and in
the background.

(e) The uniquely misclassi-
fied voxels (0.04% of the to-
tal number of voxels) of the
SUPPRESS-based segmenta-
tion near the sample’s edge
and in the background.

(f) Uniquely misclassified vo-
xels of (d) and (e) in one vi-
sualization. The phantom of
Fig. 2.5a is superimposed to
clearly indicate where exactly
the misclassifications are lo-
cated.

Figure 2.12: Visualization of misclassified voxels of both the SIRT-based segmentation (red)
and the SUPPRESS-based segmentation (blue) for the third simulation phantom with pro-
jection data containing a missing wedge of ω = 28◦. Voxels that were misclassified by both
pore-space segmentations (i.e., based on the SIRT and SUPPRESS reconstructions), repre-
senting a total amount of 0.85% of all 1163 voxels, are not visualized, since they do not
indicate the difference between the two methods. Red voxels refer to voxels that were mis-
classified uniquely by the segmentation based on the SIRT reconstruction while blue voxels
refer to voxels that were uniquely misclassified by the SUPPRESS reconstruction. From the
figures, it is obvious that the missing wedge (resulting in the horizontal smearing) has far more
influence on the SIRT-based segmentation than on the SUPPRESS-based segmentation.
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becomes clear that the difference in misclassified voxels is caused primarily by the

missing wedge artifacts, since the horizontal smearing clearly has more influence

on the SIRT-based segmentation than on the SUPPRESS-based segmentation.

2.3.5 Results for the aluminosilicate sample

The entire PORES 3D processing chain of reconstruction, segmentation and quan-

tification was also applied to the full HAADF-STEM tilt series, i.e., all slices were

reconstructed and the resulting 3D reconstruction was used for further processing.

The SIRT and SUPPRESS reconstruction were calculated with the same para-

meters as for the second simulation phantom (see Section 2.3.2.2 and 2.3.4.2). A

visual comparison for the FBP, SIRT and SUPPRESS reconstructions can be made

in Fig. 2.3 (a)-(c). In this figure, it is noticeable that the carbon grid (on which

the aluminosilicate sample was mounted) is smeared out in the vertical direction

due to the missing wedge for the FBP and SIRT reconstruction, which is no longer

the case in the SUPPRESS reconstruction. Also, the SUPPRESS reconstruction

appears sharper in comparison to the SIRT and FBP reconstruction. To assess

the robustness of the entire PORES processing chain, the equivalent spherical di-

ameters in both a larger VOI and a smaller VOI were calculated. The shape of

the VOI is indicated on top of the FBP reconstruction of Fig. 2.3a. Equivalent

spherical diameters corresponding to a single voxel volume (i.e., an equivalent

spherical diameter of 2.56 nm) were discarded, because these measurements are

inaccurate in practice. The resulting histograms are displayed in Fig. 2.13. It

is obvious that the histograms for the small VOI and the large VOI are highly

similar. We can conclude that the quantification based on the segmentation of the

SUPPRESS reconstruction is robust. As an illustration, the histogram obtained

with a global thresholding operation applied on a basic SIRT reconstruction (a

method that is employed often in practice) is displayed in Fig. 2.14. The his-

tograms in this figure were generated by calculating relative frequencies on bins

placed around integer pore diameters and fitting a smooth curve through it. Pore

diameters corresponding to a single voxel (i.e., pore diameters of 2.56 nm) were

removed from the results. It follows from all previous validation experiments (see

Section 2.3) that the histogram obtained from a globally thresholded SIRT recon-

struction is less accurate than the histogram obtained with the PORES algorithm.

Furthermore, a comparison to the pore size distribution characterized by a nitro-

gen sorption experiment can also be done in Fig. 2.14. This nitrogen sorption

measurement has been performed on a Quantachrome Quadrasorb SI unit, after

degassing the sample under high vacuum conditions for a duration of 16 h at 473

K. Subsequently, the pore size distribution has been determined by applying the

Barret-Joyner-Halenda (BJH) method on the desorption branch of the nitrogen

sorption isotherm. It is clear that the PORES method is in better agreement with
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Figure 2.13: Histogram of equivalent spherical diameter for a larger VOI and a smaller VOI
obtained from with the PORES method (based on the SUPPRESS reconstruction). The
histograms have a large similarity, indicating the robustness of the quantification method.
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Figure 2.14: Comparison of histograms obtained with different methods: the red dashed
curve is the histogram based on an estimate of pore-space that was calculated by applying
a global thresholding operation to a conventional SIRT reconstruction, the blue curve is
the histogram obtained with a nitrogen sorption experiment and the black dotted curve was
calculated with the pores method.

the experimental nitrogen sorption data than the histogram obtained by a global

thresholding operation applied on a SIRT reconstruction, although still a distinct

discrepancy is detected between the PORES and the N2 sorption method. This

can be appointed to the complicated unordered structure of the porous sample.

Indeed, the pore size distribution based on the nitrogen sorption measurement has

been calculated by the BJH model, assuming that the porous structure only con-

tains cylindrical pores, which is not in full accordance with the actual situation.

63



CHAPTER 2. RECONSTRUCTION METHOD FOR IMPROVED
POROSITY QUANTIFICATION OF POROUS MATERIALS

Unfortunately, no better alternative is possible, since no calculation model has yet

been developed to determine the pore size distribution based on nitrogen sorption

measurements of an unordered aluminosilicate structure.

2.4 Discussion and conclusions

In conclusion, the PORES algorithm was proposed; it is an integral approach for

the reconstruction, segmentation and quantification of nanoporous materials. As

the proposed processing chain is tailored specifically for nanoporous materials,

accurate quantification becomes possible. The first step, i.e., the SUPPRESS re-

construction, significantly reduced missing wedge artifacts in the reconstruction by

the incorporation of prior knowledge in the reconstruction algorithm. Individual

pores were reliably extracted, allowing for quantification by calculating individual

pore statistics. The SUPPRESS and PORES algorithm were extensively validated

with different experiments, varying in sample properties and the way in which data

was simulated. In contrast to the standard N2-sorption method for determination

of the pore size distribution, the PORES method does not assume cylindrical or

slit-shaped pores. Furthermore, besides providing an overall pore size distribution

(the result of the N2-sorption experiment), our method also allows for quantifica-

tion of individual pores. Beside pore size, any other quantification is also possible,

e.g., eccentricity, orientation, perimeter, etc. Furthermore, the information about

interconnectivity between nanopores can also be extracted, which is important to

improve mass transport and catalytic effectiveness in nanomaterials.

The algorithm for generating the iterative updates within the SUPPRESS al-

gorithm, in our case SIRT, can be replaced by any other iterative algorithm. In

this work we focused on SIRT, due to its ability to reconstruct a wide variety of

objects, without making too many assumptions about the object at hand. If, for

example, the object is expected to have a sparse gradient, iterative algorithms for

minimizing the total variation could be more appropriate. Or in the case of severely

noisy data, a maximum a posteriori (MAP) type of algorithm could possibly be

a better choice. Also note that in the current implementation of the SUPPRESS

algorithm, a pixel either belongs to pore-space or not. A possible addition would

be to assign probabilities to each pixel, indicating the likelihood of the particular

pixel belonging to pore-space. This information could be utilized while updating

the reconstruction and further improved while iterations continue.

Appendix 2-A

In this appendix, the different steps in the SUPPRESS algorithm are illustrated

on the phantom displayed in Fig. 2.15. From this 200× 200 phantom, 40 parallel
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Figure 2.15: The phantom that was utilized in the flowchart of Fig. 2.16.

beam projections were simulated with a strip kernel over an angular range of ±75◦.

Next, the SUPPRESS reconstruction was calculated on a 100×100 pixel grid with a

linear projection kernel, 200 iterations and a two-pixel radius disk as morphological

erosion element. The different iterations are visualized in Fig. 2.16. In Fig. 2.16,

the different steps in the SUPPRESS algorithm are visualized at iteration 1, 4, 8, 20

and 50. The first step of an iteration always consist of calculating a segmentation

of pore-space based on a global threshold τ . Next, the S set, i.e., the conservative

estimate of void space pixels, is calculated by applying an erosion operation on the

segmented image of the previous step. An iteration is ended by calculating a SIRT

update on all pixels that are not included in S. As is illustrated in Fig. 2.16, the

estimate of pore-space becomes better as iterations continue. This is due to the

fact that the reconstruction quality improves, which has a positive effect on the

segmentation of void space as well, which again results in a better reconstruction,

ans so on. After 50 iterations, almost all the pores have been found. The final

segmentation result of this experiment is visualized in Fig. 2.17, where pore-space

is segmented from both the SUPPRESS and a SIRT reconstruction by applying a

global threshold on the final reconstruction result.
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(a) SIRT segmentation (b) SUPPRESS segmentation

(c) Misclassified pixels in the
SIRT-based segmentation

(d) Misclassified pixels in the
SUPPRESS-based segmenta-
tion

Figure 2.17: The segmentation results for the experiment reported in Appendix 2-A. (a)
The SIRT-based segmentation is highly influenced by the missing wedge artifacts, as can be
seen by observing the parts within the superimposed red circles. (b) The SUPPRESS-based
segmentation is more accurate. (c-d) The misclassified pixels (green pixels were correctly
classified and red pixels were wrongly classified) for the SIRT-based and the SUPPRESS-
based segmentation indicate that the SUPPRESS reconstruction is more appropriate for the
segmentation task.
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U. Kaiser, E. R. Encina, E. A. Coronado, and G. Van Tendeloo, “3D imaging of

nanomaterials by discrete tomography,” Ultramicroscopy, vol. 109, no. 6, pp. 730–

740, 2009.

[10] T. Roelandts, K. J. Batenburg, E. Biermans, C. Kübel, S. Bals, and J. Sijbers,
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CHAPTER 3. REGION-BASED ITERATIVE RECONSTRUCTION

3.1 Introduction

In computed tomography (CT), most reconstruction techniques assume that the

object does not deform during the acquisition of projection data. If the scanned

object is subject to deformation or structural changes, however, these techniques

are no longer adequate and the reconstructed image will suffer from artefacts such

as blurring.

Current approaches to account for deformation of the object can be classi-

fied into two categories. In a first class of methods, which we refer to as the

deformation-based techniques, a deformation model is incorporated in the recon-

struction process. Affine transformations can be modeled directly by adjusting the

projection data [1] and subsequently using a standard reconstruction algorithm.

Many a priori known invertible deformation models can be compensated for by

modifying classical algorithms like FBP or SIRT [2, 3]. If no a priori deformation

model is available, the deformation parameters can be estimated using a series of

different techniques [1, 4, 5, 6, 7, 8]. A second class of methods generates recon-

structions using different subsets of all available projection data, assuming that

each of these subsets contains data acquired from a motionless object. We refer to

this type of methods as subset-reconstruction techniques. In medical imaging, this

technique is usually known as phase binning [9], where the subsets are obtained by

ordering the projection data per phase, assuming a periodic motion. Alternatively,

different subsequent scans can be performed in order to obtain the subsets, assum-

ing the object remained unchanged during each scan. Examples of this technique

can be found in non-destructive material tests [10], soil structure and water re-

tention studies [11] or observations of root growth [12]. Reconstruction quality of

standard subset-reconstruction techniques can be improved by enforcing similarity

among the subsets with regularization strategies [13]. Another improvement can

be made if a prior, high quality reconstruction is available, e.g. based on projec-

tion data acquired from the object before the changes have commenced. From this

prior reconstruction, projections can be simulated and subtracted from the projec-

tion data acquired from the time-varying object. The changing volume can then

be reconstructed by applying a sparse reconstruction technique to the resulting

projection difference [14].

The deformation-based technique is only applicable to problems where con-

tinuous deformations deteriorate reconstruction quality, whereas the subset-recon-

struction technique can only be applied to periodic motion or under the assumption

that the object remains unchanged during the acquisition of projection data for

each subset. The latter assumption is a severe restriction on the time resolution of

the reconstruction, since reconstructing the scanned object per subset implies the

acquisition of sufficient projection data per subset in order to avoid limited data
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reconstruction artifacts, which in turn implies that the acquisition time per sub-

set is far from negligible. This limits the applicability of these techniques, as they

cannot be applied to reconstruction setups where objects are subject to structural,

discontinuous changes that happen in a faster time frame than the acquisition time

needed for each subset. This type of changes occurs in a wide variety of recon-

struction problems, e.g., the scanning of beam-sensitive samples, where regions

in the object are damaged by the X-ray beam [15], microstructural investigations

of solidification [16] and problems in the field of non-destructive testing, where

sudden discontinuous cracks are formed inside the object [17, 10].

A straightforward dynamic imaging acquisition method that employs the subset-

reconstruction technique, is an acquisition in which the source and detector rotate

in a circular orbit multiple times around the object. In each time window for which

the full angular range is covered, a 3D image is reconstructed. This approach is

extensively used in medical imaging to obtain real-time reconstructions [18]. The

same scanning technique could, however, be used in µCT, synchrotron tomogra-

phy and other advanced lab CT setups as well. In such an approach, it is assumed

that the object remains stationary during each time window that covers the full

angular range. Evidently, this time window also defines the temporal resolution.

Increasing the temporal resolution (by decreasing the number of projection angles

or by decreasing the radiation exposure time needed to acquire projection data for

one angular direction) will result in reconstructions of poor quality. This limits

the temporal resolution for such a subset-reconstruction method from a hardware

point of view. From a computational point of view, however, there is still room

for improvement, as is illustrated by the techniques introduced in this chapter.

In many problems where structural changes complicate the reconstruction pro-

cess, there is redundancy between projection data acquired at different time points.

This redundancy is exploited by the techniques introduced in this chapter; we pro-

pose an iterative method that generates accurate reconstructions using limited

projection data by assuming the existence of regions inside the object that remain

constant over time. Since less projection data is needed, time resolution increases.

Regularization methods are less suitable for handling structural changes, as they

assume that every region in a time-varying object is similar over time, which is

certainly not the case for structurally changing objects. Unlike regularization me-

thods, the proposed method enforces similarity by combining iterative update steps

over different projection-subset reconstructions. Also, in contrast to the approach

introduced in [14], the proposed method does not depend on the prior knowledge

of a high quality image of the object before the structural changes initiated. In

this chapter, a region-based SIRT (rSIRT) algorithm is developed, where these

stationary regions are assumed to be known. Next, the rSIRT algorithm is im-

proved and incorporated in an optimization routine that automatically determines
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the stationary regions inside the object. The developed method was validated on

simulation data and on data obtained from a controlled experimental µCT setup.

Results show that the proposed method reduces the number of projections and

thus a significant increase in time resolution is achieved.

In Section 3.2, the rSIRT algorithm is introduced, together with the iterative

routine that incorporates the rSIRT algorithm in a projection distance minimiza-

tion scheme that automatically estimates the parameters defining the stationary

region. Simulation and experimental results are reported in Section 3.3. The

chapter is concluded in Section 3.4.

3.2 Methods

In this section, we introduce the rSIRT algorithm, a modified version of the well

known SIRT algorithm that combines traditional SIRT update steps over different

regions and points in time. The rSIRT algorithm assumes that stationary regions

within the object are given a priori. As in practice, this assumption does not

hold, we propose a methodology to automatically estimate the stationary regions:

a B-spline model for region description, together with the rSIRT algorithm, are

incorporated in a weighted projection distance minimization scheme, that auto-

matically calculates the parameters describing the stationary regions.

3.2.1 rSIRT

The scheme to calculate a single rSIRT iteration is displayed in the flowchart of

Fig. 3.1. The phantom of Fig. 3.4a-d is used for visualization purposes. The

scanned object is assumed to consist of stationary regions and regions that change

over time, i.e., variable regions. Define S ⊂ {1, . . . , N} as the set of pixel indices

that correspond to the stationary regions and define V as its complement, i.e.,

V = {1, . . . , N}\S is the set of pixel indices corresponding to the object’s variable

regions. Let IV ∈ {0, 1}N×N be the binary diagonal matrix representing the

operator that sets all pixels belonging to the stationary region to 0. Its diagonal

elements are given by

IV (j, j) =

{
1 if j ∈ V
0 otherwise

.
�� ��3.1

Define the binary diagonal matrix IS ∈ {0, 1}N×N analogously. It is the operator

setting all pixels in the variable regions to 0. In this chapter, we let each time

frame r ∈ {1, . . . , R} correspond to a single projection image taken at a specific

acquisition angle ωr (thus, Mt = 1, see Section 1.3). Therefore, the projection

matrix Wr (r ∈ {1, . . . , R}), introduced in Section 1.3, corresponds solely to the
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Figure 3.1: Flowchart of a single rSIRT iteration for the rth time frame. Starting from a
previous estimate x̃(k) and the projection data p̃, the rSIRT algorithm calculates for every
time index r a new estimate x

(k+1)
r .
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projection along the direction ωr. Define a window size nw ∈ N\{0} and use this

number to define the projection matrix

W̃r =


Wr−bnw/2c
Wr−bnw/2c+1

...

Wr+dnw/2e−1

 �� ��3.2

for each time index r with bnw/2c + 1 ≤ r ≤ R − dnw/2e + 1. The matrix

W̃r ∈ RnwMd×N represents the projection operator that projects along the nw
directions centered around projection angle ωr. Define

W̃r =

 W1

...

Wnw

 �� ��3.3

for r < bnw/2c+ 1 and

W̃r =

 WR−nw+1

...

WR

 �� ��3.4

for r > R− dnw/2e+ 1. Next, let p̃r ∈ RnwMd denote the projection data corres-

ponding to the projection directions as they are encoded in W̃r. Finally, define

R̃r ∈ RnwMd×nwMd as the diagonal matrix with inverse row sums of W̃r and

C̃r ∈ RN×N as the diagonal matrix with inverse column sums of W̃r. The intro-

duced notations allow us to describe the rSIRT algorithm as the following iterative

process:

x(k+1)
r = x(k)

r + ISCW
TR(p̃− W̃ x̃(k))

+ IV C̃rW̃
T
r R̃r(p̃r − W̃rx

(k)
r ).

�� ��3.5

This update needs to be calculated for every r ∈ {1, . . . , R} before incrementing

the iteration count k. Basically, Eq. 3.5 calculates two update steps. A traditional

SIRT update step for the stationary region using all available projection data p̃,

corresponding to the left hand side of the flowchart in Fig. 3.1, and an update step

for the variable region using only the projection data centered around the current

time index r, corresponding to the right hand side of the flowchart in Fig. 3.1.

The rSIRT algorithm with initial estimate x̃(0) = 0 is representable as a linear

operator applied to the projection data p̃, which we denote as x̃(K) = SK p̃, where

K denotes the number of rSIRT iterations. This can be proven in an analogous
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manner to the proof in [19], where the regular SIRT algorithm is proven to be a

linear operator on the projection data. The details of this derivation can be found

in Appendix 3-A of this chapter.

Note that for a practical implementation, the update term in Eq. 3.5 for the

stationary region ISCW
TR(p̃ − W̃ x̃(k)) needs to be calculated only once, since

it is exactly the same for every time index r.

Also note that the rSIRT algorithm as presented in Eq. 3.5 is based on a

“sliding window” approach for selecting subsets in the projection data. This means

that a time frame r corresponds to a single acquisition angle, and that for the

reconstruction of the dynamic part of that particular time frame, projection data

centered around the corresponding acquisition angle, i.e., p̃r, is considered.

In a “constant window” approach, each time frame is associated with multiple

acquisition angles (i.e., Mt > 1, see Section 1.3). In the constant window approach,

projection data corresponding to neighbouring time frames is not considered for

the reconstruction of the current time frame and the rSIRT algorithm can be

written as

x(k+1)
r = x(k)

r + ISCW
TR(p̃− W̃ x̃(k))

+ IVCrW
T
r Rr(pr −Wrx

(k)
r ),

�� ��3.6

where Rr ∈ RM×M and Cr ∈ RN×N are defined as the diagonal matrices with

inverse row sums and inverse column sums of Wr, respectively. The difference

between the sliding window approach and the constant window approach is illus-

trated in Fig. 3.2. In this chapter, the sliding window approach is followed.

3.2.2 Region inconsistency minimization

In this section, we introduce a projection distance minimization scheme that uses

the rSIRT algorithm to estimate the stationary region automatically.

For describing the variable region, a B-spline based closed curve model is used.

More details can be found in Appendix 3-B of this chapter. The coordinates of the

B-spline closed curve control points are ordered in a parameter vector α, describing

the degrees of freedom of our optimization routine. Using this region model, we

present a measure that indicates how likely a stationary region is to occur. The

measure itself is introduced first, while its different components are explained later.

The measure is named region Inconsistency (rI) and is defined as

rIλ,µ1,µ2
(α) = ||W̃SαK p̃− p̃||2R̄λα + µ1P1(α) + µ2P2(α) .

�� ��3.7

The first term in Eq. 3.7 is a data fidelity term. Its calculation is displayed schemat-

ically in the uppermost part of the flowchart in Fig. 3.3. Since the linear operator
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...
...

...
...

...
...

...

...

...

...

...
...

Figure 3.2: Comparison of the rSIRT algorithm for two different projection data subset
selection approaches. In the sliding window approach, the dynamic region of each time frame
is reconstructed based on projection data centered around each acquisition angle. In the
constant window approach, the projection data is subdivided into mutually disjoint subsets
in a sequential manner. In the visualization, the number of subsets (or time frames) in the
constant window approach is denoted by R′, thereby explicitly indicating that, for the same
projection data p̃, this number is different than the number of subsets in the sliding window
approach (denoted by R in the visualization).
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Figure 3.3: Flowchart of the optimization strategy. The solid arrows indicate the calculation
of the region inconsistency, while the dotted arrows illustrate the optimization strategy.

describing K iterations of rSIRT depends on the variable region’s shape, we denote

it by SαK . The rSIRT reconstruction SαK p̃ is forward projected with the projec-

tion matrix W̃ and compared to the original data p̃ through the norm || · ||2
R̄λα

.

Instead of weighting this norm with the classical inverse row sum matrix R (see

Section 1.2.2.2), it is weighted with a normalized version of an adjusted inverse

row sum diagonal matrix Rλ
α, where the ray intersection lengths through pixels

belonging to the variable region are multiplied with a factor λ > 1. Hence the

diagonal elements of Rλ
α are defined as

Rλ
α(i, i) = 1/

∑
j

((1 + IV (j, j)(λ− 1))wij) .
�� ��3.8

By normalizing Rλ
α such that it has the same mean along its diagonal as R, the

normalized diagonal matrix R̄λ
α is formed. Basically, this weight matrix reflects the

higher confidence in measurements corresponding to rays that mainly intersected
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the stationary region. A more detailed description of R̄λ
α can be found in Appendix

3-C of this chapter. The term P1(α) in Eq. 3.7 gives a penalty to self-intersecting

curves; it simply counts the number of times the curve intersects itself. The term

P2(α) gives a penalty to regions that exceed the boundaries of the reconstruction

domain. It is given by the sum of the Euclidean distances of each control point

outside the reconstruction domain to the closest point inside the reconstruction

domain, which is assumed to be confined within [−1, 1]× [−1, 1]. The severity of

the penalties defined by P1(α) and P2(α) are controlled by the parameters µ1 and

µ2.

An adapted variant of the Levenberg-Marquardt (LM) algorithm [20] is used for

minimizing rI, which is illustrated in the lower part of the flowchart in Fig. 3.3.

The rI function is a non-convex function that, due to noise and discretization

effects, has a non-smooth, coarse landscape on a small scale. This coarseness

can make the finite difference approximation of the objective function’s gradient

inaccurate. Therefore, finite differences are calculated with a parameter increment

(referred to as the stepsize), starting from a larger initial stepsize that is halved

every time the solver reaches a local minimum. When the stepsize becomes smaller

than a specified threshold, the stepsize is reinitialized and the number of spline

control points is doubled by applying Boehm’s formula for knot insertion [21], thus

providing more degrees of freedom to the solver by this multi-resolution approach

on the parameter vector α.

3.3 Experiments

In this section, rSIRT and the region inconsistency minimization are validated on

numerical and experimental data.

3.3.1 Numerical simulations

Consider the phantoms in Fig. 3.4. Phantom 1 is displayed in Fig. 3.4a-d. It

is a modified Shepp-Logan phantom. The phantom resembles a sample in which

fluid flows from one chamber into another during the acquisition of the CT data.

Phantom 2 (Fig. 3.4e-h) and phantom 3 (Fig. 3.4i-l) are artificial phantoms in

which a structurally varying region in the form of a circle and an eight-like shape

are present in the object. Finally, phantom 4, displayed in Fig. 3.4m-p, represents

an object in which a crack is formed.

Projections were simulated with the binary decomposition scanning protocol

(see Section 1.3) where we took the window size to be nw = 30. We simulated 300

projections using a strip kernel and a higher resolution version of the phantom, i.e.,

on a 500× 500 isotropic pixel grid, while the algorithm calculates reconstructions
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(a) t = t1 (b) t = t120 (c) t = t180 (d) t = t300

(e) t = t1 (f) t = t120 (g) t = t180 (h) t = t300

(i) t = t1 (j) t = t120 (k) t = t180 (l) t = t300

(m) t = t1 (n) t = t120 (o) t = t180 (p) t = t300

Figure 3.4: Each row represents a different phantom. Each column represents a different
point in time. (a-d) Phantom 1: a modified Shepp-Logan phantom. The changes in the
phantom resemble a liquid flowing from one chamber of the object into another. (e-h)
Phantom 2: a modified Shepp-Logan phantom. In the middle of the phantom a structure
with skulls is changing over time. (i-l) Phantom 3: blob-shaped phantom with an eight-like
variable region in the middle. (m-p) Phantom 4: image of material in which a crack is formed.
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on a 100× 100 isotropic pixel grid. This way, inverse crimes [22] are avoided, i.e.,

using the same model for generating data as for testing the designed algorithm.

Also, Poisson distributed noise was applied to the projection data assuming an

incoming beam intensity of 10000 (photon count) per detector pixel.

For validation, three different measures were utilized. A first figure of merit is

the Root Mean Square Error (RMSE). Denote the calculated reconstruction by x̂

and the phantom used to generate the data by x̃. Then the RMSE is given by

RMSE =
√
〈(x̂− x̃)2〉,

�� ��3.9

where the squaring should be interpreted pointwise and where 〈·〉 represents the

average. We upsampled the calculated reconstruction 5 times in order to perform

the RMSE calculations on the 500× 500 grid. A second measure is the projection

distance, defined as

PD = ||W̃ x̂− p̃||2.
�� ��3.10

Finally, for the validation of the region inconsistency minimization, we also look

at the relative Number of Misclassified Pixels (rNMP), i.e., the number of mis-

classified variable region pixels (with respect to the ground truth variable region)

divided by the total number of pixels belonging to the ground truth variable re-

gion. The rNMP was also calculated on the original 500× 500 grid by scaling up

the optimized region.

The performance of rSIRT was compared to two other reconstruction methods.

A first method is the conventional method. It calculates a regular SIRT recon-

struction per subset of the projection data p̃r with the corresponding projection

matrices as they are defined in Eq. 3.2, Eq. 3.3 and Eq. 3.4. Also, a regular SIRT

reconstruction was used for comparison, i.e., a SIRT reconstruction using all the

projection data p̃ where the object was regarded as stationary through time (see

Section 1.2.2.2).

First, a validation of the rSIRT algorithm is presented. Since the phantoms

are simulated, the stationary region is known and can be used as prior knowledge

for rSIRT. The ground truth regions are displayed in Fig. 3.5a-d. The RMSE

after 100 iterations with an initial zero estimate was calculated for all phantoms

and for each of the reconstruction methods. The results are summarized in the

columns “SIRT”, “Conventional” and “rSIRT” in Table 3.1. In this table, the

column rSIRT refers to the rSIRT reconstruction with the ground truth stationary

region. In order to illustrate the convergence properties of rSIRT, more detailed

plots of the results for phantom 4 are presented in Fig. 3.6 and Fig. 3.7. Fig. 3.6b

indicates that all methods reduce the projection distance as the iteration number

increases. As the reconstruction per time point for the conventional method must

only match with a subset of all projection data, its projection distance decreases
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(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4 (e)

Figure 3.5: (a-d) Ground truth for the time-varying region for all simulation phantoms.
(e) Initial estimate for simulation experiments with the region inconsistency minimization
algorithm. In all figures, white pixels belong to the time-varying region and black pixels
belong to the stationary region.

SIRT Conventional rSIRT rSIRT-opt

Phantom 1 0.13379 0.12291 0.09767 0.09793
Phantom 2 0.12508 0.13702 0.11247 0.11257
Phantom 3 0.12993 0.13627 0.11038 0.11068
Phantom 4 0.36335 0.36543 0.28545 0.28867

Table 3.1: RMSE after 100 iterations for all simulated phantoms (rows) and for different
methods (columns).
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Figure 3.6: The convergence of the different methods for phantom 4. (a) RMSE as a function
of iteration number. (b) PD as a function of iteration number.

85



CHAPTER 3. REGION-BASED ITERATIVE RECONSTRUCTION

0 50 100 150 200 250 300
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Timepoint

R
M

S
E

 

 

SIRT
Conventional
rSIRT
rSIRT−opt

Figure 3.7: RMSE per point in time for reconstructions after 100 iterations for phantom 4.

the fastest. However, since the RMSE assesses the image quality directly, it can

be concluded from Fig. 3.6a that rSIRT has superior performance. Also, SIRT is

unable to capture the object’s dynamics, as it generates one reconstruction for the

entire projection data set. The conventional method can capture some dynamics,

but reconstruction quality is severely degraded. The rSIRT algorithm combines

the better properties of the conventional method and SIRT, and reconstructs the

object with improved image quality and time resolution. The RMSE at each

time instance of the reconstructions after 100 iterations is displayed in Fig. 3.7,

confirming the previous statements.

Also, the region inconsistency minimization was validated on the simulated

data. The parameter setup was λ = 10, spline degree k = 2, µ1 = 1, µ2 = 1, nw =

30 and K = 30. The initial estimate for the variable region is displayed in Fig. 3.5e.

Other initial estimates (e.g., not intersecting with the ground truth variable region)

may affect convergence speed, but typically produce the same result. The number

of control points was doubled three times, resulting in a final region descriptor of 32

control points. In the last optimization round, i.e., when using 32 control points,

the number of rSIRT iterations K was set to 60 to obtain a more accurate result.

The output of the region inconsistency minimization algorithm — the stationary

region — was used as input for the rSIRT algorithm with 100 iterations. The

RMSE of this rSIRT reconstruction is tabulated in the column “rSIRT-opt” in

Table 3.1. The rNMP as a function of iteration number is displayed in Fig. 3.8.

The resulting variable region estimates and its misclassified pixels are visualized
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Figure 3.8: rNMP as a function of iteration number of the region inconsistency minimization
algorithm.

(a) Phantom 1,
rNMP = 0.157

(b) Phantom 2,
rNMP = 0.0712

(c) Phantom 3,
rNMP = 0.0879

(d) Phantom 4,
rNMP = 0.397

Figure 3.9: Region estimate after region inconsistency minimization. Red indicates mis-
classified pixels, green indicates correctly classified pixels. The corresponding rNMP is also
indicated for every region estimate.

in Fig. 3.9. These results indicate that the region inconsistency minimization

algorithm is able to estimate a stationary region that closely approximates the

ground truth stationary region, resulting in an almost identical RMSE for the

rSIRT reconstruction based on the estimated region and the ground truth region.

Despite the region estimate for phantom 4 being less accurate (see Fig. 3.9d),

Fig. 3.7 indicates that the RMSE is still significantly improved. Also, Fig. 3.6a

illustrates that the convergence properties remain almost unaltered.
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(a) The plexiglas phantom placed inside the
SkyScan 1172 µCT scanner

(b) A close-up picture of the plex-
iglas phantom

Figure 3.10: The plexiglas phantom and the experimental set-up.

The calculation of 30 rSIRT iterations in the experimental setup as described

above (i.e., reconstructing on a 100 × 100 pixel grid and using projection data

consisting of 300 projection angles), takes about 5 seconds with an unoptimized

GPU implementation. Depending on the number of iterations needed by the re-

gion inconsistency minimization algorithm, it takes about 2-4 hours to calculate

a variable region estimate. However, this computational time could be signifi-

cantly reduced by parallelizing the rI function evaluations, which are needed for

the gradient calculation.

3.3.2 Experimental data

A sequence of cone beam projection images of a plexiglas (Polymethyl Methacry-

late) resolution phantom was acquired in a Bruker-microCT SkyScan 1172 µCT

scanner. The experimental set-up and the phantom are displayed in Fig. 3.10.

Each radiograph was acquired using a source voltage of 80 kV, a source current

of 124 µA, a 0.5 mm Al filter and an exposure time of 360 ms. The object has

been scanned over the full angular range of 360◦ with a 0.6◦ tilt increment, this

resulted in a total of 600 log-corrected projection images per scan. To increase the

SNR, the original detector pixels of size 9.01 µm were downsampled by a factor

4 in both dimensions, resulting in projection images of dimension 666×1000 with

detector pixel size 36.04 µm. Reconstructions were performed on a 1000 × 1000

isotropic pixel grid of the slice on the optical axis. Having a horizontal cone-beam

angle of 9.52◦ and a source to origin distance of 130.21 mm, this results in a pixel

size of 21.69 µm. Since ring- and beam-artifact correction goes beyond the focus
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of this thesis, we have preprocessed the projection images to correct these artifacts

using the standard Bruker-microCT NRecon software package.

A cross section on the optical axis of the plexiglas phantom is displayed in

Fig. 3.14a. The 2 cm diameter plexiglas cylinder was drilled with three 4 mm

diameter holes, four 3 mm diameter holes and four 2 mm diameter holes. We

created 2 datasets, each consisting of 600 projection images of the phantom. The

first dataset is a regular scan of the phantom. Next, one of the pores was filled

with water and the second dataset was acquired with exactly the same parameter

setup as for the acquisition of the first dataset. A ground truth for each of the

datasets was created by calculating a SIRT reconstruction using 50 iterations and

the full set of 600 projections. Subsequently the reconstruction was segmented

using the method of Otsu [23]. The obtained ground truth for the first and the

second dataset are displayed in Fig. 3.14a and Fig. 3.14f, respectively.

The first two projection datasets were combined into a single projection dataset

as if the hole was filled with water during the data acquisition. The combination

of the projection datasets is illustrated in Fig. 3.11. The first 75 projections were
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Figure 3.11: Illustration of the combination of the two datasets, consisting of 600 projections
each, into one single dataset, consisting of only 150 projections.
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taken from the first dataset, where the projections were ordered analogously to the

binary decomposition scanning protocol (see Section 1.3) with window size nw =

25. The only difference is that we made sure that each nw directions correspond

to approximately 360◦, since each of the projection datasets corresponds to a full

360◦ angular range. The next 75 projections were taken from the second dataset,

and ordered in the same manner as the first dataset. This resulted in a projection

dataset consisting of 150 angular directions, where source and detector have rotated

a total of 6 times around the object in a binary decomposition scanning protocol.

Next we applied the region inconsistency minimization to the resulting com-

bined projection dataset. The used parameters were λ = 10, spline degree k = 2,

µ1 = 1, µ2 = 1, nw = 25 and K = 25. The initial variable region estimate is

displayed in Fig. 3.13a. The intermediate variable region estimates, i.e., after each

iteration of the region inconsistency minimization algorithm, were used to calcu-

late the rNMP as well as the RMSE of the associated rSIRT reconstruction. These

results are displayed in Fig. 3.12. Convergence was reached after 33 iterations. The

final variable region estimate was used to generate an rSIRT reconstruction, which

is referred to as “rSIRT-opt”. The RMSE of this reconstruction with respect to the

ground truth was calculated and compared to the results of alternative methods in

Table 3.2. The ground truth variable region, the final variable region estimate and

the misclassified pixels are displayed in Fig. 3.13. A visual comparison of the diffe-

rent reconstructions can be done in Fig. 3.14. Visual as well as numerical results

SIRT conventional rSIRT rSIRT-opt

1.6752e-04 2.0325e-04 1.4597e-04 1.4821e-04

Table 3.2: RMSE after 40 iterations for the plexiglas phantom.

indicate the advantage of the region inconsistency minimization algorithm. The

SIRT reconstruction in Fig. 3.14b and Fig. 3.14g is exactly the same for every time

point, which makes it useless for studying structural changes within the scanned

object. The conventional method’s reconstruction of Fig. 3.14c and Fig. 3.14h is

able to image changes through time, but suffers from severe streak artifacts because

it is based on limited projection data per time point reconstruction. In contrast,

the rSIRT reconstruction of Fig. 3.14d and Fig. 3.14i is able to simultaneously

capture the structural changes and maintain image quality, because it combines

projection data over different time points within the stationary region. This im-

proves image quality in the stationary region and in the variable region, since the

update step in rSIRT is based on difference between the simulated projections of

the current reconstruction and the measured projection data.
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Figure 3.12: RMSE (left vertical axis) and rNMP (right vertical axis) in function of iteration
number for the region inconsistency minimization applied to the plexiglas resolution phantom.
The RMSE values are calculated on the reconstruction generated with 40 rSIRT iterations
and the intermediate variable region estimate.

(a) Initial estimate (b) Ground truth (c) rI minimization
result

(d) Misclas-
sified pixels,
rNMP = 0.0681

Figure 3.13: Region inconsistency minimization results. In (a)-(c), the initial estimate, the
ground truth and the region inconsistency minimization result are shown, respectively. White
pixels indicate the time-varying region and black pixels indicate the stationary region. In (d),
the misclassified pixels are visualized, red pixels are misclassified and green pixels are correctly
classified.
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(a) Ground
truth at time
instance ti with
i ≤ 75

(b) SIRT - t30 (c) conventional
- t30

(d) rSIRT - t30 (e) rSIRT-opt -
t30

(f) Ground truth
at time instance
ti with i > 75

(g) SIRT - t120 (h) conventional
- t120

(i) rSIRT - t120 (j) rSIRT-opt -
t120

Figure 3.14: Ground truth and reconstructions at t30 and at t120 with 40 iterations for the
different methods.

3.4 Discussion and conclusion

In general, reconstructing structurally or discretely time-varying objects based on

tomographic data is a difficult problem. Popular methods either reconstruct the

object independently at different time points using a subset of all projection data

or assume the changes to be continuous. The first method suffers from artifacts

introduced by the lack of projection data per reconstruction, and the latter cannot

be applied to structurally or discretely time-varying objects, as these changes are

no longer representable by a continuous deformation model.

In this chapter, we have presented the novel rSIRT algorithm. It can be used

for the reconstruction of time-varying structurally changing objects when there ex-

ist regions within the object that remain stationary through time. There are two

intuitive aspects of the rSIRT algorithm that illustrate its ability to create accu-

rate reconstructions. On the one hand, rSIRT guarantees accurate image quality

in the stationary region, since the iterative update step for this region is based

on all available projection data, in contrast to the conventional method, where

the stationary (and time-varying) region is reconstructed based upon information

available in a subset of all projection data. On the other hand, as image qua-
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lity in the stationary region improves, this is propagated to the variable region to

some extent, since the update step for the variable region is computed using the

projection difference of the previous estimate, which is based on the projection of

stationary and variable region. Naturally, the final reconstruction quality is influ-

enced by the amount of projection data used for generating the iterative update

step in the time-varying region, which is encoded by the window size. However, for

any fixed window size rSIRT improves the reconstruction quality, thereby allowing

shorter acquisition times per time window. Motivated by its ability to reconstruct

a wide variety of objects, SIRT was the algorithm of choice for the generation of

the iterative update steps in the time-varying and stationary region within the

rSIRT algorithm. However, any other iterative algorithm could be employed to

generate these update steps. In more specific scanning set-ups, the choice of re-

construction algorithm should be tailored to the specific properties of the object

under investigation, e.g. sparsity.

As it is time consuming and not always trivial to manually indicate the time-

varying regions, we have developed the region inconsistency minimization pro-

cedure, an optimization algorithm that automatically estimates the time-varying

regions. The method minimizes a region inconsistency measure, where the dif-

ference between simulated and measured projection data is weighted according

to a factor that essentially encodes the ray intersection length and the quality of

the simulated projection based on the proportion of the ray that passed through

the stationary region (see Appendix 3-C). Consequently, the region inconsistency

minimization algorithm is most suited for objects where no extreme changes in

reconstruction quality through the stationary region are present. However, most

objects do not exhibit this kind of behavior, which makes the region inconsistency

minimization method widely applicable.

Experiments with simulated and µCT data illustrate the ability of the region

inconsistency minimization algorithm to find a good approximation of the time-

varying regions. Also, the rSIRT algorithm was shown to have a clear advantage

over popular methods when constructing structurally changing objects.

Appendix 3-A

This appendix provides more details about the linear operator SK that represents

the rSIRT algorithm. More precisely, if x̃(0) = 0, the rSIRT reconstruction after

K iterations depends linearly on the projection data, i.e., x̃(K) = SK p̃.

First, for r = 1, . . . , R, define Kr as the N × RN matrix that selects the

reconstruction xr at time index r from the full reconstruction vector x̃, i.e., Krx̃ =

xr. Also define Lr as the nwMd×RMd matrix that selects the projection data p̃r
corresponding to the rth window from the full projection data p̃, i.e., Lrp̃ = p̃r.
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With these definitions, Eq. 3.5 can be rewritten as

x(k+1)
r = Ml,1x̃

(k) +Ml,2p̃,
�� ��3.11

with

Ml,1 = Kr − ISCW TRW̃ − IV C̃rW̃ T
r R̃rW̃rKr

�� ��3.12

and

Ml,2 = ISCW
TR+ IV C̃rW̃

T
r R̃rLr.

�� ��3.13

Set

M =


M1,1 M1,2

...
...

MR,1 MR,2

∅ 1RMd

 , �� ��3.14

where 1n represents the identity matrix of size n ∈ N\{0}. It can be easily verified

that for

SK =
[
1RN ∅

]
MK

[
∅

1RMd

]
,

�� ��3.15

we have x̃(K) = SK p̃.

Appendix 3-B

A brief description of the parametric B-spline closed curve model [24, 21] is given,

which is used throughout Chapter 3 for describing the variable region within the

scanned object. To define the normalized B-spline closed curve of degree k with

n control points, we first introduce n + 2k + 1 knot-points t−k < t−k+1 < · · · <
tn+k ∈ R. The following recursion relations are used to define the normalized

B-spline basis functions of degree k for i = −k,−k + 1, . . . , n− 1:

Ni,k+1(t) =
t− ti

ti+k − ti
Ni,k(t)

+
ti+k+1 − t

ti+k+1 − ti+1
Ni+1,k(t)

�� ��3.16

Ni,1(t) =

{
1 if ti ≤ t < ti+1

0 otherwise

�� ��3.17
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The normalized B-spline Ni,k+1 can be used to define a closed curve c(t) for t ∈
[t0, tn]:

c(t) =
n−1∑
i=−k

ciNi,k+1(t),
�� ��3.18

with control points ci ∈ R2 for i = −k, . . . , n − 1 and ci = ci−n for i = n −
k, . . . , n− 1. Once the knot-points are fixed, the region within the closed curve c

is completely described by the coordinates of the control points c0, . . . , cn−1.

Appendix 3-C

In this appendix, a more detailed description of the normalized adjusted inverse

row sum matrix R̄λ
α is given. Remember that R̄λ

α is calculated as the normalized

version of Eq. 3.8, where the normalization refers to the fact that the diagonal

elements of Rλ
α are multiplied with a suitable factor in order to have the same

mean as the diagonal elements of the standard inverse row sum matrix R.

Unlike R, which contains weights that encode the ray intersection lengths with

the reconstruction domain, R̄λ
α additionally encodes how much of the ray inter-

acted with the variable region. It can be understood in light of the region incon-

sistency measure rIλ,0,0(α) = ||W̃SαK p̃− p̃||2R̄λα :

� If a large part of the ray passes through the variable region, its corresponding

value in R̄λ
α will be rather small, indicating that the difference between

the simulated and the measured detector value in this detector pixel is less

important than others.

� If a ray passes mostly through the stationary region, the corresponding value

in R̄λ
α will be rather large. This means that the simulated projection value

should have a strong resemblance to the measured detector value.

Intuitively, rSIRT reconstructs the stationary region using all projection data,

hence this part of the reconstruction should be more accurate and the calculated

projection values corresponding to this region should have a good match with the

measured projection data, which is encoded by the relatively larger weights in R̄λ
α.

On the other hand, the variable region is reconstructed using less projection data,

and is therefore expected to be of lower quality in comparison to the stationary

region. This is encoded in the fact that corresponding projection values receive a

smaller weight. Without this adjusted weighting, optimization of rI would always

result in a variable region covering the entire reconstruction domain. This can be

understood as follows: The stationary regions are used to generate projections that

must match up with all projection data, which limits the set of possible solutions

95



CHAPTER 3. REGION-BASED ITERATIVE RECONSTRUCTION

for the pixels belonging to the stationary regions. On the other hand, the variable

regions are used to simulate projections that must match up with only a subset

of all projection data, which results in a larger set of possible solutions for the

pixels in the variable region. As the size of the variable region increases, the set of

possible reconstructions matching the projection data grows, which would result

in a smaller value for the projection distance. This property was experimentally

confirmed by the following simulation experiment. Consider the modified Shepp-

Logan phantom of Fig. 3.4e-(h). A version of this phantom on a 500 × 500 pixel

grid was used to generate projections over 300 time points. This projection data

was used to calculate a rSIRT reconstruction with window size nw = 30 on a

100 × 100 grid. Subsequently rIλ,0,0(α) was calculated for different values of λ

and for different variable region’s sizes, resulting in Fig. 3.15. Note that λ = 1

corresponds to a weighting with the standard inverse row sum matrix R.
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Figure 3.15: The region inconsistency measure rIλ,0,0(α) for different region sizes and for
λ = 1, 5, 10, 20, illustrated on the phantom of Fig. 3.4e-(h). A scaling factor 1 corresponds
to the ground truth region. To illustrate the size of the variable regions for different scaling
factors, we have superimposed the region for a scaling factor of 0.6, 1 and 1.8 on the phantom.
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CHAPTER 4. AN ITERATIVE CT RECONSTRUCTION ALGORITHM FOR
FAST FLUID FLOW IMAGING

4.1 Introduction

Dynamic computed tomography is a versatile tool for the non-invasive imaging of

time-varying objects, as images collected with high temporal frequency allow the

visualization of dynamic processes. The CT technique has great potential in fluid

flow experiments, where the main goal is to visualize, understand and model the

dynamics of the fluid over time. Recent advances in image acquisition speed are

now permitting preliminary studies [1, 2, 3], but current temporal resolutions are

insufficient to capture high speed behavior in low viscosity fluids. True high speed

dynamic CT of multi-phase flow has potential applications across petroleum and

geoscience research [4, 5, 6], in civil and environmental engineering [7, 8, 9, 10], as

well as for biomedical and materials science applications.

Conventionally, each time point (also referred to as time frame) in a fluid

flow experiment is reconstructed independently using projection data that was

acquired over a full 180◦ (or 360◦) angular range, typically using classical analy-

tical algorithms such as FBP or algebraic algorithms like SIRT. Afterwards, the

reconstructed 4D (3D+t) volume can be processed further for quantification of

the fluid flow. The main issue with this conventional approach is that the dy-

namic process should be slow enough to ensure a nearly stable object during the

acquisition of all projections at every time frame. If this assumption is violated,

blurring artifacts distort the reconstructed images and further quantification be-

comes difficult. A straightforward approach to increase the temporal resolution is

to reduce the scanning time at each time frame. This can be achieved by lowering

either the number of acquired projections per time frame or the exposure time

per projection. However, reducing the number of projections typically results in

limited data artifacts in the reconstructed images while shortening the exposure

time results in a decreased signal-to-noise ratio. This implies a trade-off between

spatial and temporal resolution, which ultimately limits current fluid flow exper-

iments to experiments with slow temporal dynamics. This is especially true for

neutron tomography, which can image very low concentrations of hydrous fluids

but has long projection acquisition times.

In the literature, several approaches for improving the temporal resolution in

fluid flow imaging by means of an adapted reconstruction algorithm have already

been suggested. Most approaches assume that an a priori high quality reconstruc-

tion of the dry stage (i.e., the sample without fluid flow) is available. The simulated

projection data of this reconstruction is then subtracted from the measured pro-

jection data of the dynamic object, resulting in projection data that corresponds

solely to the dynamic component in the reconstruction, i.e., the fluid flow. Myers

et al. utilized this approach to iteratively reconstruct the fluid flow, while also

enforcing prior knowledge about the porous nature of the material matrix and dy-
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namics of the fluid flow, allowing for faster fluid flow imaging [11, 12, 13]. Another

way of exploiting the prior image consists of minimizing a sparsity measure on the

image difference between the dynamic reconstruction and the prior image. Chen et

al. combined this sparsity constraint with a data fidelity term to achieve improved

image quality [14]. A more statistical approach, i.e., a maximum a posteriori prob-

ability (MAP) estimation method, was presented in [15]. Other approaches do not

rely on a prior high quality image, such as the spatial-temporal regularization ap-

proach based on non-local means proposed by Kazantsev et al. [16, 17] and the

region-based SIRT (rSIRT) method, which assumes only prior knowledge about

the location of stationary voxels and dynamic voxels [18].

In this chapter, we present a 4D reconstruction algorithm for fluid flow imaging

in which specific models describing the space-time evolution of each voxel are

exploited during the reconstruction process. It allows for a substantial reduction of

acquired projection data per time frame (thus increasing temporal resolution) while

maintaining image quality. The proposed algorithm exploits two types of prior

knowledge. Firstly, following the approach of Chapter 3, a dynamic reconstruction

is generated assuming the presence of stationary regions (the solid matter) and

dynamic regions (the fluid flow) throughout the reconstruction domain. Secondly,

corresponding to the actual physical advancing fluid/air boundary, the attenuation

of a particular voxel over time in the dynamic region can typically be described

by a piecewise constant (PWC) function. As such, the attenuation curves of all

voxels in the dynamic region are approximated by PWC functions at intermediate

iterations.

In Section 4.2, the region-based SIRT algorithm with intermediate PWC func-

tion estimation (rSIRT-PWC) algorithm is introduced. Experiments with sim-

ulation phantoms and with a real neutron tomography dataset are reported in

Section 4.3. The results are discussed in Section 4.4 and the chapter is concluded

in Section 4.5.

4.2 Method

The proposed rSIRT-PWC method is visualized in the flowchart of Fig. 4.1 and

pseudo code is available in Algorithm 2. The SUPPRESS algorithm is visualized

in the uppermost part of the flowchart in Fig. 2.1 and pseudo-code is available in

Algorithm 1. It is designed to frequently exploit two important model assump-

tions for fluid flow imaging, which are explained in Section 4.2.1. The enforced

model assumptions on the reconstruction x̃ result in a more accurately modeled

reconstruction problem, which ultimately leads to better reconstruction quality.

Starting from an initial estimate x̃(0) = 0, rSIRT-PWC continues with the follow-

ing steps:
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Figure 4.1: Flowchart of the rSIRT-PWC algorithm.

Algorithm 2 Pseudo-code for the rSIRT-PWC algorithm

1: x̃(0) ← 0
2: for k = 0, . . . ,Ktot − 1 do
3: for r = 1, . . . , R do

4: x
(k+1)
r ← x

(k)
r + ISCW

TR(p̃− W̃ x̃(k))

+IVCrW
T
r Rr(pr −Wrx

(k)
r )

5: end for
6: if mod (K, k) = 0 then
7: x̃(k+1) ← replace the attenuation curves in the dynamic region

by appropriate PWC functions (see Section 4.2.3)
8: end if
9: end for

1. First, K rSIRT iterations are executed, which is visualized in the bottom

most part of the flowchart in Fig. 4.1.

2. Next, PWC functions are estimated for all voxels in the dynamic region.

This is illustrated in the upper most part of the flowchart in Fig. 4.1.

3. Go back to step 1.

This process is repeated iteratively for Ktot iterations. The first step, i.e., the

rSIRT iterations, is based on the first model assumption of Section 4.2.1 and is
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explained more thoroughly in Section 4.2.2. The second step in which the PWC

functions are estimated is based on the second model assumption of Section 4.2.1

and is elaborated in Section 4.2.3.

In this chapter, the constant window approach for selecting subsets of the

projection data is adapted (see Fig. 3.2 in Chapter 3). It is assumed that for each

time frame r ∈ {1, . . . , R} multiple projection images were acquired (thus, Mt > 1,

see Section 1.3). Therefore, the projection matrix Wr (r ∈ {1, . . . , R}), introduced

in Section 1.3, corresponds to the projection along Mt acquisition angles.

4.2.1 Model assumptions

In fluid flow experiments, several assumptions about the scanned object can be

made.

4.2.1.1 The presence of stationary regions

The scanned object is assumed to consist of stationary regions (the solid matter)

and regions that change over time, i.e., dynamic regions (the fluid flow). In math-

ematical terms, this assumption means that there is a set S ⊂ {1, . . . , N} of voxel

indices that correspond to the stationary regions, such that xr(j) = xr′(j) for all

j ∈ S and r, r′ ∈ {1, . . . , R}. This is not necessarily true for voxels in the dynamic

region, of which the voxel indices belong to V := {1, . . . , N}\S. These sets (S

and V ) can be calculated prior to the actual fluid flow experiment by generating

a segmentation of the solid matter based on a reconstruction of the object before

the fluid flow initiated.

In what follows, the set V is further partitioned into two distinct subsets V =

VB ∪ VF with VB ∩ VF = ∅. The set VB contains the indices corresponding to

voxels on the border between the dynamic and the stationary region and the set

VF = V \VB contains indices corresponding to voxels that are fully inside the

dynamic region.

4.2.1.2 Two-phase incompressible fluid flow

Since a two-phase incompressible fluid flow is imaged, voxels in the dynamic region

can only contain fluid or air. Furthermore, the attenuation value of a homogeneous

incompressible fluid is a fixed value (in space and time). This means that, in the

dynamic region, the attenuation over time of a particular voxel, i.e., its attenuation

curve, can be modeled by a PWC function with one fixed attenuation value for

the fluid and a zero attenuation value for air, in full accordance with the actual

physically advancing fluid/air boundary. That is, in the first time frame, a voxel

will contain air. At a certain point in time, fluid will enter the voxel and the voxel’s

attenuation value will change to the attenuation value of the fluid. Once the fluid
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leaves the voxel, the attenuation value will return to zero. This can be modeled

by a PWC function. In what follows, the attenuation value of the fluid is denoted

as af .

4.2.2 region-based SIRT (rSIRT)

The rSIRT algorithm in the constant window approach, which was introduced in

Chapter 3 and is utilized throughout this chapter, is shortly repeated here. Let

IV ∈ {0, 1}N×N be the binary diagonal matrix representing the operator that

sets all voxels belonging to the stationary region to 0. Its diagonal elements are

given by IV (j, j) = χV (j) where χV is the characteristic function for the set V .

Analogously, the binary diagonal matrix IS ∈ {0, 1}N×N is defined as the operator

setting all voxels in the dynamic region to 0, i.e., IS(j, j) = χS(j). Finally, define

Rr ∈ RM×M and Cr ∈ RN×N as the diagonal matrices with inverse row sums and

inverse column sums of Wr, respectively. The introduced notations allow us to

describe the rSIRT algorithm as the following iterative process:

x(k+1)
r = x(k)

r + ISCW
TR(p̃− W̃ x̃(k))

+ IVCrW
T
r Rr(pr −Wrx

(k)
r ).

�� ��4.1

This update needs to be calculated for every r ∈ {1, . . . , R} before incrementing the

iteration count k. Eq. 4.1 calculates a traditional SIRT update for the stationary

region using all available projection data p̃ and then a second update for the

dynamic region using only the projection data from the relevant time frame.

4.2.3 Piecewise constant function estimation

In the dynamic region, the attenuation curves of each voxel are replaced by PWC

functions at intermediate iterations. The PWC functions are estimated with a

different approach depending on the position of the specific voxel. The different

types of distinguished voxel positions are displayed in Fig. 4.2.

The set VB corresponds to voxels of type #1. The voxel types in the fully

dynamic region VF , i.e., voxel types #2, #3 and #4, are assigned during each

PWC estimation step, which is explained below.

4.2.3.1 Voxels in the fully dynamic region VF

The PWC estimation for voxels in the fully dynamic region VF is subdivided into

4 steps (upper panel in Fig. 4.1).

In the first step, the time attenuation curve (TAC) is extracted for each voxel

with index j ∈ VF . It is defined by TACj(tr) = xr(j), where tr represents the
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Figure 4.2: Illustration of the different types of voxels. Voxel type #1 is situated on the
border between the dynamic and the stationary region. Voxels of type #3 are in the fully
dynamic region and contain fluid at some point in time. Voxels of type #4 are also classified
as dynamic but never contain fluid. Voxel type #2 is located on the border of the fluid and
void space in the fully dynamic region.

time corresponding to the rth time frame. For each of these attenuation curves, a

two-class Otsu segmentation [19] of the attenuation values is calculated.

In the second step, the mean of the attenuation values in the upper Otsu class,

defined as Mj , is utilized to define the PWC function

PWC
0,Mj

ta,tb
(t) =

{
Mj if ta < t < tb

0 otherwise
,

�� ��4.2

where ta and tb are discrete parameters that can be chosen from the finite set

{t1, . . . , tR}, indicating the time points at which the fluid enters and exits the voxel.

Note that the PWC function was defined with the mean Mj of the upper Otsu

segmentation class rather than the fluid’s attenuation value af , because iterative

algorithms like SIRT typically underestimate the higher attenuation values in the

first iterations. This function is used to approximate the extracted attenuation

curves TACj by solving the following problem:

(ta, tb) = argmin
ta,tb

R∑
r=1

(PWC
0,Mj

ta,tb
(tr)− TACj(tr))2 .

�� ��4.3

Eq. 4.3 is solved by testing all possible combinations of ta and tb.

In the third step, a statistical test is performed to check whether or not the

estimated PWC is relevant. For this purpose, the attenuation values in the original

attenuation curve for which ta < t < tb (referred to as upper class samples) and
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for which (t < ta)|(t > tb) (referred to as lower class samples) are extracted. With

these two sets of samples, a Kolmogorov-Smirnov (K-S) test is performed, which

checks the nul hypothesis that claims that the upper and lower class samples are

drawn from the same underlying continuous population [20]. This nul hypothesis is

rejected at a significance level of 1%, i.e., if the associated P -value is less than 1%.

With a rejection of the nul hypothesis, the two sets of samples (the upper and the

lower class) are regarded as sufficiently separated and hence the estimated PWC

is regarded as relevant, i.e., it does not fit the noise in the extracted attenuation

curve.

In the fourth step, the attenuation curves are replaced by different PWC func-

tions depending on the type of voxel (type #2, #3 or #4). To obtain the type of

each voxel, the fully dynamic region VF is subdivided using two conditions that

determine if a voxel contains fluid over time:

1. The K-S test, performed in step 3, results in a rejection of the nul hypoth-

esis at a 1% significance level. This indicates that the different classes are

sufficiently separated.

2. The upper class mean attenuation value (i.e., the mean of TACj for time

points satisfying ta < t < tb) is larger than af/2.

The region of voxels that contain fluid over time is defined by voxels that satisfy

both conditions. Voxels on the border of this region are assigned type #2 and

voxels that are fully contained in this region (i.e., not on the border) are assigned

type #3. If the nul hypothesis is not rejected at the 1% significance level or the

mean of the upper class is smaller than af/2, the voxel is assigned type #4.

Since voxels of type #2 contain both fluid and air, their attenuation curve

is replaced by the PWC curve defined in Eq. 4.2. Voxels of type #3 are either

fully emersed by fluid or contain only void space, therefore their corresponding

attenuation curves are replaced by

PWC
0,af
ta,tb

(t) =

{
af if ta < t < tb
0 otherwise

.
�� ��4.4

Voxels of type #4 never contain any fluid and are hence replaced by zero.

4.2.3.2 Voxels in the stationary/dynamic region VB

The four steps of the PWC estimation procedure introduced previously are slightly

adjusted. Since voxels in the stationary/dynamic region VB can contain a combi-

nation of solid matter and fluid or air, the use of a PWC function as defined in

Eq. 4.2 is incorrect. Instead, the mean of the lower Otsu class mj is calculated in
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step 1 and the attenuation curves are approximated by the PWC function

PWC
mj ,Mj

ta,tb
(t) =

{
Mj if ta < t < tb
mj otherwise

�� ��4.5

in step 2. The same K-S test is performed in step 3. Finally, in step 4, the

attenuation curves are replaced by Eq. 4.5 if the null hypothesis is rejected at the

1% significance level and by their mean if the null hypothesis is accepted.

4.3 Experiments

In this section, various experiments for the validation of the rSIRT-PWC algorithm

are described. First, the figures of merit are introduced in Section 4.3.1 and the

reconstruction methods to which rSIRT-PWC is compared are described in Sec-

tion 4.3.2. Next, in Section 4.3.3, different simulation experiments are introduced.

An experiment with real neutron tomography data is described in Section 4.3.4.

The results for all these experiments are reported in Section 4.4.

4.3.1 Figures of merit

The Relative Root Mean Squared Error (RRMSE) is utilized as a quality measure

and is defined as

RRMSE(x̂) =

√∑
i(x̂(i)− x̃(i))2∑

i(x̃(i))2
,

�� ��4.6

where x̂ denotes the calculated reconstruction and x̃ denotes the ground truth

phantom. For some experiments, the RRMSE is inspected only in a Region of

Interest (ROI), in which case the sum in Eq. 4.6 sums over all points in time and

over all voxels in the specific ROI.

4.3.2 Reconstruction methods

The rSIRT-PWC method is compared to the following reconstruction methods.

� SIRT : The SIRT algorithm individually applied to the projection data asso-

ciated with each time frame.

� SIRT PWC : In order to have a fair comparison, the SIRT reconstruction was

also post-processed with our PWC function estimation method. We refer to

this reconstruction as SIRT PWC.

� rSIRT : The region-based SIRT algorithm (see Section 4.2.2 and [18]).
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� Myers et al.: The fluid flow reconstruction method introduced by Myers et

al. and implemented as described in [11]. For the numerical experiments, the

reconstructions are modeled on a 200× 200 voxel grid. Therefore, following

Myers et al., the static reconstruction was calculated with FBP based on

the full set of 315 ≈ 200 ∗ π/2 projections, which guarantees accurate image

quality [21]. These projections were simulated from the ground truth image

assuming an incoming beam intensity of I0 = 5× 104 (photon count), which

is 10 times the number of photons that were assumed for generating the

projections of the dynamically evolving object. Also, the soft thresholding

parameter and convergence tolerance (which is denoted by ε in [11]) were

optimized by selecting those parameters that gave the lowest RRMSE with

respect to the ground truth. This optimal parameter selection was repeated

for each and every experiment. That is, whenever a different number of pro-

jections per time frame was utilized, new optimal parameters were selected,

thereby applying the method by Myers et al. at its full strength. In the neu-

tron tomography experiment, there is no ground truth available. Therefore,

the algorithmic parameters were chosen manually by visual assessment for

the neutron data. All other parameters were chosen as described in [11].

� CGLS-NLST : The Conjugate Gradient Least Squares method with Non-

Local Spatio-Temporal penalty (CGLS-NLST) developed by Kazantsev et

al. and implemented as described in [17]. The reader is referred to [17]

for details about the method and its parameters. The prior image contain-

ing structural information was set to be the same static reconstruction that

was utilized in the method by Meyers et al. Most algorithm parameters were

adapted from [17], except for the number of iterations, the regularization pa-

rameter and the noise-dependent parameter (denoted by MaxOuter, β and h

in [17], respectively), since these parameters are problem dependent. These

three parameters were optimized for lowest RRMSE with respect to the

ground truth for each and every experiment in the simulation experiments

and selected manually based on visual assessment in the neutron tomogra-

phy experiment. The parameter expressing the level of trust (strength of

smoothing) in the dynamic data (denoted by γ in [17]) was also manually

tuned in the neutron tomography experiment.

The rSIRT-PWC algorithm was implemented as described in Section 4.2 with

the PWC estimation applied every 20th iteration starting from the 60th iteration.

Every method was implemented with a positivity constraint, i.e., voxels with an

attenuation value smaller than zero are set to zero after each iteration. All re-

construction methods were applied with 200 iterations, with the exception of the

CGLS-NLST method, where this parameter was optimized for lowest RRMSE with

respect to the ground truth image. The algorithms were implemented with the
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ASTRA toolbox [22, 23, 24].

4.3.3 Numerical simulations

Two different simulation phantoms were created. In the simulation experiments,

the projections were generated with a strip kernel [25] and a parallel beam geome-

try. The data was simulated from a higher resolution version of the phantom, i.e.,

on a 400 × 400 isotropic voxel grid. The number of detector bins was set to 200,

with each detector pixel of twice the size as the voxel size in the high resolution

version of the phantom. Projection angles were selected with the golden ratio

scanning scheme. Poisson distributed noise was applied to the projection data,

assuming an incoming beam intensity of 5× 103 (photon count). Reconstructions

were calculated on a 200 × 200 isotropic voxel grid and with a linear projection

model [25], to avoid the “inverse crime” of generating the data with the same

model as the model for calculating the reconstruction [26].

4.3.3.1 Shepp-Logan phantom

The first phantom is a Shepp-Logan type phantom in which fluid flows from one

chamber into another during the acquisition of the CT data. The phantom was si-

mulated on 20 time frames, of which frame 1, 10 and 20 are displayed in Fig. 4.3(a),

(b) and (c), respectively. The mask that separates the stationary from the dynamic

voxels is displayed in Fig. 4.3(d). For each time frame, 10 projections were simu-

lated.

(a) (b) (c) (d)

Figure 4.3: The adjusted Shepp-Logan phantom on time frame 1, 10 and 20 (a-c) and the
mask for stationary region (d), where the white and black region correspond to the stationary
and the dynamic region, respectively.

4.3.3.2 Porous rock phantom

The second simulation phantom was created from a high quality FBP reconstruc-

tion of an X-ray tomography dataset of rock (porous gravel) acquired on a Nikon
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(a) High quality FBP re-
construction

(b) Processed FBP re-
construction

(c) Mask for the station-
ary region

Figure 4.4: The high quality reconstruction of the porous gravel (a), its segmented version
(b) and the corresponding mask for the stationary region (c).

XTH 225 ST scanner at the Manchester X-ray Imaging Facility (Fig. 4.4a). In

this reconstruction, all voxels that do not belong to the rock (the void volume)

were set to zero (Fig. 4.4b) and fluid flow was simulated in the void space. The

time point at which the fluid enters a certain voxel was randomly generated by a

properly scaled 2D Perlin noise image [27], the same approach was utilized to se-

lect the time point at which the fluid leaves a certain voxel. The stationary region

(Fig. 4.4c) was defined as the region containing rock and the region outside the

sample container. The phantom was simulated on 20 time frames, of which frame

1, 4, 5, 10, 15 and 20 are displayed in the first row of Fig. 4.8. In this experiment,

20 projections were simulated per time frame.

4.3.4 Neutron tomography dataset

A neutron tomography dataset was acquired at the cold neutron imaging Beamline

ICON at the SINQ spallation neutron source, Paul Scherrer Institute, Switzerland.

Granitic gravel particles with a 5-10 mm diameter were loaded into a 25 mm thin

walled Al tube and mounted in a gravity driven flow cell. Parallel beam projection

images were acquired under the golden ratio scanning scheme [28] with an exposure

time of 20 seconds per projection. After a 2 × 2 rebinning, the dimension of the

detector was given by 1023 × 1030 pixels with pixel size 26 µm. Reconstructions

were calculated on the central slice on a 1030×1030 pixel grid, also with pixel size

26 µm. Initially, the sample was scanned in its dry stage (no fluid flow) at 154

projection angles and a reconstruction was calculated with 200 SIRT iterations

(Fig. 4.5a). A mask for the stationary region (Fig. 4.5b) was extracted from this

SIRT reconstruction. Next, after starting the fluid flow, another 326 “wet stage”

projections were acquired. The projection data of the dry stage and the wet

stage were combined to form a projection data set corresponding to 480 projection
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(a) Dry stage SIRT reconstruction (b) Mask for the stationary voxels

Figure 4.5: The dry stage reconstruction (a) and the extracted mask (b) of the gravel
particles in the neutron tomography experiment.

angles. This set of projections served as the input for all evaluated reconstruction

methods. Since angles were selected with the golden ratio scanning scheme, the

projection data can be subdivided in arbitrary subsets which allows for selecting

the number of time frames as desired.

The stationary region mask in Fig. 4.5b was utilized as prior knowledge in

rSIRT, rSIRT-PWC and the method by Myers et al. The latter method and

CGLS-NLST were applied with the dry stage SIRT reconstruction (Fig. 4.5a) as

the prior image.

4.4 Results

4.4.1 Shepp-Logan phantom

Frame 10 of the reconstructions for all algorithms are displayed in Fig. 4.6. The

reconstruction method by Myers et al. is based on more projection data (i.e., the

projection data to generate the prior image and the projection data acquired from

the dynamically evolving object) in comparison to the other methods. A fully

fair comparison is hence only possible if the rSIRT-PWC method is allowed to use

this projection data as well. For this reason, the reconstruction in Fig. 4.6g was

created, it is the rSIRT-PWC reconstruction generated from the combination of the

projection data used in the generation of the prior image for the method by Myers

et al. and the projection data acquired from the dynamically evolving object.

From Fig. 4.6, it is obvious that the standard SIRT algorithm suffers from limited

data artifacts. This is improved by rSIRT (Fig. 4.6c) and substantially improved
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(a) Ground
truth

(b) SIRT (c) rSIRT (d) CGLS-
NLST

(e) Myers et
al.

(f) rSIRT-
PWC

(g) rSIRT-
PWC (all
data)

Figure 4.6: Reconstructions (displayed in time frame 10) for the simulation experiment
with the adjusted Shepp-Logan phantom. All reconstructions were calculated based on 10
simulated projections per time frame.
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(a) RRMSE calculated in the full reconstruc-
tion domain
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(b) RRMSE calculated in the stationary re-
gion
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(c) RRMSE calculated in the dynamic region

Figure 4.7: The RRMSE as function of the number of projections per time frame for SIRT,
rSIRT, the method by Myers et al. and rSIRT-PWC for the Shepp-Logan phantom.

by CGLS-NLST, the method of Myers et al. and rSIRT-PWC (Fig. 4.6(d-g)).

Furthermore, the rSIRT-PWC has better image quality in the dynamic region in

comparison to CGLS-NLST and the method by Myers et al. These observations

are confirmed by the RRMSE values in Table 4.1. Since the reconstruction by

the method of Myers et al. is based on a prior high quality reconstruction, it is
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SIRT SIRT rSIRT CGLS- Myers rSIRT-
PWC NLST et al. PWC

full ROI 0.5938 0.5819 0.2598 0.3806 0.2796 0.2536
stat. ROI 0.6414 0.6406 0.2653 0.4117 0.2607 0.2669
dyn. ROI 0.3845 0.3014 0.2304 0.2360 0.3187 0.1905

Table 4.1: RRMSE values for the Shepp-Logan phantom evaluated for different reconstruc-
tions (columns) in the full reconstruction domain (first row), in the stationary ROI (middle
row) and in the dynamic ROI (last row). In this experiment, 10 projections were simulated
per time frame.

obvious that it has better image quality in the stationary region.

To test the algorithms’ performance with respect to the amount of available

projection data, the previous experiment was repeated for a varying number of

projections per time frame, while keeping all other experimental parameters the

same. The RRMSE for each of these experiments is plotted as function of the

number of projections per time frame in Fig. 4.7. From these plots, it is obvi-

ous that rSIRT-PWC outperforms all other reconstruction methods in almost all

scenarios. One exception is the stationary region’s image quality if only few pro-

jection data (less than 15 projections per time frame) is available: in this case

the method by Myers et al. gives better results than the proposed rSIRT-PWC

method. This is again due to the fact that the stationary region’s reconstruction

for the method by Myers et al. is based on more projection data (315 projec-

tions) than the rSIRT-PWC reconstruction. As soon as sufficient projection data

becomes available (more than 15 projections per time frame), the rSIRT-PWC

method also outperforms the method of Myers et al. with respect to image quality

in the stationary region. Furthermore, by comparing the RRMSE values at 50

projections per time frame for the SIRT method and 5 projections per time frame

for the rSIRT-PWC method in Fig. 4.7c, it can be observed that the rSIRT-PWC

reconstruction method achieves comparable image quality in the dynamic region

with up to an order of magnitude fewer projections than the conventional SIRT

method.

4.4.2 Porous rock phantom

The reconstructions in time frame 1, 4, 5, 10, 15 and 20 for all algorithms are

displayed in Fig. 4.8. The RRMSE values can be found in Table 4.2. It is clear,

both visually from Fig. 4.8 and numerically from Table 4.2, that a conventional

reconstruction approach such as SIRT suffers from limited data artifacts if only

20 projections are available per time frame. The rSIRT reconstruction can more
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Figure 4.8: Ground truth images and reconstructions of the porous rock phantom showing the
evolution through time. The columns represent different time frames and the rows represent
the ground truth phantom and the different reconstruction methods. All reconstructions are
based on 20 simulated projections in each time frame.

accurately reconstruct the stationary region. However, mainly because the lack

of model restrictions in the dynamic region, the rSIRT reconstruction is strongly

influenced by noise in the dynamic region. The CGLS-NLST method improves

image quality in both stationary and dynamic region, but due to the high level

of noise in the projection data and the low number of projections, the optimal

smoothing parameters were rather large and hence the fine structures are partially
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SIRT SIRT rSIRT CGLS- Myers rSIRT-
PWC NLST et al. PWC

full ROI 0.3084 0.2716 0.2037 0.2004 0.1839 0.1655
stat. ROI 0.2472 0.2446 0.1488 0.1597 0.1479 0.1357
dyn. ROI 0.8999 0.4974 0.6358 0.4984 0.4637 0.3330

Table 4.2: RRMSE values for the porous rock phantom evaluated in the full reconstruction
domain (first row), in the stationary ROI (middle row) and in the dynamic ROI (last row).
The different columns represent different reconstruction algorithms. In this experiment, 20
projections were simulated per time frame.

erased. The method by Myers et al. also has improved image quality in both

the stationary and the dynamic region. The rSIRT-PWC reconstruction, however,

has even better image quality. The fluid’s dynamics are captured more correctly

and the region on the edge between stationary and dynamic region has a better

correspondence to the ground truth image.

The previous experiment was repeated for a varying number of projections

per time frame, while keeping all other experimental parameters the same. The

RRMSE as function of the number of projections per time frame can be observed

in Fig. 4.9. It can be concluded that the proposed rSIRT-PWC algorithm outper-

forms all other algorithms. Notice that the stationary region of the reconstruction

by Myers et al. has better image quality for a low number of projections per time

frame (Fig. 4.9b). This is again due to the fact that this region of the recon-

struction domain is based on the prior image, which was reconstructed a priori

with FBP based on 315 projection images. The rSIRT-PWC algorithm does not

utilize this data. However, starting from around 15 projections per time frame

(which corresponds to a total of 300 projections for all 20 time frames) the rSIRT-

PWC stationary region reconstruction has better quality than the reconstruction

of Myers et al. At that point, rSIRT-PWC has acces to approximately an equal

number of projections for reconstructing the stationary region and due to the fact

that rSIRT-PWC is based on an iterative technique (which generally outperforms

FBP) the reconstruction quality in the stationary region becomes better. Analo-

gously to the Shepp-Logan experiment, it can also be observed in Fig. 4.9c that

the rSIRT-PWC reconstruction method achieves comparable image quality in the

dynamic region with up to an order of magnitude fewer projections than the other

methods.
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(b) RRMSE calculated in the stationary re-
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(c) RRMSE calculated in the dynamic region

Figure 4.9: The RRMSE as function of the number of projections per time frame for SIRT,
rSIRT, the method by Myers et al. and rSIRT-PWC for the porous rock phantom.

4.4.3 Neutron tomography dataset

The projection dataset was first subdivided into 48 time frames of 10 projections

each. The corresponding reconstructions generated by SIRT, rSIRT, CGLS-NLST,

the method by Myers et al. and rSIRT-PWC on time frame 1, 30, 31 and 48 are

displayed in Fig. 4.10. The reconstructions generated by SIRT and rSIRT are

heavily influenced by both noise and artifacts in the dynamic region, as are those

produced by the CGLS-NLST and Myers et al. method because the prior image

does not have perfect quality in this experiment. The rSIRT-PWC reconstruction

has good contrast both in the stationary and the dynamic regions.

In a second experiment, the projection dataset was respectively subdivided

into 10 subsets of 48 projections each, 20 subsets of 24 projections each, 30 sub-

sets of 16 projections each and 48 subsets of 10 projections each. The resulting

reconstructions on the last time frame can be observed in Fig. 4.11. The rSIRT-

PWC reconstruction (bottom row in Fig. 4.11) is the least affected by having

small numbers of projections available per time frame, which illustrates the ability

of rSIRT-PWC to increase the temporal resolution without affecting the image
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quality.

4.5 Conclusion

Capturing the high speed dynamics of fluid flow by means of CT imaging requires

a short acquisition time, which can be achieved by acquiring only few projection

images per time frame. However, reconstructing data from undersampled projec-

tion data is a difficult problem, and conventional approaches that reconstruct the

object independently at different time frames result in images containing limited

data artifacts.

In this chapter, the rSIRT-PWC algorithm was introduced, an iterative method

tailored specifically to fluid flow reconstruction problems. The algorithm divides

the reconstruction domain into stationary (the solid matter) and dynamic (the

fluid flow) regions, and assumes the shape of the attenuation curves in the dynamic

region to be piecewise constant in accordance with a physical advancing air-fluid

boundary. Since the reconstruction problem is modeled more accurately, the size

of the solution space is substantially reduced and the final image quality improves.

Therefore, the rSIRT-PWC algorithm allows for a significant reduction in the

number of projections per time frame without image quality loss. The rSIRT-PWC

reconstruction method achieves comparable image quality in the dynamic region

with up to an order of magnitude fewer projections than conventional methods. It

therefore provides a much-needed method for probing high speed fluid dynamics.
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Figure 4.10: Single slice through the reconstructed neutron tomography data showing the
evolution through time. The columns correspond to different time frames and the rows to the
different reconstruction methods. In this experiment, the projection dataset was subdivided
in 48 time frames with 10 projections each.
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Figure 4.11: Single slice through the reconstructed neutron tomography data on the last
time frame. Column labels refer to the number of projections per time frame. Row labels
indicate the reconstruction method employed.
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5.1. INTRODUCTION

5.1 Introduction

Cerebral perfusion computed tomography (PCT) is an imaging technique that

allows the visualization and quantification of important hemodynamic information

throughout tissue and vessels in the brain [1, 2, 3, 4]. After an intravenous contrast

bolus injection, the brain is scanned several times and from the reconstructed time

series of brain volumes, a time concentration curve (TCC) describing the evolution

over time of local contrast agent concentration can be extracted at the voxel-level.

Based on the TCCs, perfusion parameter maps such as cerebral blood volume

(CBV), cerebral blood flow (CBF), mean transit time (MTT) and time-to-peak

(TTP) can be derived [5, 6, 7].

Cerebral PCT is of particular importance in the case of an acute stroke event,

a serious medical emergency that was the fourth leading cause of death and ac-

counted for 5.2% of all deaths in the United States in 2010 [8]. During an ischemic

stroke event, the blood supply to the brain is locally disturbed, resulting in rapid

loss of brain function [2]. Based on the CBF and the CBV perfusion maps, the

extent of a region of severely ischemic but potentially salvageable brain tissue

can be identified, providing the clinician with important therapeutic information

[9, 6, 7]. However, it suffers from major drawbacks. Radiation dose is by far the

most important issue, since the same volume needs to be scanned several times

[2, 10]. This has stimulated research on dose reduction in PCT.

Several approaches for reducing the radiation dose and/or increasing image

quality have already been suggested. In a straightforward approach, the radiation

dose can be decreased simply by reducing the number of projections per time frame.

This will, however, give rise to limited data artifacts that may result in erroneous

diagnosis. Apart from the optimization of acquisition parameters and hardware

[11, 12], a large opportunity can be found in the reconstruction algorithm, which

allows for reducing the number of projections per time frame without compromising

image quality.

A first class of reconstruction methods assumes that a high quality anatomical

image is available and enforces similarity with this image during reconstruction

[13, 14, 15, 16, 17]. However, a prior high resolution scan introduces extra radiation

dose. Also, the final image quality depends strongly on the prior image quality.

Furthermore, a perfect registration between the prior image and the time series

reconstruction is indispensable.

In a second class of methods, perfusion specific model assumptions are enforced

globally over the entire reconstructed volume. This can be achieved by assuming

a predefined shape for the TCCs, e.g., a linear combination of temporal basis

functions or a gamma variate function, and estimating the model specific parame-

ters during reconstruction [18, 19, 20]. These approaches enforce the model as-
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sumptions globally, while in practice distinct regions throughout the reconstructed

volume can have locally different properties.

In this work, we introduce a novel iterative reconstruction algorithm for PCT.

Our proposed approach, the Local Enhancement Steered Tomography (LEST)

algorithm, does not depend on a high quality prior reconstruction and enforces

specific model assumptions locally. Temporal relation between the reconstruc-

tions at different time frames is exploited in two different ways. Firstly, the re-

gion outside the brain (i.e., bone and void space) is forced to be stationary over

time. Secondly, all brain tissue is assumed to be temporally connected through

its TCC. Furthermore, the arterial TCCs are modeled by a linear combination of

time-shifted gamma variate functions, of which the coefficients are optimized at

intermediate iterations. As will be demonstrated, the proposed LEST algorithm

significantly improves the quality of the perfusion maps for equal dose or allows

for dose reduction while maintaining image quality.

This chapter is organized as follows. In Section 5.2, the model assumptions

for cerebral PCT are discussed. In Section 5.3, the LEST method is introduced.

Simulation and experimental results are reported in Section 5.4. The results are

discussed in Section 5.5 and the chapter is summarized and concluded in Sec-

tion 5.6.

5.2 Object model

In cerebral PCT the time-varying object x̃ is highly correlated over time, which

can be accurately described by the following two model assumptions.

Firstly, some regions (e.g., bone and void space) are known to remain stationary

throughout the entire acquisition process. Hence, we assume that a set S ⊂
{1, . . . , N} of stationary pixel indices can be defined such that xr(j) = xs(j)

for all j ∈ S and r, s ∈ {1, . . . , R}. Then, pixels in the dynamic region are defined

by V = {1, . . . , N}\S. The sets S and V can be determined a priori either by

manual delineation or automatically.

Secondly, each time attenuation curve can typically be described by a linear

combination of K functions: the constant function yK = 1 and K − 1 time-shifted

gamma variate functions y1, y2, . . . , yK−1 [21, 19]. The latter are defined by their

simplified form

yk(t) = (t− tk)
κ

exp

(
− t− tk

β

)
k = 1, . . . ,K − 1

�� ��5.1

where κ and β are shape parameters and tk is a time shift. The shape parameters

and the time shifts are chosen similar to [19], such as to place y1, y2, . . . , yK−1 uni-

formly over the acquisition time interval. Hence we have xr(j) =
∑K
k=1 ak,jyk(tr)
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with j ∈ V , ak,j ∈ R the coefficient corresponding to the kth basis function for the

jth pixel and tr the time point corresponding to the rth time index. An example of

an attenuation curve formed by the linear combination of K = 12 basis functions

is shown in Fig. 5.1.
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Figure 5.1: An example of a time attenuation curve
∑12
k=1 ak,jyk(t) = 0.3y2 + 1.9y3 +

0.3y5 + 0.5y10 + 0.5y11 + 1.5y12. All gamma variate basis functions yk are scaled to have a
maximum of 1 and are defined by κ = 2.5 and β = 4. Basis functions with a zero coefficient
are not shown.

5.3 Methods

The proposed reconstruction processing chain is visualized in Fig. 5.2. The LEST

algorithm (Fig. 5.2, left) is described in Section 5.3.1 and the intermediate gamma

variate basis function optimization (Fig. 5.2, right) is explained in Section 5.3.2.

5.3.1 Local Enhancement Steered Tomography (LEST)

In this section, the Local Enhancement Steered Tomography (LEST) algorithm is

introduced, an iterative reconstruction method for PCT in which the time evolu-

tion of the attenuation values is accurately modeled and local correlation of the

PCT dynamics is exploited.

The LEST algorithm starts at iteration k = 0 from an initial time-varying re-

construction x̃(0) generated by applying the standard SIRT algorithm separately

to each projection data subset pr (r ∈ {1, . . . , R}). Since all attenuation val-

ues of pixels inside the stationary region S are assumed to remain constant over

time, all time attenuation curves of pixels inside S are pixel-wise replaced by the

constant function defined by their temporal average. Next, for every time frame

r ∈ {1, . . . , R}, the LEST algorithm iteratively performs three updates:
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Figure 5.2: Flowchart of the LEST algorithm.

1. Stationary region update: This update (top row in the frame of the flowchart

in Fig. 5.2) is the same for all time frames and enforces the first model as-

sumption of Section 5.2 on the reconstruction, i.e., all pixels of the stationary

region S are equal at every time frame.

2. Local dynamic region update: The time-varying region V is updated (middle

row in the frame of the flowchart in Fig. 5.2) based solely on the projection

data pr that corresponds uniquely to the rth time frame.

3. Global dynamic region update: The time-varying region V is updated again

(bottom row in the frame of the flowchart in Fig. 5.2) based on the projection

data corresponding to all time frames that differ from the rth time frame.

In the remaining part of this section, these different updates are explained more in

depth. All updates are based on the weighted projection difference R(p−W̃ x̃(k)),

which is illustrated in the top left part of the flowchart in Fig. 5.2. Since it indicates

the discrepancy between the current reconstruction and the measured projection

data, this projection difference can be utilized to steer the current reconstruction

towards a reconstruction that is more consistent with the measured projection

data.

The stationary region update is based on the entire projection data set p and is

given by CISW
TR(p−W̃ x̃(k)), where IS ∈ {0, 1}N×N is defined as the diagonal
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matrix with

IS(j, j) =

{
1 if j ∈ S
0 otherwise

�� ��5.2

which selects all pixels of the stationary region (see Chapter 3). This update is

exactly the same for every time frame. Therefore, the first model assumption of

Section 5.2 is enforced, i.e., all pixel values in the stationary region S are the same

at all time frames.

The local dynamic region update is a standard SIRT update, restricted to the

time-varying region. It is based on the projection data corresponding to the rth

time frame and is defined by IVW
T
r Rr(pr −Wrx

(k)
r ), where IV is defined analo-

gously to IS in Eq. 5.2 and Rr ∈ RM×M is the diagonal matrix with inverse row

sums of Wr. This update directs the current reconstruction at the rth time frame

towards a reconstruction that is more consistent with its corresponding projection

data pr.

The global dynamic region update is based on the SIRT updates of the other

time frames and consequently also on their corresponding projection data pi with

i 6= r. Before adding these updates to the reconstruction of the current time frame,

they must be scaled properly in a pixel-wise manner according to the ratio of each

attenuation value in the current time frame r with respect to the attenuation

value of the other time frame i with i 6= r. To this end, the diagonal matrix

αr,i ∈ RN×N is introduced. The diagonal entries of αr,i represent the ratio of the

attenuation values from reconstruction xr with respect to reconstruction xi. Its

diagonal elements are defined as

αr,i(k, k) =

∑
j∈N (k) z̄k,jxr(j)∑
j∈N (k) z̄k,jxi(j)

,
�� ��5.3

where N (k) represents the 3×3 pixel neighborhood of the pixel with index k. The

weights z̄k,j are calculated for every neighborhood N (k) and reflect the amount of

similarity with the central pixel. They are calculated as follows:

zk,j =

 1/
∑R
r=1 |xr(k)− xr(j)| if k 6= j

max
l∈N (k),l 6=k

(
1/
∑R
r=1 |xr(k)− xr(l)|

)
if k = j

�� ��5.4

z̄k,j =
zk,j∑

j∈N (k) zk,j
.

�� ��5.5

By calculating the weights in this manner, dissimilar tissues (e.g., a tissue pixel

near a bone-tissue interface) will have little to no influence on the diagonal ma-

trix αr,i. In summary, the global dynamic region update can be described as
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λ
∑
i∈{1,...,R}\{r}αr,iIVW

T
i Ri(pi −Wix

(k)
i ), where λ (0 < λ < 1) represents the

relative importance of the projection data corresponding to the current time frame

with respect to the projection data corresponding to the other time frames. The

multiplication with the diagonal matrix αr,i ensures that the update generated

from the projection date pi (i 6= r) is properly scaled, before adding it to the rth

time frame, thereby accounting for the attenuation changes in different types of

tissue over time.

More intuitively, this update term can be regarded as a scaling operation on

the attenuation curve at each pixel. After adding the scaled version of the update

at a particular pixel in a particular time frame to the same pixel at all other time

frames, the attenuation curve is scaled in the direction of this update. This is

illustrated in Fig. 5.3. Since the rth time frame at the particular pixel receives a

0 20 40 60 80
0

2

4

6

at
te

nu
at

io
n

SIRT update

SIRT update*

SIRT update**

time index

original

updated

=

Figure 5.3: Illustration of the effect of the last update term in Eq. 5.7 on the attenuation
curve. Imagine that the black curve is the attenuation curve at a particular pixel after k
iterations. After adding the properly scaled SIRT update of the ith time frame to all other
time frames, the curve changes to the updated blue curve.

scaled update from all other time frames, the resulting attenuation value of this

pixel at the rth time frame can be considered intuitively as the sum of all these

scaled SIRT updates.

Finally, to account for the number or rays intersecting each pixel, the local and

global dynamic region update must also be scaled with a proper inverse column

sum matrix. Define Cλ
r ∈ RN×N as the diagonal matrix with inverse column sums

of

Wr + λ
∑

i∈{1,...,R}\{r}

Wi .

After a left multiplication of the sum of the local and global dynamic region update

by Cλ
r , the resulting update is added to the reconstruction of the rth time frame.
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Remember that the classical SIRT algorithm weights each pixel by the inverse of

the sum of all ray-intersection lengths through that pixel, i.e., the inverse column

sum of the projection matrix. The weighting with Cλ
r is the analog for the LEST

algorithm: since the update for each pixel is based on a weighted sum of updates

from all projection data, the weight for that pixel should reflect the ray-intersection

lengths of all rays, weighted with their contribution λ.

The introduced notation allows for a compact description of the LEST algo-

rithm. Starting from an initial SIRT reconstruction x̃(0), the LEST algorithm

continues with the following iterative process:

x(k+1)
r = x(k)

r +CISW
TR(p− W̃ x̃(k))

�� ��5.6

+Cλ
r

 IVW
T
r Rr(pr −Wrx

(k)
r ) +

λ
∑

i∈{1,...,R}\{r}

αr,iIVW
T
i Ri(pi −Wix

(k)
i )

�� ��5.7

5.3.2 Intermediate gamma variate basis function optimization

For faster convergence and a more accurate estimate of the AIF, a least squares

optimization of the arterial attenuation curves is alternated with LEST iterations.

This optimization, which is described in this section, enforces the second model

assumption of Section 5.2 in the artery regions of the reconstruction domain.

It is assumed that a mask for the artery region, containing L arterial pixels, is

known a priori. This mask may also contain other vessel pixels, in order to speed

up convergence and increase accuracy in those pixels as well. The mask can either

by indicated manually or determined automatically, see [18, 16]. In what follows,

the artery region is indicated manually.

For each of the L arterial pixels and K basis function, define ỹl,k (with (l, k) ∈
{1, . . . , L}×{1, . . . ,K}) as the time-varying image that is zero everywhere, except

in the lth arterial pixel, where the function values of kth basis function are assigned.

The basis functions were defined in Section 5.2. Furthermore, define ỹ0 to be the

time-varying image that is the same as the current reconstruction x̃ in all pixels

except in the arterial pixels, where the attenuation curves are replaced by zero.

With these definitions, a time-varying parameterized reconstruction ỹ(a) can be

defined as

ỹ(a) = ỹ0 +

L∑
l=1

K∑
k=1

al,kỹl,k ,
�� ��5.8

where a is a vector containing all coefficients al,k, i.e., for all L arterial pixels and

all K gamma variate basis functions. The intermediate optimization problem can
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now be written as

min
a

||p− W̃ ỹ(a)||22 +
µ

2

L∑
l=1

K∑
k=1

∑
j∈M(l)

(al,k − aj,k)2

 ,
�� ��5.9

where M(l) ⊂ {1, . . . , L} is the set of indices corresponding to the 8-connected

neighborhood of the lth arterial pixel (considering only those pixels that belong

to the artery region). The parameter µ controls the degree of similarity between

coefficients corresponding to the same gamma variate basis function and to neigh-

boring pixels.

Let q0 and ql,k be the simulated projections of ỹ0 and ỹl,k respectively, i.e.,

q0 = W̃ ỹ0 and ql,k = W̃ ỹl,k. This allows for rewriting the norm in Eq. 5.9 as

||p− W̃ ỹ(a)||22 = ||(p− q0)−
L∑
l=1

K∑
k=1

al,kql,k||22 .
�� ��5.10

The minimization problem in Eq. 5.9 can be solved by setting the partial derivatives

(with respect to al,k) to zero, resulting in

∑
j∈M(l)

(µal,k − µaj,k) +
L∑
l′=1

K∑
k′=1

(qTl,kql′,k′)al′,k′ = qTl,k(p− q0) .
�� ��5.11

Since Eq. 5.11 holds for every (l, k) ∈ {1, . . . , L} × {1, . . . ,K} and Eq. 5.11 is a

linear equation with respect to the coefficients in a, this gives rise to the following

matrix equation:

Ma = b ,
�� ��5.12

where M ∈ RLK×LK and b ∈ RLK are defined via the left-hand side and the

right-hand side of Eq. 5.11, respectively.

Note that M and all ql,k in Eq. 5.12 can be calculated before the LEST algo-

rithm starts. This way, only the right hand side b of Eq. 5.12 needs to be updated

during the intermediate optimization. To speed up the computations, Eq. 5.12 is

solved for each connected component of the artery region containing a maximum

of 15 pixels. The equations are solved by LU factorization with partial pivoting.

5.3.3 Automated dynamic region estimation method

The LEST algorithms needs prior knowledge about the location of stationary and

dynamic pixels. For this purpose, a simple and automated dynamic region esti-

mation method was implemented. To make the method more stable if only few

projections are available per time frame, the projection data for each three sub-
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sequent time frames are joined and SIRT reconstructions are calculated based on

these joined projection data subsets. Next, the difference between the maximum

and the minimum attenuation value is calculated for each pixel (i.e., for each time

attenuation curve). Since this difference quantifies the maximum amount of con-

trast fluid present in each pixel, it is thresholded to produce a first rough estimate

for the dynamic mask. Finally, morphological image operations are applied to the

resulting mask: after opening the mask with a two-pixel radius disk, the largest

connected component is selected and all holes are filled. The resulting mask is the

estimate for the dynamic region.

5.4 Experiments and results

In this section, the LEST algorithm is validated with both numerical and real data

experiments. First, different figures of merit are introduced in Section 5.4.1. Next,

in Section 5.4.2, simulation phantoms are introduced and LEST is compared to

state-of-the-art reconstruction methods. Finally, the LEST algorithm is validated

on clinical perfusion CT data in Section 5.4.3.

5.4.1 Figures of merit

A comparison between the different reconstruction algorithms is performed based

on both the reconstructed attenuation values and the derived CBF (ml/100 ml/min)

and CBV (ml/100 ml) perfusion maps. The CBF and CBV maps are calculated

with the deconvolution-based truncated singular value decomposition method with

a fixed threshold value of 20% of the largest singular value [5]. The estimate for

the AIF was calculated as the average TCC over all pixels in the arterial mask.

The Relative Root Mean Squared Error (RRMSE) is utilized as a quality mea-

sure and is defined as

RRMSE =

√∑
i(x̂(i)− x̃(i))2∑

i(x̃(i))2
,

�� ��5.13

where x̂ denotes the calculated reconstruction (in which case the summation index

i goes over all possible pixels at all possible points in time) or perfusion map (in

which case the summation index i goes over all possible pixels in the perfusion map)

and x̃ denotes the ground truth phantom or perfusion map. For some experiments,

the RRMSE is inspected only in a Region of Interest (ROI), in which case the sum

in Eq. 5.13 sums over all points in time and over all pixels in the specific ROI.
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Figure 5.4: The first simulation phantom is created by superimposing various concentration
curves (b) on top of the standard Shepp-Logan phantom (a). The bone region (1) and the
void space region (6) are unaltered. All other regions (2,3,4,5,7,8) are altered by adding the
TCCs of the plot in (b) to the attenuation value of the standard Shepp-Logan phantom.
These TCCs were chosen to reflect various sorts of tissue, including normal tissue (2), a
region with reduced perfusion (3), smaller regions (4 and 8) and an artery (5) and vein (7)
region.

5.4.2 Numerical simulations

In this section, the LEST algorithm is validated with a series of numerical experi-

ments. The first simulation phantom, displayed in Fig. 5.4, is a standard Shepp-

Logan phantom on which various TCCs are superimposed, each corresponding to

a different type of tissue. All TCCs are created with Eq. 5.1, where different values

were chosen for the scaling, time shift and shape parameters. The second simula-

tion phantom is a realistic digital brain phantom that was developed by Riordan

et al. and extended by Manhart et al. [18, 22, 23]. It is visualized in Fig. 5.5.

In contrast to classical digital CT phantoms, this phantom has reduced sparsity

in the image domain, thereby not favoring reconstruction algorithms exploiting

homogeneity (e.g., minimizing total variation). Both simulation phantoms were

defined on a 256× 256 isotropic pixel grid.

For all experiments, the projections were sampled on angles defined by the

golden ratio scanning protocol [24]. Projections were simulated with a parallel

beam geometry using a strip kernel, while reconstructions were calculated assuming

a linear projection kernel. Also, Poisson distributed noise was applied to the

projection data assuming an incoming beam intensity of I0 = 2 × 104 (photon

count) per detector pixel. The number of simulated detector bins was set to 128

for the Shepp-Logan and 256 for the digital brain phantom.
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Figure 5.5: The second simulation phantom is adopted from [18, 23]. Some exemplary TCCs
are displayed in (b), corresponding to the indicated pixels in (a). However, all TCCs vary from
pixel to pixel. This way, this phantom does not favor sparsity exploiting algorithms. It was
created by starting from a CBF and CBV map (with manually indicated reduced and severely
reduced tissue regions) and calculating the TCCs based on these maps. By adding random
perturbations on the CBF and the extracted MTT (=CBV/CBF) map, the final TCCs have
reduced sparsity characteristics.

A comparison of LEST to the conventional reconstruction algorithm SIRT and

the recently proposed Prior Image Constrained Compressed Sensing (PICCS) algo-

rithm [16, 17] is performed. The SIRT algorithm was implemented with a positivity

constraint and 200 iterations for all subsequent experiments. The PICCS algorithm

was implemented as described in [16, 17] and the parameter values given in [16]

were adopted. All parameters that were not described in [16], i.e., the number of

steepest descent iterations and the size of the steepest descent step, were optimized

by selecting those parameters that yielded the lowest RRMSE with respect to the

ground truth image. The prior image was calculated with the vessel-selective prior

(see [16]) with the same vessel mask that was used for the intermediate gamma

variate basis function optimization.

5.4.2.1 Shepp-Logan phantom

Reconstructions were calculated on a 128 × 128 isotropic pixel grid on 30 time

frames, ranging from 0 to 50 s with a 1.724 s time step.

The LEST algorithm was applied in two different ways. In a first implemen-

tation, referred to as “LEST-gt”, the ground truth stationary region S, defined

by the void space region and the bone region (see Fig. 5.4a), was used. In the

implementation referred to as “LEST-est”, the stationary region was estimated
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SIRT PICCS LEST-gt LEST-est

att. values 0.245 0.201 0.200 0.200
CBF 0.507 0.320 0.282 0.291
CBV 0.551 0.358 0.236 0.255

Table 5.1: RRMSE in the dynamic region of the Shepp-Logan phantom for perfusion maps
and attenuation values (rows) of different reconstruction algorithms (columns). In this expe-
riment, 20 projections were simulated per time frame.
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Figure 5.6: The estimated AIF for the Shepp-Logan phantom.

automatically with the method described in Section 5.3.3. Starting from an ini-

tial reconstruction generated with one SIRT iteration, the LEST reconstruction

algorithm performed 300 iterations. LEST was set up with λ = 0.4, which was se-

lected by visual assessment of the reconstructed images. The intermediate gamma

variate basis function optimization (see Eq. 5.9) was performed in the artery and

vein region at every 20th iteration. The gamma variate functions were defined as

in Eq. 5.1 with κ = 1.5 and β = 4, similar to [19]. A total of 12 gamma variate

basis functions were used (including the constant function). The regularization

parameter in Eq. 5.9 was set to µ = 10, which gives a good trade-off between

data fidelity and similarity of the coefficients of the gamma variate functions in

neighboring pixels.

In a first experiment, reconstructions were calculated based on 20 simulated

projections per time frame. The numerical results for this experiment are summa-

rized in Table 5.1. The estimated AIF and perfusion maps are displayed in Fig. 5.6

and Fig. 5.7, respectively. All AIFs were evaluated using the same ROI.

The simulation experiment with the Shepp-Logan phantom was repeated sev-

eral times, each time for a different number of projections per time frame (while

keeping the beam intensity I0 constant). Reconstructions were generated with the
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Figure 5.7: Ground truth and calculated perfusion maps (CBF and CBV) of the Shepp-Logan
phantom for the SIRT, PICCS and LEST-gt reconstructions.

SIRT, PICCS, and LEST method and the corresponding RRMSE was plotted as

a function of the number of projections per time frame (see Fig. 5.8(a-c)). The

same analysis is repeated for different noise levels, by varying the incoming beam

intensity I0, while maintaining 20 projection per time frame. The result is shown

in Fig. 5.8(d-f).

The Shepp-Logan phantom was also utilized to check the relevancy of the

intermediate optimization in the artery region (see Section 5.3.2). In Fig. 5.9, the

RRMSE as a function of the number of projections per time frame is shown for

the LEST method with and without the intermediate optimization. The LEST

algorithm was applied with the ground truth dynamic region as prior knowledge.

Furthermore, to check the effect of the LEST approach and the intermediate artery

optimization separately, the optimization in the artery region was also applied at

intermediate iterations in the SIRT algorithm, the resulting RRMSE values are also

plotted in Fig. 5.9. The RRMSE is evaluated in both the artery region (Fig. 5.9(a))

and the dynamic region without the artery pixels (Fig. 5.9(b-c)).

Finally, to illustrate the added value of the stationary region update in LEST,

the algorithm was applied with (i.e., S 6= ∅) and without (i.e., S = ∅) the stationary

region update. The resulting RRMSE for the CBV map is plotted as a function

of the number of projections per time frame in Fig. 5.10, the error values for the

CBF map and attenuation values have a similar trend.
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Figure 5.8: RRMSE values as a function of the number of projections per time frame (a-c)
and the incoming beam intensity I0 (d-f) for the Shepp-Logan phantom. For a given number
of projections per time frame or incoming beam intensity I0, the RRMSE in the dynamic ROI
(i.e., the complement of region 6 and 1 in Fig. 5.4a) is plotted for attenuation values (a,d),
CBF map (b,e) and CBV map (c,f) for the SIRT, PICCS and LEST reconstruction.

5.4.2.2 Brain phantom

Reconstructions were calculated on the same 256 × 256 pixel grid as the ground

truth image in order to guarantee a non-sparse phantom and reconstruction. The

phantom consists of 30 individual time frames, equally distributed between 0 and

43 s with a 1.476 s time increment.

The reconstruction parameters for LEST were chosen identically to the Shepp-

Logan simulation experiment. Again, “LEST-est” refers to the LEST implementa-

tion with automated dynamic region estimation (see Section 5.3.3) and “LEST-gt”

refers to the LEST implementation that assumes the stationary region S, defined

by the void space in Fig. 5.5, is known.

In a first experiment, 50 projections were simulated per time frame. The nu-

merical results for this experiment are summarized in Table 5.2. The AIF estimate

can be inspected in Fig. 5.11 and the perfusion maps can be compared in Fig. 5.12.

The performance of all reconstruction methods for a different number of projec-

tions per time frame and a varying amount of noise can be inspected in Fig. 5.13

and Fig. 5.14. In Fig. 5.13 the RRMSE is evaluated in the full dynamic region,

whereas in Fig. 5.14 the RRMSE is only evaluated in the region of reduced per-

fusion, thereby quantifying the ability of the different methods to identify this
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Figure 5.9: RRMSE values as a function of the number of projections per time frame for
the Shepp-Logan phantom, evaluated in different ROIs: (a) in the artery region and (b-c) in
the dynamic region excluding the arterial pixels. Both LEST and SIRT are implemented with
(“LEST/SIRT - artery opt.”) and without (“LEST/SIRT - no artery opt.”) the intermedi-
ate optimization in the artery region, thereby evaluating the relevancy of this intermediate
optimization.

SIRT PICCS LEST-gt LEST-est

att. values 0.359 0.191 0.108 0.110
CBF 0.656 0.208 0.092 0.090
CBV 0.768 0.200 0.122 0.118

Table 5.2: RRMSE values in the dynamic region of the brain phantom for perfusion maps and
attenuation values (rows) of different reconstruction algorithms (columns). In this experiment,
50 projections were simulated per time frame.
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Figure 5.10: CBV RRMSE values evaluated in the dynamic region as a function of the
number of projections per time frame for the Shepp-Logan phantom. The LEST algorithm
was applied with and without the stationary region update.
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Figure 5.11: The estimated AIF for the brain phantom.

region.

5.4.3 Clinical perfusion data

To test its performance on clinical data, the LEST algorithm was also applied on

a cerebral perfusion CT dataset that was acquired with a Discovery CT750 HD

(GE Healthcare) scanner. The scan was performed with a source voltage of 80

kVp and X-ray tube current of 500 mA. Following a bolus injection of 50 ml, with

injection rate of 4 ml/s, 912 projections were acquired per 180◦ rotation of source

and detector. Based on this large amount of projection data, high quality images

were reconstructed on a 512 × 512 pixel grid at 24 time frames with a 2.8094 s

inter-frame temporal distance. These high quality reconstructions are utilized as

ground truth images in the subsequent experiment.

Based on the ground truth images, 250 parallel beam projections per time frame
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Figure 5.12: Perfusion maps (CBF and CBV) calculated based on different reconstructions
of the brain phantom.

were simulated. The projections were simulated with a strip kernel and poisson

noise was applied, assuming a beam intensity of I0 = 8×105 (photon count) at the

source. Reconstructions were calculated on a 256×256 pixel grid assuming a linear

projection kernel. The artery region was indicated manually and the vessel mask

was selected by a global thresholding operation on the peak attenuation value in

each pixel. These masks are indicated in Fig. 5.15. The LEST reconstruction was

calculated with the following parameters: 100 initial SIRT iterations, 500 LEST

iterations, optimization inside the vessel mask every 50th iteration, µ = 1000,

λ = 0.4, gamma variate functions defined again with κ = 1.5 and β = 4.

The peak attenuation value for each pixel in the reconstructed images is dis-

played in Fig. 5.16. The perfusion maps can be inspected in Fig. 5.17. The

numerical results are summarized in Table 5.3 and the estimated AIF is displayed

in Fig. 5.18.
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Figure 5.13: RRMSE values as a function of the number of projections per time frame (a-c)
and the incoming beam intensity I0 (d-f) for the brain phantom. For a given number of
projections per time frame or incoming beam intensity I0, the RRMSE in the dynamic ROI is
plotted for attenuation values (a,d), CBF map (b,e) and CBV map (c,f) for the SIRT, PICCS
and LEST reconstruction.

SIRT PICCS LEST

att. values 0.013 0.017 0.012
CBF 0.383 0.439 0.363
CBV 0.632 0.732 0.495

Table 5.3: RRMSE in the dynamic region for the clinical perfusion data experiment for per-
fusion maps and attenuation values (rows) of different reconstruction algorithms (columns).

5.5 Discussion

5.5.1 Shepp-Logan phantom

From Table 5.1, it is clear that the LEST algorithm outperforms all other recon-

struction methods with respect to image quality for the RRMSE metric. Since

the Shepp-Logan phantom has a low total variation and the PICCS algorithm

promotes such image characteristics, an adequate reconstruction quality in terms

of attenuation values (first row of Table 5.1) can also be observed for the PICCS

algorithm in this experiment. However, the improved AIF estimation (displayed
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Figure 5.14: RRMSE values evaluated in the region of reduced perfusion (region 4, 5 and 6
in Fig. 5.5a) as a function of the number of projections per time frame for the brain phantom.
RRMSE values are calculated for the attenuation curves (a), the CBF map (b) and the CBV
map (c).

Figure 5.15: The masks that were utilized in the clinical perfusion data experiment. Light
blue indicates the stationary region, blue the dynamic region, yellow the vessel mask and red
the region of arterial pixels.
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Figure 5.16: The peak attenuation value in each pixel for all reconstruction methods and
the ground truth data for the clinical perfusion data experiment. Only the pixels inside the
dynamic region are visualized. The color range is the same for each of the figures.
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Figure 5.17: CBF (units: ml/100 ml/min) and CBV (units: ml/100 ml) perfusion maps
calculated based on different reconstructions of the clinical perfusion data. Only pixels inside
the dynamic region are visualized.

in Fig. 5.6) results in a significant increase in image quality of the CBF and CBV

maps by the LEST method. Also notice that the image quality of LEST-gt and

LEST-est is highly similar, indicating that manual indication of the dynamic re-
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Figure 5.18: The estimated AIF for the clinical perfusion CT data experiment.

gion is unnecessary and that such a task can be easily performed by the automated

estimation method proposed in Section 5.3.3.

It is noticeable that the small regions (regions 8 in Fig. 5.4a) are the most

recognizable in the perfusion maps based on the LEST reconstruction, whereas

they are hardly visible in the perfusion maps based on the PICCS reconstruction.

This can be explained by the fact that PICCS minimizes the total variation in

the spatial domain, thereby introducing the risk of erasing smaller structures.

The same observation goes for the sensitivity analysis in Fig. 5.8: a significant

improvement of LEST over PICCS can be noticed for all noise levels and all number

of projections per time frame for the resulting CBF and CBV maps.

From the plots of Fig. 5.9(a-b), three major observations can be made. Firstly,

comparing the SIRT and LEST algorithm without intermediate optimization in

the artery region, one observes that the LEST algorithm improves the TCCs’

quality in the dynamic region, but the estimation in the artery region is worse.

Secondly, the intermediate artery optimization is a useful addition to improve the

quality of the TCCs in the artery region, both for SIRT and LEST (Fig. 5.9(a)).

Finally, the LEST implementation with intermediate optimization in the artery

region outperforms all other methods. This last observation is emphasized even

more after observing the RRMSE values for the CBV perfusion map in Fig. 5.9(c).

The large difference in image quality of the CBV map for LEST with and without

the intermediate optimization in the artery region (Fig. 5.9(c)) is mainly due to

the difference in quality of the AIF, which is based on the TCCs in the artery

region (Fig. 5.9(a)).

Finally, it can be observed that the stationary region update has a positive

influence on the reconstruction quality in both the stationary and the dynamic

region, which is quantified in the plot of Fig. 5.10.
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5.5.2 Brain phantom

Since this phantom is no longer spatially sparse (in the sense of having a lower total

variation), the PICCS algorithm performs significantly worse in comparison to the

LEST algorithm on all possible validation measures (see Table 5.2). Besides the

lack of sparsity, also the quality of the estimated AIFs (displayed in Fig. 5.11) have

an influence on the final perfusion map quality (see Fig. 5.12). Again, the same

observation can be made for different number of projections per time frame or for

different noise levels, of which the results are plotted in Fig. 5.13 and Fig. 5.14.

The plots in Fig. 5.14 illustrate the ability of LEST to detect regions of reduced

perfusion within the brain. Also, notice that the quality of the LEST-gt and the

LEST-est reconstruction is again highly similar.

5.5.3 Clinical perfusion data

As can be seen from the peak attenuation values and the perfusion maps (Fig. 5.16c,

Fig. 5.17c and Fig. 5.17h), the PICCS reconstruction algorithm results in many

artifacts, even though its parameters were optimized to have a minimum RRMSE

with respect to the ground truth. The SIRT reconstruction (Fig. 5.16b) contains

a high level of noise, which is partially alleviated in the LEST reconstruction

(Fig. 5.16d). The perfusion maps derived from the LEST reconstruction have the

highest similarity to the ground truth, which is also numerically confirmed by the

RRMSE values in Table 5.3. The AIF’s estimate, displayed in Fig. 5.18, has diffe-

rent properties depending on the reconstruction method it was derived from. The

SIRT reconstruction results in a slight underestimation of the AIF, while the LEST

reconstruction shows a slight overestimation. Finally, the PICCS reconstruction

accurately captures the peak concentration of the AIF, but is slightly elongated in

the temporal direction.

5.6 Conclusion

In general, the radiation dose in PCT experiments can be decreased by under-

sampling the projection data. Standard approaches that reconstruct the object

independently at different time frames, however, result in images containing arti-

facts that are introduced by the lack of projection data.

In this chapter, the LEST algorithm was presented. It is an iterative recon-

struction algorithm tailored specifically to cerebral PCT problems. The algorithm

exploits prior knowledge in a twofold manner. On the one hand, the reconstruction

quality in the stationary regions (bone and void space) is improved by assuming

these regions to have the same attenuation at all time frames. On the other hand,

image quality in the dynamic region is further improved by the assumption that
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the regions with brain tissue and vessels are correlated over time. An intermediate

gamma variate basis function optimization approach was introduced, resulting in

increased accuracy of the derived AIF, and consequently also in increased quality

of the estimated perfusion maps.

The LEST algorithm was validated with simulation experiments and clinical

data (based on a high quality reconstruction of a Discovery CT750 HD scan).

These experiments illustrate that, in comparison to standard approaches, the

LEST algorithm significantly improves image quality for the same radiation dose

and has similar image quality for a lower radiation dose.
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6
Conclusions

Limited data problems arise in various CT applications, ranging from pore quan-

tification in electron tomography to fast fluid flow and cerebral perfusion CT.

Solving these problems with classical tomography algorithms typically results in

reconstructions that are deteriorated by various limited data artifacts.

In this thesis, local model-based reconstruction methods for improved recon-

struction quality in a limited data tomography setting were introduced. There are

several design principles that were taken into account during the development of

the proposed algorithms:

� Prior knowledge about the scanned object is exploited by imposing model-

based constraints on the reconstruction during iterative reconstruction.

� The model assumptions are applied locally, i.e., in a specific region only,

thereby differentiating adequately between specific properties of mutually

different regions.

� The validity of the local model assumptions can be checked during recon-

struction, in order to increase the robustness of the algorithm.

By more accurately modelling the sample, the reconstruction problem becomes

more determined, which generally results in improved reconstruction quality. These

design principles were applied during the development of the iterative algorithms

in Chapter 2-5. In what follows, the main conclusions drawn in these chapters are

discussed.
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CHAPTER 6. CONCLUSIONS

Part I: Stationary CT

Chapter 2 – Reconstruction method for improved porosity quantification of
porous materials

In this chapter, the PORES algorithm (“POre REconstruction and Segmentation”)

was introduced. It is a tailor-made, integral approach, for the reconstruction, seg-

mentation, and quantification of porous (nano)materials. In the reconstruction

step, prior knowledge about the sample is introduced into the reconstruction al-

gorithm by simultaneously reconstructing the sample and classifying the interior

region to the pores. The resulting reconstruction can be directly plugged into the

remaining processing chain of the PORES algorithm, resulting in accurate individ-

ual pore quantification and full sample pore statistics. The proposed approach was

extensively validated on both simulated and experimental data, indicating its abil-

ity to generate accurate statistics of porous materials, even if only few projection

data is available.

Part II: Dynamic CT

Chapter 3 – Region-based iterative reconstruction

In this chapter, a reconstruction method was introduced for locally time-varying

objects, that is, objects that change dynamically only in a local region inside

the object. The reconstruction approach of this chapter, i.e., the region-based

SIRT (rSIRT) algorithm, forms the basis of the algorithms that were introduced

in Chapter 4 and 5.

The rSIRT algorithm assumes the existence of stationary regions, i.e., regions

that remain unaltered over time, within the scanned object. This assumption is

frequently exploited by calculating updates for the time-varying and the station-

ary region independently. The update for the time-varying region is based on

projection data that corresponds solely to each time frame, thereby accurately

representing the state-of-knowledge about each time frame, while the update for

the stationary region is based on all projection data. Furthermore, we introduced

an iterative optimization routine that can automatically determine these regions.

The proposed algorithm was validated on simulation data and experimental µCT

data, illustrating its capability to reconstruct locally time-varying objects more

accurately in comparison to current techniques.

Chapter 4 – An iterative CT reconstruction algorithm for fast fluid flow imaging

In this chapter, an iterative CT reconstruction algorithm for improved tempo-

ral/spatial resolution in the imaging of fluid flow through solid matter was intro-
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duced. Analogously to Chapter 3, the time-varying object is assumed to consist of

stationary (the solid matter) and dynamic regions (the fluid flow). Secondly, the

attenuation curve of a particular voxel in the dynamic region is modeled by a piece-

wise constant function over time, which is in accordance with the actual advancing

fluid/air boundary. These model assumptions make our proposed reconstruction

algorithm more robust to limited data. This was illustrated by quantitative and

qualitative experiments with different simulation phantoms and a real neutron to-

mography dataset. These experiments show that in comparison to state-of-the-art

algorithms, the proposed algorithm allows reconstruction from substantially fewer

projections per rotation without image quality loss. This makes it possible to fur-

ther increase the temporal resolution in fluid flow experiments, thereby providing

a much-needed method for probing high speed fluid dynamics.

Chapter 5 – Iterative reconstruction for low-dose cerebral perfusion CT

In this chapter, we introduced the Local Enhancement Steered Tomography (LEST)

method. The brain volume is assumed to have stationary regions over time (bone

and void space) and the temporal relation between the different time frames in

the dynamic region (brain vessels and tissue) is exploited. Furthermore, the shape

of the arterial input function (AIF) is independently optimized based on the pro-

jection data at intermediate iterations. The LEST algorithm was extensively vali-

dated with simulation and real clinical experiments and its performance was com-

pared to different basic and state-of-the-art methods. Quantitative and qualitative

results show that LEST is able to substantially reduce the radiation dose while

maintaining image quality in comparison to these methods.

The progress made in this work is a step forward for accurate reconstruction in

limited data CT problems arising in a variety of applications, including pore quan-

tification in electron microscopy, the reconstruction of locally time-varying objects,

fluid flow reconstruction problems and cerebral perfusion CT.
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B
List of common abbreviations and

symbols

Common symbols

C ∈ RN×N Diagonal matrix with inverse column sums of the

projection matrix W .

C̃r ∈ RN×N Diagonal matrix with inverse column sums of W̃r.

Cr ∈ RN×N Diagonal matrix with inverse column sums ofWr.

f : R× R→ R Function that describes the object’s attenuation

coefficient µ at each two-dimensional coordinate.

i ∈ N0 Index associated with the different projection val-

ues in the projection data.

I0 ∈ R+ The X-ray beam intensity at the source position.

IS ∈ {0, 1}N×N Binary diagonal matrix representing the operator

that sets all pixels belonging to the time-varying

region inside the reconstruction domain to 0.

IV ∈ {0, 1}N×N Binary diagonal matrix representing the operator

that sets all pixels belonging to the stationary

region inside the reconstruction domain to 0.

j ∈ N0 Index associated with the different attenuation

values in a reconstruction.

k ∈ N Iteration number.

K ∈ N The total number of iterations.
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M ∈ N0 The number of measured projection values (M =

MtMd).

Mt ∈ N0 The number of acquired projections per time

frame.

Md ∈ N0 The number of detector elements in a single pro-

jection.

N ∈ N0 The number of pixels in a reconstruction image.

nw ∈ N0 The window size in the sliding window approach

for projection data subset selection.

p ∈ RM The log-corrected projection data associated with

a stationary tomography problem.

pr ∈ RM The log-corrected projection data associated with

the rth time frame of the reconstruction in a dy-

namic tomography problem (r = 1, . . . , R).

p̃ ∈ RRM The log-corrected projection data associated with

a dynamic tomography problem in which R time

frames are considered.

r ∈ {1, . . . , R} Index referring to a specific time frame.

R ∈ N0 The number of time frames.

R ∈ RRM×RM Diagonal matrix with inverse row sums of the pro-

jection matrix W .

R̃r ∈ RnwMd×nwMd Diagonal matrix with inverse row sums of W̃r.

Rr ∈ RM×M Diagonal matrix with inverse row sums of Wr.

SK ∈ RRN×RM The linear operator that represents K itera-

tions of the rSIRT algorithm with initial estimate

x̃(0) = 0.

S ⊂ {1, . . . , N} Set of pixel indices that correspond to the sta-

tionary regions within the reconstruction.

tr ∈ R+ The time point associated with the rth time

frame.

V ⊂ {1, . . . , N} Set of pixel indices that correspond to the time-

varying regions within the reconstruction.

W ∈ RRM×N Sparse matrix that encodes the forward projec-

tion of a reconstruction x along all acquisition

angles (R = 1 in stationary CT and R > 1 in

dynamic CT).

W̃ ∈ RRM×RN Sparse matrix that simulates the forward projec-

tion of a dynamic reconstruction to its correspon-

ding simulated projection data.
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Wr ∈ RM×N Forward projection matrix that maps the recon-

struction’s rth time frame to its corresponding

projection data.

x ∈ RN The column vector representing the attenuation

values of the reconstructed image in a stationary

tomography problem.

xr ∈ RN The column vector representing the attenuation

values of the rth time frame of the reconstructed

image in a dynamic tomography problem.

x̃ ∈ RRN The column vector representing the attenuation

values of the reconstructed time-evolving image

in a dynamic tomography problem.

µ ∈ R+ The attenuation coefficient.

ωl ∈ [0, 2π] The acquisition angle of the lth projection (l =

1, . . . ,MtR).
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