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Summary

This thesis deals with the estimation of noise and signal from Magnetic Resonance (MR) images
with a special reference to magnitude MR images. Other subjects in this work, related to this topic,
include the estimation and improvement of the image signal-to-noise ratio (SNR) and an application
to 3D segmentation.

After a short introduction on the principles of MR imaging, the thesis starts with an overview of
the origin and statistical properties of MR noise and signal (Chapter 2). In the same chapter, it is
also clarified which factors influence the SNR during an image acquisition.

In order to process experimental data in a scientifically justified manner, knowledge of the underly-
ing probability density function (PDF) is indispensable. For this reason, in Chapter 3, the probability
distributions of raw as well as of processed MR data are derived. Thereby, distinction has been drawn
between the PDF of complex data, before and after the Fourier transform, and the PDF of processed
or derived MR data. For in practice, instead of treating the raw complex data, one often works with
magnitude or phase data as these types of data are often directly related to physical quantities such
as the pseudo-proton density, flow or diffusion. Characteristic PDF’s for processed data are discussed
in Chapter 3 to serve as a basis for solving of various estimation problems.

The estimation problems include estimation of noise and signal from MR data which are discussed
in Chapter 4 and 5, respectively. In both chapters, conventional estimation techniques are compared
to the Maximum Likelihood (ML) estimation method where use is made of the specific PDF character-
izing the MR data. Conventional estimation methods are in general based on Gauss distributed data.
However, magnitude and phase data are not ’normally’ distributed. Hence, conventional estimation
methods often yield biased results. In Chapter 4 and 5, it is shown how the knowledge of the proper
PDF can be used to avoid (or at least reduce) systematic errors during the estimation of noise or signal.

In Chapter 6, the importance of ML estimation using the correct PDF is illustrated in the es-
timation of T1- and T2-maps. The construction of such maps is a common technique to visualize
characteristic physiological information. However, T1- and T2-maps are often derived from magnitude
MR data, which are Rice distributed. Again, to the author’s knowledge, this information is hardly
exploited. Though, the Rice distribution has a significant influence on the quantitative determination
of T1- and T2-maps. This is demonstrated in Chapter 6.

In Chapter 7 and 8, attention has been paid to the estimation and improvement, respectively, of
the image SNR. An efficient and accurate method for the estimation of the image SNR is proposed,
based on the cross-correlation of two realizations of the same image. In Chapter 8 it is shown that
cross-correlation can as well be used to improve the image SNR. However, improving the SNR often
goes along with a degradation of spatial resolution. Therefore, an adaptive and anisotropic diffusion
filter is discussed. Application of the diffusion filter results in a major improvement of the image SNR
while retaining the spatial resolution.

Finally, in Chapter 9, the use of the adaptive, anisotropic diffusion filter is demonstrated in the
description of a new segmentation technique which was developed for precise and accurate volume
quantization from 3D MR data. The proposed method is semi-automatic and allows to guide the
segmentation process in an interactive way. Several applications are discussed.



Chapter 1

Introduction

From the discovery of the nuclear magnetic resonance (NMR) phenomenon in materials by the group
of Bloch and Purcell in 1946, the popularity of the NMR technique has been increased ever since
[1, 2]. During the next decennia, NMR applications were mainly situated in the structure analysis
of materials. It was not before 1973 that, by Lauterbur, the NMR phenomena could be exploited
for imaging [3]. Magnetic resonance imaging (MRI) was born and a huge amount of papers on MRI
appeared. Initially, these papers mainly dealt with the improvement of the MRI experiment itself:
new imaging sequences were developed, and major improvements were reported on MRI hardware.
From the early eighties on, research tended to focus also on processing of MR images.
In this chapter, the principles of MR imaging are briefly reviewed. For an excellent and complete
description of the principles of magnetic resonance (imaging) it is referred to the work of Slichter and
Callaghan [4, 5].

1.1 The intrinsic MR signal

The MR signal generally originates from hydrogen nuclei (protons). A proton has a property of
intrinsic angular momentum, often referred to as spin ~I, with an associated magnetic moment ~µ:

~µ = γ~I , (1.1)

with γ denoting the gyromagnetic ratio unique to each atom. In a single volume element corresponding
to a pixel in an MR image, there are many such protons, each with an associated moment. The net
magnetization ~M is the resultant of the individual dipole moments contained therein. In absence of
a magnetic field, the orientation of the individual dipole moments will be random. Hence, the net
magnetization will be zero. In a static magnetic induction ~B0, conventionally oriented along the spatial
direction z, the energy levels of the spins are splitted. The energy separation ∆E between the levels
is given by:

∆E = h̄γB0 , (1.2)

with h̄ Planck’s constant divided by 2π. The lowest energy state of the spins corresponds to an
orientation along ~B0. Hence, in equilibrium and in absence of thermal energy, the net magnetization
~M0 will be orientated along ~B0. On the other hand, thermal energy drives the individual spins toward
random orientations. In thermal equilibrium, these tendencies are balanced with the net magnetization
being aligned parallel to ~B0 with a strength corresponding to the Boltzmann distribution of the possible
energy states of the proton [5]:

ρm =
exp(h̄γmB0/kbTs)

I∑
m=−I

exp(h̄γmB0/kbTs)
, (1.3)

1
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with m the magnetic quantum number, kb the Boltzman constant, and Ts the sample temperature.
Usually the energy h̄γB0 is much smaller than kbTs such that Eq. (1.3) can be approximated by:

ρm '
(

1 +
h̄γmB0

kbTs

)
/(2I + 1) . (1.4)

The magnetization M0 per unit volume is given by [6]:

M0 = Ns

I∑
m=−I

ρmh̄γm (1.5)

' Ns
γ2h̄2I(I + 1)B0

3kbTs
, (1.6)

with Ns the number of spins at resonance per unit volume. In general, the behaviour of the spins must
be described by quantummechanics. However, if the number of spins Ns is huge, classical mechanics
has been shown to be suited for the description of the net magnetic moment ~M behaviour [4] in a
magnetic induction field ~B:

d ~M

dt
= γ ~M × ~B . (1.7)

1.2 Excitation and relaxation

In thermal equilibrium, the net magnetization ~M0 is oriented along ~B0, i.e., along the z direction.
In a typical MR experiment, the equilibrium is disturbed via a resonant radio frequent (RF) pulse.
Resonant energy absorption by the spin system occurs with an angular frequency ω0 = γB0, often
referred to as the Larmor frequency.
After excitation, the net magnetization ~M relaxes back to its original state, during which energy is
transferred from the spin system to the molecular environment. The spin-lattice energy transfer only
contributes to the relaxation of Mz and occurs exponentially with a time constant T1. Therefore, T1

is called the spin-lattice or the longitudinal relaxation time. The initial phase coherence of the spins,
immediately after excitation, is disturbed through spin-spin interaction such that Mx,y decreases to
zero exponentially with a time constant T2. T2 is called the spin-spin or the transversal relaxation
time. Excitation and relaxation are phenomenologically described by the Bloch equations [6] from a
frame rotating with angular frequency ω:

dMx

dt
= γMy(B0 − ω/γ)− Mx

T2
(1.8)

dMy

dt
= γMzB1 − γMx(B0 − ω/γ)− My

T2
(1.9)

dMz

dt
= γMyB1 −

Mz −M0

T1
, (1.10)

where B1 denotes the magnitude of the RF pulse magnetic induction, which is conventionally di-
rected along the x-axis. In case the rotating frame precesses with the Larmor frequency, after RF
perturbation, relaxation occurs according to:

Mx,y(t) = Mx,y(0) exp
(
− t

T2

)
(1.11)

Mz(t) = Mz(0) exp
(
− t

T1

)
+ M0

(
1− exp

(
− t

T1

))
. (1.12)

By placing a couple of conductive coils around the system, the relaxation and rotation of ~Mxy will
induce a complex electric signal in the coils: the Free Induction Decay (FID) signal.
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1.3 Image formation

In order to obtain an MR image, physical hardware is needed to encode spatial information into the
MR signal and a mathematical tool is needed to decode the measured signals. Spatial information is
encoded through application of slice selecting, frequency encoding, and/or phase encoding magnetic
field gradients. During the time these gradients are applied, the precession frequencies of the voxel
magnetizations are modulated, depending on their spatial coordinates ~r:

ω(~r) = γ(B0 + ~G.~r) , (1.13)

with ~G denoting the magnetic field gradient vector. The MR signal received is the total signal coming
from all voxel magnetizations excited by the RF pulse. Ignoring the precession due to the main
magnetic induction B0, we have:

S (t) =
∫ ∫ ∫

β(~r) exp
(
iγ ~G.~rt

)
d~r , (1.14)

where d~r is used to represent volume integration. In Eq. (1.14), β(~r) denotes the magnetic resonance
coefficient, representing the spin density, weighted by for example T1 and T2 relaxation:

β(~r) = ρ(~r)f(T1(~r), T2(~r)) , (1.15)

where the function f(.) is determined by the scanning pulse sequence.
An inverse discrete Fourier transform is used to decode the acquired MR signals. Indeed, Eq. (1.14)
has the form of a Fourier transformation. To make this more obvious, Mansfield introduced the concept
of a reciprocal space vector ~k, given by [7]:

~k =
1
2π

γ ~Gt . (1.16)

For this reason, the Fourier space, in which MR signals are acquired, is often referred to as the K-space.
Fourier reconstruction is the most commonly used reconstruction method in MR imaging that results
in a final complex valued image given by:

β (~r) =
∫ ∫ ∫

S(~k) exp
(
−i~k.~r

)
d~k . (1.17)

Hence an MR image is a spatial representation of the magnetization distribution.



Chapter 2

Signal and noise in MRI

2.1 Introduction

Signal-to-noise considerations are of prime importance in MRI because the nuclear magnetic resonance
signal is inherently weak. This section gives an insight into the various parameters influencing the
SNR in an MR experiment. Only these considerations on signal and noise in MRI that are considered
important for the understanding of the thesis, are given.

2.2 The MR signal

The MR signal is the electro-magnetic force (emf) induced in a coil by a rotating magnetization. The
larger this magnetization, the larger the MR signal. The magnetization M0 per unit volume is given
by [6]:

M0 = Ns

I∑
m=−I

ρmh̄γm (2.1)

=
Nsγ

2h̄2I(I + 1)B0

3kbTs
, (2.2)

with Ns the number of spins at resonance per unit volume.
An elegant way to determine the emf was proposed by Hoult and Richards [8]:

S(t) = − ∂

∂t

(
~B1 · ~M0

)
. (2.3)

Here, ~B1 ≡ ~B1(~r, t) denotes the magnetic induction, produced by a coil carrying unit current at
~M0 ≡ M0(~r). For a sample with volume Vs the emf becomes:

S(t) = −
∫
Vs

∂

∂t

(
~B1 · ~M0

)
d~r . (2.4)

If ~B1 is assumed to be homogeneous over the sample, the signal is easily seen to be:

S(t) = Kω0B1,xyM0Vs cos ω0t , (2.5)

with ω0 the angular frequency with which the magnetization ~M0 precesses in the main magnetic
induction ~B0. The factor K includes possible inhomogeneities of ~B1 over the sample.

4
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2.2.1 Imaging parameters

In MRI, many different pulse sequences are available. The choice of the sequence parameters will have
an influence on the amount of signal coming from the object and hence will affect the SNR. These
parameters include the echo time TE, the inversion time TI, the repetition time TR, the flip angle α,
the shape of the radio frequent pulses, etc. The actual relationship between those parameters and the
SNR was investigated by Edelstein et al. for a spin echo (SE) and inversion recovery (IR) imaging
sequence [9]. Also the data sampling period is an important parameter affecting the signal-to-noise
ratio (SNR). A detailed discussion was provided by Mugler and Brookeman [10].

2.3 The noise

2.3.1 Thermal noise

Once generated, the MR signal is processed by the receiver chain. Each component in the chain is
a source of noise. The noise generated by the receiver coil, is the first to be considered. In any
conductor/resistor, thermal noise is produced by the stochastic motion of free electrons. These free
electrons collide with atoms, resulting in an exchange of energy. The electron motion, and hence
the number of collisions, depends on the coil temperature. The resultant thermal noise power 〈V 2〉,
coming from the coil resistance, is given by:

〈V 2〉 = 4kbTc∆νRc , (2.6)

with Tc the coil temperature, ∆ν the receiver frequency bandwidth, and Rc the coil resistance. Note
that a wider receiver bandwidth increases the system noise. From Eq. (2.6) it is clear that an
increase in sensitivity of about a factor 3 may be expected if the receiving coil is cooled to e.g., liquid
nitrogen temperature (77K). This is however only true if the noise coming from the preamplifier, is
negligible. Prediction of the SNR becomes difficult as the calculation of the coil resistance Rc may
not be performed accurately. E.g., for a long, straight cylindrical conductor Rc is given by:

Rc =
l

p

√
µrµ0ωρ (Tc)

2
, (2.7)

with l, p, µr and ρ the length, circumference, permeability and resistivity of the conductor, respec-
tively. Other conductor configurations, such as the saddle-shaped coils, were discussed by Hoult and
Richards [8].
Thermal noise is often termed Johnson noise after J.B. Johnson who, in 1928, experimentally investi-
gated the effects of thermal noise. At the same time, H. Nyquist studied thermal noise theoretically.
A full derivation of thermal noise voltage was given by Connor in 1982 [11].
The spectral density of thermal noise is given by:

Sn(~k) = 2kbTcRc . (2.8)

As the spectral density is uniform, Johnson noise is often referred to as white noise. Furthermore, it
can be shown that thermal noise is characterized by a Gauss probability density function [12].

2.3.2 Sample losses

Loss of sensitivity also occurs because of the resistivity of the object to be imaged. These losses are
associated, when signal is being received, with the induction of noise from the sample in the receiving
coils, thus reducing sensitivity. Inductive losses were discussed in detail by Hoult and Lauterbur for
several coil configurations [13]. They investigated noise originating from the human sample. Every
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coil has a distributed capacitance and the human body, when placed inside the coil, acts as a dielectric
medium. The effective resistance Re characterizes the resultant dielectric loss. Furthermore, the
resistivity of human tissue causes an actual reduction in the penetration of the RF field. The RF field
is effectively shielded by currents caused by magnetic induction within the surface layers of the sample.
This is referred to as the skin depth effect [14, 15]. The resultant thermal noise by these currents has
an associated resistance Rm. In conclusion, placing the object inside the coil results in an increase of
the series impedance. Hence, the noise power is more realistic given by:

〈V 2〉 = 4kbTc∆ν(Rc + Re + Rm) . (2.9)

Again, the total noise component will be Gauss distributed.

2.3.3 Imaging parameters

Next to the MR system characteristics, the noise variance is also influenced by the imaging parameters.
These parameters include the number of samples in the x and y directions (Nx, Ny), the number of
averages (Nav), the field of view in the x and y directions (FOVx, FOVy) and the sampling interval
(∆t). The relationship of these parameters to the image noise variance was discussed in detail by
Parker and Gullberg [16]. In this paragraph, only the main results are mentioned.
The noise variance is derived from the acquisition of an image containing only noise. Fourier recon-
struction of the raw data yields:

in(x, y) =
Nx−1∑
kx=0

Ny−1∑
ky=0

n(kx∆t + ky∆T ) exp

[
−2πi

(
xkx

Nx
+

yky

Ny

)]
∆fx∆fy , (2.10)

with ∆T the time elapse between two phase encoding steps and (kx, ky) denoting the K-space coor-
dinates. ∆fx and ∆fy are the K-space sampling intervals: ∆fx = γGx∆t and ∆fy = γGyTy, where
γ is the gyro-magnetic ratio and Gx and Gy are the magnetic gradient strengths in the respective di-
rections. Ty denotes the time interval the phase-encoding gradient was activated. Then the expected
reconstructed image variance can be written:

σ2 [in(x, y)] =
∆f2

x∆f2
y

Nav

Nx−1∑
kx=0

Ny−1∑
ky=0

Nx−1∑
k′x=0

Ny−1∑
k′y=0

E[n(kx∆t + ky∆T )

n(k′x∆t + k′y∆T )] exp

[
−2πi

(
x(kx − k′x)

Nx
+

y(ky − k′y)
Ny

)]
. (2.11)

Over the sampling time intervals used in MRI, which is of the order of microseconds, the noise voltage
is completely uncorrelated. This is true because most of the thermal noise energy is found in the
infrared frequencies (> 1010 Hz). From this observation, Eq. (2.11) can be computed to yield:

σ2 [in(x, y)] = K
NxNy〈V 2〉

NavFOV2
xFOV2

y∆t
, (2.12)

where the noise power 〈V 2〉 is given by Eq. (2.9), and K is a factor depending on the filter character-
istics.

2.3.4 Structured noise

Structured noise is defined as signal contributions that have a non-random nature and that only affect
a certain area of the image [17]. Examples of structured noise include ghosting, ringing, DC artifacts
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and non-uniform signal distributions. The causes of structured noise are numerous, originating from
equipment malfunction such as drift of the magnetic induction, and external interference such as
radio frequency (RF) pickup. Usually, with careful engineering design and setup, most sources can be
eliminated or minimized. However, those that remain, present difficulties in SNR estimation.
External RF interference can be a contributor to both random and structured noise in the MR image.
Several authors addressed the need for adequate decoupling between the transmit and receive circuitry
to prevent noise interference. Further sources of RF interference can be broadcasting stations and close
proximity of electrical equipment, such as computers. In practice however, if great care is taken to
shield interference using an effective RF cage, this source of noise can be eliminated.



Chapter 3

Probability density functions of MR
data

3.1 Introduction

Image processing can hardly be practiced without knowledge of the proper data probability density
function (PDF). Knowledge of the data PDF is vital for image processing techniques based on param-
eter estimation such as noise filtering or image restoration. In this chapter, various ways in which MR
data appear, are discussed and the PDF of the raw and processed MR data are derived.

After acquisition of the MR data in K-space, commonly the complex valued data are Fourier
transformed to obtain the magnetization distribution. It will be shown that, before as well as after the
Fourier transform, the complex data will be characterized by a Gauss PDF. Although all information
is contained in the real and imaginary parts of the Fourier transformed data, it is common practice
to work with magnitude and phase data as they have more physical meaning. For example, flow
information can be obtained from either the magnitude or the phase of the MR signal. Similarly,
magnetic susceptibility, chemical shift and perfusion can all be encoded using either the magnitude or
phase angle. However, computation of a magnitude image is a nonlinear operation in which the Gauss
PDF of the pixels is transformed into a Rice PDF [18, 19]. In addition, Rice distributed data do not
solely occur in conventional magnitude reconstructed data, they are also found in phase contrast MR
(PCMR) or angiography imaging [20]. It will be shown that PCMR data are governed by a generalized
Rice PDF.

3.2 PDF of raw MR data

During the acquisition, complex valued MR signals are sampled in the K-space. These sampled data
are referred to as raw MR data. From Chapter 2, we know that the noise contributions of the complex
valued raw MR data are additive and uncorrelated, characterized by a zero mean Gauss PDF [12, 21].
As was discussed in Chapter 1, an MR image is obtained by estimating Fourier coefficients of the
acquired complex signals. The optimal coefficient estimates, in terms of precision, are obtained via a
simple (inverse) Fourier transformation, provided that the raw MR data are Gauss distributed [22].
After the inverse Fourier transform, the complex data are still independent and Gauss distributed due
to the linearity and orthogonality of the Fourier transform 1[23].
Let A and φ be the true amplitude and phase of a given complex data point such that A cos φ and

1It will be assumed that the MR signals are sampled on a uniform grid in K-space. Furthermore, the variance of the
noise will be assumed to be equal for each raw data point.

8



CHAPTER 3. PROBABILITY DENSITY FUNCTIONS OF MR DATA 9

A sinφ represent the true real and imaginary values, respectively. As the real and imaginary data are
independent, the joint PDF of the complex data is simply the product of the real and imaginary PDF:

p(R, I|A,φ, σ) =
1

2πσ2
e−

(A cos φ−R)2

2σ2 e−
(A sin φ−I)2

2σ2 , (3.1)

where σ denotes the standard deviation of the data, and R and I are the real and imaginary data,
respectively.

3.3 PDF of magnitude data

As was stated before, it is common practice to work with magnitude data instead of real and imaginary
data because magnitude data have the advantage to be immune to the effects of incidental phase
variations due to RF angle inhomogeneity, system delay, non-centered sampling windows, etc. In this
section the PDF of the magnitude data is discussed.
To construct a magnitude image from the complex data, the magnitude is computed on a pixel-by-pixel
base:

Mi =
√

R2
i + I2

i , (3.2)

with Mi denoting the ith data point of the magnitude image. As root extraction is a nonlinear
transformation, the PDF of the magnitude data is no longer expected to be Gaussian. In the next
section, the proper PDF of the magnitude data is derived.

3.3.1 The Rice distribution

The PDF of magnitude data is found by transforming the joint PDF of the real and imaginary data,
given in Eq. (3.1), into polar coordinates:

p(M,ϕ|A,φ, σ) =
1

2πσ2
e−

(A cos φ−M cos ϕ)2

2σ2 e−
(A sin φ−M sin ϕ)2

2σ2 M , (3.3)

where M is the Jacobian of the transformation. Integrating this expression over ϕ along with some
rearrangements yields:

pM (M |A,φ, σ) =
1

2πσ2

∫ 2π

0
e−

A2+M2−2AM cos(ϕ−φ)

2σ2 Mdϕ . (3.4)

As integration is over a full cycle of the cosine, we can equivalently write:

pM (M |A, σ) =
M

2πσ2
e−

A2+M2

2σ2

∫ 2π

0
e

AM
σ2 cos ϕdϕ . (3.5)

The integral over ϕ is related to the integral representation of the 0th order modified Bessel function
of the first kind:

I0(z) =
1
2π

2π∫
0

ez cos ϕdϕ . (3.6)

This leads us to the PDF that characterizes magnitude data:

pM (M |A, σ) =
M

σ2
e−

M2+A2

2σ2 I0

(
AM

σ2

)
ε (M) . (3.7)

The unit step Heaviside function ε(.) is used to indicate that the expression for the PDF of M is valid
for non-negative values of M only. The distribution is called the Rice distribution after S. O. Rice
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Figure 3.1: The Rice PDF as a function of the magnitude M , drawn for various values of the SNR where
σ = 5. At SNR = 0, the distribution equals a Rayleigh distribution while at high SNR (SNR > 3) the
Rice distribution approaches a Gauss distribution.

who derived it in the context of communication theory in 1944 [18].
The shape of the Rice distribution depends on the SNR, which is here defined as the ratio A/σ. Fig.
3.1 shows the Rice PDF as a function of the magnitude M for various values of the SNR. For low
SNR, the Rice PDF tends to a Rayleigh distribution, which only depends on the noise variance σ2:

pM (M |σ) =
M

σ2
e−

M2

2σ2 ε (M) . (3.8)

The Rayleigh PDF characterizes the random intensity distribution of the non-signal background area
such as air. At high SNR, the Rice distribution approaches a Gauss distribution. The transition
between the two limits of the Rice distribution can visually be appreciated in Fig. 3.1. For further
discussion, the moments of the Rice PDF are required.

Moments of the Rice distribution

In general, the µth moment of a PDF pM is defined as:

E [Mν ] =
∫ ∞

0
MνpM (M)dM . (3.9)

For a Rice PDF, the moments can be analytically expressed as a function of the confluent hypergeo-
metric function of the first kind, denoted by 1F1 [24]:

E [Mν ] =
(
2σ2

)ν/2
Γ
(

1 +
ν

2

)
1F1

[
−ν

2
; 1;− A2

2σ2

]
, (3.10)
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with Γ representing the Gamma function. The even moments of the Rice distribution (i.e., when ν is
even) are simple polynomials. E.g:

E
[
M2

]
= A2 + 2σ2 (3.11)

E
[
M4

]
= A4 + 8σ2A2 + 8σ4 . (3.12)

The expressions for the odd moments are much more complex. However, the confluent hypergeometric
function can be expressed in terms of the modified Bessel functions, from which an analytic expression
of the odd moments can be derived. E.g:

E [M ] = σ

√
π

2
e−

A2

4σ2

[(
1 +

A2

2σ2

)
I0

(
A2

4σ2

)
+

A2

2σ2
I1

(
A2

4σ2

)]
(3.13)

E
[
M3

]
= σ3

√
π

2
e−

A2

4σ2

[(
3 + 3

A2

σ2
+

A4

2σ4

)
I0

(
A2

4σ2

)
+

(
2
A2

σ2
+

A4

2σ4

)
I1

(
A2

4σ2

)]
. (3.14)

For completeness, we also mention the general expression for the moments of the limits of the Rice
distribution. For the Rayleigh distribution we have:

E [Mν ] = (2σ2)ν/2Γ
(

1 +
ν

2

)
. (3.15)

For the Gauss PDF (i.e., the Rice PDF for SNR →∞), we have [25]:

E [Mν ] = σ2(ν−1)

[
dν−1

dAν−1

(
Ae

A2

2σ2

)]
e−

A2

2σ2 . (3.16)

3.3.2 The generalized Rice distribution

In this section, the generalized Rice distribution is discussed, which characterizes magnitude data that
are computed from more than two Gauss distributed variables. These data are found in phased array
magnitude MR images, where use is made of multiple receiver coils [26], and in phase contrast MR
images [20].

Phase Contrast Magnetic Resonance (PCMR) imaging is widely used to detect flow. It is an
enhancement procedure by which signal contributions from stationary spins are suppressed through
posterior image processing. PCMR images can be computed in several ways [27]. One way is by
acquiring a complex valued base image S+ with a flow encoding gradient applied in for example the
positive X direction, followed by an identical acquisition of S−, where the flow encoding gradient is
applied in the opposite direction. The complex base images S+ and S− are assumed to be corrupted
by Gauss distributed, zero mean noise n±r and n±i with variance σ2

n, where r and i denote the real and
imaginary image component, respectively. The goal of phase contrast image formation is to visualize
the phase difference ∆Φ associated with flow. The complex base images are given by:

S+ = Cej(Φ0+∆Φ) + n+
r + jn+

i (3.17)

S− = Cej(Φ0−∆Φ) + n−r + jn−i , (3.18)

where Φ0 is an unknown phase offset and j =
√
−1. In Eq. (3.17-3.18), it is assumed that the voxel

magnitude C is identical in both base images.
The same flow encoding strategy can be employed to acquire two additional pairs of complex valued
MR images, S±Y and S±Z , where the flow encoding gradients are applied in the other two orthogonal
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directions, Y and Z, respectively. Then, from the six complex valued MR images, the phase contrast
magnitude image SCD can be computed via complex difference calculation:

‖SCD‖ =
√∥∥∥S+

X − S−X
∥∥∥2

+
∥∥∥S+

Y − S−Y
∥∥∥2

+
∥∥∥S+

Z − S−Z
∥∥∥2

. (3.19)

It is now easy to show that the PCMR pixel variable, denoted by M , can be written as:

M =

√√√√ K∑
k=1

s2
k , (3.20)

with K denoting twice the number of orthogonal Cartesian directions in which flow is encoded. The
set {sk} are independent Gauss distributed variables with variance 2σ2

n. Without loss of generality,
the mean values {ak} of {sk} can be written as:

ak =

{
2Ck sin(∆Φk)
0

for
odd
even

k values. (3.21)

Hence, the deterministic signal component of the PCMR pixel variable is given by:

A =

√√√√ K∑
k=1

a2
k . (3.22)

As PCMR data are derived from the square root of the sum of the squares of Gauss distributed
variables, which is a non-linear transformation, the PCMR data are no longer expected to be Gauss
distributed. In appendix A, the PDF of such a PCMR variable is shown to be a generalized Rice PDF,
given by:

pM (M) =
M

σ2

(
M

A

)K
2
−1

exp

(
−M2 + A2

2σ2

)
IK

2
−1

(
MA

σ2

)
ε (M) . (3.23)

When A → 0, the PDF of the magnitude PCMR variable becomes a generalized Rayleigh PDF:

pM (M) =
2MK−1

(σ
√

2)KΓ(K/2)
exp

(
−M2

2σ2

)
ε(M) . (3.24)

Fig. 3.2 shows the generalized Rice PDF for SNR = 0 and SNR = 3 and for K = 2, 4 and 6 and σ = 5.
The general expression for the moments is given by:

E [Mν ] = (2σ2)ν/2 Γ [(K + ν)/2]
Γ(K/2) 1F1

(
−ν

2
,
K

2
;− A2

2σ2

)
. (3.25)

Again, the even moments turn out to be simple polynomials:

E
[
M2

]
= Kσ2 + A2 (3.26)

E
[
M4

]
= K2σ4 + 2Kσ4 + 2A2Kσ2 + 4A2σ2 + A4 . (3.27)
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Figure 3.2: Plots of the generalized Rice PDF as a function of the magnitude M for K = 1, 2, 4 and
6 and with σ = 5.
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3.4 PDF of phase data

Phase data, which are commonly used in flow imaging, are constructed from the real and imaginary
data {(Ri, Ii)} by calculating for each complex data point the arctangent of their ratio:

Φi = arctan
(

Ii

Ri

)
. (3.28)

As the arctangent is a nonlinear function, we again no longer expect the phase variables to be Gauss
distributed. Indeed, the distribution of the phase deviation ∆Φ from the true phase value is given by
[28]:

p (∆Φ) =
1
2π

e−A2/2σ2

[
1 +

A

σ
cos ∆ΦeA2 cos2 ∆Φ/2σ2

∫ A cos ∆Φ
σ

−∞
e−x2/2dx

]
. (3.29)

Note that the distribution can be expressed solely in terms of the SNR, defined as A/σ. A graphical
representation of the phase difference PDF as a function of the SNR is shown in Fig. 3.3.
Although the general expression for the distribution of ∆Φ is complicated, the two limits of the SNR
turn out to yield simple distributions. In regions where there is only noise, the SNR is zero and Eq.
(3.29) reduces to a uniform PDF:

p (∆Φ) =

{
1
2π if − π < ∆Φ < π
0 otherwise .

(3.30)

Stated in another way, the complex data, which only consist of noise, ’point in all directions’ with the
same probability. For large SNR, it is easy to see that the deviation in the phase angle, ∆Φ, due to
noise will be small. In that case, Eq. (3.29) reduces to:

p (∆Φ) =
1√
2π

A

σ
exp

(
−∆Φ2A2

2σ2

)
. (3.31)

Thus, the phase noise ∆Φ is governed by a Gauss distribution when SNR →∞.
The standard deviations for the phase noise can in general be calculated from Eq. (3.29). However,
for the SNR limits, given in Eq. (3.30) and Eq. (3.31), it is given by:

σ∆Φ =

{
π/
√

3 if SNR = 0
σ/A if SNR � 1 .

(3.32)
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Chapter 4

Noise estimation

4.1 Introduction

This chapter elaborates on noise estimation from Magnetic Resonance images. Emphasis is put on
noise estimation from magnitude MR images.

Estimation of the image noise variance (NV) is important for several reasons. Firstly, it provides a
measure of the image quality in terms of image detail: small signal variations tend to get lost in a sea
of random variations when the noise variance increases. Furthermore, knowledge of the NV is useful
in the analysis of the MR system: e.g., to test the performance of the MR system itself (receiver coil,
preamplifier, etc.). Also, the NV is an important quality measure in functional MR imaging, where
signal variations of the order of a few percent need to be detected. Finally, the NV value is often used
as an input for image processing techniques such as image restoration [29, 30] or image filtering [31, 32].

In the image processing literature, most of the proposed methods to estimate the image noise
variance assume Gauss or Poisson distributed noise [33, 34, 35, 36, 37, 38, 39]. However, as we saw
in Chapter 3, magnitude MR data are no longer Gauss but Rice distributed. In this chapter, it is
demonstrated how the properties of the Rice distribution can be exploited to estimate the image noise
variance from magnitude MR data.

In MRI, the image NV is commonly estimated from a single magnitude MR image. Thereby, the
NV is determined directly from a large uniform signal region or from non-signal regions [19, 40]. Al-
though these methods may lead to useful NV estimates, large homogeneous regions are often hard to
find, and, therefore, only a small amount of data points is available for estimation. Also, background
data points sometimes suffer from systematic intensity variations.
To cover these disadvantages, methods were developed based on two acquisitions of the same image:
the so-called double acquisition methods. Thereby, the amount of noise is for example computed by
subtracting two acquisitions of the same object and calculating the standard deviation of the resulting
image pixels [41]. Murphy et al. [42] elaborated this technique further and used a parallel rod test
object for NV measurements from the signal and non-signal blocks. The double acquisition methods
have that advantage over the single image techniques that they are relatively insensitive to structured
noise such as ghosting, ringing and DC artefacts. However, a strict requirement is the perfect geo-
metrical registration of the images. Beside geometrical registration, another problem may arise: due
to small timing errors the raw data from one acquisition may be shifted relative to the other. After
Fourier transformation, this results in additional phase variations of the complex data such that the
above double acquisition NV estimation methods are no longer valid. To circumvent phase related
problems, methods were proposed for the estimation of the image NV from magnitude MR images

16
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[19, 28, 43].

This chapter is organized as follows. The first section elaborates on parameter estimation, where
emphasis is put on Maximum Likelihood estimation. Next, conventional methods are discussed for the
estimation of the image noise variance from magnitude MR images. Also, a new double acquisition
noise NV estimation method is proposed, which exploits the properties of the Rice distribution. The
proposed method is first tested on an artificial image as under controlled conditions, unforeseen errors,
such as a bias, can be detected. Finally, the method is tested on various MR images.

4.2 Parameter estimation

4.2.1 Minimum Variance Bound

Suppose that the PDF of a variable x is determined by a parameter θ. Consider an unbiased estimator,
t, of some function of θ, say τ(θ). Then the lower bound on the variance of t is given by:

Var = − {τ ′ (θ)}2

E
(

∂2 log L
∂θ2

) . (4.1)

This is the fundamental inequality for the variance of an estimator, often known as the Minimum
Variance Bound (MVB) or the Cramér-Rao Lower Bound (CRLB).

4.2.2 Maximum Likelihood estimation

Suppose we have a number of N independent observations from the same distribution. The joint PDF
of the observations, regarded as a function of a single unknown parameter θ, is called the Likelihood
Function (LF) of the sample, and is written:

L(x|θ) = p(x1|θ)p(x2|θ) · · · p(xN |θ) . (4.2)

The Maximum Likelihood principle states that the estimator of θ, denoted by θ̂, should make the LF
as large as possible within the admissible range of θ. That is, θ̂ should be chosen such that for any
admissible value of θ

L(x|θ̂) ≥ L(x|θ) . (4.3)

If condition 4.3 applies, θ̂ is called the Maximum Likelihood (ML) estimator [44, 45].
Concerning the accuracy and precision of the ML estimator, it is known that, under very general
conditions, the ML estimator is consistent and asymptotically most precise [46]:

• Consistency. Under very general conditions, ML estimators are consistent, i.e.,

∀ε ∈ <+ |
{
Pr
(
|θ̂ − θ| < ε

)
= 1 if N →∞

}
, (4.4)

with <+ denoting the set of positive real numbers.

• Asymptotic efficiency. Under not too restrictive conditions, the variance-covariance matrix of the
estimator θ̂ equals the CRLB, asymptotically. Hence, if the number of data points increases, the
distribution of the ML estimator approaches the normal distribution with mean θ and variance
equal to the Minimum Variance Bound (MVB), which is a lower bound on the variance of any
unbiased estimator [47]. Furthermore, it is known that if there exists an unbiased estimator
having the MVB as variance, it is the ML estimator [46].
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4.3 Noise estimation

In the following, various methods for estimation of the noise standard deviation or the noise variance
from magnitude MR data are discussed. Thereby, it will be assumed that the available data is governed
by a generalized Rice distribution. The methods described below can also be applied to conventional
Rice distributed magnitude MR data; that would be the case when K = 2.

4.3.1 Single image methods

The value of σ2 can be estimated in many different ways. Usually, σ2 is estimated from the background
data points, where the deterministic signal is assumed to be zero, by exploiting the second moment of
the generalized Rice PDF [19]:

σ̂2 =
1

KN

N∑
i=1

M2
i , (4.5)

where N squared magnitude data points {M2
i } are averaged within any region that is assumed to have

no signal, i.e., where A = 0. From Chapter 3, we learned that in such regions the magnitude data are
governed by a generalized Rayleigh distribution:

pM (M) =
2MK−1

(2σ2)K/2Γ
(

K
2

) exp

(
−M2

2σ2

)
ε(M) . (4.6)

It can easily be shown that (4.5) is an unbiased estimator of σ2 with a variance equal to σ4/N . In
addition, the estimator is identical to the Maximum Likelihood estimator. This can be seen as follows.
The likelihood function L is given by:

L =
(
σ2
)−NK/2

 N∏
i=1

2MK−1
i

2K/2Γ
(

K
2

)
 N∏

i=1

exp

(
−M2

i

2σ2

)
, (4.7)

where factors depending on σ2 were grouped. Taking the logarithm and leaving only the terms that
depend on σ2, we have:

log L ∼ −NK

2
log

(
σ2
)
− 1

2σ2

N∑
i=1

M2
i . (4.8)

Maximization of (4.8) requires the first order derivative of L, with respect to σ2, to be zero:

∂ log L

∂σ2
= 0 , (4.9)

yielding the unbiased estimator given in Eq. (4.5). Its variance equals the Cramér-Rao lower bound
(CRLB) for all N , given by:

CRLB = −
(

E

[
∂2 log L

∂ (σ2)2

])−1

(4.10)

= −
(

E

[
NK

2σ4
− 1

σ6

N∑
i=1

M2
i

])−1

(4.11)

=
2σ4

NK
. (4.12)
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One might be interested in the value of the standard deviation σ as well, e.g., to estimate the true
SNR: A/σ. Simply taking the square root of the ML estimator of σ2 yields an estimator of σ:

σ̂ML =

√√√√ 1
KN

N∑
i=1

M2
i . (4.13)

This estimator is identical to the ML estimator of σ, as the square root operation has a single valued
inverse (cfr. Invariance property of ML estimators [48]). Its variance is approximately equal to:

Var (σ̂ML) ' σ2

2NK
, (4.14)

which equals the CRLB. The estimator (4.13) is, however, biased because of the square root operation.
Its expectation value is approximately equal to:

E [σ̂ML] ' σ

(
1− 1

4NK

)
. (4.15)

Notice that this means that it is possible to apply a bias correction. This however would increase the
variance of the estimator.
Another commonly used estimator of σ can be found by exploiting the knowledge that the Rice PDF
turns into a Rayleigh PDF in image regions with no signal. Since the mean value of the generalized
Rayleigh PDF is given by

E[M ] =
√

2σ
Γ ((K + 1)/2)

Γ (K/2)
, (4.16)

an unbiased estimator of σ is easily seen to be:

σ̂c =
Γ (K/2)

Γ ((K + 1)/2)
1√
2N

N∑
i=1

Mi . (4.17)

The variance of this estimator is given by

Var (σ̂c) =
σ2

N

(
K

2

(
Γ (K/2)

Γ ((K + 1) /2)

)2

− 1

)
, (4.18)

which is always larger than the CRLB. Next, we can compare both estimators of σ, described above,
in terms of the Mean Squared Error (MSE), which is defined as [47]:

E
[
(σ − σ̂)2

]
= {E [σ̂]− σ}2 + Var(σ̂) , (4.19)

or explicitly for the conventional and the ML estimators:

MSEσ̂ML
' σ2

N

(
1

2K
+

1
16NK2

)
(4.20)

MSEσ̂c =
σ2

N

(
K

2

(
Γ (K/2)

Γ ((K + 1) /2)

)2

− 1

)
(4.21)

To compare the conventional estimator with the ML estimator, an MSE ratio is defined as:

MSEratio =
MSEσ̂c −MSEσ̂ML

MSEσ̂ML

. (4.22)

Note that the MSE ratio is independent of the noise variance. The MSE ratio, as a function of the
number of data points, is shown in Fig. 4.1 for K = 2, 4 and 6. For large N , the MSE of the common
estimator (4.17) is significantly larger than that of the ML estimator (4.13). The performance of
the conventional estimator, compared to the ML estimator, is worst for conventional magnitude MR
images, where K = 2.
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Figure 4.1: Performance comparison between the conventional and the ML estimator of the noise
standard deviation: MSE ratio as a function of the number of data points N for K = 2, 4 and 6.

4.3.2 Double image method

When two conventional MR images (K = 2) are acquired under identical imaging conditions, one can
solve σ2 from two equations and two unknowns using the averaged and single images, since:

E
[
〈M2

s 〉
]

=
1
N

N∑
n=1

A2
n + 2σ2 (4.23)

E
[
〈M2

a 〉
]

=
1
N

N∑
n=1

A2
n + 2

(
σ√
2

)2

, (4.24)

where 〈〉 denotes a spatial average of the whole image. The subscripts s and a refer to the single and
averaged images, respectively. From Eq. (4.24) and Eq. (4.23) an unbiased estimator of the noise
variance is derived:

σ̂2 = 〈M2
s 〉 − 〈M2

a 〉 . (4.25)

This approach has the following advantages:

• it does not require any user interaction, as no background pixels need to be selected;

• it is insensitive to systematic errors, as long as these appear in both images. It is clear that, if
this type of error appears in only one of the two images, none of the double acquisition methods
yields the correct result;

• the precision of the noise variance estimator (4.25) is drastically increased, compared to the
precision of the estimator given in (4.5), as all the data points are involved in the estimation;

• it is valid for any image signal-to-noise ratio.

An obvious disadvantage is the double acquisition itself. However, in MR acquisition schemes, it is
common practice to acquire two or more images for averaging. Hence, those images may as well be
used for the proposed noise quantization procedure, without additional acquisition time. In addition,
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the images require proper geometrical registration, i.e., no movement of the object during acquisition
is allowed.

4.4 Experiments and discussion

The performance of the noise variance estimation method was in a first phase tested on an artificial im-
age: the ’Lena’ image, well known in image processing. This was done as under controlled conditions,
a possible bias should reveal, if present. The dimensions of the image were 128× 128. From the Lena
image, two independent Rice distributed images with variance σ2 were generated. The proposed noise
estimation method was tested for various values of σ2. Simulation results (see Fig. 4.2) show a perfect
linear behavior with unit slope of the estimated NV as a function of the true NV, demonstrating the
accuracy of the method. Furthermore, the NV estimation was observed to be highly precise, owing to
the fact that all image pixels were used in the estimation.

Next to the test images, the noise estimation method was applied to Magnetic Resonance images.
The data were generated using an MR apparatus (SMIS, Surrey, England) with a horizontal bore of
8 cm, a main magnetic field strength of 7 Tesla, and a maximal gradient strength of 0.1 Tesla/m.
In all experiments, a birdcage RF coil with a diameter of 32 mm was used. The method was tested
using 2D Spin Echo (SE) as well as Gradient Echo (GE) sequences. The object imaged, was initially
a vegetable (cucumber) and secondly an animal (head of a mouse). For each experiment, 20 images
of size 256 × 128 were acquired with TR = 500 ms and TE = 30 ms. For each object, the number
of averages (NA) was varied from 2 untill 32 with step 2. For each NA, 20 images were acquired,
allowing 10 independent noise estimations from 2 images using Eq. (4.23-4.24). Only the mean value
and standard deviation of the 10 NV estimates were retained.
No artefacts were observed in the images of the cucumber though small ringing and ghosting artefacts
were present in the images of the mouse head. These, however, did not influence the NV estimations as
they appeared in both images. The results of this experiment (for the mouse head) are shown in Fig.
4.3, where the inverse NV estimates are plotted as a function of the number of averages, along with
their 95% confidence intervals. As can be observed from the figure, the results are in correspondence
with the theory in that the inverse NV estimates increase linearly with the number of averages, with
zero offset.

4.5 Conclusions

When it comes to estimation of the image noise variance, methods based on a double acquisition are
far superior to single image techniques in terms of precision. However, existing double acquisition
methods become useless when different phase variations are present in the two images. To overcome
this problem, a noise variance estimation method has been proposed, based on two magnitude images.
Under the condition of geometrical registration, the proposed noise variance estimator has been shown
to be highly precise and accurate.



CHAPTER 4. NOISE ESTIMATION 22

Figure 4.2: Estimation of the noise variance: simulation experiment.
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Figure 4.3: Estimation of the noise variance from magnitude MR images.



Chapter 5

Signal estimation

5.1 Introduction

In this chapter, the problem of parameter estimation from (generalized) Rice distributed data (e.g.,
magnitude MR images, magnitude PCMR images) is addressed. The properties of conventional es-
timation methods are discussed and compared to Maximum Likelihood estimation, which is known
to yield optimal results asymptotically. In contrast to previously proposed methods, Maximum Like-
lihood estimation is demonstrated to be unbiased for high signal-to-noise ratio (SNR) and to yield
physical relevant results for low SNR.

Conventional estimation techniques usually assume the data to be Gauss distributed. Whenever
other PDF’s come into play, e.g., in magnitude MR images, one still tends to use parameter estimation
techniques that are based on Gauss distributed data [29, 31, 32]. The justification for this is that,
when the signal-to-noise ratio (SNR) is high, the actual data PDF is very similar to a Gauss PDF.
Also, Gauss PDF’s have attractive computational properties.
With magnitude MR images, the Rice data PDF deviates significantly from a Gauss PDF when
the SNR is low, leading to biased results. To reduce this bias, parameter estimation methods were
proposed that exploit the knowledge of the Rice PDF [28, 49, 50, 51]. However, although the proposed
estimators reduce the bias, they are not able to completely remove it. In this chapter, it is shown
where the bias appears in the conventional estimation. In addition, a Maximum Likelihood (ML)
estimator for (generalized) Rice distributed data is constructed. The performance of the conventional
estimator is compared to that of the ML estimator [52]. This is motivated by the fact that, if there
exists an unbiased estimator of which the variance attains the lowest possible value, it is obtained by
the ML method.

5.2 Signal estimation from Rice distributed data

The problem, posed in this section, is the estimation of a deterministic signal component A from a
region of interest (ROI), where A is assumed to be constant. The ROI consists of N Rice distributed
data points {Mi}. First, conventional signal estimation methods are discussed. Afterwards, a signal
estimation technique is proposed, based on Maximum Likelihood estimation. All methods described
exploit the knowledge of the Rice PDF and its properties, given in Section 3.3.1.

23
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5.2.1 Conventional approach

Conventional estimator

Commonly, Eq. (3.11) is exploited for the estimation of the underlying signal A. Thereby, E
[
M2

]
is

estimated from a simple spatial average of the squared pixel values of the ROI [40, 42, 50, 51]:

̂E[M2] = 〈M2〉 =
1
N

N∑
i=1

M2
i . (5.1)

Note that this estimator is unbiased since E[〈M2〉] = E[M2] = A2 + 2σ2. In the following, the noise
variance σ2 is currently assumed to be known. Consequently, an unbiased estimator of A2 is given by:

Â2 = 〈M2〉 − 2σ2 . (5.2)

Taking the square root of Eq. (5.2) gives the conventional estimator of A [40, 42, 50, 51]:

Âc =
√
〈M2〉 − 2σ2 . (5.3)

Discussion

The parameter to be estimated is the signal A. Obviously, A is a priori known to be real valued
and non-negative. However, this a priori knowledge has not been incorporated into the conventional
estimation procedure. Consequently, the conventional estimator Âc, given in Eq. (5.3), may reveal
estimates that violate the a priori knowledge and are therefore physically meaningless. This is the
case when Â2

c becomes negative. Therefore, Âc can not be considered a useful estimator of A if the
probability that Â2

c is negative differs from zero significantly. The PDF of Â2
c can be derived from Eq.

(A.15):

py(y) =
1

2σ2

(
y

(NA)2

)N−1
2

exp

(
−y + (NA)2

2σ2

)
IN−1

(√
y(NA)
σ2

)
ε (y) , (5.4)

where y is now given by the sum of N real and N imaginary, independent, squared, Gauss distributed
variables:

y =
2N∑
i=1

x2
i =

N∑
i=1

M2
i . (5.5)

The deterministic signal component of the variable y is given by NA2. From Eq. (5.1) and Eq. (5.2),
we see that Â2

c = y/N − 2σ2, and with

p
Â2

c

(
Â2

c

)
= Npy

(
N
(
Â2

c + 2σ2
))

, (5.6)

the PDF of Â2
c becomes explicitly:

p
Â2

c

(
Â2

c

)
=

N

2σ2

(
Â2

c + 2σ2

A2

)N−1
2

exp

(
−N

(Â2
c + 2σ2) + A2

2σ2

)

×IN−1

NA
√

Â2
c + 2σ2

σ2

 ε
(
Â2

c + 2σ2
)

. (5.7)

In Fig. 5.1, the probability that Â2
c is negative, Pr[Â2

c < 0], is drawn as a function of the local SNR
for several values of N , where the local SNR is defined as:

SNR =
A

σ
. (5.8)
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Figure 5.1: The probability Pr[Â2
c < 0] as a function of the SNR for various N .

From the figure, one can conclude that for low SNR Âc cannot be a valid estimator of A unless a
large amount of data points is used for the estimation. Therefore, in practice, Âc will only be a useful
estimator if the local SNR is high.

However, even if the condition of high SNR is met, the use of Âc as an estimator of A should still
not be recommended, since the results obtained are biased because of the square root operation in Eq.
(5.3). This becomes more clear when E[Âc] is expanded about the unbiased value A, yielding:

E
[
Âc

]
≈ A

(
1− σ2

2NA2

)
. (5.9)

Eq. (5.9) is valid for high SNR. The bias appears in the second term of Eq. (5.9). Note that it
decreases with increasing SNR and increasing number of data points N . It is also remarked that the
bias can be removed by jackknifing, but this requires a lot of computation [53].

5.2.2 Maximum Likelihood estimation

In this section, the ML method is introduced into the problem of the estimation of Rice distribution
parameters. The ML estimator exploits the a priori knowledge of the data statistics in an optimal
way.

ML estimator

From the joint PDF of a sample of N independent observations {Mi}, the likelihood function of the
sample can be constructed:

L =
N∏

i=1

p (Mi|A) , (5.10)

where p(Mi|A) is given in Eq. (3.7). The ML estimator can be constructed directly from the likelihood
function L. Once the observations have been made and numbers can be substituted for {Mi}, L is a
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function of the unknown parameter A only. The ML estimator of A is now defined as the estimator
maximizing L, or equivalently log L, as a function of A. Hence, using Eq. (3.7), it follows that:

log L = log
N∏

i=1

Mi

σ2
e−

M2
i
+A2

2σ2 I0

(
AMi

σ2

)
(5.11)

=
N∑

i=1

log
Mi

σ2
−

N∑
i=1

(
M2

i + A2

2σ2

)
+

N∑
i=1

log I0

(
AMi

σ2

)
, (5.12)

or only as a function of A:

log L ∼
N∑

i=1

log I0

(
AMi

σ2

)
− NA2

2σ2
. (5.13)

Since I0 is symmetric about A = 0, L as well as log L are also symmetric about A = 0. The ML
estimate is the global maximum of log L:

ÂML = arg
{

max
A

(log L)
}

. (5.14)

Discussion

It is not possible to find the maximum of the log L function directly because the parameter A enters
that function in a nonlinear way. Therefore, finding the maximum of the log L function will in general
be an iterative numerical process.
In order to get some insight into the properties of the ML estimator, the structure of the log L function
is now studied. This structure is established by the number and nature of the stationary points of the
function. Stationary points are defined as points where the gradient vanishes, i.e., where

∂

∂A
log L = 0 . (5.15)

Substituting Eq. (5.13) into Eq. (5.15), we obtain:

N∑
i=1

∂

∂A
log I0

(
AMi

σ2

)
− NA

σ2
= 0 . (5.16)

Given that the derivative of I0(z), with respect to z, equals I1(z), it follows:

N∑
i=1

Mi
σ2 I1

(
AMi
σ2

)
I0

(
AMi
σ2

) − NA

σ2
= 0 . (5.17)

Hence, the condition for the stationary points becomes:

A =
1
N

N∑
i=1

Mi

I1

(
AMi
σ2

)
I0

(
AMi
σ2

) . (5.18)

It follows from Eq. (5.18) that A = 0 is a stationary point of log L, independent of the particular data
set. The nature of a stationary point is determined by the sign of the second order derivative of the
function in that point. From this derivative, it follows whether a stationary point is a minimum or a
maximum, and whether or not it is degenerate. From Eq. (5.13), the second order derivative of the
log L function can be computed to yield:

∂2 log L

∂A2
=

N∑
i=1

M2
i

σ4

1− σ2

AMi

I1

(
AMi
σ2

)
I0

(
AMi
σ2

) − I2
1

(
AMi
σ2

)
I2
0

(
AMi
σ2

)
− N

σ2
. (5.19)
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From the knowledge that [24]

Iν (z) ∼
(

z

2

)ν

Γ (ν + 1) when z → 0 (5.20)

it is easy to verify that A = 0 is a minimum of log L whenever:

1
N

N∑
i=1

M2
i > 2σ2 . (5.21)

If this condition is met, the log L function will have two further stationary points, being maxima.
This can be seen by studying the possible structures of the log L function using catastrophe theory.

Catastrophe theory is concerned with the structural change of a parametric function under influence
of its parameters [54]. It tells us that a structural change of the function is always preceded by a
degeneracy of one of its stationary points. In order to analyze such a structural change, the parametric
function can be replaced by a Taylor expansion in the essential variables about the latter stationary
point. The essential variables correspond to the directions in which degeneracy may occur. According
to the catastrophe theory, the global structure of a parametric function, with only one essential
variable, is completely set by its Taylor expansion up to the degree of which the coefficient cannot
vanish under the influence of its parameters. The function studied here is the log L function as a
function of A. Its parameters are the observations. Thus, the structural change of the log L function
under the influence of the observations, has to be studied. The only essential variable is the signal
parameter A. The stationary point that may become degenerate, is the point A = 0 (degeneracy
occurs whenever (5.19) becomes equal to zero). If the log L function is Taylor expanded about the
stationary point A = 0, we yield:

log(L) = a +
b

2!
A2 +

c

4!
A4 + O

(
A6
)

, (5.22)

with

a =
N∑

i=1

M2
i

σ4

[
1− 1

2
σ2

Mi

]
− N

σ2
(5.23)

b =
N∑

i=1

M2
i

2σ4
− N

σ2
(5.24)

c = −3
8

N∑
i=1

M2
i

σ8
(5.25)

and O(.) is the order symbol of Landau. Notice that, since the log L function is symmetric about
A = 0, the odd terms are absent in Eq. (5.22). In order to investigate if the expansion up to the
quartic term in Eq. (5.22) is sufficient, it has to be determined if the coefficients may change sign under
influence of the observations. It is clear from Eq. (5.24) that the coefficient b may change sign. The
coefficient c, however, will always be negative, independent of the particular set of observations. This
means that the expansion (5.22) is sufficient to describe the possible structures of the log L function.
Consequently, the study of the log L function as a function of the observations can be replaced by a
study of the following quartic Taylor polynomial in the essential variable A:

b

2!
A2 +

c

4!
A4 , (5.26)

where the term a has been omitted, since it does not influence the structure. The polynomial (5.26)
is always stationary at A = 0. This will be a minimum, a degenerate maximum or a maximum when
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b is positive, equal to zero, or negative, respectively. It follows directly from (5.26) that log L has two
additional stationary points (being maxima) if b is positive, that is, if Eq. (5.21) is met. Notice that
condition (5.21) is always met for noise free data. However, in practice, the data will be corrupted by
noise, and for particular realizations of the noise, condition (5.21) may not be met. Then A = 0 will be
a maximum. Moreover, if condition (5.21) is not met, b in (5.26) is negative and thus log L is convex,
which means that A = 0 will be the only, and therefore, the global maximum of the log L function.
This implies that, under the influence of noise, the two maxima and one minimum have merged into
one single maximum at A = 0. This maximum then corresponds to the ML estimate. Note that, since
condition (5.21) is identical to (and therefore can be replaced by) the condition Â2

c > 0, the probability
that the ML estimate is found at A = 0, is equal to the probability that Â2

c ≤ 0. This probability can
be computed from the PDF, given in Eq. (5.7).
It follows from these considerations that, when the conventional estimator becomes invalid, the ML
estimator will still yield physically relevant results.

5.2.3 Experiments and discussion

In order to compare the conventional estimator Âc to the ML estimator ÂML described above, an
experiment was simulated in which the underlying signal was estimated from 16 Rice distributed data
points (N = 16) as a function of the noise standard deviation σ. The true value of A was 100. The ML
estimate was obtained by maximization of the likelihood function using Brent’s algorithm [55]. This
is an efficient one-dimensional optimization method based on parabolic interpolation, which converges
rapidly as the likelihood function is well described by a parabola. The same experiment of determining
Âc and ÂML was repeated 2.105 times, after which the averages 〈Âc〉 and 〈ÂML〉 were computed. The
results are shown in Fig. 5.2, along with the 95% confidence intervals. From that figure, one can see
that, at high SNR (SNR > 3), the ML estimator cannot be distinguished from an unbiased estima-
tor, whereas the conventional estimator is clearly biased (Fig. 5.2(a)). As can also be observed, the
experimental estimations Âc are in agreement with the expectation value of Âc, predicted by Eq. (5.9).

At low SNR (SNR < 3) the use of Âc is no longer justified because the probability that Â2
c is

negative becomes too high. As to still compare the ML estimator with the conventional one, we
modified the conventional estimator in these adverse cases to yield the same estimate as the ML
estimator: Âc = 0. From Fig. 5.2(b), one can observe that both estimators become biased though
the bias of the ML estimator is significantly smaller compared to the modified conventional estimator.
The bias of the ML estimator has to do with the increasing probability of a structural change of
the likelihood function. For low SNR, simulation experiments have shown the occurrence of both
structures of log L, described above, i.e., only one maximum or two maxima and one minimum. Some
log L functions obtained from simulation experiments are shown in Fig. 5.3 for high and low SNR.
Up to now, no other structures were observed. Remark that the occurrence of only one maximum at
positive A-values makes the computational requirements for the maximization of the log L function
very low.

In this section, the true value of the noise variance σ2 was assumed to be known. In practice
however, σ2 needs to be estimated from the background or from homogeneous signal regions [19]. In
general, the precision of the noise variance estimator is much better than that of the signal because
often much more background data points are available. However, the accuracy of the σ2 estimate
is often influenced by systematic errors due to for example ghosting artefacts. As was discussed in
Chapter 4, this problem can be tackled by acquiring two realizations of the same image [43]. However,
if the noise variance estimate can not be prevented from degradation by systematic errors, σ2 will
automatically be over-estimated. An erroneous noise estimate will in turn influence the signal esti-
mates. Simulation experiments however showed that, even with a 10% over- or under-estimated noise
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variance value, ML estimation still yields significantly more accurate results compared to conventional
estimation.

5.3 Signal estimation from PCMR data

From Chapter 3 we learned that phase contrast magnitude MR (PCMR) data are derived from the
square root of the sum of the squares of a number of Gauss distributed variables, which is again a
non-linear transformation. It has been shown that, when PCMR data are being used in quantitative
analysis as an estimate of the underlying flow-related signal component magnitude, results are biased
[20]. The bias is due to the contributions from inherent random noise, which is not Gauss distributed.
Since the bias is not merely an additive component, it cannot be just subtracted out. To remove the
bias, knowledge of the actual shape of the data probability density function (PDF) becomes essential.
In this section, the full knowledge of the probability distribution of the phase contrast magnitude MR
data is exploited for optimal estimation of the underlying signal.

It has to be noticed that, although this section focuses on complex difference processed images, the
estimation techniques, derived in the remainder of this section, can, under certain conditions, also be
applied to images obtained by phase difference processing. This has to do with the fact that for both
methods, in the end, one has to estimate the underlying signal component from magnitude images
of which the pixel variable M can be described by Eq. (3.20). The only difference is that, for phase
difference processing, the dimension, or number of degrees of freedom K, directly equals the number
of orthogonal Cartesian directions in which flow is encoded, whereas for complex difference processing
the dimension K is twice this physical dimension [20].

5.3.1 Methods

In the following, it is assumed that an unknown deterministic signal component A needs to estimated
from a number of PCMR pixel values of a region Ω where the signal component is assumed to be
constant. Below, three signal estimation methods are discussed, two of which are based on spatial
averaging, whereas one is based on Maximum Likelihood estimation.

Mean estimator

The most intuitive way of estimating the unknown signal component is through simple averaging of
pixel values in the region Ω. Without a priori knowledge of the proper data PDF, this action would
be justified as it is the optimal (i.e., Maximum Likelihood) estimation procedure if the data would be
corrupted by Gauss distributed noise:

Âm =
1
N

N∑
i=1

Mi . (5.27)

The variance of this ‘mean estimator’ is given by:

Var
(
Âm

)
=

1
N

(
E
[
M2

i

]
− E[Mi]2

)
. (5.28)

However, as PCMR data are not Gauss distributed, it is clear that a huge bias would be introduced if
the signal is estimated by averaging pixel values. The bias, relative to the true signal component A,
is in general defined by:

Relative bias =

∣∣∣∣∣E[Â]−A

A

∣∣∣∣∣× 100% , (5.29)
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where E[Â] denotes the expectation value of the signal estimator Â. In the definition, the absolute
value was taken as to make the relative bias logarithmically plottable. For the mean estimator (5.27),
the expectation value E[Âm] is given by E[M ], because the average operator is an unbiased estimator
of the expectation value. Hence, the relative bias of Âm can be computed from the expression for
the moments of the generalized Rice PDF as given in Eq. (3.25) with ν = 1. Note that it follows
from Eq. (3.25) and Eq.(5.29) that the relative bias can be written solely in terms of the SNR, and
is independent of the number of averaged pixel values N . Fig. 5.4 shows the relative bias of Âm as a
function of the SNR for various values of K. From the figure, it is clear that the bias increases rapidly
with decreasing SNR. Also, the bias increases with increasing number of flow encoding directions.

Modified RMS estimator

An easy way to reduce the bias is by exploiting the second moment of the generalized Rice distribution,
as was given in Eq. (3.26). Indeed, an unbiased estimator of A2 is given by:

Â2 =
1
N

N∑
i=1

M2
i −Kσ2 . (5.30)

The PDF of Â2 can be computed to yield:

p
Â2

(
Â2
)

=
N

2σ2

(
Â2 + Kσ2

A2

)NK−2
4

exp

(
−N

Â2 + Kσ2 + A2

2σ2

)

×INK
2
−1


√

Â2 + Kσ2NA

σ2

 ε
(
Â2 + Kσ2

)
. (5.31)

From the unbiased estimator of A2, given in Eq. (5.30), a modified root mean square (RMS) estimator
of A would be given by:

Ârms =

√√√√ 1
N

N∑
i=1

M2
i −Kσ2 . (5.32)

However, root extraction is a non-linear operation that makes the estimator Ârms biased. Also, the
modified RMS estimator is only appropriate whenever the argument of the square root operator is
non-negative. A possible, at first sight quite arbitrary, solution to this problem is to artificially put
the estimator Ârms to zero whenever Â2 is negative:

Ârms =


√

Â2 if Â2 ≥ 0
0 if Â2 < 0 .

(5.33)

The PDF of Ârms is then given by:

pÂrms

(
Ârms

)
=

0∫
−Kσ2

p
Â2

(x) dx δ
(
Ârms

)
+

NÂrms

σ2

(
Â2

rms + Kσ2

A2

)NK−2
4

× exp
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−N

Â2
rms + Kσ2 + A2

2σ2

)
INK

2
−1


√

Â2
rms + Kσ2NA

σ2

 ε
(
Ârms

)
, (5.34)
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where δ(.) denotes the Dirac delta function. Notice that the first term of Eq. (5.34) vanishes for high
SNR. The bias of the modified estimator (5.33) can be computed from

E[Ârms] =
∞∫
0

pÂrms
(x) xdx . (5.35)

Fig. 5.5 shows the bias for various values of K and N . In general, the bias of the modified estimator
is significantly smaller compared to the bias of the mean estimator. It should be noticed that the
bias of the mean estimator turns out to be positively valued, whereas the bias of the modified RMS
estimator has a negative sign. That, however, can not be observed from Fig. 5.5 or Fig. 5.4 due
to the absolute value operator in Eq. (5.29). For both estimators, the bias increases with increasing
number of flow encoding directions. However, in contrast to the mean estimator (5.27), the bias of
the modified estimator (5.33) decreases with increasing N .

Maximum Likelihood estimator

In this section, the ML approach is clarified for the estimation of the unknown signal parameter A
from a set of N independent magnitude PCMR data points {Mi}. The proposed technique consists
of maximizing the likelihood function of N generalized Rice distributed data points, with respect to
A. The likelihood function of N independent magnitude data points {Mi} is given by:

L({Mi}|A) =
N∏

i=1

pM (Mi|A) . (5.36)

Then the Maximum Likelihood (ML) estimate of the PCMR signal A is the global maximum of L, or
equivalently, the maximum of log(L), with respect to A:

ÂML = arg
{

max
A

(log L)
}

. (5.37)

Leaving only the terms that depend on the variable A, we have explicitly:

log(L) ∼ −N

(
K

2
− 1

)
log A− NA2

2σ2
+

N∑
i=1

log IK
2
−1

(
MiA

σ2

)
. (5.38)

It can be shown that log(L) has only one maximum for positive A values. Hence, the computational
requirements are very low. It can also be shown that the ML estimator yields the value zero whenever
Â2, given by Eq. (5.30), is negative. This observation makes the modification of Ârms, as described
by Eq. (5.33), less arbitrary.

5.3.2 Experiments and discussion

It is already clear from Fig. 5.4 and 5.5 that the accuracy of the modified RMS estimator, described
in Subsection 5.3.1, is an order of magnitude better than that of the mean estimator (5.27), though
a significant bias still remains. As to compare the modified RMS estimator with the ML estimator,
described in Subsection 5.3.1, a simulation experiment was set up. Thereby, K data points with
deterministic signal component ak were polluted with Gauss distributed zero mean noise with equal
variance, after which a magnitude data point M was computed according to Eq. (3.20). The same
procedure was repeated N times as to obtain N generalized Rice distributed magnitude data points.
The deterministic signal component A of M , given in Eq. (3.22), was then estimated, once using the
modified RMS estimator and once using the ML estimator. The data generation process and posterior
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signal estimation was repeated 105 times as a function of the SNR, after which the average value and
the 95% confidence interval was computed. Fig. 5.6 shows the signal estimation results for K = 6 and
N = 8 as a function of the SNR. When the percentage for obtaining negative Â2 values was larger than
5%, the modified RMS estimator was regarded to be inappropriate. The SNR levels for this to occur
were observed to be smaller than 1.5. For this reason, the modified RMS estimator was compared to
the ML estimator only for SNR values higher than 1.5.
From Fig. 5.6 it is clear that the ML estimator is slightly but significantly more accurate than the
modified RMS estimator. A similar behavior of the performance of the estimators was observed for all
combinations of K = 2, 4, and 6 and N = 4, 8, and 16. The results also show that the precision, i.e.,
the standard deviation, of both estimators is approximately equal. It can also be seen that at high
SNR the ML estimator cannot be distinguished from an unbiased estimator.

5.4 Combined signal and noise estimation

If non-signal regions are not available for noise variance estimation, the signal A and variance σ2 have
to be estimated simultaneously from the N available data points by maximizing the log-likelihood
function with respect to A and σ2:

{ÂML, σ̂2
ML} = arg

{
max
A,σ2

(log L)
}

. (5.39)

Although optimization of a two-dimensional function is more difficult, computational requirements
were observed to be limited since the likelihood function was observed to yield only one maximum.

5.5 Conclusions

In this chapter, the problem of signal estimation from (generalized) Rice distributed magnitude MR
data was discussed. It has been shown that the conventional estimator may not be used at low SNR
unless a large amount of data points is used, which is often not available in practice. Even at high
SNR the use of this estimator is still not recommended since it is biased.
As an alternative, the Maximum Likelihood estimator was proposed because it outperforms conven-
tional estimators with respect to accuracy. The ML estimator yields physically relevant solutions
for the whole range of SNR’s. Moreover, it was shown that, unlike the conventional estimators, the
ML estimator cannot be distinguished from an unbiased estimator at high SNR. Finally, the pro-
posed Maximum Likelihood estimation technique can be applied to a region of interest as well as on
a pixel-by-pixel basis.
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(a) High SNR

(b) Low SNR

Figure 5.2: Comparison between the conventional and the ML signal estimator for N = 16. Each
point denotes the average of 105 estimations. The true signal component is A = 100. Also the 95%
confidence interval is shown.
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(a) SNR = 10

(b) SNR = 1

Figure 5.3: Likelihood functions for high (a) and low (b) SNR with N = 16. The different curves
correspond to different realizations of the same experiment. The true value for A is 100.
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Chapter 6

Application: T1 and T2 estimation

6.1 Introduction

Estimation of relaxation parameters has been a subject of considerable interest from the early years
of MR imaging. Both the spin-lattice relaxation parameter T1 and the spin-spin-relaxation parameter
T2 give useful information about the interaction with the local environment, and play a major role in
the establishment of image contrast.
Conventional relaxation parameter estimation techniques, applied to magnitude MR images, are con-
structed from (weighted) least squares fitting procedures, which are only optimal in case of Gauss
distributed data [56]. Magnitude MR data however are Rice distributed. Recently, a paper was pub-
lished on the use of the Rice distribution in the problem of estimating T2 maps from magnitude MR
data [57]. In that paper, the problem of the data distribution was recognized, but parameter estima-
tion was still performed assuming Gauss distributed, additive noise. The authors justified the use of
least squares estimation by stating that the Rice distribution approaches a Gauss distribution at high
signal-to-noise ratio (SNR). Although this is true, a bias is introduced in the estimation procedure,
which becomes more pronounced with decreasing SNR.
In this chapter, a Maximum Likelihood (ML) estimation technique is proposed for optimal estimation
of both the spin-lattice and the spin-spin relaxation time from a set of magnitude MR images. Again,
this choice can be justified because an ML estimator is known to be consistent and asymptotically
most precise [46]. In the construction of the ML estimator, full use is made of the Rice distribution.
The validity of the proposed method is checked by simulation experiments. Finally, the method is
tested on experimental MR data.

6.2 Method

6.2.1 Magnitude data PDF

As was discussed in Chapter 3, magnitude data are known to be Rice distributed:

pM (M |f(θ)) =
M

σ2
exp

(
−M2 + f2(θ)

2σ2

)
I0

(
f(θ)M

σ2

)
. (6.1)

M denotes the pixel value of the magnitude image. Here, θ represents the parameter vector to be
estimated of which the components are generally given by the pseudo proton density ρ, the spin-
lattice or longitudinal relaxation constant T1, and the spin-spin or transversal relaxation constant T2:
θ ≡ {ρ, T1, T2}. f(θ) is a function of the parameter vector θ, which is completely determined by the
MR imaging sequence applied. For example, for measurement of T1 relaxation times, commonly a

37
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snapshot FLASH imaging sequence is applied, where the magnetization relaxation can be described
by:

fi(θ) = ρ

(
1− 2 exp

(
− ti

T1

))
, (6.2)

where fi(θ) denotes the deterministic signal component f(θ), at time ti. If the transversal magnetiza-
tion decay is mono-exponential and conventional spin-echo imaging is performed, the following model
is known to be accurate:

fi(θ) = ρ exp
(
−TEi

T2

)
, (6.3)

with TEi denoting the echo time. The shape of the Rice distribution is strongly dependent on the
signal-to-noise ratio (SNR), where the SNR is defined as the ratio f(θ)/σ. It is therefore expected
that, whenever parameter estimation techniques that were originally developed for Gauss distributed
data are applied to magnitude data, systematic errors will be introduced due to the asymmetry of the
Rice PDF, especially at low SNR.

6.2.2 Errors introduced in T1 and T2 estimation

For very high SNR, the expectation of the relaxation behavior is given by Eq. (6.3) and Eq. (6.2)
because at high SNR, the value f(θ) equals the expectation value of the (approximately Gauss dis-
tributed) magnitude data. In general however, the expectation value of the magnitude data is given
by:

E [M ] = σ

√
π

2
e−

f(θ)2

4σ2

[(
1 +

f(θ)2

2σ2

)
I0

(
f(θ)2

4σ2

)
+

f(θ)2

2σ2
I1

(
f(θ)2

4σ2

)]
. (6.4)

The deviation from f(θ) becomes more pronounced with decreasing SNR. In Fig. 6.1, the expectation
value E[M ] for T1 and T2 relaxation is shown for various levels of the SNR. The true time constants
were 100 ms and 2000 ms for T1 and T2, respectively, and 100 for the pseudo proton density ρ.

6.2.3 Maximum Likelihood estimation

In Subsection 4.2.2, the ML approach was clarified for the estimation of the unknown parameter vector
θ ≡ {ρ, T2} from a set of N independent magnitude data points {Mi}. The proposed technique consists
of maximizing for each pixel position the likelihood function of N Rice distributed data points, with
respect to θ. The likelihood function of N independent magnitude data points is given by (cfr. Eq.
(5.12)):

L({Mi}|θ) =
N∏

i=1

pM (Mi|θ) (6.5)

Eq.(6.1)
=

1
σ2N

exp

(
−

N∑
i=1

M2
i + fi (θ)

2

2σ2

)
N∏

i=1

MiI0

(
fi(θ)Mi

σ2

)
. (6.6)

Maximization of L is equivalent to maximizing log L as log is a monotonic increasing function:

log(L) = −N log σ2 −
N∑

i=1

M2
i + fi(θ)2

2σ2
+

N∑
i=1

log I0

(
fi(θ)Mi

σ2

)
+

N∑
i=1

log Mi . (6.7)

For maximization of log L, only the terms that are a function of the unknown parameter vector θ are
relevant:

log(L) ∼
N∑

i=1

[
log I0

(
fi(θ)Mi

σ2

)
− fi(θ)2

2σ2

]
. (6.8)
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Then, the ML estimate for the parameter vector θ is the global maximum of log(L), with respect to θ:

θ̂ML = arg
{

max
θ

(log L)
}

. (6.9)

At high SNR, i.e., when the Rice distribution can be well approximated by a Gauss distribution, the
likelihood function becomes:

L({Mi}|θ) =
(

1
2πσ2

)N
2

N∏
i=1

exp

(
−(Mi − fi(θ))

2

2σ2

)
. (6.10)

In that case it is well known that maximization of log L, with respect to the parameter θ, is equivalent
to minimizing the quadratic distance E given by:

E =
N∑

i=1

[Mi − fi (θ)]
2 . (6.11)

This is also generally known as least squares (LS) fitting.

6.3 Experiments and Discussion

To validate the proposed estimation method, experiments were set up using simulated as well as ex-
perimental MR data. All data processing tasks were performed on a Hewlett Packard 720 workstation.

6.3.1 Simulation experiments

To show that a bias is introduced in the estimation, whenever Gauss instead of Rice distributed data
are assumed, a simulation experiment was set up. Thereby, real valued data were corrupted with Gauss
distributed noise. Zero mean imaginary data were also polluted with Gauss distributed noise with
the same standard deviation, after which magnitude data were computed. From 16 Rice distributed
data points, obtained in this way, θ was estimated, once using the conventional least squares (LS)
fitting procedure and once using the proposed ML estimation technique. Here, θ was equal to (T1, ρ)
or (T2, ρ) whether data decayed according to Eq. (6.2) or (6.3), respectively. The estimation was
repeated 105 times for each value of the SNR, which is defined as:

SNR =
〈f(θ)〉

σ
, (6.12)

with 〈f(θ)〉 the average signal value:

〈f(θ)〉 =
1
N

N∑
i=1

fi(θ) , (6.13)

where fi(θ) is given by Eq. (6.2) or (6.3) for T1- or T2-estimation, respectively.

Fig. 6.2 shows the results for the estimation of θ ≡ {ρ, T1}. The true value for the pseudo proton
density was ρ = 100 and 2000 ms for the T1 relaxation constant. Each time, the average value was
plotted as a function of the SNR. For clarity, the 95% confidence intervals are omitted: the relative
error was of the order of 0.1% for both estimators. Fig. 6.2a and 6.2b show the results for the esti-
mation of ρ and T1, respectively. Both figures clearly demonstrate that the proposed ML technique
is more accurate compared to conventional LS estimation. At high SNR, opposed to the outcomes of
the LS estimator, no bias can be observed for the ML estimator. However, at low SNR (SNR < 5),
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the ML estimator can be seen to become biased though the bias is still significantly smaller compared
to that obtained by LS estimation.
Similar reasoning yields for simultaneous estimation of T2 and ρ. Fig. 6.3a and 6.3b show the re-
sults for the estimation of ρ and T2, respectively. The true value for the pseudo proton density was
ρ = 100, and 100 ms for the T2 relaxation constant. Also, in this case, ML estimation outperforms
LS estimation in terms of accuracy.

The shape of the likelihood function is shown in Fig. 6.4 for T1 (a) and T2 (b) estimation. It
was observed that the two-dimensional log L function has only one maximum, corresponding to the
ML estimate of ρ and T2. The general shape of the likelihood function did not change for different
values of the true ρ and T2 parameters, nor for various SNR. As a result, because of the occurrence
of only one maximum of the likelihood function, optimization becomes a very simple task: it can be
performed using standard optimization techniques with no risk of getting stuck into a local maximum.
Each ML estimate was obtained by maximization of the likelihood function using the downhill simplex
method of Nelder and Mead in two dimensions [55].

6.3.2 T1-map estimation

Apart from the simulation experiments, tests were performed on experimental MR data. All data
were generated on an MR apparatus (SMIS, Surrey, England) with a horizontal bore of 8 cm, a field
strength of 7 Tesla, and a maximal gradient strength of 0.2 Tesla/m. A T1-map was derived from a set
of in vivo images of a mouse tumour (A high resolution coronal SE MR image of the tumour is shown
in Fig. 6.5). T1 tumour maps are useful to characterize the angiogenetic phase of tumours. Angio-
genesis is the process in which blood vessels grow inside and towards the tumour. The tumour growth
strongly depends on the surrounding vascular structures, as nutrients and oxygen are extracted from
them. Hence, generation of new bloodvessels towards the tumour is essential for unlimited tumour
growth. As a result, angiogenetics is also related to the metastasis and aggressiveness of the tumour.
Various models describe the behaviour of T1 maps over a time interval of 30 minutes before and after
intravascular injection of a contrast agent, and this with respect to tumour permeability and tumour
bloodvolume, which are both angiogenesis characteristics [58, 59, 60].

A number of 16 T1-weighted in vivo images were obtained from a mouse tumour, using a snapshot
FLASH pulse sequence with the following properties: FOVx = FOVy = 20 mm, slice thickness of 2
mm, TE-flash of 2.53 ms, TR-flash of 4.84 ms, 10 dummy scans prior to acquisition. Hence, the time
between the inversion 180◦ RF pulse and the first acquisition was about 54 ms. The inversion time
(TI) per image was about 310 ms. The acquisition matrix was 128×64, which was zero-filled to obtain
128×128 images. From 16 images the T1 parameter was estimated on a pixel-by-pixel base, once using
the conventional LS method and once using the proposed ML method. The resulting T1-map obtained
using the proposed ML method is shown in Fig. 6.6a. Fig. 6.6b shows the (intensity scaled) difference
image between the map obtained from ML estimation, and the map obtained from LS estimation, as
to visualize the bias reduction. The estimated T1-values are shown for all but the background pixels.

6.3.3 T2-map estimation

T2 maps of a mouse brain were constructed in the context of studying the abnormalities in the
ventricular system of hydrocephalic mice. The T2 parameter is very sensitive to changes in water
status, as they occur in development and in response to pathology. Among others, T2 depends on the
ratio of the free-to-bound water in tissue. Changes in this ratio often occur in degeneration processes,
e.g., T2 increases due to the formation of vasogenic edema following a stroke event.
To acquire T2-weighted images, a 2D spin echo pulse sequence was used with TR = 1500 ms, FOVx =
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FOVy = 20 mm, and slice thickness 1 mm. The acquisition matrix, 256 × 128, was zero filled to
obtain a 256 × 256 image. From 6 magnitude images with echo times TEi = 20, 30, 40, 50, 60 and 80
ms, respectively, the T2 decay constant and the pseudo proton density were estimated for each pixel
position. Two T2-maps were obtained, one using the proposed ML estimation technique (shown in
Fig. 6.7a) and one using LS estimation. Also the (intensity scaled) difference image was computed. As
differences between the two maps could hardly be observed on a visual inspection, only the difference
image is shown in Fig. 6.7b.

Finally, we remark that, in this experiment, a mono-exponentially decaying model was fitted to
MR magnitude data points as to illustrate the consequences of not exploiting the proper data PDF.
Obviously, as to make the imaging model more realistic, the model can be made arbitrarily complex
by taking into account additional parameters. In that case, a higher dimensional likelihood function
needs to be maximized.

6.4 Conclusions

The use of the ML estimator is highly recommended as, compared to conventional estimators, the
results are in general superior with respect to accuracy. Finally, as the likelihood function was observed
to yield only one maximum, the computational requirements for the maximization were very low.
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Figure 6.1: Expectation values of magnitude MR signal for T1 and T2 relaxation as a function of time
for various values of the SNR.
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Figure 6.2: Simulation experiment: simultaneous ρ and T1 estimation as a function of the SNR. The
true values are ρ = 100 and T1 = 2000 ms.
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Figure 6.3: Simulation experiment: simultaneous ρ and T2 estimation from magnitude MR data as a
function of the SNR. The true values are ρ = 100 and T2 = 100 ms.
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Figure 6.5: High resolution MR image of the a mouse tumour.

(a) T1 map using ML (b) Estimation difference map

Figure 6.6: T1 maps of a mouse tumour.
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(a) T2 map using ML (b) Estimation difference map

Figure 6.7: T2 maps of the mouse brain.



Chapter 7

SNR estimation

7.1 Introduction

This chapter deals with the estimation of the image signal-to-noise ratio (SNR). Conventional estima-
tion methods are discussed and a new one is proposed.

Like the image noise variance, image SNR also provides a measure for the image quality in terms
of image details. Also, besides testing different system parameters such as main magnetic field, ho-
mogeneity or DC offset between the real and imaginary signal components, the SNR can be used to
check the performance of the MR system itself. Because the MR signal, and hence the SNR, strongly
depends on the field homogeneity, the shape of the radio frequency (RF) pulses, the stability of the
RF amplifiers, etc., estimation of the SNR is a useful tool in the analysis of the MR system. In the
following, conventional methods for SNR estimation are described and a new method is proposed [61].

7.1.1 Single image methods

To determine the image SNR, it is standard to image a phantom object with a set imaging protocol
for routine control. Protocols have been proposed by Sano [41], and Price et al. [62]. The resulting
image consists of an area of uniform signal in an area of background noise. If the signal is uncorrupted
by structured noise, the SNR is obtained by measuring the mean signal and standard deviation (char-
acterizing the random noise) from a region of interest (ROI), within the area of the test object of the
image.
If structured noise is present in the image, the noise standard deviation will be over-estimated, produc-
ing an erroneous low SNR. In addition, the above method of measuring the standard deviation in the
signal area is badly affected by signal non-uniformity and ghosting artefacts, which are often present
in MR images. This has stimulated several authors to propose others methods of noise estimation.
To avoid problems due to signal non-uniformity, several authors focussed on estimating the noise from
the background of the images. Henkelman [19, 63] briefly discussed the problems of how to obtain an
estimate of the noise from an ROI and presented the correction factor necessary if the ROI is placed
in the background. The correction factor agrees with the one derived by Edelstein et al. [64] in the
application of Rayleigh statistics to MRI. Unfortunately, this method also has many difficulties due to
the presence of ghost artefacts in the phase encoded direction. These problems make the positioning
of an ROI in the background noise crucial and require a good understanding of MRI and its artefacts.
The positioning of ROI’s within the signal and background regions was discussed in detail by Kaufman
et al. [40]. To overcome these problems, one can use multiple realizations of the same image instead
of one single image for SNR estimation. At present, these methods are generally preferred for SNR
estimation.
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7.1.2 The NEMA standard

The National Electrical Manufacturers Association (NEMA) is the largest trade association in the
United States for companies that manufacture products used in generation, transmission, distribution,
control ,and end use of electricity. NEMA is the leading developer of voluntary industry standards.
The magnetic resonance section of NEMA’s Diagnostic Imaging and Therapy Systems Division is
developing performance standards for clinical MR systems. One of NEMA’s performance standards,
developed by R. M. Sano in 1988 [41], describes an SNR measure for the combined acquisition and
reconstruction system, as used for imaging of humans:

• Acquisition: An NMR signal producing volume of a solution containing a spin density of about
20% of that of water is placed in the imaging volume. The solution must produce a coil loading
equivalent to a 70 kg to 80 kg human, with relaxation characteristics of T1 < 1200 ms and
T2 > 50 ms at operating field strength. Two identical single slice, transverse, SE, first echo
images i1 and i2 are acquired at the isocenter of the phantom object with a TR ≤ 3T1 and TE
within a clinically selectable range, a slice thickness smaller than 10 mm, and with less than 5
minutes time lapsed between the acquisitions.

• SNR estimation: The SNR is calculated by first determining the mean value of the first image:
〈i1〉. Then the second image is subtracted from the first image, pixel by pixel, and the standard
deviation σn of the resulting image is computed:

σ2
n =

1
N2 − 1

∑
~r

[i1(~r)− i2(~r)]
2 , (7.1)

where N2 denotes the total number of image pixels, and ~r is the position vector. Finally, the
SNR is the ratio of 〈i1〉 and σn, multiplied by the square root of two:

SNR =
√

2
〈i1〉
σn

. (7.2)

The factor
√

2 is required as σn is derived from the subtraction image, rather than from one
of the original images. Note that the method requires a perfect geometrical registration of the
images.

At present, this is the standard procedure for SNR estimation in diagnostic MRI.

7.2 Cross correlation method

In this section, a new technique to estimate the SNR from MR images is proposed. The image SNR
is estimated using the correlation function of two independent acquisitions of an image. To test the
performance of the estimation, theoretically expected curves are fitted to the SNR measurement data.
It is shown that the correlation technique can be implemented in a highly efficient way in almost any
acquisition procedure of an MR imaging system.
In 1971, it has been suggested by Lenz that a cross-correlation technique could be used to estimate
the SNR of band limited stochastic functions [65]. This technique has been exploited in the field of
electron microscopy [66, 67]. In this section, we introduce the correlation technique in MRI to estimate
the SNR directly from the time domain data, by cross-correlating two acquisitions of the same MR
image. The correlation technique is very useful in MRI, as MR images are acquired in the Fourier
domain. Indeed, because of the correlation theorem, it is favorable in terms of processing time to
perform a correlation of images in the Fourier domain, which makes the technique extremely suited
for implementation in a highly efficient way in many MR image acquisition procedures.
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In Subsection 7.2.1, the theory of the correlation technique is outlined. In Subsection 7.2.2, two
experiments are described in which the accuracy and precision of the SNR estimation is tested. The
results of the experiments are reported in the last section. Finally, a practical way of implementing
the SNR estimation method in an MR image acquisition procedure is proposed and discussed.

7.2.1 Theory

In this section, we outline the theory for estimation of the SNR. In the description of the method,
we assume the MR imaging process to be stationary; i.e., the statistical properties of two images,
acquired at different times, are equal [68]. We assume that an experimental MR image i, defined on
an N×N square lattice, consists of a deterministic signal s, corrupted by additive, uncorrelated noise n
with zero mean (〈n〉 = 0). The signal s includes possible blurring, caused by the system point spread
function:

i(~r) = s(~r) + n(~r) , (7.3)

where ~r denotes the image point coordinates. As a definition of the SNR, the ratio of the signal
standard deviation to the noise standard deviation is chosen:

SNR =
σs

σn
. (7.4)

The SNR, as defined above, cannot be determined exactly from one experimental acquisition only.
However, it has been shown [67] that in case of uncorrelated, additive noise, two consequent acquisitions
i1 and i2

i1(~r) = s(~r) + n1(~r) (7.5)
i2(~r) = s(~r) + n2(~r) (7.6)

can be used to estimate the SNR. The cross-correlation function (CCF) of the two images becomes:

i1 ⊗ i2 = s⊗ s + n1 ⊗ s + s⊗ n2 + n1 ⊗ n2 . (7.7)

Since the noise is uncorrelated, one has

E [n1 ⊗ s] = E [s⊗ n2] = E [n1 ⊗ n2] = 0 , (7.8)

so that
E [i1 ⊗ i2] = s⊗ s , (7.9)

i.e., the CCF of the two images is equal to the auto correlation function (ACF) of the signal. This
observation is utilized in the cross-correlation coefficient (CCC), which is defined as:

ρ(~r) =
i1(~r)⊗ i2(~r)− 〈i1〉〈i2〉

σ1σ2
, (7.10)

where 〈i1〉, 〈i2〉, σ1 and σ2 are the mean and standard deviation of the two MR images i1 and i2,
respectively. The SNR can be computed from the maximum of the CCC. When the two acquisitions
are perfectly registered (no shift of the sample has occurred) this maximum occurs in the center of
the CCC:

ρm =
〈i1i2〉 − 〈i1〉〈i2〉√[

〈i21〉 − 〈i1〉2
] [
〈i22〉 − 〈i2〉2

] (7.11)

or using Eq. (7.9):

ρm =
〈s2〉 − 〈s〉2√[

〈s2〉 − 〈s〉2 + 〈n2
1〉
] [
〈s2〉 − 〈s〉2 + 〈n2

2〉
] , (7.12)
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which finally results in the following simple expression:

ρm =
σ̂2

s

σ̂2
s + σ̂2

n

. (7.13)

From this it is easy to derive the expression for the SNR estimate:

ŜNR =
√

ρm

1− ρm
. (7.14)

Notice that the subtraction of 〈i1〉〈i2〉 in the numerator along with the denominator make the SNR
measurement insensitive for differences in scaling constants between the two MR images.

The calculation of ρm can be performed completely in the Fourier domain. Indeed, using Parseval’s
theorem, one obtains from Eq. (7.11):

ρm =
〈I1I

∗
2 〉 − I1(~0)I2(~0)√[

〈I2
1 〉 − I2

1 (~0)
] [
〈I2

2 〉 − I2
2 (~0)

] , (7.15)

where I and I∗ are the complex raw MR data and its complex conjugate, respectively. The vector ~0
represents the center of the CCC. Eq. (7.15) allows the SNR of the MR image to be calculated directly
from the raw MR data. In this way the SNR can be predicted before the Fourier transformation takes
place.

The method can be applied, provided the images are perfectly registered. If the acquisitions
are not perfectly registered, the maximum of the CCF will in general decrease, which leads to an
underestimation of the SNR. However, the CCF maximum will not be affected if the images differ
from a uniform translational shift and hence the SNR estimation is still valid. Uniform geometrical
registration can easily be performed by examining the position of the CCF maximum. In this way
sub-pixel registration can even be achieved by for example bilinear interpolation.

7.2.2 Experiment

MR images were obtained on either an Oxford Biospec imaging system with a horizontal bore of 26.5
cm, a magnetic field strength of 1.9 Tesla, and a maximal gradient strength of 0.01 Tesla/m or on
a SMIS MRI apparatus with a horizontal bore of 8 cm, a field strength of 7 Tesla and a maximal
gradient strength of 0.2 Tesla/m. A spin-echo (SE) pulse sequence was used with TR = 1 s and
TE = 24 ms. Test images were acquired at room temperature from a phantom object (a water filled
rod) using a birdcage RF coil. The in-plane spatial resolution was 60 µm in both directions and the
slice thickness was 1 mm. The following set of experiments were set up to test the performance of the
SNR estimation of the correlation technique. For implementation of the outlined technique, a routine
was developed, based on Eq. (7.14) and Eq. (7.15).

The validity of the SNR estimation was tested by averaging N identical MR acquisitions of the
phantom object and checking the expected linear behavior of SNR2 with respect to N. A first image of
the phantom object was obtained after averaging N equal acquisitions. A second image was acquired
with the same imaging parameters within a time lapse of 5 minutes. From the two resulting images,
the SNR was calculated using Eq. (7.14) and Eq. (7.15). This procedure was repeated for different
values of N.
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Figure 7.1: SNR2 as a function of N, the number of acquisitions.

Furthermore, the accuracy of the SNR estimation was tested. This was done by determining the
spin-lattice relaxation time T1 of free water from two independent experiments: firstly from the course
of the power spectrum height as a function of the Inversion Time (TI) and secondly directly from the
phantom image SNR, calculated with the cross correlation method, described above. In this way, a
possible bias in the SNR estimation could be detected.
In the first experiment, the exponential saturation of the signal was measured using an Inversion
Recovery pulse sequence. Afterwards, the T1 relaxation time was estimated by fitting the function

SNR ∼ ρ(1− 2e−TI/T1) (7.16)

to the data, where ρ is the pseudo proton density of free water.
In the second experiment, the SNR was estimated of 30 images of the same phantom object, which
were taken with incrementally larger TI values. A fast imaging sequence (snapshot FLASH) was used
for this experiment. To minimize the influence of the spin-spin-relaxation (T2), the smallest possible
echo time TE = 1.7 ms was chosen. Because only the signal standard deviation of the acquired images
changes with TI, the SNR data are expected to follow Eq. (7.16). From these data, the T1 parameter
could again be estimated. In both experiments, the theoretical curve [see Eq. (7.16)] was fitted to the
data, using a two-parameter least squares fit.

7.3 Results and discussion

The precision of the image SNR estimate will be a complex function of the deterministic signal compo-
nents of the image pixels, the number of pixels and the image noise variance. In general however, the
SNR will improve linearly with the square root of the number of acquisitions, as can also be observed
from Fig. 7.1. From independent SNR measurements of 50 acquisitions of the same image, the relative
error of the SNR value for a 256×256 image was found to be within 2%. Here, the relative error is
defined as the standard deviation of the SNR divided by the mean SNR. It is clear that the outlined
method to estimate the SNR will even be much more precise for 3D images.

Fig. 7.2(a) shows the amplitude of the FID-signal as a function of TI. The data fitting to the
theoretical curve of Eq. (7.16) reveals a T1 value of (2800 ± 110) ms. This value is confirmed from
the SNR measurements of images, which were taken with incrementally larger TI values. Also from
Fig. 7.2(b) an exponential saturation of the SNR can be observed. The data fitting reveals a T1

relaxation time of (2880±90) ms. The observation that the T1 values, obtained from two independent
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(a) Measurements of the FID amplitude as a function of TI

(b) SNR measurements from T1 weighted images as a function of TI

Figure 7.2: Test of the cross-correlation SNR measurement: the T1 relaxation parameter is estimated
from FID amplitude measurements and from image SNR measurements.

experiments, are equal, indicates that there is no bias in the estimation of the SNR.

Finally, the use of the SNR estimation technique is suggested as an on-line evaluation of the
image quality in terms of random noise. The next strategy could be followed during a Magnetic
Resonance Imaging procedure. Instead of averaging directly multiple acquisitions to increase the
SNR, the acquisitions are stored in two equal sets on the disk and are averaged separately. Each time
a new pair of acquisitions is obtained, the SNR of the two sets averaged so far, is measured. At the
end, the two sets can be combined again for additional improvement of the SNR. It must be stressed
that the proposed SNR estimation technique is independent of the way K-space was sampled during
the acquisition, i.e., independent of the pulse sequence, field-of-view, number of phase encode steps,
etc. As a consequence, the described techniques can be implemented in any pulse sequence.



Chapter 8

SNR Improvement

8.1 Introduction

In this chapter, methods to improve the image signal-to-noise ratio (SNR) are discussed. The image
SNR can be improved by either time or spatial averaging. The main goal is to increase the SNR, while
leaving the spatial resolution intact.

The most common noise reduction technique is time averaging. It has the major advantage that
SNR is increased while the spatial resolution remains intact, provided the imaging process is stationary.
While this approach is quite time consuming and hence almost impossible in case of conventional 3D
MR imaging, time averaging is usually replaced by spatial averaging. Wang and Lei [21] justified
the heuristics that an MR image can be regarded as consisting of many regions in which the signal
is stationary, has a Gauss probability density function (at high SNR) and is ergodic in the mean
and variance. The mean ergodic property justifies the use of spatial averaging, within those regions,
to estimate the pixel expectation value. The main problem is to find these stationary regions. In
conventional lowpass filtering [69, 70], these filters act in the Fourier space, where all local spatial
coherence is lost. As a consequence, although SNR increases significantly and is able to reduce Gibbs
ringing artifacts, spatial resolution is severely degraded [71]. Recently, wavelet analysis [72] was
proposed to overcome this and is quite effective in noise reduction and edge enhancement. However,
the reported findings also indicate that some local edge artifacts are introduced [73].
The problem of finding the proper area for spatial averaging is partly solved by the so-called sigma
filters [74], where spatial averaging is halted, as soon as strong image gradients are detected [75].
A more elaborated approach can be found in the work of Perona et al. [76], who developed an
anisotropic diffusion scheme for image data, where the diffusion and flow functions are guided by
local gradient strengths in different directions. The properties of Perona’s filter are: 1) efficient noise
removal in homogeneous regions 2) preservation of object boundaries and 3) edge sharpening. This
filtering technique was successfully applied to 2D and 3D MR data by Gerig et al. [32]. Although
the performance of the noise filter is excellent, the underlying image model is piecewise constant or
slowly varying. As a result, the edge sharpening causes a region with a constant greyvalue slope to
be broken up in constant plateaus. The edge sharpening property is not retained in the approach of
Yang et al. [31]. In his paper, he also proposed a more robust way of measuring the anisotropy of the
local structure [77]. In Subsection 8.3.2, this anisotropic diffusion filter is discussed. It will play an
important role in the segmentation scheme, described in Chapter 9.
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8.2 Time averaging

If one wishes to improve the image quality, one could start by improving the SNR of the FID’s. An
obvious way to achieve this is by signal averaging. Averaging FID’s is shown to improve the SNR in
proportion to the square root of the number of FID’s averaged. An averaged FID Sa(~k) from Nav

independent signal realizations Si(~k) is defined by:

Sa(~k) =
1

Nav

Nav∑
i=1

Si(~k) , (8.1)

where ~k denotes the raw data point in K-space. If the noise is assumed to be uncorrelated, having
variance σ2

i , the variance of Sa(~k) can be shown to be

σ2
a(~k) =

1
N2

av

Nav∑
i=1

σ2
i (~k) . (8.2)

If the noise variance in each data point is additionally assumed to be equal, i.e., σ2
i (~k) = σ2

n, Eq. (8.2)
becomes:

σ2
a =

1
Nav

σ2
n . (8.3)

Hence, as previously discussed, the SNR improvement by time averaging can be seen to be a factor of
N

1/2
av :

SNRa(~k) =
√

NavSNRi(~k) . (8.4)

It must be kept in mind that time averaging reduces only the contributions of random noise. Structured
noise was not incorporated, which is in practice always present in MR images. For this reason, the
image quality in an MR image cannot be increased indefinitely by time averaging [78]. As one continues
increasing the number of averages, one ultimately reaches a region where the noise in the images is not
due to random uncorrelated noise, but results from other systematic errors, which manifest themselves
as correlated noise. The limitation of SNR improvement by averaging is similar to the case of photon
imaging, where one encounters photon and detector noise. By increasing the dose (e.g., X-ray CT)
the photon noise may be made arbitrarily small through integration but ultimately one asymptotically
approaches a region where the images are dominated by detector noise rather than the photon noise
(such as non-uniformity in a gamma camera).
Beside limits to SNR improvement by time averaging, due to structural noise, a more important aspect
arises, which is the time constraint. A large number of averages is in practice not achievable, since it
would require an unreasonable amount of time to gather the data. Because of this time constraint,
one is normally limited to work with a small number of averages, such that the SNR response to the
square root of the number of averages is linear.

8.3 Spatial averaging

8.3.1 Cross correlation

In Section 7.2, we saw that the cross correlation function (CCF) of two acquisitions of the same MR
image reduces to the auto-correlation function (ACF) of the noiseless image. This property can also
be exploited to improve the SNR. Indeed, the Fourier spectrum of the CCF leads to an estimate of
the deterministic signal power spectrum |S(~k)|2 with

∣∣∣S(~k)
∣∣∣2 =

I1(~k)I∗2 (~k) + I2(~k)I∗1 (~k)
2

. (8.5)
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If the acquisitions I1 and I2 would not be corrupted by noise, the power spectrum would be positive
everywhere. However, due to the noise, some points in the estimated spectrum may become negative.
Because of the a priori information that the power spectrum should be positive everywhere, these pixel
values are forced to zero. From Eq. (8.5), an estimate for the complex signal spectrum is derived:

S̃F (~k) =
√∣∣∣S(~k)

∣∣∣2ejΦ(~k) , (8.6)

where Φ is the phase of the averaged complex image I1+I2
2 .

As was pointed out by Bonnet [79], another estimate of the signal spectrum is given by:

S̃W (~k) =

∣∣∣S(~k)
∣∣∣2∣∣∣I(~k)
∣∣∣ ejΦ(~k) , (8.7)

which is obtained by using a Wiener filter, combined with the correlation procedure. This estimate
leads to the best result in a least squares sense. Hence, this filter is especially recommended for images,
corrupted by Gauss distributed noise. Like the SNR estimation method using cross correlation, SNR
improvement using cross correlation will not be affected by a uniform translational shift between the
two realizations.

Materials and methods

The SNR improvement was in a first phase tested by simulation experiments. Thereby, an image was
constructed, consisting of a number of Gauss functions with arbitrary width and position. Of that
image 8 copies were made, after which each image was independently corrupted with Gauss distributed
noise. Next, SNR improvement was accomplished in three ways:

• Two of the 8 images were averaged on a pixel-by-pixel base (time averaging). The same was
done for another pair of images. Of the resulting 2 images, the SNR was computed using Eq.
(7.14) and Eq. (7.15).

• Next, the SNR of the time-averaged images was additionally improved by averaging 2 neighboring
pixels, as to obtain an additional SNR improvement of a factor

√
2. Again, from the two resulting

images the SNR was estimated.

• Finally, the SNR improvement was estimated after independent cross-correlation of another two
pairs of images.

The same simulation experiment was repeated 100 times as to obtain accurate estimations of the
variances of the SNR measurements.
The loss of resolution, which is an expected side effect of improving the SNR with any noise filter,
was estimated by tracing the K-space position, where the signal spectrum disappeared in the noise
spectrum: this point is referred to as the resolution limit. The resolution limits of the time averaged
images (0% loss of resolution) and the time+spatial averaged images (50% loss of resolution) were
used as reference resolution criteria. From these two resolution limits, the resolution limit for the
cross-correlation methods was deduced.
It must be stressed that the resolution criterion used here is a global image resolution measure, which
is easy to use. However, a much more powerful approach to describe resolution is based on the es-
timation of parameters that describe the imaging (and hence image-) model. Thereby, resolution is
described in terms of the precision with which model parameters can be estimated. For an excellent
treatment of model based resolution, it is referred to the Ph.D. thesis of A.J. den Dekker [80].
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Next to the simulation experiment, MR images were acquired in the same way as was described
in the first paragraph of Subsection 7.2.2. The applicability to enhance the SNR of MR images of
realistic objects was tested in the following experiment. Four independent acquisitions of the same
MR image of a cucumber were acquired (TR = 1s ; TE = 30ms) with an in-plane resolution of 0.4
mm and slice thickness of 2 mm. The signal spectrum was estimated via two by two cross-correlation
of the images using Eq. (8.5), after which the SNR was calculated from the two final images. Again,
the results were compared with the averaging procedures, described in the previous paragraph.

In addition to the SNR measurement of the filtered images, the contrast-to-noise ratio (CNR) for
two distinct regions in the image is computed because this parameter is a better description of the
visual perception. The CNR is defined as:

CNR =
〈sa〉 − 〈sb〉

σn
, (8.8)

where 〈sa〉 and 〈sb〉 denote the mean signal of region a and b, respectively. The noise standard deviation
can easily be found from Eq. (7.9):

σ2
n =

[
i1 ⊗ i1 + i2 ⊗ i2

2
− i1 ⊗ i2

]
max

. (8.9)

The CNR is expected to increase with the same factor as the SNR, as the improvement is based on
the decrease of the noise power with only minor signal modifications. To test this hypothesis, two
homogeneous regions, the seeds and the pulp, were selected from the cucumber image, after which the
CNR was calculated for different filtered images, thereby using the same regions of interest.

Results and discussion

The results of the simulation experiment are shown in Table 8.1. The gain in SNR and CNR, along
with the estimated loss of resolution, are shown for an original, noisy image, for the time average of
two acquisitions, for images processed with the proposed correlation techniques, and for a the time
averaged image with additional 2 × 1 spatial filtering. As is expected, the SNR improvement due to
time averaging is indeed the square root of the number of averages (here

√
2), with no loss of resolu-

tion. After additional 2 × 1 spatial averaging (latter filter), the SNR improvement, compared to the
time averaging, was

√
2, as is also expected.

The SNR improvement by cross-correlation, using Eq. (8.6) or Eq. (8.7), was observed to be a factor
of 2.15 and 1.93, respectively.
Resolution loss of the original, noisy image was defined to be 0%. The loss of resolution due to the
spatial averaging was used as a second reference resolution measure: it was defined to be 50%. Al-
though the cross correlation methods revealed an SNR improvement of about a factor of 2, spatial
resolution was better retained as can be observed from Table 8.1.

For the SNR improvements on MR images, we have also observed that, using the correlation
method, the SNR improves with almost a factor of 2. The SNR of the unprocessed images was 3.24.
Fig. 8.1(a) shows one of the four acquisitions of the original image. Fig. 8.1(b) is the average of the
two acquisitions with SNR = 4.57. The results after improvement using Eq. (8.6) and Eq. (8.7), are
displayed in Fig. 8.1(c) and 8.1(d), respectively. The SNR is 5.57 and 6.03, respectively. When using
Eq. (8.6) and Eq. (8.7), the upper limit of the gain in SNR is determined by the noise on the Fourier
phase, as the phase is obtained from a simple average of the two input images. Hence the phase image
is necessarily polluted by noise. Till now we did not find a better way to reduce the noise contributions
in the Fourier phase image.
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As can be observed from the images in Fig. 8.1, the correlation method improves the SNR but, simul-
taneously, slightly decreases the image resolution. This blurring effect occurs with all noise-reducing
techniques. In this procedure, it is probably caused by forcing the negative values of the estimated
signal power spectrum to zero.

Finally, it is noted that SNR improvement by cross-correlation is independent of the way images
were acquired in K-space. As a consequence, the described technique can efficiently be implemented
in any pulse sequence. The computational requirements are limited.

SNR RESOLUTION LOSS (%)
Original image 1.232± 0.005 0
Time averaged 1.744± 0.006 0

Correlated 2.370± 0.010 24± 1
Wiener correlated 2.644± 0.011 26± 1

Time + spatial averaged 2.456± 0.008 50

Table 8.1: SNR and resolution measures for an original, unprocessed image, a pixel-by-pixel average
of two acquisitions (time average), a correlated image, a Wiener-correlated image, and a 2× 1 spatial
average of the time averaged image.

SNR CNR
Original image 3.24 2.93
Time averaged 4.57 4.16

Correlated 5.57 5.04
Wiener Correlated 6.03 5.55

Time + spatial averaged 6.41 5.78

Table 8.2: SNR and CNR measures for an original image, a pixel-by-pixel average of two acquisitions
(time average), a correlated image, a Wiener-correlated image, and a 2× 1 spatial average of the time
averaged image.

8.3.2 Anisotropic adaptive diffusion filter

As we saw in the previous sections, improvement of the SNR seems to be an inevitable trade off
between increasing the acquisition time (time averaging) and decreasing the spatial resolution (spatial
averaging). In this section, the adaptive anisotropic diffusion filter is discussed, which is able to increase
the image SNR significantly while leaving the spatial resolution almost intact. In the following, we
review the adaptive anisotropic diffusion filter and present an extension to 3D.
Suppose f(~r) is a 3D image, where ~r = (x1, x2, x3) is a three-dimensional position vector. The filtering
process consists of convolving f(~r) with a Gauss kernel h(~r) of which the shape is pointwise adapted
to the local structure within a neighbourhood Ω. De resulting filtered function g(~r) can be written as
follows:

g(~r0) =

∫∫
Ω

∫
h(~r0 − ~r)f(~r)d~r∫∫

Ω

∫
h(~r0 − ~r)d~r

, (8.10)

where

h(~r − ~r0) = exp

[
−1

2

3∑
i=1

((~r − ~r0) .~ni)
2

σ2
i (~r0)

]
. (8.11)
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(a) Original (b) Time averaged (c) Correlation technique

(d) Modified Wiener approach

Figure 8.1: Perceptual comparison of SNR improvements.
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In Eq. (8.11), the vectors ~n are the eigenvectors of the 3×3 second moment matrix R of the Fourier
spectrum |F (u)|2. The coefficients of R can as well be calculated in the spatial domain:

Rij =
∫ ∫

Ω

∫
uiuj |F (u1, u2, u3)|2du1du2du3 (8.12)

=
1

(2π)3

∫ ∫
Ω

∫ (
∂f

∂xi

)(
∂f

∂xj

)
dx1dx2dx3 , (8.13)

where i, j = 1, 2, 3. R is positive semi-definite and Hermitian, hence having only positive eigenvalues.
The direction of the eigenvector ~n1, corresponding to the smallest eigenvalue, say λ1, determines the
main direction of the pattern in the neighbourhood Ω of the spatial domain. Alternatively, the three
eigenvalues λ1, λ2, and λ3, with λ1 ≤ λ2 ≤ λ3, determine the relative orientation of the pattern in the
respective directions.
The shape of the kernel h [see Eq. (8.11)] is controlled by the standard deviations σ1, σ2 and σ3,
which are functions of the local gradient strength in the respective directions. From the eigenvalues,
anisotropy measures are derived, which are used to design the standard deviations:

a12 =
λ2 − λ1∑

i
λi

and a13 =
λ3 − λ1∑

i
λi

. (8.14)

The standard deviations should be large along the main direction(s) of the pattern, such that the data
are only smoothed in homogeneous regions and along instead of across edge surfaces.
In addition, corners should be preserved during filtering. A corner is identified as a condition, where
the pattern is relative isotropic (a12 ≈ 0 ; a13 ≈ 0), while the local gradient strength |∇f(~r)|2 is large.
Therefore, a spatial dependent corner strength C is defined as:

C(~r) = (1− a12 − a13)|∇f(~r)|2 . (8.15)

From Eq. (8.14) and Eq. (8.15), the standard deviations are designed as follows:

σ1(~r) =
σ

1 + C(~r)
σ2(~r) =

σ(1− 2a12)
1 + C(~r)

σ3(~r) =
σ(1− a12 − a13)

1 + C(~r)
, (8.16)

where σ stands for the standard deviation of the image noise. As we saw in Chapter 4, σ can be
estimated directly from a large, uniform signal region as the standard deviation of the voxel values in
that region [40]. The simplest way, however, is by estimating the noise from signal amplitude values
of non-signal regions [40], as these are often easier to find than large homogeneous signal regions.
The noise standard deviation is then given by 1.53 times the measured standard deviation of the
background voxel values. The multiplication constant results from the fact that background noise
obeys a Rayleigh distribution [19, 49]. We used the background for noise estimation.
The effect of the adaptive anisotropic diffusion filter can be appreciated from Fig. (8.2), where the filter
was applied to the cucumber image described in the previous section. Although it is acknowledged
that the SNR improvement strongly depends on the image content, the SNR of this example was 2.4,
while the general resolution loss as was defined above was observed to be 8 %.

In the next chapter, a segmentation scheme will be discussed, where the anisotropic adaptive
diffusion filter, described here, is first applied to the image data. After the filtering process, the
gradient magnitude image is calculated for the next phase in the segmentation procedure. In order
to save computation time, one could argue that, instead of filtering and afterwards edge detecting, it
would be more sensible to construct a robust edge detector. This however is not true. The gain in
SNR, when filtering the original data, is due to spatial averaging in all directions. On the other hand,
only the response of an edge detector in the direction corresponding to a strong gradient, increases
the SNR. The response of the edge detector in the other directions does not increase the SNR; it even
may lower the SNR.
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(a) Original (b) Adaptive anisotropic diffusion fil-
ter

Figure 8.2: Diffusion filter: perceptual comparison of the SNR improvement.

8.4 Conclusions

Commonly, the image SNR is improved by time integration of raw MR data. For a stationary imaging
process, the SNR improves with the square root of the number of signal averages, without loss of
resolution. However, as acquisition time is limited, one is forced to apply noise filtering techniques
based on spatial averaging, which often goes along with loss of spatial resolution. In this chapter,
a method was proposed to improve the SNR, based on cross-correlation, which can be efficiently
implemented in most MR imaging sequences. The method was shown to improve the SNR with only a
minor expense of spatial resolution. Furthermore, it was demonstrated that the anisotropic adaptive
diffusion filter is capable of increasing the image SNR significantly while retaining the image details as
good as possible. A disadvantage of the latter filter, however, is the high computational requirements.
Finally, it need to be remarked that the anisotropic adaptive diffusion filter was originally constructed
for Gauss distributed data. Hence, the filter should only be applied to magnitude MR data when the
image SNR is high. Future work will focus on the construction of a similar filter for Rice distributed
data.



Chapter 9

3D Image Segmentation

9.1 Introduction

In many image processing tasks, segmentation is an important step toward the analysis phase. It al-
lows quantification and visualization of the objects of interest. Recently, image segmentation methods
were extensively reviewed by Clarke et al. [81]. They concluded that segmentation of medical images
is still a difficult task and fully automatic segmentation procedures are far from satisfying in many
realistic situations. Merely when the intensity or structure of the object differs significantly from the
surroundings, segmentation is obvious. In all other situations, manual tracing of the object bound-
aries by an expert seems to be the only ”valid truth”, but it’s undoubtedly a very time-consuming task.

On MR data, fully automatic image segmentation techniques have been developed, which can be
subdivided in two major classes: gray scale single image segmentation and multispectral segmentation.
Regarding the first class, the most intuitive approach is the threshold-based segmentation method,
where the threshold is chosen globally [82, 83] or locally [84]. The method is restricted to relative
simple structures and is hindered by variability of anatomical structures as well as image artefacts.
Other approaches make use of edge detection for image segmentation [85, 86]. These, however, suf-
fer from over- or undersegmentation, induced by improper threshold selection [87]. In addition, the
edges found are usually not closed, such that edge linking techniques are further required. Concerning
the multispectral class, segmentation techniques using clustering techniques like k-means clustering
[88, 89], adaptive hierarchical clustering [90, 91], etc., are applied [92]. Like all unsupervised segmen-
tation techniques, multispectral data analysis is fully automatic and superior in reproducibility, but
it can only be exploited when the MR characteristics of the object of interest differ significantly from
those of the surrounding structures.
On the other hand, results of supervised segmentation are less reproducible, but the segmentation
process can be controlled by the operator. We choose for a semiautomatic single image segmentation
procedure for 3D MR images in which user interaction is allowed to control the segmentation process
and in which data are preprocessed as far as possible, such that the posterior user-interaction time is
strongly reduced [93].

The first preprocessing step concerns the reduction of random noise, as segmentation results are
usually highly dependent on image noise. This is because noise tends to dislocate edges and hampers
the detection of fine image detail. In this chapter, we demonstrate the effect of random noise reduc-
tion. Among the vast amounts of noise filtering schemes already available in the literature, we choose
for the filter that best serves the posterior segmentation method: the adaptive anisotropic diffusion
filter, which was described in Subsection 8.3.2. In that section, it was shown that the filter is able
to smooth out homogeneous regions while retaining the edge information in an anisotropic manner,

62



CHAPTER 9. 3D IMAGE SEGMENTATION 63

which is indispensable for accurate image segmentation. The diffusion filter is applied to combat over-
segmentation of the data. In Section 9.3, the influence of this filter on the final segmentation results
will be demonstrated.

The actual segmentation technique starts with a subdivision of the data in basic volume elements,
called catchment basins, by application of a watershed algorithm to the gradient magnitude of the
original 3D data set. Among several existing algorithms, the immersion-based approach of Vincent
and Soilles [94] was selected because of its accuracy and speed of computation [95]. The technique is
based on the assumption that image contours correspond to the crest lines of the gradient magnitude
image, which can be detected via watershed tracing. The output of the watershed algorithm is a parti-
tioning of the input data in volume regions of which the interior does not contain any sharp gray value
transitions. Without preprocessing of the data, the algorithm leads inevitably to an oversegmentation
of the data, as all the crest lines of the data set are detected. Therefore, the adaptive anisotropic filter
[31], mentioned above, is a priori applied to the image data.

Afterwards, oversegmentation is additionally reduced by merging basic volume elements. A 2D
merging scheme was suggested by Maes et al. [96], who used the Minimum Description Length Prin-
ciple [97, 98, 99] to deal with the oversegmented output of the watershed algorithm. Thereby, the
description length, i.e., the number of bits to encode each region primitive, was calculated. For encod-
ing of the interior region an entropy criterion was applied, while the boundary was encoded by chain
coding. Regions are merged when the total description length gain is positive. However, problems arise
because not all regions can be chain coded uniquely. Moreover, extension to 3D using this criterion is
not possible, as the boundary surface cannot uniquely be determined in the same way as was done in
2D. Also, for calculation of the entropy, the probability density function of the basic volume element is
required. Thereby, the unknown distribution is usually estimated by convolving the original histogram
with a Gaussian Parzen window [100]. However, because of the high number of basic volume elements,
the convolution with each histogram would severely slow down the merging process.

In this chapter, an alternative merging scheme is proposed, based on hypothesis testing, which is
not dimension restricted and computationally far less complex. Thereby, small volume primitives are
merged with the most similar neighbouring region. In this way, the number of basic volume elements is
significantly reduced, such that user interaction time during the posterior semiautomatic segmentation
is strongly minimized.
All preprocessing steps are fully automatic. The final extraction of the object of interest takes place in
the last part. The first slice is manually segmented, after which all subsequent slices are automatically
segmented. Each segmentation result is contingently manually corrected by the user.

The accuracy of the presented volume quantization method is in a first phase tested on phantom
objects with known volumes. In addition, the segmentation technique is applied to 3D MR data of
the mouse head. It has been reported that the vermis of the cerebellum is smaller in human fragile
X 1 patients than in controls [101]. Similar observations were made on patients with autism from 2D
Magnetic Resonance scans [102] and on mice with the fragile X syndrome from 2D micrographs of
histologic slices [103]. The authors reported volume measurements, obtained from invasive techniques
(slicing of the fixated mouse head), where errors of more than 10% are common. 3D MR imaging
and processing enable the study of physiological structures without destroying the object. The 3D
information, present in the MR data, can fully be exploited for image processing and analysis. In
addition, the nondestructive character of MR imaging allows in vivo study of the object of interest and

1The fragile X syndrome is caused by mutations in the fragile X gene FMR1. It’s the most common cause of
developmental disability.
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hence allows the study of time-dependent processes. As an application, the volume of both cerebellum
and the total mouse brains is computed from the segmentation output. Finally, 3D reconstructions
from the segmentation results are shown.

9.2 3D semi-interactive segmentation

The actual semiautomatic segmentation procedure for 3D MR images consists of three parts:

• application of a 3D analogy of Vincent and Soille’s watershed algorithm,

• reduction of the oversegmentation by application of a 3D adaptive anisotropic diffusion filter
prior to the 3D watershed algorithm. Afterwards, selectively merging neighbouring catchment
basins,

• interactive segmentation.

The first two steps are fully automatic. Some user interaction is required in the last part but the
preceding ones will be shown to reduce this to a minimum.

9.2.1 Immersion-based watershed algorithm

In the first part, the watersheds of the gradient magnitude of the MR data are calculated. By that,
the gradient magnitude image is considered as a topographic relief, where the brightness value of each
voxel corresponds to a physical elevation. An efficient and accurate watershed algorithm was developed
by Vincent and Soille [94] who proposed an immersion based approach to calculate the watersheds.
The operation of their technique can simply be described by figuring that holes are pierced in each
local minimum of the topographic relief. In the sequel, the surface is slowly immersed into a ’lake’, by
that filling all the catchment basins, starting from the basin that is associated to the global minimum.
As soon as two catchment basins tend to merge, a dam is built. The procedure results in a partitioning
of the image in many catchment basins, of which the borders define the watersheds.

Of all watershed transforms, the immersion technique was shown to be the most efficient one in
terms of edge detection accuracy and processing time [95]. For 3D implementation of the algorithm, it
is assumed that the crest surfaces of the gradient magnitude of the 4D topographic relief correspond
to structure surfaces of the original 3D data. We implemented dynamic linked lists to reduce memory
requirements. Also, a 26 connected (cubic) neighbourhood was used, which allows the water to flow
in all directions. A 6 connected neighbourhood, i.e., only the first order neighbours, could have been
implemented instead to save computation time, but this goes along with a stronger oversegmentation
and loss of watershed detection accuracy.

9.2.2 Reduction of oversegmentation

A severe drawback to the calculation of watershed images is oversegmentation. Relevant object con-
tours are lost in a sea of irrelevant ones. This is partly caused by random noise, inherent to MR data,
which gives rise to additional local minima, such that many catchment basins are further subdivided.
If, however, an anisotropic diffusion filter, described in Subsection 8.3.2, is first applied to the original
data, this oversegmentation can already significantly be reduced.
In a next step, the partitioning is additionally diminished by properly merging catchment basins. This
is done by iteratively merging neighbouring regions that have similar gray level distributions. The
merging criterion is inspired from hypothesis testing, where it is assumed that the population means
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(a) mosaic image (b) region graph

Figure 9.1: Use of a region graph for merging

are equal. Basic volume elements are assumed to be characterized by a Gauss distribution. For small
sample size (n < 30) a Student’s T test is most suited. The applied statistic is then given by:

T =
µ1 − µ2

σ
√

1
n1

+ 1
n2

, where σ =

√
n1S2

1 + n2S2
2

n1 + n2 − 2
. (9.1)

The variable T obeys a Student’s T distribution with n1 + n2 − 2 degrees of freedom, n1 and n2

denoting the number of pixels within the two populations. µ1, µ2 and S1, S2 are the estimated pop-
ulation means and standard deviations, respectively. Obviously, the smaller the T value, the similar
the distributions are.

The merging process proceeds as follows. The 3D MR data set is characterized by an array of
structures, where each structure describes one single basic volume element. The data of a structure
contain the following information: the number of voxels, the voxel coordinates, the estimated mean
gray value and standard deviation, and an array containing the labels of the neighbouring regions along
with the corresponding value of the T statistic. A region graph was implemented for computational
efficiency (see Fig. 9.1). The merging process starts by joining the smallest volume element with the
most similar neighbouring region; i.e., the region that yields the smallest T value. During merging,
all structure information of the two regions is combined and updated. Hereafter, the merging process
is continued by again merging the smallest region with one of its neighbours. From our experimental
observations, merging of more than about half of the original number of regions was found to degrade
the posterior segmentation results too much in the sense that regions on the border of the cerebellum
(object to be segmented) started to merge with neighbouring regions from the surroundings. Therefore,
the merging process was stopped when half of the original number of regions was merged. This criterion
to stop the merging process depends however on the complexity of the segmentation task. In general,
the stronger the edges surrounding the object to be segmented, the more regions that may be merged.
Reduction of the number of small regions significantly favors the posterior interactive segmentation
task, as will be elucidated below.
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9.2.3 Interactive segmentation

In the third part, the actual object segmentation takes place. Subsequent 2D slices from the 3D data
set are presented to the user. For each slice, we keep track of the basic volume elements that intersect
the corresponding slice of the merged data. These volume elements are not visible to the user. The
first slice is quickly segmented by manually activating the volume regions that belong to the object
of interest, through simple mouse clicking. This is done by drawing a contour around the region of
interest, after which all interior regions are activated. All subsequent slices are consequently segmented
as follows: The ’core’ area of the previous slice (slice A), i.e., the area constituted of all previously
activated regions, except those lying at the border, is projected onto the next slice (slice B). All volume
elements of slice B that intersect with this core area, are automatically activated. Only the volume
elements at the border of the core area of slice B are evaluated for activation. Volume elements at
the border are automatically activated if a ’major part’ is still contained in the segmentation result
of slice A. The term ’major part’ depends on the local deformation from one slice to another. If no
deformation is observed ’major part’ is more than 50%. This percentage is made dependent on the
local size change (growing or shrinking) and can range from 0% till 100%. Remark that automatic
volume selection in this way does not require the object to be convex. The user contingently manually
corrects the result of the automatic segmentation.
The adaptation from one slice to the next one is fully automatic when the local deformation is smaller
than the average size of the basic volume elements. For this reason the merging process was designed
to iteratively merge only the smallest regions. In this way, user interaction is minimal, mainly due to
the efficient use of the 3D information.

9.3 Experiments and discussion

9.3.1 Materials

All data were generated on an MR apparatus (SMIS, Surrey, England) with a horizontal bore of 8
cm, a field strength of 7 Tesla and a maximal gradient strength of 0.2 Tesla/m. In all experiments a
birdcage RF coil with a diameter of 32 mm was used. For each experiment a 3D spin echo (SE) pulse
sequence was used (TE = 56 ms; TR = 1500 ms) with FOVx = FOVy = 20 mm and FOVz = 22 mm.
The dimensions of the acquisition matrix were 256 × 128 × 128, which was zero-filled to obtain an
image matrix of 256× 256× 256. The spatial resolution was Rx = Ry = 78 µm and Rz = 86 µm. For
image processing a matrix of 120× 220× 150 was chosen as a region of interest. All image processing
was performed on an HP 720 workstation.

9.3.2 Phantom object data

After careful gradient calibrations, the proposed segmentation technique for volume quantization was
in a first phase checked on images obtained from water filled phantom objects. Although segmentation
in this case is obvious, this test was performed to reveal possible biases in the volume quantization.
The object volumes were chosen in the range of mouse brain volume: 156, 316, 459 and 756 mm3.
Each phantom volume was quantized three times: the 3D data were presented to the user by slicing
in the x-, y-, and z-direction.
Table 9.1 shows the true volumes of the phantom objects, along with the measured volumes. The mea-
sured volumes reveal a systematic quantization error of about 2%, while reproducibility tests revealed
an intrinsic segmentation error of less than 1%, which indicates that the limiting factor in the volume
quantization accuracy is due to the limited accuracy of the gradient calibration. As segmentation of
our phantom object was a very simple problem, it is believed that the segmentation procedure itself
was extremely accurate. Furthermore, segmentation results of the phantom objects were statistically
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tested on their independence of slice direction. Thereby, ANOVA (analysis of variance) was applied
to the segmentation results. It was found that the null hypothesis of equal volume means (between
and within the slice directions) could not be rejected at a significance level of 0.05.

Table 9.1: Accuracy of phantom volume quantization

Real object Volume 1 Volume 2 Volume 3 Volume quantization
volumes x-slicing y-slicing z-slicing error
(mm3) (mm3) (mm3) (mm3) (%)

156 163 159 160 1.7

316 322 322 320 0.8

459 469 468 469 0.5

736 753 753 752 0.4

9.3.3 Mouse data

To test the performance of the proposed segmentation technique on real data, we faced the problem
of segmenting the cerebellum of mouse brains from 3D MR data. The proposed technique is very
well suited for the cerebellum segmentation problem. Firstly because the cerebellum structure is
strongly inhomogeneous, i.e., purely histogram-based segmentation techniques are useless. Secondly,
multispectral properties can not be exploited to enhance the contrast between the cerebellum and the
neighbouring cerebrum, as the cerebellum has no significantly different MR relaxation characteristics,
compared to the cerebrum (both consist out of gray and white matter).

3D diffusion filter

The 3D raw MR data of the mouse head are first preprocessed with the anisotropic adaptive diffusion
filter. Concerning the filtering neighbourhood Ω the following remarks can be made. First of all the
filtering range in one direction should be proportional to the spatial resolution in that direction. In
our case a cubic volume Ω was chosen as the raw data were zero filled to obtain a cubic data set. For
optimal adaptation of the filtering kernel to the local structure, Ω must be as small as possible (e.g.,
a 3×3×3 window). However the smaller Ω, the smaller the gain in SNR, which can be compensated
by an iterative filtering scheme, although this solution drastically elongates the processing time. As
a compromise, we opted for a 5×5×5 voxel window. Fig. 9.2 shows the effect of this operation. Fig.
9.2(a) shows the midsagittal slice from the raw 3D MR data. Because of the large neighbourhood, the
filtering process results in a significant noise reduction, as can be observed from the corresponding slice
of the 3D output, shown in Fig. 9.2(b). Beside a visual enhancement, the diffusion filter has also an
important influence on the output of the immersion-based watershed algorithm. This can visually be
appreciated from Fig. 9.3, where the watersheds of the same slice of respectively the original and the
filtered data are shown. From Fig. 9.3(a), an oversegmentation can clearly be observed: the volume is
subdivided in about 74000 homogeneous volume elements. By diffusion filtering, the number of basic
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(a) Midsagittal slice from the raw data

(b) Midsagittal slice from the filtered data

Figure 9.2: Result of 3D adaptive anisotropic diffusion filter.
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(a) Watersheds from the raw data

(b) Watersheds from the filtered data

Figure 9.3: Watershed transforms of raw, filtered and merged data.

volume elements in the 3D data set is reduced to less than one third of the original number, as can
be seen from Fig. 9.3(b).

Merging

The result of the merging process is shown in Fig. 9.4 where Fig. 9.4(a) is a zoomed area from Fig.
9.3(b). Although the number of volume elements was again halved due to the merging process, it
might be hard to observe the differences between Fig. 9.4(a) and Fig. 9.4(b). This is because only the
smallest regions were considered for merging. However, the merging operation significantly diminishes
the posterior user interaction time. The effect on the size of the volume elements is demonstrated in
Fig. 9.5. Fig. 9.5(a) shows the histogram of the region sizes for the raw, filtered and merged data.
From this figure, it is clear that many small regions are merged with neighbouring ones. Fig. 9.5(b)
shows the cumulative volume histogram. Every curve finally converges to the total volume of the
region of interest.
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(a) Before merging (b) After merging

Figure 9.4: Result of the merging process.

(a) Histogram of the region sizes.

(b) Cumulative volumes histogram.

Figure 9.5: Efffect of filtering and merging on the size of the volume elements.
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Figure 9.6: Cerebellum extraction via volume element selection.

Interactive segmentation

The result from the full automatic preprocessing steps is presented to the user for manual segmentation.
With a few mouse clicks on the first slice, the cerebellum is extracted from the rest of the brains.
This is not done by activating each single region from the cerebellum separately, but by selecting a
region of interest, in which all volume elements are automatically activated. Starting from this slice,
the segmentation process is proceeded, hereby fully exploiting the 3D information of the previously
segmented slice. In Fig. 9.6, the segmented result of the midsagittal slice is shown. For clarity, only
the border of the segmented volumes in the slice is shown as a white curve.

Volume quantization

Numerical results of the segmentation process are summarized in Table 9.2. Again, the segmentation
error was obtain by presenting the slices in the three orthogonal directions. From the table, one can
also observe that, as a consequence of the diffusion filter, the average number of manual interactions
(mouse clicks) per slice is significantly reduced. Further iteratively merging volume primitives halves
this number along with the interaction time. However, reduction of user interaction time goes along
with minor expense of segmentation accuracy. For this reason, the merging process was not proceeded.
Finally, 3D reconstructions of the whole brain and the cerebellum from the segmented slices are dis-
played in Fig. 9.7(a) and Fig. 9.7(b). The 3D shading renderings were created using Interactive Data
Language (IDL) software. Slicing of the total mouse brains in different directions led to results, equal
within 1%; the volume quantifications for the cerebellum were equal within 3%. The operator variabil-
ity was about 3%. Although gradient calibration limitations must also be taken into account, these
results are satisfying in comparison to the volume measurements, obtained from invasive techniques
(slicing of the fixated mouse head), where errors of more than 10% are common. This is mainly due
to the fixation process, which leads to volume changes (shrinking or expansion). Similar errors are
introduced when cutting the cerebellum from the rest of the brain and measuring the volume after
immersion into a fluid. In addition, the proposed non-invasive segmentation techniques for volume
quantization has this advantage over the invasive method that in-vivo studies can be performed, which
allows the study of volume dynamics.
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(a) Total mouse brains

(b) Mouse cerebellum

Figure 9.7: 3D reconstructions of the segmented objects.
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Table 9.2: Segmentation results of mouse brain segmentation

Method Number of Number of Total brain Cerebellum
volume man. interac. volume volume
elements per slice (mm3) (mm3)

raw data 74053 17.1 559 ± 1 65.4 ± 1.4

after diff.filtering 23203 5.4 560 ± 2 64.0 ± 1.9

after merging 11601 2.6 559 ± 2 63.7 ± 2.1

Segmentation performance

3D adaptive anisotropic diffusion filtering with a 5×5×5 window took about 14 minutes. Calculation
of the 3D watershed image took less than 4 minutes. Merging volume primitives required 9 minutes.
Hence, all fully automatic preprocessing steps were completed within half an hour. Finally, the user
interaction time, to extract the cerebellum from the rest of the image, took about 2.5 seconds per slice.
The interactive segmentation for the cerebellum was completed within 7 minutes. The total brain was
segmented within 11 minutes. Although far more volume elements were involved in the segmentation
of the total brain, segmentation was less complex as the contrast between the total brain and the
surroundings was higher. In general, the speed of segmentation depends very much on the clearness
of the object boundary and in minor way on the shape of the object. Concerning the performance of
the proposed segmentation procedure, some general conclusions can be drawn:

• The method obviously works best when the object of interest is delineated by a strong contour
in the data.

• The segmentation performance depends on the deformation from one slice to the other: automa-
tion increases when the local deformation is smaller than the average size of a basic volume
element. If this is a problem, a possible solution might be zero-filling of the raw data, thereby
extrapolating between subsequent slices.

• Homogeneity within the object or convexity is not required.

• The influence of random noise on the segmentation performance can be managed as described
in this paper. However, segmentation results will degrade when structured noise is present due
to magnetic field inhomogeneities, object movement, etc.

9.4 Applications

The segmentation technique, described above, is currently used as a routine segmentation technique for
3D volume quantization. Below, two applications are described in which the segmentation technique,
proposed in this chapter, was extensively applied.
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Figure 9.8: 3D views of the segmented canary brain.

9.4.1 Fragile X knockout mice

Fragile X syndrome is the most frequent cause of inherited mental retardation. No specific pathological
abnormalities have been described post mortem. However, with the aid of in-vivo MRI, performed
on human brain, Reiss et al. showed a significantly decreased size of the posterior cerebellar vermis
[101]. Recently, a transgenic mouse was developed with a loss-of-function (knockout) mutation in
the FMR1. The mutant mice lack normal FMR1 mRNA and protein, as is also the case in human
fragile X syndrome, and show cognitive and behavioural abnormalities comparable to those observed
in humans. The purpose of the study of Verhoye et al. was to obtain quantitative MRI data from the
mouse model [104, 105, 106]. In particular, the authors focussed on the size of the cerebellar vermis,
as compared to the work performed on humans. Also, the application of 3D high resolution FSE MRI
allowed an accurate and in-vivo determination of the volume of the cerebellum and the total brain.
Despite accurate size measurements of the brain structures, results revealed no significant difference
between knockouts and controls.

9.4.2 Canary brain

The volumes of song system nuclei in the brain of oscine birds (e.g., canaries) vary with season, sex
and capacity for song learning. The brain is therefore considered as an excellent model for neural
plasticity. However, using present techniques, volumes can only be measured once for a particular
bird, after histology. By means of 3D FSE MRI microscopy and image post-processing brain structures
could be mapped in a non-invasive and in-vivo manner. This was partially thanks to the accurate
image segmentation. In addition, the combination of in vivo MRI microscopy and accurate image
segmentation may allow experiments in which neuroanatomy of individuals is quantified, both before
and after experimental treatments [107]. In Fig. (9.8) 3D views of the canary brain are shown.

9.5 Conclusions

In conclusion, a semiautomatic 3D segmentation technique was proposed, grounded on the immersion-
based watershed algorithm. It was shown that preprocessing the data with a 3D adaptive anisotropic
diffusion filter has a positive impact on the segmentation results. A posteriori merging of basic volume
primitives additionally reduces the user interaction time. The proposed segmentation technique is
successfully used to extract quantitative volume information from 3D images of in vitro as well as
in vivo mouse and bird cerebella. It has proved to be superior in comparison with existing invasive
methods.
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Conclusions

Magnetic resonance (MR) images are known to be polluted by various random as well as structured
noise sources. The main contribution to random noise comes from thermal, white noise originating
from the object to be imaged, as well as from the MR equipment. As thermal noise is characterized
by a Gauss probability density function (PDF), the acquired complex, raw MR data are also Gauss
distributed. However, in practice, MR data are non-linearly transformed into magnitude and/or phase
MR data, which changes the PDF that characterize these data types. Throughout this work, the im-
portance of incorporating the correct data PDF in various image processing tasks was emphasized.

One of these tasks concerns the estimation of the image noise variance (NV) or the noise standard
deviation from magnitude MR images. Conventional techniques to estimate the NV from a single mag-
nitude MR image, were discussed and compared to the Maximum Likelihood (ML) estimation method,
as ML estimation is known to have optimal properties asymptotically. In addition, ML estimation is
able to incorporate the PDF of magnitude MR data, which is the (generalized) Rice distribution, in
an optimal way. It was shown that the mean squared error (MSE), which is inversely related to the
combined precision and accuracy of an estimator, was smallest for the proposed ML estimator.
Concerning the estimation of the image noise variance, methods, based on a double acquisition, are
far superior to single image techniques in terms of precision. However, existing double acquisition
methods become useless when different phase variations are present in the two images. To overcome
this problem, a noise variance estimation method has been proposed, based on two magnitude MR
images. Under the condition of geometrical registration, the proposed noise variance estimator has
been shown to be highly precise and accurate.

In addition, the problem of signal estimation from magnitude (generalized) Rice distributed MR
data was addressed. It was shown that conventional signal estimation techniques yield biased results,
as the knowledge of the (generalized) Rice distribution was not fully exploited. Again, a Maximum
Likelihood estimator was proposed, which was shown to outperform the conventional methods with
respect to accuracy. The usefulness of the proposed ML signal estimator is demonstrated in the prob-
lem of estimating T1- and T2-maps from magnitude MR data.

Beside the estimation of signal and noise, attention has been paid to the estimation and im-
provement of the image signal-to-noise ratio (SNR). A new double acquisition method, based on
cross-correlation, was proposed for the estimation of the SNR, which can be implemented in a highly
efficient way in most MR acquisition schemes.
Furthermore, it was shown that cross-correlation of two acquisitions of the same image can as well be
used to improve the image SNR. However, the advantages of significant SNR improvement and ease of
implementation are compromised by loss of spatial resolution. Therefore, in this thesis the anisotropic
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adaptive diffusion filter was discussed, which is capable of increasing the image SNR significantly while
retaining the spatial resolution and hence the image details amazingly well.

Finally, a semi-automatic 3D segmentation technique was proposed, grounded on the immersion
based watershed algorithm. It was shown that preprocessing the data with a 3D adaptive anisotropic
diffusion filter had a positive impact on the segmentation results. The proposed segmentation technique
is successfully used to extract quantitative volume information from 3D images of in vitro as well as in
vivo biological objects. It has proved to be superior in comparison with existing invasive methods. The
technique is currently implemented as a routine segmentation procedure for 3D volume quantization.
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Appendix A

The generalized Rice PDF

In this appendix, the generalized Rice probability density function (PDF) is derived, which charac-
terizes magnitude phase contrast magnetic resonance (PCMR) data. In the first section, the PDF
of one PCMR pixel variable is derived, which was previously also deduced by Andersen and Kirsch
[20]. Based on that PDF, in the second section, the PDF of a spatial average of a number of squared
PCMR pixel variables is deduced.

A.1 PDF of one PCMR pixel variable

PCMR data are obtained by computing the square root of the sum of squared independent variables
{xk}:

M =

√√√√ K∑
k=1

x2
k , (A.1)

where xk is assumed to be Gauss distributed with variance σ2 and mean ak:

pxk
(xk) =

1√
2πσ2

exp

(
−(ak − xk)2

2σ2

)
. (A.2)

As a first step, we derive the PDF of x2
k from its characteristic function:

Φx2
k
(ω) = E

[
eiωx2

k

]
(A.3)

=
1√

2πσ2

∫ ∞

−∞
eiωx2

ke−
(xk−ak)2

2σ2 dxk (A.4)

=
e−

a2
k

2σ2

√
2πσ2

∫ ∞

−∞
e−
(

1
2σ2−iω

)
x2

ke
akxk

σ2 dxk . (A.5)

The integral is the two-side Laplace transform of a Gauss function with complex ”variance” (1/2σ2 −
iω)−1, evaluated at xk = ak/σ2:

Φx2
k
(ω) =

e−
a2

k
2σ2√

2σ2(1/2σ2 − iω)
e

(ak/2σ2)2

1/2σ2−iω (A.6)

=
1√

1− 2iωσ2
exp
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iωa2

k

1− 2iωσ2

)
. (A.7)
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Now, consider the sum y of K squared Gauss distributed variables {xk}:

y = M2 =
K∑

k=1

x2
k . (A.8)

When all xk’s are statistically independent random variables, the characteristic function of y is simply
the product of the characteristic functions of {xk}:

Φy (ω) =
K∏

k=1

Φx2
k
(ω) (A.9)

=
1

(1− 2iωσ2)K/2
exp

(
iωA2

1− 2iωσ2

)
, (A.10)

where A denotes the deterministic signal component, i.e., the vector magnitude of the means of the
individual random variables {xk}:

A =

√√√√ K∑
k=1

a2
k . (A.11)

The PDF of y in turn can be found as the inverse Fourier transform of its associated characteristic
function Φy(ω):

py(y) =
1
2π

∫ ∞

−∞

eiωA2/(1−2iωσ2)

(1− 2iωσ2)K/2
e−iωydω . (A.12)

Substituting s = 1− 2iωσ2, Eq. (A.12) becomes a Laplace transform:

py(y) =
1
2π

i

2σ2

∫ 1−i∞

1+i∞
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From tables of Laplace transforms [24], we finally obtain:

py(y) =
1

2σ2
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)K−2
4

exp
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−y + A2
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IK
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From the PDF of y, it is now easy to derive the PDF of the magnitude variable, given in Eq. (A.1)
[68]:

pM (M) = 2Mpy(M2) , (A.16)

or explicitly:

pM (M) =
M
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2
−1

exp
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which is called the generalized Rice PDF.

A.2 PDF of the average of squared PCMR pixel variables

As was deduced in the previous section, the PDF of a PCMR pixel variable Mi at spatial position i is
given by:

pMi(Mi) =
Mi

σ2

(
Mi

A

)K
2
−1

exp

(
−M2

i + A2

2σ2

)
IK

2
−1
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ε (Mi) , (A.18)
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where it is assumed that the deterministic signal component of all Mi’s is A, given in Eq. (A.11). We
now derive the PDF of a spatial average over N squared, independent PCMR pixel variables Mi. The
average will be written as:

〈M2〉 =
1
N

N∑
i=1

M2
i (A.19)

=
1
N

N∑
i=1

K∑
k=1

x2
i,k . (A.20)

Again, consider first the variable y, where

y =
N∑

i=1

M2
i =

N∑
i=1

K∑
k=1

x2
i,k . (A.21)

If summation is over a region where the signal component is constant, y is a sum of N times K squared
Gauss distributed variables with NA2 as deterministic signal component (cfr. Eq. A.11). Then, from
Eq. (A.18) the PDF of y becomes:
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Finally, because
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we obtain the PDF of 〈M2〉:
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Appendix B

List of symbols and abbreviations

B.1 Greek symbols

α excitation flip angle
γ gyromagnetic ratio
Γ Gamma function
δ(.) Dirac delta function
ε(.) unit step Heaviside function
λi ith matrix eigenvalue
µ magnetic moment of the proton
ρ pseudo proton density
ρm population of the substate with magnetic quantum number m
σ standard deviation
σ2 variance
σn noise standard deviation
θ arbitrary function of ρ, T1 and T2

Φ phase value
∆Φ phase difference
ω0 angular Larmor frequency related to B0 via: ω0 = γB0

Ω local neighbourhood
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B.2 Roman symbols

aij anisotropy coefficients
Âc conventional signal estimator
ÂML maximum likelihood signal estimator
B0 main magnetic induction
B1 magnetic induction produced by an RF coil
E[.] expectation operator
1F1 confluent hypergeometric function
Gx gradient field strength in the x direction
Gy gradient field strength in the y direction
h() filter kernel
h̄ Planck’s constant
I proton spin
Ik kth order modified bessel function of the first kind.
FOVx field of view in the x direction
FOVy field of view in the y direction
kb Boltzman’s constant
kx x coordinate of a K-space data point
kx y coordinate of a K-space data point
K number of flow encoding directions
l conductor length
L coil inductance
m magnetic quantum number
M magnitude variable
M0 magnetization per unit volume
N number of data points
Nav number of averages
Ns number of spins of the sample per unit volume
Nx number of samples in the x direction
Ny number of samples in the y direction
p conductor circumference
~r spatial coordinate vector
Rc coil resistivity
t time variable
Sn noise spectrum
T1 spin-lattice relaxation constant
T2 spin-spin relaxation constant
Tc coil temperature
Ts sample temperature
Vs sample volume
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B.3 Abbreviations

3D three dimensional
ACF auto correlation function
ANOVA analysis of variance
CCC cross correlation coefficient
CCF cross correlation function
CNR contrast to noise ratio
CR Cramér Rao
CRLB Cramér Rao lower bound
DC direct current
FID free induction decay
FLASH fast low angle shot
FOV field of view
FSE fast spin echo
FT Fourier transformation
FFT Fast Fourier transformation
GE gradient echo
HP Hewlett Packard
IR inversion recovery
LF likelihood function
LS least squares
IDL Interactive Data Language
ML maximum likelihood
MR magnetic resonance
MRI magnetic resonance imaging
MSE mean squared error
MVB minimum variance bound
NA number of averages
NEMA National Electrical Manufacturers Association
NMR Nuclear magnetic resonance
NV noise variance
PCMR phase contrast magnetic resonance
PD probability distribution
PDF probability density function
RF radio frequent
RMS root mean squared
ROI region of interest
SD standard deviation
SE spin echo
SMIS Surrey medical imaging systems
SNR signal to noise ratio
SRV signaal/ruis verhouding
TE echo time
TI inversion time
TR repetition time
WDF waarschijnlijkheidsdichtheidsfunctie
WLS weighted least squares



Appendix C

Nederlandse samenvatting

Dit proefwerk handelt in het algemeen over het schatten van ruis en signaal van Magnetische
Resonantie (MR) data, waarbij de nadruk wordt gelegd op de bewerking van magnitude MR beelden.
Verder worden een aantal onderwerpen behandeld die sterk gerelateerd zijn aan het schatten van
ruis en signaal: het schatten en verbeteren van de signaal/ruis verhouding. Tenslotte wordt nog een
semi-automatisch algoritme beschreven voor de segmentatie van 3D MR data.

Na een korte introductie, waarin de basisprincipes van MR beeldvorming worden toegelicht, wordt
er in hoofdstuk 2 een overzicht gegeven van de oorsprong en de statistische eigenschappen van MR ruis
en signaal. De magnetisatieverdeling welke men zou bekomen bij stationaire opname condities en een
oneindig lange opnametijd wordt beschouwd als het (deterministisch) signaal. Random afwijkingen
t.o.v. dit signaal worden beschouwd als ruis. De ruis blijkt voornamelijk zijn oorsprong te vinden
in de warmte van het beeldvormend systeem en van het te beeldvormen object. Deze ’thermische
ruis’ genereert random signalen in de ontvanger en kan beschreven worden met een Gaussische
waarschijnlijkheidsverdeling. Het eerste moment van deze Gauss verdeling is nul terwijl het tweede
moment gelijk is aan de variantie van de ruis. De verhouding van de grootte van het signaal ten
opzichte van de standaard afwijking van de ruis wordt gedefinieerd als de signaal/ruis verhouding
(SRV).

Om data op een wetenschappelijk verantwoorde manier te verwerken, is kennis van de on-
derliggende waarschijnlijkheidsdichtheidsfunctie (WDF) onontbeerlijk. Om die reden worden in
hoofdstuk 3 de waarschijnlijkheidsverdelingen van al dan niet bewerkte MR data afgeleid en be-
sproken. Zoals reeds vermeld, zijn de in de K-ruimte bemonsterde, complexe MR data Gaussisch
verdeeld. Na een Fourier reconstructie blijft de verdeling van de complexe data Gaussisch vanwege
de ortogonaliteit en de lineariteit van de Fourier transformatie. In de praktijk wordt er nu, eerder
dan met complexe data, veelal met magnitude en fase data gewerkt gezien deze data rechtstreeks
gerelateerd kunnen worden aan fysische grootheden zoals de peudo-protondichtheid, stroming,
diffusie, e.a. Het berekenen van magnitude en/of fase data is echter een niet-lineaire transformatie.
Dit heeft voor gevolg dat de verdeling van zulke data niet meer gekarakteriseerd wordt door een
Gaussische WDF maar, in het geval van magnitude data, door een Rice WDF. Fig. 3.1 op pagina 10
toont de Rice verdeling als functie van de signaal/ruis verhouding (SRV). Bij zeer lage SRV benadert
de Rice verdeling een Rayleigh verdeling. Deze verdeling karakteriseert de signaal-loze achtergrond in
een magnitude MR beeld. Bij zeer hoge SRV benadert de Rice verdeling een Gaussische verdeling.
Zoals uit de volgende hoofdstukken zal blijken, speelt de WDF van de data een belangrijke rol bij
het oplossen van schattingsproblemen. Steunend op Fig. 3.1 kan men dan ook reeds verwachten dat
schattingsmethodes, welke gebaseerd zijn op Gaussisch verdeelde data, enkel op magnitude MR data
toegepast mogen worden wanneer de SRV in het beeld erg hoog is.
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Naast de WDF van magnitude MR data worden de WDF’s van fase-contrast magnitude MR data en
fase MR data afgeleid en besproken.

De schattingsproblemen die in dit proefwerk worden beschreven, omvatten het bepalen van ruis
en signaal uit magnitude MR data welke besproken worden in respectievelijk hoofdstuk 4 en 5. In
magnitude MR beelden wordt de ruis conventioneel geschat aan de hand van achtergrond data, welke
Rayleigh verdeeld zijn. In hoofdstuk 4 wordt aangetoond dat de standaard afwijking van de ruis
bij voorkeur via de Maximum Likelihood methode dient geschat te worden. Daarnaast wordt een
methode voorgesteld voor het schatten van de ruis variantie aan de hand van twee realisaties van
hetzelfde beeld.
In hoofdstuk 5 worden methodes voor het schatten van signaal, die conventioneel worden toegepast in
magnitude MR beeldverwerking, vergeleken met de Maximum Likelihood (ML) schattingsmethode.
Deze laatste methode maakt specifiek gebruik van de WDF die de data karakteriseert. Bovendien
zijn ML schatters consistent en asymptotisch meest precies. Conventionele schattingsmethodes zijn
veelal gebaseerd op Gaussisch verdeelde data. Aangezien magnitude en faze MR data niet ’normaal’
verdeeld zijn, is het intüıtief duidelijk dat er fouten zullen sluipen in dergelijke schattingsprocedures.
In hoofdstuk 4 en 5 wordt aangetoond dat het niet benutten van de kennis van de juiste WDF
inderdaad kan leiden tot systematische afwijkingen bij het schatten van ruis of signaal. De ML
schattingsmethode blijkt telkens superieur te zijn in termen van de gemiddelde kwadratische fout,
welke een gecombineerde maat is voor precisie en juistheid.

In hoofdstuk 6 wordt het belang van ML schatten via de correcte WDF gëıllustreerd aan de hand
van het schatten van T1- en T2-mappen. Het construeren van deze mappen is een veel gebruikte
techniek om karakteristieke fysiologische informatie te visualiseren. T1- en T2-mappen worden veelal
afgeleid van magnitude MR data, welke Rice verdeeld zijn. Voor zover bekend werd deze voorkennis
tot op heden echter nauwelijks benut. Nochtans heeft de Rice verdeling een significante invloed
op de kwantitatieve bepaling van T1- en T2-mappen. In dit hoofdstuk wordt de conventionele
kleinste-kwadraten schattingsmethode, welke gebaseerd is op Gaussisch verdeelde data, vergeleken
met de ML schattingsprocedure. Figuren 6.2 en 6.3 op respectievelijk pagina 43 en 44 tonen de
resultaten van simulatie-experimenten waarbij de pseudo-protondichtheid (de echte waarde is ρ = 100)
geschat werd, samen met de T1 of de T2 parameter (de echte waarden zijn T1 = 2000 ms en T2 = 100
ms), en dit als functie van de signaal/ruis verhouding. Uit de figuren is het duidelijk dat de ML
schattingsmethode superieur is qua juistheid.

In hoofdstuk 7 en 8 wordt er aandacht besteed aan respectievelijk het bepalen en het verbeteren
van de signaal/ruis verhouding (SRV) in een beeld. In dit werk wordt een procedure voorgesteld
om de SRV van een MR beeld te bepalen, gebaseerd op de kruiscorrelatie van twee realisaties
van hetzelfde beeld. De methode is bijzonder efficiënt gezien kruiscorrelatie overeenstemt met een
vermenigvuldiging in het Fourierdomein; dit is het domein waar de MR data bemonsterd worden.
Kruiscorrelatie kan eveneens aangewend worden om de beeld-SRV te verbeteren (zie Fig. 8.1 op
pagina 59). Echter, verbetering van de SRV gaat veelal gepaard met verlies aan ruimtelijke resolutie.
Daarom wordt de adaptieve en anisotrope diffusie filter besproken welke in staat is de SRV sterk te
verbeteren terwijl de ruimtelijke resolutie vrijwel intact blijft (zie ook Fig. 8.2 op pagina 61).

Tenslotte wordt in hoofdstuk 9 een segmentatie methode beschreven welke werd ontwikkeld voor
nauwkeurige volume bepaling a.h.v. 3D MR beelden. De methode is semi-automatisch en laat toe op
een interactieve manier het segmentatie proces te volgen. De segmentatie procedure is opgebouwd uit
de volgende stappen:

• Ruis filter: Als eerste voorverwerkingsstap wordt een 3D, adaptieve en anisotrope diffusie filter
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toegepast op de data. Figuur 9.2 op pagina 68 toont hier het effect van op de midsagitale snede.
Merk op dat de randen goed bewaard blijven, wat erg belangrijk is voor latere segmentatie.

• Watershed algoritme: Na het filteren van de ruis, wordt een 3D watershed (waterscheiding)
algoritme op de gradient magnitude van de data toegepast. Hierbij wordt de 3D data set on-
derverdeeld in een groot aantal, kleine, homogene volume-elementjes. Opdat deze onderverdeling
nuttig zou zijn voor segmentatie dient dit aantal drastisch verminderd te worden, zonder daarbij
volume-elementjes, behorende bij verschillende structuren, samen te voegen. Dankzij de diffusie
filter werd dit aantal reeds sterk gereduceerd (zie figuur 9.3 op pagina 69).

• Samenvoegen: De oversegmentatie wordt in een tweede fase nogmaals sterk verminderd door
het samenvoegen van naburige volume-elementjes. Dit gebeurt op basis van hun grijswaarden-
verdeling. Vooral de samenvoeging van de kleinste volume-elementjes krijgt hierbij de voorkeur
gezien deze het segmentatieproces vertragen. Figuur 9.4 op pagina 70 toont het effect van de
samenvoegingsfase.

• Segmentatie: De eigenlijke segmentatie start met het tonen van de eerste snede aan de gebruiker
waarin het te segmenteren object verschijnt. Na manuele segmentatie van de eerste snede,
waarbij de relevante volume-elementjes geactiveerd werden, wordt het resultaat gebruikt voor
automatische segmentatie van de volgende snede. Eventueel volgt er een manuele correctie door
de gebruiker. Figuur 9.6 op pagina 71 toont de segmentatie. Op deze manier wordt de volledige
3D data set doorlopen.

Na segmentatie kan het volume kwantitatief bepaald worden. Enkele voorbeelden van 3D reconstruc-
ties na segmentatie zijn weergegeven in figuur 9.7 en 9.8 op respectievelijk pagina’s 72 en 74.
Experimenten wezen uit dat data voorverwerking met de 3D adaptieve anisotrope diffusie filter alsmede
het samenvoegen van elementaire volume elementjes de segmentatietijd beduidend verkleint. De
beschreven segmentatie techniek werd en wordt nog steeds gebruikt om op een accurate manier kwan-
titatieve volume informatie te extraheren uit 3D beelden van in vitro zowel als van in-vivo biologische
strukturen.
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