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Summary

In the last decade, visualising light atoms like lithium and hydrogen has gained

serious interest, as they play a key-role in many industrial applications, such as

lithium batteries or energy storage materials. Therefore, the optimisation of dif-

ferent techniques in Transmission Electron Microscopy (TEM) for such applica-

tions has become an important issue. However, it is extremely difficult to visu-

alise materials containing light elements and quantify their structure and chem-

ical composition at the atomic-scale, since the interaction with the electron beam

weakens for lighter atoms. The main goal of this PhD research was to optimise the

experiment design of the electron microscope in order to characterise nanostruc-

tures containing light atoms, using advanced and new techniques in quantitative

TEM. The purpose is then to retrieve the atomic structure of light atom nanocrys-

tals from experimental images.

Atoms can be visualised using High Resolution Scanning Transmission Electron

Microscopy (HRSTEM) using a High Angle Annular Dark Field (HAADF) detec-

tor. In this technique, a focused electron probe scans over a material, which is

transparent for the incoming electrons. When using an annular detector with

a high inner angle, (almost) exclusively incoherently scattered electrons are de-

tected. The thus obtained signal scales approximately with the atomic number Z

squared, and is therefore relatively highly sensitive for the chemical composition.

However, a direct qualitative interpretation of experimental images gives unreli-

able results, if the difference in atomic number Z of neighbouring atom columns

is small or when the signal-to-noise ratio (SNR) of the images is low. Thus, quan-

titative methods are necessary in order to characterise the chemical composition

of crystals containing light elements. Statistical parameter estimation theory in

combination with detection theory is therefore used.

Observations from HR(S)TEM experiments fluctuate around expectation values.

The expectation model, i.e. the model of expectation values, is a physical func-
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tion of the unknown parameters that have to be measured. In this thesis, the

parameters that have to be estimated are the atom types present (or absent) in the

structure, the position coordinates of the projected atom columns, and the num-

ber of atoms in the projected atom columns (i.e. the column thickness). In order

to estimate continuous structure parameters, such as the atom column positions,

use can be made of the so-called Cramér-Rao lower bound, which is a measure for

the attainable precision of the estimates. Detection theory provides an alternative

approach for estimating discrete parameters, such as the atomic number Z, as the

Cramér-Rao lower bound is not defined in this case. Using detection theory, an

estimation problem can be formulated as a binary or multiple hypothesis test in

which the hypotheses correspond, for example, to different possible atomic num-

bers Z. The probability to assign the wrong hypothesis, the so-called probability of

error can be quantified and minimised as a function of the experimental settings.

The goal is then to find the optimal experiment design that minimises this proba-

bility of error or maximises the attainable precision. Both conventional TEM and

STEM will be investigated and compared for detecting and locating light atoms,

and for counting the number of atoms in a projected atom column. For HRSTEM,

the annular detector inner and outer angle will be optimised, while in the case

of HRTEM, the optimal values for the defocus and spherical aberration will be

derived.

For detecting and locating light atoms, it is found that HRSTEM outperforms

HRTEM, when using the same incoming electron dose. Moreover, a single opti-

mal detector design is found for both the detecting and locating problem of light

atoms in HRSTEM. Next, it is found that HRSTEM is the optimal imaging mode

for atom-counting when using the same incoming electron dose and using the op-

timal detector settings, if scattering cross-sections are used as performance mea-

sure in STEM and peak intensities in TEM, as proposed in literature. However,

when the decision is based on the so-called joint probability function of all pixel

values in the HR(S)TEM image, it is found that HRTEM outperforms HRSTEM

for atom-counting.

As a practical application in the research to quantitatively characterise light atom

structures, the local oxygen-octahedral coupling at perovskite heterostructural

interfaces in different epitaxial thin films is determined. Furthermore, the do-

main wall in a LiNbO3 crystal is quantified, and the atomic shift of the domains

next to the domain wall is determined as well as the width of the transition region

between both domains, using statistical parameter estimation theory.

vi



Contents

Summary v

Contents vii

1 Introduction 1

1.1 The role of light atoms in modern technology . . . . . . . . . . . . 1

1.2 Imaging in High Resolution (S)TEM . . . . . . . . . . . . . . . . . . 5

1.3 From CTEM to Aberration-Corrected STEM . . . . . . . . . . . . . 10

1.4 From Qualitative toward Quantitative Electron Microscopy . . . . 13

1.5 What to expect in this thesis? . . . . . . . . . . . . . . . . . . . . . . 16

2 Electron-Specimen Interaction 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Specimen potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Electron-specimen interaction . . . . . . . . . . . . . . . . . . . . . 23

2.4 Weak phase object approximation . . . . . . . . . . . . . . . . . . . 23

2.5 Thick specimen foils . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Multislice method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Thermal vibration of the specimen atoms . . . . . . . . . . . . . . . 30

2.7.1 Frozen phonon approximation . . . . . . . . . . . . . . . . . 30

2.7.2 Absorptive potential method . . . . . . . . . . . . . . . . . . 32

2.8 Imaging in HRSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Imaging in HRTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Statistical Experiment Design 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Parametric statistical model of the observations . . . . . . . . . . . 44

vii



3.2.1 Parametric statistical model for a weak phase object . . . . 46

3.3 Attainable precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Fisher information . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Cramér-Rao Lower Bound . . . . . . . . . . . . . . . . . . . 49

3.3.3 Hammersley-Chapman-Robbins Bound . . . . . . . . . . . 50

3.4 Maximum Likelihood estimator . . . . . . . . . . . . . . . . . . . . 50

3.4.1 The uniformly weighted least squares estimator . . . . . . . 52

3.4.2 Maximum likelihood estimation of atomic numbers . . . . 53

3.5 Statistical detection theory . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Binary hypothesis testing . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Sum of Kullback-Leibler divergences . . . . . . . . . . . . . 62

3.5.3 Multiple hypothesis testing . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Statistical Experiment Design for Atomic Number Estimation 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Atomic number estimation of a single isolated atom . . . . . . . . 70

4.3 Analytical expression for the probability of error . . . . . . . . . . 76

4.4 Atomic number estimation of an atom column in a specimen . . . 77

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Statistical Experiment Design to Detect and Locate Light Atoms 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Detecting the lightest element H . . . . . . . . . . . . . . . . . . . . 84

5.3 Detecting versus locating light atoms in HRSTEM . . . . . . . . . . 88

5.3.1 Practical implementation of the CRLB . . . . . . . . . . . . 88

5.3.2 Detecting and locating Li in LiV2O4 . . . . . . . . . . . . . . 89

5.3.3 Detecting and locating O in SrTiO3 . . . . . . . . . . . . . . 95

5.3.4 Detecting versus locating . . . . . . . . . . . . . . . . . . . . 103

5.3.5 Effect of the incoming electron dose . . . . . . . . . . . . . . 103

5.4 Detecting versus locating light atoms in HRTEM . . . . . . . . . . 107

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Statistical Experiment Design for Nanoparticle Atom-Counting 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Results from binary hypothesis testing . . . . . . . . . . . . . . . . 117

6.3 Results from multiple hypothesis testing . . . . . . . . . . . . . . . 120

viii



6.3.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . 120

6.3.2 Results for peak intensities and scattering cross-sections . . 123

6.3.3 Results for image intensities on a pixel by pixel basis . . . . 125

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.1 Results for peak intensities and scattering cross-sections . . 127

6.4.2 Results for image intensities on a pixel by pixel basis . . . . 131

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Experimental Applications 133

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Efficient fitting algorithm . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Estimating the atomic column positions . . . . . . . . . . . . . . . 135

7.4 Estimating the B-O-B bond angle . . . . . . . . . . . . . . . . . . . 138

7.5 Domain wall quantification in LiNbO3 . . . . . . . . . . . . . . . . 140

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 General Conclusions 151

Appendix A 155

Bibliography 159

List of Symbols and Abbreviations 181

Samenvatting 189

List of publications 193

Dankwoord 197

ix





1Introduction

1.1 The role of light atoms in modern technology

Light atoms, such as lithium, oxygen, and hydrogen, play a key-role in a range of

industrial applications, such as lithium batteries or hydrogen-storage materials.

Lithium batteries conquered the portable market because of their light weight

and higher energy density as compared to other batteries [1–3]. The performance

of lithium-ion batteries is determined by the diffusion behaviour of lithium ions

in the cathode, anode, and electrolyte regions. During the charging process,

lithium ions move from the cathode to the anode through the electrolyte by

being forced to carry electrons from the cathode to the anode. In the discharging

process, they return to the cathode through the electrolyte due to a certain

potential difference and in this way an electronic power is generated between

both electrodes by following this movement of lithium ions. Thus, understand-

ing this movement of lithium ions at the interface between the electrode and

electrolyte and also inside the electrodes, which is called the diffusion behaviour,

is an essential step to develop lithium-based batteries with improved charging

rate, capacity or life time [4–6]. The diffusion channel of lithium ions in an

LixFePO4 crystal was visualised at the atomic scale by neutron diffraction [6],

and has been further examined by X-ray diffraction [7]. By in situ electron

microscopy, lithium ion diffusion has been found to induce local structural and

compositional changes [8] in electrodes such as dendrite growth [5]. Detecting

individual lithium ions at the atomic scale is an important issue to understand

local diffusion behaviour in composite materials with chemical inhomogeneity

and defects at the atomic level [3]. Visualisation of lithium atomic columns has

been achieved by retrieving the exiting wave phase of a specimen from a focal

series of high-resolution transmission electron microscopy (HRTEM) images

(phase retrieval method [9]) for LiCoO2 crystals [10] and Al3Li crystals [11].
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Chapter 1. Introduction

However, only recently, direct imaging of the light lithium atom (with atomic

number ZLi = 3) columns in LiV2O4 [12] has been succeeded by using scanning

transmission electron microscopy (STEM) with an annular bright field (ABF)

detector, i.e. a detector located within the illumination cone of the probe as to

detect both transmitted and scattered electrons. Other studies also showed this

technique to be appropriate for detecting lithium in different materials [3,13,14].

Nowadays, lithium-rich layered oxides of general formula LiNi1/3Co1/3Mn1/3O2

display the highest capacity (≈ 200 mAh g−1) of all positive-electrode materials

used so far [15, 16]. However, these layered structures suffer from a large

reduction in average cell voltage during cycling, which prevents their successful

implementation in practical cells [17–19]. In [15], a better understanding of

this voltage decay phenomenon is provided, and it is shown that this effect is

linked to the trapping of metal ions in tetrahedral sites that seem to favour the

stability of delithiated structures [15]. Hopefully, the obtained deeper insight in

the voltage decay process of these promising oxide layered structures can offer

chemists new clues for identifying new formulations in the near future to explore

all advantages present in this class of high-capacity electrodes.

The lightest atom of all, hydrogen (ZH = 1), has also become more and more im-

portant during the last decades for industrial applications since it can be used in

hydrogen storage applications. Hydrogen storage is a key enabling technology for

the improvement of hydrogen and fuel cell technologies that can provide energy

for a wide range of applications, including both stationary and portable power,

and transportation. Also, hydrogen can be used as a medium to store energy cre-

ated by intermittent renewable power sources (e.g., wind and solar) during peri-

ods of high availability and low demand, increasing the utilisation and benefits of

the large capital investments in these installations [20]. The stored hydrogen can

be used during peak hours, as system backup, or for portable, transportation, or

industrial applications. Extensive research is also performed in order to develop

onboard vehicular hydrogen storage systems that will allow for a driving range of

480 kilometres or more, while meeting packaging, cost, safety, and performance

requirements to be competitive with conventional vehicles. The driving range

must be achievable across the range of light-duty vehicle platforms and without

compromising space, performance or cost. There is a host of early or near-term

power applications in which fuel cell technologies are expected to achieve wide-

scale commercialisation, prior to light-duty vehicles. The early market applica-

tions can generally be categorised into three segments [20]:

2



1.1. The role of light atoms in modern technology

• stationary power (such as backup power for telecommunications towers,

emergency services, and basic infrastructure),

• portable power (such as personal laptop battery rechargers, portable gener-

ator sets, or mobile lighting),

• material handling equipment (such as forklift trucks, airport baggage and

pushback tractors, etc.).

Currently, these applications are suggested to be the largest markets for fuel cells

until light-duty fuel cell vehicles are commercialised [21]. Therefore, a lot of

effort has been put in addressing the hydrogen storage technology gaps for these

applications [20]. Also of interest is to analyse and define the economic feasibility

of hydrogen as an energy storage medium to expand the use of renewable energy

generation. Materials-based approaches that are currently being investigated

include reversible metal hydrides, hydrogen sorbents, and regenerable chemical

hydrogen storage materials. Furthermore, for regenerable hydrogen storage

materials, it is essential that there are cost effective and energy efficient spent

fuel regeneration technologies available to complete the fuel cycle [20]. The

current research for materials-based hydrogen storage technology is focused on

developing materials that have the potential to meet the ultimate light-duty

vehicle system targets by 2020 [20]. Specifically, research on metal hydride

materials focuses on improving the volumetric and gravimetric capacities,

hydrogen adsorption and desorption kinetics, and reaction thermodynamics

of potential material candidates. Sorbent materials research, on the other

hand, focuses on increasing the dihydrogen binding energies, optimising the

materials pore size, increasing pore volume and surface area, and investigating

effects of material densification. Finally, research on chemical hydrogen storage

materials focuses on improving volumetric and gravimetric capacity, transient

performance, and the efficient regeneration of the spent storage material [20].

As it is of great importance to retrieve information on the atomic scale about the

different possible materials that can be used for these applications, HRTEM is

an appropriate technique to visualise and investigate these materials of interest.

However, as hydrogen only yields a very low scattering intensity it is not possible

to detect, while in the presence of heavier scatterers, using conventional TEM

(CTEM or TEM for simplicity) or STEM imaging modes when applying a high

angle annular dark field (HAADF) detector. Recently, however, it has been shown

to be possible to detect the lightest hydrogen element using aberration corrected
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Chapter 1. Introduction

STEM in combination with an ABF detector [22–24].

The importance of oxygen atoms in modern technological applications is even

broader as compared to lithium and hydrogen, as this atom type appears in a

much wider range of technologically interesting materials, such as perovskite

structures, all metal oxides containing porous materials like zeolites, low dimen-

sional oxide crystals, and so on. Metal oxides can be used in lots of important

industrial applications, for example, for catalysis or gas absorption [25]. In re-

cent years, a whole range of fascinating phenomena have been found in oxide

materials, or their surfaces or interfaces. These include, among many others [26]:

• novel electric transport properties at heterophase or internal interfaces [27–

31],

• unusual magnetic phenomena at heterophase interfaces [32–35],

• stabilisation of unusual phases and resulting novel properties in oxide thin

films [36–38],

• construction of new morphotropic phase boundaries in a wide range of fer-

roelectric materials [38–41],

• creation of multiferroic oxides combining permanent magnetic and polari-

sation orderings [42–46],

• control of bulk properties through interface chemistry [47,48].

These are just a few examples from the dynamic field of functional oxides,

and for a more complete and comprehensive review, the interested reader is

referred to the report of Martin et al. [49] and the references therein. Although

oxygen atoms are also still light (ZO = 8) they have been observed by advanced

techniques, such as exit wave reconstruction [50], spherical aberration corrected

TEM [51, 52], and high voltage HRTEM [53]. Although these methods show

concepts to locate where the oxygen columns would be, their utilisation is limited

due to the small scattering intensity of light elements. Advanced results are

mainly retrieved on the direct imaging of oxygen columns in structures derived

from thermodynamically stable, high-temperature perovskites, characterised by

negligible beam sensitivity [53, 54]. In catalysis and energy conversion, how-

ever, metastable and specifically beam-sensitive phases exhibiting defects and
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1.2. Imaging in High Resolution (S)TEM

distortions in the metaloxygen polyhedra are mostly used. Therefore, intensive

research has been done in the past decade in order to find new techniques for the

direct imaging of this light element.

As already mentioned before, using an ABF detector in combination with STEM

has been shown appropriate in order to detect different light atoms [23, 55–57].

Recently, also atomic resolution BF STEM has been shown to be appropriate to

measure oxygen octahedra tilt angles in Li0.5−3xNd0.5+xTiO3 (LNT), a member

of a family of perovskite-related, solid-solution phases that is amongst the best

Li-ion conductors [58]. By colour-coding tilt-angle magnitudes onto individual

octahedra, a striking diamond-shaped domain pattern has been revealed, which

aligned spatially with the contrast associated with the superstructure which

could be visualised using LAADF STEM imaging [58]. This result has provided

the first real-space evidence of the correlation between octahedral tilt modulation

and the diamond-type domain structure with associated strain in LNT.

Both imaging techniques, conventional TEM and STEM will be further explained

in the next section, including different possible detector settings in STEM. There-

after a brief overview will be given on the evolution of transmission electron mi-

croscopy during the years, based on the review given by MacLaren and Ramasse

in [26]. Finally, it will also be discussed how electron microscopy has evolved dur-

ing the last decades from a purely qualitative toward a quantitative technique,

aiming at accurate and precise measurements of parameters of interest.

1.2 Imaging in High Resolution (Scanning)

Transmission Electron Microscopy

Most of the interesting phenomena in light-atomic materials described in the be-

ginning of this chapter arise at the atomic scale and therefore, atomic resolution

characterisation of the structure and chemistry is fundamental for a full under-

standing of the origins of such phenomena. Only atomic resolution TEM tech-

niques seem to be appropriate to provide local information to the atomic scale,

since electrons interact sufficiently strongly with materials [59,60]. Furthermore,

atomic-scale structural and chemical characterisation of materials has become

possible in the past few years thanks to the development of new techniques for

the correction of the lens aberrations in the probe-forming lenses, which has led

to major advances in (scanning) transmission electron microscopy [26]. In Figure
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Chapter 1. Introduction

1.1, a schematic setup of both (conventional) TEM and STEM is shown. For a

detailed overview on TEM, the interested reader is referred to [61–63]. In TEM,

the specimen is illuminated in one shot by a parallel incident electron beam. The

electron-specimen interaction results in a complex electron wave function at the

exit plane of the specimen, i.e. the so-called exit wave. If the specimen is ori-

ented along a crystallographic main zone axis and the neighbouring columns are

not too close to each other, it is shown that a one-to-one correspondence exists

between the exit wave and the projected structure of the specimen [64,65]. After

the electron-specimen interaction, the resulting exit wave is magnified by a set of

apertures and magnetic lenses. The magnified wave then propagates further to

the image plane where it forms the so-called image wave. As already mentioned

above, the microscope’s lenses are not perfect, which causes distortions in the exit

wave by lens aberrations such as spherical aberration, defocus, and chromatic

aberration while propagating to the image plane. Therefore, the image wave is

more difficult to interpret in terms of structural information. In a final step, the

image wave is recorded using, for example, a fluorescent screen, or nowadays

usually a charge coupled device (CCD), which detects the electrons reaching the

camera. As only the intensity is recorded, the phase of the image wave is lost.

Furthermore, TEM is a coherent imaging mode which means that contrast rever-

sals can occur due to the lens aberrations and multiple elastic scattering of the

electrons.

When a focused electron probe is used instead of a parallel electron beam, this

probe can be scanned over the specimen in a raster pattern by exciting scanning

deflection coils, as shown on the right side of Figure 1.1. The scattered electrons

are then detected and their intensity is plotted as a function of the probe posi-

tion. This technique is referred to as scanning transmission electron microscopy

(STEM), about which more details are given in [66, 67]. For each probe position,

a so-called convergent beam electron diffraction (CBED) pattern is formed in the

back focal plane, where an annular detector is located. Different detector geome-

tries are nowadays available [68–70]. It is possible to detect a bright-field signal

by placing the central (i.e., the transmitted) beam on a bright-field detector,

while an annular dark-field detector around the bright-field detector collects the

signal from (some of) the diffracted beams. Which diffracted beams (or rather,

which range of diffraction angles) are being collected on the dark-field detector

depends on the camera length of the diffraction pattern. At low camera lengths

the collected angles are large and the dark-field detector is a high-angle annular

dark-field detector, while at higher camera lengths the angles are smaller. As an
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1.2. Imaging in High Resolution (S)TEM

Specimen

Objective lens

Electron source

Annular detector

α

Condenser lens

Aperture

β
1 β

2

(a) TEM (b) STEM

Electron source

1st condenser lens

Intermediate lens

Objective lens 

Objective aperture

Projector lens

Recording device

Specimen

2nd condenser lens

Figure 1.1: (C)TEM and STEM setup. In TEM, a plane wave is projected onto

the sample after which the exit wave is projected onto a fluorescent screen or a

camera. In STEM, a convergent probe is scanned over the sample and for each

probe position, the intensity of the scattered electrons is recorded on the annular

STEM detector.

example, the interested reader is referred to Appendix A, where a table is given

of the different possible camera lengths with the corresponding detector angles

for two TEM/STEM instruments available at EMAT, the FEI X-Ant-EM and the

FEI QU-Ant-EM. Depending on the collection range of the detector, the contrast

and signal-to-noise ratio (SNR) of the image will be different.
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Chapter 1. Introduction

For example, an annular dark field (ADF) detector is an annular detector (usu-

ally a scintillator-photomultiplier detector [26]) whose inner and outer angles (β1
and β2) may be varied, although limited by physical dimensions and position-

ing in the column. Typically, the outer angle β2 is taken very large (200 mrad

or more), and is in practice only limited by physical restrictions in the column,

such as shadowing from the set of probe-forming lenses. Varying the inner angle

will allow different mechanisms to contribute to the detected signal. If the inner

angle of the ADF detector is much larger than the probe semi-convergence angle

α (typically three times larger), this will yield a dark-field image. A typical probe

semi-convergence angle α equals 15 − 30 mrad. Only the electrons that are scat-

tered under high angles are then collected by the detector, which is referred to as

high angle ADF (HAADF) detector. This signal comes from Rutherford scattering

of electrons by the atomic nuclei and is considered to be purely incoherent. Fur-

thermore, the resulting image contrast strongly depends on the atomic number

or the number of atoms in a column, varying approximately as Z2 for isolated

atoms. Therefore, HAADF imaging is often referred to as Z-contrast imaging,

which makes these images directly interpretable in terms of crystal structure.

Due to the Z-dependency, HAADF STEM can also provide chemical informa-

tion [71–74], and when applying statistical methods even the number of atoms

can be determined [75–77]. For smaller inner angles, coherent diffraction effects

contribute to the overall signal recorded by the detector, which is then referred

to as medium or low angle ADF (MAADF or LAADF) imaging. When the inner

angle β1 is approximately twice the probe semi-convergence angle this is referred

to as MAADF STEM. LAADF STEM corresponds to an inner angle which is only

slightly larger than the probe semi-convergence angle. MAADF STEM has been

shown to be appropriate for strain measurements and is more sensitive to lighter

elements as compared to HAADF STEM [78–80]. One of the great advantages of

HAADF and MAADF STEM is the possibility to collect simultaneously some an-

alytical signals. For example, one can perform electron energy-loss spectroscopy

(EELS) and/or energy dispersive X-ray (EDX) spectroscopy in combination with

HAADF or MAADF imaging, which makes it possible to obtain elemental and

chemical information at the atomic scale [81–83].

Another signal that is straightforward to collect is the bright field (BF) signal,

which is simply recorded using an axial detector centred at the optic axis. The

detector range is then lying within the illumination cone of the probe and the de-

tected signal is mainly formed by elastically scattered electrons. The contrast on
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1.2. Imaging in High Resolution (S)TEM

this BF detector is principally phase contrast, especially at very low angles. It can

be shown by reciprocity that BF STEM images are (almost) equivalent to conven-

tional broad-beam TEM images. BF contrast is thus also critically dependent on

sample thickness and defocus, and can show contrast inversions [26].

One recently developed related detector is the annular BF (ABF) detector,

whereby an annular detector is used with the detector collection range lying

within the cone of illumination (the direct-scattered region). The typically used

detector range is then from half of the probe semi-convergence angle upto the

semi-convergence angle (α/2−α). Small-angle scattering occurs at the edge of the

atoms where all elements have comparable scattering factors. Thus the scattering

intensities of light and heavy elements are more balanced [84], which allows ABF

STEM to visualise light atoms in the presence of heavier scatterers [56, 85, 86].

On the other hand, high-angle scattering occurs deep within the atom, close to

the nucleus, where the unscreened nuclear charge is very different for different

elements, giving rise to the Z-contrast behaviour. For thin specimen thicknesses,

the contrast formation mechanism of ABF STEM has been explained in a simple

way using the s-state channelling model [85]. Findlay et al. have shown that ABF

STEM performs well to detect light elements [55, 85]. Another strength of ABF

STEM is that both light and heavy atom columns are visible simultaneously, in

contrast to high angle annular dark field (HAADF) STEM, which tends to render

light elements invisible when in proximity to heavier scatterers [87, 88]. This ef-

fect can be understood since the ADF contrast, the so-called Z-contrast, is based

on the scattering amplitude, while the ABF phase-contrast is based on wave-

interference, so that it only requires the atoms to alter the phase of the electron

wave [89]. As direct imaging of light elements is necessary for the full determina-

tion of crystal structures, such as cathode materials for lithium-ion batteries, this

topic has recently become very important and a lot of research has been done in

this field in the past few years. Not only the identification of individual lithium

atoms [3, 12, 57, 90], but also the direct imaging of other light elements, such as

carbon, oxygen or nitrogen [56, 69, 85, 86] and even hydrogen [22, 23] has been

shown to be possible using the ABF STEM detector setting.
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1.3 From Conventional TEM to

Aberration-Corrected STEM: a brief overview

Ever since its invention by Knoll and Ruska [91] back in the 1930s, the electron

microscope has been a widely used instrument in understanding the micro- and

nanoscale structure of materials. The classic broad-beam techniques which were

pioneered in Ruska and Knolls instrument have been dominant in science for a

long time in the history of transmission electron microscopy. Nevertheless, al-

ready back in the 1930s, both Knoll [92] and von Ardenne [93] were experiment-

ing with a fine probe of electrons scanning across a specimen and retrieving an

image in a serial fashion. However, this technique was not really popular by that

time and only stepped up again in the 1960s and 1970s thanks to the work of Al-

bert Crewe [94,95]. Furthermore, the use of cold field emission guns (CFEGs) for

electrons, ultra-high vacuum chambers, and the introduction of annular detectors

led to a massive step forwards. Imaging of single heavy atoms with the Chicago

STEM [96] can be considered as the culmination of this progress. As a result of

this improvement, several companies including Hitachi, AEI, Siemens and Vac-

uum Generators (VG) started with the production of commercial CFEG dedicated

STEMs and these were installed in a number of laboratories. In particular, these

instruments have been used for applications in high spatial resolution electron

energy-loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy

of materials [97]. Still, the world of transmission electron microscopy kept being

dominated by broad-beam techniques, and the majority of electron microscopy

laboratories were focussed on (C)TEM. However, already many of these institu-

tions had STEM-capable TEMs available, which were mainly meant for use on

analytical studies.

Only in the mid to late 1990s, the revolution of STEM really started. It had al-

ready been known for years from the work of Otto Scherzer that geometric distor-

tions of the wavefront because of spherical and chromatic aberrations were inher-

ent to electron microscopy, when using conventional round electron lenses [98].

This is because of the fact that no diverging round lenses for electrons exist, un-

like for visible light, where aberration correction is much simpler. Scherzer’s re-

search contributed significantly to understanding the limits of resolution in con-

ventional lenses, and to maximising the possible resolution by which is known

as the Scherzer defocus [99]). Furthermore, he made several proposals for aber-

ration correction [99, 100]. This stimulated a great effort to develop an aberra-
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tion corrector for the round lenses in electron microscopes, not only in Scherz-

ers group [101–103] but also in other laboratories [104–106]. The two earli-

est proposals have used combinations of multipole electromagnetic lenses (ei-

ther quadrupole octupole-, or multiple sextupole-based designs [107]) in order

to make an effective compound lens with an overall negative spherical aberra-

tion. Unfortunately, most of the early attempts failed at practical realisation of

an aberration-corrected microscope, not only because of electrical or mechanical

instabilities but also because of the lack of automated alignment schemes, as com-

puters were not readily available.

Only in the 1990s, Zach and Haider managed to realise a working practical im-

plementation of an aberration corrector in a scanning electron microscope [107]

based on a design proposed by Rose, one of Scherzers former students. This was

very fast succeeded by the aberration correction of a transmission electron micro-

scope’s objective lens [108] and the achievement of 1 Å and even better resolution

in HR TEM, at conventional accelerating voltages of 200 kV [54, 109]. Krivanek,

Dellby and Lupini developed contemporarily new techniques which led to the

correction of the aberrations in the probe-forming lens of a STEM [110]. Thanks

to these new developments, it was already immediately demonstrated that the

newest generation of aberration-corrected instruments could obtain a point reso-

lution of the order of 100 pm in TEM and 50 pm in STEM, at moderate acceler-

ating voltages [111–115]. The point resolution represents the smallest detail that

can be interpreted visually in experimental images. Of course, this had a huge

and prompt impact on the world of electron microscopy research, namely that

atomic structures of many materials could now be easily interpreted visually.

In TEM, further improvements of the point resolution can be obtained by using

higher accelerating voltages. Recently, a point resolution of 43 pm has been re-

ported for an aberration corrected 1.2-MV cold field-emission TEM [116]. How-

ever, such high voltages lead to radiation damage in the specimen, which limits

the use of high voltages for the analysis of light-element structures and catalytic

nanoparticles. Another resolution measure can also be considered in TEM, i.e.

the so-called information limit. The information limit represents the smallest

detail that is transferred from the specimen to the image, or in other words the

smallest detail that can be resolved by the microscope. This limit is inversely pro-

portional to the highest spatial frequency that is transferred from the specimen

to the image. By using image processing techniques, the interpretable resolution

can be pushed down from the point resolution to the information limit. Methods

for exit wave reconstruction from a focal series of images, for example, achieve
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this goal [117–122]. Since, ideally, the exit wave is free from imaging artefacts,

the visual interpretation can be considerably enhanced as compared to the orig-

inal images, especially in the case of thin specimen. In this way, imaging with a

resolution of 50 pm is possible in TEM [50,123–125].

Based on classical resolution criteria, it is often concluded that the directly in-

terpretable resolution from a single image is higher in incoherent ADF STEM as

compared to coherent TEM, when the same imaging system is used in both imag-

ing modes. Lord Rayleigh proved in 1896 that the resolution for incoherent imag-

ing is a factor of two higher as compared to coherent imaging [126]. Therefore it

could be expected that the achievement of sub-Å resolution was indeed achieved

earlier in STEM than in TEM at intermediate accelerating voltages [127, 128].

However, if images are interpreted quantitatively instead of qualitatively, clas-

sical resolution criteria, such as Rayleigh’s are no longer appropriate [129], and

then an alternative criterion is needed to compare coherent and incoherent imag-

ing systems objectively. Such a criterion is proposed in [129] and relates resolu-

tion to statistical measurement precision. In terms of precision, it has been found

that HRTEM is usually preferable, except for fields of view smaller than a few

squared nanometers [129].

Nevertheless, a great advantage of typical annular dark field (ADF) STEM im-

ages, is the fact that the contrast can be directly interpreted in terms of atomic

positions, when observing crystalline samples aligned to a specific zone axis,

where a bright spot corresponds to an atom column, almost irrespective of sam-

ple thickness [71,130]. Since the introduction of these early aberration-corrected

STEM instruments, further developments have been made in order to make in-

struments more user-friendly, to improve the sample mounting and ease of tilting,

and to better couple spectrometers to the microscope to allow for efficient collec-

tion of spectroscopic signals. Nowadays, all major TEM manufacturers produce

aberration-corrected STEM instruments. From the situation in the mid 1990s

where most TEMs sold were principally broad-beam TEM instruments, possibly

with a STEM capability as an add-on, we are now in a situation where themajority

of new installations in materials or physical sciences are combined TEM/STEM

instruments with excellent STEM capabilities, very often with aberration correc-

tion in the probe-forming optics. Moreover, STEM is becoming the standard tech-

nique for quantitative nano- or atomic-scale materials based on image resolution

criteria. However, since resolution is not unambiguously defined, a measure for

the statistical precision provides a more objective criterion to evaluate different

imaging systems if images are interpreted quantitatively [129].
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1.4. From Qualitative toward Quantitative Electron Microscopy

1.4 From Qualitative toward Quantitative Electron

Microscopy

Coming to the point at which the resolution is fundamentally limited by the

intrinsic “width” of the atom itself, determined by the electrostatic potential

and thermal motion of the atom [131], the focus in TEM research has moved

gradually from obtaining a better point resolution to improving the precision

with which structural and chemical information can be extracted from TEM

data [60, 132]. It should be noted that there is a clear difference between

resolution and precision. Resolution, as defined by the classical resolution

criteria such as the Rayleigh resolution criterion [133, 134], expresses the ability

to visually distinguish neighbouring components, while precision corresponds

to the variance with which (structure) parameters can be measured from the

observed data. Van Dyck was among the first to emphasise the importance

of precise structure determination for materials science and technology [135].

This importance can be motivated as follows [132]. A complete understanding

of the relation between the properties of nanomaterials and their structure,

combined with recent progress in building nanomaterials atom by atom, will

enable materials science to evolve into materials design. Quantummechanical ab

initio calculations allow one to predict relations between structure and physical

properties of nanomaterials, but validation and further improvement of these

calculations are only possible by interaction with experiments. This requires

experimental characterisation methods yielding local structure information with

sufficiently high precision. In fact, atom positions have to be measured with a

precision of the order of 1 pm, since a displacement of the atoms over such a

length may have a considerable effect on the material’s properties [136, 137]. For

example, strain induced by the lattice mismatch between a substrate and the

superconducting layer grown on top may double its critical temperature [138].

As already mentioned before, TEM is the most appropriate technique to provide

the required precision, since from all possible imaging particles, electrons

interact most strongly with matter [59,60].

The first studies on the feasibility of precise structure determination through

TEM were based on simplified models and simulations [135, 139, 140]. These

studies showed that TEM has indeed the potential to provide structure charac-

terisation with a precision that is orders of magnitude better than the resolution

of the microscope, but this requires a quantitative model-based interpretation of
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the images. A merely visual interpretation is inadequate. The methodology for

the quantitative approach required is provided by statistical parameter estimation

theory. Meanwhile, the feasibility of this approach has been demonstrated not

only in simulations, but also in practice [75, 141–143]. The starting point of the

quantitative approach mentioned above is the notion that we are not so much

interested in the electron microscopy images as such, but rather in the informa-

tion - structural and chemical - of the sample under study. Image quality and

resolution are therefore of subordinate importance. Images are to be considered

as data planes, from which sample structure parameters, such as atom positions,

particle sizes and fiber diameters, have to be estimated as precisely as possible.

For this, we need a parametric model of the images that includes all ingredients

to perform a computer simulation of the images (such as electron-specimen

interaction, microscope transfer and image detection). If first principles based

models cannot be derived, or are too complex for their intended use, simplified

models may be used. The model is parametric in the unknown sample structure

parameters, which are estimated by fitting the model to the experimental

images using a criterion of goodness of fit, such as least squares or maximum

likelihood [144]. Structure determination thus becomes a parameter estimation

problem. Using this statistical parameter estimation based methodology, not

only structural information, but also chemical information can be extracted from

electron microscopy data. Indeed, it has been shown to be possible to quantify

electron energy loss (EELS) spectra [145] and to relatively quantify the chemical

composition of atom columns from HAADF STEM images [146] using the same

methodology. The quantification of HAADF STEM images in terms of chemical

composition could efficiently be solved using a simple parametric incoherent

imaging model to describe the image intensities. The parameters of this model

are then estimated using least squares estimation and interpreted in terms of

total intensities scattered by the atom columns. Recent work has shown that

such scattered intensities can be further explored in order to count the number

of atoms that are present in an atom column [76,77]. Quantifying larger fields of

view of experimental HAADF STEM images can nowadays be performed using

the StatSTEM program [147], were an efficient algorithm is implemented that

suits this purpose.

Ultimately, the precision with which the parameters can be estimated is limited

by counting statistics. Indeed, due to noise, the pixel values that constitute the

experimental images will fluctuate randomly from experiment to experiment.
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These pixel values, which we will from now on refer to as observations, can

therefore be modelled as random variables, characterised by a joint probability

density function (PDF) (in the case of continuous observations) or a joint prob-

ability function (PF) (in the case of discrete observations, such as the Poisson

counting results). Use of the concept of Fisher information [148] allows one

to derive an expression for the highest attainable precision with which the

structure parameters of the sample under study can be estimated unbiasedly.

This expression defines a lower bound on the parameter variance. This bound,

which is known as the Cramér-Rao lower bound (CRLB), can be derived from

the P(D)F of the observations. The CRLB relies on weak regularity conditions

on the P(D)F of the observations [148]. One of these conditions is that the P(D)F

should be continuously differentiable with respect to the parameters. The CRLB

is generally a function of the sample parameters, the microscope parameters,

and the electron dose. It provides quantitative insight into what precision

might be achieved from the available image(s). It also provides insight into the

sensitivity of the precision to the parameter values. An important application

for which the CRLB can be used is statistical experiment design. Experiment

design is the selection of free variables in an experiment to improve the precision

of the estimated parameters. By calculating the CRLB as a function of the

microscope settings, these experimental settings can be optimised so as to attain

the highest precision [132, 139, 140, 149–155]. The approach for experiment

design also provides the possibility to decide if new instrumental developments

result in significantly higher attainable precisions. In this sense, it provides

the framework to improve the balance between precision on the one hand and

cost, complexity and size of the instrument on the other hand. For example,

in this thesis, the inner and outer detector angles of the STEM detector have

been optimised, where exact optimal values for both angles are proposed for

detecting and locating light elements. In practice, however, the camera length

of the diffraction pattern determines the range of collected diffraction angles,

which is a restricted parameter in the microscope as only a discrete number of

camera lengths are available. Manufacturers of new microscopes could therefore

consider to optimise the instrument by making the camera length a continuously

variable parameter, which in theory is possible by tuning the lens currents of the

diffraction and projector lenses.

The CRLB, as already mentioned above, requires the P(D)F of the observations

to be continuously differentiable with respect to the parameters. However, when
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estimating a so-called restricted (or, discrete) parameter from a HR(S)TEM im-

age, such as the atomic number (Z), or the number of atoms in a projected atom

column, this condition is no longer satisfied and hence the CRLB is not defined.

Therefore, an alternative approach is developed for estimating discrete parame-

ters using the principles of detection theory [156–159]. This framework allows

one to formulate a discrete parameter estimation problem as a binary or multiple

hypothesis test, where each hypothesis corresponds, for example, to the assump-

tion of a specific Z value or a specific number of atoms in the column. Further-

more, statistical detection theory provides the tools to compute the probability

to assign an incorrect hypothesis. This so-called probability of error can be com-

puted as a function of the experimental settings and hence can be used instead

of the CRLB to optimise the experiment design for discrete parameter estimation

problems.

1.5 What to expect in this thesis?

So far, studies on the precision of atomic scale measurements from HRTEM

images considered the estimation of the position [60, 129, 132, 135, 139–141,144,

150, 151, 160] and thickness [161] of atoms (or atom columns in projection). In

this thesis, we will quantitatively obtain the optimal experiment design to detect

and locate light atoms and to count the number of atoms in a projected atom

column from HRTEM and HRSTEM images.

We will start in a simple way by studying the problem of estimating the atomic

number Z from a HRSTEM image of a single isolated atom, using the principles

of detection theory [156–159]. In the problem of identifying the atomic number

Z, a priori knowledge concerning possible solutions for the different hypotheses

is usually available. In such cases, the question reduces to distinguishing between

a finite plausible set of values for the atomic numbers Z, given the experimental

HR(S)TEM observations. Detection theory provides the tools to decide between

2 or more hypotheses - where each hypothesis corresponds to the assumption

of a specific Z value or a specific thickness - and to compute the experimental

settings minimising the probability to assign an incorrect hypothesis. In this way

the probability of error can be computed in order to optimise the experiment

design. In particular, we will start by analysing the detection performance to the

inner detector radius when deciding between two different atomic numbers Z for

a single atom. In the beginning of this thesis, we were only able to calculate the
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probability of error by performing numerous noise realisations and computing

the fraction of correctly assigned hypotheses, as no analytical expression for

the probability of error was derived yet. Therefore, an alternative criterion,

the Kullback-Leibler divergence was first proposed, circumventing the need of

successive noise realisations.

In a second step of this research, an analytical expression for the probability of

error was obtained, for different possible performance measures that can be used,

i.e. peak intensities, scattering cross-sections or HR(S)TEM images on a pixel

by pixel basis. This analytical expression is then used as an optimality criterion

to optimise the experiment design, first to identify the atomic number Z of an

atom in a crystalline specimen, and later to detect light atoms from realistic

HR(S)TEM image simulations. In particular, the inner and outer detector

angles of the annular STEM detector are both optimised, first to determine the

chemical composition at the interface of a crystalline specimen, and also for

the detection of light atoms. One can not only investigate the optimal detector

design in order to identify the atomic number Z, or detect light atoms, but also

derive the optimal detector settings to optimise the precision with which the

atom column positions can be estimated. The attainable precision with which

unknown continuous structure parameters can be estimated, can be obtained

using the concept of Fisher information. The ultimate precision is given by the

lowest possible variance with which an unknown parameter can be estimated

from a set of observations of which the probability distribution function is

assumed to be known [148, 162, 163]. An expression for this lower bound on

the variance with which the atom column positions can be estimated from

HR(S)TEM images can be determined and is given by the so-called Cramér-Rao

lower bound (CRLB) [148, 160, 163–165]. Since the CRLB is independent of

the used estimation method, it gives the intrinsic limit to the precision that

can be obtained. This lower bound is a function of the microscope settings, of

which at least some are adjustable, like the annular STEM detector and probe

settings. The optimal statistical experiment design of a HR(S)TEM experiment

for locating light atoms is then given by the microscope settings that minimise

the CRLB [132, 151]. In particular, the inner and outer detector angles of the

annular STEM detector are optimised for detecting and locating light atoms.

This provides us not only the optimal detector region, but moreover the precise

optimal detector angles. The use of recently developed pixelated detectors

enables a high flexibility in the choice of detector settings [70, 166, 167] and

allow one the collect the scattered signal (CBED pattern) for each probe position.
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The result is a 4D-dataset (2D CBED - 2D image scan), which contains all the

information about the electron-sample interaction for the scanned area. Another

very recently developed and promising technique is atomic resolution electron

ptychography [168]. This technique enables the reconstruction of phase-contrast

images in STEM under zero-aberration conditions required for optimal simul-

taneous incoherent Z-contrast imaging. The phase image can be reconstructed

from the 4D-dataset acquired with a recently developed high-speed pixelated

detector [70]. As the analysis of such 4D-datasets will require a sufficient amount

of time, it is appropriate to know which area in the detector plane is the most

sensitive and contains the most information in order to detect and locate light

atoms.

In a third step, the probability of error for multiple hypothesis testing is used to

optimise the experiment design for nanoparticle atom-counting. Hereby, the aim

of this research was to investigate which imaging technique is optimal in terms

of obtaining the lowest probability to miscount the number of atoms: HRTEM or

HRSTEM. In this comparison, the incoming electron dose is kept constant as it

is a limiting factor in both imaging modes. In the case of HRSTEM, the detector

design is optimised, while in the case of HRTEM the spherical aberration and

defocus are the optimised parameters.

Furthermore, statistical parameter estimation theory has been applied in order to

obtain precise results for the atom column positions in different practical appli-

cations. The estimated atom column positions are then used in the quantification

of a domain wall in a LiNbO3 crystal, and for calculating the angle between the

B-site atoms and the oxygen atoms in perovskite heterostructures.

The outline of this thesis is as follows. In chapter 2, the electron-specimen in-

teraction is described as well as the different simulation methods applied for the

HRTEM and HRSTEM image simulations performed in this thesis. In chapter 3,

the basic principles of statistical experiment design are given, where the proba-

bility of error and the attainable precision are proposed as quantitative perfor-

mance measures for discrete and continuous estimation problems, respectively.

Both quantities allow one to evaluate, optimise and compare different experi-

mental settings for different research purposes. In chapter 4, the probability of

error is used to optimise the experiment design in order to identify the chemical

composition, i.e. by estimating the atomic number Z from HRSTEM images, both

of a single isolated atom as well as of an atom at the interface in a crystalline
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specimen. In chapter 5, the optimal experiment design is investigated in order

to detect and locate light atoms from HR(S)TEM images using the probability of

error and the concept of Fisher information as an optimality criterion, respec-

tively. Hereby, it is investigated if a single optimal design is obtained for both

the detection and locating problem of light atoms. In chapter 6, the probability

of error is used to optimise the experiment design of a HRTEM and HRSTEM ex-

periment in order to count the number of atoms from a projected atom column.

Furthermore, in this chapter it is investigated which imaging mode is optimal

for nanoparticle atom-counting, using different possible performance measures,

HRTEM or HRSTEM. Some practical applications using statistical parameter es-

timation theory are presented in chapter 7, and finally in chapter 8, conclusions

are drawn.
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2Electron-Specimen Interaction

2.1 Introduction

In this chapter, the quantummechanical description of the electron-specimen in-

teraction will be given, based on derivations given in chapters 3, 5 and 6 of [169]

and chapter 10 of [62]. For more details, we would therefore like to refer the in-

terested reader to these two books. Although the electron-specimen interaction

only occurs in a very limited trajectory of the electrons inside the microscope, it

is the most difficult part to calculate due to the strong interaction with the spec-

imen’s potential. Depending on the thickness and the atom types present in the

specimen, the electrons can be scattered many times when passing through the

specimen. The electron-specimen interaction is called kinematical if the electron

scatters only once while it passes the specimen, otherwise the scattering is called

dynamical.

In principle, the electrons behave relativistically at the beam energies used in

the electron microscope (50-300 keV), which means that it is not correct to de-

scribe them with the Schrödinger equation. Instead, the Dirac equation would

be the correct wave equation describing relativistic electrons, however, it is sig-

nificantly more difficult to work with mathematically. Therefore, it has become

traditional to simply use the non-relativistic Schrödinger equation, in which the

correct relativistic electron wavelength and mass are being substituted. This ap-

proach has been compared to more accurate calculations using the Dirac equation

and it has been shown by Fujiwara [170], Ferwerda [171,172], and Jagannathan et

al. [173,174] that this is usually accurate enough in the typical energy ranges used

in the electron microscope. In particular, the influence of using the Dirac equa-

tion only leads to a difference below 0.1% in normalised scattering amplitude, as

compared to simulations using the non-relativistic Schrödinger equation [175].

Only for energies of the order of 1,000 keV or higher, this approximation may
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introduce small errors [169]. As this approach is much easier to work with, only

the Schrödinger equation will be introduced in this chapter.

The mathematical description of the electron-specimen interaction requires the

knowledge of the specimen potential seen by the incident electron beam. There-

fore, in the next section, the approximation of the specimen potential will be

presented.

2.2 Specimen potential

If we consider a specimen instead of a single, isolated atom, the incident electrons

interact with the total electrostatic Coulomb potential of the specimen as a whole.

Simulating an electron microscope image requires knowledge of the position of

all atoms in the specimen, along with their atomic numbers. The question is then

how the atomic potentials of the individual atoms can be combined to obtain the

total potential of the specimen. The most simple approach is a linear superpo-

sition of all spherically symmetric atomic potentials which are contained in the

specimen [169]:

V(r) =
N∑

i=1

Vi(r− ri), (2.1)

where r = (x,y,z) is a three-dimensional coordinate vector and ri = (xi ,yi , zi )

corresponds to the coordinate vector of atom i in the crystal unit cell, with its

corresponding atomic potential Vi(r). Throughout this thesis we will always use

bold symbols to denote vectors. For single atoms separated by a distance that

is large as compared to the atom size this linear superposition approximation

would be exact. The effective root-mean-square size of the atoms as determined

by the projected atomic potential is about two ångströms in diameter [169].

Note that the effective full-width-half-maximum of a single atom image may

be smaller because of the strong potential near the nucleus of each atom. In a

realistic solid specimen, however, the atoms are bound together, causing their

outer valence electrons to have been rearranged slightly. The primary interaction

resulting in high angle scattering is the interaction between the incident electrons

and the atomic nucleus’ electrostatic Coulomb potential.

Knowing the expression for the total specimen potential, the electron-specimen

interaction can be described mathematically.
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2.3 Electron-specimen interaction

If we assume that the potential of the specimen is stationary, then the wave func-

tion of the electron in the specimen can be calculated using the time-independent

Schrödinger equation

−~2
2m

∆Ψ(r)− eV(r)Ψ(r) = E0Ψ(r), (2.2)

with ~ = h/2π being Planck’s constant divided by 2π, m the relativistic mass of

the electron, e the magnitude of the electron charge, ∆ the three-dimensional

Laplacian operator, V(r) the electrostatic potential in the specimen, r a three-

dimensional coordinate vector and E0 = eV0 the kinetic energy of the incident

electrons. Only elastic processes will be considered so the energy will remain

constant. The wave vector k0 and the kinetic energy of the incident wave are

respectively given by:

E0 =
h2k20
2m

, (2.3)

k0 =
1

λ
(2.4)

where λ corresponds to the relativistically corrected electron wavelength. Substi-

tution of equation (2.3) into the Schrödinger equation (2.2) gives

(
∆+4π2k20 +

2me

~2
V(r)

)
Ψ(r) = 0. (2.5)

We will first consider the electron-specimen interaction of a (weak) phase object

in the kinematical approximation.

2.4 Weak phase object approximation

In the weak phase object approximation, dynamical scattering of the electrons

in the specimen foil is neglected and therefore, this approximation is not valid

for most of the practical specimens used in the electron microscope. Although

in principle correct quantitative information cannot be retrieved using this

approximation, it can give a good qualitative insight in the electron-specimen

interaction and moreover, it provides a good starting point for more advanced

methods, such as the multislice method, which is able to describe multiple
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scattering of electrons in a thick specimen foil.

If we now consider a specimen that is sufficiently thin, we can neglect the propa-

gator term, ∆, in equation (2.5), and project the specimen onto a single plane. A

solution then has to be found of the following equation:

(
4π2k20 +

2me

~2
V(R)

)
Ψ(R) = 0. (2.6)

A formal solution of this equation is known as the phase object approximation and

can be expressed as follows [62]:

Ψ(R) = T (R)ψ0(R), (2.7)

with

T (R) = eiσvz(R) (2.8)

vz(R) = vz(x,y) =

+∞∫

−∞

V(x,y,z)dz (2.9)

σ =
2πmeλ

h2
, (2.10)

and where ψ0(R) equals the wave function of the incident electron, T (R) is the

transmission operator, vz(R) is the projected electrostatic atomic potential along

the optical axis z and σ denotes the interaction parameter. As a small change in

the wavelength is equivalent to a phase shift of the electron as it passes through

the sample, it can be seen that a thin specimen acts as a phase shifting layer or a

phase grating [62].

If the phase change is small (much smaller than a radian), the exponential in the

exit wave function of equation (2.7) can be approximated by its Taylor expansion

[169]:

Ψ(R) ≈ (1 + iσvz(R) + ...)ψ0(R) (2.11)

which is known as the so-called weak phase object approximation. To simulate

a single, isolated atom with low to medium atomic number, the weak phase

approximation is an appropriate method.
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2.5. Thick specimen foils

The weak phase object approximation can be used to describe theoretically the

interaction between electrons and a very thin specimen, or a thin specimen con-

sisting of light atoms. In general, the specimen must be substantially thinner than

the mean free path of all the inelastic scattering events, which depends on the

atom types present in the specimen. In practice, specimens consisting of heavy

scatterers meet this criterion only for a thickness below a few nm, but biological

samples, for example, may reach thicknesses up to 50 nm and still behave as a

weak phase object [176]. The weak phase object approximation will be used in

chapter 4 where, as a first proof of concept, the estimation of the atomic num-

ber of a single isolated atom in HRSTEM will be investigated. However, this ap-

proximation is not valid for realistic specimen thicknesses used in a HR(S)TEM.

Therefore, one needs more elaborate theories to describe the dynamical electron-

specimen interaction of thicker specimens, such as the multislice method.

2.5 Thick specimen foils

We will now look at the electron-specimen interaction of thick specimen foils.

The kinetic energy of the incident electrons is known to be much larger than

the electrostatic potential of the specimen foil V(r). Therefore, the electron mo-

tion will be predominantly in the forward direction and the specimen might be

considered as a small perturbation on the electron’s motion. The electron wave

function can then be regarded as a modulated plane wave:

Ψ(r) = ψ(r)e2πik0·r, (2.12)

with k0 the three-dimensional wave vector of the incident plane wave defined by

k20 = k
2
x +k

2
y +k

2
z =

1
λ2
, with kx and ky one-dimensional wave vectors perpendicular

to the optical axis and kz the one-dimensional wave vector parallel to the optical

axis, z. Substitution of equation (2.12) in equation (2.5) requires the calculation

of ∆Ψ(r), which can be done by using the following Laplacian identity:

∆(UV ) =U∆(V ) + 2(∇U ) · (∇V ) +V∆U, (2.13)

for U and V being three-dimensional functions.

This leads to:

∆Ψ(r) =
(
∆ψ(r) + 4πik0 ·∇ψ(r)− 4π2k20ψ(r)

)
e2πik0·r. (2.14)
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Chapter 2. Electron-specimen interaction

Therefore, equation (2.5) can be rewritten as

(
∆ψ(r) + 4πik0 ·∇ψ(r) +

2me

~2
V(r)ψ(r)

)
e2πik0·r = 0. (2.15)

As this must hold for any position r, it follows that

∆ψ(r) + 4πik0 ·∇ψ(r) +
2me

~2
V(r)ψ(r) = 0. (2.16)

The three-dimensional gradient operator∇ and the Laplacian operator∆ can now

be split into components parallel and perpendicular to the optical axis, which

allows to rewrite equation (2.16) as:



∂2

∂z2
+4πikz

∂

∂z
+∆xy +4πikxy ·∇xy +

2me

~2
V(r)


ψ(r) = 0, (2.17)

where ∆xy and ∇xy are the two-dimensional Laplacian and gradient operators,

respectively, and kxy is the two-dimensional vector given by (kx,ky). To solve

this equivalent form of the Schrödinger equation, knowledge of two boundary

conditions, at the entrance (z=0) and exit (z = ε) planes of the specimen is

required. As this equation appears hardly solvable when the crystal is not perfect

and simple, approximate solutions have to be sought.

High energy electrons are generally assumed to have a motion that is predom-

inantly in the forward z direction, resulting in a large component of the wave

vector kz and a slow change of ψ(r) with z, meaning that

∣∣∣∣∣∣
∂2ψ(r)

∂z2

∣∣∣∣∣∣≪
∣∣∣∣∣4πikz

∂ψ(r)

∂z

∣∣∣∣∣ . (2.18)

Equation (2.17) can therefore be approximated as:

(
4πikz

∂

∂z
+∆xy +4πikxy ·∇xy +

2me

~2
V(r)

)
ψ(r) = 0. (2.19)

Ignoring the term containing the second derivative with respect to z is sometimes

referred as ignoring backscattered electrons or forward scattering approximation

which is appropriate for high energy electrons [177–179]. This approximation is

probably better known as the paraxial approximation of the Schrödinger equa-

tion. D. Van Dyck [178] has showed that the error introduced by neglecting the
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2.5. Thick specimen foils

second order derivative term, consists of two parts: the first one arises from the

omission of backscattered electrons, which is shown to be negligible. The sec-

ond part is due to a slight modification of the wave vector of the transmitted

electrons, which becomes important for highly dynamical diffraction in thicker

crystals. The latter effect causes the approximation to be only valid for crystal

thicknesses up to a few tens of nanometers.

The Schrödinger equation for fast electrons travelling along the wave vector k0

can now be written as first order differential equation in z:

∂ψ(r)

∂z
=

(
i

4πkz
∆xy −

kxy
kz
·∇xy +

k0

kz
iσV(r)

)
ψ(r). (2.20)

In the case of parallel illumination along the optical axis (kxy = 0 ) this reduces to

∂ψ(r)

∂z
=

(
iλ

4π
∆xy + iσV(r)

)
ψ(r), (2.21)

where the interaction parameter σ is defined in equation (2.10). It should be no-

ticed that equation (2.21) is of the same form as the time-dependent Schrödinger

equation in two-dimensional space, where the depth z plays the role of time t.

The theory of dynamical scattering has been studied by many scientists over the

years, in principle the main purpose is solving the differential equation (2.5), or

in the approximated form equation (2.19) which becomes (2.21) in the case where

kxy = 0. The two most popular groups of methods solving this equation are the

Bloch wave and the multislice methods. All these methods solve the Schrödinger

equation under certain approximations.

Bethe (1928) [180] was the first to describe the dynamical scattering theory in

the context of electron diffraction. He started from the Schrödinger equation and

performed a Fourier expansion on the specimen potential and the electron wave

function, with components that match the underlying periodicity of the crystal

lattice. In this way, he obtained a set of coupled linear dispersion equations

for the plane wave expansion coefficients that can be put in a matrix form and,

in the forward scattering approximation, can be expressed as an eigenvalue

problem. The Fourier components of the wave function have since become

known as Bloch waves in analogy with Bloch’s theorem in solid state physics.

Since Bethe’s original approach, several many-beam electron diffraction theories

have been developed which are in fact all reformulations of the original Bethe
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Chapter 2. Electron-specimen interaction

theory. Howie and Whelan [181] used a different starting point but ended

up with a set of coupled first order differential equations similar to the Bloch

wave method. Van Dyck [182] and Jap and Glaeser [183] have independently

developed a Feynman path integral formulation of the dynamical scattering

theory, which shows the equivalence between the multislice formula and the

Howie and Whelan equations. The history of the development of the theory

of dynamical diffraction of electrons has been given by Cowley [184], Self et

al. [185], Van Dyck [186], and Watanabe [187].

Cowley and Moodie [188] considered the dynamical scattering problem by

starting from a physical optics point of view and derived a method that has

become known as the multislice method. In this method the specimen is divided

into two-dimensional thin slices along the direction of the optical axis. The

electron beam alternately transverses a slice and propagates to the next slice.

If each slice is thin enough it can be regarded as a phase object and the prop-

agation between slices is given by the Fresnel diffraction equation, describing

propagation of waves in the near field [189]. Goodman and Moodie [190] later

expanded the multislice theory into an accessible form appropriate for numerical

implementation on a computer and showed how various theories of dynamical

scattering were related.

The methods that have been used to simulate electron microscopy images in this

thesis are based on the multislice theory. Therefore, only the applied multislice

methods are further discussed in the next section.

2.6 Multislice method

The multislice approach, which was first proposed by Cowley and Moodie [188],

gives a solution of the Schrödinger equation in the paraxial approximation, given

by equation (2.21). In this approximation it is assumed that the high-energy elec-

trons move predominantly in the forward z direction. Here we will follow the

derivation according to Kirkland [169] to come to the general multislice formula.

The starting point of the multislice approach states that the 3D atomic potential

of the specimen can be approximated by a set of 2D projections. Then, the spec-

imen’s potential will be subdivided in n slices in which the atomic potentials of

the different atoms in each slice of the specimen are being projected. In this case,
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2.6. Multislice method

every slice of the specimen will act as a pure phase plate or phase-grating and

will only modify the phase of the incident electron wave ψ(x,y,z) = ψ(R, z). After

the interaction with a certain slice, the wave function will propagate to the next

slice. The multislice algorithm then consists of these two succeeding steps - trans-

mission through a slice and propagation to the next slice - until the wave function

reaches the specified thickness z of the specimen on the exit plane of the last slice.

A schematic scheme of the multislice decomposition of a thick specimen is shown

in Figure 2.1.

Figure 2.1: Schematic scheme of the multislice decomposition of a thick speci-

men. (a) The specimen divided in thin slices, and (b) each slice is treated as a

transmission step (solid line) and a propagation step (vacuum between the slices).

This process is mathematically described as follows [169]

ψ(x,y,z +∆z) = p(x,y,∆z)⊗ [t(x,y,z)ψ(x,y,z)] +O(∆z2), (2.22)

in which

t(x,y,z) = exp

(
iσ

∫ z+∆z

z
V(x,y,z′)dz′

)
(2.23)

and

p(x,y,∆z) = exp

(
iλ∆z

4π
∆xy

)
, (2.24)

correspond to the transmission function and propagation function of the electron

wave, respectively. The convolution product of two functions, represented by the

symbol ⊗ is defined as

f (r)⊗ h(r) =
∫
f (r′)h(r− r′)dr′ . (2.25)

We can now label the different potential slices as n = 0,1,2, ... for a corresponding

depth zn, which enables us to rewrite equation (2.22) as follows:

ψn+1(x,y) = pn(x,y,∆z)⊗ [tn(x,y)ψn(x,y)] +O(∆z2), (2.26)
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Chapter 2. Electron-specimen interaction

with ψn(x,y) being the electron wave function at the entrance of slice n,

with its corresponding transmission function tn(x,y) and propagation function

pn(x,y,∆z).

2.7 Thermal vibration of the specimen atoms

In a crystal, atoms are constantly vibrating, even at temperature T = 0K [191].

Due to this thermal movements, the atoms are displaced from their ideal crystal

positions. This leads to the fact that the atomic potential, when averaged over

time, is blurred, which results in a decrease of the atomic scattering potential.

In the first place, this damping of the atomic potential causes the intensities of

diffracted beams to become smaller. However, there is also a second effect of

thermal vibration of the atoms. The resulting disorder in the crystal lattice gives

rise to the fact that some electrons are ‘lost’ for Bragg reflection. These electrons

neither stay in the undiffracted beam, nor are they being diffracted into a Bragg

reflection. As they ‘diffuse’ this is known as thermal diffuse scattering, or simply

TDS [192].

In STEM images, a substantial amount of the intensity is formed by TDS elec-

trons, caused by the thermal vibration of the atoms in the specimen [169]. At

room temperature, the atoms in the specimen vibrate slightly. The atomic vibra-

tions are small as compared to the typical interatomic distance so this effect is

expected to be small, but it can nevertheless lead to some interesting effects. TDS

particularly leads to a diffuse background intensity in the diffraction pattern and

shows peaks at the atomic column positions [193].

Appropriate methods to include TDS in HR(S)TEM image simulations are ei-

ther the frozen phonon approximation or the absorptive potential method [194],

which have both been used within the multislice approach in this thesis. For the

simulation of HRTEM images, the frozen phonon method is used, while the ab-

sorptive potential method is applied for the simulation of the HRSTEM images in

this thesis. Both methods will be further explained in the following subsections.

2.7.1 Frozen phonon approximation

In principle, we should treat the electron-phonon scattering based on a many-

body quantum mechanical framework, which treats the thermal scattering as

a quantum excitation of the crystal [195]. However, under the single elastic
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2.7.1. Frozen phonon approximation

scattering approximation, the rigorous quantum mechanical description is

equivalent to the frozen phonon model [169, 196]. Furthermore, multiple

scattering of TDS electrons can be neglected for STEM image simulations as

elastic scattering mainly constitutes small angle scattering and therefore only

leads to an unsignificant redistribution of intensity in the diffraction plane [194].

The frozen phonon model is based on the rather classical idea that the time that

the electrons in the microscope interact with the specimen (about 7.1 fs) is much

shorter than the vibration period of an atom (0.1 to 1 ps for optical phonons

and higher for acoustic phonons) [62, 169]. This is a result of the fact that the

electron beam moves at about 0.6 times the speed of light [62]. Therefore, when

the imaging electron is inside the specimen, it will see the atoms being frozen

at displaced positions. Typically, the current in the microscope is small enough

such that the time between two successive imaging electrons passing through the

specimen is long, as compared to the oscillation period of the thermal phonons

in the specimen. Therefore, each successive imaging electron sees a slightly

different displacement configuration of atoms in the specimen. All different

atom configurations are uncorrelated with each other so during the exposure

time (some ms in the case of TEM), many of these configurations are averaged

incoherently.

In principle, this method uses the multislice algorithm, applied to a crystal

supercell containing atoms at statistically displaced positions, where the differ-

ent displacement configurations are caused by thermal motion. Many of these

calculations have to be performed for different displacement configurations,

which are then incoherently averaged to give the resulting intensity pattern. Van

Dyck proved [197] that the frozen phonon method is fully equivalent to a full

quantum mechanical treatment of the inelastic phonon scattering model.

The frozen phonon approach can be numerically implemented by performing

repeated multislice simulations for different atomic coordinate configurations.

These different configurations are either taken as outcome of realistic phonon

calculations, retrieved from ab initio (density functional theory) calculations or

molecular dynamic calculations, or as outcome of calculations using the approx-

imated Einstein model in which the atoms vibrate independently, neglecting any

correlation of atomic displacements. The latter is also often referred to as the

frozen lattice or uncorrelated phonon approximation. Muller et al. showed that

frozen lattice approximation leads to results that are in good agreement with the
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Chapter 2. Electron-specimen interaction

complete frozen phonon model [198]. The final image or diffraction pattern is

the averaged intensity over the different displacement configurations. For all the

frozen phonon simulations that are performed in this thesis the Einstein model

was used.

2.7.2 Absorptive potential method

The largest drawback of the frozen phonon method, is that the computation

of the image intensity for a large number of configurations (100-500) is time-

consuming. Certainly in the case of HRSTEM, where every scanned pixel is

computed in a serial way the frozen phonon method is time-consuming. There-

fore, a computationally less-intensive multislice algorithm has been used for the

HRSTEM image simulations in this thesis, while the HRTEM simulations are

performed using the frozen phonon model.

This computationally less-intensive method is based on the fact that the inelas-

tically scattered electrons are being distributed at angles other than the Bragg

angles; thus, they are considered to be effectively absorbed by the crystal as long

as the elastically scattered wave is concerned. This is the reason that the loss of

electrons caused by TDS can be described as an absorption effect in the imaging of

Bragg reflected electrons, which can be taken into account by a complex crystal

potential, as was first proposed by Allen et al. [199] and Ishizuka [200].

The main approximation that is made in the absorptive potential method is

the assumption that the TDS scattered electrons directly propagate towards the

detector, without further interaction with the specimen. For small specimen

thicknesses (up to about 50 nm) and for light atoms, this approximation is quite

accurate and deviates less than 4% from the frozen phonon approximation [201].

In practice the effect of TDS in the absorptive potential method is implemented

within the multislice approach by adding the imaginary component VTDS , the

TDS-absorptive potential, to the electrostatic Coulomb potential VCoul(R), which

is then the real component of the total projected potential of the crystal slice

Vp(R) [201]:

Vp(R) = VCoul(R) + iVTDS(R). (2.27)

The TDS-absorptive potential is defined by [194,199,200]:

VTDS(R) = FT
−1
g→R

[
σ∆z

Ω

∑

n

e2πig·Rn
∫
f nS f

n
S−ge

−Bng2
(
1− e−2Bn[S2−S·g]

)
d2S

]
, (2.28)
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2.7.2. Absorptive potential method

where n counts the number of atoms with corresponding 2D coordinate vectors

Rn within the centre plane of the slice, σ is the interaction constant, Ω is the

volume of the crystal unit cell, g is a reciprocal lattice vector, Bn = 2π〈un(t)〉2
is the Debye-Waller factor related to the atomic displacement vectors un, f

n
q is

the scattering factor of atom n with scattering vector q, and the integration is

performed over all possible scattering vectors S. The inverse Fourier transform

FT −1g→R and the forward Fourier transform FTR→g are defined as follows:

FTR→g[f (R)] = F (g) =

∞∫

−∞

f (R)e−i2πg·RdR (2.29)

FT −1g→R[F (g)] = f (R) =

∞∫

−∞

F (g)ei2πg·Rdg. (2.30)

TDS electrons play a major role in STEM when using an HAADF detector which

mainly collects TDS electrons and inelastically scattered electrons. In contrast

to HRTEM imaging, simulation of STEM imaging with TDS electrons can be

performed with a simple multislice approximation [199, 200, 202, 203] using an

absorptive potential computed from e.g. the parametrization of Weickenmeier

and Kohl [204]. This is possible in STEM imaging since multiple scattering of

TDS electrons does not need to be taken into account and the interaction of TDS

electrons with the crystal potential can be neglected. In [194] it is shown how

a modified multislice approach using TDS-emission potentials can be used to

obtain an approximation for the TDS intensity in HRTEM images using plane

wave illumination.

In the absorptive potential multislice calculation, Vp as given in equation (2.27) is

used to describe the dynamical interaction of the electron beamwith the projected

potential as follows:

Ψ(R) = eiσ∆zVp(R)ψ0(R) (2.31)

For slice n, the intensity of the TDS scattered electrons that reach the detector is

then given by:

I
(n)
TDS =

∫

detector

I (n)(R)V
(n)
TDS(R)d

2R, (2.32)
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for I (n) being the intensity of the wave function entering slice n and V
(n)
TDS the

TDS potential as defined in equation (2.28) of the atoms in slice n. Recall that

the TDS signal leads to a smooth background in the diffraction plane and only

gives small contributions to the Bragg reflections. If electron waves from different

point sources of different atoms would be coherent, the TDS intensity would lead

to peaks at positions of Bragg reflections. Therefore, it is assumed to be a good

approximation to treat electron waves coming from different TDS point sources

as being incoherent [194]. The total TDS intensity on the detector can then be

obtained by incoherently summing up the contributions of all slices as follows:

I
(total)
TDS =

∑

n

I
(n)
TDS (2.33)

The absorptive potential method is used within the multislice approach for all

HRSTEM simulations that have been performed in this thesis.

2.8 Imaging in HRSTEM

The image simulation process when using the multislice approach, is schemat-

ically shown in Figure 2.2 for a HRSTEM simulation of a SrTiO3 crystal as an

example.

The imaging process starts with the incident electron wave function

ψ(x,y,0) = ψ0(x,y) at position (xp,yp). The specimen potential of the SrTiO3

crystal is subdivided in two different types of slices, corresponding to the

different atom planes in the unit cell: a slice containing the projected potentials

of the Sr and O atoms, and a slice including the projected Ti and O potentials

at their respective crystal coordinates. In a first step (n = 1), the incident wave

function transmits through the first slice, containing Sr and O, while interacting

with the corresponding projected atomic potentials. Then, it propagates to the

next slice where it interacts with the projected atomic potentials of the Ti and O

atoms (n = 2), to propagate again to interact with the Sr-O slice (n = 3). These

succeeding steps of propagation and transmission or interaction, follow each

other up until the electron wave function reaches the exit plane of the crystalline

specimen. The resulting exit wave function ψn+1(x,y) = ψ(x,y,z) carries the

information of the electron-specimen interaction.
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2.8. Imaging in HRSTEM

After the electron beam passed through the specimen, the scattered electrons

propagate further towards the annular detector. Since the ADF detector is placed

in the diffraction plane, it is the Fourier transform of the exit wave function that

reaches the detector. The integrated intensity is then given by the squared abso-

lute wave function in reciprocal space, multiplied with the detector functionD(g).

This integrated intensity denotes the total amount of scattered electron signal at

the probe position (xp,yp), and is assigned to a pixel value in the simulated image.

For all different positions of the scanning probe, this calculation is performed in

order to simulate the complete HRSTEM image.
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Figure 2.2: Schematic representation of the image simulation process where

the multislice decomposition of a SrTiO3 unit cell is performed to calculate the

electron-specimen interaction. This figure is reproduced with permission from

Martinez (2015) [205].
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2.9 Imaging in HRTEM

In HRTEM, after the electron beam has interacted with the specimen, it passes

through the lens system of the microscope. The exit wave is then magnified by

the objective lens and the intermediate lenses and transferred to the image plane.

Ideally, the electron beam is parallel to the optical axis, fully coherent, and the

electron lenses are aberration-free. However, in practice, the imaging process is

limited by spatial and temporal incoherence effects, which causes it to become

only a partially coherent process. Spatial incoherence is caused by the fact that

the illuminating beam is not perfectly parallel, and it will always have a small

distribution of angles. This is a result of the fact that the electron source has a

finite area. Temporal incoherence results from fluctuations in the energy of the

thermally emitted electrons and small instabilities in lens current supplies. A

small spread in energy of the incident electron is equivalent to a small (incoher-

ent) spread in defocus values due to the chromatic aberration of the objective lens.

If there is a significant spread in illumination angles and the specimen is thick,

then each illumination angle incident on the specimen may interact differently

with the specimen. Different illumination angles may satisfy different diffraction

conditions in the specimen. The correct way to include a spread in illumination

angles and a spread in beam energy and lens currents in a thick specimen is to

perform a multislice simulation for each angle in the condenser aperture, then

integrate over a range of defocus values and finally sum the results incoherently

[206]. If gβ is one angle in the condenser aperture then the initial wave function

is given by:

ψ0(R) = e
2πigβ ·R (2.34)

This incident wave function interacts with the specimen foil yielding a wave

function that explicitly depends of gβ , Ψ(R,gβ ). Each of these wave functions

should be convolved with the point spread function T (R, f +δf ) and incoherently

summed over a range of illumination angles and defocus values to give the final

image intensity:

I(R) =

"

gβ

∫

δf

p(gβ)p(δf )|Ψ(R,gβ )⊗ T (R, f + δf )|2d2gβdδf , (2.35)

in which p(gβ) and p(δf ) are the normalised distribution functions of the different

illumination angles and defocus values, respectively. The integration over gβ
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is time-consuming and computationally demanding as it is included in the

wave function Ψ(R,gβ ). Therefore, a multislice simulation is required for every

different orientation of the illumination angle. In comparison, the integration

over the defocus spread δf is relatively quick since it is included in the point

spread function, which is only convolved with the exit wave function after

the electron-specimen interaction (and thus after the multislice simulations).

Equation (3.14) gives the general expression for the image intensity of a HRTEM

image. As numerically integrating over both the defocus spread and the illumi-

nation angle spread is computationally demanding, approximate solutions are

often used in practice.

In the case where the specimen is thin enough (in the phase object appoximation),

so that its geometrical extent along the optic axis can be ignored, the illumination

angle can be included in either the specimen or the transfer function of the objec-

tive lens [169], which means that

|Ψ(R,gβ )⊗ T (R, f + δf )| = |Ψ(R)⊗ T (R, f + δf ,gβ )| (2.36)

The great advantage is then that one does not need to repeat the multislice calcu-

lation over the different orientations of the illumination angles any more. Thus,

for a phase object, equation (2.35) can be rewritten as follows [169]:

I(R) =

"

gβ

∫

δf

p(gβ)p(δf )|Ψ(R)⊗ T (R, f + δf ,gβ)|2d2gβdδf . (2.37)

In the perfectly coherent case, gβ = 0 and δf = 0, which means that the integrals in

equation (2.37) will dissapear. As a result, the image intensity for a thin specimen

in the perfectly coherent case is given by [62]

I(R) = [Ψ(R)⊗ T (R)][Ψ∗(R)⊗ T ∗(R)], (2.38)

where Ψ
∗(R) and T ∗(R) are the complex conjugates of the exit wave and the co-

herent point spread function, respectively. After taking the Fourier transform of

this expression and using the convolution and multiplication theorems one can

then write [169]:

I(g) = [Ψ(g)T (g)]⊗ [Ψ∗(−g)T ∗(−g)]

=

∫
Ψ(g′)T (g′)Ψ∗(g′ + g)T ∗(g′ + g)dg′

≡
∫
Tcc(g

′,g′ + g)Ψ(g′)Ψ∗(g′ + g)dg′ . (2.39)
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The new function, Tcc, is the so-called transmission cross coefficient or in short

TCC, which depends on the two spatial frequency vectors g′ and g′ + g. This

function expresses that each spatial frequency g′ in the exit wave function will

interfere with every other spatial frequency g′ + g in order to result in the final

image intensity. The TCC describes the strength of this pairwise interference.

The coherent expression for the TCC is the following:

T cohcc (g,g′) ≡ T (g)T ∗(g′) = A(g)A(g′)e−i[χ(g)−χ(g′ )], (2.40)

where A(g) denotes the aperture function defining an outer cut-off value for the

reciprocal vectors that are being included, and χ(g) describes the phase shift of

the electron wave in the back focal plane of the objective lens, resulting from the

lens aberrations:

χ(g) = πf λg2 +
π

2
Csλ

3g4 +
π

3
C5λ

5g6, (2.41)

where f denotes the expected defocus value, Cs the 3rd-order spherical aberra-

tion and C5 the 5th-order spherical aberration.

In practice, however, we need to include the effects of partial coherence now.

This means that integration over both spread functions, resulting from the spatial

and temporal incoherence effects, have to be included in the expression for the

perfectly coherent TCC for thin specimens, given by equation (2.40) [169]:

T
pc
cc (g,g

′) =

"

gβ

∫

δf

p(gβ)p(δf )T
coh
cc (g+ gβ ,g

′ + gβ , f + δf )dgβdδf . (2.42)

The image intensity for partially coherent imaging can then be obtained by

substituting this expression for the partially coherent TCC in equation (2.39).

However, this is not a trivial integral as in practice a large number of defocus

values and beam directions have to be included. The integral cannot be solved

analytically and numerically it is still very time-consuming. Therefore, it has

often been approximated for a weak phase object to save computation time and

effort.

For a weak phase object, in order to obtain an analytical expression for the the par-

tially coherent TCC given by equation (2.42), both spread functions are assumed
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Chapter 2. Electron-specimen interaction

to be Gaussian distributions, given by [169]:

p(gβ) =
1

πk2β
e
−g2β /k2β (2.43)

p(δf ) =
1√
π∆

e
−δ2f /∆

2

. (2.44)

In these expressions, kβ and ∆ are the 1/e half-width values of the Gaussian dis-

tributions, corresponding to the spread in illumination angles and the defocus

spread, respectively. kβ equals β/λ, for β being the beam semi-divergence angle.

By considering the spread functions one at a time and using a Taylor expansion

for the aberration function χ(g), the following approximate expression can be

found for the microscope’s partially coherent TCC [62]:

T
pc
cc (g,0) = A(g)e

−iχ(g) exp

[
−(πλ∆)

2

4u
g4

]
exp

[
−π

2β2

λ2u
(Csλ

3g3 − f λg)2
]
, (2.45)

where u = 1 + (πβ∆)2g2. Although this is an approximated expression, it is

very useful to work with since the temporal and spatial envelope functions both

appear in the form of multiplicative factors. In order to obtain the full not-

approximated expression, we would need to numerically integrate equation (2.35)

without applying Taylor expansions for the aberration function. However, since

nowadays the values of kβ and ∆ are sufficiently small, the approximation is valid

for most of the modern microscopes. For the HRTEM simulations in this thesis,

the exit wave has been simulated using the STEMsim software developed by Prof.

Dr. Andreas Rosenauer [201], which is then combined with the approximated ex-

pression (2.45) of the microscope transfer function for partially coherent imaging,

to result in the final image intensity.

2.10 Conclusions

In this chapter, the theory of the electron-specimen interaction and the usual ap-

proximations to include thermal diffuse scattering are described. The solution

of the Schrödinger equation that has been used for the HR(S)TEM image simula-

tions in this thesis, i.e. the multislice method, has been discussed. Also for thin

specimens, the weak phase object approximation has been derived and discussed.

Both methods will be used in chapter 4 for the estimation of the atomic number

in a thin specimen, and the detection and location problem of light elements in a

thicker specimen, respectively.
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3Statistical Experiment Design

3.1 Introduction

The performance of a HR(S)TEM experiment is often evaluated qualitatively,

which means in terms of direct visual interpretability. For this purpose, the image

contrast and signal-to-noise ratio (SNR) are useful criteria. However, as already

mentioned in the introduction of this thesis, electron microscopy has evolved

toward a quantitative technique in the last few years, aiming at accurate and

precise numbers for the parameters of interest. Therefore, images are interpreted

quantitatively, and a measure for the attainable precision is derived using the

principles of statistical experiment design [129]. These principles may be applied

to a wide range of sciences, where unknown parameters need to be measured as

precisely as possible from a certain experiment. In this thesis, the experiments

are quantitative HR(S)TEM measurements, which may be regarded as a set of

observations, characterised by the electron counting results made, for example,

with an annular STEM detector or a charged coupled device (CCD) camera in

the case of TEM. From those electron counting results, the unknown structure

parameters of the object under study have to be determined. In particular,

the atom column positions, the chemical composition of the specimen (i.e., the

atomic numbers Z) and the number of atoms in a projected atom column, will

have to be estimated in this thesis.

Typically, measurements will occur in the presence of fluctuations or noise,

which will fundamentally limit the precision with which the unknown pa-

rameters can be measured. The goal of statistical experiment design is to

derive the particular set of experimental settings that will result in the highest

possible precision with which unknown parameters can be determined. These

settings will then correspond to the optimal statistical experiment design. Using

statistical parameter estimation theory, these optimal settings can be derived

41



Chapter 3. Statistical experiment design

straightforwardly [60, 141, 144, 148, 150, 160, 207]. Another proposed method to

derive the optimal statistical experiment design, makes use of statistical detection

theory [156–158, 208, 209]. In this case, a statistical estimation problem will

be formulated as a hypothesis test in which the hypotheses can correspond,

for example, to the different possible atomic numbers Z of a specific projected

atom column. Furthermore, statistical detection theory provides the tools to

calculate the probability to choose the wrong hypothesis, both for binary and

for multiple hypothesis testing. It will then not be the precision with which the

unknown parameters can be determined that is optimised, but the probability to

choose the wrong hypothesis or the so-called probability of error. The experiment

design for which the precision and/or probability of error is optimal does not

necessarily correspond to the experimental settings leading to the highest SNR

or the best image contrast. Therefore, optimising the experiment design by

means of statistical methods is necessary. Furthermore, statistical experimental

design provides the electron microscopist with insight in which precision may

be obtained at which microscope settings. In this way, it shows the possible

benefit of the optimal settings as compared to the usual settings. The electron

microscopist may then decide whether it is advantageous to modify these usual

settings or not. Optimising the experiment design is a procedure that consists of

different steps.

To start, a statistical parametric model of the observations has to be defined. Since

the experimental HR(S)TEM image pixel values fluctuate randomly about their

expectation values, due to the presence of inherent noise, they can be modelled

as stochastic variables. By definition, a stochastic variable is characterised by its

probability (density) function, whereas a set of stochastic variables is characterised

by their joint probability (density) function [210]. The joint probability (density)

function defines both the expectation values of the observations, and the fluc-

tuations of these observations about their expectation values. The expectation

values are being described by a physical expectation model, that is parametric in

the unknown structure parameters. In quantitative HR(S)TEM, the expectation

model corresponds to the expected number of electron counts in the detected

image. It is a physical function of the experimental parameters, which contains

the electron-object interaction, the electron transfer in the microscope, and

the final image detection. In this thesis, the investigated parameters of the

expectation model are the projected atom column positions, the atom type, and

the number of atoms in a projected atom column (i.e. the thickness).

42



3.1. Introduction

When the expectation model of the observations is known, the next step in the

procedure of optimising the experiment design, is to specify the optimality crite-

rion. Since the purpose of the experiment is to estimate the unknown parameters

with the highest possible precision, the optimality criterion is preferably the

precision of the estimated parameters. Precision corresponds to the variance, or

the square root of the variance, i.e. the standard deviation, with which structure

parameters can be estimated. Therefore, the precision first has to be quantified,

which is possible for continuous parameters by using statistical parameter

estimation theory. The attainable precision can be derived from the parametric

statistical model of the observations, that is, the lower bound on the variance

with which the unknown parameters can be estimated unbiasedly [148, 162].

It can be shown that the so-called Cramér-Rao lower bound (CRLB) is a lower

bound for the class of unbiased estimators. An estimator is called unbiased if

its expectation value is equal to the true parameter value, in other words, an

unbiased estimator does not have any systematic error. The CRLB is a function of

the experimental settings, and therefore, the lower bound on the variance of each

unknown parameter could be considered as optimality criterion to be minimised.

However, simultaneous minimisation of the set of lower bounds corresponding

to the entire set of unknown parameters is usually impossible. Therefore, an

appropriate scalar measure, that is, a function of the matrix elements of the

CRLB, has to be chosen as optimality criterion according to the experimenter’s

specific purpose [154]. An overview of different possible scalar measures is given

in [152]. For an electron microscopist, a specific purpose might be to measure the

atom column positions as precisely as possible, irrespective of the precision of

the object thickness or of the atom numbers. Thus, a possible optimality criterion

is the sum of the lower bounds on the variance of the position coordinates.

In the case where the estimated parameter is discrete, such as, the atom type or

the number of atoms in a projected atom column, statistical detection theory

allows the derivation of the probability of error, which can then be used as

optimality criterion, instead of the attainable precision. This approach has first

been proposed in [157] to be further worked out for different research goals

in [158, 208, 209]. The probability of error itself does not provide us knowledge

on the attainable precision, but gives a way to derive those experimental settings

for which it is most probable that the unknown parameter is being determined

correctly.
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In a final step to optimise the experiment design, the chosen optimality criterion

has to be computed and evaluated for a whole range of different experimental pa-

rameters, which can be done by performing HR(S)TEM image simulations under

different imaging settings.

The organisation of this chapter is as follows. In section 3.2, the parametric sta-

tistical model of the observations is derived, and the derivation of the attain-

able precision from such a model is given by the Cramér-Rao lower bound which

is derived in section 3.3. The maximum likelihood estimator, that achieves the

Cramér-Rao lower bound asymptotically, that is, for an increasing number of ob-

servations, is here also discussed in section 3.4. In section 3.5, the concept of

statistical detection theory is explained and discussed as a quantitative tool to

optimise the experiment design for discrete estimation problems, and finally in

section 3.6 conclusions are drawn.

3.2 Parametric statistical model of the observations

Every HR(S)TEM experiment will contain certain inherent fluctuations. There-

fore, different sets of pixel observations will always slightly differ, although they

are made under the same imaging conditions. To describe this stochastic be-

haviour, we can model the observations as stochastic variables. A set of pixel

observations can be represented by a column vector of length K × L:

w = (wkl |k = 1...K ; l = 1...L)T . (3.1)

The index kl refers to the x- and y-coordinates (xk ,yl) of a set of K ×L pixel obser-

vations, which corresponds to the position of the probe in the case of HRSTEM. In

the case of HRTEM, the index kl refers to the position (xk ,yl ) ≡ (x1+(k −1)∆x,y1+
(l − 1)∆y) of the recorded image, with k = 1, ...,K and l = 1, ...,L and (x1,y1) rep-

resents the pixel in the bottom left corner of the field of view (FOV). Each set

of observations is, by definition, characterised by its joint probability (density)

function (P(D)F) [148]:

p(ω) = p(ωkl |k = 1...K ; l = 1...L). (3.2)

This joint probability (density) function describes the probability for a set of given

observations which are modelled as stochastic variables ω. The expectation value

and variance of a continuous stochastic variable are defined by the joint probabil-
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ity density function:

µ = E(ω) =

∫ +∞

−∞
ωp(ω)dω, (3.3)

σ2 = var(ω) = E[(ω − µ)2] =
∫ +∞

−∞
(ω − µ)2p(ω)dω (3.4)

For discrete variables, the integration needs to be replaced by a summation. The

expectations of the observations are described by the expectation model, which is

a function of the unknown parameters that have to be measured. In this thesis,

the parameters that are estimated are the atom types that are present (or absent)

in the structure, the position coordinates of the projected atom columns, and the

number of atoms in the projected atom columns. The set of unknown param-

eters are represented by the (R × 1)-column vector θ containing the r unknown

parameters to be measured. The expectation value of the pixel (k, l) is then given

by:

E(ωkl) = λkl(xk ,yl ;θ) = λkl , (3.5)

For HR(S)TEM images, the observation at the pixel (k, l) is denoted as wkl . When

assuming that the HR(S)TEM observations are statistically independent electron

counting results, they can be accurately modelled as Poisson distributed random

variables [210,211]:
λ
ωkl
kl

ωkl !
exp(−λkl ). (3.6)

For a Poisson distributed random variable, the expected value equals the variance:

E(ωkl) = var(ωkl ) = λkl , (3.7)

Assuming that the pixel observations in a HR(S)TEM image are statistically in-

dependent, the joint probability function of a set of pixel observations which are

modelled as Poisson distributed random variables, equals the product of the prob-

abilities given by equation (3.6):

p(ω) =
K∏

k=1

L∏

l=1

λ
ωkl
kl

ωkl !
exp(−λkl ) . (3.8)

In sections 5.4 and 6.3, in the comparison between the performance of both imag-

ing modes, HRTEM and HRSTEM, the incoming electron dose, N (e−/Å2), will be

kept the same as both imaging modes are bound by the same physical constraint
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of radiation sensitivity. Certainly in the case of beam-sensitive specimens, the

dose is a critical parameter that limits the performance of both imaging modes,

in order to determine unknown structure parameters. In HRSTEM, the incom-

ing electron dose per probe position corresponds to DSTEM = N · ∆x∆y with

∆x∆y the pixel area, while in HRTEM, the total number of incident electrons

is DTEM = N · FOV with FOV the field of view. The expectation values for the

pixel intensities are therefore given by

λTEMkl = pkl,TEM ·DTEM and

λSTEMkl = pkl,STEM ·DSTEM respectively, (3.9)

with

pkl,T EM =
fkl(θ)∑K

k=1

∑L
l=1 fkl(θ)

and

pkl,STEM = fkl(θ), (3.10)

corresponding to the probability that an electron hits a pixel with coordinates

(xk ,yl) in a HRTEM or HRSTEM experiment, respectively. In these expressions,

fkl is the fraction of detected intensity at pixel (k, l) which can be obtained using

software that allows one to simulate (S)TEM images. In this work, the STEMsim

software developed by Prof. Dr. A. Rosenauer was used [201].

3.2.1 Parametric statistical model for a weak phase object

The weak phase object approximation has been discussed in chapter 2, and will

be used in chapter 4 for the estimation of the atomic number of a single isolated

atom in HRSTEM. Here, the analytic expression for the expectation model that

is used for this estimation problem, under the weak phase object approximation,

will be derived.

In the case of HRSTEM, the exit wave Ψ(R) is modulated by the probe function

p(R), yielding:

Ψ(R) = (1 + iσvz(R))p(R−R0), (3.11)

with R0 corresponding to the probe position and R a two-dimensional coordinate

vector. In the detector plane, the Fourier transform of the exit wave equals:

Ψ(g) = P(g)e2πig·R0 + iσV(g)⊗ P(g)e2πig·R0 , (3.12)
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in which g is a two-dimensional vector in Fourier space, V(g) equals the Fourier

transformed projected potential vz(R) and P(g) equals the Fourier transformed

probe function p(r). The intensity that is then detected is given by the square

modulus of the exit wave:

|Ψ(g)|2 = |P(g)|2 +σ2|V(g)⊗ P(g)e2πig·R0 |2 + linear terms. (3.13)

The integrated intensity over the detector D(g), for the electron probe at position

R0 is calculated as follows:

I(R0) =

∫
|Ψ(g)|2D(g)dg. (3.14)

The detector function D(g) is assumed to be equal to one in the detected field and

to zero elsewhere. The fraction of detected intensity with respect to the incoming

electron beam equals:

f (R0) =
I(R0)∫
|Ψ(g)|2dg

, (3.15)

where the normalisation factor corresponds to the integrated intensity over the

whole detector range (D(g) = 1). The number of expected electrons at probe posi-

tion R0 = (xk ,yl) is then given by the expectation value λkl :

λkl = λ(R0) =DSTEMf (R0), (3.16)

for DSTEM the number of incident electrons per probe position. This expecta-

tion model of the observations depends on the atomic number Z through the

projected atomic potential. For the estimation of the atomic number of a single

isolated atom in HRSTEM in chapter 4, the following parametrised expression of

the projected atomic potential was used [169]:

vz(R) = vz(x,y) =

+∞∫

−∞

V(x,y,z)dz

=4π2a0e
3∑

i=1

aiK0(2πR
√
bi) + 2π2a0e

∑

i

ci
di

exp(−π2R2/di), (3.17)

with R2 =
√
x2 + y2, V (x,y,z) equals the single isolated atom’s potential and K0(x)

the modified Bessel function of zeroth order, a0 the Bohr Radius, and ai ,bi , ci and

di form a set of 12 parameters for every atomic number Z , parametrising the
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projected atomic potential.

The probe function in equation (3.13) is defined as follows:

P(g) = A(g)e−iχ(g), (3.18)

where A(g) denotes the aperture function defining an outer cut-off value for the

reciprocal vectors that are being included, and χ(g) describes the phase shift of

the electron wave in the back focal plane of the objective lens, resulting from the

lens aberrations, which is defined in equation (2.41).

3.3 Attainable precision

In this section, the Fisher information matrix and the attainable precision for the

estimation of continuous structure parameters, given by the CRLB, will be de-

rived from the parametrised probability function of the observations. For more

detailed information about these concepts, the reader is referred to [148,162,163].

3.3.1 Fisher information

Consider p(ω;θ), the joint probability (density) function of a set of observations

w = (wkl |k = 1 . . .K ; l = 1 . . . L)T . An example of this function is given by equation

(3.8) for the pixel intensities in a HR(S)TEM image. The so-called Fisher infor-

mation matrix measuring the amount of information that an observable random

variable carries about an unknown parameter vector θ ∈ RR, can then be defined

as follows:

F = −E
[
∂2 lnp (ω;θ)

∂θ ∂θT

]
, (3.19)

which is an (R×R)-matrix. The expression between square brackets gives the Hes-

sian matrix of the logarithm of the joint probability (density) function of which

the (r, s)th element is given by ∂2 lnp(ω;θ)/∂θr∂θs.

The Fisher information represents the expected value of the observed information

and is defined as the variance of the so-called score function, i.e. the derivative of

the log-likelihood function with respect to the unknown parameters. In this way

it is a measure for the physical fluctuations of the stochastic observations.

For the pixel intensities in a HR(S)TEM image, it follows from equations (3.7) and
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(3.8), that the (r, s)th element of the Fisher information matrix reduces to:

Frs =
∑

k

∑

l

1

λkl

∂λkl
∂θr

∂λkl
∂θs

, (3.20)

where the parameter λkl is defined in equation (3.9) for both HRTEM and

HRSTEM.

3.3.2 Cramér-Rao Lower Bound

Use of the concept of Fisher information allows one to determine the highest pre-

cision, that is, the lowest variance, with which a parameter can be estimated unbi-

asedly. It is proven that for the class of unbiased estimators, the ultimate precision

is given by a lower bound on their variance, the CRLB [148, 163–165]. Suppose

that θ̂ is any unbiased estimator of θ, that is, E[θ̂] = θ. Then it can be shown [162]

that under general conditions the covariance matrix cov(θ̂) of θ̂ satisfies

cov
(
θ̂
)
≥ F−1, (3.21)

so that cov(θ̂) − F−1 is positive semi-definite and consequently its diagonal ele-

ments cannot be negative. This means that the diagonal elements of cov
(
θ̂
)
, that

is, the actual variances of θ̂1, ..., θ̂R are larger than or equal to the corresponding

diagonal elements of F−1:

var(θ̂r ) ≥
[
F−1

]
rr
, (3.22)

where r ∈ {1, ...,R}, with R the number of components of θ̂ and [F−1]rr the rth

diagonal element of the inverse of the Fisher information matrix. In this sense,

F−1 represents a lower bound for the variances of all unbiased estimators θ̂. The

matrix F−1 is called the Cramér-Rao lower bound on the variance of θ̂.

The CRLB can be generalised in order to include unbiased estimators of column

vectors of functions of the parameters, instead of the proper parameters. Let γ(θ)

be the (Q × 1)-column vector (γ1(θ), . . . γQ(θ))
T of functions of the proper (R × 1)-

parameter vector θ, and let γ̂ be an unbiased estimator of γ(θ). Then, it can be

shown that [162]

cov(γ̂) ≥ ∂γ

∂θT
F−1

∂γT

∂θ
, (3.23)

where
∂γ
∂θT

is the (Q×R)-Jacobian matrix, whose (qr)th element is given by ∂γq/∂θr .
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3.3.3 Hammersley-Chapman-Robbins Bound

An alternative measure for the attainable precision may be given by the so-called

Hammersley-Chapman-Robbins bound, which is a generalisation of the Cramér-Rao

lower bound in the sense that it is both tighter and does not require regularity

assumptions, such as, the probability (density) function of the observations to be

differentiable [212, 213]. Therefore, it is applicable to a wider range of problems

as compared to the Cramér-Rao lower bound. However, it is often much more

complicated to compute.

Suppose that δ̂ is any unbiased estimator of an arbitrary scalar function g : Rn→
R of θ, i.e. E[δ̂] = g(θ) for all θ. The Hammersley-Chapman-Robbins bound is

then defined as [213]:

var(δ̂) ≥ sup
∆

(g(θ +∆)− g(θ))2

E

[
p(ω;θ +∆)

p(ω;θ)
− 1

]2 . (3.24)

It has been shown that the Hammersley-Chapman-Robbins bound is applicable

in many cases, where the Cramér-Rao lower bound is inapplicable [214]. Besides,

it is also applicable in cases that satisfy the Cramér-Rao inequality. Chapman and

Robbins have shown in 1951 [213] that their lower bound is at least as tight as the

Cramér-Rao lower bound, for all θ. An elaborate effort has been made to com-

pute the Hammersley-Chapman-Robbins bound for the discrete estimation prob-

lem of distinguishing between two different atom types under the weak phase

object approximation. However, since the implementation of this lower bound is

not straightforward and did not lead to consistent results, a different approach

was proposed for discrete estimation problems using statistical detection theory,

which is introduced in section 3.5.

3.4 Maximum Likelihood estimator

In the previous section, the concept of Fisher information and the CRLB have

been introduced. The meaning of this CRLB is as follows. In general, different

estimators may be used to estimate unknown parameters. An estimator is a

function of the stochastic observations and therefore a stochastic variable itself.

Therefore, its precision is represented by its variance (or by its standard devia-

tion, which equals the square root of the variance). In the previous subsection,
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it is already mentioned that the variance of the class of unbiased estimators will

never be lower than the CRLB. It can be shown that there exists an estimator that

achieves the CRLB at least asymptotically, that is, for an increasing number of

observations. This estimator is the Maximum Likelihood (ML) estimator [157].

In electron microscopy, the number of observations is usually sufficiently large

for the asymptotic properties of the ML estimator to apply, and the use of

this estimator is therefore highly recommended in quantitative electron mi-

croscopy [144]. Furthermore, the existence of the ML estimator justifies the

choice of the CRLB as optimality criterion.

The ML estimates are obtained by following the next steps:

1. The probability (density) function p(ω,θ) depends through the expectation

model f (θ) on the unknown parameters θ, like e.g. in equation (3.8). In this

P(D)F, the independent variables ω = (ωkl |k = 1 . . .K ; l = 1 . . . L)T are first re-

placed by the available observations w = (wkl |k = 1 . . .K ; l = 1 . . .L)T , in order

to obtain

p(w,θ). (3.25)

2. Then, the hypothetical true parameters θ = (θ1 . . . θR)
T are replaced by the

independent variables t = (t1 . . . tR)
T . The logarithm of the resulting function

is called the log-likelihood function:

lnL(t) := lnp(w,t), (3.26)

with L(t) being the likelihood function.

3. The ML estimates θ̂ML of the elements of the parameter vector θ, are then

defined by the values of the elements of t that maximise L(t):

θ̂ML = argmax
t
L(t) = argmax

t
lnL(t). (3.27)

The joint probability (density) function evaluated at the maximum likelihood

estimates p(w, θ̂ML) generates the observations with a larger probability than if it

would be evaluated at any other set of parameters p(w,t) [215].

The ML estimator has some interesting properties, of which the most important

ones are the following [148]:
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• Consistency: The ML estimator is consistent in the sense that it converges

toward the true value of the parameters for an increasing number of obser-

vations.

• Asymptotic normality: For an increasing number of observations, the P(D)F

of the ML estimator asymptotically tends to a normal distribution, having

the parameters θ as expectation values (i.e. mean values) and the CRLB as

its covariance matrix.

• Asymptotic efficiency: For an increasing number of observations, the CRLB

is achieved by the ML estimator, meaning that its covariance matrix asymp-

totically equals the CRLB. In this sense, the ML estimator is most precise.

• Invariance property: If θ̂ML are the ML estimates for the elements of the pa-

rameter vector θ, and γ(θ) is a vector of functions of θ, then the ML esti-

mates of γ(θ) are given by γ̂ML(θ) = γ(θ̂ML) = (γ1(θ̂ML), . . . γQ(θ̂ML))
T .

3.4.1 The uniformly weighted least squares estimator

In HR(S)TEM, the pixel observations are assumed to be statistically independent

electron counting results and therefore, they can be modelled as a Poisson dis-

tribution. For an increasing number of expected electron counts per pixel, i.e.

an increasing expectation value E[ωkl ] = λkl , the Poisson distribution tends to

a normal distribution with both expectation value E[ωkl ] = fkl(θ) and variance

var(ωkl) equal to λkl of the Poisson distribution [216]. This approximation is

valid if the number of observations is large as compared to the square root of

this number [217]. Moreover, if the contrast in the images is low, the deviations

of the observations from their expectations may be supposed to be identically

distributed, i.e. var(ωkl) = σ
2
kl ≈ σ2 = cte [218]. Under these conditions, the joint

probability density function of the observations equals:

p(ω,θ) =
K∏

k=1

L∏

l=1

1√
2πσ

exp

(
−(ωkl − fkl(θ))

2

2σ2

)
. (3.28)

The log-likelihood function can be derived from this joint probability density

function:

lnL(t) = −N
2
ln2π −N lnσ − 1

2

K∑

k=1

L∑

l=1

(
−wkl − fkl(t)

σ

)2
. (3.29)
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The ML estimates for the statistically independent and identically normally dis-

tributed observations are then given by:

θ̂ML = argmax
t

lnL(t) = argmin
t

K∑

k=1

L∑

l=1

(wkl − fkl(t))2. (3.30)

The right-hand side of equation 3.30 are the uniformly weighted least squares (LS)

estimates, θ̂LS of the unknown parameters θ. As we may assume that the condi-

tions in HR(S)TEM are appropriate to consider the pixel observations to be inde-

pendent and identically normally distributed, we will use the least squares esti-

mator in this thesis in order to estimate unknown structure parameters. In [147],

it is shown that even for a very low incoming electron dose the parameters of in-

terest are obtained with the highest possible precision when using the uniformly

weighted least squares estimator as implemented in the efficient model estima-

tion algorithm of StatSTEM [147]. Therefore, implementation of the maximum

likelihood estimator would have no extra benefit. In particular in chapter 7, the

LS estimator is used to estimate the atom column positions in several experimen-

tal applications.

3.4.2 Maximum likelihood estimation of atomic numbers

As a second example, we consider the identification (i.e. estimation) of the atomic

number Z of a single atom from a HRSTEM image. As shown in section 3.2, the

joint PF for such an experiment is given by equation (3.8) where the expectations

are described by equation (3.16). In this example, the unknown parameter θ is

given by the atomic number Z. Following equation (3.27), the ML estimator is

then given by:

ẐML = argmax
Z

lnL(t;Z) = argmax
Z

∑

k

∑

l

[wkl ln fkl(Z)− fkl(Z)] . (3.31)

As compared to the example discussed in section 3.4.1, the ML estimator ẐML can

be computed straightforwardly given the discrete nature of the atomic number

and the fact that only one parameter is estimated in this example. For that reason,

it does not require advanced computing algorithms.

53



Chapter 3. Statistical experiment design

3.5 Statistical detection theory

Statistical detection theory provides the tools to optimise the experiment design

by approaching a discrete estimation problem as a statistical hypothesis test [156].

This can be either a binary or multiple hypothesis test, in which every hypothesis

corresponds, for example, to a specific atomic number Z or a specific number of

atoms in a projected atom column.

The probability to decide the wrong hypothesis, the so-called probability of error

can be defined and decision rules are determined in such a way, that the prob-

ability of error is minimised. In order to optimise the experiment design when

measuring discrete parameters, such as, the presence or absence of a specific pro-

jected atom column, or the number of atoms in a projected atom column, this

probability of error may be used as optimality criterion, by computing it as a

function of the experimental settings. The optimal experiment design then corre-

sponds to those experimental settings that result in the lowest probability of error.

In contrast to the CRLB, the minimum probability of error does not provide us

the value for the attainable precision of the estimated parameter. Nevertheless,

it will correspond to the optimal statistical experiment design for which, under

the followed assumptions, the unknown parameter is expected to be estimated

correctly with the highest probability. In the following, the theory of binary and

multiple hypothesis testing will be derived for the investigated purposes in this

thesis, i.e. deciding between two different atomic numbers, detecting light ele-

ments, and counting the number of atoms in a projected atom column. Different

parts of these results have been published in [157–159,208,209].

3.5.1 Binary hypothesis testing

A binary hypothesis test is used for three different research goals in this thesis: In

the case where we want to decide between two different atom types, if we want to

detect a light atom or atom column, or if we want to know whether there are n or

n+1 atoms in a projected atom column. In these cases, the estimation problem can

be described as a binary hypothesis test, in which the hypotheses are respectively

given by:

(a) H0 : Z = Z0 (b) H0 : Z = Z0 (c) H0 : nH0
= n

H1 : Z = Z1 H1 : Z ∈ ∅ H1 : nH1
= n+1 (3.32)
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3.5.1. Binary hypothesis testing

where H0 is referred to as the null hypothesis and H1 as the alternative hypothe-

sis. In case (a), both hypotheses correspond to two different possible atomic num-

bers, Z0 and Z1, in (b), the hypotheses correspond to whether the light atom is

present or absent, and in (c), the hypotheses correspond to two succeeding num-

bers of atoms in a projected atom column.

It is assumed in the considered binary hypothesis tests, that a priori knowledge

assures that only H0 or H1 is possible, so that one of both hypotheses is always

correct. In order to express a prior belief in the likelihood of the hypotheses,

the prior probabilities P (H0) and P (H1) associated with these hypotheses are as-

sumed to be known, with P (H0)+P (H1) = 1. If both hypotheses are equally likely,

then it is reasonable to assign equal prior probabilities of 1/2. In a quantitative

approach, the goal is now to minimise the probability of assigning the wrong hy-

pothesis. In a so-called Bayesian approach, this probability of error Pe is defined

as:

Pe = Pr{decide H0, H1 true}+Pr{decide H1, H0 true}
= P (H0|H1)P (H1) +P (H1|H0)P (H0) (3.33)

with P
(
Hi |Hj

)
the conditional probability of deciding Hi while Hj is true. Using

criterion (3.33), the two possible errors are weighted appropriately to yield an

overall error measure. Decision rules are now defined such that the probability

of error is minimised. It is shown in [156] that one therefore should decide H1 if

p(w;H1)

p(w;H0)
>
P (H0)

P (H1)
= γ, (3.34)

otherwise H0 is decided. In this expression, p(w;Hi ) is the conditional (joint)

probability function p(ω;Hi) assuming Hi to be true, evaluated at the available

observations w. For equal prior probabilities of 1/2, it is clear that γ in equation

(3.34) corresponds to 1. Then, we decide H1 if

LR(w) =
p(w;H1)

p(w;H0)
> 1. (3.35)

The function LR(w) is called the likelihood ratio since it indicates for each set

of observations w the likelihood of H1 versus the likelihood of H0. This test is

therefore also known as the likelihood ratio test. Similarly, decision rule (3.35)

corresponds to deciding H1 if

lnLR(w) = lnp(w;H1)− lnp(w;H0) > 0. (3.36)
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Chapter 3. Statistical experiment design

Otherwise H0 is decided. Following section 3.4, this corresponds to choosing the

hypothesis for which the log-likelihood function is maximal. The left-hand side

of equation (3.36) is termed the log-likelihood ratio.

The expression for the conditional (joint) probability function depends on the

measure that is used to estimate the unknown structure parameters. Three differ-

ent measures will be compared, i.e., peak intensities (PI), scattering cross-sections

(SCS) and all HR(S)TEM image intensities on a pixel by pixel basis. The stochastic

variable ω takes a different form for these three performance measures:

ωIm = [ω11,ω12,ω21, ...,ωKL]
T for (S)TEM images,

ωCS =
K∑

k=1

L∑

l=1

ωkl ·∆x2 for SCSs in STEM,

ωPI for PIs, (3.37)

where ωkl corresponds to the variables describing the pixel intensities of the

HR(S)TEM image of the atomic column, ∆x equals the pixel size, and ωPI corre-

sponds to the variable describing the pixel intensity at the position of the atomic

column. The index kl refers to the x- and y-coordinates (xk ,yl)
T of a set of KL

pixel observations. In the case of HRSTEM, the index kl corresponds to the

position of the probe, while in the case of HRTEM, this refers to the position

(xk ,yl) ≡ (x1 + (k − 1)∆x,y1 + (l − 1)∆y) of the recorded image, with k = 1, ...,K and

l = 1, ...,L and (x1,y1) represents the pixel in the bottom left corner of the field

of view (FOV). Based on the definition of ωPI, it is clear that when using PIs one

only takes the information of a single pixel into account. On the other hand, the

detailed profiles of the images of atomic columns are represented in the multi-

dimensional variable ωIm. The scattering cross-section sums the pixel values in

a Voronoi cell in the image, which are contained in ωIm, into a single number, as

defined by ωCS in equation (3.37). The computation of the probability of error for

a binary hypothesis test will now be given for these three performance measures.

For the results presented in chapters 4 and 5, only ωIm, i.e. all pixel values in the

HR(S)TEM images are used, while in chapter 6 the three different measures are

compared.
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3.5.1. Binary hypothesis testing

Peak intensities

As mentioned before, it is known that the pixel observations in a HR(S)TEM

image can be considered as statistically independent electron counting results,

which can therefore be modelled as a Poisson distribution. The conditional prob-

ability function for the pixel intensity at the position of a projected atom column,

i.e. the peak intensity, is thus given by:

p(ωPI;Hi ) =

(
λPIHi

)ωPI

ωPI!
exp

(
−λPIHi

)
, (3.38)

where λPIHi = EHi
[
ωPI

]
corresponds to the expectation value for the pixel intensity

of the HR(S)TEM image at the position of the projected atom column. Since this

expectation value depends on which hypothesis Hi is assumed to be true, also

the probability function depends on Hi . In general, this expectation value can

be computed under each hypothesis using software that allows one to simulate a

STEM image for a given input material’s structure and a given set of microscope

parameters [201, 219]. Following the decision rule given in equation (3.34), for

equal prior probabilities P(H0) = P(H1) = 1/2, we decide H1 for an observation

wPI, if:

p(wPI;H1) > p(w
PI;H0) (3.39)

otherwise H0 is decided. The probability of error can then analytically be com-

puted using the cumulative distribution function of the Poisson distribution

[208]:

Pe =
1

2
P(H0|H1) +

1

2
P(H1|H0)

=
1

2
F
(
xPI;λPIH1

)
+
1

2

[
1− F

(
xPI;λPIH0

)]
(3.40)

where F
(
xPI;λPIHi

)
equals the Poisson cumulative distribution function with pa-

rameter λPIHi evaluated at the intersection value xPI, between the two conditional

distribution functions p(wPI;H0) and p(w
PI;H1), which is given by:

xPI =
λPIH0
−λPIH1

ln
λPIH0
λPIH1

. (3.41)
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Scattering cross-sections

As a second measure, next to the peak intensities, one can also use scattering

cross-sections in the case of HRSTEM to optimise the experiment design. The

scattering cross-section values are computed as follows (equation (3.37)) [220]:

ωCS =
K∑

k=1

L∑

l=1

ωkl ·∆x2 (3.42)

The integration area for the computation of the scattering cross-sections can be

defined using Voronoi cells. A Voronoi cell of an atomic column is the cell

formed by the perpendicular bisectors of the direct connections to the neigh-

bouring columns. Here, the atom column positions are assumed to be known,

therefore, this definition of the scattering cross-sections is used for simplicity as

they can be calculated directly from the simulated HRSTEM images in this way.

In the case of (HA)ADF STEM, a parametric model consisting of Gaussian peaks

at the atomic column positions is used to describe the pixel intensities in the case

of HRSTEM [75–77]. The scattering cross-section then corresponds to the volume

under the estimated Gaussian peak. These volumes are equivalent to the com-

puted values from the integration of the Voronoi cells. However, the use of the

volumes provides some extra advantages, since the parametric model takes into

account overlap between neighbouring atom columns [147].

The expected scattering cross-section value equals:

EHi
[
ωCS

]
=

K∑

k=1

L∑

l=1

λHi ,kl ·∆x
2 = CSn (3.43)

where λHi ,kl = EHi [ωkl] corresponds to the expectation values for the pixel in-

tensities of the HR(S)TEM image of the atom column and CSn is the expected

scattering cross-section for n atoms. A sum of independent Poisson distributed

variables is known to be Poisson distributed [216], and thus, the variable

K∑

k=1

L∑

l=1

ωkl (3.44)

is also Poisson distributed. The conditional probability distribution for a scatter-

ing cross-section taking into account the constant factor ∆x2, then equals [147]:

p(ωCS ;Hi ) =

(
λHi

)ωCS
∆x2

(
ωCS

∆x2

)
!

exp
(
−λHi

)
, (3.45)
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3.5.1. Binary hypothesis testing

where λHi is given by:

λHi =
K∑

k=1

L∑

l=1

λHi ,kl . (3.46)

Analogous to the decision rule for the peak intensities of equation (3.39), we de-

cide H1 for an observed scattering cross-section wCS, under the assumption of

equal priors P(H0) = P(H1) = 1/2, if:

p(wCS;H1) > p(w
CS;H0), (3.47)

otherwiseH0 is decided. For scattering cross-sections, the probability of error can

then be calculated as follows:

Pe =
1

2
P(H0|H1) +

1

2
P(H1|H0)

=
1

2
F

(
xCS

∆x2
;λH1

)
+
1

2

[
1− F

(
xCS

∆x2
;λH0

)
,

]
(3.48)

where F
(
xCS

∆x2
;λHi

)
equals the Poisson cumulative distribution function with pa-

rameter λHi evaluated at xCS/∆x2 with xCS being the intersection value of the two

probability functions p(wCS;H0) and p(w
CS;H1), which is given by:

xCS =

(
λH0
−λH1

)
∆x2

ln
λH0
λH1

. (3.49)

The goal is now to optimise the experiment design as a function of the exper-

imental settings in order to have the lowest probability of choosing the wrong

hypothesis. The experimental settings for which the probability of error reaches

a minimum is then considered as the optimal experiment design.

Image intensities on a pixel by pixel basis

As a third performance measure to optimise the experiment design, the image

intensities in the HR(S)TEM images of the atom column may be considered on a

pixel by pixel basis. In this case, the decision is based on the conditional joint

probability function of all the image pixel intensities, which is given by:

p(ωIm;Hi) =
K∏

k=1

L∏

l=1

(
λHi ,kl

)ωkl

ωkl !
exp

(
−λHi ,kl

)
. (3.50)
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Since we have a joint probability function now for the stochastic variable ωIm of

theHR(S)TEM image, it is not possible to compute the probability of error directly

from the overlapping areas of p(ωIm;H0) and p(ω
Im;H1). However, it is possible

to calculate this probability of error analytically by reformulating the decision

rule using the so-called log-likelihood ratio lnLR(ωIm) [158]. The decision rule

then becomes to decide H1 for an observation wIm, if

lnLR(wIm) ≡ ln

(
p(wIm;H1)

p(wIm;H0)

)
> ln(1) = 0, (3.51)

otherwise H0 is decided, for equal prior probabilities. This corresponds to choos-

ing the hypothesis for which the log-likelihood function is maximal. The function

LR(wIm) is called the likelihood ratio since it indicates for each set of observations

wIm the likelihood of H1 versus the likelihood of H0. Given the decision rule of

equation (3.51), the expression for the probability of error Pe given by equation

(3.33), can be rewritten as follows:

Pe =
1

2
P(H0|H1) +

1

2
P(H1|H0)

=
1

2
P
(
lnLR(wIm) < 0|H1

)
+
1

2
P
(
lnLR(wIm) > 0|H0

)
. (3.52)

When using the conditional joint probability function for HR(S)TEM images

given by equation (3.50), the log-likelihood ratio defined by equation (3.51) can

be rewritten as

lnLR(wIm) =
K∑

k=1

L∑

l=1

(
wkl ln

(
λH1,kl

λH0,kl

)
−λH1,kl +λH0,kl

)
. (3.53)

Following the central limit theorem, the log-likelihood ratio tends to be normally

distributed [221]:

p(lnLR(wIm);Hi ) =
1

σHi
√
2π

exp


−

(
lnLR(wIm)− µHi

)2

2σHi
2


 (3.54)

For HR(S)TEM images, the expected value µHi and variance σ2
Hi characterising

this normal distribution can then be computed from equation (3.53) when as-
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3.5.1. Binary hypothesis testing

suming Hi to be true, giving the following results:

µHi = EHi
[
lnLR(wIm)

]

=
K∑

k=1

L∑

l=1

(
λHi ,kl ln

λH1,kl

λH0,kl
−λH1,kl +λH0,kl

)
, (3.55)

σ2
Hi = varHi

[
lnLR(wIm)

]

=
K∑

k=1

L∑

l=1

λHi ,kl

(
ln
λH1,kl

λH0,kl

)2
. (3.56)

In this derivation, use is made of the property that the variance of a Poisson dis-

tributed variable equals its expectation value, EHi [ωkl] = varHi [ωkl ] = λHi ,kl . The
explicit description of the distribution of the log-likelihood ratio now enables us

to unambiguously compute the probability of error given by equation (3.52), re-

sulting in the following general expression:

Pe =
1

2

[
Φ

(−µH1

σH1

)
+Φ

(
µH0

σH0

)]
(3.57)

with Φ (±µ/σ) the cumulative distribution function of the standard normal dis-

tribution evaluated at ±µ/σ. The meaning of the expected value µHi and variance

σ2
Hi characterising the normal distributions of lnLR(wIm) given by equation (3.54)

under both hypotheses, is illustrated in Figure 3.1(c) based on HRSTEM images

for a Sr column consisting of either 30 or 31 atoms. The decision rule is also

clarified: H0 is decided for lnLR(wIm) < 0, otherwise H1 is decided to be correct.

The dark grey region denotes the error which is made if H0 is chosen while H1 is

correct, and vice versa for the light grey region. It is clear from this figure that

the probability of error corresponds to the overlap between both distributions.
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Parameter Symbol Value

Defocus f (Å) -14.03

Spherical aberration Cs (mm) 0.001

Spherical aberration of fifth order C5 (mm) 0

Slice thickness zslice (Å) 1.95

Debye-Waller factor BSr (Å
2) 0.6214

BT i (Å
2) 0.4398

BO (Å2) 0.7323

Acceleration voltage V0 (kV) 300

Semi-convergence angle α (mrad) 20

Probe sampling distance ∆x, ∆y (Å) 0.1562

FWHM of the source image FWHM (Å) 0.7

Total number of scanned pixels K × L 25 × 25

Table 3.1: Parameter values used in the simulation software STEMsim.

3.5.2 Sum of Kullback-Leibler divergences

A tightly connected performance measure that will be investigated as a possi-

ble alternative to optimise the design is based on the so-called Kullback-Leibler

divergence [222, 223]. This measure quantifies the difference between two prob-

ability distributions. Here, the Kullback-Leibler divergence will be discussed for

a general stochastic variable ω, which can then be replaced by the variable cor-

responding to peak intensities, scattering cross-sections or the image intensities

on a pixel by pixel basis. The Kullback-Leibler divergence from pH1
= p(ω;H1) to

pH0
= p(ω;H1) is defined as

D(pH1
,pH0

) ≡ EH1

[
ln
p(ω;Z1)

p(ω;Z0)

]
= EH1

[lnLR(ω)] . (3.58)

It corresponds to the expected or mean log-likelihood ratio assuming H1 to be

true. Similarly the Kullback-Leibler divergence from pH0
to pH1

equals

D(pH0
,pH1

) = EH0

[
ln
p(ω;H0)

p(ω;H1)

]
= −EH0

[
ln
p(ω;H1)

p(ω;H0)

]
= −EH0

[lnLR(ω)] . (3.59)

From equations (3.58) and (3.59), it follows that

D(pH1
,pH0

) +D(pH0
,pH1

) = EH1
[lnLR(ω)]−EH0

[lnLR(ω)] . (3.60)
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Sum of  
Kullback-Leibler 

divergences 

      

  

Figure 3.1: Calculation of the probability of error for a binary hypothesis test

for (a) peak intensities ωPI (D = 106e−/Å2 and nH0
= 15), (b) scattering cross-

sections ωCS (D = 105e−/Å2 and nH0
= 30), and (c) images ωIm (D = 105e−/Å2 and

nH0
= 30) of a Sr column with a detector collection range of 60-100 mrad and

settings of Table 3.1.

The sum of Kullback-Leibler divergences thus corresponds to the difference be-

tween the mean log-likelihood ratio underH1 and the corresponding value when

assumingH0 to be true, as is also illustrated in Figure 3.1(c). We have investigated

if this measure can be used as an alternative of the above mentioned probability

of error to compute the optimal experiment design. Indeed, based on decision

rule (3.36), which can be used to choose between H1 and H0, it follows that the

probability to assign the wrong hypothesis will decrease when the distributions
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of the log-likelihood ratio under these hypotheses are better separated. A mea-

sure of this separation is given by equation (3.60). For that reason, it is likely to

assume that the probability to assign a wrong hypothesis will decrease when the

sum of Kullback-Leibler divergences increases.

An explicit expression for equation (3.60) can be derived from equation (3.53) and

using the fact that the expectations of the observations are described by means of

their expectation model:

D(pH1
,pH0

) +D(pH0
,pH1

) =
(
EH1

[ω]−EH0
[ω]

)(
lnEH1

[ω]− lnEH0
[ω]

)
. (3.61)

In chapter 4, this expression will be calculated explicitly for a linear imaging

model in the weak phase object approximation, in order to distinguish between

two different atom types. It will be investigated if an increase of the sum of

Kullback-Leibler divergences leads to a decrease of the probability of error. In

this way, it will be possible to decide if this measure can be used as an alternative

performance measure to optimise the experiment design. The sum of Kullback-

Leibler divergences, however, only takes into account the separations between the

distributions of the log-likelihood ratio whereas the probability of error also takes

into account the width of the distributions.

3.5.3 Multiple hypothesis testing

If different choices of the two hypotheses lead to different designs, a binary hy-

pothesis test is no longer adequate. Therefore, the approach of binary hypothesis

testing for atom-counting is extended towards multiple hypothesis testing. The

multiple hypothesis test will first be described for a general observation w and

then be further derived for both scattering cross-sections, which are often used in

practice in HRSTEM [75,76,208], and peak intensities.

Suppose we want to decide amongM possible hypotheses:

{H0,H1, . . . ,HM−1}. (3.62)

For atom-counting, the number of hypotheses typically equals the maximum

number of atoms in a column which should be considered for the sample un-

der study. The decision rule is now defined such that the probability of error is

minimised. The minimum probability of error decision rule for an observation w,

is then to decide Hk if

p(w|Hk)P(Hk) > p(w|Hi )P(Hi ) ∀i , k. (3.63)

64



3.5.3. Multiple hypothesis testing

This decision rule is termed the maximum a posteriori probability (MAP) decision

rule [156]. In this expression, p(w|Hi ) is the conditional (joint) probability (den-

sity) function (P(D)F) p(ω|Hi) assuming Hi to be true, evaluated at the available

observations w. For equal prior probabilities P(Hi) = 1/M , the decision rule given

in equation (3.63) simplifies to

p(w|Hk) > p(w|Hi ) ∀i , k. (3.64)

This is then theM-ary maximum likelihood (ML) decision rule [156]. In the case

of a multiple hypothesis test, the probability of error is defined in the following

way:

Pe =
M−1∑

i=0

M−1∑

j=0

δijP(Hi |Hj )P(Hj ), (3.65)

where P(Hi |Hj ) is the conditional probability of decidingHi whenHj is true, and

δij =


1 i , j

0 i = j
. (3.66)

The number of terms for the calculation of the probability of error used in equa-

tion (3.65) equalsM(M −1). Therefore, it is more efficient to calculate Pc = 1−Pe,

where Pc is the probability of a correct decision. In this case, the number of terms

in the summation reduces toM :

Pc =
M−1∑

i=0

P(Hi |Hi)P(Hi ), (3.67)

where P(Hi |Hi ) corresponds to the probability that hypothesis Hi is decided as-

suming this hypothesis to be correct, and this is weighted by its prior probability

P(Hi).
When the decision for a certain hypothesis between M different hypotheses

is completely random, the probability for a correct decision equals 1/M when

assuming equal prior probabilities. As a consequence, for a multiple hypothesis

test with M different hypotheses, the maximum possible probability of error for

which the correct hypothesis can not be decided equals (M − 1)/M .

Expression (3.67) will now be calculated analytically; (1) for scattering cross-

sections and (2) for peak intensities in HR(S)TEM images, for which the condi-

tional probability functions are given by equation (3.45) and (3.38), respectively.
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For equal prior probabilities P(Hi ) = 1/M , the probability of a correct decision for

scattering cross-sections in HRSTEM images then corresponds to:

Pc =
1

M

[
F

(
xCS0,1

(∆x)2
,λHs0

)
+

F

(
xCS1,2

(∆x)2
,λHs1

)
− F

(
xCS1,0

(∆x)2
,λHs1

)
+

F

(
xCS2,3

(∆x)2
,λHs2

)
− F

(
xCS2,1

(∆x)2
,λHs2

)
+

. . .+
(
1− F

(
xCSM−1,M−2

(∆x)2
,λHsM−1

))]
, (3.68)

where Hsi denotes the sorted hypotheses according to the expected values of the

scattering cross-sections, and xCSi,j = xCSj,i corresponds to the intersection be-

tween two neighbouring probability functions. This intersection is given by

xCSi,j =

(
λHsi −λHsj

)
(∆x)2

ln
λHs

i
λHsj

. (3.69)

In this expression, λHsi =
∑K
k=1

∑L
l=1λHsi ,kl equals the sum over the expected values

of the pixel intensities in a Voronoi cell of the atomic column, and F
(
x
CSi,j

(∆x)2
,λHsi

)

is the Poisson cumulative distribution function with parameter λHsi evaluated at

xCSi,j /∆x2. The expected pixel intensities λHsi ,kl can in practice be obtained by

using software for HR(S)TEM image simulations [201,219].

A similar expression for the probability of a correct decision can now be found

for peak intensities [159]:

Pc =
1

M

[
F
(
xPI0,1 ,λHs0

)
+

F
(
xPI1,2 ,λHs1

)
− F

(
xPI1,0 ,λHs1

)
+

F
(
xPI2,3 ,λHs2

)
− F

(
xPI2,1 ,λHs2

)
+

. . .+
(
1− F

(
xPIM−1,M−2,λHsM−1

))]
, (3.70)
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where the intersection between the different probability functions is given by

xPIi,j =

(
λHsi −λHsj

)

ln
λHsi
λHs

j

, (3.71)

and λHsi corresponds to λH
s
i ,PI

= EHsi

[
ωPI

]
, the expected pixel value at the atomic

column position.

When a decision is based on the joint probability function of the image pixel val-

ues, which are defined by ωIm in equation (3.37), the probability of error given

by equation (3.65), can not be calculated analytically anymore. In that case, the

probability of error can only approximately be calculated using repetitive noise

realisations, which is computationally intensive. By using the decision rule given

by equation (3.64), the probability of error is then given by the fraction of mis-

counted numbers of atoms from a large set of noise realisations.

3.6 Conclusions

In this chapter, it has been shown how statistical experiment design can be op-

timised in order to derive unknown continuous or discrete structure parameters

either with the highest precision, or the lowest probability of error, respectively.

The optimisation process can be summarised as follows:

• First, a parametric statistical model of the observations has to be derived.

This is a physics-based model that both defines the expectations of the ob-

servations and the fluctuations of the observations about these expectations.

The expectations of the observations can, in general, be computed using

software to simulate HR(S)TEM images [201,219].

• Second, an optimality criterion is chosen, which depends on the purpose of

the experimenter. For the estimation of continuous parameters, a function

of the elements of the CRLB is chosen, while for a discrete estimation prob-

lem, statistical detection theory allows one to calculate the probability of

error as optimality criterion. Since the parametric statistical model of the

observations is a function of the experimental settings, both (a function of)

the CRLB and the probability of error are functions of these settings as well.
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• Third, the chosen optimality criterion is evaluated and optimised with re-

spect to the experimental settings. The settings corresponding to either the

highest precision or lowest probability of error are suggested as the optimal

statistical experiment design. In the remainder of this thesis, this proce-

dure will be applied to quantitatively optimise and compare HRTEM and

HRSTEM for detecting and locating light elements, and for counting the

number of atoms in a projected atom column.
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4Statistical Experiment Design for

Atomic Number Estimation from

HRSTEM images

4.1 Introduction

In the previous chapter, the theoretical tools to derive the limits to the precision

with which unknown structure parameters can be estimated from HR(S)TEM im-

ages are discussed. In this chapter, these quantitative tools will be applied to

explore the optimal statistical experimental settings for identifying the atomic

number from HRSTEM images. The possibilities and limitations are investigated

by using the probability of error and the Kullback-Leibler divergence as alter-

native quantitative criteria to optimise the STEM detector settings, in terms of

identifying the chemical composition, i.e. by estimating the atomic number Z 1.

It is expected that the probability of error is minimised by the same optimal ex-

perimental settings that maximise the sum of Kullback-Leibler divergences, and

that the sum of Kullback-Leibler divergences is less computationally intensive

and faster to calculate as compared to the probability of error.

These quantitative criteria are applied when considering the problem of identi-

fying the atomic number Z, both for a single isolated atom and for atom columns

lying on the interface of a crystalline specimen 2. Note that chemical theory re-

stricts the atomic number to be a positive integer, which makes it a so-called

restricted or discrete parameter. A priori knowledge about the atom types that

may be present in a sample and their concentration ratios is usually available.

In such cases, the question reduces to distinguishing between a finite plausible

1Part of the results presented in this chapter is published in A. J. den Dekker, J. Gonnissen, A.

De Backer, J. Sijbers, and S. Van Aert, Estimation of unknown structure parameters from high-

resolution (S)TEM images: What are the limits?, Ultramicroscopy 134, 34-43 (2013).
2Part of the results presented in this chapter are published in J. Gonnissen, A.J. den Dekker, A.

De Backer, G.T. Martinez, A. Rosenauer, J. Sijbers and S. Van Aert, Optimal experimental design

for the detection of light atoms from high-resolution STEM images, Applied Physics Letters, 105, 6

(2014).
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Chapter 4. Atomic number estimation from HRSTEM images

set of values for the atomic numbers, given the experimental STEM observations.

Here we restrict to the problem of deciding between two hypotheses, where each

hypothesis corresponds to the assumption of a specific Z value, given by the first

case in equation (3.32): H0 : Z = Z0 andH1 : Z = Z1. In a first step, the probability

of error, given by equation (3.33), was calculated using the decision rule defined

by equation (3.36). This was possible by performing repetitive image simulations

which is very time-consuming. Next, the sum of Kullback-Leibler divergences,

which corresponds to the difference of the expected or mean log-likelihood ratio

underH1 and the corresponding value when assumingH0 to be true, is computed

for the same experimental settings as the probability of error. Both measures have

been investigated and compared as criteria to optimise the detector design in an

HRSTEM experiment. In a second step, an analytical expression for the prob-

ability of error was found which made the use of the sum of Kullback-Leibler

divergences unnecessary.

This chapter is organised as follows. In section 4.2, minimising the probability

of error is used in order to optimise the experiment design for identifying the

atomic number Z of a single isolated atom, which is compared to the result of

the sum of Kullback-Leibler divergences. In section 4.3, the probability of error

is computed for the investigated isolated atom cases with the obtained analytical

expression, and compared with the results based on multiple noise realisations.

The analytical expression of the probability of error is then used in section 4.4 to

optimise the detector design in HRSTEM in order to identify the atomic number

at the interface of a crystalline specimen. In section 4.5, conclusions are drawn.

4.2 Statistical experiment design for identifying the

atomic number of a single isolated atom

As a first experimental case study to show the practical use of both the prob-

ability of error and the Kullback-Leibler divergence for the optimisation of the

experiment design, the optimal inner detector radius of an annular detector is

derived when deciding between the presences of an Al or Ti atom in HR STEM

images, based on an earlier problem considered in [224]. This estimation prob-

lem can be formulated as a binary hypothesis test with hypotheses H0 : Z = 12

(Al) and H1 : Z = 22 (Ti). The probability of error is then computed using repeti-

tive image simulations under both hypotheses. Therefore, the simplified discrete

parametric model of an isolated atom derived in section 3.2.1 is assumed. Given
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4.2. Atomic number estimation of a single isolated atom
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Figure 4.1: The electron counting results for two different Poisson noise realisa-

tions simulated under the same settings, for an Al and Ti atom.

the simulation parameters listed in Table 4.1, the expectation models described

by equation (3.16) have been computed for a single Al and Ti atom. Next, Pois-

son distributed observations w have been generated following the joint PF given

by equation (3.50). As an example, two different noise realisations for each iso-

lated atom are shown in Figure 4.1. In total 10000 simulations have been made

under H0 and another 10000 under H1. For every simulation experiment, the

log-likelihood ratio lnLR(w) has been calculated. From equation (3.31) it follows

that lnLR(w) can be written as follows for the single-atom HRSTEM model given

by equation (3.16):

lnLR(w) =
∑

k

∑

l

[wkl (ln fkl(Z1)− ln fkl(Z0)) + (fkl(Z0)− fkl(Z1))] . (4.1)

In this way, the results shown in Figure 4.3 are obtained for three different inner

detector radii (13 mrad, 21 mrad and 47 mrad). The histograms shown in blue

and red result from simulations assuming the presence of an Al and Ti atom, re-

spectively. The histograms are computed for a whole HRSTEM image and not

only for the probe positioned at the centre of the grid, corresponding to the posi-

tion of the atom.

71



Chapter 4. Atomic number estimation from HRSTEM images

Parameter Symbol Value

Defocus f (nm) -8.301

Spherical aberration Cs (mm) 0.035

Spherical aberration of fifth order C5 (mm) 0

Acceleration voltage V0 (kV) 300

Semi-convergence angle α (mrad) 21

Probe sampling distance ∆x (Å) 0.1

Incident electron dose N (e−/Å2) 100

Total number of scanned pixels K × L 60 × 60
Electron wavelength λ (Å) 0.0197

Interaction parameter σ (rad kV−1 Å−1) 0.53

Table 4.1: Microscope parameter values used in the simulation study of a single,

isolated atom.

Figure 4.2: The difference between simulated STEM images of a Ti and an Al atom

for an inner detector radius of (a) 13 mrad, (b) 21mrad and (c) 47 mrad, on a fixed

contrast scale.

Based on the computed log-likelihood ratios, hypothesis H1 or H0 is decided fol-

lowing decision rule (3.36) for each simulation experiment, using expression (4.1)

for the log-likelihood ratio. From the fraction of wrongly assigned atomic num-

bers, the probability of error, given by equation (3.52), can then be estimated.

The goal is now to minimise the probability of error and maximise the sum of

Kullback-Leibler divergences (equation (3.61)) as a function of the inner radius
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4.2. Atomic number estimation of a single isolated atom

KL-divergence KL-divergence KL-divergence 

Figure 4.3: Histograms of the log likelihood ratio for an inner detector radius of

(a) 13 mrad, (b) 21 mrad and (c) 47 mrad, for the presence of an Al (blue) and Ti

(red) atom.

of an annular detector, assuming a constant infinitely large outer detector radius.

The inner detector radius will be varied over a broad range, covering the ABF

to the HAADF regime. This means that in equation (3.14) all contributions out-

side the so-formed detector hole are summed up. It is found that the sum of

Kullback-Leibler divergences and the probability of error provide consistent re-

sults. Indeed, the probability to assign the wrong hypothesis decreases when the

distributions of the log-likelihood ratio under the considered hypotheses are bet-

ter separated, and thus when the sum of Kullback-Leibler divergences increases.

It is seen in Figure 4.4 that a minimum for the probability of error is found for

the inner detector radius maximising the sum of Kullback-Leibler divergences,

namely for 21 mrad. For a probe semi-convergence angle of 21 mrad, this setting

corresponds to the LAADF STEM regime. We see in Figure 4.3 that for this inner

detector radius the log-likelihood functions under both hypotheses are separated

the most. This is a first indication for the Kullback-Leibler divergence to be an

efficient alternative performance measure to the probability of error to optimise

the experiment design. From the histograms shown in Figure 4.3(c) it can also be

seen that the curves come closer again for a larger inner detector radius, which

can be understood since the detected dose decreases for an increasing inner de-

tector radius. This is also clear from the results shown in Figure 4.2, where the

difference between the simulated HRSTEM image of a Ti and an Al atom is shown

for the same three inner detector radii.

73



Chapter 4. Atomic number estimation from HRSTEM images

Figure 4.4: The probability of error (open circles) and the sum of Kullback-Leibler

divergences (dots) for identifying either Al or Ti, both as a function of the inner

detector radius.

Our second study is based on a problem which was previously considered in

[146], where the question was to decide between the presence of Ti and Mn atom

columns at an interface. In that case, the difference in atomic number Z is only 3.

Because of this small difference in Z, in combination with the presence of heavy

atomic columns surrounding the Ti and Mn columns, this question could not be

solved visually. Instead, statistical parameter estimation theory can be used. Here

we will reconsider this problem in terms of optimising the STEM detector settings

for the simplified problem of deciding between the presence of a singe Ti or Mn

atom at the interface. The hypotheses of interest can therefore be formulated as

H0 : Z = Z0 = 22 and H1 : Z = Z1 = 25. If we assume that the probabilities of the

presence of a Ti atom or Mn atom are equal, an expression for the probability of

error is given by equation (3.52). Furthermore, the sum of Kullback-Leibler diver-

gences, for which an expression is given by equation (3.61), will be computed for

the given hypotheses andmaximised as a function of the inner detector radius. As

discussed in section 3.5, the detector radius minimising the probability of error

indeed corresponds to the radius maximising the sum of Kullback-Leibler diver-

gences. In the same way as for deciding between an Al and Ti atom and using the
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4.2. Atomic number estimation of a single isolated atom

same simulation parameters as listed in Table 4.1, the results are obtained for Ti

and Mn and presented in Figure 4.5. From the results shown in Figure 4.5 it can
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Figure 4.5: The probability of error (open circles) and the sum of Kullback-Leibler

divergences (dots) for identifying either Ti or Al, both as a function of the inner

detector radius.

be seen that a minimum for the probability of error is found for the inner detector

radius that is maximising the sum of Kullback-Leibler divergences, which corre-

sponds to 24 mrad in this case. For a probe semi-convergence angle of 21 mrad

this still corresponds to the LAADF STEM regime.

Both in Figures 4.4 and 4.5, it is seen that the probability of error shows some

small peaks at certain values for the inner detector radius. The reason for this be-

haviour is not understood so far. However, as one will notice in the next section

the analytical expression for the probability of error, which is used further on in

this thesis, varies smoothly with the inner detector radius and therefore this effect

has not been further examined.
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Chapter 4. Atomic number estimation from HRSTEM images

4.3 Analytical expression for the probability of error

In Figures 4.4 and 4.5, the probability of error is computed using repetitive image

simulations under both hypotheses. From both results it is clear that the sum of

Kullback-Leibler divergences yields consistent results, and moreover, it is much

easier to compute since is does not require multiple noise realisations. However,

if we look closer to both results, we can also see that although the probability of

error is similar for both cases, the sum of Kullback-Leibler divergences is much

larger in the case where we want to distinguish between Al and Ti as compared

to the case where we want to decide between the presence of a Ti or Mn atom.

This can be understood from the greater difference in atomic number between

Al and Ti, as compared to Ti and Mn. The distance between the mean values

of the log-likelihood ratios under both hypotheses is consequently expected to

be larger in the case of Al and Ti. However, the value of the Kullback-Leibler

divergence does not give us any quantitative information on how likely the

correct decision between both elements can be made. Comparing the sum of

Kullback-Leibler divergences for different hypothesis tests would not give useful

quantitative information on how well the different atoms can be distinguished,

without comparing with the corresponding probabilities of error.

Therefore, effort has been put in the derivation of an analytical expression for

the probability of error, which was derived in chapter 3 and is given by equation

(3.57) for binary hypothesis testing in HRSTEM images on a pixel by pixel ba-

sis. The fact that this analytical expression was found, enabled us to calculate the

probability of error in a fast and straightforward way, without the need for mul-

tiple noise realisations. In fact, this also made the Kullback-Leibler divergence

unnecessary as it provides less information. Indeed, the probability of error takes

into account the overlap between consecutive probability distributions, while the

sum of Kullback-Leibler divergence only gives a measure for the distance between

the mean values, or expected values of these distributions. In Figure 4.6, the re-

sult of the probability of error is compared for both deciding between Al and Ti,

and between Ti and Mn, when using 100.000 noise realisations or using the ana-

lytical expression given by equation (3.57). It can be seen that both results match

very well, and that there are only some small variations due to the limited num-

ber of included noise realisations. This is also a verification that it is justified to

apply the central limit theorem for the number of considered pixels and consider

the log-likelihood ratio, defined in equation (3.53) to be normally distributed.
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Figure 4.6: The probability of error for identifying either Al and Ti (left) or Ti an

Mn (right) as a function of the inner detector radius, calculated using the analyt-

ical expression and using noise realisations.

4.4 Statistical experiment design for identifying the

atomic number of atom columns in a specimen

In the previous examples it was shown that the tools of statistical detection the-

ory can be applied to optimise the experiment design for identifying the atomic

number for a single isolated atom in HRSTEM. Therefore, the next goal was to

investigate if our quantitative method is also applicable for identifying atoms in

a crystal. As a further application to demonstrate our method, we looked at the

interface of a SrTiO3/LaAlO3 substrate, which is an interesting case study since

such interfaces are known to exhibit a plethora of exceptional properties [224]. If

we want to decide whether there is a Ti or Al atom column at the interface, we

can describe this problem using the same binary hypothesis test as for the isolated

atom cases, with hypotheses: H0 : Z = Al and H1 : Z = Ti. Since nowadays, simu-

lations are sufficiently accurate to describe experimental images [76,78,225,226],

we demonstrate our method through realistic simulations of the interface which

are performed by the simulation software STEMsim developed by Prof. Dr. A.

Rosenauer [201]. The crystal interface is simulated using the multislice approach

and TDS is taken into account using the absorptive potential method described

in section 2.7.2.
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Chapter 4. Atomic number estimation from HRSTEM images

Figure 4.7: Simulated HRSTEM images of the SrTiO3/LaAlO3 compound with (a)

Al atoms or (b) Ti atoms at the interface for the optimal detector collection range

of 23-100 mrad.

Similar as before, the STEM detector settings can be optimised in order to min-

imise the probability to choose the wrong hypothesis. A 1.6 nm thick crystal is

simulated with either Al or Ti atoms at the interface. The simulation parameters

are listed in Table 4.3 and an example of the expectation model is shown in Fig-

ure 4.7 for an annular detector collection range of 23-100 mrad. Using equation

(3.57), the probability of error can be calculated for different detector settings.

Now, we computed the probability of error as a function of not only the inner, but

also the outer radius of the annular STEM detector. The inner detector radius is

varied from 0-99 mrad, while the outer detector radius is varied between 1-100

mrad. The results are presented in Figure 4.8.

Based on this figure we find that the suggested optimal detector setting lies in

the low angle annular dark field (LAADF) regime, with the inner detector angle

just larger than the probe forming angle (from 23-100 mrad). Hovden and Muller

[69] also found that for well-resolved and atomically-thin specimens, the LAADF

detector can provide a significant increase in SNR over other common detector

geometries including ABF and BF. The values of the probability of error in the

different optimal regions are summarised in Table 4.2.
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Figure 4.8: Pe as a function of the inner and outer detector angle at Scherzer

conditions for an incoming electron dose of 2000 e−/Å2 at 300 kV and a probe

semi-convergence angle of 21.8 mrad for identifying Al or Ti at the interface of a

1.6 nm thick SrTiO3/LaAlO3 compound.

Optimum (mrad) Pe

1-10 0.0865

1-22 0.1074

23-25 0.00047

23-100 5.11 e-09

Table 4.2: Values for the probability of error at different detector ranges.
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Parameter Symbol Value

Defocus f (nm) -8.301

Spherical aberration Cs (mm) 0.035

Slice thickness zslice (Å) 0.975

Debye-Waller factor BSr (Å
2) 0.6214

BT i (Å
2) 0.4398

BAl (Å
2) 0.604

BLa (Å
2) 0.8563

BO (Å2) 1.152

Acceleration voltage V0 (kV) 300

Semi-convergence angle α (mrad) 21.7

Probe sampling distance (x-direction) ∆x (Å) 0.061

Probe sampling distance (y-direction) ∆y (Å) 0.057

Incident electron dose N (e−/Å2) 2000

FWHM of the source image FWHM (Å) 0.7

Total number of scanned pixels K × L 400 × 250

Table 4.3: Parameter values used in the STEMsim software for the simulation of

the SrTiO3/LaAlO3 interface.
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4.5 Conclusions

In this chapter, we first compared two quantitative criteria which were proposed

in chapter 3, i.e. the probability of error and the Kullback-Leibler divergence, in

order to estimate the atomic number of a single isolated atom. Both criteria gave

consistent results, however, in contrast to the Kullback-Leibler divergence, the

probability of error contains also information on the overlap between different

probability distributions and is therefore a more preferable measure. The ana-

lytical expression of the probability of error makes the need for an alternative

criterion redundant, and it is then applied to optimise the STEM detector design

in order to estimate the atomic number of atoms at the interface of a crystalline

specimen. In the case of deciding between the presence of two different atom

types, both for a single isolated atom or for atom columns at an interface of a

thin crystal, the LAADF STEM detector setting is proposed as optimal annular

detector setting based on our quantitative approach. This detector setting was

also suggested elsewhere based on visual interpretation [69]. Not only the opti-

mal detector regime is found using this quantitative approach, but even optimal

detector angles follow from the proposed method.

In conclusion, our quantitative method can be applied to a wide range of materi-

als applications in order to provide objective suggestions for the inner and outer

angle of the annular STEM detector for atomic number estimation with the lowest

probability of error.
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5Statistical Experiment Design to

Detect and Locate Light Atoms

5.1 Introduction

The theoretical tools to derive the limits to the precision with which unknown

structure parameters can be estimated from HR(S)TEM images are derived in

chapter 3. In chapter 4, these quantitative tools have been used in order to

identify the chemical composition, i.e. by estimating the atomic number Z, of

both a single isolated atom and of atom columns in a crystalline specimen. Here,

the same quantitative approach will be applied to explore some other interesting

research goals, more precisely to investigate the optimal statistical experimental

settings in order to detect and locate light atom columns from HR(S)TEM images
1. In the case of HRSTEM, this will provide us information on where in the

detector plane the most sensitive region is located, while in the case of HRTEM

the optimal values for the spherical aberration and defocus are derived, for

detecting and locating light atom columns.

Since light elements play a key role in many technologically important materials,

such as lithium-battery devices or hydrogen storage applications, much effort

has been made to optimise the STEM technique in order to detect light elements.

Therefore, classical performance criteria, such as contrast or signal-to-noise

ratio, are often discussed hereby aiming at improvements of the direct visual

interpretability. However, when images are interpreted quantitatively, one needs

alternative criteria based on statistical detection theory or the concept of Fisher

information, which will be evaluated and compared in this chapter for different

applications. Using realistic simulations of technologically important materials,

1Part of the results presented in this chapter is published in J. Gonnissen, A. De Backer, A.J.

den Dekker, J. Sijbers and S. Van Aert, Detecting and locating light atoms from High Resolution

Scanning Transmission Electron Microscopy images: The quest for a single optimal design, Ultra-

microscopy, 170, 128-138 (2016).
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we demonstrate the benefits of the proposed methods and compare the results

with existing approaches.

This chapter is organised as follows. In section 5.2, binary hypothesis testing is

applied to optimise the detector design in HRSTEM in order to both detect the

lightest H atom. Next, it is investigated if the same optimal experiment design

is found in order to detect and locate light elements from HRSTEM images in

section 5.3, and from HRTEM images in section 5.4. In section 5.5, conclusions

are drawn.

5.2 Detecting the lightest element H

In the previous chapter, results are presented for the optimal statistical experi-

mental settings for identifying the atomic number from HRSTEM images, more

precisely in the case where one needs to distinguish between two different atomic

numbers. The next step in this research was then to investigate if the applied

quantitative approach could also be useful to optimise the experiment design to

detect light elements in HRSTEM images. For this application, the hypotheses in

the binary hypothesis test had to be reformulated in such a way that the question

to investigate became whether there is an atom present or not. Both hypotheses

are then given by H0 : Z = Z0 and H1 : Z ∈ ∅. Translated into a binary hypothesis

test, this gives us the second case in equation (3.32).

As a first test for this research goal, the crystal YH2 was investigated, which is

referred to as one of the most thermodynamically stable hydrides [23]. Yttrium

hydride is a material which exists in several forms, the most common being a

metallic compound with formula YH2. YH2 has a face centred cubic structure,

and is a metallic compound. Under great pressure, extra hydrogen can combine to

yield an insulator with a hexagonal structure, with a formula close to YH3 [227].

In 1996, it was shown that the metal-insulator transition when going from YH2 to

YH3 can be used to change the optical state of windows from non-transparent to

transparent [228], which caused a wave of research on metal hydride-based chro-

mogenic materials [229].

For this material we consider the problem of optimising the annular STEM detec-

tor in order to detect the lightest H atom. One has been able to experimentally

detect H in this material using ABF STEM detector settings [23], and it was our
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5.2. Detecting the lightest element H

Figure 5.1: Simulated HRSTEM images of a YH2 unit cell viewed from the [010]

direction, for annular detector collection ranges of (a) 11-53 mrad, (b) 22-53 mrad

= ADF and (c) 11-17 mrad = ABF.

goal to find out if we would obtain the same optimal detector type, or even better

the exact optimal detector angles, using our quantitative approach. The expecta-

tion models are simulated using STEMsim [201] both for the crystal in the pres-

ence and absence of hydrogen, corresponding to the hypotheses H0 : Z = 1 and

H1 : Z ∈ ∅. The used simulation parameters are listed in Table 5.1, and examples

of simulated HRSTEM images are shown in Figure 5.1 for three different detec-

tor settings. Note that in Figure 5.1(c) the contrast is not reversed, as one would

maybe expect for the considered detector range. However, the contrast in the ABF

STEM regime only inverts when the coherent contribution to the signal is higher

as compared to the incoherent signal, which depends on several parameters like

the crystal thickness, the atom types present in the crystal and the exact inner

and outer detector angles.

The log-likelihood ratio lnLR(w) defined by equation (3.53) is calculated for the

probability distributions under both hypotheses. The log-likelihood ratio distri-

butions are shown in Figure 5.2 for detector collection angles of (a) 11-53 mrad,

(b) 22-53 mrad, and (c) 11-17 mrad in case of the presence (red) and absence

(green) of H in YH2. The red and green coloured areas correspond to the prob-

ability of deciding H0 while H1 is true and the probability of deciding H1 while

H0 is true, respectively, and the sum of both areas represents the probability of

error. Using the analytical expression defined by equation (3.57), the probability

of error was computed as a function of the inner and outer detector angle.

Results of the probability of error for the detection of H in YH2 are shown in Fig-

ure 5.3. As an optimal detector setting, the ABF STEM regime is indeed found

when following our quantitative approach with a detector ranging from 11 to 17
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Figure 5.2: Log-likelihood ratio distributions for detector collection angles of (a)

11-53 mrad, (b) 22-53 mrad or ADF and (c) 11-17 mrad or ABF, for the presence

(red) and absence (green) of H in YH2.

mrad. Also a local optimum is observed in the LAADF regime with both inner

and outer detector radius larger than the probe semi-convergence angle (for 23-

28 mrad).
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Figure 5.3: Pe as a function of the inner and outer detector angle at Scherzer con-

ditions for an electron dose of 2000 e−/Å2 at 300 kV and a probe semi-convergence

angle of 21.8 mrad for the detection of H in a 2.6 nm thick YH2 crystal.
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5.2. Detecting the lightest element H

Parameter Symbol Value

Defocus f (nm) -8.301

Spherical aberration Cs (mm) 0.035

Slice thickness zslice (Å) 2.6

Debye-Waller factor BY (Å2) 0.6

BH (Å2) 1.5

Acceleration voltage V0 (kV) 300

Semi-convergence angle α (mrad) 21.7

Probe sampling distance (x-direction) ∆x (Å) 0.069

Probe sampling distance (y-direction) ∆y (Å) 0.069

Incident electron dose N (e−/Å2) 2000

FWHM of the source image FWHM (Å) 0.7

Total number of scanned pixels K × L 75 × 75

Table 5.1: Parameter values used in the STEMsim software for the simulation of

YH2.
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Chapter 5. Detecting and locating light atoms

5.3 Detecting versus locating light atoms in

HRSTEM

The next interesting question in our research was to investigate if both detect-

ing light atoms with the lowest probability of error and locating them with the

highest possible precision, would lead to the same optimal experiment design.

To illustrate the concept, the problem of suggesting optimal detector settings to

detect the lithium atoms in LiV2O4 is considered, as well as detecting the oxygen

in SrTiO3. Therefore, a binary hypothesis test is performed where both hypothe-

ses correspond to either the presence or absence of the oxygen or lithium atoms

in the crystal. The probability of error can then be calculated as a function of

the experimental settings, in order to derive the optimal statistical experiment

design. After optimal experiment designs have been obtained for the detection

of the oxygen and lithium columns, a detailed simulation study is performed for

the same crystals LiV2O4 and SrTiO3, where the question is for which detector

design the lithium and oxygen columns can be located from HR STEM images

with ultimate precision. This analysis is based on the Cramér-Rao lower bound,

defined in section 3.3.2. The precision with which the atomic column coordinates

can be measured is represented by the diagonal elements of the CRLB. Since both

diagonal elements of the CRLB are equivalent for the investigated crystals in this

section, as the x- and y-axes are convertible, the first one which corresponds to

the lower bound on the variance of the x-coordinate of the atomic column posi-

tion, is chosen as optimality criterion. The highest precision to locate a column is

then given by the lower bound on the standard deviation of the estimated atomic

column position, defined by the square-root of the criterion that is minimised,√
CRLB11.

Furthermore, both research questions are investigated as a function of the incom-

ing electron dose. This allows one to investigate which electron dose is ultimately

required to detect and locate light atoms with sufficient statistical significance.

5.3.1 Practical implementation of the CRLB

To calculate the partial derivatives in the expression for the Fisher information

matrix, given by equation (3.20), different HR(S)TEM images for the LiV2O4 and

SrTiO3 crystals are simulated, where the central lithium or oxygen column in the

field of view is shifted both in the x- and y-direction. The partial derivatives are
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5.3.2. Detecting and locating Li in LiV2O4

then approximated using the finite difference method:

∂λkl
∂θ
≈ λkl(θ)−λkl(θ − h)

h
. (5.1)

The order of magnitude of the shift h is chosen to be of the same order as the root-

mean-square displacement u, which can be calculated since the Debye-Waller fac-

tors B are known. For the lithium atoms in LiV2O4, BLi equals 1.10 Å2 [3], and

for the oxygen atoms in SrTiO3, BO equals 0.7323 Å2 [230, 231]. The root-mean-

square displacement is then given by [232]:

u =

√
B

8π2
. (5.2)

In the case of locating lithium in the crystal LiV2O4, the value for the shift h in

equation (5.1) is set to 0.1648 Å in the x-direction and 0.1665 Å in the y-direction,

corresponding to the x- and y-dimension of the pixel size of the simulated LiV2O4

crystal. For a lower value of the shift h, the numerical approximation of the

derivative did not improve any further. In the case of locating oxygen in the crys-

tal SrTiO3 the value for the shift h is analogously set to 0.1562 Å, which equals

the x- and y-dimension of the pixel size of the simulated crystal.

5.3.2 Detecting and locating Li in LiV2O4

As a first interesting application, we look at the material LiV2O4, where we want

to investigate if the same optimal detector settings are found for both detecting

and locating the light lithium atoms from HRSTEM experiments.

Rechargeable lithium-ion batteries are key components of many electronic appli-

cations. As lithium ions are inserted into or extracted from host materials during

battery operation, the spinel structure of LiM2O4, for M being a transition metal

ion like vanadium, could provide an appropriate three-dimensional tunnel for

lithium diffusion [233, 234] and therefore it has potential as a cathodic material

for batteries. However, implementation of such a material has been delayed due

to its limited cycling and unsatisfactory storage performance at elevated tempera-

tures [1]. In order to be able to improve battery performance, it is a necessary step

to investigate these materials and the behaviour of lithium atoms in and around

these host materials.

Several studies have shown that ABF STEM made it possible to visualise the

lithium atom columns in LiV2O4 (space group of Fd3m and lattice constant of
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Chapter 5. Detecting and locating light atoms

0.824 nm) [3, 12, 57, 90] and therefore, it was our goal to investigate if we would

find the same optimal detector range for detecting and locating lithium in this

material, using our quantitative approach.

Detecting Li in LiV2O4

In [3], individual lithium columns could be visualised using ABF STEM for an

acceleration voltage of 300 kV and a sample thickness of 2.9 nm. In order to com-

pare with these results, we optimised detector settings for an accelerating voltage

of 300 kV and the same crystal thickness. In addition, since one could prefer

to perform this experiment at a lower voltage in order to reduce beam damage,

we also optimised the design for an accelerating voltage of 80 kV. The commonly

used accelerating voltage of 300 kV and the lower value of 80 kV were selected

as they have also been used before in literature to experimentally image individ-

ual lithium columns [11]. For this crystal the two hypotheses in the performed

binary hypothesis test, H0 : Z = 3 and H1 : Z ∈ ∅, now correspond to the presence

of a lithium atom and the absence of an atom of any type, respectively.

The expectation models under both hypotheses are simulated for a probe semi-

convergence angle of 21.7 mrad, an electron dose of 2000 e−/Å2, a spherical aber-

ration of 1 micron with Scherzer defocus and an acceleration voltage of 300 kV.

Simulations at 80 kV are also performed for a probe forming aperture angle of

21.7 mrad, a spherical aberration of 1 micron and Scherzer conditions for the de-

focus. Source size broadening is taken into account by convoluting point source

images with a Gaussian function with FWHM = 0.7 Å. All other parameters used

for the simulation of LiV2O4, viewed from the [110] direction, are listed in Ta-

ble 5.2. Simulated HRSTEM images of a crystal unit cell of LiV2O4 are shown in

Figure 5.4 for three different detector settings. Note that the scale is different for

the three detector settings, since the amount of signal changes with the detection

area.

The probability of error for the detection of the light lithium atom column in a

LiV2O4 crystal was computed for a whole range of detector inner and outer angles

(0-99 mrad and 1-100 mrad, respectively), for three different crystal thicknesses

of 1.17 nm, 2.91 nm and 4.66 nm, corresponding to a column of respectively 2, 5

and 8 Li atoms thick, and an incoming electron dose of 105 e−/Å2, for both con-

sidered accelerating voltages of 300 kV and 80 kV. As the behaviour of the prob-

ability of error did not seem to change significantly after an outer detector radius
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5.3.2. Detecting and locating Li in LiV2O4

Figure 5.4: Simulated HRSTEM images of a LiV2O4 unit cell viewed from the

[110] direction, for annular detector collection ranges of (a) 12-53 mrad, (b) 22-

53 mrad = ADF and (c) 12-18 mrad = ABF.

of 100 mrad, calculations have only been performed up to this outer detector an-

gle in order to limit the computation time. This can be understood as scattering

to the high detector angles is dominated by inelastic TDS scattering, which varies

smoothly with the detector range at high angles. The results of the probability

of error for the detection of lithium in LiV2O4 at 80 and 300 kV are shown in

Figure 5.5. In Figure 5.5, the optimal inner and outer detector angles to detect

the lithium column are determined by the blue region where the probability of

error is minimal. From the results shown in Figure 5.5, we can see that the same

optimal detector range is obtained for the three thicknesses under study. It can

also be seen that the optimal range of low probability of error becomes broader

for detecting atomic columns in a thicker sample region, which means that it be-

comes less critical to optimise the detector settings to detect a lithium column

when the sample region becomes thicker, what could be expected. Furthermore,

when the results of both accelerating voltages are compared, it is remarkable that

the range of low probability of error is much broader when working at a lower

incoming electron dose. At the accelerating voltage of 80 kV, the optimal detec-

tor range covers an overlapping region of ABF and LAADF, with an inner detector

angle smaller than the probe semi-convergence angle, and an outer detector angle

larger than the probe forming angle. Also for this lower accelerating voltage, the

optimal detector range broadens when detecting lithium in a thicker sample re-

gion. From these results, it follows that a lower accelerating voltage is favourable

if one wants to detect the light lithium atoms in LiV2O4.

In general, the results of the probability of error show us which area in the detec-
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Parameter Symbol Value

Defocus f (nm) -1.4 (or -2.04)

Spherical aberration Cs (mm) 0.001

Slice thickness zslice (Å) 1.46

Debye-Waller factor BLi (Å
2) 1.1

BV (Å2) 0.01

BO (Å2) 0.48

Acceleration voltage V0 (kV) 300 (or 80)

Semi-convergence angle α (mrad) 21.7

Probe sampling distance (x-direction) ∆x (Å) 0.165

Probe sampling distance (y-direction) ∆y (Å) 0.167

Incident electron dose N (e−/Å2) 105

FWHM of the source image FWHM (Å) 0.7

Total number of scanned pixels N ×M 50 × 35

Table 5.2: Parameter values used in the STEMsim software for the simulation of

LiV2O4.

tion plane is most sensitive for detecting light elements. From the results shown

in Figure 5.5, it is clear that the overall optimal detector range for the detection

of lithium at 300 kV is the LAADF STEM regime, where the inner detector radius

is slightly larger than the probe semi-convergence angle of 21.7 mrad. Here, also

local optima are found in the ABF STEM regime, where the inner and outer de-

tector radii are both lying within the illumination cone. This was also suggested

elsewhere [3,12,23,56,57,85,158]. For the acceleration voltage of 80 kV, the op-

timal range becomes broader and both covers inner angles that lie in the LAADF

and ABF STEM regime.
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Figure 5.5: The probability of error to detect Li in a 1.17 nm, 2.91 nm and 4.66 nm

thick LiV2O4 crystal respectively using a binary hypothesis test, for an incoming

electron dose of 105 e−/Å2 and accelerating voltage of 300 kV (upper row) and 80

kV (lower row). On the horizontal axes, the inner detector radius is shown and

on the vertical axes the outer detector radius, both in mrad.

Locating Li in LiV2O4

The ultimate precision with which the position of the pure lithium column in

LiV2O4 can be determined was calculated for an accelerating voltage of 300 kV,

an incoming electron dose of 105e−/Å2, for an inner STEM detector radius going

from 0-99 mrad and an outer STEM detector radius varying from 1-100 mrad.

All other simulation parameters are given in Table 5.2. This electron dose was

chosen in order to retrieve an ultimate precision that lies in the picometre range,

as desired. The detector settings leading to the minimum value of the
√
CRLB11

result in the ultimate precision to locate the lithium column. Results for this

ultimate precision are shown in Figure 5.6 for the same thicknesses that were

investigated for the detection problem of lithium in the previous section.
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Figure 5.6: The precision with which the pure Li column can be located in LiV2O4

for the three different crystal thicknesses of 1.17 nm, 2.91 nm and 4.66 nm, re-

spectively and the same incoming electron dose of 105e−/Å2. On the horizontal

axes, the inner detector radius is shown and on the vertical axes the outer detector

radius, both in mrad. Note that the maximum value of the colourbar is set to 1 Å

in order to visualise the optimal region.

From the results shown in Figure 5.6, it is clear that the overall optimal detector

collection range to locate light atomic columns is LAADF STEM, which was also

the optimal detector range for the detection of light elements. Local optima are

again found in the ABF STEM regime for the different investigated thicknesses.

From Figure 5.6 it is also clear that a better precision can be obtained for locating

an atomic column in a thicker sample region. This can intuitively be understood

since it is easier to determine the position of a column with a higher contrast.

In addition to the result shown in Figure 5.6, a line scan is plotted of the attain-

able precision as a function of thickness at the optimal detector design, to better

visualise the attained picometre range precision. This line scan is shown in Figure

5.7 for the same electron dose that was used in Figure 5.6.
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Figure 5.7: The ultimate precision to locate a Li column in LiV2O4 for an incom-

ing electron dose of 105e−/Å2 as a function of thickness, at the optimal detector

settings for detecting and locating the Li column.

5.3.3 Detecting and locating O in SrTiO3

In the past few years, aberration-corrected STEM imaging using an annular de-

tector located within the bright field region has been reported to visualise not

only light lithium atoms like in the previous section, but also oxygen, stron-

tium and titanium oxide columns in a SrTiO3 crystal [56]. This ABF imaging has

been shown appropriate for imaging light atom columns which are located near

columns of heavy elements. Since SrTiO3 is an excellent substrate for epitaxial

growth of high-temperature superconductors and many oxide-based thin films,

it is a widely studied material and an interesting crystal to investigate with our

quantitative approach. The goal of this section was thus to optimise the STEM

detector design to detect and locate the light oxygen atoms in SrTiO3.

Detecting O in SrTiO3

In the same way as for the LiV2O4 crystal, statistical detection theory can be ap-

plied to determine the probability of error for the detection of the light oxygen

atoms in SrTiO3. The binary hypothesis test that we then evaluate is given by

the following hypotheses: H0 : Z = 8 and H1 : Z ∈ ∅ and the probability of error

can again be computed as a function of the experiment design, and minimised

in order to obtain the optimal STEM detector settings. The simulation param-
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eters which are used for SrTiO3 for a spherical aberration-corrected microscope

are listed in Table 5.3.

Parameter Symbol Value

Defocus f (nm) -1.4

Spherical aberration Cs (mm) 0.001

Slice thickness zslice (Å) 1.95

Debye-Waller factor BSr (Å
2) 0.6214

BT i (Å
2) 0.4398

BO (Å2) 0.7323

Acceleration voltage V0 (kV) 300

Semi-convergence angle α (mrad) 20

Probe sampling distance (x- and y-direction) ∆x, ∆y (Å) 0.075

Incident electron dose N (e−/Å2) 104

FWHM of the source image FWHM (Å) 0.7

Number of scanned pixels for detecting O N ×M 52 × 52
Number of scanned pixels for positioning O N ×M 25 × 25

Table 5.3: Parameter values used in the STEMsim software for the simulation of

SrTiO3.

The results for the probability of error using a binary hypothesis test in order to

detect oxygen in the crystal SrTiO3 from a HRSTEM image are shown in Figure

5.8 for three different thicknesses and for an incoming electron dose of 104 e−/Å2.

From the results shown in Figure 5.8, it is clear that for thin crystals the optimal

detector collection range corresponding to the regime of minimum probability

of error is LAADF STEM, which means that the optimal inner detector angle is

only slightly larger than the probe semi-convergence angle. There is also a local

optimum in the ABF STEM region, where both the inner and outer detector radius

are lying within the illumination cone. For thicker crystals, we can see that the

optimal region broadens and the optima in the ABF and LAADF STEM regions

start to overlap. Moreover, it can be seen that for the thicker crystal, there is

a broader range where the probability of error is very low and does not change

significantly, which indicates that it becomes less critical to optimise the detector

design if one wants to detect an atomic column in a thicker sample region.
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Thickness

(nm)

Optimum

(mrad)
Pe

1.95 2-13 0.18

22-24 0.05

22-100 ∝ e-09

3.91 11-20 0.051

22-24 0.00017

22-100 ∝ e-16

29.29 0-5 ∝ e-120

17-21 ∝ e-35

17-100 ∝ e-29

Table 5.4: Values for the probability of error at different detector ranges for the

three investigated thicknesses.
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Figure 5.8: The probability of error to detect O in a 1.95 nm, 3.91 nm and 29.29

nm thick SrTiO3 crystal using a binary hypothesis test, for an incoming electron

dose of 104 e−/Å2. On the horizontal axes, the inner detector radius is shown and

on the vertical axes the outer detector radius, both in mrad.

In order to have more insight in the results of the probability of error for detecting

the light O column in SrTiO3 shown in Figure 5.8, we show the radial integrated

intensity of the CBED pattern at the position of the O column for a 3.91 nm thick

SrTiO3 crystal in Figure 5.9. In this figure, the radial integrated intensity is plot-
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Figure 5.9: The radial integrated intensity of the CBED pattern at the position of

the O column, both for the simulated model with and without O at 300 kV for a

3.91 nm thick SrTiO3 crystal.

ted both for the model in the presence and the absence of the O column. Although

only the information of one pixel of the simulated images under both hypotheses

is included, this result can already provide more insight in the behaviour of the

probability of error as the models under both hypotheses will differ the most at

this pixel. From Figure 5.9, it is clear that the intensity shows different peaks in

the ABF STEM regime, while it drops down after the detector angle has reached

the probe semi-convergence angle. This is expected as from this angle on only

scattered intensity will reach the detector and therefore the detected dose de-

creases significantly. By comparing the radial integrated intensity curves of the

CBED patterns under both hypotheses, it is clear that the detector rings for which

both signals are more separated correspond to the different optimal regions in the

probability of error shown in Figure 5.8. In the LAADF regime, the proportion of

both signals is the largest, which can explain the global minimum for the proba-

bility of error for this detector setting. Indeed, as we use purely Poisson statistics
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a high proportion in signal means that the expectation values or mean values are

more separated. Furthermore, the low intensity in this LAADF regime gives rise

to a lower expectation value and thus also a lower variance of the probability

functions under both hypotheses, resulting in a low probability of error. Note

that all other results of the probability of error for detecting light atom columns

in this thesis can be explained in an equivalent way. As a further illustration to

understand the result of the probability of error for detecting O in a 3.91 nm

thick SrTiO3 crystal, simulated Poisson noise realisations are shown for different

detector settings in Figure 5.10, for an incoming electron dose of N = 104e−/Å2.

22-24 mrad 22-100 mrad 11-20 mrad 

(1) 

(2) 

(3) 

Figure 5.10: Poisson noise realisations of a 3.91 nm thick SrTiO3 crystal (1) in the

presence and (2) absence of the central O column, for an incoming electron dose

of N = 104e−/Å2 and for three different detector settings. (3) Difference images of

the model with and without O are shown on the same gray scale.
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It is clear from the images shown in Figure 5.10 that there is still some detected

dose for the small detector ring of 22-24 mrad, if the incoming electron dose

is sufficiently high. However, the true optimal setting of 22-100 mrad gives a

much higher detected dose which results in a much lower probability of error as

compared to the 22-24 mrad setting (see Table 5.4). Furthermore, it is important

to note that, even though the small detector ring of 22-24 mrad visually seems

to obtain the same low probability of error as the 22-100 mrad ring for detecting

O in a 3.91 nm thick SrTiO3 crystal (Figure 5.8), the colors in the plot of the

probability of error drastically scale with the incoming electron dose. This is

further demonstrated in Figure 5.11, where the probability of error is shown for

two lower incoming electron doses as compared to the results in Figure 5.8. For

example, for a 10 times smaller incoming electron dose than for the results shown

in Figure 5.8 Pe = 0.13 for the small ring of 22-24 mrad, while we still obtain a

low value of Pe = 0.0039 for the setting of 22-100 mrad in this case.

(a) N = 103 e−/Å2 (b) N = 102 e−/Å2

Figure 5.11: The probability of error to detect O in a 3.91 nm thick SrTiO3 crystal

using a binary hypothesis test, for two different incoming electron doses. On the

horizontal axes, the inner detector radius is shown and on the vertical axes the

outer detector radius, both in mrad.
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Locating O in SrTiO3

The ultimate precision with which the position of the pure oxygen column in

SrTiO3 can be determined, was calculated for an incoming electron dose of

104e−/Å2, for a whole range of inner and outer detector angles for the annular

STEM detector. The inner radius was varied from 0-99 mrad and the outer radius

from 1-100 mrad. A lower dose as compared to the case of locating lithium in

LiV2O4 suffices in order to obtain picometre precision, since oxygen is a heavier

atom and thus gives a higher scattered intensity as compared to lithium.

In Figure 5.12 it can be seen that the overall optimal detector range is again

LAADF STEM, while local optima are present in the ABF STEM regime, at least

up to a thickness of 4 nm. For thicker sample regions however, both regimes

broaden and start to overlap and the true optimum becomes ABF STEM. From

the results shown in Figure 5.12, we can also see that a better precision can be ob-

tained when locating an atomic column in a thicker sample region. The optimal

detector settings that are obtained from the results shown in Fig. 5.12, together

with the corresponding values for the ultimate precision, are given in Table 5.5.

Thickness

(nm)

Optimum

(mrad)

Precision

(Å)

1.95 21.7-100 0.0800

3.91 20.8-100 0.0611

29.29 0.1-6.4 0.0141

Table 5.5: Results from Figure 5.12 for the optimal detector settings for posi-

tioning O in the crystal SrTiO3, together with the corresponding values for the

ultimate precision with which the O column can be positioned for an electron

dose of 104e−/Å2.

In Figure 5.13 the ultimate precision is plotted to locate the pure O column in

SrTiO3 as a function of thickness, at the two optimal settings that were derived for

the different considered crystal thicknesses, and for the same electron dose that

was used for the results in Figure 5.12. It can be seen from this figure that from

a thickness of 5 nm and larger, the optimal detector setting shifts from LAADF

STEM to ABF STEM.
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Figure 5.12: The ultimate precision to locate the pure O column in a 1.95 nm, 3.91

nm and 29.29 nm thick SrTiO3 crystal from HRSTEM images, for an incoming

electron dose of 104e−/Å2. On the horizontal axes, the inner detector radius is

shown and on the vertical axes the outer detector radius, both in mrad. Note that

the maximum value of the colourbar is set to 1 Å in order to visualise the optimal

region.
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Figure 5.13: The ultimate precision to locate an O column in SrTiO3 for an incom-

ing electron dose of 104e−/Å2 as a function of thickness, at the optimal detector

settings for detecting and locating the O column.
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5.3.4 Detecting versus locating

Although a single optimum is found for both simulation studies in order to detect

and locate light atoms, it can be seen by comparing either Figures 5.5 and 5.6 or

Figures 5.8 and 5.12, that the optimal detector region becomes broader in the re-

sults of the precision, as compared to the optimal detector region where the prob-

ability of error is minimal. This suggests that it is more critical to optimise the

experiment design for detecting than for locating light atoms. Therefore, as soon

as the experiment design is optimised in order to detect light atomic columns,

these columns can also be located with a high precision.

5.3.5 Effect of the incoming electron dose

The detectability of atomic columns as well as the precision to locate them do

not only depend on the detector settings, but also on the number of incident

electrons. Although the optimal detector settings are independent of the electron

dose, the probability of error and the attainable precision can be further analysed

as a function of the incident electron dose, both for detecting and locating atomic

columns. Especially for light element crystals, the effect of radiation damage

is almost unavoidable and therefore one might be interested to investigate the

lowest possible incident electron dose, for which the detectability as well as the

precision for locating the light atoms are sufficiently high.

From the previous results of the probability of error and the ultimate precision,

we obtained a single optimal detector design to both detect and locate a lithium

column in LiV2O4, as desired. In Figure 5.14, results of the probability of error

and the ultimate precision as a function of incoming electron dose are shown,

both at the respective optimal detector settings for the different thicknesses.

From the results shown in Figure 5.14(a), it is clear that the probability to choose

the wrong hypothesis decreases for an increasing electron dose, as expected. If

one finds a maximum probability of error of 10% acceptable, an incident electron

dose of about 5500 e−/Å2 would be sufficient when using the optimal detector

settings for detecting Li in LiV2O4 for a column of 4.66 nm. From Figure 5.14(a),

it can also be seen that a higher incoming electron dose is necessary if one

wants to detect a lithium column in a very thin sample region with a sufficiently

low probability of error. About 7900 incoming electrons per Å2 are therefore

necessary to detect a lithium column of 2.91 nm thick, in order to still obtain a

maximum probability of error of 15 %.
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Figure 5.14: (a) The probability of error to detect a Li column in LiV2O4 and (b)

the ultimate precision to locate a lithium column in LiV2O4, both as a function

of the electron dose for three different crystal thicknesses: 1.17 nm, 2.91 nm and

4.66 nm at the optimal detector settings for detecting and locating Li.

Also, for locating the lithium columns in LiV2O4 one can look at the effect of

the electron dose on the attainable precision. Therefore, for the three different

thicknesses the ultimate precision is investigated as a function of the electron

dose at the optimal detector settings. Results are shown in Figure 5.14(b). It

can be seen that for an electron dose of 105e−/Å2, the ultimate precision lies

in the picometre range as desired when the optimal detector setting for the

respective crystal thicknesses is applied. If we compare Figures 5.14(a) and

5.14(b), we propose 105e−/Å2 as optimal incoming electron dose. Indeed, at this

incoming dose picometre precision for locating the lithium column in LiV2O4

is obtained, at least for thicknesses of 2.91 nm or larger. At the same time, for

an electron dose of 105e−/Å2 a very low probability of error of maximum 15% is

found for the detection of lithium, even for a column in a very thin sample region.

For the simulation study of SrTiO3, the probability of error and the attainable

precision can also be investigated as a function of the incident electron dose.

In the same way as for the LiV2O4 crystal, results are shown in Figures 5.15(a)

and 5.15(b) for respectively the probability of error and the ultimate precision as
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5.3.5. Effect of the incoming electron dose

functions of incoming electron dose, under the optimal detector settings for the

different investigated crystal thicknesses.
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Figure 5.15: (a) The probability of error to detect the central O column in SrTiO3

and (b) the ultimate precision to locate the O column in SrTiO3, both as a function

of the electron dose for three different crystal thicknesses: 1.95 nm, 3.91 nm and

29.29 nm at the optimal detector settings for detecting and locating O.

For detecting and locating the central O column, the probability of error and

the ultimate precision both lead to the same optimal detector range as desired.

Both quantities also decrease as a function of the incoming electron dose. From

the results shown in Figure 5.15, it is clear that a very low probability of error is

already obtainable for an incoming dose of about 103e−/Å2. However, a higher

dose of 104e−/Å2 is necessary if one also wants to have picometre precision for

the oxygen column position in the SrTiO3 crystal.

From these results, it can be shown that one can tune the incoming electron

dose in such a way that a sufficiently low probability of error is attained in order

to detect a light atomic column, and moreover a high precision on the atomic

column position is retrieved. From the results shown in Figures 5.14 and 5.15 it

can also be seen that the thicker the sample region, the easier it is to detect and

locate the atomic column, which is an expected result.

Note that in this work, the fundamental counting-statistics limit is established,

while in a real experiment the presence of scan noise and other instabilities occur
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which will make this ideal situation unlikely to be routinely realised.

Indeed, environmental or instrumental disturbances such as acoustic, mechani-

cal, or electromagnetic interference can cause all kinds of distortions in the exper-

imental images recorded by an aberration-corrected STEM [235]. Both SNR and

resolution performance are reduced due to these distortions. In addition, sample

or stage drift can cause the images to appear warped which will result in unre-

liable lattice parameters being exhibited. Therefore, several image reconstruc-

tion codes have been developped through the years in order to correct for these

features appearing in all scanning microscope techniques [235–238]. In [235], a

detailed study of the origins, characteristics, and effects of imaging distortions is

presented. Nowadays, different methods to compensate for scan and drift distor-

tions exist and can be used in order to correct the recorded images. In chapter 7 of

this thesis, the Smart Align code [239] is applied, which allows robust rigid and

non-rigid registration of scanning microscope data using the image’s numerical

gradients to calculate transformations. Another proposed method to remove the

damaging effects of sample drift is the Revolving STEM (RevSTEM) technique.

Here, scan rotation between successive rapid frame acquisitions is introduced, as

well as the projective standard deviation (PSD) method in order to track lattice

vector angle distortions [240]. Very recently, another approach has been reported

to compensate for non-linear effects in scanning microscope images. This method

uses orthogonal scan pairs to align each measurement line-by-line along the slow

scan direction, by fitting contrast variation along the lines [241]. In conclusion,

different approaches are available to first compensate for scan and/or drift distor-

tions in HRSTEM images, which will result in more precise results when applying

statistical parameter estimation theory in order to derive unknown structure pa-

rameters from the corrected images.

In order to test the effect of scan noise on the result of the probability of error,

a test study has been performed in which the probability of error was calculated

for the detection of O in SrTiO3 using simulated images containing both scan and

Poisson noise. However, as our analytical expression for the probability of error

assumes only Poisson noise to be present, the inclusion of scan noise was only

possible using repetitive noise realisations which is very time-consuming. Since

all image pixel values in the simulated HRSTEM images under both hypotheses

are being used in the calculation of the probability of error for detecting light

atom columns, only a high amount of scan noise results in a loss of information

in the simulated images and therefore in an increase of the probability of error.

It was found that the overall behaviour of the probability of error as a function
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of the inner and outer STEM detector angles remained the same when including

scan noise in the simulated images, and thus the same detector setting was found

to be optimal. Therefore, all results for the probability of error in this thesis were

calculated using the efficient analytical expression for the probability of error,

taking only the presence of Poisson noise into account. Note, however, that when

using a different performance measure than all pixel values in the HRSTEM im-

ages, such as peak intensities or scattering cross-sections, the effect of scan noise

(or other image distortions) is expected to have a more significant effect on the

result of the probability of error.

5.4 Detecting versus locating light atoms in HRTEM

In comparison with the results presented in the previous section, where the

limits to detect and position light elements in HRSTEM have been investigated,

the performance of HRTEM has been examined for the same research goals and

for the same material, SrTiO3. In the comparison between HRTEM and HRSTEM

the incoming electron dose, N (e−/Å2), was kept the same as it is a limiting factor

in both imaging modes. Certainly if one wants to detect or locate light elements

from a HR(S)TEM image, the dose is a limiting parameter for the performance of

both imaging modes.

In the case of HRTEM, the spherical aberration (Cs) and defocus (f ) were consid-

ered as the most influencing experimental parameters, in contrast to the inner

and outer detector angles of the annular STEM detector in the case of HRSTEM.

The experiment design was therefore optimised by computing the probability

of error and the ultimate precision as a function of spherical aberration and

defocus. The optimal experiment design then corresponds to the settings that

minimise the probability of error and/or the ultimate precision to locate the pure

oxygen column.

Frozen lattice calculations were performed for the HRTEM image simulations,

using the phase contrast transfer function for partially coherent imaging [62,169],

for a whole range of spherical aberration and defocus values. The simulation

parameters that were used are listed in Table 5.6, and the investigated thicknesses

are the same than the ones in section 5.3, 1.95 nm, 3.91 nm and 29.29 nm.
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Parameter Symbol Value

Debye-Waller factor BSr (Å
2) 0.6214

BT i (Å
2) 0.4398

BO (Å2) 0.7323

Zone orientation [uvw] [100]

Acceleration voltage V0 (kV) 300

Size of the supercell Na ×Nb (nm2) 4.3 × 4.3
Number of FP configurations N 9×9×4×30
Slice thickness zslice (Å) 1.95

Focal spread ∆ (nm) 2.9

Semi-convergence angle of the β (mrad) 0.03

partial coherence envelopes

Pixel size ∆x, ∆y (Å) 0.046488

Incident electron dose N (e−/Å2) 104

Number of pixels in the unit cell K × L 84 × 84

Table 5.6: Parameter values used for the TEM simulations of SrTiO3.

Detecting O in SrTiO3

Results of the probability of error for the detection of the pure oxygen atom

column are presented in Figure 5.16, for the same three crystal thicknesses that

were investigated for the optimisation of HRSTEM.

From the results shown in Figure 5.16, it is clear that detection of a light atom

column in a thin sample region is hardly possible in HRTEM for the considered

values for spherical aberration and defocus. However, if the sample region is

thicker, the probability of error decreases significantly. The optimal statistical

experiment design changes for different thicknesses. The derived optima for the

three investigated thicknesses correspond to the following settings: f = 100 Å,

Cs = -0.05 mm (Pe = 0.4226); f = -70 Å, Cs = -0.04 mm (Pe = 0.3273) and f =

-70 Å, Cs = 0 mm (Pe = 1.4 e-17), for a 1.95 nm, 3.91 nm and 29.29 nm thick

SrTiO3 crystal, respectively. As an illustration the contrast transfer function

is shown in Figure 5.17 at the optimal settings for a thickness of 3.91 nm, as

compared to the settings for zero defocus and spherical aberration. As expected

there is no contrast transfer in the case of zero aberrations as the phase contrast

imaging in TEM requires at least some aberrations (certain value for defocus and
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Figure 5.16: The probability of error to detect the central O column in a 1.95 nm,

3.91 nm and 29.29 nm thick SrTiO3 crystal from HRTEM images, using a binary

hypothesis test, for an incoming electron dose of 104e−/Å2. On the horizontal

axes, the defocus is shown and on the vertical axes the spherical aberration.

spherical aberration) in order to be able to shift the phase of the electron beam.

A phase shift per se does not give rise to an image. Only the superposition of

the undisturbed wave with the scattered wave leads to interference and thus to

changes in intensity, which can be measured.

When comparing the results presented in Figure 5.16 with the corresponding

probabilities of error for the detection of oxygen from HRSTEM, presented in

Figure 5.8, we see that for the detection of oxygen in thin sample regions the

probability of error is much larger in HRTEM than in HRSTEM, for the same

incoming electron dose. This suggests that it is advantageous to use HRSTEM in

order to be able to detect light atom columns in thin sample regions.

Locating O in SrTiO3

To investigate the precision with which the light oxygen column can be located

in a HRTEM image, use is made of the concept of Fisher information as in the

previous section. The first diagonal element of the CRLB is evaluated as a func-

tion of a range of spherical aberration values and different defocus values, and

gives a measure of the ultimate precision with which the unknown parameter can

be estimated. The optimal statistical experiment design then corresponds with

those experimental settings minimising the CRLB, or in other words maximising

the ultimate precision.
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Figure 5.17: The contrast transfer function (CTF) at zero aberrations and at the

optimal settings (f = -70 Å, Cs = -0.04 mm) for detecting the O column in a 3.91

nm thick SrTiO3 crystal from HRTEM images.

Results of the ultimate precision to locate the pure oxygen column in SrTiO3 as a

function of spherical aberration and defocus are shown in Figure 5.18.

From the results shown in Figure 5.18 it is clear that, in the same way as for de-

tecting the oxygen column, the ultimate precision is much better when the light

atom column is located in a thicker sample region. This can intuitively be under-

stood since we look at the precision to locate the whole column and not a single

atom within the column. As the column becomes thicker, it becomes easier to

locate and thus the precision will improve. What is also shown in this Figure,

is that the optimal experimental settings deviate for the different investigated

crystal thicknesses. Furthermore, when comparing with the result for locating

the oxygen column from HRSTEM presented in Figure 5.12, it is clear that the

obtainable precision is much better in HRSTEM as compared to HRTEM for lo-

cating the oxygen column in thinner sample regions. Only for thicker sample

regions, an equivalent high precision is obtained for both imaging modes. As the
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Figure 5.18: The ultimate precision to locate the pure O column in a 1.95 nm,

3.91 nm and 29.29 nm thick SrTiO3 crystal from HRTEM images, for an incoming

electron dose of 104e−/Å2. On the horizontal axes, the defocus is shown and on

the vertical axes the spherical aberration.

optimal settings are critical in HRTEM in order to obtain an acceptable precision,

and as they deviate for different thicknesses, it is also more difficult to optimise

the experiment design in practice if one would want to locate light atom columns

from a HRTEM experiment, as compared to HRSTEM. The derived optima for the

three investigated thicknesses correspond to the following settings: f = -60 Å, Cs
= -0.02 mm (

√
CRLB = 0.5412); f = -110 Å, Cs = -0.01 mm (

√
CRLB = 0.4267) and

f = 20 Å, Cs = 0 mm (
√
CRLB = 0.0342), for a 1.95 nm, 3.91 nm and 29.29 nm

thick SrTiO3 crystal respectively.

For HRTEM, it is found after comparing the results of Figures 5.16 and 5.18 that

no single optimal setting was obtained for both detecting and locating the oxy-

gen column in SrTiO3, even not for exactly the same crystal thickness. For an

incoming electron dose of 104e−/Å2, the probability of error was much higher as

compared to HRSTEM for detecting the light column in thin specimen regions. In

order to obtain a sufficiently low probability of error and picometre range preci-

sion for the detection and location problem, respectively, a higher dose would be

required in the case of HRTEM. Of course, this would not always be convenient

in practice, definitely not for detecting and locating light elements.
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5.5 Conclusions

In this chapter, we first proposed a method based on detection theory to find

the optimal experimental settings for the detection of light elements. To study

the optimal design to locate these light elements, use is made of the concept of

Fisher information. When combining these statistical tools, the most sensitive

regions in the detection plane could be investigated for both research questions

in the case of HRSTEM, which can be useful for experimentalists when choosing

the appropriate camera length for their experiment. In the case of HRTEM, the

most appropriate settings for spherical aberration and defocus could be derived

for both detecting and locating the light oxygen column in SrTiO3 images.

When detecting the lightest hydrogen atom, ABF STEM has been found to

be the optimal detector setting, with the detection range lying within the

illumination cone of the probe. Based on qualitative criteria, such as visual

contrast, this setting was already suggested elsewhere for the detection of light

atoms [3,12,23,56,57,85].

Next, the crystals LiV2O4 and SrTiO3 have been investigated in order to optimise

the experiment design to detect and locate either a light lithium or oxygen

column respectively.

For HRSTEM, the optimal detector design depends on the investigated material

and the crystal thickness and corresponds to either LAADF STEM for thin spec-

imens, or ABF STEM. When the sample region becomes thicker, both optimal

regions start to overlap and, furthermore, it becomes easier to detect the light

atom columns. The optimal settings obtained for locating the light atom columns

using the attainable precision as optimality criterion, have been found to be

consistent with the optimal settings for the detection of these light atom columns

for HRSTEM imaging.

In the case of HRTEM, different optima are found for the detection of the

light oxygen column in SrTiO3 for the three investigated thicknesses. Only for

the detection of light elements in thicker sample regions, optimisation of the

spherical aberration and defocus becomes less critical and the optimal region

broadens. However, no single optimum has been retrieved for the detection and

locating problem for HRTEM imaging. Therefore, this imaging technique seems

inappropriate if one wants to detect and locate light atom columns with the

lowest probability of error and the highest possible precision, respectively, from

a single image. Using a focal series of HRTEM images and by performing exit
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wave reconstruction, precise quantitative results might be obtained, but this was

not investigated in this thesis.

In addition, the minimum needed incoming electron dose has been derived for

which light atoms can be detected and located with a sufficiently low probabil-

ity of error and a high precision, respectively. In the case of HRSTEM, a single

optimal incoming electron dose has been found for which the light elements can

be detected with a low probability of error and also located with a precision in

the picometre range. This optimal incoming electron dose depends on the crystal

structure and thickness. For detecting and locating either Li in LiV2O4 or O in

SrTiO3 fromHRSTEM images, an incoming electron dose of the order of 105e−/Å2

or 104e−/Å2 has been proposed respectively, under the optimal detector settings.

It is clear that a lighter element results in a lower scattering intensity and there-

fore requires a higher incoming electron dose to retrieve the same ultimate pre-

cision as compared to a heavier element. Note, however, that in practice this will

not always be possible as lighter elements are more beam-sensitive and will only

tolerate a lower incoming electron dose.
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6Statistical Experiment Design for

Nanoparticle Atom-Counting

6.1 Introduction

In modern technology, nanoparticles play an important role because of their

unique properties, which are determined by their 3D atomic structure. The

quest to find new materials with improved applications has therefore driven

research the past few years to develop methods to characterise nanostructures

in three dimensions with high precision. Significant advances have been made

in quantitative electron microscopy, for example, by combining ADF STEM with

atom-counting [75, 242–244]. Until now, different kinds of methods have been

proposed and investigated to count the number of atoms of a crystalline nano-

structure from HAADF STEM images. As a first attempt to solve the counting

problem, Erni et al. [245] proposed to measure the absolute value of the intensity

differences between neighbouring atom columns. LeBeau et al. [225, 246–249]

compared simulated atom column intensities with normalised experimentally

measured atom column intensities in order to count the number of atoms. Van

Aert et al. [76] developed a new quantitative, statistical model-based method to

count the number of atoms from HAADF STEM images of a structure viewed

along a zone-axis. This approach may help determine the three-dimensional

(3D) arrangement of atoms in crystalline nano-particles [75, 242, 243, 250, 251].

Indeed, by applying this statistical counting method and combining the results

for different viewing directions, the 3D atomic structure can be attained using

discrete tomography [250, 251]. Moreover, single atom sensitivity is shown to

be feasible in practice using this statistical model-based method, when taking

some aspects into consideration that affect the accuracy and precision with which

the atoms in a column can be estimated, such as the number of atom columns

available in the observed STEM image, the number of different thicknesses

that has to be taken into account, and the amount of noise [77]. Combining
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statistical parameter estimation theory with ab initio calculations [243] or Monte

Carlo simulations [252] has also been shown to enable atomic resolution 3D

reconstructions.

In the present chapter, we will explore the theoretical limits to the precision

with which the number of atoms in a column can be estimated from HR(S)TEM

images. Therefore, HR(S)TEM images are interpreted quantitatively and the opti-

mal experiment design to count the number of atoms in a column is investigated

using the principles of detection theory, which are introduced in chapter 3. The

probability of error will then be evaluated as a function of the experiment design

in order to optimise the experimental settings for atom-counting. In the first

part of this chapter, the annular STEM detector is optimised for atom-counting

from HRSTEM images based on a binary hypothesis test 1. However, when

different optimal designs are obtained for a different choice of hypotheses,

one needs to move on towards multiple hypothesis testing. Therefore, in the

second part of this chapter, the statistical experiment design in both HRTEM and

HRSTEM is optimised for atom-counting using multiple hypothesis testing, and

the possibilities and limitations of both imaging techniques are investigated and

compared 2.

For atom-counting, one needs a criterion that enables one to distinguish between

different numbers of atoms in an atomic column. In previous work, it was shown

that the total intensity of scattered electrons, the so-called scattering cross-section

(SCS) is an appropriate measure for atom-counting [75–77,146,208]. The SCS is a

more robust measure as compared to the peak intensity (PI), since it is much less

affected by a small mistilt of the sample, the defocus, source coherence and other

residual aberrations [220, 253]. In HRTEM, it has been shown that the number

of atoms in a projected atomic column can be counted using negative spherical

aberration imaging [254]. In [254], atoms were counted from HRTEM image PIs

of a thin MgO crystal. The PIs in this work were extracted from small areas of

100 image pixels by fitting a Gaussian peak function to local intensity distribu-

tions around the maxima. By then comparing simulated images in an iterative

1Part of the results presented in this chapter is published in A. De Backer, A. De wael, J.

Gonnissen and S. Van Aert, Optimal experimental design for nano-particle atom-counting from

high-resolution STEM images, Ultramicroscopy, 151, 46-55 (2015).
2Part of the results presented in this chapter is published in J. Gonnissen, A. De Backer, A.J.

den Dekker, J. Sijbers and S. Van Aert, Atom-counting in High Resolution Electron Microscopy:

TEM or STEM - that’s the question, Ultramicroscopy, (2016), accepted manuscript.
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6.2. Results from binary hypothesis testing

best-fitting procedure with the experimental images, a quantitative comparison

of the experimental and simulated peak intensities was performed in order to de-

termine the different column thicknesses of the MgO crystal.

Ultimately, the pixel values in a HR(S)TEM image are Poisson distributed because

of the presence of inherent counting noise, which sets fundamental limits to the

precision with which the number of atoms can be determined. Our quantita-

tive approach using the principles of detection theory is used to investigate the

capabilities of HRTEM and HRSTEM for atom-counting. In statistical detection

theory, the so-called probability of error, Pe, can be calculated as a function of the

experimental parameters when comparing two or more hypotheses using a binary

or multiple hypothesis test, respectively. For the atom-counting problem, the hy-

potheses correspond to different possible column thicknesses [208]. For the com-

putation of this probability to miscount the number of atoms, realistic simula-

tions describing the experimental images can be used [78,201,219,225,226,255],

together with knowledge about the statistics of the image pixel values. The ex-

perimental settings leading to the lowest probability to miscount the number of

atoms then correspond to the optimal experiment design for atom-counting. To

compare the probability of error for both HRTEM and HRSTEM, simulations are

performed for a thin MgO crystal, as well as for a thicker SrTiO3 crystal and a

heavier Au crystal for varying experimental settings in both imaging modes.

6.2 Results from binary hypothesis testing

In this section, binary hypothesis testing is used to investigate the optimal inner

detector radius of an annular STEM detector for atom-counting. The hypotheses

then correspond to two succeeding column thicknesses, as in case (c) of equation

(3.32): H0 : nH0
= n andH1 : nH1

= n+1. In Figure 6.1 the results for the probabil-

ity of error from a binary hypothesis test with equal prior probabilities, defined

by equation (3.33) are shown as a function of the number of atoms nH0
in a Sr

column for two different incident electron doses. The expectation models of the

Sr column under the different hypotheses, i.e. for different column thicknesses,

are simulated using the parameters listed in Table 6.1. The dose only changes

the value of the probability of error; for a higher electron dose, the probability

of error becomes lower. From the result shown in Figure 6.1, it can be seen that

the probability of error increases for an increasing number of atoms. This means

that it is easier to differentiate between two atomic columns containing 1 and
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2 atoms than to differentiate 75 and 76 atoms in a column. Another important

conclusion that can be drawn from this figure concerns the different results for

the three measures which we consider. The probability of error for the scattering

cross-sections (red dots) using equation (3.48) approximates well the probability

of error for the STEM images on a pixel by pixel basis (blue squares) for which

equation (3.57) is used, whereas the probability of error for the peak intensities

(green crosses), computed using equation (3.40) is larger. This means that the

scattering cross-sections contain almost the same amount of information as the

images themselves in terms of atom-counting. Thus, the differences in profile

of the atomic columns do not add a significant amount of extra information for

atom-counting. These differences can only be detected when using the images,

since the scattering cross-sections sum all the pixel values in the image into one

number. This result is very beneficial since the scattering cross-sections are now

often used as a measure to analyse the number of atoms in an atomic column and

in addition the scattering cross-sections are far more robust to compare with sim-

ulations. Scattering cross-sections are independent of the FWHM of the source

size used, the defocus etc. [220,253].

In Figure 6.2 the probability of error is shown for the optimisation of the inner

detector radius with a fixed outer detector radius of 100 mrad. In Figure 6.2(a),

results for Pe are shown for nH0
= 1 for the three different measures for a Sr col-

umn. From this, we can conclude that the optimal inner detector radius equals

21 mrad since the probability of error reaches a minimum here, suggesting that

imaging in the LAADF STEM regime is optimal for atom-counting. However,

when choosing nH0
= 75, the optimal inner detector radius increases to 28 mrad,

which can be seen in Figure 6.2(b). For this value of nH0
= 75, 21-100 mrad can

definitely not be considered as an optimum, whereas for nH0
= 1 an inner detector

radius of 28 mrad is near-optimal for atom-counting. Because the optimal detec-

tor design clearly depends on which two hypotheses are chosen, we should move

on toward multiple hypothesis testing for atom-counting.
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Figure 6.1: Probability of error as a function of the number of atoms in a Sr col-

umn for a detector collection range of 60− 100 mrad and two different incoming

electron doses, using a binary hypothesis test.
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Figure 6.2: Probability of error for a Sr column as a function of the inner detector

angle with a fixed outer detector radius (100 mrad) using a binary hypothesis test.
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Chapter 6. Nano-particle atom-counting

6.3 Results from multiple hypothesis testing

In this section, multiple hypothesis testing will be used to compare the capa-

bilities of both HRTEM and HRSTEM for atom-counting. In a first comparison

between both imaging techniques, the atom-counting decision was either based

on the PF of the PIs for HRTEM as proposed in [254], or on the PF of the SCSs

for HRSTEM as suggested in [75–77, 208, 239]. After comparing both currently

used methods, it was interesting to compare with the ‘ultimate’ situation using

all image intensities on a pixel by pixel basis, although this would require a much

more complex atom-counting procedure. In the comparison between HRTEM and

HRSTEM the incoming electron dose, N (e−/Å2), was kept the same as it is a limit-

ing factor in both imaging modes. Certainly, if one wants to count the number of

atoms from a HR(S)TEM image of a beam-sensitive material, the dose is a critical

parameter that limits the atom-counting performance. The dose is included in

the expectation models using equations (3.9) and (3.10).

6.3.1 Simulation parameters

A detailed simulation study was performed for three investigated crystals: MgO,

SrTiO3 and Au. In the case of HRTEM, the spherical aberration (Cs) and defo-

cus (f ) were considered as the most influencing experimental parameters, while

for HRSTEM the inner and outer detector angles of the annular STEM detector

were assumed to affect the atom-counting performance the most. The experi-

ment design was therefore optimised by computing the probability of error as a

function of either spherical aberration and defocus, or inner and outer detector

angle for HRTEM and HRSTEM, respectively. The optimal experiment design

then corresponds to the settings that minimise the probability of error. Absorp-

tive potential multislice calculations were used to simulate the HRSTEM images,

using settings for an aberration-corrected microscope under Scherzer defocus, for

an inner STEM detector radius varying from 0-99 mrad and the outer detector ra-

dius varying from 1-100 mrad. Frozen lattice calculations were performed for the

HRTEM image simulations, using the phase contrast transfer function for par-

tially coherent imaging [62, 169], for a whole range of spherical aberration and

defocus values. The absorptive potential method is used for the HRSTEM image

simulations in order to save computation time, since otherwise a number of frozen

phonon configurations would have to be calculated for every probe position in the

scanned region. Moreover, in [209] it was shown that, for the thicknesses that we
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6.3.1. Simulation parameters

consider here, frozen phonon and absorptive potential calculations give equiva-

lent results, which was also shown by Rosenauer et al. in [226].

Both imaging modes will be compared in this work using detailed simulation

studies. As we only perform a theoretical study under the optimal conditions,

we only assume Poisson noise to be present, while scan noise is not taken into

account. Furthermore, a uniform detector is assumed in the case of STEM and no

modulation transfer function (MTF) or detective quantum efficiency (DQE) of the

camera is taken into account for TEM. The latter is a good approximation when

using Direct Detection Devices (DDD) in counting mode, as for this new genera-

tion of detectors, both the MTF and DQE are significantly improved as compared

to conventional CCD cameras [256, 257]. Furthermore, in order to give HRTEM

the best possible chance and make the considered assumptions more acceptable,

a very small pixel size is used in the HRTEM image simulations (see Table 6.1).

If one would like to compare the simulated images with experimental results, the

DQE and MTF of the camera should however be taken into account in the case

of TEM [258], as well as the correct exact phonon model [259–261]. In the case

of STEM, the detector sensitivity should be considered and the images have to be

corrected for drift and scan distortions.

The used simulation parameters are listed in Table 6.1 for MgO, SrTiO3 and Au.
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General parameters

Debye-Waller factor B (Å2) BMg= 0.30 BSr = 0.6214 BAu = 0.6198

BO = 0.34 BT i = 0.4398

BO = 0.7323

Zone orientation [uvw] [001] [100] [001]

Acceleration voltage V0 (kV) 300 300 300

Size of the supercell Na ×Nb (nm2) 3.8 × 3.8 4.3 × 4.3 3.3 × 3.3
STEM parameters

Slice thickness zslice (Å) 2.106 1.95 2.0391

Defocus f (Å) -83.01 -14.03 -83.01

Spherical aberration Cs (mm) 0.001 0.001 0.001

Spherical aberration of 5th order C5 (mm) 0 0 0

Semi-convergence angle α (mrad) 21.7 20 21.7

Pixel size ∆x (Å) 0.2106 0.1562 0.20391

FWHM of the source image FWHM (Å) 0.7 0.7 0.7

Number of pixels in the unit cell K × L 20 × 20 25 × 25 20 × 20

TEM parameters

Number of FP configurations N 7×7×4×30 9×9×4×30 7×7×4×30
Slice thickness zslice (Å) 2.106 1.95 2.039

Focal spread ∆ (nm) 2.9 2.9 2.9

Semi-convergence angle of the β (mrad) 0.03 0.03 0.03

partial coherence envelopes

Pixel size ∆x (Å) 0.0165 0.046488 0.03186

Number of pixels in the unit cell K × L 256 × 256 84 × 84 128 × 128

Table 6.1: Parameter values used for the STEM and TEM simulations of MgO, SrTiO3 and Au.
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6.3.2. Results for peak intensities and scattering cross-sections

6.3.2 Results for peak intensities and scattering cross-sections

The optimal experiment design was investigated for realistic simulation exper-

iments, using the analytical expressions for the probability of error for atom-

counting in HRTEM and HRSTEM, given by equation (3.65). In this section, the

probability of error was calculated when the decision was based on the PF of the

SCSs in HRSTEM, and on the PF of the PIs in HRTEM, for which the probabil-

ities for a correct decision are given by equations (3.68) and (3.70), respectively.

Therefore, a first detailed simulation study of MgO was performed for counting

up to 12 atoms (i.e. 6 unit cells) corresponding to a column thickness of 2.5 nm,

like in [254]. The probability of error for atom-counting was then calculated as a

function of the experimental parameters for PIs in HRTEM and SCSs in HRSTEM,

for incoming electron doses of 104e−/Å2 and 107e−/Å2.
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Figure 6.3: Pe for atom-counting using PI in HRTEM (a and b) and SCS in

HRSTEM (c and d) for a MgO column up to 12 atoms thick, for N = 104e−/Å2

(a and c) and N = 107e−/Å2 (b and d).

Results of the probability of error for PIs in HRTEM are shown in Figure 6.3(a)

and 6.3(b). From these figures, it is clear that for the investigated values for
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Chapter 6. Nano-particle atom-counting

the spherical aberration and defocus, Pe reaches high values for the incoming

electron dose of N = 104e−/Å2, while it is substantially lower for N = 107e−/Å2.

In Figure 6.3(a), the result for the lower incoming electron dose of 104e−/Å2

is presented, where Pe is minimal for the setting Cs = −0.025 mm and f = 57

Å. For this setting, however, the probability to miscount the number of atoms

is high and equals 66%. For the higher incoming electron dose of 107e−/Å2,

there is a large dark-blue region visible in Figure 6.3(b) corresponding to a very

low probability of error, that is optimal for atom-counting in HRTEM. For this

electron dose Pe is minimised and close to 0 for the setting Cs = −0.025 mm and

f = 49 Å. As expected, this indicates that the atom-counting precision becomes

much better for a higher incoming electron dose.

Results of Pe when the decision was based on the PF of the SCSs in HRSTEM

are shown in Figures 6.3(c) and 6.3(d), for the same two incoming electron

doses that were used for HRTEM. A clear optimal detector range is obtained for

both incoming electron doses in the Annular Bright Field (ABF) STEM regime

for a detector range of 13 − 20 mrad, visible as the dark-blue region where the

probability of error is close to 0. Local optima are also found in the Low Angle

ADF (LAADF) STEM regime for both incoming electron doses, as well as in the

BF regime (0 − 10 mrad) where the probability of error is about 10%. It can

be seen that Pe for atom-counting is much lower for HRSTEM as compared to

HRTEM, even for a low incoming electron dose.

Next, a detailed simulation study for a SrTiO3 crystal was performed for a thick-

ness up to 75 atoms, corresponding to a column thickness of about 30 nm. The

results for Pe for atom-counting from HRTEM and HRSTEM are shown in Figure

6.4 for the Sr column in SrTiO3. In this figure, decision rules were again based on

the PFs of the performance measures that currently have been used in practice,

i.e. the PIs and SCSs for HRTEM and HRSTEM, respectively. Based on the re-

sults shown in Figure 6.4, it is clear that Pe for atom-counting in HRTEM is high

as compared to HRSTEM. In HRTEM, Pe is minimised for the setting Cs = −0.035
mm and f = −80 Å. However, for this setting the probability tomiscount the num-

ber of atoms is still high and equals 48%. In HRSTEM, for a thickness of 75 atoms,

the optimal detector range that minimises Pe equals 27-100 mrad, for which the

probability of error is 0.5%. For a probe semi-convergence angle of 21.7 mrad,

this optimal detector design corresponds to LAADF STEM. Note, however, that

when not all column thicknesses have to be considered in the multiple hypothe-

sis test, for example if only a certain range of possible column thicknesses can be
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6.3.3. Results for image intensities on a pixel by pixel basis

assumed from prior knowledge about the sample, a different optimum might be

found for atom-counting.
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Figure 6.4: Pe for atom-counting using (a) PIs in HR TEM and (b) SCSs in HR

STEM for a Sr column with a thickness up to 75 atoms and N = 106e−/Å2.

6.3.3 Results for image intensities on a pixel by pixel basis

So far, two currently used methods for atom-counting were compared, but in

this section, the ‘ultimate’ situation when the decision is based on the joint PF of

the image pixel values was investigated. Although this requires a more complex

framework, it was interesting to investigate and compare the limits of both imag-

ing techniques in this case. As was mentioned before, equation (3.65) can only be

computed approximately following the decision rule given in equation (3.64) us-

ing multiple noise realisations, when the atom-counting decision is based on the

joint PF of the image pixel values. The experimental parameters were varied and

optimised in the same way as before, for an incoming electron dose of 104e−/Å2.

Results for PF’s of PIs and SCSs were compared with results when using all image

intensities on a pixel by pixel basis for a Sr column in SrTiO3 up to 30 atoms thick,

as well as for a heavier Au column up to 50 atoms thick. Results of the probability

of error for atom-counting in HRTEM and HRSTEM are shown in Figure 6.5 for

the Sr column and in Figure 6.6 for the Au column, for the different performance

measures.
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Figure 6.5: Pe for atom-counting using (a) PIs in HRTEM, (b) image intensities on

a pixel by pixel basis in HRTEM, or (c) SCSs in HRSTEM and (d) image intensities

on a pixel by pixel basis in HRSTEM, for a Sr column with a thickness up to 30

atoms, and N = 104e−/Å2.

When comparing Figures 6.5(a) and 6.5(b), it is evident that the probability of

error decreases significantly when the decision is based on the joint PF of all

HRTEM image pixel values, as compared to the result based on the PF of the

PIs. For HRSTEM, there is only a slight decrease in probability of error, which

can be seen when comparing Figures 6.5(c) and 6.5(d). For the Au column, simi-

lar results were found which are presented in Figures 6.6(c) and 6.6(d). In section

6.2, it was already shown for a binary hypothesis test that the probability of error

for the SCSs approximately equals the probability of error when using all image

intensities on a pixel by pixel basis. From the results shown here, it can be seen

that this is also true for a multiple hypothesis test.
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Figure 6.6: Pe for atom-counting using (a) PIs in HRTEM, (b) image intensities on

a pixel by pixel basis in HRTEM, or (c) SCSs in HRSTEM and (d) image intensities

on a pixel by pixel basis in HRSTEM, for a Au column with a thickness up to 50

atoms, and N = 104e−/Å2.

6.4 Discussion

6.4.1 Results for peak intensities and scattering cross-sections

The difference in probability of error between HRTEM and HRSTEM for the MgO

column, of which the results are shown in Figure 6.3, can be understood by in-

vestigating the performance measures as a function of thickness. In Figure 6.7,

both the PIs for HRTEM and the SCSs for HRSTEM are plotted as a function

of the number of atoms, at the optimal experimental settings. From the results

shown in Figure 6.7, it can be seen that both the PIs and the SCSs increase al-

most linearly with the thickness under the optimal settings, which allows us to

distinguish between different numbers of atoms. However, in Figure 6.3, a much
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Figure 6.7: The used performance measures for a MgO column as a function of

thickness, both at the optimal experimental settings and for N = 104e−/Å2.

lower probability of error was obtained for atom-counting in HRSTEM as com-

pared to HRTEM. This can be understood by looking at the succeeding PFs of the

respective performance measures for the different column thicknesses, which are

presented in Figure 6.8. In Figure 6.8(a), it is shown that the difference between

the mean values of the PFs of consecutive PIs is small as compared to their stan-

dard deviation at the lower incoming electron dose of 104e−/Å2, which results in

highly overlapping PFs. The large overlap results in a high probability of error,

which makes it hard to distinguish between the different column thicknesses in

the case of HRTEM. In Figures 6.8(b) and 6.8(d), it is visible that the precision of

the SCSs and PIs improves significantly with the incoming electron dose. There-

fore, a higher incoming electron dose decreases the probability of error both in

HRTEM and HRSTEM. For HRSTEM at the lower incoming electron dose, the

difference between the mean values of the PFs of consecutive SCS values was al-

ready large as compared to their standard deviation, which follows from Figure

6.8(c). The different column thicknesses in HRSTEM can therefore easily be dis-

tinguished, even at the lower incoming electron dose of 104e−/Å2.

For SrTiO3 also a high probability of error was found in the results presented in

Figure 6.4, when using PIs in HR TEM as compared to SCSs in HR STEM, for

counting the number of atoms in a Sr column with a thickness up to 75 atoms.
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Figure 6.8: The PFs for the succeeding PIs in HRTEM and SCSs in HRSTEM of a

MgO column up to a thickness of 10 unit cells, for two different incoming electron

doses.

This result can now be understood since PIs oscillate for thicker crystals depend-

ing on the atomic column type, as shown in Figure 6.9. This oscillating behaviour

is a result of inherent electron channelling, which depends on both the atomic

type and the atomic column thickness [65]. To make this more clear, a simulated

Sr column as a function of thickness is shown in Figure 6.10, where the oscillation

in intensity is visible in the case of TEM.

It is impossible to assign PIs in HRTEM unambiguously to a specific number of

atoms when they oscillate as a function of thickness as shown in Figure 6.9(a).
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Figure 6.9: The used performance measures plotted as a function of thickness

using different experimental settings for a Sr column with a thickness up to 75

atoms and N = 106e−/Å2.

TEM 
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à increasing thickness (from 1 to 44 atoms in a column)
    

Figure 6.10: Simulated images of a Sr column in SrTiO3 for increasing thickness

(from left to right), both for TEM (Cs = −0.015 mm and f = 49 Å) and STEM

(30-100 mrad). The oscillation due to the channelling effect in the case of TEM is

clearly visible.

Therefore, in the presence of noise, columns of different thickness cannot be dis-

tinguished using PIs as a performance measure, even not at relatively large elec-

tron doses. In HRSTEM, however, there are no contrast oscillations at the optimal

detector settings. Furthermore, the standard deviation of the PFs of the SCSs in

HRSTEM is small as compared to the difference between the mean values of PFs

of consecutive SCSs, in contrast to the PFs of PIs in HRTEM for the same incom-

ing electron dose. As was already discussed in [208], it can be seen in Figure

6.9(b) that the Low Angle Annular Dark Field (LAADF) STEM regime (21-100

mrad) is only appropriate for atom-counting up to a thickness of about 20 atoms
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6.4.2. Results for image intensities on a pixel by pixel basis

in the column, due to the higher coherent contribution to the SCS for this detector

setting. The same reasoning applies when counting the number of Au atoms.

6.4.2 Results for image intensities on a pixel by pixel basis

On the one hand, the results that are shown in Figures 6.5 and 6.6 suggest that

it is advantageous to use HRTEM for atom-counting, when using all image inten-

sities on a pixel by pixel basis. In this case the probability of error for HRTEM

decreases significantly as compared to the result when using PIs, and it becomes

even lower than the probability of error for atom-counting in HRSTEM. Note,

however, that in practice the use of the joint PF of all image intensities would

require a rather complex procedure. Indeed, one would then need to know the

behaviour of all pixel values in the image as a function of thickness, and therefore

also all imaging parameters. Recall that in the followed quantitative approach,

all imaging parameters were assumed to be known exactly. Moreover, it was as-

sumed that the spherical aberration and defocus can be tuned precisely in the

case of HRTEM, which is obviously not an evident matter. In fact, the spheri-

cal aberration and defocus will be estimated parameters too, which in practice

will increase the probability of error for atom-counting mostly in HRTEM, as this

imaging technique is less robust with respect to these parameters as compared to

HRSTEM.

On the other hand, for atom-counting in HRSTEM, it is clear from Figures 6.5

and 6.6, that the probability of error based on the PF of the SCSs is a good ap-

proximation for the probability of error when the decision is based on the joint

PF of the image pixel intensities. This is a great advantage of atom-counting

using HRSTEM, since SCSs are a robust measure for many imaging parameters,

including defocus, source coherence, convergence angle [220], and also for crystal

tilt [262].

6.5 Conclusions

In a first part of this chapter, binary hypothesis testing has been worked out for

atom-counting. In this way the limits to the precision with which the number

of atoms in a projected atomic column can be estimated are investigated. Us-

ing binary hypothesis testing, the experiment design of the annular detector in a

HRSTEM experiment is optimised for atom-counting. It is pointed out that the
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use of scattering cross-sections, which were already proposed in [76, 146, 220],

is afforded in the quantitative analysis of HRSTEM images when the goal is to

count the number of atoms with the lowest probability of error, since they per-

form equally well as the HRSTEM images on a pixel by pixel basis of a projected

atomic column and they even outperform peak intensities.

Furthermore, optimising the experiment design for atom-counting using multi-

ple hypothesis testing is worked out, where the possibilities and limitations of

both HRTEM and HRSTEM were investigated in a quantitative way. Three dif-

ferent crystals were simulated; MgO, SrTiO3 and Au, in order to investigate and

compare the probability of error for atom-counting in both imaging modes. By

calculating the probability of error as a function of the experimental settings, the

experiment design was optimised. For HRSTEM, the annular inner and outer de-

tector angles were optimised, whereas for HRTEM the spherical aberration and

defocus were optimised.

We can conclude that when comparing the currently used approaches, HRSTEM

is in general applicable for atom-counting when using an appropriate detector

range, where the SCSsmonotonically increase with thickness, andwhere the over-

lap between the PFs of consecutive SCSs is small. When the decision is based

on the PF of PIs, atom-counting in HRTEM is only possible in projected atom

columns in a very thin sample region at optimal imaging conditions, and us-

ing a sufficiently high incoming electron dose. The PIs oscillate as a function

of thickness, depending on the atom column type due to the inherent electron

channelling. The probability of error at the optimal settings for HRTEM, when

the atom-counting decision is based on the PF of PIs is larger as compared to the

optimal probability of error for HRSTEM, for the same incoming electron dose.

Under the assumption that one canmake the atom-counting decision based on the

joint PF of all image pixel intensities, the probability of error decreased signifi-

cantly in the case of HRTEM, and became lower as compared to HRSTEM. Note,

however, that such atom-counting procedure would require the behaviour of all

image pixel intensities to be known accurately as a function of thickness, which

is not a trivial matter. In HRSTEM, both for binary and multiple hypothesis test-

ing, the probability of error based on the joint PF of the image pixel values is well

approximated by the probability of error for SCSs, for which an appropriate and

practical framework exists [75–77]. In conclusion, HRTEM may in theory result

in a lower probability of error for atom-counting when using image intensities on

a pixel by pixel basis, but the commonly used SCSs for atom-counting in STEM

lead to a high performance and have been shown to work in practice.
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7Experimental Applications

7.1 Introduction

In the previous chapters, the statistical experiment design to detect and locate

light atoms from an HR(S)TEM experiment was investigated. In practice,

however, the unknown structure parameters, such as the precise atom column

positions will have to be estimated from experimental images whatever the

experiment design. In this chapter, some experimental results for different

applications are given which have been obtained by using statistical parameter

estimation theory. Therefore, an efficient model-based fitting algorithm for the

estimation of atom column positions and intensities from atomic resolution

(S)TEM images is used, which is implemented in the StatSTEM program [147].

After estimating the atom column positions from an experimental image,

different structure characteristics have been obtained, such as the relative tilt

angle near the interface of a metal oxide heterostructure, the B-O-B bond angle

between the B site atoms and the oxygen atoms in such heterostructure, and also

atom displacements with respect to a domain wall in the crystal LiNbO3.

To visualise the oxygen atoms in order to calculate the B-O-B bond angle in the

metal oxide heterostructures, the ABF STEM setting was experimentally found

to be the optimal design, as was proposed in chapter 5 for the detection of light

atoms. For the other applications, only the heavy atomic column positions were

needed and therefore, HAADF STEM was an appropriate imaging mode.

This chapter is organised as follows. In section 7.2, the efficient fitting algorithm

applied to retrieve the atom column positions is introduced. In section 7.3, the

estimated atom column positions from HAADF STEM images of metal oxide het-

erostructures are used to estimate the relative unit cell tilt angle near the interface
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1, and in section 7.4, the B-O-B bond angle of the oxygen octahedra and the B site

atoms are obtained from atomic resolution ABF STEM images. In section 7.5, the

results are presented of an elaborate study where the domain wall in LiNbO3 is

quantified 2 and finally in section 7.6, conclusions are drawn.

7.2 Efficient fitting algorithm

Statistical parameter estimation theory can be used to estimate unknown struc-

ture parameters with high accuracy and precision from experimental images

[141, 144]. Nowadays, this methodology has become the optimal method for

quantitative electron microscopy. In this theory, the (S)TEM image is consid-

ered as a data plane from which the unknown structure parameters are be-

ing estimated. The starting point of this method is then a statistical paramet-

ric model describing the expectations of the experimental measurements. In

HR(S)TEM images, the projected atom columns are peaked at the atomic col-

umn positions, which can therefore be modelled as a superposition of Gaussian

functions [61, 263]. Recently an efficient algorithm has been developed by co-

workers from the University of Antwerp which has been implemented within

the StatSTEM program [147]. By fitting a model of a superposition of Gaussian

functions to the experimental images using a criterion of goodness of fit, the un-

known structure parameters can be estimated. The least squares estimator can

be used for this purpose in an iterative optimisation process. The ML estimator

as defined in equation (3.30) equals the least squares estimator for independent

normally distributed observations. A direct implementation of this estimator in

which all parameters are estimated at the same time is computationally very in-

tensive and is only feasible for (S)TEM images containing a limited number of

projected atomic columns, i.e. a limited field of view. A more efficient algorithm

is therefore proposed and implemented in the StatSTEM program, which enables

1The results of this analysis are published in Z. L. Liao, R. J. Green, N. Gauquelin, S. Macke, L.

Lin, J. Gonnissen, R. Sutarto, E. P. Houwman, Z. Zhong, S. Van Aert, J. Verbeeck, G. A. Sawatzky,

M. Huijben, G. Koster, G. Rijnders, Long-Range Domain Structure and Symmetry Engineering by

Interfacial Oxygen Octahedral Coupling at Heterostructure Interface, Advanced Functional Mate-

rials, (2016) Wiley Online Library.
2The results of this analysis are published in J. Gonnissen, D. Batuk, G.F. Nataf, L. Jones, A.M.

Abakumov, S. Van Aert, D. Schryvers and E.K.H. Salje, Direct Observation of Ferroelectric Do-

main Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges, Advanced Functional

Materials (2016), Wiley Online Library
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one to analyse large fields of view. The basic idea of the new algorithm is the

segmentation of the HR(S)TEM image into smaller sections containing individ-

ual columns without ignoring overlap between neighbouring columns. In this

way, only the parameters corresponding to a single atom column are estimated

simultaneously, instead of all parameters of the parametric model. In this thesis,

the StatSTEM program has been applied in order to obtain precise results for the

estimated atom column positions from different experimental STEM images.

7.3 Estimating the atomic column positions in

transition metal oxide heterostructures

As a first practical application in our research to find new techniques to quantita-

tively characterise nanostructures consisting of light atoms, the local oxygen oc-

tahedral coupling (OOC) at perovskite heterostructural interfaces is investigated

in different epitaxial thin films. In [48], it is unravelled how this local oxygen

octahedral coupling strongly influences the domain structure and symmetry of

the epitaxial films resulting in design rules to induce various structures in thin

films using carefully selected combinations of substrate/buffer/film. In ABO3

perovskites, the crystal symmetry resides in the oxygen octahedral (BO6) net-

work [264–267]. These symmetries, or oxygen octahedral rotation (OOR) patterns

in perovskite heterostructures, are often engineered by epitaxial strain [268]. The

short range impact of the OOC on the tilt angle was recently further demonstrated

for the La2/3Sr1/3MnO3 (LSMO)/NdGaO3 (NGO) heterostructure, in which the

OOC driven novel anisotropic properties only emerge in LSMO thinner than 8

unit cells (UC) [269]. The limited propagation of the interface induced octahedral

tilt into the film currently restricts the engineering of perovskite heterostructures

with unique functional properties. Changing the strain or substrate symmetry

are two well known strategies to long range engineer the lattice structures and in

most situations they cooperatively affect the film structures [270–274]. However,

how exactly the substrate symmetry plays a role distinguished from strain is still

an open question. By systematically investigating the effect of substrate symmetry

on film structures, while keeping the lattice strain constant, the important role of

interfacial OOC in determining the film domain structure was investigated [48].

Furthermore, it was shown that if the OOC effect at a heterosymmetric interface

is strong enough to induce a different OOR pattern in a film near the interface

to match the substrate OOR, the initiated different symmetry can propagate away
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from the interface into the full thickness of the films [48]. An example is the struc-

ture of an LSMO film on an NGO (110) orthorombic substrate. The bulk LSMO is

rhombohedral, but due to the strong OOC effect at the LSMO/NGO interface, the

near interface LSMO becomes orthorhombic [269]. Although the effect of OOC

on the magnitude of the octahedral tilt decays steeply within 4 UC [269], the char-

acteristic orthorhombic structure still survives over an extensive thickness range,

resulting in an orthorhombic structure in thick LSMO films.

To understand the configuration growth of different heterostructures, HAADF

STEM images of both a layered LSMO/NGO and a LSMO/STO/NGO structure

are investigated, and showed that the unit cell of LSMO is relatively tilted with

respect to the NGO unit cell (see Figure 7.2). Using statistical parameter esti-

mation theory [141, 144, 146, 157], the 2D coordinates of each atomic column of

the LSMO/NGO heterostructure have been determined from the HAADF STEM

image shown in Figure 7.1(a).

2 nm 

(a) (b) 

Figure 7.1: Gaussian model fitting of the HAADF image. (a) HAADF-STEM image

of LSMO/NGO cross-section. (b) Fitted model of the STEM image with the red

dots indicating the B site atomic column positions (Ga, Mn).

A parametric model in which projection images of the atomic columns are

described using Gaussian peaks has been assumed. The parameters of this

model, including the positions, height, and width of the intensity peaks, were

determined using the least-squares estimator with the StatSTEM program [147].
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(a) (b) 

(c) (d) 

Figure 7.2: Tailoring structure by interface symmetry engineering. HAADF image

of 30 UC LSMO films a) with and c) without 6 UC STO buffer layer. Inset image

at top-right corner of (a) indicates the definition of relative unit cell tilt angle ∆α.

b) The positions (X,Y ) of the B site atoms from five columns marked by lines in

panel (a). K represents the slope of the curve. d) The positions (X,Y ) of B site

atoms from five columns marked by lines in panel (c).

The refined model, evaluated at these estimated parameters is shown in Figure

7.1(b). From the refined model, the position of the atoms, such as positions of

the B site atomic columns (Ga, Mn) could be obtained, which are indicated in red

dots in Figure 7.1(b). The relative tilt angle defined by ∆α as shown in the inset

of Figure 7.2(a), could then be estimated from the B site positions. As shown in

the plot of B site (X,Y ) positions in Figure 7.2(b), a sudden change of the slope

occurs at the interface which cannot be due to image drift and is therefore as-

cribed to different monoclinic tilt angles in LSMO and NGO. A relative tilt of

∆α = tan−1(KLSMO) − tan−1(KNGO) ≈ 0.96 ± 0.06◦ is obtained from the STEM im-

age, which agrees well with the value of 1◦ extracted from X-ray reciprocal space

mapping [48].
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7.4 Estimating the B-O-B bond angle

Recently it has been shown that the oxygen octahedral rotation (OOR) pattern in

LSMO films can be tuned by direct coupling to the oxygen octahedral rotation

pattern of the underlying substrate [269]. NGO substrates provide a specific

octahedral tilt angle, and corresponding orbital overlap, which can be reduced

by an increased thickness of the LSMO layer as well as by incorporation of a

SrTiO3 (STO) buffer layer.

In [275], the oxygen octahedral rotation pattern across a 20 UC LSMO/NGO

Figure 7.3: (a) Inversed ABF STEM image of a 20 unit cells LSMO film on an NGO

(110) substrate. (b) Refined model of the ABF image after least-square estimation

of the parametric model. Inset at right-top corner shows the zoomed-in image of

the yellow square region.

interface was imaged by annular bright field STEM (ABF STEM), as is shown

in Figure 7.3(a). The MnO6 octahedra are shown to follow the tilt angle of

NGO in the interface region due to the oxygen octahedral coupling (OOC) ef-

fect [269,276], which progressively decays away from the interface and is already

negligible in the 4th unit cell. Figure 7.4 shows the profile of the projected B-O-B

bond angle θ in the (001) plane, which is determined using statistical parameter

estimation theory [141, 144, 146, 157]. As before, a refined model could be

obtained which is shown in Figure 7.3(b).

From the results shown in Figure 7.4(b), it is clear that the bond angle θ in
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Figure 7.4: Relaxation of octahedra induced thickness-properties correlation. a)

ABF-STEM image of LSMO/NGO cross-section. The intensity (I) is rescaled to

-I1/4 for better oxygen contrast. Inset shows the refined parametric model using

statistical parameter estimation. The coloured atoms and bonds highlight the

relaxation of octahedral and B-O-B bond angle. b) The layer position dependent

[1-10] directional and (001) plane projected B-O-B bond angle θ. Inset shows the

definition of θ.

LSMO right at the interface is comparable to the angle in the NGO substrate

(= 165◦) and increases, starting from the interface, up to a saturation value of

about 173◦ above the 4th LSMO unit cell. Further away from the interface, a long

range slow relaxation tail of the octahedral rotation pattern should exist, similar

to LSMO/STO heterostructures [277]. The plotted errorbar in Figure 7.4(b) is

obtained from the standard deviation, averaged over the number of calculated

angles per atomic layer.

In [275], it is shown that the reconstructed octahedral rotation pattern due to the

OOC effect at the interface, is a nontrivial factor of perovskite oxide interfaces

and causes a thickness dependent orbital hybridisation effect. Although LSMO

has been used as a prototype material in this study, the results can be applied
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to understand thickness related property variations in many other correlated ox-

ide perovskite systems and have deep implications for understanding emergent

functionalities in those complex systems.

7.5 Domain wall quantification in LiNbO3

Ferroic domain walls can be functional elements of a material while the same

functionality does not exist in the bulk [278]. Ferroelectric walls in LiNbO3

are expected to display transport functionality: the walls are locally electrically

charged, while the bulk is known not to contain any electric charges besides those

related to point defects. These walls are expected to be electrically conducting

when the carrier concentration is sufficiently large [279–282]. Ferroelectric

walls in LiNbO3 separate domains with the polarizations pointing in opposite

directions (180◦ walls). The geometrical condition for charged walls is that they

are inclined with respect to the equilibrium direction along the ferroelectric

polarisation direction [0001] (in the hexagonal setting) [280–282]. Inclined

walls generate local strain in the nearby bulk, while walls in mechanical equi-

librium are neither charged nor do they strain the lattice. However, LiNbO3

with macroscopically non-inclined walls still contains significant defect struc-

tures [283–286] which decorate the walls [287,288]. Nataf et al. argued that even

‘straight’ walls should show local inclinations, they ‘meander’, so that head-to-

head and tail-to-tail dipolar kink configurations occur locally [289]. Each such

configuration represents an increase or decrease of carrier concentrations and

hence corresponds to a local charge monopole.

LiNbO3 has a trigonal structure with the R3c space group in the paraelectric

phase. With the onset of ferroelectricity at Tc near 1483 K, the structure remains

trigonal, but the inversion symmetry of the system is lifted, reducing the sym-

metry to the R3c space group. LiNbO3 is hence ferroelectric but not ferroelastic

below 1483 K. Domain structures consist exclusively of 180◦ ferroelectric walls,

which are almost strain-free in thermodynamic equilibrium while weak local

strains originate from coupling between the polarisation and secondary displace-

ments of the oxygen cages [287, 288]. The crystallographic properties and ener-

getics of domain walls in LiNbO3 have been described in great detail in [287,290].

We refer the reader to the excellent review in [287] for further details. In [291], the

presence of domain wall meanders has been confirmed, even in LiNbO3 without
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engineered inclined walls and furthermore, it was demonstrated for the first time,

that head-to-head configurations exist in a nominally ‘straight’ domain wall. This

observation confirms that local charges occur inside domain walls in LiNbO3.

Results and discussion

LiNbO3 is a beam-sensitive material. Therefore, both the TEM specimen prepara-

tion and the HAADF-STEM image acquisition were optimised in order to obtain

most reliable TEM data. In a first step of this research, one was only interested

in the Nb lattice, for which HAADF STEM is the optimal detector range. Anal-

ysis of ABF STEM images, in which the oxygen columns are visible, would be

very interesting for future research work. Multiple detectors could therefore be

used, which allows investigating both the HAADF and the simultaneously de-

tected ABF STEM images. The most optimal Focused ion beam (FIB) lamella

(Figure 7.5(b)) had a thickness of about 70 nm (estimated using electron energy

loss spectroscopy), which is a compromise between the electron transparency and

the ion-beam damage during the sample preparation. The HAADF STEM data

were collected along the [1100] direction, as a time series of 49 frames with a very

short acquisition time of 2.5 s per frame. This mode significantly reduces the dose

rate, improving the stability of the material under the electron beam, and min-

imises the effect of mechanical instabilities of the sample during the experiment.

The acquired data were processed using the Smart Align software package [239].

First, all the frames were aligned with respect to each other to compensate for the

mechanical drift during the acquisition. Then, each frame was individually cor-

rected for the scan distortions. In the end, the frames were combined into a single

image with improved signal-to-noise ratio and minimised scan and drift distor-

tions. A representative fragment of the averaged image is shown in Figure 7.6.

The position of the ferroelectric domain wall is marked with a white arrow, and

can be seen as a strip with a slightly lower intensity. Also, it creates a weak ripple

in the rows of white dots when looking at this image along a grazing incidence

from left to right. In the HAADF STEM images the signal is proportional to the

chemical composition of the projected atomic columns and scales as I ∝ Z1.6−1.9,
where Z is an average atomic number. Therefore, in the [1100] HAADF STEM

images of LiNbO3, the projected Nb-Li (Z[Nb] = 41, Z[Li] = 3) columns appear as

bright dots arranged into a rectangular pattern, while the O (Z[O] = 8) columns

are not visible. In the following the Nb-Li columns are referred to as Nb columns

since simulations have shown that, as can be expected, the Li atoms are too light
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Figure 7.5: (a) Overview SEM image of the investigated LiNbO3 crystal viewed

normal to the surface, i.e., along the [0001] direction. Induced domain walls

appear as a set of periodic parallel lines. The site where the FIB specimen was

extracted can be seen as a bright narrow strip of the Pt protective layer. (b) Low

magnification HAADF-STEM image of an optimised FIB lamella, viewed along

the [1100] direction. The domain wall can be recognised as a straight line of

weaker intensity running perpendicular to the surface and located right under

the surface step. (c) Idealised schematic illustration of the domain wall, assum-

ing the oxygen sublattice to remain unchanged when crossing the domain wall.

Rows of Nb atomic columns are highlighted with teal stripes.
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(b) 

Figure 7.6: (a) The [1100] HAADF STEM image of the ferroelectric domain wall

area in the LiNbO3 sample, averaged over 49 frames and corrected for the drift

and scan distortions. (b) The fittedmodel of the HAADF STEM image. The arrows

indicate the direction and location of the interface.

to cause any visible effect in the imaging. To analyse the Nb atomic displacements

at the ferroelectric domain wall the projected 2D coordinates of the Nb columns

in the averaged [1100] HAADF STEM image were determined using statistical

parameter estimation theory as before [141, 144, 146, 157]. The refined model is

shown in Figure 7.6(b), where the position of the domain wall is again indicated

with a white arrow.

For the determination of the Nb positions we assume that the ferroelectric do-

main wall does not change the anion sublattice of the structure, but inverts the

ferroelectric displacements of the Nb cations. The inverted Li positions cannot

be extracted from the images because the weight in the structure factor is much

smaller than Nb so that all dipoles are nominally related to Nb. The following

procedure was employed to identify the pattern of cation displacements and the

exact position of the domain wall along the [1120] direction. First, a region of 90
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atomic rows was selected along the [0001] direction, each of which measuring 59

atomic columns along the [1120] direction (this region is the shaded rectangle in

Figure 7.7(a)). Then, for each row of 59 columns two reference lines were fitted

by linear regression, using the coordinates of the 15 Nb columns at both ends of

the row on either side of the wall (green lines in Figure 7.7(b)). In this fit, the

slope of the reference lines for a given row at both sides of the domain wall was

restricted to be the same, whereas the intercept with the interface was allowed to

vary. The slopes for different atomic rows were not restricted.

To calculate the ferroelectric displacements of the Nb atoms, a base line for every

[1120] atomic row was then defined midway both reference lines (red line in

Figure 7.7(b), which has the same slope as both fitted green reference lines).

The red line in Figure 7.7(b) represents the approximate position of Nb in the

paraelectric phase. Then, the Nb displacement from the red line was calculated

for each Nb column. This displacement represents the approximate ferroelectric

shift of Nb. By design this implies that we only measure the displacements of the

Nb columns along the [0001] direction, i.e., parallel to the (1120) domain wall.

In Figure 7.7 the displacements are represented with the vectors pointing in the

direction of the displacement.

The location of the domain wall along the [1120] direction in a given row of Nb

atomic columns can be determined as the point where the polar displacements

of Nb columns change direction. The location points of the domain wall do not

form perfectly straight lines along [0001], but meander back and forth along

the [1120] direction. Nevertheless, straight segments of the domain wall can

be identified (red lines in Figure 7.7(c)). The overall meanders and local kinks

between the wall segments occur within a narrow region of about 7 unit cells

along the [1120] direction, represented by the purple full lines in Figure 7.7(c).

On a mesoscopic length scale, the domain wall is well confined to the (1120)

plane.

Having quantified the off-center displacement of the Nb columns near the ferro-

electric domain wall, the width of the wall in each of the 90 selected Nb rows was

analysed using a simple parametric model [292]:

f (β1,β2,β3,β4) = β1 + β2 tanh



x − β3
β4


, (7.1)

where x represents the coordinates of the fitted atomic columns along [1120] in

144



7.5. Domain wall quantification in LiNbO3

Figure 7.7: (a) The analysed region of 90 reference atomic rows: grey dots corre-

spond to the fitted atom column positions, red and blue arrows indicate the dis-

placement of the fitted atomic positions with respect to the base line and pointing

in the direction of the displacement (the larger the displacement, the darker and

longer the arrow). (b) Schematic (stretched in the [0001] direction for clarity)

showing green reference lines fitted to reference Nb columns in each ferroelectric

domain and the red base line midway those reference lines. (c) Enlargement of the

squared area in a), where now the straight domain wall segments are indicated in

red. Purple lines indicate the transition region, where the Nb displacements are

inverted (i.e., the overall width of the domain wall).

a single Nb column row, β1 corresponds to the position of the domain wall mid-

point along the [0001] direction, i.e., the base line of the atomic row (red line in

Figure 7.7(b)), β2 corresponds to the distance between the base line and the cor-

responding reference lines, β3 denotes the position of the domain wall midpoint

along [1120], and β4 represents the half-width of the transition region of the do-

main wall along [1120]. In the model, the width of the domain wall corresponds
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to 2β4 and it is independent of the actual location of the interface within the row

(β3).

Analysis of the calculated width of the domain wall for all 90 atomic rows demon-

strates that there are two characteristic ranges of the wall widths, which is shown

in the corresponding histogram in Figure 7.8(a). Most of the rows have a very

narrow width of the domain wall, showing a step-like behaviour of Nb displace-

ments. However, nine rows of the analysed show much wider widths of up to

about 20 unit cells, which could be due to a meandering of the interface along the

viewing direction.

(a) (b) 

Figure 7.8: (a) Histogram of the estimated widths of the domain wall per row of

the Nb columns, showing two clusters, the largest one with very sharp widths, the

smallest one with broad widths. (b) Examples of rows with a sharp and a broad

domain wall.

Considering only the atomic rows that demonstrate a sharp transition in the Nb

off-centre displacements across the domain wall, an average wall width of 174

pm ± 33 pm was calculated. Alternatively, an averaged master curve for the

Nb displacements in the entire region of interest was constructed. Therefore,

the atomic rows were first aligned with respect to each other along the [1120]

direction, to compensate for the side-ways meanders in the position of the wall.

The obtained master curve for the whole region is shown in Figure 7.9. The

dots correspond to the averaged atomic column positions for a given row. The

curve represents the fitted parametric model, which also estimates the averaged

domain wall width as 174 pm. The master curve illustrates that on average the
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Figure 7.9: The master curve of Nb displacements in the analysed region (dots)

and the corresponding fitted parametric model (curve).

domain wall is associated with sharp transitions in the polar displacements of the

Nb atoms, accounting for just 3 unit cells along the [1120] direction. Besides, the

average displacements of the first atoms on either side of the wall from the base

line are estimated as 9.4 pm, which is only slightly lower than the average value

of 12.48 pm for the rest of the row and confirms the sharpness of the averaged

interface. In a recent work, Wei et al. found a width of 7 pseudocubic unit cells

and an averaged lead atom displacement of 8 pm at anti-phase boundaries in

PbZrO3 using negative spherical aberration imaging and averaging over selected

atomic rows, but without using parameter estimation theory [293].

The main structural features of the wall in Figure 7.7(c) are the kinks of the

displacements by one unit cell. While the overall direction is well defined, one

could define the mesoscopic wall width as the distance between the two purple

limiting lines (7 unit cells). Over rather long distances, the wall position does not

fluctuate beyond this corridor. This situation is very different on a truly atomic

scale where kinks with a step of one unit cell are rather common. Only these

kinks produce local charges whenever two dipoles with opposite directions meet

at a kink of the wall. These kinks can have a high density with 5 kinks over 26
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unit cells along the [0001] direction while they are less common in other parts of

the sample. If all kinks in the section seen in Figure 3c were oriented in the same

direction, the wall would be inclined by a fraction of degree. Such walls were

shown to exhibit Cherenkov second harmonic generation (CSHG) and various

fine structures of domain walls have been made visible optically [282,294,295].

While the macroscopic wall inclination is strictly zero, the local inclinations and

hence the number of kinks is large in our sample. This implies that the local wall

conductivity (hopping) is large, but we do not expect large distance electronic

transport because straight wall segments act as insulators between the kink-rich

regions. This picture of local electronic resonances was advocated previously

and our results fully support these findings [283, 296]. Our results are also in

agreement with the lack of conductivity of domain walls with amacroscopic incli-

nation of zero [281]. Furthermore, the presence of a large number of kinks means

that the domain wall is a rough interface and will sensibly affect the CSHG signal.

From the pairs of reference lines for each [1120] row of atomic columns in Figure

7.7, the average shift between the Nb atoms across the domain wall equals 25.0

pm ± 1.1 pm (i.e., the distance between the stripes of [1120] Nb rows along the

[0001] direction in Figure 7.7(c). The precision on the average shift is calculated

by taking the standard deviation for every line, averaged over the 90 rows in

the reference region. As compared to our results for the ultimate precision on

the oxygen column position in chapter 5, shown in Figure 5.15, this is a very

high precision. This can be understood as the thickness of the sample was about

70 nm (which is much thicker than the investigated column thicknesses for the

oxygen column, resulting in a higher precision), and furthermore, the precision

on the atom column of a heavier atom type is higher as compared to a lighter

atom column.

The obtained value for the shift is about half of the expected value of ca. 55 pm

calculated from the crystallographic bulk data of LiNbO3 (see Table S1 in the

supporting information). However, the spontaneous polarisation and hence the

Nb shift of 24 pm in the TEM sample is that of a thin film prepared by FIB, so it

can be expected to be reduced with respect to the bulk value. This effect may be

a genuine size effect or related to strain and topological disorder along the beam

direction, which could also result in the heterogeneities in the displacements as

seen away from the domain wall in Figure 7.7(a). Nevertheless, all topological

features of the domain wall appear to be the same as in bulk samples.
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To further test whether the patches of small and large displacements visible in

Figure 7.7 are due to heterogeneous strain effects, the Nb shifts with respect to the

position extrapolated from the four nearest neighbour sites were calculated [297].

This does indeed average the strain variable as seen in Figure 7.10 and thus largely

eliminates the heterogeneities.
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Figure 7.10: Same area as in Figure 7.7 but now the arrows indicate shifts with

respect to the positions extrapolated from the four nearest neighbour sites. A

more homogeneous distribution is seen, indicating that the patches in Figure 7.7

can be related to local strains.
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In conclusion, it is shown that ferroelectric domain walls in LiNbO3 follow,

within experimental resolution, the predictions for 180◦ walls. Even for equi-

librated walls, we found that the wall locally meanders yielding local wall di-

rections inclined with respect to the ferroelectric polarisation. These meanders

generate kinks and dipolar configurations where the ferroelectric dipoles are ori-

ented head-to-head or tail-to-tail. These configurations necessarily induce local

charges, which do not destabilise the overall wall configuration.

7.6 Conclusions

In this chapter, the least-squares estimator is used in order to estimate the un-

known structure parameters within a model-based estimation algorithm, which

is implemented in an efficient way in the StatSTEM software [147]. From the

estimated atom column positions, different distances, atomic displacements and

angles within complex structured materials could be derived from experimental

HRSTEM images in a quantitative way.

It is shown that statistical parameter estimation theory can lead to precise results

for different applications, which makes it the optimal tool for quantitative elec-

tron microscopy. Moreover, the availability of the user-friendly and efficient Stat-

STEM software will open up new possibilities for quantitative analyses of atomic

resolution electron microscopy images.
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In this thesis an innovative method has been proposed in order to optimise

the design of quantitative atomic resolution (scanning) transmission electron

microscopy experiments. For estimation problems of continuous parameters,

such as the atom column positions, the highest attainable precision with which

these structure parameters can be obtained has already been shown to be an

appropriate optimality criterion. An adequate measure for this precision is given

by the so-called Cramér-Rao Lower bound (CRLB), which is a lower bound on

the variance of the parameter estimates. Minimising this CRLB as a function

of the microscope settings yields the optimal statistical experimental design.

However, the CRLB relies on weak regularity conditions on the probability

(density) function (P(D)F) of the observations, including that the P(D)F should

be continuously differentiable with respect to the parameters. This condition is

not satisfied for restricted, or so-called discrete parameters, such as the atomic

number Z or the number of atoms in a projected atom column. Therefore, an

alternative approach using the principles of detection theory has been proposed

in this thesis, in order to optimise the experiment design for discrete parameter

estimation problems. An estimation problem can then be formulated as a binary

or multiple hypothesis test where every hypothesis corresponds to, for example,

a specific atomic number Z, or a number of atoms in a projected atom column.

Furthermore, detection theory allows one to compute the probability to assign

an incorrect hypothesis, the so-called probability of error. Minimising this

probability of error as a function of the microscope settings has been used to

optimise the design of a HR(S)TEM experiment in order to identify the chemical

composition by estimating the atomic number Z, to detect light atoms, and

finally also for nanoparticle atom-counting.
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At the start of this PhD research, the optimal detector settings of the annular

STEM detector have been investigated for identifying the chemical composition,

i.e. for estimating the atomic number Z, using the principles of detection theory.

In the case of deciding between the presence of two different atom types, both

for individual atoms and for atom columns at an interface of a thin crystal,

the LAADF STEM detector setting has been found to be optimal based on our

quantitative approach. This detector setting was also suggested elsewhere based

on visual interpretation [69]. This optimal setting corresponds to a detector range

with the inner detector radius slightly larger than the probe semi-convergence

angle of 21 mrad.

In the following step, the HRSTEM detector design has been optimised by using

our quantitative approach, in order to detect light atoms. The investigated

research question can then be formulated as wether there is an atom column

present or not. When detecting the lightest hydrogen atom, ABF STEM has been

found to be optimal, with the detection range lying within the illumination cone

of the probe. Based on qualitative criteria, such as visual contrast, this setting was

already suggested elsewhere for the detection of light atoms [3, 12, 23, 56, 57, 85].

Next, the crystals LiV2O4 and SrTiO3 have been investigated in order to optimise

the experiment design to detect and locate either a light lithium or oxygen

column respectively. For HRSTEM, the optimal detector design depends on the

investigated material and the crystal thickness and corresponds to either LAADF

STEM for thin specimens, or ABF STEM. When the sample region becomes

thicker, both optimal regions start to overlap and, furthermore, it becomes easier

to detect the light atom columns. The optimal settings obtained for locating the

light atom columns using the attainable precision as optimality criterion, have

been found to be consistent with the optimal settings for the detection of these

light atom columns for HRSTEM imaging.

In the case of HRTEM, different optima are found for the detection of the

light oxygen column in SrTiO3 for the three investigated thicknesses. Only for

the detection of light elements in thicker sample regions, optimisation of the

spherical aberration and defocus becomes less critical and the optimal region

broadens. However, no single optimum has been retrieved for the detection and

locating problem for HRTEM imaging. Therefore, this imaging technique seems

inappropriate if one wants to detect and locate light atom columns with the

lowest probability of error and the highest possible precision, respectively, from

a single image. Using a focal series of HRTEM images and by performing exit
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wave reconstruction, precise quantitative results might be obtained, but this was

not investigated in this thesis.

In addition, the incoming electron dose has been optimised in order to detect and

locate light atoms. In the case of HRSTEM, a single optimal incoming electron

dose has been found for which the light elements can be detected with a low

probability of error and also located with a precision in the picometre range. This

optimal incoming electron dose depends on the crystal structure and thickness.

For detecting and locating either Li in LiV2O4 or O in SrTiO3 from HRSTEM

images, an incoming electron dose of the order of 105e−/Å2 or 104e−/Å2 has been

proposed respectively, under the optimal detector settings.

Another application that has been examined in this thesis, using our quantitative

approach, is the atom-counting performance of both HRTEM and HRSTEM.

By using the principles of detection theory, the limits to the precision with

which the number of atoms in a projected atom column can be estimated have

been investigated and compared for both imaging modes. The use of scattering

cross-sections in HRSTEM, which were already proposed in [76, 146, 220], has

been found to be appropriate when the goal is to count the number of atoms

with the lowest probability of error. Indeed, they perform equally well as the

HRSTEM images on a pixel by pixel basis of a projected atom column and they

even outperform peak intensities. By minimising the probability of error as a

function of the experimental settings, the experiment design has been optimised

for atom-counting. For HRSTEM, the optimal annular inner and outer detector

angles have been derived quantitatively, whereas for HRTEM the spherical

aberration and defocus have been optimised. We can conclude that when

comparing the currently used approaches, HRSTEM is in general applicable for

atom-counting when using an appropriate detector range, where the scattering

cross-sections monotonically increase with thickness, and where the overlap

between the probability functions of consecutive scattering cross-sections is

small. When the atom-counting decision is based on the probability function

of peak intensities, HRTEM can only be used to count the number of atoms

in projected atom columns in a very thin sample region at optimal imaging

conditions, and using a sufficiently high incoming electron dose. The peak

intensities oscillate as a function of the thickness, depending on the atom column

type due to the inherent electron channelling. The probability of error at the

optimal experimental settings for HRTEM, when the atom-counting decision is

based on the probability function of peak intensities is larger as compared to

the optimal probability of error for HRSTEM, when using the same incoming
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electron dose. Under the assumption that one can make the atom-counting

decision based on the joint probability function of all image pixel intensities, the

probability of error decreased significantly in the case of HRTEM, and became

lower as compared to HRSTEM. However, such atom-counting procedure would

require the behaviour of all pixel values in the image as a function of thickness,

and therefore also all imaging parameters. In practice, the spherical aberration

and defocus will be estimated parameters too, which will mostly increase the

probability of error for atom-counting in HRTEM, as this imaging technique

is less robust with respect to these parameters as compared to HRSTEM. In

HRSTEM, both for binary and multiple hypothesis testing, the probability of

error based on the joint probability function of the image pixel values is well

approximated by the probability of error for scattering cross-sections, for which

an appropriate and practical framework exists [75–77].

In conclusion, HRTEM may in theory result into a lower probability of error for

atom-counting when using image intensities on a pixel by pixel basis, but the

commonly used scattering cross-sections for atom-counting in HRSTEM lead to

a high performance and have been shown to work in practice.

Finally, experimental images have been analysed for different purposes and the

maximum likelihood estimator has been used in order to estimate unknown

structure parameters, such as the atom column positions, within a model-based

estimation algorithm that is implemented in an efficient way in the StatSTEM

software [147]. From the estimated atom column positions, different distances,

atomic displacements and angles within complex structured materials have been

derived from experimental HRSTEM images in a quantitative way.

In this thesis, statistical experiment design has been used to discover the theo-

retical limits to quantitative HR(S)TEM. This limit is given by the probability of

error in the case of discrete estimation problems, and by the highest attainable

precision for the estimation of continuous structure parameters. Furthermore,

statistical experimental design allows one to find the optimal microscope settings

resulting into the lowest probability of error or the highest attainable precision,

respectively. In this way it provides the electron microscopist with insight in

which precision may be obtained at which microscope settings. Furthermore, it

has been shown that statistical parameter estimation theory can lead to precise

results for different applications, which makes it the optimal tool for quantitative

electron microscopy.
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Appendix A

Camera lengths of the FEI QU-Ant-EM

Camera length Inner HAADF Outer HAADF

(cm) (mrad) (mrad)

29,5 163 190

37 130 190

46 108 190

58 87 190

73 69 190

91 56 190

115 44 190

145 35 190

185 28 172

230 22 136

285 18 113

360 14 89

460 11 70

580 9 55

720 7 44
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Camera lengths of the FEI X-Ant-EM

Camera length Inner HAADF Outer HAADF

(cm) (mrad) (mrad)

29,5 183.4 144

37 142 147

46 115 157

58 91 157

73 74 157

91 58 197

115 46 215

145 36 215

185 29 174

230 23 142

285 19 117

360 15 95

460 13 78

580 10 63

720 8 50

910 7 41
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Camera length Inner DF4 Outer DF4 Inner DF2 Outer DF2

(cm) (mrad) (mrad) (mrad) (mrad)

37 33,10023 117,3554 16,55012 33,10023

46 26,80653 95,04132 13,40326 26,80653

58 21,21212 75,20661 10,60606 21,21212

73 17,24942 61,15702 8,624709 17,24942

91 13,51981 47,93388 6,759907 13,51981

115 10,72261 38,01653 5,361305 10,72261

145 8,391608 29,75207 4,195804 8,391608

185 6,75 23,93 3,375 6,75

230 5,361305 19,00826 2,680653 5,361305

285 4,428904 15,70248 2,214452 4,428904

360 3,496503 12,39669 1,748252 3,496503

460 3,030303 10,7438 1,515152 3,030303

580 2,331002 8,264463 1,165501 2,331002

720 1,864802 6,61157 0,932401 1,864802

910 1,631702 5,785124 0,815851 1,631702
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[98] O. Scherzer. Über einige Fehler von Elektronenlinsen. Zeitschrift für Physik, 101(9-10):593–

603, 1936.

[99] O. Scherzer. The theoretical resolution limit of the Electron Microscope. Journal of Applied

Physics, 20:20–29, 1949.
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a0 47 Bohr radius
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a specific atomic number Z

Bn 32 Debye-Waller factor of atom n

ci 47 set of three constant parameters for potential parametrisation of

a specific atomic number Z
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D(g) 35 detector function
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)
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OOC 123 Oxygen octahedral coupling

OOR 123 Oxygen octahedral rotation

PDF 14 Probability density function
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PF 14 Probability function

PI 54 Peak intensity
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TCC 35 Transmission cross coefficient

TDS 28 Thermal diffuse scattering

TEM 3 Transmission Electron Microscopy
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Samenvatting

In het laatste decennium is de interesse in het in beeld brengen van lichte

atomen zoals lithium en waterstof enorm gegroeid door hun belangrijke rol

bij de ontwikkeling van nieuwe materialen die energie kunnen opslaan en be-

waren. De optimalisatie van verschillende technieken binnen de transmissie-

elektronenmicroscopie is dan ook erg belangrijk geworden voor zulke toepassin-

gen. Het is echter enorm moeilijk om systemen bestaande uit lichte atomen in

beeld te brengen en hun structuur en chemische compositie te kwantificeren

op atomaire schaal, aangezien de interactie met de elektronenbundel verzwakt

naarmate het atoom lichter wordt. Het hoofddoel van dit onderzoek bestond

erin de experimentele opstelling van de elektronenmicroscoop te optimaliseren

om nanostructuren bestaande uit lichte atomen te kunnen karakteriseren en

dit gebruik makend van nieuwe technieken binnen de kwantitatieve tranmissie-

elektronenmicroscopie. Het doel is dan om de atomaire structuur vanuit ex-

perimentele beelden te kunnen bepalen voor nanokristallen bestaande uit lichte

atomen.

Atomen kunnen gevisualiseerd worden met behulp van hoge resolutie donker-

beeldvorming via raster transmissie elektronenmicroscopie (High Resolution

High-Angle Annular Dark Field Scanning Transmission Electron Microscopy of

HR HAADF STEM). In deze techniek scant een gefocusseerde elektronenbundel

over een voor elektronen transparant materiaal. Door gebruik te maken van een

ringvormige detector met grote binnenstraal worden bijna uitsluitend incoher-

ent verstrooide elektronen gedetecteerd. Het zo verkregen signaal schaalt dan

benaderd kwadratisch met het atoomgetal Z en geeft dus een relatief hoge gevoe-

ligheid voor de chemische samenstelling. Een directe, kwalitatieve interpretatie

van experimentele beelden leidt echter tot onbetrouwbare resultaten wanneer het

verschil in atoomgetal Z van de aanwezige atoomkolommen klein is of wanneer

de signaal-ruis verhouding van de beelden slecht is. Voor de chemische karakter-
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isatie van systemen met lichte atomen is daarom het gebruik van kwantitatieve

methoden noodzakelijk. Hiervoor wordt statistische parameterschattingstheorie

toegepast in combinatie met detectietheorie.

Elektronenmicroscopische waarnemingen fluctueren rond verwachtingswaarden.

Het verwachtingswaardenmodel, het fysische model dat de verwachtingswaar-

den beschrijft, bevat de te meten parameters. De parameters die geschat zullen

worden in deze thesis zijn het atoomgetal (van een geı̈soleerd atoom en van

geprojecteerde atoomkolommen in een kristal), de posities van geprojecteerde

atoomkolommen en de dikte ervan (het aantal atomen in een kolom). Voor het

schatten van continue parameters, zoals de atoomkolomposities, kan gebruik

gemaakt worden van de zogenaamde Cramér-Rao ondergrens, die een maat is voor

de haalbare precisie op deze geschatte parameter. Detectietheorie biedt een alter-

natieve methode voor het schatten van discrete parameters, zoals het atoomgetal

Z, omdat hiervoor de Cramér-Rao ondergrens niet gedefinieerd is. Hierbij wordt

een schattingsprobleem geformuleerd als een binaire of meervoudige hypothese-

toets, waarbij de verschillende hypotheses bijvoorbeeld overeenkomen met ver-

schillende mogelijke atoomgetallen. De kans op het kiezen van een foute hy-

pothese, de zogenaamde probability of error, kan dan berekend worden en gemi-

nimaliseerd worden als functie van de experimentele opstelling.

Het doel is uiteindelijk om de optimale experimentele proefopzet te vinden waar-

voor de kans op een foute hypothesekeuze minimaal is, of de haalbare precisie

maximaal. Zowel conventionele TEM als STEM zullen bestudeerd en vergeleken

worden voor het detecteren en lokaliseren van lichte atomen, alsook voor het

tellen van atomen in een geprojecteerde atoomkolom. Voor HRSTEM worden

hierbij de detector binnen- en buitenhoek geoptimaliseerd, maar HRTEM wordt

geoptimaliseerd in termen van de sferische aberratie en defocus.

Voor het detecteren en lokaliseren van lichte atomen, blijkt HRSTEM een meer

geschikte techniek in vergelijking met HRTEM, voor dezelfde inkomende elek-

tronendosis. Bovendien wordt eenzelfde optimale proefopzet gevonden voor de

STEM detector voor zowel het detecteren als lokaliseren van lichte atomen. Daar-

naast wordt er gevonden dat voor dezelfde inkomende elektronendosis en onder

de optimale settings HRSTEM een lagere kans op een telfout geeft dan HRTEM,

wanneer men verstrooiingsdoorsnedes als prestatie maat gebruikt voor STEM

en piekintensiteiten voor HRTEM, zoals voorgesteld in de literatuur. Wanneer

echter een beslissing genomen wordt op basis van de zogenaamde gezamelijke

kansdichtheidsfunctie van alle pixelobservaties in een HR(S)TEM beeld, wordt

HRTEM voordeliger voor het tellen van atomen.
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Als praktische toepassing in het onderzoek naar technieken om nanostructuren

bestaande uit lichte atomen kwantitatief te karakteriseren, wordt de lokale kop-

peling van de zuurstof-octaëders aan het raakvlak met heterogene perovskiet-

structuren in verschillende epitaxiale dunne films bepaald. Daarnaast wordt ook

het raakvlak tussen twee domeinen in het kristal LiNbO3 onderzocht en wordt de

verschuiving van de atomen aan beide zijden van dit raakvlak, alsook de breedte

van de overgang tussen beide domeinen gekwantificeerd met behulp van statis-

tische parameterschattingstheorie.
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