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Summary

Abstract

This dissertation deals with modeling and processing of Diffusion Tensor (DT)
Magnetic Resonance (MR) data. The development of new DT image processing
techniques for improved analysis of brain connectivity (i.e., the complex network of
connections by which brain cells communicate) is hereby emphasized. This thesis is
divided into two parts. Part I elaborately reviews the requisite background on DT
MR Imaging (DTI) (chapter 1) and Fiber Tractography (FT) (chapter 2). Part II
provides the main original contributions, i.e. the development of a mathematical
framework for simulating DTI data (chapter 3) and the development of two new
DTI coregistration techniques (chapter 4 and 5).

Motivation and objectives

The brain is undoubtedly the most complex biological system, since it performs
an abundance of intricate tasks, such as observation, interpretation of information,
reaction, planning, and display of behavior. DTI allows one to investigate the
connections in this complex system (i.e., the brain connectivity) in vivo and non-
invasively. Chapter 1 expounds the physical and mathematical underpinnings of
this unique MR technique, in which the concept of diffusion is introduced in MR
Imaging (MRI). The principals and importance of Diffusion-Weighted MRI are
discussed and subsequently extended to DTI. Furthermore, this chapter considers
several DT visualization techniques and presents an overview of the most important
scalar measures that are related to the DT model. In addition, the most common
artifacts in DT are described and the limitations of DTI are elucidated. This
chapter finally mentions several applications, emphasizing the importance of DTI
within a medical and biomedical context.

One of the most important applications of DTI is FT and constitutes the sub-
ject of chapter 2. FT allows one to virtually reconstruct the brain White Matter

xvii



SUMMARY

(WM) fiber bundles in vivo and non-invasively using diffusion MR data. After
a short description of its basic principles, several FT approaches are elucidated
and their potential strengths and weaknesses are discussed. This chapter addi-
tionally presents the commonly used FT visualization methods, again underlining
the significance of a clear data representation. Several important applications are
reported.

For fundamental research in DT image processing, simulations and tests on syn-
thetic data are indispensable. With these tests, the accuracy, precision, repro-
ducibility, and noise sensitivity of the developed DT image processing techniques
can be studied quantitatively. An accurate and realistic representation of such a
synthetic phantom plays an important role in the performance of a reliable analysis
with an eye to applications with experimental DTI data. Chapter 3 presents the
development of a mathematical framework for constructing these simulated DTI
phantoms. In particular, the synthetic DTI data are modeled using an approxi-
mated representation of WM fiber bundles incorporating several physical properties
of these fiber bundles. On the one hand, the developed synthetic phantoms serve a
reliable ground-truth for testing and evaluating DT processing techniques, such as
coregistration, noise filtering, and the correction of motion artifacts. On the other
hand, these simulated DTI data are essential for optimizing the numerous user-
defined parameters that characterize a FT algorithm. Several examples of how this
mathematical framework can be applied to compare FT algorithms are presented
in detail.

Coregistration is an important technique within the field of image processing which
allows one to map images, or stated more generally, ‘digital object representations’,
into a common reference frame. Only then, comparative quantitative studies can
be realized objectively, such as the indication of a statistically significant difference
between normal and ‘abnormal’ WM fiber structures. Due to the rapid develop-
ment and the growing diversity of imaging modalities during the last decades, it is
impossible to design a universal coregistration method. For here, the quality, na-
ture of information, size, and field of application are important aspects that typify
the coregistration technique. Within this context, chapter 4 describes the develop-
ment of an affine (rotation, translation, scale, and skew) voxel based coregistration
technique for DTI data. The voxels of DTI data do not represent scalar values, but
second-rank tensors that define the three-dimensional Gaussian distributed diffu-
sion, making conventional coregistration techniques inadequate. Furthermore in
this chapter, an efficient reorientation strategy is developed, which is necessary for
preserving the important orientational information of the diffusion tensor. As a
similarity measure, i.e. the criterium that determines how correspondence between
the images is defined, mutual information is utilized. The affine DT coregistra-
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tion technique is first evaluated using the synthetic DT phantoms and afterwards
applied to brain DTI data.

Chapter 5 presents the development of another coregistration method, in which the
reconstructed WM fiber tracts are utilized instead of the voxel based data. In this
approach, only the relevant information (i.e., the WM fiber tracts) is used for the
computation process, making the coregistration procedure more efficient. Indeed, a
large number of voxels in DTI data does not represent a relevant signal and there-
fore does not significantly contribute to the optimization procedure of voxel based
DT coregistration techniques. Furthermore, the coregistration technique is fully
automatic and is based on the local invariance properties of the WM fiber path-
ways, which are represented in a hierarchical way. First, simulations are performed
using the developed synthetic DTI data to investigate the accuracy, reproducibility,
and the effect of image noise. Second, several user-defined parameters that charac-
terize this coregistration are optimized. Finally, this new coregistration approach is
compared with the method from chapter 4 and both advantages and disadvantages
are discussed.
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From H2O molecules to fiber

bundles of the brain
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Chapter 1

Diffusion tensor imaging

Parts of the work in this chapter have been published in
G. De Groof, M. Verhoye, V. Van Meir, I. Tindemans, A. Leemans, and A. Van
der Linden, “In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal
pathways in songbirds”, NeuroImage, Vol. 29, Nr. 3, p. 754–763, 2006.

1.1 Abstract

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI), also referred to as Dif-
fusion Tensor Imaging (DTI), is an advanced imaging technique within the field of
Magnetic Resonance Imaging (MRI). In order to comprehend the principles of DTI,
an understanding of the Nuclear Magnetic Resonance (NMR) phenomenon and the
fundamental concepts of MRI is required first. Although the principles of NMR
and MRI are extremely interesting, especially from a physicist’s point of view, a
general description expounding these principles is considered beyond the scope of
this dissertation and is therefore omitted. An excellent and complete description
of the principles of MRI can be found in the work of Slichter and Callaghan [1, 2].
For the novice with little technical background, it might be interesting to read the
clear presentation of the basics of MRI, as described in the work of Hashemi and
colleagues [3]. In this chapter, the physical principles and the mathematical frame-
work of DTI are introduced. Several DTI visualization approaches are described
and DTI artifacts are discussed. Finally, the limitations of DTI are presented and
several applications are reviewed to point out the importance of DTI in a clinical
and biomedical setting.
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1.2. INTRODUCTION

1.2 Introduction

DTI allows one to obtain quantitative information about the three-dimensional
(3D) anisotropic diffusion of water molecules in biological tissue [4–10]. This dif-
fusion anisotropy reflects the presence of spatially oriented microstructures (e.g.,
neural fibers in the central nervous system), where the mobility of the diffusing par-
ticles is mainly determined by the fiber pathway [11]. On the basis of this intrinsic
property, which assumes that the orientation of the diffusion tensor field matches
the orientation of the corresponding underlying fiber system, DTI has been ap-
plied in several studies to infer microstructural characteristics and obtain valuable
diagnostic information regarding various neuropathological conditions (e.g., Refs.
[12, 13]).

1.3 Theoretical underpinnings of DTI

1.3.1 Brownian Motion

Although water appears to be static to the naked eye, individual water molecules
are constantly in motion, colliding with each other at a high speed. This phenom-
enon, referred to as ‘Brownian motion’, was first described by the Scottish natu-
ralist Robert Brown in 1828, who observed a random motion of grains of pollen
suspended in water [14]. The phenomenon ‘diffusion’ can be considered as the
macroscopic observable effect due to the microscopic Brownian motion of particles
(e.g., think of a drop of wine in a glass of water that slowly spreads apart1). Note
that the diffusion of water molecules within its own environment (also known as
self-diffusion) is conceptually equivalent to the diffusion of a substance in another
host substance.

1.3.2 Diffusion

In 1905, Einstein developed a theory that could explain the observations of Brown,
providing a time-distance relationship for a particle undergoing a Brownian motion.

1.3.2.1 Isotropic environment

Consider a particle in an isotropic environment (e.g., a water molecule in water)
at position r0 at time t = 0. If its subsequent position at time t = τ is denoted by
r, the diffusion coefficient D can be given by Einstein’s relation [15]:

D =
1
6τ

〈RT · R〉 , (1.1)

1This analogy should of course never be made in France ... for it is a downright shame!
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CHAPTER 1. DIFFUSION TENSOR IMAGING

where R = r − ro represents the net displacement vector of the particle, ‘T ’ de-
notes the transpose, and 〈...〉 describes the average over the particle ensemble. It is
important to note that D is a scalar which relates time to the square displacement
and therefore should not be considered as a diffusion velocity. The diffusion coeffi-
cient is directionally independent, or stated equivalently, the diffusion is isotropic.
For water at 37.5◦C the diffusion coefficient D is approximately 2.5× 10−3 mm2/s
[16].

1.3.2.2 Anisotropic environment

If particles undergoing a Brownian motion are restricted to a bounded medium,
like strongly aligned microstructures in fibrous biological tissue (cell membranes,
polymers, axonal fibers, etc.), a higher displacement will appear parallel to the
direction of these boundaries than in the perpendicular direction. Therefore, it can
be stated that the underlying structure of an anisotropic environment is reflected by
the corresponding Brownian motion. Taking the covariance of the net displacement
vector into account, Einstein’s relation, as described in Eq. (1.1), can be generalized
to allow for this directional dependency:

D =
1
6τ

〈R · RT 〉 ≡
⎡⎣ Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎤⎦ , (1.2)

where D is called the diffusion tensor. It can be shown that this second-rank tensor
is symmetric (DT = D) and positive definite [17, 18]. The diffusion is directionally
dependent, or stated equivalently, the diffusion is anisotropic.

1.3.2.3 Diffusion in the central nervous system

In general, the diffusion tensor additionally depends on the particle mass and the
temperature [19]. However, since the particle mass of water molecules in the Central
Nervous System (CNS) is fixed and the temperature at which the experimental
measurements are conducted can be assumed constant, it is correct to state that
the spatial differences of the diffusion tensor can be solely interpreted in terms of the
architectural environment. On the other hand, it is important to note that for long
acquisition times (e.g., in animal studies using sedatives), a close monitoring of the
physiological parameters is required, for here, the temperature-related variations
of the diffusion coefficient can be significant (the resulting sensitivity of diffusion to
temperature is approximately 2.4% per ◦C). To understand this diffusion behavior
of water molecules in the CNS more clearly, a brief anatomical description of its
architectural environment is given next (Fig. 1.1).
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1.3. THEORETICAL UNDERPINNINGS OF DTI

Neurons The human CNS is made up of more than 1010 neurons that transmit
information in the form of nerve impulses from one part of the body to another.
These physical structures are basically composed of the cell body (neurofibrils,
neurotubuli, etc.), the axon, and dendrites [20]. Dendrites are attached to the
soma of the neuron, and receive impulses from other neurons at the synapses. A
sketch of the neuronal network is shown in Fig. 1.1 (a).

Axons The axon is the long cylindrical part of the neuron that transmits im-
pulses away from the dendrites and the cell body [20]. It consists of microtubuli,
neurofilaments, and the axonal membrane [Fig. 1.1 (b)]. Most axons are wrapped
by sheets of fatty myelinated Schwann cells (also called myeline sheets). The thin
layer of connective tissue that surrounds the myelinated axon is known as the
endoneurium [Fig. 1.1 (b,c)].

Fasciculi and fiber bundles A fasciculus or tract can be described as a group
of axons that are bundled together and wrapped in a connective tissue called the
perineurium [Fig. 1.1 (c,d)] [20]. A group of fasciculi combined with blood vessels
finally build up a nerve fiber, which is surrounded by the epineurium to provide a
certain toughness and resistance to tearing [Fig. 1.1 (d,e)].

White matter (WM) The portion of the fasciculi in the human brain that
contain white fatty myelinated Schwann cells form the WM of the brain. In Fig.
1.1 (e), a brain dissection (histology) shows the spaghetti-like WM structure of the
Internal Capsule (IC) and the Corona Radiate (CR), using the preservation method
of Klinger from the Iowa Virtual Hospital [21]. From the relatively narrow, but
thick, basis pedunculi, the fiber bundles are fanning out to the outer areas of the
cerebral cortex.

1.3.2.4 Diffusion NMR

The mobility of water to diffuse across tract boundaries is restricted, causing water
to diffuse anisotropically, i.e. there is more diffusion in directions parallel to fiber
tracts than in perpendicular directions. This directional dependence of diffusion
can be measured with NMR and was mainly pioneered by Purcell, Torrey, Stejskal,
and Tanner [22–25].
The diffusion coefficient measured by NMR is best known in the biological NMR
literature as the Apparent Diffusion Coefficient (ADC) [26]. This measure is not
a true measure of the intrinsic diffusion, but rather depends on the interactions
of the diffusing water molecules with the cellular structures over a given diffusion
time. The interactions sample the local environment and therefore can infer mi-
crostructural characteristics of the tissue from the measured diffusion properties
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(d) (e)

IC

CRCR
fasciculi 

blood vessels 

nerve fiber  

epineurium 

perineurium 

myelinated axon 

endoneurium 

fasciculus   ~ 0.1-10 mm 

(c)

.....

myeline sheet 
 ~ 3-15 m

endoneurium 

axonal
membrane 

 ~ 1 m

microtubulus 
 ~ 25 nm 

neurofilament 
 ~ 5 nm 

(b)

(a)

Figure 1.1. An illustration of the anatomical configuration of (a) the neuronal network,

(b) the axon, (c) the fasciculus, (d) the nerve fiber, and (e) the white matter fiber bundles

of the brain [21].
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1.3. THEORETICAL UNDERPINNINGS OF DTI

[27]. Note that the ADC could potentially be influenced by active processes within
the tissue.
In a recent review by Beaulieu, an excellent description is given about the basis of
anisotropic diffusion in the nervous system [11]. There, the relationship of diffusion
NMR and its anisotropy with the underlying microstructure of neural fibers is
presented in more detail.

1.3.3 Diffusion-weighted MRI

Diffusion-Weighted (DW) MRI (DWI) is the imaging technique which is based on
the physical principles of diffusion NMR. DWI allows one to measure the amount
of water diffusion at different positions in the biological tissue. The acquisition
framework of DWI is described next.

1.3.3.1 Acquisition framework

DW images can be measured using a MRI sequence in which two diffusion-encoding
gradient pulses are symmetrically positioned around the 180◦ refocusing Radio
Frequency (RF) pulse [23]. Consider two rectangularly shaped diffusion gradient
pulses g(t) along the z-direction (‖g(t)‖ = gz(t) = gz) with duration time δ and
with time Δ between these gradient pulse onsets. The first gradient pulse induces
a phase shift φ1 = φ1(z) of the spin transverse magnetization, i.e.

φ1 = γ

δ∫
0

gz(t)z(t)dt = γδgzz1 , (1.3)

where γ is the gyromagnetic ratio for hydrogen nuclei (42MHz/Tesla) and the spin
position z(t) = z1 is assumed to be constant during the short pulse duration δ [3].
This gradient pulse causes the spins to dephase and is therefore referred to as the
dephasing gradient pulse. Similarly, the second gradient pulse induces a phase shift
φ2 = φ2(z), i.e.

φ2 = −γ

Δ+δ∫
Δ

gz(t)z(t)dt = −γδgzz2 , (1.4)

where the change of sign in Eq. (1.4) considers the application of the 180◦ RF
pulse. Consequently, this second gradient pulse inverts the phase shift, refocusing
the spins. Hence, this gradient pulse is called the rephasing gradient pulse.
For static spins, i.e. spins not undergoing any diffusion (z1 = z2), the net induced
phase shift φ will be completely refocused, i.e.

φ = φ1 + φ2 = γδgz(z1 − z2) = 0 . (1.5)
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On the other hand, spins having completed a change in z-location due to Brownian
motion during the time period Δ (i.e., spins undergoing diffusion) will experience
a net phase shift

φ = γδgz(z1 − z2) �= 0 . (1.6)

These diffusing spins are not completely refocused, resulting in a signal loss [28–30].
In general, the amplitude of the spin-echo signal S(r), which describes the signal
loss at position r due to the application of these diffusion gradients, is given by [3]

S(r) = S0(r)〈eiφ〉 ≤ S0(r) , (1.7)

where S0(r) is the signal intensity in the absence of a diffusion sensitizing gradient
field, i.e. ‖g‖ = 0, and 〈...〉 represents the ensemble average of the diffusion spin
population which causes the aforementioned signal attenuation. This ensemble
factor can be calculated explicitly if the statistical spin displacement distribution
is known. More specifically, if p(r|r0, τ) denotes the conditional probability density
function for finding a diffusing spin at position r after a time τ , given its initial
position r0 = r(t = 0), Eq. (1.7) can be rewritten as [30]

S(r) = S0(r)
∫

p(r|r0, τ)eiφ(r0−r)dr . (1.8)

In Eq. (1.8), the phase φ is written for a general gradient direction g, analogously
to Eq. (1.6), i.e.

φ ≡ φ(r0 − r) = γδgT ·[r(t = 0) − r(t = Δ)
]

, (1.9)

where the rectangular diffusion gradient g can be defined as [23]

g ≡ g(t) = ‖g‖[H(t − δ) − H(t) + H(t − Δ) − H(t − δ − Δ)
]

, (1.10)

with H(t) representing the Heaviside step function. Furthermore, for isotropic
media, the conditional probability density function p(r|r0, τ) is defined as

p(r|r0, τ) =
1√[

4πτD(r)
]3 e

−‖r−r0‖2

4τD(r) , (1.11)

where D(r) denotes the diffusion coefficient (or ADC value). Combining Eqs. (1.8)
to (1.11), the famous Stejskal-Tanner relation can be obtained, which describes the
relationship between the loss of phase coherence in the acquired signal S(r) and
the gradient pulse g [23], i.e.

S(r) = S0(r) e−bD(r) , (1.12)
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where the diffusion weighting factor b in Eq. (1.12), introduced by Le Bihan et al.,
is defined as [31]:

b = γ2δ2

(
Δ − δ

3

)
‖g‖2 . (1.13)

The Stejskal-Tanner equation allows one to relate the measured diffusion signal
to the diffusion coefficient of the underlying tissue, assuming that the diffusion
is purely Gaussian. In addition, it should be noted that this framework further
assumes that δ 	 Δ and that there is no significant effect of additional spatial
encoding gradients to the phase of the diffusing spins. A schematic illustration of
this elegant acquisition framework is presented in Fig. 1.2.

BB

g

M
“dephasing” 

B

g
90  pulse 180  pulse signal 

time 

B

no diffusion 

diffusion 
M2

M1
vector sum M M

“rephasing”

Figure 1.2. A schematic illustration of the diffusion-weighted imaging sequence. The

length of the colored vertical arrows indicates the strength of the magnetic field B, which

is non-uniform during the application of the gradients g. After the first gradient applica-

tion following the 90◦ RF pulse, signals lose their uniform phase (called ‘dephasing’, i.e.

the vector sum of the magnetic spin moments M decreases) because each proton starts to

precess at different rates ω depending on its position in space (the color-encoding repre-

sents the amount of this precession rate). After the second gradient application following

the 180◦ RF pulse, the system restores the uniform phase (called ‘rephasing’, i.e. M in-

creases). This rephasing is complete only when spins do not undergo a Brownian motion

(i.e., do not diffuse) during the time Δ in between the two applications of the gradients

(‖M1‖ > ‖M2‖).

It is important to note that due to the anisotropic environment (e.g., the WM of
the brain), the diffusion coefficient D(r) is dependent on the direction of g. In
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addition, D(r) also depends on the gradient strength ‖g‖ and the time sequence
parameters δ and Δ.
In practice, the DW images are often acquired using Echo-Planar Imaging (EPI)
sequences [32, 33]. Although these EPI sequences offer improved acquisition times
and therefore reduce motion artifacts, they are subject to eddy current distortions
introduced by the gradients, especially the large DW imaging gradients.

1.3.3.2 Initial observations and important applications

Diffusion anisotropy in biological tissue was initially observed by Cleveland et al.
in NMR measurements of the skeletal muscle [34].
The first systematic DWI study of anisotropic water diffusion in the nervous system
by Moseley et al. confirmed that water diffusion was anisotropic in normal WM of
the cat brain and the spinal cord, whereas diffusion was isotropic in grey matter
[35]. At the same time, Chenevert et al. demonstrated anisotropic diffusion within
the human WM in vivo [36].
Anisotropy was later also observed in human spinal cord, human sciatic nerve,
human tibial nerve, cat optic nerve, peripheral nerves in the rabbit forelimb, and
rat trigeminal nerve and corpus callosum in vivo [37–41].
In 1991, it was found by the work of Moseley et al. that the ADC of Cerebrospinal
Fluid (CSF) drops drastically in the event of ischemia [42, 43]. Because DWI is
one of the few radiological techniques that can detect stroke in its acute phase, the
importance of this technique is significant [44]. Some of the first studies also recog-
nized the value of measuring the diffusion anisotropy for following brain maturation
or mapping fiber orientation in the brain non-invasively [26, 31, 45–47].

1.3.4 The diffusion tensor model

As described in sections 1.3.2 and 1.3.3, diffusion can no longer be characterized
by a single scalar for an anisotropic environment. However, the diffusion coefficient
D(r) (or ADC), as obtained by DWI, can be generalized to the diffusion tensor
D(r) [see Eq. (1.2)] which allows one to describe the molecular mobility along any
direction. During typical diffusion times in the order of 50 ms, water molecules
in the brain move on average over distances of about 10μm, probing the tissue
structure at the microscopic level well beyond the usual image resolution. However,
on a statistical basis, the overall effect can be observed within a DW image voxel
with size in the order of several mm3. With the advent of this tensor model,
introduced by Basser et al., a rigorous formulation of the full 3D Gaussian diffusion
process was established providing not only a quantitative measure for the amount
diffusion anisotropy, but also the corresponding predominant directions of the water
diffusion [6, 7, 9].
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1.3.4.1 Acquisition and computation of the diffusion tensor

To compute the diffusion tensor D(r), several DW images along different non-
collinear gradient directions gk (k = 1, . . . , N) should be acquired [9, 48]. Since
D(r) is characterized by six degrees of freedom, at least six DW measurements
Sk(r) (N = 6) are needed, along with a reference image S0(r) acquired without
diffusion weighting. In general, the symmetric second-rank tensor D(r) can be
calculated for each voxel at position r by solving the equation system

Sk(r) = S0(r) e−bĝT
k ·D(r)·ĝk with ĝk =

gk

‖gk‖ , (1.14)

which can be considered as the generalized anisotropic form of the Stejskal-Tanner
relationship [see Eq. (1.12)], where the distribution p(r|r0, τ) for isotropic media
in Eq. (1.11) has been extended for the general anisotropic case [23], i.e.

p(r|r0, τ) = 1√
(4πτ)3|D| e−

(r−r0)
T ·D−1·(r−r0)

4τ , (1.15)

where |...| represents the determinant. Note that for different gradient strengths
‖gk‖, the b-value in Eq. (1.14) should also be generalized:

bk = γ2δ2

(
Δ − δ

3

)
‖gk‖2 . (1.16)

The linear equation system described in Eq. (1.14) can also be represented in
matrix form as follows:

�
��������

(ĝ1x)2 2ĝ1xĝ1y 2ĝ1xĝ1z (ĝ1y)2 ĝ1y ĝ1z (ĝ1z)
2

(ĝ2x)2 2ĝ2xĝ2y 2ĝ2xĝ2z (ĝ2y)2 ĝ2y ĝ2z (ĝ2z)
2

...
...

...
...

...
...

(ĝNx)2 2ĝNxĝNy 2ĝNxĝNz (ĝNy)2 ĝNy ĝNz (ĝNz)
2

�
��������

� �	 

G

�
���������

Dxx(r)

Dxy(r)

Dxz(r)

Dyy(r)

Dyz(r)

Dzz(r)

�
���������

� �	 

D̃(r)

=

�
�����������

1
b

ln
�

S0(r)
S1(r)

�

1
b

ln
�

S0(r)
S2(r)

�

...

1
b

ln
�

S0(r)
SN (r)

�

�
�����������

� �	 

B(r)

.

(1.17)

For exactly six DW measurements (N = 6), the unique diffusion tensor components
can easily be calculated as:

D̃(r) = G−1 · B(r) . (1.18)

If more than six DW images are acquired, an over-constrained system of equations
is obtained which can be solved by using Least Square (LS) methods [49, 50].
For example, applying the linear non-weighted LS approach, the diffusion tensor
components can be calculated as:

D̃(r) = (GT · G)−1 · GT · B(r) . (1.19)
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In the work of Hasan et al., a comparison of different gradient encoding schemes has
indicated that six gradient directions are sufficient in determining D for practical
use [51, 52]. On the other hand, over-determining the solution for D̃(r) has the
advantage to reduce the amount of noise propagating from the DW measurements
into the calculated diffusion tensor [53, 54]. Moreover, based on Monte Carlo simu-
lations, it has been shown that at least 20 unique gradient directions are necessary
for a robust estimation of anisotropy, whereas at least 30 unique sampling orienta-
tions are required for a robust estimation of the tensor-orientation [55]. Self-evident
drawbacks of acquiring more DW measurements are an increased acquisition and
processing time.
In Fig. 1.3 (a), six axial DW measurements Sk(r) and one non-DW image S0(r) are
shown, along with the corresponding magnetic field gradients gk (k = 1, . . . , 6). In
general, measurements are made in the reference frame (x, y, z) of the MRI scanner
gradients. Unfortunately, this frame does not coincide with the diffusion frame of
the tissue. Therefore, one must also consider the coupling of the non-diagonal
diffusion tensor elements (i.e., Dij with i �= j for i, j = x, y, z) which reflect the
correlation between the molecular displacements in perpendicular directions [Fig.
1.3 (b)]. Hence, it is important to note that by using diffusion-encoding gradient
pulses along one direction, signal attenuation not only depends on the diffusion
effects along this direction but may also include contributions from other directions.

1.3.4.2 Geometrical interpretation

Let us reconsider the physical meaning of the diffusion tensor field D = D(r, τ)
with diffusion time τ . In DTI, it is assumed that the molecular diffusion can
be characterized by the macroscopical Gaussian conditional probability density
function p(r|r0, τ), given by Eq. (1.15). From this equation, it is clear that the
diffusion tensor field D is in fact a covariance matrix describing the translational
displacement of the diffusing molecules. Therefore, an ellipsoidal shape can be
associated with D, which represents the probabilistic iso-surface of this molecular
diffusion. Since D is a symmetric and positive definite second-rank tensor, a real
eigenvalue decomposition can be derived:

D = E · Λ · E−1 , (1.20)

with

E =
[
e1 e2 e3

]
and Λ =

⎡⎢⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤⎥⎦ (1.21)

defining the matrix of orthonormal eigenvectors ei and the diagonal matrix of
eigenvalues λi (with i = 1, 2, 3), respectively [56]. Consequently, the principal axes
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Figure 1.3. (a) Axial DW images Sk(r) of the human brain. Note the difference in

intensity values for different gradient directions gk. (b) The corresponding six unique

diffusion tensor components, as derived from Eq. (1.18).
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of the ellipsoid and their corresponding principal diffusion coefficients are given by
the eigenvectors ei and the eigenvalues λi of D, respectively (Fig. 1.4).

 [e2(r), 2(r)]

x

     y

     z

      r

o

D(r)

 [e3(r), 3(r)]
 [e1(r), 1(r)]

Figure 1.4. Ellipsoidal representation of the diffusion tensor field with a T1-weighted

background image. Note that every voxel (position r) of the data set is uniquely defined

by the eigenvectors ei(r) and eigenvalues λi(r) of the diffusion tensor D(r).

In general, the eigenvalues and corresponding eigenvectors are sorted with the
convention taken as follows: λ1 > λ2 > λ3 [57]. Consequently, the first eigenvector
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e1 (i.e., corresponding with λ1) describes the predominant diffusion direction and is
therefore also called the Principal Diffusion Vector (PDV) or Principal Diffusivity
(PD). Recall that this PDV is assumed to be tangential to the orientation of the
corresponding underlying fiber system. As shown in Fig. 1.5, this assumption
appears to be valid, especially for large WM fiber structures (i.e., ≥ 2-3 voxel units
in width). In addition, Fig. 1.5 elucidates the convenient color-encoding that can
be provided by the components of the PDV [58]. In this way, the predominant
diffusion direction can be directly related to a ‘Green’ (G), ‘Red’ (R), and ‘Blue’
(B) digital color triple. In literature, the convention in which the G, R, and, B
color components represent the directions perpendicular to the coronal, sagittal,
and axial 2D planes, respectively, is often applied, i.e.[‖e1x‖, ‖e1y‖, ‖e1z‖

]
=
[
G, R, B

]
=
[⊥ coronal,⊥ sagittal,⊥ axial

]
. (1.22)

This color-encoding further improves the visibility of different WM fiber bundles.

1.3.4.3 Scalar invariance measures

In addition to the directional information, as described in the previous section,
several scalar measures can be extracted from the diffusion tensor which can provide
supplementary information on the tissue microstructure, invariant to the applied
coordinate system of the acquisition framework.

Diffusion size A first measure is the Mean Diffusivity (MD), which characterizes
the overall mean-squared displacement of the water molecules. The MD can be
calculated as:

MD(r) ≡ MD =
Tr
[
D
]

3
=

Dxx + Dyy + Dzz

3
=

λ1 + λ2 + λ3

3
= 〈λ〉 , (1.23)

where ‘Tr’ denotes the trace of the diffusion tensor [Fig. 1.6 (a)]. Note that the
MD is an invariant, i.e. a quantity that is independent of the orientation of the
applied reference frame [6, 7]. Geometrically, the MD can be considered as the
average ellipsoid size.

Diffusion anisotropy During the last decade, several anisotropy measures have
been proposed (e.g., [5, 61–66]). While all these measures attempt to quantify the
degree of diffusion anisotropy, i.e. the amount directional diffusion dependence,
they differ in their response curves and noise characteristics [67, 68]. Geometrically,
the anisotropy can be considered as the eccentricity of the ellipsoid.
Among the most popular anisotropy indices, or at least the most prevalent, are
two measures that are based on the normalized variance of the eigenvalues: the
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e1 (r)

e1z (r)

e1y (r)
e1x (r)

e1 (r) = e1x (r) + e1y (r) + e1z (r)

[ ||e (r)|| ] = [ coronal , sagittal , axial]1x (r)|| , ||e1y (r)|| , ||e1z

+

cortico-spinal tracts corpus callosum (truncus)
pons

Figure 1.5. The principal diffusion vector (PDV) field, as described by the first eigen-

vector e1(r), with a T1-weighted coronal background image. To improve the visibility of

this PDV field, a color-encoding is provided reflecting the local direction of the PDV [58].

In addition, this color-encoding facilitates the distinction of different fiber structures. As

an example, the ‘truncus of the Corpus Callosum (CC)’, the ‘pons’, and the ‘cortico-spinal

tracts’ are indicated on the enlarged coronal slice.
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MD FA RA VR
(a) (b) (c) (d)

CL DL
D CP DP CS DS

= + +

(e)

[cL, cP, cS]cScPcL

(f) (g) (h) (i)

Figure 1.6. Scalar measures derived from the diffusion tensor D. In (a), the MD

is shown for an axial slice. (b), (c), and (d) represent the corresponding FA, RA, and

VR, respectively. The diffusion tensor decomposition into its geometric components, as

developed by Westin et al. [59, 60], is shown in (e). After normalization of the linear (f),

planar (g), and spherical (h) coordinates, a clear view of the different diffusion shapes,

i.e. ‘cigar’ (red), ‘disc’ (green), and ‘sphere’ (blue), can be obtained (i).
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Fractional Anisotropy (FA) and the Relative Anisotropy (RA), which are defined
as [4, 9, 69, 70]:

FA(r) ≡ FA =

√
3
[
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

]√
2(λ2

1 + λ2
2 + λ2

3)
(1.24)

and

RA(r) ≡ RA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

λ1 + λ2 + λ3
. (1.25)

Note that these measures range from zero (the isotropic case: λ1 = λ2 = λ3) to
√

2
for RA and

√
3 for FA (infinite anisotropy: e.g., λ1 �= 0 and λ2 = λ3 = 0) [Fig. 1.6

(b,c)]. In general, these measures, and the measures discussed below, are mostly
scaled a posteriori within the unit range [0, 1].
Another anisotropy measure is the Volume Ratio (VR) [4, 9]:

VR(r) ≡ VR =
λ1λ2λ3

〈λ〉3 (1.26)

and can be considered as the ratio of the tensor ellipsoid volume to the volume of
a sphere with the same MD [Fig. 1.6 (d)].
In the work of Westin et al., linear (cl), planar (cp), and spherical (cs) anisotropy
coefficients were introduced [59, 60], i.e.

cl =
λ1 − λ2

3〈λ〉 ; cp =
2(λ2 − λ3)

3〈λ〉 ; cs =
3λ3

3〈λ〉 . (1.27)

Other anisotropy indices introduced in literature are the ‘ultimate anisotropy’ mea-
sures [71], the ‘lattice index’ [70], and the Volume Fraction (VF) [70, 72]. Note that
several of these anisotropy measures are directly related2, for example VF = 1−VR

and FA2 = 3RA2/(2RA2 + 2) [67]. A report of diffusion anisotropy values charac-
terizing several structures of the CNS can be found in Refs. [73, 74].

Geometrical diffusion measures In the work of Westin et al., a decomposition
of the diffusion tensor is presented based on its symmetry properties [59, 60]. This
decomposition provides useful quantitative measures describing the geometry of
the diffusion ellipsoid and is elucidated next. Using Eq. (1.20), the diffusion tensor
D can generally be written as:

D = E · Λ · E−1 =
3∑

i=1

λi ei · eT
i . (1.28)

2It is important to keep in mind that all orientation-independent anisotropy indices are calcu-

lated from the same eigenvalues and thus are intrinsically related to each other [71].
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Depending on the interrelation of the eigenvalues λi of D, diffusion can be divided
into three different cases, i.e. linear diffusion (the cigar-shaped ellipsoid)

λ1  λ2 ≈ λ3 → D ≈ λ1 e1 · eT
1︸ ︷︷ ︸

DL

, (1.29)

planar diffusion (the disc-shaped ellipsoid)

λ1 ≈ λ2  λ3 → D ≈ λ1

2∑
i=1

ei · eT
i︸ ︷︷ ︸

DP

, (1.30)

and spherical diffusion (the sphere-shaped ellipsoid)

λ1 ≈ λ2 ≈ λ3 → D ≈ λ1

3∑
i=1

ei · eT
i︸ ︷︷ ︸

DS

. (1.31)

In general, the diffusion tensor D can be written as a linear combination of these
specific cases, i.e.

D = CLDL + CP DP + CSDS . (1.32)

The coefficients CL, CP , and CS in Eq. (1.32) represent the linear, planar, and
spherical components of D, respectively, and can be calculated by expanding D

using the new tensor basis elements {DL, DP , DS} [60]:

D =
3∑

i=1

λi ei · eT
i

=
[
λ1 − λ2

]︸ ︷︷ ︸
CL

e1 · eT
1︸ ︷︷ ︸

DL

+
[
λ2 − λ3

]︸ ︷︷ ︸
CP

2∑
i=1

ei · eT
i︸ ︷︷ ︸

DP

+ λ3︸︷︷︸
CS

3∑
i=1

ei · eT
i︸ ︷︷ ︸

DS

= CLDL + CP DP + CSDS . (1.33)

Note that in this new basis, D can be classified according to its geometry, for now,
the coordinates CL, CP , and CS describe how close the tensor is to the generic
cases of a cigar-, disc-, and sphere-shaped diffusion tensor [Fig. 1.6 (e)]. Since
CL, CP , and CS are calculated from the eigenvalues of the tensor, these geometric
shape measures are rotationally invariant.
To obtain quantitative measures that characterize the diffusion shape, the coeffi-
cients CL, CP , and CS should be normalized. By using λ1 as normalization factor,
a convenient color-encoding, analogous to Eq. (1.22), can be provided:

[cL, cP , cS ] =
[
CL

λ1
,
CP

λ1
,
CS

λ1

]
=
[
R, G, B

]
=
[
‘cigar’, ‘disc’, ‘sphere’

]
, (1.34)
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which is shown in Fig. 1.6 (f)→(i).

In Ref. [75], parametric and non-parametric statistical methods have been devel-
oped to provide additional powerful tools to analyse diffusion tensor data and the
corresponding derived scalar measures.

1.4 Visualization of diffusion tensor fields

The major difficulty for DTI visualization is the high information content of the dif-
fusion tensor field: in general, three Degrees Of Freedom (DOF) that describe the
position in space and six DOF that characterize the diffusion information. Conse-
quently, the big challenge in developing DTI visualization techniques is extracting
the maximum amount of information, which may be dependent on the application,
while preserving a clear overview.
It should be noted that in the engineering and computer science community, sev-
eral tensor field visualization techniques have been developed previously for other
research fields, such as material sciences and fluid dynamics (e.g., dielectric sus-
ceptibility, permittivity, strain and stress, conductivity, wave propagation, etc.),
providing useful ‘starter’ tools for DTI visualization [76–78].
During the last decade, several visualization techniques for DTI have been proposed
for extracting the relevant information contained in the diffusion tensor. In general,
these methods can be divided into scalar maps, color-encoded maps, and glyphs,
and are briefly reviewed in the following paragraphs.

1.4.1 Scalar maps

For many applications in DTI, it is often sufficient to extract a single scalar measure
from the diffusion tensor, like the eigenvalues, the FA, or the MD (see e.g., [79–
82]). These measures can simply be represented by a gray-valued or pseudo-color-
encoded map. A few examples of these scalar maps are shown in Fig. 1.6 (a)→(d).

1.4.2 Color-encoded maps

Color-encoded maps have been developed to provide higher information contents,
such as the predominant diffusion directions [45, 58, 83–88] and the geometric
shape characteristics [59, 60, 72]. These images are constructed by relating the ‘R’,
‘G’, and ‘B’ color components with the specific characteristics of interest [see Eqs.
(1.22)-(1.34) and Figs. 1.6 (i) and 1.7 (a,b)]. Note that the color images in 1.7 (a,b)
are scaled with the corresponding FA maps to further facilitate the differentiation
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Figure 1.7. Color-encoded FA maps according to the PDV [Eq. 1.22] (a) and the other

eigenvectors e2 and e3 (b) [86]. PDV color-encoded cuboids (c) and FA pseudo-color-

encoded ellipsoids with transparency rendering (d) for voxels with FA > 0.3 in the right

hemisphere of the human brain. In (e), a general overview of superquadrics is given.
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between WM fiber structures (bright colors) and gray matter (dark colors)3.

1.4.3 Glyphs

In general, a glyph can be considered as a symbolic object that describes the data
information by its color, shape, texture, transparency, position, etc. These symbols
can be lines, i.e. arrows without arrowheads due to the inherently bi-directional
diffusion symmetry (Fig. 1.5) [89], cuboids [Fig. 1.7 (c)] [90], cylinders [91, 92],
octahedra [93], ellipsoids [Figs. 1.4 and 1.7 (d)] [9, 70], and other objects, such
as superquadrics [Fig. 1.7 (e)] [94–96], which try to combine the optimal visibility
features of both cuboids and ellipsoids (i.e., smooth directions with sharp edges).
In the work of Laidlaw et al. and Kindlmann et al. [97, 98], highly specialized
rendering strategies have been developed, such as volume texture maps, to further
enhance the display of the diffusion properties.
As shown in Fig. 1.7, several aspects of diffusion can be emphasized by combining
glyphs with different color-encodings. In addition, transparency and threshold
settings can further improve the visibility of the relevant diffusion information.
A more detailed description of visualizing diffusion tensor fields can be found in
the work of Masutani et al. [99] and in the more recent survey of Vilanova et al.
[100].

1.5 DTI Artifacts

In this section, a brief overview of the main artifacts in DTI is presented.

1.5.1 Subject motion

In general, subject motion can be divided into physiological motion (e.g., eye move-
ments and pulsation of CSF) and ‘repositioning’ of the subject during data acqui-
sition (e.g., rotation of the head or a large twitch). This latter can cause ghost
artifacts or a spatial redistribution of the DW signal intensities. The geometric
distortions can be corrected for by applying a uniform phase transformation to the
entire image [101, 102]. In Refs. [103, 104], motion artifacts in DW images have
been corrected using navigator echoes. Physiological motion artifacts on the other
hand, can be mitigated by applying the inherently fast EPI-acquisition techniques
and using cardiac-gated approaches [105, 106].

3However, note that this is a general observation and that specific WM tract configurations

could also result in low FA values, and thus dark colors.
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1.5.2 Eddy current distortions

As described previously, for the acquisition of DTI data sets, gradient fields are
applied during the DW measurements. These large and rapidly switched gradients
induce ‘eddy currents’ in the electrically conductive framework of the MRI scanner.
The eddy currents produce additional undesirable magnetic fields which, in turn,
result in the following unwanted effects:

1. A difference between the prescribed and the actual b-value will occur, since it
is dependent on several gradient field properties which are now being modified
by the eddy currents.

2. A slowly decaying magnetic gradient field, induced by the eddy currents, will
cause geometrical distortions during readout of the DW images. This can
easily be observed by the presence of high-valued anisotropy ‘rims’ in the
phase-encode direction.

Both artifacts could adversely affect DTI studies. Quantitative parameters that are
calculated from the diffusion tensor depend on the assumption that several gradient
field parameters are constant during acquisition. This assumption is invalid for
uncompensated image distortions and can therefore lead to a significant systematic
deviation (bias) in the estimated diffusion parameters.
To compensate for these eddy current artifacts, correction schemes during acqui-
sition can be applied [107, 108]. At the post-processing level, coregistration tech-
niques have been used [48, 50, 91, 109–111] for correcting geometrical distortions
(see Fig. 1.8).
It is important to note that, in addition to the spatial correction, the intensity
values of the DW images should be adjusted [111]. Moreover, it has been shown
that the signal variance in the interpolated images (after coregistration) differs
significantly from the signal variance of the original images and should be taken into
account in parameter estimation analyses [112]. Other post-processing techniques
that correct for eddy current induced artifacts are calibration via water phantom
images and modeling of the geometric distortions [113–115].

1.5.3 Image noise

Noise in DW images can introduce a significant bias in the estimates of quantita-
tive diffusion parameters. Especially for higher diffusion weightings and reduced
acquisition times4, which reduce the Signal-to-Noise Ratio (SNR), it is difficult to
obtain reliable quantitative results.

4To remain clinically feasible, the effective acquisition time per DW measurement is smaller

for an higher number of diffusion directions.
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(a) (b)

Figure 1.8. Sagittal PDV color-encoded FA maps of the starling brain, calculated from

(a) the raw uncorrected and (b) the eddy current corrected DW data sets. In this example,

the technique described in Ref. [111] was applied. As indicated by the arrowheads, the

unwanted high FA ‘rims’ in (a) are no longer present in the corrected image (b).

It has been shown that noise in the DW images introduces errors in the estimation
and sorting of the diffusion tensor eigenvalues and the derived anisotropy measures
[116–122]. In addition, it has been described in the work of Pierpaoli et al. that
image noise overestimates the anisotropy of both isotropic and anisotropic diffusion
environments [70].

The simplest way to reduce the image noise is by employing more acquisition
averages, diffusion gradient directions, or a combination of these. Regardless of the
strategy, the scan time is always proportionally lengthened with an increased SNR.

A potential alternative for acquiring additional images is to apply post-processing
noise-removal filtering and regularization techniques [91, 119, 123–134]. However,
due to the low-pass nature of most smoothing filters, the SNR enhancement is
often accompanied by spatial blurring, which may cause loss of fine structures and
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exacerbate the PVE at tissue borders. Moreover, it has been shown in the work
of Jones et al., that in voxel based morphometry analyses, the choice of filter size
(within a commonly applied range) significantly affects the outcome of statistical
inferences [135]. Therefore, depending on the application, noise-removal filtering
should be performed with great care.

1.5.4 Susceptibility artifacts

At tissue-air interfaces like regions adjacent to the sinuses, large discontinuities in
magnetic susceptibility can occur, producing additional local magnetic field gra-
dients [136, 137]. These field gradients cause geometrical distortions in the DW
images and, in addition, make the b-values spatially dependent. Note that on
higher field strength magnets (3 Tesla and above), susceptibility artifacts become
more severe. The sensitivity encoding (SENSE) approach, developed by Bammer
et al., appears to mitigate these artifacts [138]. In the work of Andersson et al.,
the distortions are minimized by acquiring two images for each diffusion gradient,
which can provide information of the underlying displacement field [139].

A general survey discussing the aforementioned DTI artifacts in further detail can
be found in an excellent review of Basser et al. [5].

1.6 Limitations

It is known that ambiguous results are obtained when DTI is used to study regions
in which WM fibers cross or multiple fibers merge (e.g., Refs. [140, 141]). In such
regions, it can be shown that the second-rank diffusion tensor model is incapable of
describing multiple fiber orientations within an individual voxel [142]. The acquired
signal of a single voxel can be considered as the powder-averaging of the differently
oriented fiber structures. This effect, know as the Partial Volume Effect (PVE), is
more apparent for small structures (in the order of a single voxel) or when using a
coarse resolution, i.e. a large voxel size. Therefore, it is important to keep in mind
that DTI is only valid for unidirectional fiber bundles that are large with respect
to the voxel size.
To resolve the issue of multiple fiber orientations, a number of High-Angular-
Resolution Diffusion (HARD) techniques have been proposed, such as multiple-
component DTI [143], High-Angular-Resolution Diffusion-Weighted Imaging
(HARDI) [144, 145], Q-Ball Imaging (QBI) [146–148], Diffusion Spectrum Imaging
(DSI) [149, 150], Persistent Angular Structure (PAS) reconstruction [151], Gener-
alized Diffusion Tensor Imaging (GDTI) [152–155], spherical deconvolution using
HARDI [156], and a framework that combines hindered and restricted models of
water diffusion [157–159]. Although these recently developed techniques might
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provide more accurate and unambiguous results, long acquisition times or strong
demands on the magnetic field gradient hardware still impede practical application
in a clinical setting.

1.7 Applications

It is important to note that DTI is a truly quantitative imaging technique that can
provide physical characteristics of biological tissue. Therefore, these characteris-
tics can be objectively compared between different research centers and hospitals,
which is indispensable for the further development of numerous DTI findings. In
addition, DTI appeals to one’s imagination: e.g., in the work of Schmithorst et al.,
differences in WM architecture between musicians and non-musicians were observed
[160]. Findings like these demonstrate the sensitivity of DTI for differentiating pop-
ulations with specific features. The objective of the following sections is to briefly
summarize the different fields of DTI research and clinical applications. Excellent
reviews describing several of these research fields in detail can be found in Refs.
[12, 13, 65, 161–165].

1.7.1 Animal studies

A large number of DTI animal studies have been performed providing exciting new
insights in the fiber architecture of the bovine tongue [93], the spinal cord and the
brain of both the mouse and the rat [84, 98, 166–179], the cat visual cortex [180],
the primate brain (macaque, baboon) [181, 182], the myocardial architecture in the
heart of the sheep and the swine [183, 184], and the songbird brain [185].
In the work of De Groof et al., the potentials of in vivo DTI were explored to visu-
alize the major connections of the song control system in the brain of the starling
(sturnus vulgaris) [185]. Several brain subdivisions and tract connections between
important song control nuclei were observed, demonstrating the potential of DTI
to investigate in vivo and non-invasively the neuroanatomy of the songbird brain
(Fig. 1.9). It is expected that DTI will play an important role in the investigation
of brain plasticity such as the seasonal changes in the structure and connections of
these song control nuclei [186]. In addition, DTI can be considered as a comple-
mentary tool to Manganese Enhanced MRI (MEMRI) and functional MRI (fMRI)
for studying the songbird brain [187–189].

1.7.2 Human studies

The amount of human research studies dealing with DTI has been soaring during
the last decade, taking an important place within the burgeoning field of neu-
roimaging.
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(1) 

(2) 
(3) 

(4) 

(1) 

(2) 

(b)(a)

(1) robust nucleus of the arcopallium; (2) cerebellum; (3) commisura anterior; (4) lamina pallio-subpallialis 

Figure 1.9. Coronal (a) and sagittal (b) FA map (with PDV color-encoding as indi-

cated) of the starling brain. The dashed lines in (a) and (b) indicate the position of the

cross-sectional maps in (b) and (a), respectively. In addition, several brain structures are

depicted.

Although the exact mechanism for diffusion anisotropy is not well understood, it is
clear that this anisotropy directly reflects the presence of spatially oriented struc-
tures in tissue. In addition, the degree of anisotropy, as measured with the various
anisotropy indices which have been proposed in the literature, can somewhat be
linked to the quality and the density of oriented structures in tissue. Therefore, it is
assumed that a change in tissue orientation patterns inside a voxel would probably
result in a change in the degree of anisotropy. This assumption has been supported
by many clinical studies carried out on patients with WM diseases, in which DTI
has shown to detect abnormalities at an early stage or to characterize them in
terms of WM fiber integrity [12]. In the following paragraphs, several promising
DTI applications are briefly summarized.

The normal brain DTI has already proven to be useful in the study of aging,
[162, 165, 190–198], lateralization [87, 199–203], cognitive performance and reading
ability [204–207], structure-function relation [208–210], and brain development in
premature infants, ‘normal’ infants, children, adolescents, and adults [163, 211–
220]. In addition, several WM fiber structures have been investigated in detail,
such as the gyri [221, 222], the pyramidal tracts [223], the cranial nerves [224], and
the thalamic nuclei [225].

Brain pathology DTI has been used to demonstrate subtle abnormalities in a
variety of diseases and is currently becoming part of many routine clinical proto-
cols. Several types of brain disorders have recently been investigated with DTI,
such as schizophrenia [161, 200, 226–240], multiple sclerosis and amyotrophic lateral
sclerosis [241–251], epilepsy [252–258], cognitive impairment and Alzheimer’s dis-
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ease [259–264], COACH syndrome [265], Attention-Deficit Hyperactivity Disorder
(ADHD) [266], fragile X syndrome [81], autism [267], velocardiofacial syndrome
[268, 269], bipolar spectrum illnesses [270], Leber’s hereditary optic neuropathy
[271], acute disseminated encephalomyelitis [272], Niemann-Pick Type C disease
[273], Rett syndrome [274], Cerebral Autosomal Dominant Arteriopathy with Sub-
cortical Infarcts and Leukoencephalopathy (CADASIL) [275, 276], Parkinson [277],
pre-symptomatic Huntingtons disease [278], Wallerian degeneration [279, 280], op-
tic neuritis [281], hemiparesis [282], and focal cortical dysplasia [283].
The application of DTI to infer WM characteristics has been reported in several
other studies as well, such as presurgical planning for brain tumors [284–294],
stroke and ischemic lesions [164, 295–301], Human Immunodeficiency Virus (HIV)
[302–304], chronic alcoholism [194, 305, 306], hypertension [307], irradiation and
chemotherapy [308, 309], marijuana smoking and cocaine dependence [310, 311],
chronic head injury [312], blindness [313], postmortem formalin-fixed brain [314],
cell density and proliferation activity of glioblastomas [315]. In addition, DTI may
provide additional findings of central nervous system anomalies beyond those seen
with conventional MRI [316]. An example of such a structural anomaly, i.e. callosal
agenesis, is shown in Fig 1.10 (a). Note the difference with a normal brain [Fig.
1.10(b)] in the midsagittal region.

Body Although respiratory motion further complicates the DW data acquisi-
tions, the potential of DTI to characterize tissue outside the brain has been shown
as well, such as the heart [90, 317–320], the spinal cord [321, 322], peripheral ner-
vous system [323–325], muscle tissue [326], the trabecular bone network [327, 328],
and the eye lens [329].
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Figure 1.10. Axial FA maps (with PDV color-encoding as indicated) of the human brain.

In (a) callosal agenesis can be observed, i.e. the missing of the corpus callosum (data

provided by courtesy of Prof. Dr. P. Parizel). As indicated by the white arrowheads, a

large difference in the midsagittal area can be observed between this rare structural anomaly

(a) and the normal brain (b).
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Chapter 2

MR fiber tractography

Parts of the work in this chapter have been published in
G. De Groof, M. Verhoye, V. Van Meir, I. Tindemans, A. Leemans, and A. Van
der Linden, “In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal
pathways in songbirds”, NeuroImage, Vol. 29, Nr. 3, p. 754–763, 2006.

2.1 Abstract

MR Fiber Tractography (FT), also referred to as fiber tracking or tract tracing,
can be defined as the virtual reconstruction of the 3D fiber architecture. This tech-
nique is based on the assumption that it can retrieve the spatial information of the
underlying fiber network, using the available information of the corresponding MR
diffusion data. FT provides exciting new opportunities to study several architec-
tural characteristics of fibrous tissue in vivo and non-invasively, and has generated
much enthusiasm, resulting in the development of a large number of FT algorithms.
In this chapter, the basic principles of tractography are reviewed. Different track-
ing methods with varying degrees of complexity are described and their potential
strengths and weaknesses are discussed. Finally, several examples are presented to
demonstrate the importance of FT in a clinical and biomedical setting.

2.2 Introduction

As described in the previous chapter, it is generally assumed that the measured dif-
fusion anisotropy reflects the presence of spatially oriented micro-structures (e.g.,
myocardial tissue or neural fibers in the CNS), for here, the mobility of the diffusion
particles is mainly determined by the fiber pathway [1]. Therefore, by traversing
continuous pathways that follow this anisotropic diffusion, both spatial and orien-
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tational information of these fiber pathways and subsequently the anatomical brain
connectivity can be reconstructed [2]. This in vivo virtual 3D reconstruction of the
fibrous architecture in biological tissue using MR diffusion data is called MR FT1,
and was mainly pioneered by Basser, Mori, and Jones [4–15].
With the advent of DTI, a rigorous formulation of the full 3D Gaussian diffusion
process was established providing not only a quantitative measure for diffusion
anisotropy, but also the corresponding predominant directions of water diffusion
[16, 17]. This framework has led to a proliferation of FT algorithms with varying
degrees of complexity and emphasizing different aspects to extricate the struc-
tural connectivity [4–15, 18–110]. Although the diversity of approaches in this
burgeoning field restrains from self-evidently categorizing the state-of-the-art FT
techniques, a general classification has been presented previously in Refs. [111–
113].

2.3 Principals of MR fiber tractography

2.3.1 Basic concept

Conceptually, MR FT can be compared to the reconstruction of fluid streamlines
from discretely sampled velocity field data [114]. But instead of following fluid
pathways from vector data, FT reconstructs fiber tracts from diffusion MR data.
In DTI, these data sets are discretely sampled diffusion tensor fields D(r), i.e.
each voxel at position r is characterized by the second-rank diffusion tensor D

which represents the local 3D anisotropic Gaussian diffusion process. When applied
specifically to DTI data sets, FT is referred to as Diffusion Tensor Tractography
(DTT) [115].
Assuming that the PDV field e1(r) corresponding to D(r) is aligned with the
direction of the WM fiber bundle at position r, DTT can be performed based on
this PDV field [Fig. 2.1 (a)]. Note that in this approach, the diffusion tensor
field is approximated by a vector field, omitting information that is contained in
the remaining DOF of the diffusion tensor field. Moreover, notice in Fig. 2.1 (a)
that only the orientation and not the direction of e1(r) is defined, for diffusion is
inherently a center-symmetric phenomenon, i.e. both e1(r) and −e1(r) represent
the predominant diffusion direction. Therefore, each individual fiber pathway can
be computed by propagating a line both anterograde, i.e. e1(r), and retrograde,
i.e. −e1(r), from an initial seed point r0 [Fig. 2.1 (b)] [9–11].
The process of connecting consecutive voxels is iterated many times until certain
stopping criteria are met. For example, to ensure that the tracts would not erro-
neously pass into areas of very low anisotropy, such as CSF or gray matter, the

1Note that within this context, the terminology ‘MR tractography’ was already described in

the work of Kinosada et al. before the DTI framework was developed [3].
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-e1(r0)

e1(r0)

tract pathway 

o

r0

e1(r)

(a) (b)

(c) (d)

Figure 2.1. Basically, FT can be obtained by connecting each voxel to the adjacent one

according to its corresponding predominant diffusion direction field e1(r). This concept is

indicated by the white dots on the red lines in (a). The voxel at position r0 that initiates the

FT procedure (bidirectionally) is called the seed point (b). By applying FT, the diffusion

tensor field in the brain can be represented more clearly using lines (or tubes, iso-surfaces,

etc.) that ‘connect’ different brain regions. The diffusion tensor field of the corticospinal

pathways and the corresponding FT result are shown in (c) and (d), respectively, with

PDV color-encoding as indicated by the arrows. Note that the width of the cylindrical

tubes in (d) does not represent any physical width, but is only used to enhance the 3D

visibility.
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tracking process is stopped when a diffusion anisotropy measure falls below a fixed
threshold (e.g., FA � 0.15) [9, 15]. In addition, it has been proposed that only a
limited amount of curvature and/or torsion between consecutive segments should
be tolerated, further reducing the number of spurious tracts2 [6, 15]. In general,
te FT procedure is performed for a large number of seed points {r0} that define a
specific Region Of Interest (ROI) [Fig. 2.1 (c,d)].

2.3.2 Regularized and continuous DTI data

Due to the MR acquisition process, the diffusion tensor field is only available at
discrete points, i.e. the voxel positions. Although initially performed on these
discretely sampled diffusion tensor data (e.g., Refs. [9–11, 14, 15, 19, 20, 28–30,
36]), it became apparent that the tracking procedure often deviated from the true
fiber orientation, for here, the choice of direction is limited to the 26 neighboring
voxels [9]. This problem can be avoided when tracking a continuous rather than a
discrete diffusion tensor field and can be accomplished, for instance, by applying
(linear) interpolation techniques and the fitting of Lagrange polynomials or B-
splines [4, 6, 39, 116, 117]. In addition, a large number of methods have been
developed to further regularize and smooth the diffusion tensor field which could
improve the FT procedure [24–27, 69, 118–124] (see Fig. 2.2).

2.4 Fiber connectivity reconstruction methods

As mentioned previously, a large number of papers have been published on the
development of new FT methodologies. In this section, FT techniques are cat-
egorized into streamline-based, front propagation, and (pseudo-)probabilistic ap-
proaches. Several of these FT methods are described and their potential strengths
and weaknesses are discussed.

2.4.1 Streamline DTT

The first mathematically founded FT framework was proposed by Basser et al., in
which he proposed that a WM fiber tract can be represented as a 3D space curve
parameterized by the arc length s of the trajectory [4–7]. In this context, the tract
pathway r(s) = [x(s) y(s) z(s)]T can be characterized by the Frénet equation, i.e.

dr(s)
ds

= t(s) , (2.1)

2Note, however, that this consideration is based on a priori information of the WM fiber tract

geometry.
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(a) raw data (b) regularized data 

Figure 2.2. A sagittal FA map with ellipsoids and pyramidal fiber tracts using (a) the

raw DTI data and (b) the regularized data, which was calculated using a modified version

of the adaptive anisotropic noise filtering technique described in Ref. [125]. As indicated

by the encircled region, FT is ameliorated in the regularized data. However, if too much

regularization or smoothing is applied, the likelihood of creating ‘phantom’ tracts is very

high.

where t(s) represents the unit vector tangential to r(s) at arc length s. Assuming
that the PDV field e1(r) corresponding to D(r) is aligned with the tangential
direction of the WM fiber bundle, Eq. (2.1) can be rewritten as

dr(s)
ds

= e1[r(s)] (2.2)

or
r(s) =

∫
s0

e1[r(s)]ds , (2.3)

where r(s = s0) = r0 represents the seed point.

2.4.1.1 Euler’s method

The most trivial way to perform the numerical integration of Eq. (2.3) is by starting
the DTT procedure at the seed point r0, which is assumed to be located on the
putative fiber tract, calculating the corresponding PDV, i.e. e1(r0), and following
that direction for a short predefined distance Δ (i.e., the ‘step size’) to obtain the
next point r1 = r0 +e1(r0)Δ on the fiber pathway. With this procedure, known as
Euler’s method, the fiber pathway can be reconstructed by iteratively performing
the aforementioned steps, i.e.

ri+1 = ri + e1(ri)Δ . (2.4)
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This scheme has an associated error of order O{Δ2} and is somewhat heuristically
implemented in Refs. [22, 31, 32, 37, 42, 43, 46, 47, 49, 115, 126]. Note that with
this streamline procedure (and the streamline methods discussed below), a single
fiber tract pathway can be described by a sampled space curve α, i.e. an N × 3-
matrix where each row denotes a coordinate ri. Consequently, a fiber tractography
result obtained from a set of seed points can then be represented by the set {α}.
As previously mentioned, there is the problem of eigenvector ambiguity, i.e. both
e1 and −e1 represent the first eigenvector of D. This can be resolved by assuming
that the integral curve does not turn more than 90◦ between consecutive integration
steps. This can be checked by determining the sign of the dot product between
each intermediate tangent vector ri − ri−1 and eigenvector e1(ri), i.e.

if (ri − ri−1) · e1(ri) < 0 then e1(ri) → −e1(ri) . (2.5)

Note, however, that from each seed point, a tract must propagate in both forward
and backward directions [Fig. 2.1 (b)].

2.4.1.2 Runge-Kutta integration

It is important to note that Euler’s method can suffer substantially from a large
accumulating error propagation, especially for larger step sizes Δ (Fig. 2.3).
Therefore, higher-order numerical integration schemes are preferred, such as the

voxel size = 2 2 2 mm3

 = 0.1 mm
 = 0.5 mm
 = 1 mm  
 = 2 mm  ROI

ROI

(a) (b) (c)

Figure 2.3. In these (a) sagittal, (b) coronal, and (c) axial views (T1-weighted maps

fused with PDV color-encoded FA maps), the sensitivity of the fiber trajectory in Euler’s

method with respect to the choice of the step size Δ is clearly visible. Additionally, in (b)

and (c), the arrowhead indicates a tract bifurcation. Note that in such regions, the PDV

is not unambiguously determined, further affecting the difference in spatial organization

of the fiber trajectory.
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second-order Runge-Kutta (RK2) integration scheme [127], i.e.

ri+1 = ri + e1

(
ri +

Δ
2

e1(ri)
)

Δ , (2.6)

which has error propagation on the order of O{Δ3}, or the fourth-order Runge-
Kutta (RK4) scheme [127], i.e.

ri+1 = ri +
k1

6
+

k2

3
+

k3

3
+

k4

6
, (2.7)

with

k1 = e1(ri)Δ

k2 = e1

(
ri +

k1

2

)
Δ

k3 = e1

(
ri +

k2

2

)
Δ

k4 = e1(ri + k3)Δ . (2.8)

The RK4 scheme has an associated error of order O{Δ5} and is known to be a
good candidate for the numerical solution of Eq. (2.3). In addition, it is possible
to employ adaptive step sizing to further control the amount of error introduced in
each integration step. The robust RK4 integration method is implemented in sev-
eral streamline FT algorithms (with or without additional heuristic modifications)
and is capable of accurately integrating tract streamlines with large step size Δ
[6, 18, 21, 23, 39, 50, 102, 128–131]. Note, however, that for equal step size, the
RK4 approach is approximately a factor 4 slower than Euler’s method.

The aforementioned integration schemes can be further regularized using a vari-
ational framework for global energy minimization, as described in Refs. [27, 68–
71, 74, 123].

2.4.1.3 Tensor deflection

An alternative approach for determining the local tract direction is to use the entire
diffusion tensor D to estimate the propagation direction of the trajectory [33], i.e.

ri+1 = ri + Δ
D(ri) · (ri − ri−1)∥∥D(ri) · (ri − ri−1)

∥∥ . (2.9)

This specific streamline algorithm is referred to as tensorline propagation [33] or
tensor deflection (TEND) [34, 35, 95, 131]. In Eq. (2.9), the dot product with
D deflects the propagation direction towards the major eigenvector direction, but
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limits the curvature of the deflection, resulting in a smoother tract reconstruction.
For instance, when the diffusion distribution within a voxel of interest is planar,
suggesting a high Intra-Voxel Orientational Heterogeneity (IVOH), the propagation
direction is determined by the superposition of the first and second eigenvector. In
the highly linear situation, the TEND approach and the ‘regular’ streamline method
result in a similar tract propagation direction (Fig. 2.4).

CL > CP, CS CL >> CP, CS CL >>> CP, CSri - ri-1

CL = CP = 0 

ri

e1(ri)

D(ri) (ri - ri-1)
CP > CL, CS||D(ri) (ri - ri-1)||

CP >> CL, CS CP >>> CL, CS

Figure 2.4. Comparison between the propagation directions of TEND and ‘regular’

streamline FT . Notice that the propagation direction for streamline FT (blue arrows) is

independent of the diffusion profile. For the TEND approach (green arrows), increasing the

linearity of the diffusion tensor profile, increases the deflection of the previous propagation

direction ri −ri−1 (black arrows) towards the direction of e1(ri) (top row). In the case of

an increase of the diffusion planarity, this propagation direction is deflected more towards

the plane spanned by the first two eigenvectors (bottom row). In the spherical situation,

the propagation direction is not deflected (left).

A similar approach uses the diffusion measures based on the diffusion ellipsoid’s
shape, differentiating between prolate, oblate and spherical fiber distributions [40,
41, 98]. Depending on these geometric measures, the propagation direction is
calculated as a user-defined weighted sum of all three diffusion eigenvectors, i.e.
the diffusion tensor D = D(ri) in Eq. (2.9) is then generally defined as

D =
3∑

i=1

fi(λi)ei · eT
i , (2.10)

where the functions fj can, for example, serve as threshold operators, i.e.

D =

⎧⎨⎩
CLDL if CL > CP , CS

CP DP if CP > CL, CS

CSDS if CS > CL, CP

. (2.11)
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In Eq. (2.11), the coefficients CL, CP , CS and tensor basis elements DL,DP ,DS

are calculated according to Eq. (1.33). This propagation approach has been further
regularized by minimizing a tract cost model, as described in Ref. [73].

2.4.1.4 Tractography termination thresholds

During the last decade, a large number of FT termination thresholds have been
proposed, characterizing different aspects of the underlying fiber tissue (see e.g.,
Ref. [111]). The two most important threshold criteria are described next.

Curvature threshold Assuming that WM tracts do not bend sharply within
the order of the voxel size, the integration procedure is terminated if the angle θ

between consecutive segments exceeds a specific threshold θt, i.e. for a point rN ,
tracking is stopped if

θ =
∣∣arccos[(rN − rN−1) · (rN−1 − rN−2)]

∣∣ > θt . (2.12)

In literature, a widely accepted range of values for human brain data is in the
neighborhood of θt � 10◦ − 45◦ for a step size Δ � 0.5mm − 2mm.
It is important to note that changing the step size affects the constraint of the local
physical tract curvature κ. Therefore, it is preferred to apply an explicit curvature
threshold κt instead of θt [6]. Consequently, the tracking procedure is terminated
if

κ =
sin θ

Δsin
(

π−θ
2

) > κt , (2.13)

Similarly, torsion can be incorporated as well to further refine the constraints im-
posed on the geometrical properties of fiber trajectories.

Anisotropy threshold A second stopping criterium to terminate the propaga-
tion of a streamline tract is insufficient diffusion anisotropy. In regions of homo-
geneous, highly anisotropic linear diffusion, the PDV followed by the streamline
method is considered to be a good approximation of the local tract structure. On
the other hand, the local tract orientational homogeneity for regions that exhibit
low non-linear (or highly planar) diffusion anisotropy precludes a reliable assess-
ment of the PDV. Therefore, the validity of the orientational information, as de-
scribed by the diffusion tensor model, can be inferred through the corresponding
linear diffusion anisotropy. For the FA measure, the tracking process is generally
terminated for values of FA � 0.15. Note that high FA values can also stem from
highly planar configurations, in which the PDV is not unambiguously determined.
Therefore, the linear anisotropy coefficient cl, as defined in Eq. (1.27), is often
used instead [41].
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2.4.1.5 Limitations

It is essential to understand the limitations of the streamline DTT procedure. It
has been shown that each calculated PDV is associated with an uncertainty due
to, e.g. the PVE and image noise [96, 110, 131–134]. With a typical resolution
in human DTI data of approximately 2 × 2 × 2 mm3, which is several orders of
magnitude larger than the diameter of a single axon, it is important to realize that
the PDV is a voxel-averaged quantity. Therefore, the PDV does not necessarily
correspond to the main fiber direction, particularly when bundles intersect, branch
or merge [135] [see Fig. 2.3 (b) and (c)].
In regions that exhibit a high IVOH, tensor field singularities occur resulting in
an indistinct and unreliable PDV, as described in Refs. [96, 136, 137]. Conse-
quently, spurious fiber trajectories may be reconstructed if the tracking algorithm
incorporates only the PDV for determining the propagation direction and has been
previously proclaimed as one of the main problems for fiber tracking based on DTI
data [6, 9, 20, 138]. Moreover, it is known that DTI cannot differentiate between
specific tract configurations, such as fiber kissing and oblique fiber crossing. There-
fore, without additional prior knowledge, no tracking algorithm is able to resolve
these situations correctly.
Several DTT approaches have been proposed to overcome some of the aforemen-
tioned limitations that were encountered using streamline FT and are described
next.

2.4.2 Front evolution approaches

Another way to perform tractography is the use of so-called Fast Marching (FM)
methods derived from level set theory [139–141]. In contrast to line propagation
algorithms, these techniques model the evolution of an advancing 3D front through
the WM tracts by following the local directionality provided by the diffusion tensor
field.

2.4.2.1 Fast marching tractography

A FT technique based on the FM algorithm of Tsitsiklis was first developed by
Parker et al. [51, 52, 54, 142]. In this FT approach, referred to as Fast Marching
Tractography (FMT), a 3D front was evolved with a speed function proportional to
the projection of the front normal to the PDV (Fig. 2.5). A discrete approximation
of the front direction was used to drive the evolution through the PDV field, since
the original FM method does not correctly handle propagation in oriented domains.
The major benefit of the FMT technique is the access to a voxel-based connectivity
metric which allows one to rank the resulting connections of the voxels to the
seed area. In addition, this connectivity metric can be used to color-code the
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Figure 2.5. The 3D front evolution of the callosal fibers using a FM front propaga-

tion technique, which is based on the work of Parker et al. [54]. The images represent

snapshots of the front propagation in time with increasing time as indicated by the block

arrows. In this example, the seed points were placed in the midsagittal area of the corpus

callosum. The background maps represent the PDV color-encoded FA maps, embedded in

a T1 context.
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reconstructed fiber bundle corresponding to its likelihood or can serve as a threshold
criterium to abort fiber reconstruction.
The reliability of the FMT approach was initially verified in the macaque brain
and human spinal cord [53, 55]. The accuracy of the FMT algorithm was also
investigated in human DTI data, where anterior callosal fibers, the optic radiation,
the pyramidal tracts, and the parahippocampal gyrus were reconstructed [56, 58].
Additionally, a reproducibility study, investigating the same three pathways, was
performed in the work of Ciccarelli et al. [57].

2.4.2.2 Further developments

An intrinsic property of the FM method is its discrete front evolution, i.e. the pos-
sible propagation directions are limited by the number of neighboring voxels, and
causes discretization errors. In the work of Tournier et al., an adaptive evolution
grid is proposed to overcome this obstacle [66].
In the work of O’Donnell et al., two new approaches were proposed [72]. The
first approach models the tractography problem as a heat diffusion equation and
is based on the previous work of Batchelor et al. and Gembris et al. [75, 76, 88].
The second approach casts the problem in a Riemannian framework, considering
each tensor as a local warping of space, and finding geodesic paths in this space.
Campbell et al. proposed a new speed function to improve the propagation of
the 3D front, based on the Root-Mean-Square (RMS) of the diffusion distance
along the normal of the front [59, 60]. This speed function is indicative of the
likelihood that a tract exists along the direction of propagation and allows for
propagation through voxels where tracts cross or branch. Additionally, Campbell
et al. developed a level set approach for determining connectivity using both tensor
and HARD acquisitions [61, 62, 143]. There, a wavefront was propagated using the
fiber Orientation Distribution Function (ODF) derived from the spin displacement
probability function.
Another approach is proposed in the work of Kang et al. [105]. This technique
is based on successive anisotropic diffusion simulations, which are utilized to con-
struct three dimensional diffusion fronts. There, the fiber pathways are determined
by evaluating the distance and orientation from the fronts to their corresponding
diffusion seeds.
Other developments in front-evolution based FT approaches are the description
of the 3D front propagation speed function in terms of the similarity of adjacent
voxels within a tract [64], the incorporation of an anisotropic distance function for
front evolution in which the discrete approximation of front normal is not required
[63, 99, 103, 104], the integration of prior knowledge and a global optimization
criteria [65], and the application of segmentation-based and directional correlation-
based region growing techniques [106–108, 144–147].
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2.4.3 Probabilistic approaches

With some abuse of terminology, a large number of ‘probabilistic’, ‘stochastic’,
and ‘statistical’ FT methods have been proposed in both a streamline and a front-
propagation based setting. Several heuristic measures have been defined that pro-
vide a pseudo-probabilistic index or likelihood for assessing fiber connectivity (e.g.,
Refs. [67, 83–87, 97]). Nevertheless, these techniques provide a certain relative like-
lihood which is important to indicate the reliability of different pathways within
a tractography result (Fig. 2.6). In this context, several other approaches have

T1

FA

ROI
D

Figure 2.6. An example of a pseudo-probabilistic fiber tractography result. For each

of the four seed points (as indicated by the ROI) a group of 100 tracts were generated

using the ‘random vector’ (RAVE) approach [83]. A pseudo-probabilistic measure Dα

is calculated for each tract α describing the degree of fiber trajectory significance. More

specifically, for each tract α, Dα represents the median number of times an image voxel

is intersected by all tracts {α}, where the median is calculated over only those voxels that

are intersected by α.
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been proposed to reconstruct fiber pathways or infer brain connectivity, such as
random walk [89, 90, 109], stochastic labeling [38], linear state space models [48],
and sequential importance sampling and resampling [93, 94].
In the work of Behrens et al., a probabilistic framework is proposed for estimating
the global connectivity, i.e. the probability of the existence of a connection between
two points in the brain [79–82]. The Probability Density Functions (PDFs) that
describe this global connectivity are estimated using Markov Chain Monte Carlo
(MCMC) sampling techniques. The benefit of this Bayesian approach is that it
allows one to determine the uncertainty of parameters that define the local fiber
direction. A similar statistical framework is proposed in Refs. [77, 78]. There, a
path integral approach is used for finding the optimal pathway that connects two
points in the brain.
In the work of Jones et al. [91, 92, 100, 101, 110] and Lazar et al. [95, 96], a boot-
strap analysis of the fiber trajectories is proposed. This non-parametric statistical
approach enables one to determine the uncertainty of specific tract parameters
without the need of prior knowledge of the corresponding PDFs. In addition, this
bootstrap approach allows one to use any deterministic tractography algorithm
in a probabilistic fashion. Furthermore, all sources of variability (including those
that cannot be modeled, such as physiologic noise and hardware instabilities) are
inherently taken into account.

2.5 FT visualization techniques

The objective of any visualization technique is to provide a clear and representative
user-friendly view of the data information of interest. For DTI, this task is highly
challenging due to its multivariate and 3D spatial nature. With the advent of FT
techniques, additional visualization tools are required to provide further aspects
of the underlying DTI data, such as the brain connectivity and its corresponding
statistical significance. Several FT visualization techniques are discussed in the
following sections.

2.5.1 Streamlines, streamtubes and hyperstreamlines

The most straightforward way to visualize fiber tracts is the streamline represen-
tation. This visualization approach, in which sampled space curves are drawn, has
a low computational complexity, which makes it ideal for a fast and interactive
exploration of the spatial organization of fiber pathways. For each sample point,
a specific local tract characteristic can be assigned using color-encoding schemes
providing additional information of the underlying tissue [Fig. 2.7 (a,c) and Fig.
2.8 (a,c)] [148–150].
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(a) (b) 

[cL, cP, cS]

(c) (d) 

Figure 2.7. Streamlines (a,c) and streamtubes (b,d) with color-encoding according to

the PDV (a,b) and the geometrical shape measures (c,d).

An alternative to streamlines are streamtubes, i.e. cylindrical 3D tubes which are
generated by sweeping a circle along the corresponding streamline. By rendering
the streamtube as a lit surface using shading, better directional information may
be conveyed to the viewer than with streamlines (e.g., Ref. [21]). Important to
note is that the streamtube width does not represent a real physical fiber tract
width and is only used to provide a better display quality [Fig. 2.7 (b,d) and Fig.
2.8 (b,d)].
An extension to the streamtube is the hyperstreamline, which in general can be
considered as a 3D tube-like structure with its main axis as defined by the corre-
sponding streamline, but with a variable tube width and shape [e.g., see Fig. 2.9
(a)] [151]. Zang et al. first used these hyperstreamlines for DTI data, in which
they defined the local cross-sectional shape perpendicular to the axis as an ellipse
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FA 10

(a) (b) 

lengthmin max

(c) (d) 

Figure 2.8. Streamlines (a,c) and streamtubes (b,d) with color-encoding according to

the FA (a,b) and the tract length (c,d).

with axes proportional to λ2e2 and λ3e3 [45, 152]. In other approaches, the local
tract shape is related to the fiber density or the degree of statistical confidence of,
for instance, the predominant diffusion direction [92, 100–102, 110, 153].

2.5.2 Streamsurfaces and volume rendering

In regions with a high IVOH, such as fiber crossing, kissing, and branching con-
figurations, planar diffusion anisotropy is often observed, i.e. a relatively high
anisotropy in combination with a non-univocally determined PDV. A proposed by
Zhang et al., these configurations can be visualized more clearly using streamsur-
faces [45, 152]. In the work of Vilanova et al., a hybrid FT visualization approach is
developed combining both streamline and streamsurface methods in a more general
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[cL, cP, cS]

(a)

high

fiber density 

low

(b) (c)

Figure 2.9. (a) An example of hyperstreamlines with tube width proportional to 1−FA.

Application of (b) transparency rendering according to the local fiber density and (c) tract

iso-surface rendering.
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framework [44].
As mentioned in the previous chapter, advanced volume rendering techniques can
be applied to visualize several properties of diffusion tensor data (e.g., Ref. [154]).
For FT visualization, these techniques can be further modified to represent spe-
cific tract characteristics of interest. In Fig. 2.9 (b), for instance, transparency
rendering has been applied according to the local fiber tract density [102]. This
representation, however, has a high computational cost. Fig. 2.9 (c) shows an-
other visualization approach in which iso-surface rendering is used to represent the
fiber structure. This approach has a low computational complexity (comparable
to streamlines) and additionally provides a clearer view of the fiber structure’s
volume.

2.5.3 Fiber clustering

It is often more interesting to visualize bundles of fiber tracts, which make up a
specific anatomical structure, rather than the local characteristics along a single
tract pathway (e.g., see Fig. 2.10). In this context, several fiber tract cluster-
ing techniques have been proposed [155–166]. Furthermore, a general framework
has been developed to objectively evaluate and validate several of these cluster
approaches [167].

A general survey discussing the aforementioned FT visualization techniques in more
detail can be found in the work of Vilanova et al. [168].

2.6 Applications

The ability to reconstruct axonal fiber bundles in neuronal networks in vivo can
be important for the understanding of normal and pathological processes affecting
brain functions [138, 169, 170]. For example, complex cognitive and motor-oriented
processes that involve different functional areas of the brain are mediated by such
neural networks [171, 172]. The study of neural association networks is therefore
essential for understanding how different functionally active areas interact and, in
addition, how the brain reacts to trauma or pathology [87, 173–177].
In combination with fMRI, the availability of a non-invasive technique that outlines
fascicles could enhance the understanding of the spatio-temporal interaction of
normal brain function and adaptive processes such as brain plasticity [50, 130, 178–
182]. Several other studies have been reported such as inter-subject variability and
reproducibility FT analyses [37, 56, 57, 183] and FT in several fiber structures of
the CNS and the heart [6, 28, 31, 43, 184–187]. As an example, the FT results of
a patient with agenesis of the corpus callosum and a normal subject are compared
in Fig. 2.11 (see also Fig. 1.10).
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Figure 2.10. (a) and (c) represent PDV color-encoded fiber tracts in the starling and

human brain, respectively. Using the technique developed in Ref. [155], these fiber tracts

are clustered into groups of fiber bundles to enhance visibility (b,d). In this approach, the

begin and end point coordinates of the WM fiber tracts are used for creating the 6D feature

space for clustering. Then, k-means clustering is applied to reconstruct the different fiber

bundles. Notice, for instance, that the tract organization in (b) is depicted more clearly

than in (a). Additionally, note that fiber tract clustering can be applied to further automate

the selection of fiber tract bundles of interest.
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(a) normal WM fiber architecture (b) missing corpus callosum 

Figure 2.11. Coronal (top row) and axial (bottom row) view of (a) the normal and

(b) an abnormal (callosal agenesis) WM fiber tract configuration of the human brain. As

indicated by the black ellipses, the tracts that connect the cerebral hemispheres, which are

visible in (a), are clearly missing in (b).
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Finally, FT may play an important role in treatment planning of neurosurgery and
dose sculpting in radiation therapy [188–192], morphology of WM fiber bundles
[193], and localization of lacunar infarctions [194].

Although this survey is somewhat limited, the growing diversity of reported appli-
cations shows great promise for FT to become a well-established research tool in
a both clinical and biomedical settings. Moreover, it has the potential to expand
our understanding of fiber organization and structural connectivity in the central
and peripheral nervous system and in other structured tissues without the need of
invasive procedures (Fig. 2.12).

a

c

b gd e

f

Figure 2.12. To illustrate the potential of FT, several WM fiber structures of the human

brain are reconstructed: (a) corpus callosum; (b) pyramidal tracts; (c) fornix; (d) inferior

longitudinal fasciculus; (e) superior longitudinal fasciculus; (f) ponto-cerebellar tracts; (g)

uncinate fasciculus.
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[48] C. Gössl et al. Fiber tracking from DTI using linear state space models: detectability of

the pyramidal tract. NeuroImage, 16(2):378–388, 2002.

– 69 –



BIBLIOGRAPHY

[49] K. Terajima and T. Nakada. EZ-tracing: a new ready-to-use algorithm for magnetic reso-

nance tractography. J Nucl Med, 116(2):147–155, 2002.

[50] L.-W. Kuo et al. Mapping white matter connectivity with BOLD activated regions using

diffusion spectrum imaging and fMRI. In ISMRM, page 1286, 2004.

[51] G.J.M. Parker. Tracing fiber tracts using fast marching. In ISMRM, page 85, 2000.

[52] G.J.M. Parker et al. Distributed anatomical brain connectivity derived from diffusion tensor

imaging. In Inf Process Med Imaging, pages 106–120, 2001.

[53] G.J.M. Parker et al. Initial demonstration of in vivo tracing of axonal projections in the

macaque brain and comparison with the human brain using diffusion tensor imaging and

fast marching tractography. NeuroImage, 15(4):779–809, 2002.

[54] G.J.M. Parker et al. Estimating distributed anatomical connectivity using fast marching

methods and diffusion tensor imaging. IEEE Trans Med Imaging, 21(5):505–512, 2002.

[55] C.A.M. Wheeler-Kingshott et al. Investigating cervical spinal cord structure using axial

diffusion tensor imaging. NeuroImage, 16(1):93–102, 2002.

[56] O. Ciccarelli et al. Diffusion tractography based group mapping of major white-matter

pathways in the human brain. NeuroImage, 19(4):1545–1555, 2003.

[57] O. Ciccarelli et al. From diffusion tractography to quantitative white matter tract measures:

a reproducibility study. NeuroImage, 18(2):348–359, 2003.

[58] H.W.R. Powell et al. Noninvasive in vivo demonstration of the connections of the human

parahippocampal gyrus. NeuroImage, 22(2):740–747, 2004.

[59] J.S.W. Campbell et al. A geometric flow for white matter fibre tract reconstruction. In

ISBI, pages 505–508, 2002.

[60] J.S.W. Campbell et al. White matter fibre tract likelihood evaluated using normalized RMS

diffusion distance. In ISMRM, page 1130, 2002.

[61] J.S.W. Campbell et al. White matter fibretractography and scalar connectivity assessment

using fibre orientation likelihood distribution. In Comp Vision and Patt Recog, 2004.

[62] J.S.W. Campbell et al. Comparison of flow- and streamline-based fibre tracking algorithms

using an anisotropic diffusion phantom. In ISMRM, page 1277, 2004.

[63] J.S. Duncan et al. Geometric strategies for neuroanatomic analysis from MRI. NeuroImage,

23(1):S34–S45, 2004.

[64] L. Jonasson et al. White matter fiber tract segmentation in DT-MRI using geometric flows.

Med Image Anal, 9(3):223–236, 2005.

[65] S. Jbabdi et al. A level set method for building anatomical connectivity paths between

brain areas using DTI. In ISBI, pages 1024–1027, 2004.

[66] J.-D. Tournier et al. Diffusion-weighted magnetic resonance imaging fibre tracking using a

front evolution algorithm. NeuroImage, 20(1):276–288, 2003.

[67] G. Sela et al. Brain white matter tractography from DT images using global coverings and

maximal likelihood connectivity. In ISMRM, page 1284, 2004.

[68] B.C. Vemuri et al. Automatic fiber tractography from DTI and its validation. In ISBI,

pages 501–504, 2002.

[69] B.C. Vemuri et al. Fiber tract mapping from diffusion tensor MRI. In IEEE VLSM, 2001.

[70] Y. Cointepas et al. A spin glass based framework to reconstruct brain fiber bundles from

images of te water diffusion process. Information Processes, 2(1):30–36, 2002.

[71] J.-F. Mangin et al. A framework based on spin glass models for the inference of anatomical

connectivity from diffusion-weighted MR data - a technical review. NMR Biomed, 15(7–8):

481–492, 2002.

[72] L. O’Donnell et al. New approaches to estimation of white matter connectivity in diffusion

tensor MRI: elliptic PDEs and geodesics in a tensor-warped space. In MICCAI, volume

2489, pages 459–466, 2002.

– 70 –



CHAPTER 2. MR FIBER TRACTOGRAPHY

[73] W. Li et al. White matter tractography based on minimizing the tracking cost model from

diffusion tensor MRI. In SPIE MI, volume 5370, pages 1795–1803, 2004.

[74] J.-C. Weng et al. A global approach for non-invasive axonal fiber tracking on diffusion

tensor magnetic resonance image. In ISMRM, page 1133, 2002.

[75] P.G. Batchelor et al. Fibre-tracking by solving the diffusion-convection equation. In

ISMRM, page 1135, 2002.

[76] D. Gembris et al. Solving the diffusion equation for fiber tracking in the living human brain.

In ISMRM, page 1529, 2001.

[77] D.S. Tuch et al. A path integral approach to white matter tractography. In ISMRM, page

791, 2000.

[78] D.S. Tuch. Mapping cortical connectivity with diffusion MRI. In ISBI, pages 392–394,

2002.

[79] T.E.J. Behrens et al. A probabilistic framework for estimating neural connectivity from

diffusion weighted MRI. In ISMRM, page 1142, 2002.

[80] T.E.J. Behrens et al. Bayesian parameter estimation in diffusion weighted MRI. In ISMRM,

page 1160, 2002.

[81] T.E.J. Behrens et al. Characterization and propagation of uncertainty in diffusion-weighted

MR imaging. Magn Reson Med, 50(5):1077–1088, 2003.

[82] T.E.J. Behrens et al. Deliniation of functional subunits in the human cortex from diffusion

based connectivity matrices. In ISMRM, page 621, 2004.

[83] M. Lazar and A.L. Alexander. White matter tractography using random vector (RAVE)

perturbation. In ISMRM, page 539, 2002.

[84] G.J.M. Parker et al. A framework for a streamline-based Probabilistic Index of Connectivity

(PICo) using a structural interpretation of anisotropic diffusion. In ISMRM, page 1165,

2002.

[85] G.J.M. Parker and D.C. Alexander. Probabilistic Monte Carlo based mapping of cerebral

connections utilising whole-brain crossing fibre information. In Inf Process Med Imaging,

volume 2737, pages 684–695, 2003.

[86] G.J.M. Parker and C.A.M. Haroon, H.A. Wheeler-Kingshott. A framework for a streamline-

based Probabilistic Index of Connectivity (pico) using a structural interpretation of MRI

diffusion measurements. J Magn Reson Imaging, 18(2):242–254, 2003.

[87] A.T. Toosy et al. Characterizing functionstructure relationships in the human visual system

with functional MRI and diffusion tensor imaging. NeuroImage, 21(4):1452–1463, 2004.

[88] P.G. Batchelor et al. Study of connectivity in the brain using the full diffusion tensor from

MRI. In Inf Process Med Imaging, pages 121–133, 2001.

[89] P. Hagmann et al. DTI mapping of human brain connectivity: statistical fibre tracking and

virtual dissection. NeuroImage, 19(3):545–554, 2003.

[90] B.W. Kreher et al. Potential of fiber tracking and connectivity mapping with multi diffusion

tensor. In ISMRM, page 1280, 2004.

[91] D.K. Jones and C. Pierpaoli. Towards a marriage of deterministic and probabilistic trac-

tography methods: bootstrap analysis of fiber trajectories in the human brain. In ISMRM,

page 1276, 2004.

[92] D.K. Jones et al. Artifact or architecture? An integrated approach to visualizing uncertainty

and partial volume effects in DT-MRI tractography. In ISMRM, page 618, 2004.

[93] M. Björnemo et al. Regularized stochastic white matter tractography using diffusion tensor

MRI. In MICCAI, pages 435–442, 2002.

[94] A. Brun et al. White matter tractography using sequential importance sampling. In ISMRM,

page 1131, 2002.

[95] M. Lazar et al. Bootstrap analysis of DT-MRI tractography techniques: streamlines and

– 71 –



BIBLIOGRAPHY

tensorlines. In ISMRM, page 1527, 2001.

[96] M. Lazar and A.L. Alexander. Bootstrap white matter tractography (BOOT-TRAC). Neu-

roImage, 24(2):524–532, 2005.

[97] Y. Lu et al. Adaptive Bayesian tracking of neuronal fiber pathways from diffusion tensor

images. In ISMRM, page 1275, 2004.

[98] S. Zhang et al. Visualization and analysis of white matter structural asymmetry in diffusion

tensor MRI data. Magn Reson Med, 51(1):140–147, 2004.

[99] P. Staempfli et al. Resolving fiber crossing using advanced fast marching tractography based

on diffusion tensor imaging. NeuroImage, 30(1):110–120, 2006.

[100] D.K. Jones and C. Pierpaoli. Confidence mapping in diffusion tensor magnetic resonance

imaging tractography using a bootstrap approach. Magn Reson Med, 53(5):1143–1149,

2005.

[101] D.K. Jones et al. PASTA: pointwise assessment of streamline tractography attributes. Magn

Reson Med, 53(6):1462–1467, 2005.

[102] S. Delputte et al. Density regularized fiber tractography of the brain white matter using

diffusion tensor MRI. In ISMRM, page 1309, 2005.

[103] M. Jackowski et al. Estimation of anatomical connectivity by anisotropic front propagation

and diffusion tensor imaging. Lect Notes Comp Sci, 3217:663–671, 2004.

[104] M. Jackowski et al. White matter tractography by anisotropic wavefront evolution and

diffusion tensor imaging. Med Image Anal, 9(5):427–440, 2005.

[105] N. Kang et al. White matter fiber tractography via anisotropic diffusion simulation in the

human brain. IEEE Trans Med Imaging, 24(9):1127–1137, 2005.

[106] C.Y. Lin et al. Identify 3-dimensional white matter tracts by directional correlation based

regional growing (DCRG) method. In ISMRM, page 2163, 2003.

[107] S.W. Sun et al. Improving relative anisotropy measurement using directional correlation of

diffusion tensors. Magn Reson Med, 46(6):1088–1092, 2001.

[108] S.W. Sun et al. Directional correlation characterization and classification of white matter

tracts. Magn Reson Med, 49(2):271–275, 2003.

[109] M.A. Koch et al. An investigation of functional and anatomical connectivity using magnetic

resonance imaging. NeuroImage, 16(1):241–250, 2002.

[110] D.K. Jones. Determining and visualizing uncertainty in estimates of fiber orientation from

diffusion tensor MRI. Magn Reson Med, 49(1):7–12, 2003.

[111] S. Mori and P.C.M. van Zijl. Fiber tracking: principles and strategies - a technical review.

NMR Biomed, 15(7–8):468–480, 2002.

[112] R. Bammer et al. In vivo MR tractography using diffusion imaging. Eur J Radiol, 45(3):

223–234, 2003.

[113] E.R. Melhem et al. Diffusion tensor MR imaging of the brain and white matter tractography.

Am J Roentgenol, 178(1):3–16, 2002.

[114] P. Yeung and S. Pope. An algorithm for tracking fluid particles in numerical simulations of

homogeneous turbulence. J Comput Phys, 79:373–416, 1988.

[115] N.F. Lori et al. Diffusion tensor tracking of human neuronal fiber bundles: Simulation of

effects of noise, voxel size and data interpolation. In ISMRM, page 775, 2000.

[116] S. Pajevic et al. A continuous tensor field approximation of discrete DT-MRI data for

extracting microstructural and architectural features of tissue. J Magn Reson, 154(1):

85–100, 2002.

[117] A. Aldroubi and P. Basser. Reconstruction of vector and tensor field from sampled discrete

data. Contemp Math, 247:1–15, 1999.

[118] J. Frandsen et al. Regularization of diffusion tensor fields in axonal fibre tracking. In

ISMRM, page 1221, 2004.

– 72 –



CHAPTER 2. MR FIBER TRACTOGRAPHY

[119] W. Li et al. Tensor field regularization for diffusion tensor MR images using nonlinear

smoothing. In ISMRM, page 1222, 2004.

[120] O. Coulon et al. A regularization scheme for diffusion tensor magnetic resonance images.

Lect Notes Comp Sci, 2082:92–105, 2001.

[121] O. Coulon et al. Diffusion tensor magnetic resonance image regularization. Med Image

Anal, 8(1):47–67, 2004.

[122] G.J.M. Parker et al. Nonlinear smoothing for reduction of systematic and random errors

in diffusion tensor imaging. J Magn Reson Imaging, 11(6):702–710, 2000.

[123] T. McGraw et al. DT-MRI denoising and neuronal fiber tracking. Med Image Anal, 8(2):

95–111, 2004.

[124] Z. Wang et al. A constrained variational principle for direct estimation and smoothing of

the diffusion tensor field from complex DWI. IEEE Trans Med Imaging, 23(8):930–939,

2004.

[125] J. Sijbers et al. Adaptive anisotropic noise filtering for magnitude MR data. Magn Reson

Imaging, 17(10):1533–1539, 1999.

[126] N.F. Lori et al. Diffusion tensor fiber tracking of human brain connectivity: acquisition

methods, reliability analysis and biological results. NMR Biomed, 15(7–8):493–515, 2002.

[127] W.H. Press et al. Numerical recipes in C: the art of scientific computing. Cambridge

University Press, New York, NY, USA, 1992.

[128] B. Wünsche et al. DTI volume rendering techniques for visualising the brain anatomy. Int

Congr Ser, 1281:80–85, 2005.

[129] E. Pagani et al. A method for obtaining tract-specific diffusion tensor MRI measurements in

the presence of disease: application to patients with clinically isolated syndromes suggestive

of multiple sclerosis. NeuroImage, 26(1):258–265, 2005.

[130] P. Thottakara et al. Application of Brodmann’s area templates for ROI selection in white

matter tractography studies. NeuroImage, 29(3):868–878, 2006.

[131] M. Lazar and A.L. Alexander. White matter tractography algorithms error analysis. Neu-

roImage, 20(2):1140–1153, 2003.

[132] J.-D. Tournier et al. Limitations and requirements of diffusion tensor fiber tracking: an

assessment using simulations. Magn Reson Med, 47(4):701–708, 2002.

[133] M. Lazar et al. Axial asymmetry of water diffusion in brain white matter. Magn Reson

Med, 54(4):860–867, 2005.

[134] A.W. Anderson. Theoretical analysis of the effects of noise on diffusion tensor imaging.

Magn Reson Med, 46(6):1174–1188, 2001.

[135] A.L. Alexander et al. Analysis of partial volume effects in diffusion-tensor MRI. Magn

Reson Med, 45(5):770–780, 2001.

[136] T.R. Barrick and C.A. Clark. Singularities in diffusion tensor fields and their relevance in

white matter fiber tractography. NeuroImage, 22(2):481–491, 2004.

[137] D.S. Tuch et al. High angular resolution diffusion imaging reveals intravoxel white matter

fiber heterogeneity. Magn Reson Med, 48(4):577–582, 2002.

[138] R. Watts et al. Fiber tracking using magnetic resonance diffusion tensor imaging and its

applications to human brain development. Ment Retard Dev Disabil Res Rev, 9(3):168–177,

2003.

[139] J.A. Sethian. A fast marching level set method for monotonically advancing fronts. In Proc

Natl Acad Sci USA, pages 1591–1595, 1996.

[140] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: algorithms

based on HamiltonJacobi formulations. J Comput Phys, 79(1):12–49, 1988.

[141] J.A. Sethian. Level set methods: evolving interfaces in geometry, fluid mechanics, com-

puter vision, and materials science. Cambridge monographs on applied and computational

– 73 –



BIBLIOGRAPHY

mathematics. Cambridge University Press, Cambridge, U.K., 1996.

[142] J.N. Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE T Automat

Contr, 40:1528–1538, 1995.

[143] J.S.W. Campbell et al. Flow-based fiber tracking with diffusion tensor and Q-ball data:

validation and comparison to principal diffusion direction techniques. NeuroImage, 27(4):

725–736, 2005.

[144] C.-Y. Lin et al. Unsupervised identification of white matter tracts in a mouse brain using

a directional correlation-based region growing (DCRG) algorithm. NeuroImage, 28(2):380–

388, 2005.

[145] Z. Wang and B.C. Vemuri. Tensor field segmentation using region based active contour

model. Lect Notes Comp Sci, 3024:304–315, 2004.

[146] M. Rousson et al. Level set and region based surface propagation for diffusion tensor MRI

segmentation. Lect Notes Comp Sci, 3117:123–134, 2004.

[147] C. Feddern et al. Level-set methods for tensor valued images. In IEEE VLSM, pages 65–72,

2003.

[148] A. Leemans et al. A geometric color scheme for visualizing diffusion tensor magnetic reso-

nance fiber pathways. In BHPA, Brussels, Belgium, 2004.

[149] C. Pierpaoli. Oh no! one more method for color mapping of fiber tract direction using

diffusion MR imaging data. In ISMRM, page 1741, 1997.

[150] S. Pajevic and C. Pierpaoli. Color schemes to represent the orientation of anisotropic tissues

from diffusion tensor data: application to white matter fiber tract mapping in the human

brain. Magn Reson Med, 42(3):526–540, 1999.

[151] T. Delmarcelle and L. Hesselink. Visualizing second order-tensor fields with hyperstream-

lines. IEEE CG&A, 13(4):25–33, 1993.

[152] S. Zhang et al. Visualizing diffusion tensor MR images using streamtubes and streamsur-

faces. IEEE T Vis Comput Gr, 9(4):454–462, 2003.

[153] H.-H. Ehricke et al. Visualizing MR diffusion tensor fields by dynamic fiber tracking and

uncertainty mapping. Comput Graph, (in press) 2006.

[154] G. Kindlmann et al. Strategies for direct volume rendering of diffusion tensor fields. IEEE

T Vis Comput Gr, 6(2):124–138, 2000.

[155] A. Leemans et al. End point clustering for diffusion tensor white matter fiber bundle

tractography. In ESMRMB, pages 129–130, Basle, Switzerland, 2005.

[156] Z. Ding et al. Classification and quantification of neuronal fiber pathways using diffusion

tensor MRI. Magn Reson Med, 49(4):716–721, 2003.

[157] I. Corouge et al. A statistical shape model of individual fiber tracts extracted from diffusion

tensor MRI. In MICCAI, pages 671–679, 2004.

[158] I. Corouge et al. Towards a shape model of white matter fiber bundles using diffusion tensor

MRI. In ISBI, pages 344–347, 2004.

[159] A. Brun et al. Clustering fiber traces using normalized cuts. In MICCAI, pages 368–375,

2004.

[160] A. Brun et al. Coloring of DT-MRI fiber traces using Laplacian eigenmaps. Lect Notes

Comp Sci, 2809:564–572, 2003.

[161] L. Jonasson et al. Fiber tracts of high angular resolution diffusion MRI are easily segmented

with spectral clustering. In ISMRM, page 1310, 2005.

[162] L. O’Donnell and C.-F. Westin. White matter tract clustering and correspondence in pop-

ulations. In Lect Notes Comp Sci, volume 3749, pages 140–147, 2005.

[163] S. Zhang and D.H. Laidlaw. DTI fiber clustering and cross-subject cluster analysis. In

ISMRM, page 2727, 2005.

[164] S. Zhang and D.H. Laidlaw. Hierarchical clustering of streamtubes. Technical Report

– 74 –



CHAPTER 2. MR FIBER TRACTOGRAPHY

CS-02-18, Brown University Computer Science Department, August 2002.

[165] J.S. Shimony et al. Automated fuzzy clustering of neuronal pathways in diffusion tensor

tracking. In ISMRM, page 540, 2002.

[166] P.G. Batchelor et al. Classification of bundles of white matter tract from DTI without

registration. In ESMRMB, page 101, 2003.

[167] B. Moberts et al. DTI visualization with streamsurfaces and evenly-spaced volume seeding.

In IEEE Vis, pages 65–72, 2005.

[168] A. Vilanova et al. Visualization and image processing of tensor fields, chapter An intro-

duction to visualization of diffusion tensor imaging and its applications, pages 121–153.

Springer Verlag series Mathematics and Visualization, 2006. ISBN 3-540-25032-8.

[169] W.D. Taylor et al. Diffusion tensor imaging: background, potential, and utility in psychi-

atric research. Biol Psychiatry, 55(3):201–207, 2004.

[170] D.K. Jones et al. Age effects on diffusion tensor magnetic resonance imaging tractography

measures of frontal cortex connections in schizophrenia. Hum Brain Mapp, 27(3):230–238,

2005.

[171] R.G. Henry et al. Subcortical pathways serving cortical language sites: initial experience

with diffusion tensor imaging fiber tracking combined with intraoperative language map-

ping. NeuroImage, 21(2):616–622, 2004.

[172] N. Shinoura et al. Fibers connecting the primary motor and sensory areas play a role in

grasp stability of the hand. NeuroImage, 25(3):936–941, 2005.

[173] N.K. Iwata et al. Corticospinal tract and corticobulbar tract dysfunction in ALS: combined

study using transcranial magnetic stimulation and diffusion tensor tractography. Int Congr

Ser, 1278:181–184, 2005.

[174] X. Lin et al. Importance sampling in MS: Use of diffusion tensor tractography to quantify

pathology related to specific impairment. J Neurol Sci, 237(1–2):13–19, 2005.

[175] D.K. Jones et al. A diffusion tensor magnetic resonance imaging study of frontal cortex

connections in very-late-onset schizophrenia-like psychosis. Am J Geriatr Psychiatry, 13

(12):1092–1099, 2005.

[176] M. Catani et al. Occipito-temporal connections in the human brain. Brain, 126(9):2093–

2107, 2003.

[177] C. van Pul et al. Fiber tracking in newborns with perinatal hypoxic-ischemia at birth and

at 3 months. Radiology, (in press) 2005.

[178] M. Guye et al. Combined functional MRI and tractography to demonstrate the connectivity

of the human primary motor cortex in vivo. NeuroImage, 19(4):1349–1360, 2003.

[179] S.L. Heller et al. Evidence of cerebral reorganization following perinatal stroke demonstrated

with fMRI and DTI tractography. J Clin Imaging, 29(4):283–287, 2005.

[180] A.W. Song et al. Functional activation using apparent diffusion coefficient-dependent con-

trast allows better spatial localization to the neuronal activity: evidence using diffusion

tensor imaging and fiber tracking. NeuroImage, 20(2):955–961, 2003.

[181] G. De Groof et al. Seasonal changes in neuronal connectivity in the songbird brain discerned

by repeated in vivo DTI. In ISMRM, page 715, 2005.

[182] G. De Groof et al. In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal

pathways in songbirds. NeuroImage, 29(3):754–763, 2006.

[183] U. Bürgel et al. White matter fiber tracts of the human brain: three-dimensional mapping

at microscopic resolution, topography and intersubject variability. NeuroImage, 29(4):

1092–1105, 2006.

[184] L. Concha et al. Diffusion tensor tractography of the limbic system. AJNR Am J Neuro-

radiol, 26(9):2267–2274, 2005.

[185] H.U. Voss et al. Fiber tracking in the cervical spine and inferior brain regions with reversed

– 75 –



BIBLIOGRAPHY

gradient diffusion tensor imaging. Magn Reson Imaging, (in press) 2006.

[186] S. Mori et al. Imaging cortical association tracts in the human brain using diffusion-tensor-

based axonal tracking. Magn Reson Med, 47(2):215–223, 2002.

[187] D.K. Jones et al. Isotropic resolution diffusion tensor imaging with whole brain acquisition

in a clinically acceptable time. Hum Brain Mapp, 15(4):216–230, 2002.

[188] M. Kinoshita et al. Fiber-tracking does not accurately estimate size of fiber bundle in

pathological condition: initial neurosurgical experience using neuronavigation and subcor-

tical white matter stimulation. NeuroImage, 25(2):424–429, 2005.

[189] C. Nimsky et al. Three-dimensional visualization of major white matter tracts by diffusion

tensor imaging-based fiber tracking. Int Congr Ser, 1268:703–706, 2004.

[190] C. Nimsky et al. Visualization strategies for major white matter tracts identified by diffusion

tensor imaging for intraoperative use. Int Congr Ser, 1281:793–797, 2005.

[191] C. Nimsky et al. Intraoperative visualization of the pyramidal tract by diffusion-tensor-

imaging-based fiber tracking. NeuroImage, (in press) 2005.

[192] I.-F. Talos et al. Diffusion tensor and functional MRI fusion with anatomical MRI for

image-guided neurosurgery. Lect Notes Comp Sci, 2878:407–415, 2003.

[193] H. Huang et al. DTI tractography based parcellation of white matter: application to the

mid-sagittal morphology of corpus callosum. NeuroImage, 26(1):195–205, 2005.

[194] J.S. Lee et al. Fiber tracking by diffusion tensor imaging in corticospinal tract stroke:

topographical correlation with clinical symptoms. NeuroImage, 26(3):771–776, 2005.

– 76 –



Part II

Diffusion Tensor Image

Processing

77





Chapter 3

Simulated diffusion tensor

phantom

The work in this chapter has been published in
A. Leemans, J. Sijbers, M. Verhoye, A. Van der Linden, and D. Van Dyck, “Math-
ematical framework for simulating diffusion tensor MR neural fiber bundles”, Mag-
netic Resonance in Medicine, Vol. 53, Nr. 4, p. 944–953, 2005.

3.1 Abstract

WM FT is known to be an important application of DTI. For the quantitative
evaluation of several FT properties, such as accuracy, noise sensitivity, and ro-
bustness, synthetic ground-truth DTI data are required. Moreover, an accurate
simulated phantom is also required for optimization of the user-defined tractog-
raphy parameters, and objective comparisons between FT algorithms. Therefore,
in this chapter, a mathematical framework for simulating DTI data, based on the
physical properties of WM fiber bundles, is developed. A model of a WM fiber
bundle is obtained by parameterizing the various features that characterize this
bundle. Three different synthetic DTI models were evaluated using experimental
data in order to test the developed methodology, and to determine the optimum
model and parameter settings for constructing a realistic simulated DTI phantom.
Several examples of how the mathematical framework can be applied to compare
FT algorithms are presented.
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3.2 Introduction

An important application of DTI is the reconstruction of the 3D WM fiber net-
work using DTT and is based on the assumption that it can accurately retrieve
the spatial information of the underlying fiber network, using the available diffu-
sion information of the corresponding tensor field. As described in the previous
chapter, DTT provides exciting new opportunities to study the CNS anatomy, and
has generated much enthusiasm, resulting in the development of a large number of
FT algorithms. Although qualitative results may be very valuable, the lack of a
gold standard still precludes an objective quantitative evaluation of these FT algo-
rithms with respect to precision, accuracy, reproducibility, etc. Although histology
has been used to identify major WM fiber bundles, and can provide complemen-
tary anatomical information for DTI [1–5], technical difficulties related to tissue
preparation impede a quantitative validation of the 3D WM fiber tract reconstruc-
tion. In the work of Lin et al., a comparison study between DTI and MEMRI has
demonstrated good correspondence between the PDV and the tangential vector of
the optic tract in rats, as seen in the T1-weighted image [6]. However, the Mn2+

enhancement in large fiber bundles is often diffuse, making the fiber orientation in-
distinct. In addition, long fibers are difficult to study due to a considerable decay
of the Mn2+ enhancement within the time frame to transport the Mn2+ ions over
the full length of these fibers.
To address this lack of a gold standard, an accurate simulated DTI phantom is nec-
essary to evaluate the numerous criteria that characterize a FT algorithm. Only
with such a phantom can a comparison between different FT algorithms yield de-
cisive answers regarding accuracy, precision, robustness, reproducibility, etc. In
addition, with such a phantom one could study the effect of DTI data process-
ing prior to diffusion tensor and fiber tract computing (e.g., image coregistration,
noise filtering, and correction of motion artifacts) quantitatively. For example, fiber
tracking requires geometrically coregistered DW images. With the use of a simu-
lated DTI phantom, the sensitivity of FT algorithms with respect to the misaligned
DW images can be studied.
Although the need for an accurate simulated DTI phantom has been emphasized
in the literature (e.g., Refs. [7–9]), only a few tractography-related articles have
described a technique for computing a simulated DTI phantom. In Ref. [10], a
continuous diffusion vector field is used to describe the tracts, omitting information
that is contained in the remaining DOF of the diffusion tensor field. Other methods
use the two-dimensional (2D) continuous diffusion tensor field, where the tracts
are represented by rings with a fixed width [11, 12]. More advanced techniques
employ a cylindrical tube in a 3D continuous diffusion tensor field that has a curved
trajectory given by, for instance, a circular helix (e.g., Refs. [8, 13, 14]). Within this
tube, the diffusion anisotropy measure that characterizes the WM fiber pathway is
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set to a predefined threshold. However, none of these DTI tract phantoms simulate
a smooth transition between the actual WM pathway and the surrounding tissue,
although the diffusion tensor field itself, which is used as ‘background tissue’, is
continuous. Also, as suggested by Basser, nonconstant curvature and torsion within
a single tract, possibly derived from experimental data, should be employed to give
a more realistic representation of the WM fiber pathway [15].

In the following sections, a mathematical framework is developed for simulating a
DTI phantom that represents the physical properties of a WM fiber pathway within
its surrounding tissue and models the cross-sectional dependency of the fiber den-
sity, based on the corresponding FA and MD. The objective of this mathematical
framework is to simulate ground-truth DTI data of a corresponding WM fiber sys-
tem in order to 1) quantitatively evaluate the numerous criteria that characterize a
FT algorithm, 2) optimize the user-defined tractography parameters, and 3) objec-
tively compare different FT algorithms. The analytical form of the tract allows the
simulation of more complex configurations in an elegant way (e.g., branching and
crossing of WM fiber bundles). Finally, different synthetic DTI models are evalu-
ated using experimental DTI data, and several applications to WM fiber tracking
are described.

3.3 Theory

This section presents the development of the mathematical framework for simu-
lating DTI data based on the physical properties of WM fiber bundles. These
properties can be summarized as follows. A realistic fiber trajectory should exhibit
a nonconstant curvature and torsion, and have a certain extent. Also, a smooth
transition between the diffusion tensor field of the WM fiber bundle and the diffu-
sion tensor field of the surrounding tissue should be incorporated.

The first step in the modeling process is to generate a set of points that define the
position and curvature of the WM fiber pathway. A piecewise continuous 3D space
curve can be associated with these points, which represents the skeleton of the fiber
bundle trajectory. This space curve is then convolved with a model kernel to obtain
the physical extent that defines the cross-sectional dependency of the fiber density.
The PDV field is assessed by a weighted sum of the vector lines that define the
backbone of the WM fiber bundle. Finally, the diffusion tensor field is calculated
using the PDV field and the eigenvalues obtained from the model. Throughout this
section, the dimensions of the synthetic DTI data are considered to be in units of
voxel size.
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3.3.1 Backbone of the fiber bundle

The first step in the modeling process is the parameterization of a WM fiber.
The fiber backbone is constructed from a set of spatial coordinates {ri} (with
i = 1, . . . , N), where the direction of the vector line Δi = ri+1−ri smoothly varies
for consecutive points ri. The vector lines Δi describe a piecewise differential 3D
space curve, which can be represented by

t(r) =
N−1∑
i=1

∫ 1

0

δ
[
r − (ri + αΔi)

]
dα , (3.1)

where δ denotes the Dirac-delta distribution and α is a parameterization variable.
Basically, t(r) = 1 for the positions r that define the backbone and t(r) = 0
elsewhere. In the following text, and without loss of generality, it will be assumed
that the length of the vectors Δi is constant, i.e. ∀i : ‖Δi‖ = Δ.

3.3.2 Physical thickness of the fiber bundle

After the coordinates that represent the center of the WM fiber bundle have been
defined, a parameter that models the physical thickness should be incorporated to
refine the physical properties of the fiber tract. This thickness represents the cross-
sectional dependency of the fiber density, which is assumed here to be nonconstant.
It can be introduced in a natural way by convolving the fiber trajectory t(r), defined
in Eq. (3.1), with a proper kernel k(r). The resulting convolution function T (r) is
calculated as:

T (r) = t(r) ∗ k(r) =
N−1∑
i=1

∫ 1

0

k
[
r − (ri + αΔi)

]
dα︸ ︷︷ ︸

≡ T i(r)

. (3.2)

Consequently, the continuously varying quantitative measures FA and MD can be
associated with every point within the WM fiber bundle, as follows:

FA(r) =
FAM T (r)

TM
; MD(r) =

MDM T (r)
TM

, (3.3)

where FAM and MDM are predefined values that control the maximum FA and
maximum MD, respectively, and TM = maxr T (r). In Eq. (3.3), T (r)/TM can
be considered as the normalized cross-sectional dependency of the fiber density,
confining FA(r) and MD(r) to their predefined value range. Depending on the
kernel k(r), different diffusion characteristics within the fiber can be generated by
defining another model to describe the physical thickness, which is equivalent to
choosing a different model kernel. Since FA and MD are independent, different
model kernels k(r) can be associated with these diffusion measures. To illustrate
this concept, three specific models (solid, Gaussian, and saturated) are elaborated.
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3.3.2.1 Solid model

The techniques that are currently used to simulate a 3D WM fiber phantom (e.g.,
Ref. [13]) can be obtained by using a rectangle function Π, which is defined as:

kr(r) = Π
(‖r‖

w

)
=
{

0 ⇔ ‖r‖ > w

1 ⇔ ‖r‖ ≤ w
, (3.4)

where w is the parameter that describes the width of the fiber bundle [Figs. 3.1
(a) and 3.1 (d)]. After some calculations, the convolution of the fiber tract t(r)
from Eq. (3.1) with kr(r) is given by:

Tr(r) =
N−1∑
i=1

∣∣∣∣α+
i Π
(

α+
i − 1

2

)
− α−

i Π
(

α−
i − 1

2

)
+ H

(
1 − α−

i

)− H
(
1 − α+

i

)∣∣∣∣ ,

(3.5)
where H represents the Heaviside step function and

α±
i ≡ α±

i (r) = �
⎧⎨⎩Δ̂i · (r − ri) ±

√
w2

4 −∥∥di(r)
∥∥2

Δ

⎫⎬⎭ (3.6)

with {
Δ̂i =Δi/Δ

di(r)= Δ̂i × (r − ri)
. (3.7)

Here, �{·} denotes the real part. Also note that ‖di(r)‖ indicates the distance be-
tween the position r and the line defined by Δ̂i, and that Tr(r) = 0 for ‖di(r)‖ ≥
w/2. Therefore, Tr(r) = FAM is finally taken for ‖di(r)‖ < w/2. This model
assumes no continuous cross-sectional dependency of the microstructural fiber or-
ganization, resulting in a cylindrical tube with constant FA and MD.

3.3.2.2 Gaussian model

A second, more realistic model to characterize the physical extent of a WM fiber
bundle is obtained by convolving the fiber backbone with a 3D Gaussian kernel:

kg(r) = e−
‖r‖2

2σ2 , (3.8)

where the standard deviation σ controls the extent of the fiber bundle [Figs. 3.1
(b) and 3.1 (e)]. The convolution of the fiber tract t(r) with kg(r), denoted as
Tg(r), is given by (see Appendix B):

Tg(r) =
σ

Δ

√
π

2

N−1∑
i=1

e−
‖di(r)‖2

2σ2

{
erf

[
Δ̂i · (r − ri)√

2σ

]
+ erf

[
Δ̂i · (ri+1 − r)√

2σ

]}
.

(3.9)
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Figure 3.1. Different model kernels that describe the physical extent of a WM fiber

bundle. Figures (a) → (c) are 3D color-encoded representations of these kernels. The 1D

projection (dashed line, with p as parameterization variable) is depicted in (d) → (f).

3.3.2.3 Saturated model

Finally, a general model can be obtained by combining the Gaussian and solid
models. Basically, the resulting kernel is defined as the sum of two error functions:

ks(r) =
erf
(

w+2‖r‖
2
√

2σ

)
+ erf

(
w−2‖r‖
2
√

2σ

)
2 erf

(
w

2
√

2σ

) , (3.10)

where w controls the width of the fiber bundle and σ determines the edge steepness
[Figs. 3.1 (c) and 3.1 (f)]. Note that the previous kernels kr(r) and kg(r) are special
cases of this saturation model (see Fig. 3.2), i.e.

kg(r) = lim
w→0

ks(r) and kr(r) = lim
σ→0

ks(r) . (3.11)

3.3.3 Principal diffusion direction and eigenvalue fields

The PDV field of a WM fiber bundle is characterized by the first eigenvector
field e1(r). To reflect the width and continuity of the WM fiber bundle, e1(r) is
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sk r

solid
Gaussian
Saturated

s0
lim k r

s0
lim
w

k r
     

1

w ||r ||0

Figure 3.2. Illustration of the saturated model ks(r). The solid and the Gaussian model

are special cases of ks(r), taking the limits w → 0 and σ → 0 respectively.

calculated as a weighted sum of the vector lines Δi:

e1(r) =

N−1∑
i=1

T i(r)Δi∥∥∥∥N−1∑
i=1

T i(r)Δi

∥∥∥∥ , (3.12)

where the weighting coefficients T i(r) are derived from the model kernel, as de-
scribed in Eq. (3.2). The other eigenvector fields e2(r) and e3(r) can easily be
found by solving the equations e1(r) · e2(r) = 0 and e1(r) × e2(r) = e3(r).
To calculate the eigenvalue fields λi(r), several aspects of the WM fiber bundle with
respect to FA and MD should be considered. The diffusion of a single ideal WM
fiber bundle is mainly along the PDV and has an axial symmetric diffusion tensor
field, i.e. λ1(r) > λ2(r) = λ3(r). Therefore, FA(r) and MD(r) are calculated as:

FA(r) =

√
3
[
λ1(r) − λ2(r)

]√
λ2

1(r) + 2λ2
2(r)

; MD(r) =
λ1(r) + 2λ2(r)

3
. (3.13)

From this equation system, the eigenvalue fields λ1(r) and λ2(r) = λ3(r) are
calculated as:

λ1(r) =
3MD(r)

[
3 + FA(r)

√
9 − 2 FA2(r)

]
9 − 2FA2(r) + FA(r)

√
9 − 2 FA2(r)

(3.14)
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and

λ2(r) =
3MD(r)

[
3 − FA2(r)

]
9 − 2FA2(r) + FA(r)

√
9 − 2 FA2(r)

, (3.15)

where FA(r) and MD(r) are now given by Eq. (3.3).

3.3.4 Total diffusion tensor field

After the eigenvalues and eigenvectors that describe the WM fiber bundle have
been defined, the corresponding diffusion tensor field T (r) is calculated as T (r) =
E(r)Λ(r)E(r)−1, where the columns of the matrix E(r) define the orthonormal
eigenvectors ei(r) and the diagonal matrix Λ(r) represents the eigenvalues λi(r).
Analogously, the diffusion tensor field of a background tissue with particular aniso-
tropic properties, denoted as Db(r), can be computed. Finally, the total diffusion
tensor field Dtot(r) of J WM fiber bundles T{j}(r) with j = 1, . . . , J is determined
as follows:

Dtot(r) =

MDM (r)
J∑

j=1

Tj(r)

J∑
j=1

MDj(r)

+
MDM

M − MDM (r)
MDM

M

Db(r) , (3.16)

where MDj(r) represents the mean diffusivity of the jth WM fiber bundle and

MDM (r) = max
j

MDj(r) ; MDM
M = max

r
MDM (r) . (3.17)

This weighted sum allows one to model more complex configurations, such as the
crossing, merging, kissing and branching of WM fiber bundles. The first term in
Eq. (3.16) ensures that if multiple fibers with their unique corresponding diffusion
properties coincide, their global combined mean diffusion is normalized. The second
term in Eq. (3.16) enables the continuous transition of the diffusion properties of
each fiber separately to the diffusion properties of the surrounding background
tissue.

3.4 Methods

In vivo DTI of a starling brain was performed on an 7 Tesla MR system. A total of
24 sagittal slices (0.6 mm thick), covering the whole brain, were obtained. Spin echo
images, incorporating symmetric trapezoidal diffusion gradients were sequentially
applied in seven noncollinear directions. The components of the b-matrices were
calculated using analytical expressions, as described in Ref. [16], incorporating
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both the diffusion gradients (0 or 70 mTesla m−1 with δ = 12 ms and Δ = 20
ms) and the image gradients. Additional acquisition parameters were as follows:
BW = 25 kHz, FOV = 22 mm, TE = 43 ms, TR = 2400 ms, ramp time = 0.1
ms, acquisition matrix = (256 x 128), and number of averages = 14. The six
DW images were coregistered to the non-DW image by maximization of mutual
information [17]. The effective diffusion tensor and the derived FA and MD maps
were calculated in each voxel according to Ref. [18].

3.5 Results

3.5.1 Theoretical model

3.5.1.1 Single WM fiber bundles

The first step in constructing the simulated phantom is to define a set of points {ri}
that represent the fiber backbone t(r) [see Eq. (3.1)]. These points may describe
a model of a particular anatomical structure or they may be obtained from the
FT results of experimental data. The width of a WM fiber bundle is obtained
by convolving the fiber skeleton with a predefined model kernel. This physical
thickness reflects the natural continuous dependence of FA and MD values across
the fiber pathway, and is elucidated in Fig. 3.3 (a).
The PDV [i.e., the first eigenvector e1(r)] is constructed using a weighted sum of
the vector line segments that define the WM fiber skeleton [see Eq. (3.12)]. In this
way, the PDV field is continuous and aligned along the fiber backbone. Fig. 3.3
(b) illustrates the first eigenvector field after the real eigenvalue decomposition is
calculated. Note that only the orientation and not the direction of e1(r) is defined,
for diffusion is inherently a center-symmetric phenomenon, i.e. both e1(r) and
−e1(r) represent the main diffusion direction.
As described in Eqs. (3.14) and (3.15), the eigenvalues λ1(r) and λ2(r) = λ3(r) are
defined using the modeled diffusion maps. Thus, FA(r) and MD(r) can be chosen
independently and with high flexibility [see Fig. 3.4 (a)]. Analogously, the diffusion
tensor field of the background tissue can be constructed. Figure 3.4 (b) gives an
example of the WM fiber bundle embedded in its surrounding tissue. Notice the
continuous transition of the diffusion properties between the WM fiber bundle and
the surrounding tissue.

3.5.1.2 Complex WM configurations

In DTI tractography, fiber crossing is an important issue in determining the PDV
[19]. Lower anisotropy values are observed, and eigenvector directions do not cor-
respond with the direction of both fiber tracts at the crossing. In a previous study
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T(r)

t(r)

kr(r)

kg(r)

ks(r)

(a)

e1(r)

(b)

Figure 3.3. A single WM fiber skeleton t(r) is completely defined by the set of points

{ri}. (a) Several examples of the convolution function T (r), according to the different

model kernels k(r). (b) Principal diffusion direction of the WM fiber bundle, using the

color-encoding of T (r) to reflect the corresponding model kernel [in this case kg(r)].
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(1)

(2)

(3)

(4)

(5)

(6)

(a)

(b)

Figure 3.4. Elliptical representations of a WM fiber bundle. (a) Without background

tissue: (1) and (2) are calculated using the solid model kr(r), both with equal MD(r) =

MDM , but different FA(r) = FAM ; (3) and (4) are calculated using the Gaussian model

kg(r), also both with equal MDM , but different FAM ; (5) and (6) are combinations of

the models kr(r) and kg(r): in (5) FA(r) = FAM and in (6) MD(r) = MDM . (b)

With background tissue: in this example, a uniform field is given, i.e. FA(r) = FA,

MD(r) = MD and e1(r) = e1.
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using a geometric analysis of the diffusion tensor [20], the predominance of the
planar component was observed at fiber crossings.
It is generally known that the rank of the diffusion tensor increases when lower-rank,
noncollinear tensors are summed [21]. Therefore, calculating the weighted sum of
the fiber bundle diffusion tensor fields [see Eq. (3.16)] yields a natural representa-
tion of WM fiber crossing, which is consistent with the experimental observations.
An example of two crossing fiber bundles is given in Fig. 3.5. Also, other config-

FA  10

Figure 3.5. Ellipsoidal diffusion tensor field representation of fiber crossing using the

Gaussian model. The ellipsoids are color-encoded according to their FA to facilitate differ-

entiating the planar from the spherical diffusion. Note the decreasing FA at the crossing

area of the fiber bundles, for there, the planar component is much larger than the linear

component.
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urations like fiber merging, branching, and kissing can easily be constructed with
the use of this mathematical framework.

3.5.2 Experimental evaluation of the mathematical frame-

work

In this section, our method is evaluated with real characteristics of existing fibers,
which are derived from experimentally measured DTI data of the starling brain.
More specifically, a particular part of the cerebellum where WM fiber bundles are
clearly visible [see Fig. 3.6 (a,b,c)] was synthesized. A comparison of the different

(a)

(b) (c)

  ROI

(d) 

(e) (f) (h)   (g) 

Figure 3.6. (a) MD and (b) FA sagittal map of the starling brain; (c) FA map of the

cerebellum. The color-encoding of the FA maps provides directional information of the

local fiber orientation [22]. The white lines indicate the ROI to start the fiber tracking from;

(d) reconstructed fiber pathways of a particular part of the cerebellum; (e) the experimental

FA map of these specified WM fiber bundles; the corresponding (f) solid, (g) Gaussian and

(h) saturated modeled synthetic FA map.

synthetic DTI data sets with the corresponding experimental data allows one to

– 91 –



3.5. RESULTS

determine the optimum model and parameter settings. The evaluation procedure
is performed as follows:

• The WM fiber backbone trajectories at a specific ROI are defined by the
corresponding FT results, which in this case are obtained by the Fiber As-
signment by Continuous Tracking (FACT) approach [23].

• FAM and MDM of the WM fibers, and the characteristics of the background
tissue (global MD, FA, and PDV) are experimentally measured.

• Different model kernels are applied and the corresponding model parameters
are optimized (in a least-squares sense) to fit the experimental DTI data.

To account for the PVE, the total diffusion tensor field was integrated over its local
neighborhood, as specified by the experimental voxel dimensions. The resulting
simulated DTI data sets according to the solid, Gaussian, and saturated models
are depicted in Fig. 3.6 (f,g,h). The highest similarity (i.e., the lowest mean squared
difference (MSD) between the diffusion tensor components of the experimental and
the synthetic data) was obtained from the Gaussian and saturated models.

3.5.3 Example of a simulated phantom from experimental

data

Fig. 3.7 (a) shows the WM fiber network of the starling cerebellum, which is
computed with the FACT algorithm [23]. These fiber pathways are then synthesized
according to their experimentally derived diffusion properties to define the ground-
truth DTI data set. As shown in Figs. 3.7 (b) and (c), different fiber tracking
algorithms can now be compared using the simulated DTI data set. This conceptual
illustration already demonstrates the feasibility of evaluating DTT algorithms.

3.5.4 Application to WM FT

The main application of the simulated DTI phantom is to quantitatively test and
objectively compare different fiber tracking algorithms. Such a study consists of
evaluating the numerous criteria that characterize a tractography algorithm, as
elaborately described in Ref. [13]. Here we present only a few examples to demon-
strate how our methodology can be applied to evaluate and compare FT algorithms.

3.5.4.1 Synthetic data

The simulated DTI data (100 × 100 × 100 matrix size) is constructed by ran-
domly generating 29 WM fiber pathways with step size Δ = 0.5, varying cross-
sectional widths ({σ,w} ∈ [0.5, 1.5]), FA values (FAM ∈ [

√
3/10,

√
3 ]), MD values
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(a)

ROI

(b) (c)

Figure 3.7. (a) A 3D representation of the starling cerebellum with three orthogonal

FA maps (again color-encoded to provide directional information). (b) After synthesizing

this fiber network, fiber tracking results of the FACT approach (colored in cyan) and

the approach developed in [21] (colored in red), are compared with the ground-truth fiber

pathways (colored in white). In (c), subtle differences between these approaches can be

observed (e.g. indicated by the arrows), indicating a high sensitivity of the synthetic data.
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(MDM ∈ [0.5, 1.5]), and local curvatures κ (κ ∈ [0, 1]) in an isotropic background
with MD equal to one [see Fig. 3.8 (a)]. Note that the MD values are normalized
(dimensionless units), since actual experimental measurements were not performed.

3.5.4.2 Fiber similarity

The similarity measure S between a pair of fiber pathways (i.e., the simulated tract
ts and the experimentally reconstructed tract te) is here defined as [24]:

S(ts, te) = Rcs e−
E(ts,te)

C with Rcs =
Lcs

Ls + Le − Lcs
, (3.18)

where Ls and Le are the lengths of ts and te, respectively, and Lcs represents the
length of the corresponding fiber segment (i.e., the overlapping part of both fiber
tracts). E(ts, te) is defined as the mean point-by-point Euclidean distance between
the corresponding segments of ts and te, and the coefficient C regulates the trade-
off between E(ts, te) and the corresponding segment ratio Rcs. In this study, C is
chosen to be one voxel width.

3.5.4.3 Optimal curvature threshold

Most DTT algorithms require multiple user-defined FT termination thresholds,
such as the maximum fiber curvature κM , minimum FA (FAm), etc. As shown
in Fig. 3.8 (b), the optimal curvature threshold κ̃M can now be determined
via the similarity measure S, averaged over all fiber pathways (Sav), i.e. κ̃M =
arg maxκM

Sav(κM) Here κ̃M is observed to be independent of the predefined FAm

and Δ.

3.5.4.4 Sensitivity to noise

By adding different levels of Rician distributed noise to the DW images of the
corresponding ground-truth DTI data set [see Fig. 3.8 (c)→(f)], the sensitivity to
noise of DTT algorithms can now be studied. As shown in Fig. 3.8 (g), the FACT
approach is more sensitive to noise than the technique developed in Ref. [21].

3.6 Discussion

DTT has become a specialized application of DTI, resulting in the development of a
wide variety of algorithms. Basic DTT techniques reconstruct WM fiber pathways
by consecutively following the local first eigenvector of the corresponding diffusion
tensor, which is similar to calculating fluid streamlines in hydrodynamics (e.g.,
Refs. [11, 23, 25, 26]). To evaluate these approaches, simulated vector fields and
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Figure 3.8. (a) 3D representation of a simulated WM fiber system (for clarity, only

fibers longer than 50Δ are shown). (b) The averaged fiber similarity Sav as a function of

κM with FAm =
√

3/10 and Δ = 0.5, compared between the FT approaches of Mori et

al. [23] and Westin et al. [21]. (c)→(f) represent a slice of the synthetic DTI data set

with noise levels ζ = {0, 5, 10, 20} respectively, where ζ represents the standard deviation

of the Gaussian distribution that underlies the Rician distribution of the noise. (g) The

averaged fiber similarity Sav as a function of ζ.

– 95 –



3.6. DISCUSSION

elementary diffusion tensor phantoms suffice, because it is not necessary to incor-
porate all diffusion tensor characteristics to compute the fiber pathways. Although
these basic DTT methods can offer qualitative and diagnostic information about
the global anatomical connectivity of the brain, it is difficult to obtain reliable
quantitative results [7].

More advanced DTT algorithms take into account the entire diffusion tensor infor-
mation, and use statistical approaches to explore many potential connections and
select appropriate tracts. These FT techniques are less sensitive to noise and make
it possible to study fiber crossing and diverging in a quantitative way. To objec-
tively evaluate the DTT algorithms that accomplish these improvements, a mathe-
matical framework has been developed to simulate more advanced and realistic DTI
phantoms, which are useful for studying specific architectural configurations (e.g.,
fiber crossing and merging) or single WM fiber bundles with varying cross-sectional
diffusion properties. DTT techniques that utilize all DOF of the diffusion tensor to
compute WM fiber tracts require synthetic DTI data that also exhibit these DOF
of the diffusion tensor. Otherwise, an evaluation of these DTT techniques could
yield biased and incomplete results. Therefore, these synthetic DTI phantoms will
also play an important role in testing more advanced FT algorithms.

The evaluation of the proposed methodology for simulating DTI data of WM fiber
bundles indicates that a simple FA threshold within the modeled fiber structure
(i.e., the solid model) does not provide the most realistic synthetic data (see Fig.
3.6). An improved similarity between the experimental and synthetic data has
been obtained by defining the WM fiber bundle diffusion properties that vary
cross-sectionally, and incorporating a smooth transition between the WM fiber
bundle and its surrounding tissue (Gaussian and saturated models). These results
suggest that the PVE alone do not provide the optimum way to model WM fiber
structures.

An important aspect of evaluating and comparing different FT algorithms is uni-
formity, i.e. equal conditions for testing different DTT algorithms. Therefore, a
library of simulated DTI phantoms, each with specific configurations and diffusion
properties, should be developed and disseminated. Such a library can easily be
constructed with this framework, since it allows one to model specific anatomical
configurations that are obtained from actual experimental results. In addition, the
diffusion properties can be chosen independently and with high flexibility, or they
can be determined experimentally to attain a maximal accuracy.

The applications of this mathematical framework are not limited to the evaluation,
optimization, and comparison of DTT algorithms. Several DTI preprocessing tech-
niques, such as noise filtering, image coregistration, and regularization, also require
ground-truth data for testing and evaluation, and therefore can make use of this
framework to simulate DTI phantoms.
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3.7 Conclusions

A general mathematical framework for simulating DTI data sets of WM fiber bun-
dles is developed based on the corresponding physical diffusion properties. This
framework allows one to model a smooth transition between the WM fiber sys-
tem and its surrounding tissue. In addition, complex configurations of multiple
fiber bundles, such as crossing, merging, and kissing of fiber pathways, can also be
constructed.
Several models were quantitatively evaluated using experimental DTI data, and the
results indicate that a higher correspondence between experimental and synthetic
DTI data exists when the cross-sectional dependency of the WM fiber density is
modeled as nonconstant. Furthermore, these results suggest that modeling of the
PVE alone is not the optimum way to model WM fiber structures.
It has been demonstrated that the developed mathematical framework can provide
the necessary ground-truth DTI data for the quantitative evaluation and optimiza-
tion of user-defined tractography termination parameters. Moreover, the synthetic
ground-truth data allows one to objectively compare different FT algorithms. Fi-
nally, an example of how this framework can be applied to study FT sensitivity
with respect to different noise levels was presented.
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Chapter 4

Voxel based DTI

coregistration

The work in this chapter has been published in
A. Leemans, J. Sijbers, S. De Backer, E. Vandervliet, and P. M. Parizel, “Affine
coregistration of diffusion tensor magnetic resonance images using mutual infor-
mation”, Lecture Notes in Computer Science, Vol. 3708, p. 523–530, 2005.

4.1 Abstract

In this chapter, an affine image coregistration technique for DTI data sets is de-
veloped based on mutual information. The technique is based on a multi-channel
approach where the DW images are aligned according to the corresponding ac-
quisition gradient directions. Also, in addition to the coregistration of the DTI
data sets, an appropriate reorientation of the diffusion tensor is developed in or-
der to remain consistent with the corresponding underlying anatomical structures.
This reorientation strategy is determined from the spatial transformation while
preserving the diffusion tensor shape. The method is fully automatic and has the
advantage to be independent of the applied diffusion framework.

4.2 Introduction

Image coregistration, also referred to as matching or warping, is the process of
aligning images in order to relate corresponding features. The objective of any
coregistration technique is therefore finding the transformation that maps these
images into a common reference frame in which direct comparison is possible.
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Only then, abnormalities can be quantified based on a statistical analysis of these
multiple data sets.

Image coregistration has become an important application in many fields of image
analysis (e.g., multispectral classification in remote sensing, coregistration of com-
puter tomography (CT), Positron Emission Tomography (PET), and MRI data in
medicine, cartography, image fusion, etc.) due to the rapid development of many
image acquisition devices and the growing diversity of imaging modalities during
the last decades. This diversity of images to be registered makes it impossible to
design a universal method applicable to all coregistration tasks, resulting in an
ever-increasing number of publications on the topic each year. Excellent surveys
of recent and classic image coregistration techniques can be found in [1–3].

Specifically for DTI, a multiresolution elastic coregistration technique has been de-
veloped using similarity measures of the tensor data instead of scalar data [4]. In
the work of Jones et al., the FA images were used for coregistration [5]. Other tech-
niques have been proposed using tensor similarity, extending the general concept
of intensity-based similarity for matching to the tensor case [6, 7]. In Refs. [6] and
[7], an interpolation method is developed by means of the Kriging estimator and
spatial alignment is established via a locally optimized similarity function. Also,
coregistration techniques based on multiple channel information of several diffusion
tensor properties have been proposed [8, 9]. Xu et al. applied the ‘Hierarchical
Attribute Matching Mechanism for Elastic Registration’ (HAMMER) approach, a
high dimensional elastic transformation procedure, to DTI data sets [10]. For all
these DTI coregistration techniques, an additional step in the alignment procedure
is required to adjust the orientation of the underlying diffusion tensor according
to the transformation. To incorporate this task, a technique has been developed
by Alexander et al., in which the rotational component of the linear transforma-
tion, or the locally derived rotational component of a non-linear transformation, is
determined to reorient the tensors in the entire diffusion tensor field [4].

In the following sections, a 3D affine (rotation, translation, scale, and skew) DTI
coregistration technique is presented, based on the work of Maes et al. [11] using
mutual information as a similarity measure. To preserve the orientational infor-
mation of the diffusion tensor after affine transformation, an appropriate tensor
reorientation must be applied in order to remain consistent with the alignment
of the underlying anatomical structures. Current reorientation strategies (RS) for
such an affine transformation, such as the preservation of principal direction (PPD)
method, require calculating several rotation matrices to reorient the diffusion tensor
[12]. Here, a direct diffusion tensor reconstruction approach is developed without
the need to calculate these rotation matrices, resulting in a lower computational
cost.
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4.3 Theory

4.3.1 Spatial normalization

Mutual Information (MI) has already proven to be of high value for multimodality
image registration since its development in the mid nineties and could be considered
as the current ‘gold standard’ [11, 13, 14]. For scalar images, the registration
solution, i.e. the final transformation Φ, is determined by maximizing the MI
between the reference image R and the source image S:

Φ = arg max
φ

MI
[
φ(S), R

]
, (4.1)

where φ represents the affine transformation which is parameterized using a trans-
formation matrix. In Eq. (4.1), the MI measure is defined as follows [15]:

MI
[
G ≡ φ(S), R

]
=
∑
g,r

pGR(g, r) log2

pGR(g, r)
pG(g)pR(r)

, (4.2)

where G is the transformed source image, g and r are the image intensity values,
pG and pR denote the marginal probability distribution functions, and pGR(g, r)
represents the joint probability distribution.
Specifically for DTI, we apply a k-channel MI registration approach, where k =
0, . . . , K represents the number of DW images1:

Φk = arg max
φ

MI
[
φ(Sk), Rk

]
, (4.3)

where Rk and Sk denote the reference and source DW images, respectively. It is
important to note that the assumption is made that the DW images, derived from
a single acquisition, are already mutually aligned with the non-DW image, i.e.

∀k = 1, . . . , K : arg maxφ MI
[
φ(Rk), R0

]
= 1

∀k = 1, . . . , K : arg maxφ MI
[
φ(Sk), S0

]
= 1 , (4.4)

where 1 represents the unity transformation.
From Eq. (4.3), the final transformation Φ can be calculated as a weighted function
of the transformations Φk with the corresponding MI values as weighting factors,
i.e.

Φ̂ =
1
Ω

K∑
k=0

ωk Φ̂k with ωk = MI
[
Φk(Sk), Rk

]
and Ω =

K∑
k=0

ωk , (4.5)

where Φ̂ and Φ̂k represent the transformation parameters of Φ and Φk, respec-
tively. Using Eq. (4.5) to calculate the final parameters Φ̂, one can also obtain the

1In our experiments, K = 60, where k = 0 represents the non-DW image.
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corresponding registration precisions SΦ̂ of these transformation parameters:

SΦ̂ =

√√√√ 1
ΩK

K∑
k=0

(Φ̂ − Φ̂k)2 , (4.6)

which are valuable measures to evaluate the quality of the registration technique.

4.3.2 Diffusion tensor reorientation

It is obvious that there are no difficulties in transforming scalar images. The
image value from a specific voxel is transferred, via the spatial transformation, to
the reference image, where a posteriori an interpolation method must be applied
to reconstruct the reference grid. For rank one (and higher) tensors, a specific
reorientation should be applied in order to keep the orientational information intact.
For diffusion tensors (rank two), an extra condition is required, i.e. the shape should
also be preserved [12].
Consider the real-valued symmetric diffusion tensor D. After eigenvalue decom-
position, D can be written as D = E · Λ · ET , where the matrix E defines the
orthonormal eigenvectors ei and the diagonal matrix Λ represents the eigenvalues
λi of D. Extracting the linear transformation matrix ΦL of Φ, the new eigenvectors
ni are calculated as follows:

n1 =
ΦLe1

‖ΦLe1‖ , n2 =
ΦLe2 −

(
n1

T ΦLe2

)
n1

‖ΦLe2 − (n1
T ΦLe2) n1‖ , n3 = n1 × n2 (4.7)

The reoriented diffusion tensor DΦ can now be reconstructed as DΦ = N ·Λ ·NT ,
where the matrix N defines the transformed eigenvectors ni. Notice that the
diffusion tensor shape is fully defined by the eigenvalue matrix Λ and is equal for
DΦ and D.

4.4 Methods

4.4.1 Simulated DTI data

The mathematical framework, as described in the previous chapter, is used to simu-
late DTI data sets of WM neural fiber bundles, based on the corresponding diffusion
related physical properties [16]. In summary, several synthetic DTI data sets are
constructed by first defining the fiber pathway, its corresponding width, FA, MD,
and cross-sectional dependency of the fiber density. Subsequently, these properties
are translated in the eigenvalues and eigenvectors that define the diffusion tensor.
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4.4.2 Experimental DTI data

Two in vivo DTI data sets of the (healthy) human brain (male, 25y) were acquired
on a 1.5 Tesla MR system (Fig. 4.1). Thereby, 60 axial slices with thickness

(a) reference image (b) source image 

Figure 4.1. Two DTI data acquisitions of the (same) brain under different orienta-

tions: (a) the reference image R and (b) the source image S. The color-encoding in both

images provides directional information, as indicated by the axes, of the underlying fiber

orientation, which is assumed to be tangential to the local diffusion tensor.

of 2 mm were obtained covering the whole brain (voxel size of 2 × 2 × 2 mm3).
A gradient configuration with 60 directions was used and additional acquisition
parameters were as follows: b-factor = 700 s/mm2, repetition time = 8.3 s, echo
time = 108 ms, and number of b0 (no diffusion weighting) averages = 10. Further
image processing of the DTI data sets, i.e. calculation of the diffusion tensor and
the direction color-encoded maps, was performed with ‘ExploreDTI’, a graphical
toolbox for exploratory DTI [17].

4.5 Results

4.5.1 Coregistration of simulated DTI data sets

As shown in Fig. 4.2 (a→c), rotating a DTI data set 90 degrees clockwise, as
if considered to be scalar data, results in a loss of directional information of the
underlying fiber tissue. Applying the RS corrects for both the shape and the
predominant diffusion direction.
A second, less trivial example, is elucidated in Fig. 4.2 (d→g): a skew has been
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FAmin max

(a) (b) (c)

(d) (e) (f) (g)

Figure 4.2. Ellipsoidal representations of synthetic DTI data sets using FA color-

encoding. Example 1: (a) source image; (b) 90 degrees rotated (source) image without

RS and (c) with RS. Example 2: the ground-truth data sets (d) reference image and (e)

source image (=skewed reference image); the registered images without RS (f) and with

RS (g).
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applied to the horizontal direction. After coregistration, a significant difference
exists between the reoriented and non-reoriented diffusion tensor field.
Both qualitative results indicate that the proposed RS effectively reorients the
diffusion tensor field, preserving the directional information of the underlying fiber
direction.

4.5.2 Coregistration of experimental DTI data sets

Figure 4.3 shows the results when applying the registration method to experimen-
tal DTI data. A specific part of the brain, i.e. the CC, is zoomed in to properly
visualize the (bidirectional) first eigenvector of both the reference (red), the reg-
istered without RS (blue), and the registered with RS (orange) images. Although
these results are qualitatively, they strongly indicate feasibility of the proposed
coregistration technique to align experimental data.

4.6 Conclusions

A new 3D affine voxel based DTI coregistration technique has been developed us-
ing a direct diffusion tensor reconstruction approach to preserve the underlying
orientational information. This multi-channel matching method applies mutual
information as a similarity measure for the multi-valued DTI data sets. Simula-
tions have been performed, demonstrating the applicability of the diffusion tensor
shape preserving reorientation strategy. Also, an in-vivo coregistration example
has been worked out, indicating feasibility of the proposed technique to coregister
experimental data.
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(a) reference image (b) source image 

(c) registered image without RS (d) registered image with RS 

(e) principal diffusion vectors: reference – registered without RS – registered with RS 

Figure 4.3. Human brain DTI images (three orthogonal slices of the volume data):

color-encoding again provides directional information, which is reflected by the colored

axes (notice the question marks in (c) due to the unknown directional information). Note

that in (e), the principal diffusion vectors of the registered image with RS are better aligned

with the reference image, than when the RS is omitted.
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Chapter 5

Feature based DTI

coregistration

The work in this chapter has been published in
A. Leemans, J. Sijbers, S. De Backer, E. Vandervliet, and P. M. Parizel, “Multi-
scale white matter fiber tract coregistration: a new feature-based approach to align
diffusion tensor data”, Magnetic Resonance in Medicine, (in press) 2006.

5.1 Abstract

In this chapter, an automatic multiscale feature-based rigid-body coregistration
technique for diffusion tensor imaging is developed based on the local curvature κ

and torsion τ of the white matter fiber pathways. As a similarity measure, the Mean
Squared Difference (MSD) of corresponding fiber pathways in (κ, τ)-space is chosen.
After minimizing the MSD along the arc length of the curve, principal component
analysis is applied to calculate the transformation parameters. In addition, a scale-
space representation of the space curves is incorporated, resulting in a multiscale
robust coregistration technique. This fully automatic technique inherently allows
one to apply region of interest coregistration and is adequate to perform both
global and local transformations. Simulations on synthetic diffusion tensor data are
performed evaluating the coregistration accuracy and precision. Finally, an in-vivo
coregistration example is presented and compared with a voxel based coregistration
approach, demonstrating the feasibility and advantages of the proposed technique
to align diffusion tensor data of the human brain.
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5.2 Introduction

It is often desirable to combine the WM fiber tractography results from two or more
studies on the same patient (follow up), or even to merge intersubject fiber tracking
information (control versus pathology). Accurate alignment of different WM fiber
bundle data in a common reference frame is then indispensable for quantitative
analysis.
WM fiber pathways that are obtained from a tractography calculation can be con-
sidered as piecewise differentiable 3D space curves. Since these space curves rep-
resent the relevant information in several studies, it would be more efficient to
coregister the space curves than to match the full voxel based DTI data. Here,
only the data of the WM fiber tracts are used for the computation process which
is considerably less than the full voxel based DTI data.
Only a few feature-based coregistration techniques have been developed for match-
ing 3D curves: Kishon et al. address the problem of finding the longest matching
subcurve appearing in two space curves, based on the rotationally and transla-
tionally invariant measures curvature κ and torsion τ [1]. Each of these measures
(or shape signatures) are stored in the form of a hash table, where the entries are
associated with the values of (κ, τ)-pairs. Improvements of this technique, intro-
duced by the work of Guéziec et al., relate to the efficient one-dimensional hash
table implementation, the spline approximation of the space curves, and the statis-
tical analysis of different invariance measures for matching [2]. Comparison with
other approaches to curve model matching, regarding the optimization and the
transformation computation, have been described in [3, 4].
Within the field of DTI, the importance of the measures curvature and torsion for
characterizing fiber tracking results has been mentioned previously [5, 6]. Moreover,
in this context, Batchelor et al. and Corouge et al. employed these intrinsic
measures to classify fiber tracts and quantify their local shape [7–11]. However, in
their work, curvature and torsion were not used to coregister different data sets, i.e.
no spatial transformations were explicitly calculated to map two (or more) data
sets to a common coordinate frame.
In this chapter, a multiscale 3D rigid-body (rotation and translation) coregistration
technique for DTI WM fiber tractography data sets is developed. The fiber tracts
(which are space curves) are used to determine the optimal transformation instead
of the voxels of the diffusion tensor data. From these space curves, local curvature
κ and torsion τ are calculated to establish direct labeling of corresponding space
curves. For each pair of matched space curves a local transformation is calculated
from which the final global transformation is estimated. A scale-space-based con-
stant arc length parameterization at different scales is incorporated to obtain a
robust multiscale coregistration algorithm.
To our knowledge, this methodology represents the first mathematical framework
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for coregistering DTI data sets based on the corresponding fiber tracts. The pro-
posed coregistration technique is fully automatic, allows one to apply ROI coreg-
istration, and is adequate to perform both global and local transformations. Sim-
ulations are performed to evaluate the coregistration accuracy and precision for
different noise levels and several user-defined parameters. In addition, an in vivo
intra-subject coregistration example is given to demonstrate the feasibility of the
proposed technique to align DTI data of the human brain. Finally, a comparison is
made with a voxel based coregistration approach to evaluate the performance for
the experimental results.

5.3 Theory

This section gives the mathematical framework of the coregistration technique.
First, the concepts of curvature and torsion with respect to space curves, i.e. the
WM fiber pathways1, are briefly described. Next, the new coregistration tech-
nique is expounded. Finally, the computation of the transformation parameters is
described.

5.3.1 Curvature and torsion of space curves

5.3.1.1 Definitions

For a regular space curve α(s) = [x(s), y(s), z(s)], where the spatial coordinates x,
y and z are parameterized by the arc length s, curvature κ(s) is defined as [12]:

κ(s) = |α′′(s)| (5.1)

It is a measure for the rate at which the curve pulls away from the tangent vector
t(s) = α′(s). The direction in which α(s) is pulled, is given by the normal vector
n(s). If the normal to the plane spanned by t(s) and n(s) is given by b(s) =
n(s) × t(s), also called the binormal vector, then torsion τ(s) is defined as [12]:

b′(s) = τ(s)n(s) . (5.2)

It measures how quickly the space curve pulls away from the plane spanned by n(s)
and t(s). Note that, in contrast to curvature, torsion may be either positive (for
right-handed space curves) or negative (for left-handed space curves). An example
of a space curve is displayed in Fig. 5.1 (a)→(c) to elucidate the meaning of τ and
κ.
In WM fiber tractography, only the sampled version of a space curve is available.
Subsequently, the space curve α can be represented by a (3×N)-matrix, where N

1In this section, the mathematical term ‘space curve’ is used to denote WM fiber pathways.
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Figure 5.1. (a) With every point s of the space curve α(s), a Frénet frame, i.e. the

vector triple (t, n, b), can be associated describing the local geometrical properties κ and τ .

In (b) and (c), κ respectively τ are shown as a function of the parameterization index s. In

(d), three parts of the space curve of (a) are shown with random orientation and position.

Rigid transformation of these space curves αj (with respective rotation Rj and translation

Tj) results in the corresponding curves βj, displayed in (e). In (f), transforming the space

curves αj and βj to (κ,τ)-space shows the invariance properties of κ and τ .
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is the number of positions α(i) = (xi, yi, zi). A segment between consecutive space
curve points is denoted as Δi = α(i + 1) − α(i). For every sample point i of the
space curve α curvature and torsion can now explicitly be written as

κi =
|α′(i) × α′′(i)|

|α′(i)|3 (5.3)

and

τi =
α′(i) · (α′′(i) × α′′′(i))

|α′(i) × α′′(i)|2 , (5.4)

where the derivatives α′(i),α′′(i) and α′′′(i) are discretely calculated (e.g., α′(i) =
Δi/‖Δi‖). Note that in (κ, τ)-space, α can now be represented by a (2×N)-matrix,
where each sample point is given by gi(α) ≡ (κi, τi). From a technical point of
view, it is also important to note that when κ ≈ 0, τ is undefined. Therefore, in
this case (e.g., κ < 10−6), the space curve α was locally only characterized by κ.

5.3.1.2 Invariance properties

A fundamental theorem in differential geometry states that the intrinsic properties
of a parameterized space curve α are uniquely defined by the curvature κ and the
torsion τ , i.e. every other space curve β that differs from α by a rigid motion
(i.e., β = R · α + T with R a rotation matrix and T a translation vector) will
have identical κ and τ assuming that a one-to-one correspondence between the
parameterizations is feasible [see Fig. 5.1 (d)→(f)] [12]. With this theorem, imme-
diate comparison of curves in (κ, τ)-space independent of rotation and translation
is feasible, forming the basis of our mathematical framework to coregister space
curves.

5.3.2 Space curve coregistration

In this section, the different aspects of the proposed coregistration technique are
expounded. Consider two sets of space curves (or stated equivalently, two fiber
tracking results) that need to be registered: the source curves {α} ≡ {αj | j =
1, . . . , Jα} and the target curves {β} ≡ {βj | j = 1, . . . , Jβ}. Note that the tract
pathways {α} and {β} are not necessarily confined to a specific anatomical fiber
structure. Subsequently, the proposed technique inherently allows one to coregister
tractography data sets that have a different FOV, i.e. tracts that are not present
in one data set will hardly influence the coregistration result.
In summary, the coregistration framework contains the following steps:

1. For each space curve αj , or a subcurve thereof, find the optimal matching
space curve βj , or a subcurve thereof, by minimizing the MSD between their
corresponding local curvature and torsion. This local matching procedure,
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dubbed ‘curve index correspondence’, is performed for each space curve sep-
arately.

2. For each set of matched space (sub)curves (αj ,βj) a local transformation
Φj is calculated by applying a fast point-to-point coregistration approach,
which is equivalent to Schönemann’s solution of the ‘orthogonal Procrustes
problem’ [13].

3. The global rigid-body transformation Ψ that maps the source curves {α} to
the target curves {β} is estimated from the set of local transformations Φj .

The previous steps are repeated for different scale-space representations of the space
curves. The optimal transformation is finally calculated by minimizing the global
residue with respect to this scale parameter. By applying this multiscale approach,
a more robust coregistration can be achieved.

5.3.2.1 Curve index correspondence

Before the transformations Φj can be calculated, correspondence between the space
curves {α} and {β} must be established, i.e. for each curve αj , the optimal
corresponding βj must be found. For this purpose, we reparameterize each space
curve along its arc length with a constant step size Δ, i.e. for each space curve αj

and βj the distance between consecutive sample points is now given by Δ. Here, Δ
can be taken equal to the step size parameter that was defined in the tractography
procedure. This uniform arc length reparametrization is computed analytically by
consecutively intersecting the space curve with a sphere of radius Δ, where the
center of each sphere is determined by the preceding intersection point.
The constant arc length reparametrization allows one to compare individual space
curves in (κ, τ)-space by minimizing the MSD of different space curves according
to both the space curve index and the set of subcurves. A subcurve of αj or βj

containing L consecutive sample points is denoted as αL
j and βL

j , respectively. For
every source subcurve, the corresponding target subcurve is now determined by
minimizing the MSD over all pairs of subcurves in all pairs of curves, i.e. ∀ j ∈
{1, . . . , Jα} ∃ k ∈ {1, . . . , Jβ} :(

αK
j ,βK

k

)
= arg min

l,L
MSD

(
αL

j ,βL
l

)
(5.5)

with

MSD
(
αL

j ,βL
l

)
=

1
L

L∑
i=1

∥∥gi

(
αL

j

)− gi

(
βL

l

)∥∥2 (5.6)

and
L ∈ {Lmin, . . . ,min

(
Nαj

, Nβl

)}
, (5.7)
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where Nαj
and Nβj

represent the number of sample points of the space curves
αj and βj , respectively, and the predefined parameter Lmin denotes the minimum
number of sample points that represent a subcurve.
Eq. (5.5) describes the matching process for finding the optimal curve (or subcurve)
in the set {α} for each of the curves (or subcurves) of the set {β}. The optimization
with respect to the index L represents the search for the best match within the set
of possible subcurves for a particular pair of curves αj and βl. The index l simply
denotes the space curve index of a particular curve in the set {β}. In Eq. (5.6), the
MSD of g ≡ (κ, τ) is taken between the corresponding sample points i of αL

j and
βL

l . Finally, Eq. (5.7) states that the number of sample points of any subcurve
of the space curves αj and βj used in the matching procedure is confined between
Lmin and the minimum of Nαj

and Nβj
.

5.3.2.2 Local space curve transformation

After establishing the correspondence between the space curves [see Eq. (5.5)], the
transformation Φj associated with each pair of space curves (αK

j ,βK
j ) is determined

by applying a fast point-to-point coregistration approach, which is equivalent to
Schönemann’s solution of the ‘orthogonal Procrustes problem’ [13], as follows (for
clarity, the indices j and K are omitted in this section):

1. Calculate the auto-covariance matrices C of the space curve traces:

Cα =
(
α − 〈α〉 · 1) · (α − 〈α〉 · 1)T

Cβ =
(
β − 〈β〉 · 1) · (β − 〈β〉 · 1)T .

(5.8)

The centroids of α and β are represented by the (3 × 1)-matrices 〈α〉 and
〈β〉, respectively, and 1 represents the (1 × N)-column vector filled with 1.

2. After real eigenvalue decomposition of these covariance matrices, the rotation
matrix R and the translation matrix T are computed as:

R =
3∑

i=1

eβ
i · (eα

i

)t (5.9)

and
T = 〈β〉 · 1 − R · 〈α〉 · 1 (5.10)

with eα
i and eβ

i the eigenvectors of Cα and Cβ, respectively. The registered
space curves γ ≡ Φ(α) can now be determined by γ = R · α + T . Note
that only the orientation and not the direction of the eigenvectors is known.
Therefore, the matrix R that minimizes the MSD between β and γ in real
space is finally taken, i.e.

R = arg min
S

MSD (β,γ = S · α + T ) (5.11)
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with the MSD now defined in real space, i.e.

MSD (β,γ) =
1
K

K∑
i=1

‖β(i) − γ(i)‖2 , (5.12)

where K denotes the number of sample points.

A schematic illustration is given in Fig. 5.2 to elucidate this Principal Component
Analysis (PCA) based transformation.

(   ,    ,    )1e 2e 3e

(   ,    ,    )1e 2e 3e

x
y

z

Figure 5.2. The principal components eα
i and eβ

i of α respectively β determine the

rotation matrix R. The translation matrix T is computed from the centroids 〈α〉 and 〈β〉.

5.3.2.3 Global space curve transformation

The following procedure is applied for finding the global transformation Ψ from
the local transformations Φj :

1. For each transformation Φj , associated with a pair of corresponding space
curves (αj ,βj), a global coregistration residue εj is calculated after trans-
forming all the source curves {α} with Φj , i.e.

εj = MSD [{β}, {γ} ≡ Φj({α})] , (5.13)

where the MSD over all pairs of curves (hence the curly brackets) and all
points of each curve is calculated in real space as in Eq. (5.12).

2. For the p percent smallest residues εj , the transformation parameters μj =[
θj

x, θj
y, θj

z, t
j
x, tjy, tjz

]
are calculated.
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3. From the sets of transformation parameters μj , a final global transforma-
tion Ψ can now be estimated with a corresponding coregistration residue ε,
calculated as:

ε = MSD [{β}, {γ} ≡ Ψ({α})] . (5.14)

Calculation of the median and the interquartile range of the transformation
parameters μj is preferred due to the potential non-normality of the μj dis-
tribution.

From a technical point of view, it is important to note that two (or more) source
curves theoretically could match the same target curve. In this situation however,
the corresponding residues εj will be ranked differently, providing a natural way to
estimate the final global transformation.

5.3.2.4 Multiscale coregistration

In order to construct a space curve α at different levels of detail σ, a scale-space
method is applied [14]. In this approach, α(s) is convolved with a Gaussian kernel
g(s, σ) with mean 0 and standard deviation σ to compute the varying levels of
detail, i.e.

ασ(s) = α(s) ∗ g(s, σ) . (5.15)

The process of constructing the curves ασ as σ varies from 0 to ∞, is referred to
as the evolution of α. Notice that with this scale-space approach curvature and
torsion of the evolved versions of a space curve can efficiently be computed: taking
the ith derivative in both sides of Eq. (5.15), it is known that

α(i)
σ (s) = α(s) ∗ g(i)(s, σ) , (5.16)

which eliminates the necessity to directly calculate the derivatives of the space curve
coordinates [14]. As a consequence, the discrete calculation of the derivatives, as
previously described, can now be replaced by Eq. (5.16) for σ > 0. The final
transformation Ψ can now be found as follows:

Ψ = arg min
�Ψ

MSD({β}, Ψ̃({ασ})) , (5.17)

where the MSD is computed in real space as in Eq. (5.12).
An alternative to this scale-space approach is fitting of 3D splines to the space curve
coordinates at multiple scales [15]. From those splines, curvature and torsion could
then be computed. The drawbacks of this method are the high computational cost
and the variability of the results due to the arbitrary choice of knot points.
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5.3.2.5 Computational complexity

The general computational complexity of coregistering Jα source curves {α} with
Jβ target curves {β} for σ different levels of detail is proportional to 〈S〉σJαJβ,
where 〈S〉 represents the average number of comparisons necessary for finding sub-
curve correspondence. It can be shown that this number of comparisons S for
finding subcurve correspondence between a source curve α and a target curve β

with Nα respectively Nβ sample points (take Nα < Nβ) is given by:

S =
(Nα − Lmin + 2)(Nα − Lmin + 1)(3Nβ − Nα − 2Lmin + 3)

3
. (5.18)

The factor S is mainly determined by Lmin, which in this work is defined as the
minimum length (expressed in number of sample points) of αj and βj [see Eqs.
(5.5) and (5.7)]. This definition implicitly assumes that source curves should exist
which can be considered as subcurves of the target curves or vice versa. For WM
fiber tractography this assumption appears to be valid, resulting in a total number
of comparisons, which is approximately proportional to 〈Nβ − Nα〉σJαJβ.
A reduction of the computational complexity can be achieved by introducing a
space curve sampling factor ξ. This user-defined parameter uniformly samples the
space curve data sets, reducing computation times by a factor of ξ−2, and can be
applied for densely seeded fiber tracking results.

5.4 Methods

5.4.1 Simulated DTI data

The mathematical framework described in chapter 3 is used to simulate DTI data
of WM neural fiber bundles, based on the corresponding diffusion related physical
properties [16]. In order to evaluate the accuracy of the proposed coregistration
technique, two synthetic DTI phantoms of WM fiber bundles were generated under
different orientations. Without loss of generality, the misalignment between the
fiber tracts was predefined by one parameter θz = π/6, i.e. the rotation angle
associated to the z-axis [Fig. 5.3 (a) and (b)].
It is important to note that for simulating a ground-truth DTI data set of the
same fiber tracts, but with a different orientation, the fiber tracts should be trans-
formed first and then the synthetic DTI data set should be generated, for then, the
smoothing effect caused by interpolation (which influences the fiber tractography
results) can be avoided.
Both DTI data sets had a (50×50×50)-matrix size with isotropic voxel dimensions
(2 × 2 × 2 mm3). Other image parameters were equal to the experimental data
acquisition parameters, which are described in the next section. Different levels
of Rician distributed noise were added to the DW images of the corresponding
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ground-truth DTI data sets in order to study the noise sensitivity of the proposed
coregistration technique.

5.4.2 Brain DTI data

Two in vivo DTI data sets of the healthy human brain (male, 25 year) were acquired
on a 1.5 Tesla MR. After the first ‘normal’ acquisition, the volunteer was asked
to reposition his head randomly for the second acquisition, mainly resulting in an
axial rotation [Fig. 5.3 (c) and (d)]. Thereby, 60 axial slices with thickness of 2 mm
were obtained covering the whole brain (voxel size of 2 × 2 × 2 mm3). A gradient
configuration with 60 directions (evenly distributed on a sphere and identical for
both acquisitions) was used and additional acquisition parameters were: b-factor
= 700 s/mm2, TR = 8300 ms, TE = 108 ms, and number of averages of the T2-
weighted image = 10. The mean SNR values of the T2-weighted images and the
DW images were 21 and 10, respectively. The DW images were coregistered to the
T2-weighted image by maximization of mutual information to correct for motion
artifacts and residual eddy current distortions (typically less than 1-2 voxels)
using MIRIT (Multimodality Image Registration using Information Theory) [17].
Trilinear interpolation was performed to resample the transformed images. It is
important to note that an appropriate intensity correction of the DW images should
be incorporated within this procedure if motion artifacts or eddy current distortions
would not be negligible (i.e., higher than ∼ 2 voxels) [18].

The effective diffusion tensor, the corresponding eigensystem, and the subsequently
derived FA and MD values were calculated in each voxel according to [19]. Further
image processing of the DTI data sets, i.e. calculation of the direction color-encoded
maps, was performed with ‘ExploreDTI’ [20].

5.4.3 Fiber tractography

A standard deterministic streamline fiber tracking approach was applied to both
the synthetic and the brain diffusion tensor data sets, as described previously in
[5]. For the synthetic data, fiber tracking was initiated from predefined positions
on each WM fiber pathway, ensuring identical seed points in both data sets. The
step size Δ was set to 1 mm, fiber tracking was terminated when entering locations
where FA < 0.1 or the angle between consecutive tract segments θt was larger than
π/4. For the DTI data of the brain, fiber tracts were initiated from each voxel with
FA > 0.5. To minimize the cluttering of short fiber tracts, all tracts with length
smaller than 50 mm were omitted.
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Figure 5.3. (a) and (b) represent the tractography results of, respectively, a (noiseless)

target and a (noisy) source synthetic DTI phantom. The ellipsoids depict the local diffu-

sion properties and the background gray scaling reflects the corresponding FA value. Two

DTI data acquisitions of the (same) brain under different orientations are shown in (c),

i.e. the ‘normal’ image, and in (d), i.e. the ‘rotated’ image. As indicated by the axes,

the color-encoding in the images provides directional information of the underlying fiber

orientation, which is assumed to be tangential to the local PDV.
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5.5 Results

5.5.1 Quantitative analysis of the white matter fiber coreg-

istration technique

5.5.1.1 Noise sensitivity

In order to study the noise sensitivity of the proposed coregistration technique,
different levels of Rician distributed noise were added to the DW images and the T2

images of the corresponding synthetic DTI data sets. This procedure was repeated
for a large number of trials (10, 102, and 103) and the resulting averaged SNR values
ranged from 15 to 150. For each trial, both target curves {β} and source tracts {α}
were reconstructed first (with Jα � Jβ � 103 and 〈Nα〉 � 〈Nβ〉 � 75) using the
fiber tractography approach as mentioned previously. Second, the coregistration
technique was applied with the following parameters: residue cut-off value p = 10%,
i.e. 10% of the calculated local registration transformations is used to estimate the
final global transformation; multiscale values σ = 0, 1, 2, . . . , 20 in unit size Δ;
space curve sampling factor ξ = 1. As shown by the simulation results in Fig. 5.4
(a), no indications of a bias, i.e. a systematic deviation of the coregistration result
with respect to the ground-truth solution, were obtained. Note that the error bars
represent the inter-quartile range instead of the 95% confidence interval due to the
non-normality of the θz distribution of the coregistration results.

5.5.1.2 Multiscale coregistration

To demonstrate the benefit of the proposed multiscale approach, the coregistration
technique was applied (SNR = 21; ξ = 1; p = 10%; single trial2) for each level
of detail σ = 0, 1, 2, . . . , 20 independently [see Fig. 5.4 (b)]. As indicated by the
minimal corresponding coregistration residue ε, the most accurate result is obtained
at a higher (non-zero) scale. Also, it has been observed that a decrease in SNR
results in an increase of the optimal scale σ.

5.5.1.3 Global transformation estimation

In Fig. 5.4 (c), the effect of the residue cut-off value p on the coregistration precision
and accuracy is shown (SNR = 21; ξ = 1; σ = 0, 1, 2, . . . , 20; single trial). Here, it
was observed that the choice of the p percent residue cut-off influenced the trade-
off between the coregistration precision and accuracy, i.e. increasing the p value
increased the accuracy, but decreased the precision and vice versa.

2The error bars (inter-quartile range), associated with the registration solution of a single

trial, stem from the final estimation of the global transformation Ψ, as previously described in

the section ‘global space curve transformation’.
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Figure 5.4. (a) The coregistration accuracy and precision as a function of the SNR. (b)

The coregistration solution and the corresponding residue ε as a function of the evolution

scale σ. As indicated in red, the final transformation is determined according to Eq.

(5.17). (c) The coregistration accuracy and precision as a function of the residue cut-off

p. (d) The effect of excluding target tracts on the coregistration result. (e) The effect

of the space curve sampling factor ξ on the coregistration result and the corresponding

normalized time complexity t.
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5.5.1.4 ROI based coregistration

As shown in Fig. 5.4 (d), the precision is not decreased by systematically omitting
a predefined percentage of target space curves with consecutive curve indices (or
equivalently source space curves) in the coregistration procedure. The accuracy on
the other hand is decreased for an increasing amount of missing tracts, but remains
acceptable up to 80%.

5.5.1.5 Space curve sampling and time complexity

To reduce the computation time for densely seeded fiber tracking results, a user-
defined space curve sampling factor ξ can be defined which uniformly subsamples
the set of space curves. In the performed simulation [see Fig. 5.4 (e)], no significant
decrease in coregistration accuracy or precision is observed for uniform space curve
subsampling (i.e., only every ξth space curve is used in the computation of the
coregistration result) up to 10% of the total set of space curves.
Effective computation times3 (with parameters Jα ≈ Jβ ≈ 103; σ = 0, 1, . . . , 20;
〈Nα〉 ≈ 〈Nβ〉 ≈ 75) ranged from ∼ 15 min (for ξ = 1) to ∼ 10 sec (for ξ = 10).
The corresponding general time complexity t (normalized to one) as function of
the space curve sampling factor ξ is also shown in Fig. 5.4 (e).

5.5.2 Coregistration of brain DTI data sets

First, fiber tractography was performed on both DTI data sets resulting in Jα �
Jβ � 2 × 103 fiber pathways with 〈Nα〉 � 〈Nβ〉 � 100 [see Fig. 5.5 (a) and
(b)]. Second, the coregistration technique is applied with the following parameters:
p = 10%, ξ = 5, and σ = 0, 1, 2, . . . , 20 (total computation time was ∼ 5 min). As
shown in Fig. 5.5 (c), (d), and (e), the coregistered space curves {γ} ≡ Ψ({α}) are
correctly aligned with the target curves β. An additional example is presented in
Fig. 5.5 (f, g, and h) to visually evaluate the same coregistration result. Here, only
the tracts of the entire body of the corpus callosum have been segmented (with
separate midsagittal ROI selection on both the target and the registered data set)
and transparency rendering has been applied to further facilitate the inspection of
the coregistration accuracy. This qualitative example also demonstrates that the
coregistration method inherently allows one to apply ROI coregistration, for in Fig.
5.5 (c, d, f, and g), the difference in FOV is clearly visible.
The obtained transformation parameters μ = [θx, θy, θz, tx, ty, tz] that define the
spatial transformation Ψ are given in Fig. 5.6 (a). In addition, pseudo-color-
encoded maps are shown that approximately represent the FA map of the target
data (red), the transformed source data (green), and the mutually overlapping

3All computations were performed with not optimized Matlab code on a 3.4 GHz CPU com-

puter.
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{ }

{ }

(a) (b)

(c) (d) (e)

FOV

{ } { }
{ }

(g) (h)(f)

Figure 5.5. (a) The target curves β and (b) the source curves α, both color-encoded

according to the local direction (see axes). (c), (d), and (e) represent the coregistered

curves {γ} ≡ Ψ{α} (green) combined with the target curves (red) in the common reference

frame along the coronal (c), sagittal (d), and axial (e) view. In (f), (g), and (h) only the

corresponding body of the corpus callosum is shown to further facilitate the qualitative

evaluation of the coregistration result. Note that there is a different FOV between the data

sets, as indicated in (c, d, f, and g).
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Figure 5.6. In (a) the transformation Ψ (obtained from the fiber tract coregistration),

and in (b) the transformation Γ (obtained from the voxel based coregistration), are applied

to the FA volume maps to qualitatively assess the coregistration result. Note that a higher

correspondence (overlap) is established with Γ and that local non-linear geometric defor-

mations are present (encircled in blue). (c) The coregistration (Ψ) accuracy and precision

of θz as a function of the residue cut-off p. (d) The effect of the space curve sampling

factor ξ on the coregistration result of θz.
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part (yellow). Basically, regions that are strongly red have high anisotropy but
do not correspond with the same high anisotropy regions in the other image (and
vice versa with green for the other image) and regions with strong yellow indicate
high FA of corresponding structures in both data sets. This qualitative map is
constructed by defining a pseudo-true-color map with ‘red’, ‘green’, and ‘blue’
components corresponding with the FA map of the target data, the FA map of
the transformed source data, and a map filled with zero, respectively. In this way,
a gradual difference in overlap between adjacent structures can be observed, as
opposed to direct pseudo-color labeling.

A quantitative measure of this overlapping part can heuristically be defined as
O = 2No/(Nt + Ntr), where Nt, Ntr, and No denote the number of voxels with
FA > 0.5 of the target data, the transformed data, and the overlapping part,
respectively. Here, O(Ψ) � 93%. As shown by the encircled regions in Fig. 5.6 (a),
it is also important to note that the data suffered significantly from susceptibility
artifacts, resulting in local geometric distortions.

To evaluate the performance of the coregistration technique experimentally, a voxel
based coregistration approach is applied as described previously [21]. The assump-
tion is made that the rotation and translation parameters obtained by the affine
model of this voxel based coregistration method are more appropriate to repre-
sent the ground-truth, which is necessary for the quantitative comparison, than
those obtained by the rigid model. Therefore, an affine transformation Γ (with
non-rigid parameters: scale si and skew gi; i = x, y, z) is determined to align the
images. As shown in Fig. 5.6 (b), the affine voxel based coregistration results
in a better local alignment. Also, the overlap percentage in this case was higher:
O(Γ) � 95% (O(Γ) was always higher than O(Ψ), independent of the choice of
the FA threshold). However, it is important to note that here, the coregistration
did not converge to the optimal result without defining the initial transformation
close to the final transformation. For example, θz was initialized in a range of 20◦

around the coregistration result, i.e. 66◦, in order to achieve convergence.

In Fig. 5.6 (c), the effect of the residue cut-off value p on the accuracy and precision
of the proposed coregistration technique is evaluated for θz with respect to the
corresponding result of the voxel based coregistration (with ξ = 5 and σ = 0 →20).
Here, the dashed line represents θz = 66◦, as obtained by Γ. Notice that with an
increasing p value both accuracy and precision rapidly decrease. Finally, Fig. 5.6
(d) demonstrates that the coregistration result is quasi-independent of the space
curve sampling factor ξ, again relative to θz = 66◦, as obtained by Γ.
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5.6 Discussion

It is known that the second-rank diffusion tensor model of DTI is incapable of
describing multiple fiber orientations within an individual voxel, resulting in am-
biguous tractography calculations [22]. Although HARD techniques can provide
more accurate tractography results, for simplicity, the focus in this framework was
confined to classic DTI, where a deterministic streamline fiber tracking technique
was used to reconstruct the white matter fiber pathways. Note, however, that
this coregistration framework is based on the fiber tracts and not the underlying
diffusion data.
Although it is known that deterministic DTT techniques are very sensitive to noise
and do not provide the most reliable results, applying a streamline tractography
approach already demonstrates feasibility and robustness of the coregistration tech-
nique under these nontrivial conditions. It is obvious that a higher coregistration
accuracy can be obtained if the WM fiber pathways are calculated by more ad-
vanced tractography algorithms and if more advanced diffusion imaging approaches
are used. Furthermore, although local non-rigid geometric distortions were present
in the brain DTI data, which complicated the coregistration even more, a correct
coregistration result could still be obtained. However, as shown in Fig. 5.6 (c), a
significant bias is introduced for p cut-off values higher than 10%.
Since every voxel of the data set is included in the coregistration optimization
process for voxel based DTI coregistration techniques, these methods are inefficient,
i.e. the majority of these voxels contains no information and does not contribute to
the optimization process. In addition, most of these voxel based approaches are it-
eratively calculating the spatial transformation and therefore may suffer from local
optima. Another drawback is the high computational cost, which is unavoidable
due to the complex multi-valued nature of the diffusion tensor images.
The computation time for the voxel based approach, which was written in highly
optimized C++ code, was in the order of 30 min (for the purpose of objective
comparison, only the rigid model was applied). On the other hand, our proposed
fiber tract registration technique could already obtain acceptable results in the
order of 5 min using not-optimized Matlab code.
The proposed coregistration method is theoretically only applicable to data sets
that differ by a rigid motion, although the example elaborated here demonstrates
that acceptable results can also be obtained when small local distortions are present.
Therefore, the main application of this technique is to study intra-subject follow-up
studies. The coregistration result of this method can also be applied as the initial-
ization input parameters for affine or non-affine coregistration techniques, for in
the proposed fiber tract coregistration method, initialization of the transformation
parameters is not required.
Although the main limitation of the described fiber tract coregistration technique is
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its confinement to rigid deformations, which makes it inapplicable for inter-subject
studies, a generalization of this approach in future research using affine-invariant
shape similarity measures, such as affine curvature, could circumvent this issue
[23, 24].

5.7 Conclusions

Based on a fundamental theorem of space curves, a non-iterative multiscale 3D
rigid-body coregistration technique for WM fiber tractography data was devel-
oped. Simulations were performed demonstrating a high coregistration accuracy
and precision as a function of different noise levels and several user-defined para-
meters. The coregistration method is fully automatic and has shown to be robust
under non-trivial experimental conditions, like local geometric distortions and a
different FOV between the data sets. Finally, a comparison with a voxel based
coregistration approach was performed to evaluate the experimental coregistration
results. Here, it was shown that both techniques were in agreement with each other
confirming the feasibility of the proposed coregistration technique to align brain
DTI data.
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Chapter 6

Conclusions

6.1 Overview

As elucidated in the first part of this thesis, Diffusion Tensor Imaging (DTI) pro-
vides an excellent means to study the brain connectivity in vivo and non-invasively.
In the second part, DTI processing techniques have been developed to further im-
prove the reliability of quantitative analyses.

Based on the physical diffusion properties of White Matter (WM) fiber bundles, a
mathematical framework has been developed for simulating DTI data sets. This
framework allows one to model a smooth transition between the WM fiber sys-
tem and its surrounding tissue. In addition, complex configurations of multiple
fiber bundles, such as crossing, merging, and kissing of fiber pathways, can be con-
structed. Several models have been evaluated quantitatively using experimental
DTI data. This evaluation indicates that a higher correspondence between experi-
mental and synthetic DTI data exists when the cross-sectional dependency of the
WM fiber density is modeled as nonconstant. Furthermore, these results suggest
that modeling of partial-volume effects alone is not the optimum way to model
WM fiber structures. It has been demonstrated that the proposed mathematical
framework can provide the necessary ground-truth DTI data for the quantitative
evaluation and optimization of user-defined tractography termination parameters.
Moreover, the synthetic ground-truth data allows one to objectively compare dif-
ferent Fiber Tractography (FT) algorithms. Several examples of how the mathe-
matical framework can be applied to compare FT algorithms have been presented.

A 3D affine voxel based DTI coregistration technique has been developed using a
direct diffusion tensor reconstruction approach to preserve the underlying orien-
tational information. This multi-channel matching method applies mutual infor-
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mation as a similarity measure for the multi-valued DTI data sets. Simulations
have been performed, demonstrating the applicability of the diffusion tensor shape
preserving reorientation strategy. In addition, an in-vivo coregistration example
has been worked out, indicating feasibility of the proposed technique to coregister
experimental data.

Based on the local geometric invariance properties of space curves, a non-iterative
multiscale 3D rigid-body coregistration technique for WM fiber tractography data
was developed. Simulations were performed demonstrating a high coregistration
accuracy and precision as a function of different noise levels and several user-defined
parameters. The coregistration method is fully automatic and has shown to be
robust under non-trivial experimental conditions, like local geometric distortions
and a different field of view between the data sets. Finally, a comparison with a
voxel based coregistration approach was performed to evaluate the experimental
coregistration results. Here, it was shown that both techniques were in agreement
with each other confirming the feasibility of the proposed coregistration technique
to align brain DTI data.

6.2 Future work

The DTI processing tools that have been developed in this thesis could be applied
in both medical and biomedical settings. For example, studies of brain plasticity
in songbirds using voxel based morphometry require DTI coregistration. Within
this context, a framework for constructing DTI atlases could be investigated ad-
ditionally. Furthermore, the simulated DTI phantom data sets can be used to
quantitatively evaluate, optimize, and compare FT algorithms.
Although it is important to understand the limitations of DTI, there are, fortu-
nately and deplorably, still several interesting aspects within this burgeoning field
that would require further investigation, such as super-resolution, non-affine DTI
coregistration, and the development of adequate statistical analysis tools for DTI
and FT. In addition, it would be interesting to explore new processing techniques
for more advanced diffusion Magnetic Resonance Imaging (MRI) techniques, pos-
sibly in combination with other imaging modalities, such as functional MRI.
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Appendix A

Using Eqs. (3.1) and (3.4), the resulting convolution Tr(r) is calculated as follows:

Tr(r) = t(r) ∗ kr(r)

=
N−1∑
i=1

∫ 1

0

Π
(‖r − ri − αΔi‖

w

)
dα

=
N−1∑
i=1

∫ 1

0

H

(
1
4
− ‖r − ri − αΔi‖2

w2

)
dα

=
N−1∑
i=1

∫ 1

0

H
[
ai(r) + bi(r)α + cα2

]
dα , (A-1)

where H represents the Heaviside step function and the coefficients of the second
order polynomial form f i

r(α) = ai(r) + bi(r)α + cα2 are given by:

ai(r) =
1
4
− ‖r − ri‖2

w2
; bi(r) =

2Δi · (r − ri)
w2

; c = −Δ2

w2
. (A-2)

Note that f i
r(α) is a concave function, i.e.

∀ r :
∂2f i

r(α)
∂α2 = −2Δ2

w2
< 0 . (A-3)

Hence, it is clear that:{
H
[
f i

r(α)
]

= 1 for α−
i < α < α+

i

H
[
f i

r(α)
]

= 0 for α+
i < α ; α < α−

i

, (A-4)

where α+
i and α−

i are the real roots of f i
r(α), which are written out in Eq. (3.6).

From the schematic representation of f i
r(α), which is depicted in Fig. A.1, and

using Eqs. (A-3) and (A-4), one can easily see that the convolution Tr(r) can be
calculated as given in Eq. (3.5).
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Figure A.1. Schematic illustration of T i
r (r) =

 1

0
H[f i

r(α)] dα (gray area) to elucidate

the calculation of Eq. [3.5]. Figures (a)→(d) represent the four main configurations of

f i
r(α) with respect to the integration interval [0, 1]. The analogous configurations of (a),

i.e. 1 < α−
i < α+

i , and (b), i.e. 0 < α−
i < 1 < α+

i , are given by T i
r (r) = 0 and

T i
r (r) = 1 − α−

i , respectively. Combining all these possible values results in Eq. [3.5].

Appendix B

Using Eqs. (3.1) and (3.8), the convolution of the fiber tract t(r) with kg(r),
denoted as Tg(r), is calculated as follows:

Tg(r) =
N−1∑
i=1

∫ ∞∫
−∞

∫ ∫ 1

0

δ
[
u − (ri + αΔi)

]
e−

‖r−u‖2

2σ2 dα du

=
N−1∑
i=1

∫ 1

0

e−
‖r−(ri+αΔi)‖2

2σ2 dα (B-1)

=
σ

Δ

√
π

2
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i=1

e
[Δ̂i·(r−ri)]2−‖r−ri‖2

2σ2

{
erf
[
Δ̂i·(r−ri)√

2σ

]
+ erf

[
Δ̂i·(ri+1−r)√

2σ

]}
,
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where Δ̂i = Δi/Δ. The numerator of the exponential in Eq. (B-1) is further
simplified using the identity∥∥∥Δ̂i × (r − ri)

∥∥∥2 = ‖r − ri‖2 −
[
Δ̂i · (r − ri)

]2
. (B-2)
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List of abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
ADC Apparent Diffusion Coefficient
ADHD Attention-Deficit Hyperactivity Disorder
B Blue
BW Band Width
CC Corpus Callosum
CNS Central Nervous System
CR Corona Radiate
CSF Cerebrospinal Fluid
CT Computed Tomography
DOF Degrees Of Freedom
DT Diffusion Tensor
DSI Diffusion Spectrum Imaging
DTI Diffusion Tensor Imaging
DTT Diffusion Tensor Tractography
DT-MRI Diffusion Tensor Magnetic Resonance Imaging
DW Diffusion-Weighted
DWI Diffusion-Weighted Imaging
EPI Echo-Planar Imaging
FA Fractional Anisotropy
fMRI functional Magnetic Resonance Imaging
FM Fast Marching
FMT Fast Marching Tractography
FT Fiber Tractography
FACT Fiber Assignment by Continuous Tracking
FOV Field Of View
G Green
GDTI Generalized Diffusion Tensor Imaging
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LIST OF ABBREVIATIONS

HARD High-Angular-Resolution Diffusion
HARDI High-Angular-Resolution Diffusion-weighted Imaging
HIV Human Immunodeficiency Virus
IC Internal Capsule
IVOH Intra-Voxel Orientational Heterogeneity
LS Least Square
MCMC Markov Chain Monte Carlo
MD Mean Diffusivity
MEMRI Manganese Enhanced Magnetic Resonance Imaging
MI Mutual Information
MIRIT Multimodality Image Registration using Information Theory
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MSD Mean Squared Distance
NMR Nuclear Magnetic Resonance
ODF Orientation Distribution Function
PAS Persistent Angular Structure
PCA Principal Component Analysis
PD Principal Diffusivity
PDF Probability Density Function
PDV Principal Diffusion Vector
PET Positron Emission Tomography
PPD Preservation of Principal Direction
PVE Partial Volume Effect
R Red
RA Relative Anisotropy
RAVE Random Vector
RF Radio Frequency
RK2 Second-order Runge-Kutta
RK4 Fourth-order Runge-Kutta
RMS Root-Mean-Square
ROI Region Of Interest
RS Reorientation Strategy
SENSE Sensitivity Encoding
SNR Signal-to-Noise Ratio
TE Echo Time
TEND Tensor Deflection
TR Repetition Time
QBI Q-Ball Imaging
VF Volume Fraction
VR Volume Ratio
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WM White Matter
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‘ExploreDTI’: toolbox for

exploratory DTI and FT

During this PhD research, we developed a graphical toolbox to explore diffusion
tensor magnetic resonance data sets and perform fiber tractography (see image
below). This award-winning (open-source) software toolbox, dubbed ‘ExploreDTI’,
is made available to other researchers at http://www.dti.ua.ac.be/.
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Overzicht

Dit proefschrift handelt over de modellering en de verwerking van Diffusietensor
(DT) Magnetische Resonantie (MR) data. Hierbij wordt de nadruk gelegd op de
ontwikkeling van nieuwe DT beeldverwerkingstechnieken met als doel een verbe-
terde kwantitatieve analyse van de hersenconnectiviteit (het complexe netwerk van
verbindingen waarmee hersencellen communiceren). Het proefschrift bestaat uit
twee delen. In Deel I wordt een grondig literatuuroverzicht gegeven over DT MR
beeldvorming (DTI) (hoofdstuk 1) en tractografie van vezelbanen (FT) (hoofdstuk
2). Deel II bevat de voornaamste originele bijdragen, i.e. de ontwikkeling van een
algemeen wiskundig model om synthetische DT data te simuleren (hoofdstuk 3)
en de ontwikkeling van twee nieuwe DT coregistratietechnieken (hoofdstukken 4 en
5).

Motivatie en doelstellingen

De hersenen vormen ongetwijfeld het meest complexe systeem in de biologische we-
reld. Ze voeren immers een veelheid van taken uit, zoals waarneming, interpretatie
van informatie, reactie, planning en uitvoering van gedrag. DTI maakt het moge-
lijk om de verbindingen in dit complexe systeem (de hersenconnectiviteit) in vivo
en niet-invasief te bestuderen. Hoofdstuk 1 behandelt de fysische en wiskundige
grondbeginselen van deze unieke MR techniek, waarbij het begrip diffusie wordt
gëıntroduceerd in de context van MR beeldvorming (MRI). De principes en het be-
lang van diffusie-gewogen MRI worden beschreven en nadien verder uitgebreid tot
DTI. Verder behandelt dit hoofdstuk verschillende DT visualisatie technieken en
geeft het een overzicht van de belangrijkste scalaire maten die gerelateerd zijn aan
het DT model. Nadien worden de voornaamste artefacten in DT beelden besproken
en worden de beperkingen van DTI toegelicht. Tenslotte benadrukt dit hoofdstuk
het belang van DTI in het kader van de medische en biomedische wetenschappen
aan de hand van enkele toepassingen.
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Eén van de belangrijkste toepassingen van DTI is FT en vormt het onderwerp van
hoofdstuk 2. Met FT kunnen de vezelbundels in de witte hersenmaterie (WM) in
vivo en niet-invasief virtueel gereconstrueerd worden aan de hand van de DT data.
Na een korte beschrijving van de basisprincipes worden verscheidene FT technieken
bestudeerd waarbij hun voor- en nadelen worden toegelicht. Verder behandelt dit
hoofdstuk de voornaamste visualisatie methodes voor FT, waarbij ook hier het
belang van een duidelijke data representatie wordt benadrukt. Tot slot worden de
belangrijkste toepassingen van FT vermeld.

Voor fundamenteel onderzoek in DT beeldverwerking zijn simulaties en testen op
synthetische data onontbeerlijk. Met deze testen kan men immers de nauwkeu-
righeid, precisie, reproduceerbaarheid en gevoeligheid aan ruis van de ontwikkelde
DT beeldverwerkingstechnieken kwantitatief bestuderen. Een hoge nauwkeurigheid
en een realistische representatie van een dergelijk synthetisch fantoom zijn hierbij
van groot belang bij het uitvoeren van een betrouwbare analyse met het oog op
toepassingen met experimentele DT data. Hoofdstuk 3 behandelt de ontwikkeling
van een algemeen wiskundig model om deze gesimuleerde DT data te construe-
ren. De synthetische DT data worden in het bijzonder gemodelleerd aan de hand
van een vereenvoudigde voorstelling van de WM vezelbanen waarbij verschillende
fysische eigenschappen van deze vezelbundels worden gëıncorporeerd. De ontwik-
kelde synthetische fantomen dienen enerzijds als een betrouwbare referentie bij het
kwantitatief evalueren en objectief vergelijken van verscheidene DT beeldverwer-
kingstechnieken, zoals bijvoorbeeld coregistratie, ruisreductie en het corrigeren van
bewegingsartefacten. Anderzijds zijn deze gesimuleerde DT data ook onmisbaar
om de talrijke parameters die een FT algoritme karakteriseren te optimaliseren.
Verscheidene voorbeelden worden in detail uitgewerkt om aan te duiden hoe dit
wiskundig model kan worden toegepast bij het vergelijken van FT algoritmes.

Coregistratie is een belangrijke techniek binnen de beeldverwerking die het moge-
lijk maakt om beelden, of meer algemeen ‘digitale representaties van objecten’, in
een gemeenschappelijk referentiekader te plaatsen. Enkel op deze manier kan men
vergelijkende, kwantitatieve DTI studies realiseren, zoals bijvoorbeeld het aantonen
van statistisch significante verschillen tussen gezonde en pathologische structuren
van de WM. Door de snelle evolutie en groeiende diversiteit van beeldvormings-
technieken tijdens de laatste decennia is de ontwikkeling van een universeel core-
gistratie algoritme echter onmogelijk geworden. De kwaliteit, aard van informatie,
grootte en toepassingsgebied van het beeldmateriaal zijn immers belangrijke aspec-
ten die het karakter van de coregistratietechniek bepalen. In dit kader behandelt
hoofdstuk 4 de ontwikkeling van een affiene (rotatie, translatie, schaling en scheef-
heid) voxel-gebaseerde coregistratietechniek voor DT data. De voxels van de DT
data representeren geen scalaire waarden, maar tensoren van rang twee die de
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driedimensionale, Gaussisch verdeelde diffusie definiëren, waardoor conventionele
coregistratietechnieken ontoereikend zijn. Verder beschrijft dit hoofdstuk de ont-
wikkeling van een efficiënte reoriëntatie strategie, die nodig is om de belangrijke
oriëntationele informatie van de diffusietensor te behouden. Als vergelijkingscrite-
rium, i.e. de maatstaf die bepaalt hoe de overeenkomst tussen de beelden wordt
gedefinieerd, wordt mutuele informatie gehanteerd. De affiene DT coregistratie-
techniek wordt in de eerste plaats geëvalueerd aan de hand van gesimuleerde DT
fantomen en nadien toegepast op DT data van humane hersenen.

In hoofdstuk 5 wordt de ontwikkeling van een andere coregistratietechniek voorge-
steld waarbij gebruik wordt gemaakt van de met FT gereconstrueerde hersenvezel-
banen i.p.v. de voxel-gebaseerde data. Met deze aanpak wordt enkel de relevante
informatie (nl., de hersenvezelbanen) in rekening gebracht hetgeen de coregistratie
procedure efficiënter maakt. Veel voxels in DT data bevatten immers geen rele-
vant signaal en leveren dus geen significante bijdrage in de optimalisatie procedure
van voxel-gebaseerde DT coregistratietechnieken. De coregistratietechniek is volle-
dig automatisch en is verder gebaseerd op de lokale invariantie eigenschappen van
de hersenvezelbanen, die op hiërarchische wijze worden voorgesteld. In de eerste
plaats worden simulaties uitgevoerd m.b.v. de ontwikkelde synthetische DT data
om de nauwkeurigheid, de reproduceerbaarheid en het effect van ruis in de data
te bestuderen. Verder behandelt dit hoofdstuk de optimalisatie van verscheide-
ne parameters die de coregistratie procedure karakteriseren. Tenslotte wordt deze
nieuwe techniek vergeleken met de coregistratiemethode uit hoofdstuk 4 en worden
de voor- en nadelen toegelicht.
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