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“You can have data without information,
but you cannot have information without data.”

DANIEL KEYS MORAN
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Summary

Over the past decade, digital data generation and collection has become increasingly
important in biomedicine. Surgeons heavily rely on biomedical data for diagnoses,
pre-operative planning, follow-up, etc on a daily basis. With advancing imaging
technologies, large amounts of data have become available in different modalities,
such as optical surface scans and images. It is the challenge of this era to exploit
the information in this data in order to expand our knowledge in biomedicine and
to improve our healthcare system. Learning from large collections of data can help
us in automating diagnoses that would be purely based on data, in contrast to
subjective decisions that are based on the experience of a surgeon. The knowledge of
shape variability in a large dataset, as another example, can be a guide for product
development. Letting a computer “understand” images based on past examples
enables computer-assisted robotic surgeries.

This thesis contributes to the data-driven solutions in biomedicine. On a first level,
we present a framework to combine the shape information of different patients into
one digital model. Such statistical model can be built on images or surface models.
On a second level, these digital models serve as prior knowledge for computers to
automatically “understand” new data.

A crucial step on both, the modeling and the application level, is the anatomical
alignment of data. This step, known as registration, is important for, for example,
tracking of a moving body over time or the digital mapping of an implant onto a
patient. While finding corresponding points between different data is easy for human
eyes, this problem remains a challenging task to computers.

The manuscript is divided into three parts. Part I provides an introduction to the
necessary concepts, being: geometry and image processing in biomedicine, X-ray
imaging and deep-learning (DL). Part II and III include the contributions of this PhD
to surface and image-based registration methods, respectively.

Contributions to surface registration of articulating bodies
Part II of the thesis focuses on shape modeling of articulating objects. Such models
are important to facilitate biomechanical simulations that help us understand the
development and treatment of certain pathologies. In a clinical context, they can help
in detecting motion abnormalities and thereby preventing injuries.

One way to study motion is by tracking reflective markers attached to the patient
at certain anatomical locations. The markers, however, only provide the location of
a sparse set of points over time. This sparse data does not provide information on
the level of the bone surfaces themselves, such as the knee joint space distance for
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Summary

example. In chapter 4 we show how a person-specific shape model can be registered
to such set of markers to provide such surface-based measurements.

Person-specific models are, however, not always available and can be costly and time
consuming to acquire. For such cases, we have built generic statistical models of
articulating structures, which describe the statistical variations in shape in a certain
population while maintaining the possibility to be articulated into different poses.
With such statistical models any individual in the population can be described up
to a certain accuracy. Hence, the acquisition of person-specific models is no longer
required.

Two different articulating statistical shape models have been built to illustrate its
usefulness in different application fields. Chapter 5 presents a statistical shape model
of the human hand that can be used to automatically design a splint based on a low
quality 3D-scan. Chapter 6 presents a statistical shape model of the horse limb for
veterinary applications.

The ability of statistical models to describe many individuals in a certain population
makes them also very interesting for deep-learning models (see introduction chapter
3). Training these models requires large labeled datasets, which are time-consuming
to acquire in practice. From a statistical model, however, synthetic data can easily
be generated, along with ground-truth labels. This has been illustrated in chapter 7
for the training of a 2D-image segmentation network which required ground-truth
labeling of the structures.

Contributions to DL-based 2D/3D image registration
Part III of the thesis focuses on solving a specific registration problem in X-ray
imaging (see introduction chapter 2), through deep-learning. As opposed to part
II of the thesis we use an image-representation of the patient instead of a surface-
representation.

X-ray imaging or radiography is the most common imaging procedure for many
orthopedic interventions thanks to its ability to visualize internal structures with
a relatively low radiation dose and low acquisition cost. However, interpretation
from two-dimensional (2D) radiographs can be hampered by overlapping structures,
magnification effects and the patient’s positioning. To avoid the difficulties associated
with 2D projections, we developed two methods to register a 3D model to a pair of
radiographs. The registered model enables a 3D-interpretation, while keeping the
benefits of RX over CT, in terms of costs and radiation dose.

The first solution for this 2D/3D registration problem is presented in chapter 8. This
model constraints the possible solutions through a prior statistical model, which
encodes the possible shapes across a population. Instead of reconstructing a 3D
volume, the network predicts the weights of the statistical model.

Chapter 9 presents a second solution. This registration network regresses a dense 3D
deformation field, without a statistical prior model. The deformation field warps an
atlas image such that the forward projection of the warped atlas matches the input
2D radiographs.
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Samenvatting

Digitale data generatie en verwerving is over het voorbije decennium steeds belan-
grijker geworden in de biomedische wereld. Artsen maken veelvuldig gebruik van
biomedische data voor diagnoses, pre-operatieve planning, opvolging, enz. Met de
technologische vooruitgang in beeldvormingstechnieken, is de beschikbaarheid van
data in verschillende modaliteiten, zoals optische oppervlak scans en beelden, sterk
toegenomen. Het is onze uitdaging om zo veel mogelijk informatie uit deze data
te halen om onze kennis in biomedische wetenschappen uit te breiden en om onze
gezondheidszorg te verbeteren. Door te leren uit grote collecties van data, kunnen we
diagnoses automatiseren die enkel berust zijn op data, in tegenstelling tot subjectieve
beslissingen die gebaseerd zijn op de ervaring van een arts. De kennis van vorm vari-
aties in een grote dataset kan gebruikt worden in product ontwikkeling bijvoorbeeld.
Op basis van voorgaande voorbeelden, kan een computer nieuwe beelden automatisch
“begrijpen”, wat computer-geassisteerde operaties met robotica mogelijk maakt.

Dit doctoraatsonderzoek draagt bij tot data-gedreven oplossingen voor biomedische
toepassingen. Op een eerste niveau, ontwikkelen we een manier om de vorm-informatie
van verschillende patiënten te combineren in één digitaal model. Een dergelijk model
kan gegenereerd worden op basis van beelden of oppervlak modellen. Op een tweede
niveau worden deze modellen gebruikt als voorkennis om computers nieuwe beelden
te laten “begrijpen”.

Een cruciale stap in beiden, de modellering en de toepassing, is het anatomisch
aligneren van data. Deze stap staat bekend als registratie, en is bijvoorbeeld belangrijk
voor het volgen van een bewegend lichaam over de tijd of het digitaal overbrengen
van een implantaat op een patiënt. Terwijl het bepalen van correspondenties tussen
verschillende data een gemakkelijk probleem lijkt voor het menselijk oog, is dit voor
computers nog steeds een uitdaging.

De thesis is opgedeeld in drie delen. Deel I biedt een inleiding over oppervlak- en beeld-
verwerking in biomedische toepassingen, X-stralen beeldvorming en “deep learning”
(DL). Deel II en III bevatten respectievelijk de bijdragen van dit doctoraatsonderzoek
tot de domeinen van oppervlak- en beeld-registratie.

Bijdrage tot oppervlak registratie van articulerende lichamen
Deel II van de thesis richt zich tot vorm modellen van articulerende objecten. Zulke
modellen zijn bijvoorbeeld belangrijk om biomechanische simulaties mogelijk te maken,
die op hun beurt onze kennis over de ontwikkeling en genezing van pathologiën
verbeteren. In een klinische context, kunnen ze gebruikt worden voor het detecteren
van afwijkende bewegingspatronen en kunnen daarbij letsels voorkomen.

De voortbeweging van individuen wordt vaak bestudeerd aan de hand van reflecterende
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markers op de huid of botten waarvan de posities wordt bijgehouden in functie van de
tijd. Dit geeft echter enkel informatie over de beweging van deze enkele punten. Deze
beperkte datapunten geven geen directe informatie over, bijvoorbeeld, de afstand
tussen botten in een knie gewricht. In hoofdstuk 4 tonen we hoe een vorm model
van een patiënt kan geregistreerd worden aan deze set van markers om oppervlak-
gebaseerde metingen mogelijk te maken.

Een oppervlak model van de patiënt zelf is echter niet altijd beschikbaar. In zo’n
situatie kan gebruik worden gemaakt van generisch articulerende statistische modellen
die zowel de vormvariatie en pose-veranderingen beschrijven in een bepaalde populatie.
Elk individu uit de populatie kan tot een bepaalde nauwkeurigheid worden beschreven
met een dergelijk model zonder dat een afzonderlijke opmeting moet gebeuren voor
dat individu.

In dit doctoraatsonderzoek werden twee verschillende statistische modellen ontwikkeld
voor twee verschillende toepassingen. Hoofdstuk 5 beschrijft een statistisch model van
een menselijke hand voor het geautomatiseerd ontwikkelen van orthopedische spalken
op basis van lage kwaliteit scans. Hoofdstuk 6 beschrijft een statistisch model van
een paardenledemaat voor veterinaire toepassingen.

De mogelijkheid om uit een statistisch model verschillende synthetische individuen te
construeren, maakt dit soort modellen ook uiterst interessant voor “deep learning”-
toepassingen (zie introductie hoofdstuk 3). De training van zulke modellen vereist
grote datasets van gelabelde data, wat tijdrovend kan zijn om deze te verwerven. Van
een statistisch model kan echter synthetische data worden gegenereerd, samen met de
labels. Dit werd geïllustreerd in hoofdstuk 7 voor een 2D segmentatie netwerk dat
voor de training de labels van verschillende structuren vereiste.

Bijdrage tot DL-gebaseerde beeld-registratie
Deel III van de thesis focust op een specifiek registratie probleem in X-stralen beeld-
vorming (zie introductie hoofdstuk 2), dat wordt opgelost aan de hand van “deep-
learning”. In tegenstelling tot deel II van de thesis, wordt hier gebruik gemaakt
van beelden in plaats van oppervlak modellen als digitale representatie van de
patiënt.

X-stralen beeldvorming of radiografie is de meest gebruikte beeldvormingsmethode
voor orthopedische interventies vanwege de mogelijkheid om interne delen te beeld-
vormen tegen relatief lage kost en lage stralingsdosis. De interpretatie van een 2D
radiografie beeld kan echter bemoeilijkt worden vanwege overlappende structuren,
vergrotingseffecten en de positie van de patiënt. Om deze moeilijkheden te omzeilen
werden in dit doctoraatsonderzoek twee methodes ontwikkeld om een 3D model te
registreren aan de 2D data. Dit maakt een 3D interpretatie van de 2D data mogelijk
terwijl de voordelen van een RX beeld ten opzichte van een CT-opname behouden
blijven.

Het eerste 2D/3D registratienetwerk, beschreven in hoofdstuk 8, maakt gebruik van
een statistisch vervormingsmodel. Dit model bevat de toegelaten vormvariaties en
beperkt zodoende de mogelijke oplossingen. In plaats van het 3D beeld meteen
te reconstrueren, voorspelt het netwerk de gewichten van het statistisch model die
corresponderen met het juiste 3D beeld.
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Het tweede registratiemodel, beschreven in hoofdstuk 9, schat rechtsreeks een 3D
deformatie veld, zonder gebruik te maken van een statistisch model. Het geschatte
vervormingsveld wordt gebruikt om een 3D atlas-beeld te vervormen zodanig dat de
voorwaartse projectie ervan overeenkomt met de input 2D RX-beelden.
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Chapter 1: Digital geometry and image processing

1.1 Computer-aided applications in biomedicine
In this section we introduce the biomedical applications envisioned in this thesis
and how computer algorithms help in these applications. We limit ourselves to
orthopaedical applications which deal with the musculoskeletal system.

Biomedical simulations

Knowing the origin and development of orthopedic pathologies is important for a
proper diagnosis and treatment. Our understanding is mostly based on experience
from medical practices, but advancements in computer simulations allow to investigate
the underlying mechanisms more thoroughly. They offer a controlled environment
in which the influence of different factors such as shape geometry, bone density, soft
tissue and loading can be studied on, for example, the kinematics. They also allow to
estimate quantities that can not be measured experimentally, such as cartilage stress.
Statistical shape information in such simulation frameworks allows to investigate the
correlation between bone shape and biomechanical function ??.

Computer-aided diagnoses and follow-up

Computer-aided diagnosis systems assist medical practitioners in interpreting biomed-
ical data of a patient. As they can learn from previous data and can process data
faster, they can guarantee a more precise outcome. Early-stage signatures of diseases
like osteoarthritis and cancer, for example, can easily be overlooked by the human eye,
while their treatment would benefit from an early detection and diagnosis ??.

Gait analysis

Abnormalities in the gait of a patient, such as motion asymmetry, can be an indication
for a functional or structural disorder in the musculoskeletal system ?. In the veterinary
field, such manifestation is called lameness and is associated to reduced performance of
sport animals. Diagnosing the deviating motion patterns can be very subjective when
done visually, but by acquiring motion data, either indirect by measuring contact
forces or direct by motion tracking, a quantitative gait analysis can be delivered. This
can be done for diagnosis, for evaluation of a certain treatment, or for preventive
monitoring.

Computer-assisted surgeries

Computer-assisted surgeries (CAS) refer to workflows which rely on biomedical data
and computer technologies to help a surgeon, either pre-operatively (before surgery),
intra-operatively (during surgery) or post-operatively (after surgery). They show
advantages in terms of precision, reproducability, clinical outcome, time efficiency,
safety and reduced invasiveness ???

Pre-operative planning starts with generating a digital representation of the patient.
This involves the identification of the region of interest through labeling. The labeling
of components, called “segmentation”, is a laborious task in general, where computer-
algorithms provide an automatic or semi-automatic solution. It is the basis for more
dedicated data-processing algorithms, such as bone fracture detection for example.
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The digital representation allows the surgeon to plan the surgery virtually with
dedicated software programs.

During the operation, the surgeon wants to follow the pre-operative plan as accurate
as possible. This requires a mapping of the virtual pre-operative plan onto the physical
patient, based on intra-operative data. Based on this data, navigation systems can
track the position and orientation of surgical tools and implants with respect to the
patient. The possibility to track based on data allows for small incisions and limited
invasiveness of the surgery. The positioning of the instruments with respect to the
patient can be displayed on a screen or virtually overlaid on top of the patient by
means of augmented-reality glasses ?. The navigation helps a surgeon or robotic
system to accurately manipulate the instruments and to position drilling holes or
cutting planes as planned. During the procedure, live feedback can be given on the
potential clinical outcome of the surgery, based on real-time biomechanical simulations.
This allows, for example, to fine-tune implant positioning intra-operatively.

Post-operative data can be compared to pre-operative data to evaluate the success
of the operation. By aligning data acquired at different times, the progression of a
disease or treatment can be followed up.

Product development

Patient-specific digital models allow for the design of personalised orthopedic implants
that are customised to the patients anatomy. In contrast to off-the-shelf products, they
improve the medical outcome and reduce the number of needed revisions ?.

1.2 Biomedical data representations
Physical objects around us are defined by a continuous surface, characterised by con-
tinuous properties like curvature. Computers however need a discrete representation
of those objects to understand a “shape”. The actual shape X is therefore sampled by
a set of points, which can either be regularly distributed like in an image or irregular
like in a mesh. In case of images, we speak of pixels or voxels for the 2D or 3D
case, respectively. Common modalities of medical images include radiographs and
computed tomography (CT), as introduced in chapter 2, but also magnetic resonance
imaging (MRI) and ultrasound. In this section we will focus on the irregular shape
representations and discuss the different types and their acquisition methods.

1.2.1 Geometric shape representations
• Point clouds are a set of points distributed across the surface, without necessarily

embodying feature locations. It is the simplest and most generic representation.
An example is shown in Figure 1.1a.

• Polygonal surface meshes are graphs, embedded in Euclidean space. They are
characterised by a set of points connected by edges, such that the edges span
triangular or quadrilateral cells. As illustrated in Figure 1.1b, the polygons
form a piecewise planar approximation to the actual shape. The Delaunay
triangulation of a set of points maximises the smallest occurring angle between
edges.
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(a) Point cloud (b) Surface mesh (c) Tetrahedral model

Figure 1.1: Different discrete geometry representations of a horse leg.

• Volumetric tetrahedral models use tetrahedral cells to fill up the object. A cross-
section of such model is shown in Figure 1.1c. A point x ∈ IR3 inside a single
tetrahedron T = [v0,v1,v2,v3] can be described by its barycentric coordinates
u = [u0, u1, u2, u3] relative to T , such that x = u0v0 + u1v1 + u2v2 + u3v3.
This representation has the benefit that volumetric information can be stored,
in terms of trivariate Bernstein basis polynomials for example:

Bdk(u) =
(
d

k

)
uk0

0 u
k1
1 u

k2
2 u

k3
3 (1.1)

with the binomial coefficient
(
d
k

)
= d!

k0!k1!k2!k3! . A Bernstein polynomial is a
linear combination of Bernstein basis polynomials:

f j(u) =
∑
|k|=d

βjkB
d
k(u) (1.2)

with βjk the Bernstein coefficients. The sum runs over all combinations of k0,
k1, k2 and k3, for which the sum

∑3
i=0 ki equals the degree d.

• Medial models describe a surface by its center-line and the radii along this line.
In the original work of Blum et al., each point on the medial line represents
the center of the largest possible inscribing sphere to the object, such that each
sphere is bitangent to the objects boundary ?. While these models derive a
continuous medial axis from the boundary, m-rep models imply the boundary
from a mesh of medial atoms ?. The medial atoms are located at the sphere
centers, and have two equally-sized spokes normal to the object boundary. The
end of each spoke thus gives the position and normal at the two intersection
points of the sphere with the surface.

• Surfaces with spherical topology can be parameterised such that a pair of
polar coordinates (θ, φ) maps to a surface coordinate v by the following three
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Figure 1.2: Different capturing techniques for 3D objects ?.

coordinate functions:

v(θ, φ) =

x(θ, φ)
y(θ, φ)
z(θ, φ)

 (1.3)

These coordinate functions can be decomposed over a set of basis functions,
such as B-splines, wavelets or spherical harmonics ?.

• Non-uniform rational B-splines (NURBS) models control the shape by a limited
number of control points Pij in each of two directions (u, v). A shape vertex
position is given by an interpolation of neighboring control points:

s(u, v) =
∑Nu−1
i=0

∑Nv−1
j=0 wijB

n
i (u)Bnj (v)Pij∑Nu−1

i=0
∑Nv−1
j=0 wijBni (u)Bnj (v)

(1.4)

with Bni recursively-defined B-spline basis functions of degree n.

• A levelset method represents a closed surface boundary C implicitly by the
zero-levelset of the levelset-function φ:

C = {x ∈ Ω|φ(x) = 0} (1.5)

The interior of the shape is made up of all the points for which φ is positive.
In numerical computations, the levelset-function φ is often set to the signed
euclidean distance function to the surface.

1.2.2 Shape acquisitions
From image to surface model

Extraction of an object as surface model from a 3D image first requires segmenting out
the object of interest from the image. A segmentation map is a binary classification
of voxels telling which voxels belong to the object or to the background. A binary
voxelised representation of the object can be converted into a polygonal surface model
by means of a marching cube algorithm ?. For every set of eight neighboring voxels
at the boundary it proposes a set of polygons based on their segmentation values, to
approximate the surface passing through the voxels. There are 28 possible cases, each
having its own pre-defined polygonal partitioning. Finally, vertices sharing the same
edge are interpolated to obtain a closed mesh.

The marching cube algorithm does not necessarily result in a uniform mesh and its
output mesh can be very complex due to the high resolution of the input 3D image.
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Many geometry remeshing libraries are available to further improve the mesh quality
by coarsening the mesh, smoothening the surface, improving triangle aspect ratios,
removing mesh artefacts, etc ?. Opposed to uniform remeshing, making the mesh
resolution adaptive to high curvature regions can be of interest to preserve certain
features, while reducing the total amount of vertices ?.

Passive stereo vision

Stereo vision systems mimic the human binocular vision by looking at a scene from
two slightly different perspectives, as illustrated in Figure 1.2. The spatial shift
between corresponding image points is encoded in the disparity map, from which
the relative depth of the pixels can be calculated. It is a passive technique, meaning
that it does not illuminate the scene itself. This means that the object needs to be
sufficiently illuminated by ambient light and that it needs to have some texture or
features.

Optical probe

Optical tracking systems use stereoscopic vision to track the 3D position of retroreflec-
tive markers that are attached to a patient or to a surgical instrument. The optical
system consists of, at least, two infrared (IR) illuminators and two camera sensors
that detect the reflected IR light from the markers. By arranging a set of several
markers into a specific configuration on a surgical instrument, the position sensor is
able to calculate the position and orientation of that instrument, in the form of a
rigid transformation. A commercial example is Polaris Vega optical tracking system
from Northern Digital Inc. (NDI) ?.

Structured light scanning

A structured light 3D scanner, depicted in Figure 1.2, can be seen as an active stereo-
vision system, as it actively projects a temporally or spatially 2D light pattern onto
the scene in order to ease the matching between corresponding points. One or two
cameras capture the reflected light, and based on the deformation of the pattern, the
depth can be calculated. Examples of brands that manufacture commercial structured
light scanners are Artec and 3DMD.

Time-of-flight camera

Time-of-flight (TOF) cameras, illustrated in Figure 1.2, determine the distance to
an object by measuring the time it takes for a laser pulse to travel back and forth
between the camera and the object. Short-pulse TOF systems, like LIDAR, use short
infrared laser or led light pulses. Continuous-wave TOF cameras emit modulated
light pulse and measure the phase shift between the emitted and reflected wave to
determine the distance.

1.3 Registration problem
Registration is the process of aligning two or more datasets with each other, such that
corresponding features on the different datasets overlap with each other. The data to
be aligned can have been acquired at different times or by different imaging sensors,
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or from different patients or view-points. In this section we give some examples of
registration in biomedical problems, before discussing the registration problem from a
mathematical point of view, for the case of surface meshes and images.

1.3.1 Applications of registration in biomedicine
Registration plays an important role in the pre-processing pipeline of many biomedical
procedures. By bringing different data into the same coordinate system, registration
can help medical practitioners to save time in interpreting the data correctly.

Intra-person registration is valuable to monitor disease progression in longitudinal
studies. During the COVID pandemic, for example, it could have been used to
monitor the progression of different diseased lung regions over time by subtracting two
registered lung CT-images with each other to highlight density changes for different
infected regions ?. Similarly, it can be used in cancer treatment to track the size of
different tumors over time and to adjust radiation therapy accordingly ?.

Shape changes on a shorter timescale, such as a beating heart or respiratory motion,
can be captured by imaging systems like 4D-CT, where temporal registration is
capable of building a temporal model and identifying pathological deformations ?.
Having a respiratory model of a patient’s lung enables the prediction of tumor motion
and deformation, which can be used for motion compensation in radiation therapy to
avoid damaging healthy tissue ?. For non-cyclic motion, like joint motion, 4D-CT
acquisitions result in partial data only. In that case, a static 3D CT scan can be
registered to the partial 4D-CT data to yield the motion of the complete 3D shapes
over time ?.

Often data of different modalities are acquired from the same patient as they showcase
different characteristic information, and are complementary to each other. Fusion
of those different modalities, referred to as multimodal registration, provides the
medical practitioners a more complete view on the patient ?. The inherent different
appearance of the source and target make multimodal registration a challenging
task.

Next to surgical planning and diagnosis, multi-modal registration is particularly
important for computer-assisted-surgeries (CAS), where a pre-operative image, like
CT or MRI, needs to be registered to intra-operative data, to enable image-guided
navigation and robotic positioning. Commercial medical robotic systems use optically-
track-able markers as inter-operative data such that the medical plan can be matched
onto the patient ?. As markers are invasive, research is being done on matching the
pre-operative data onto ultrasound images ? or to 2D fluoroscopy images ?.

Opposed to registration of datasets of the same patient, inter-person registration is
done between two or more different subjects, often a patient and a reference atlas or
template. This facilitates atlas-based segmentation or landmarking, where the atlas
segmentation map and annotated features are mapped to the new unsegmented data
by the registration function ?.

Registration between a patient and an atlas also enables automatic implant design,
by warping a standardised atlas-implant with the registration transformation to the
patient ?. Such automated procedure saves time for the clinicians and ensures optimal
fitting of the implant to the patient. If the fabrication of personalised implants is
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not feasible, registration methods can still be used to evaluate the fitting quality of
off-the-shelf implants by rigidly registering the implant to different individual shapes
?.

1.3.2 General solution to registration
A registration method seeks an optimal spatial transformation that aligns the moving
source dataM with the fixed target data F . Classically, this is treated as an optimi-
sation problem, consisting of three essential parts: a transformation T that drives the
source data, a similarity metric that evaluates the quality of the alignment and an
optimizer which minimizes the metric by tuning the transformation parameters.

Possible transformations fall into two main categories: affine and deformable transfor-
mations. The former category accounts for translation, rotation, scaling and shear.
The latter is used to accommodate local deformations between the source and target,
which arise because of inter-person shape variations or temporal deformations. The
transformation T is typically parameterised by a set of parameters β.

The suitability of the transformation is quantified by a certain energy function or
metric E, which measures the overlap between the target data and the transformed
source. For registration of discrete geometries, the metric can be an euclidean point-
to-point distance or point-to-surface distance. For image registration, popular metrics
include the sum of squared differences (SSD), normalised cross-correlation (NCC) and
mutual information metric (MI).

The goal of the optimiser is to find the transformation parameters β̂ that minimise
the energy function E:

β̂ = arg min
β
E(F ,M(T (β))) (1.6)

Starting from an initial parameter guess β0, the optimiser tries to find the (global)
minimum of the energy function by iteratively updating the transformation parameters.
The gradient descent optimiser, the simplest optimisation method, updates the
transformation parameters in the opposite direction as the gradient of the energy
function ∂E

∂β (βi):

βi+1 = βi − α
∂E

∂β
(βi), (1.7)

with α a user-defined step size or learning rate. If α is too small, it will take a long
time for the optimiser to converge if the energy surface is flat. If α is too high, however,
there is a risk that the optimiser will never reach the global minimum and will jump
over it each time in case of a steep energy valley. More sophisticated methods can
modify the learning rate based on the higher order curvature of the energy surface. A
Levenberg-Marquard optimisation scheme, for example, follows the gradient-descent
approach far from the minimum, but closer to the minimum, it will gradually move to
a Gauss-Newton method. Hereby the energy function is being approximated locally
by a quadritic function, for which the minimum acts as the next guess of the global
energy minimum.

1.3.3 Surface registration
In this section we discuss the problem of spatially aligning two digital surfaces with
each other, referred to as 3D surface registration. Consider a moving reference model
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M with vertices M = [m1, · · · ,m|M |]T and edges E which we want to transform to
a fixed target model F with vertices F = [f1, · · · ,f |F |]T .

1.3.3.1 Paired point matching

This section provides a way to align two point clouds with each other, that have the
same number of points N = |M | = |F | and that have known correspondences between
them ?. The point clouds centered around their center-of-mass are given by:

m̃i = mi −
1
N

∑
mi (1.8)

f̃ i = f i −
1
N

∑
f i (1.9)

The 3 × 3 covariance matrix of the centered vertices M̃ = [m̃1, · · · , m̃N ]T and
F̃ = [f̃1, · · · , f̃N ]T is given by: S = M̃T F̃ . Applying singular value decomposition
(SVD) on the covariance matrix yields the following factorisation of S:

S = UΣV T , (1.10)

with U and V being the left and right singular matrices. The diagonal matrix Σ
contains the singular values. The optimal rotation and translation that brings the
moving point cloud into alignment with the fixed point cloud is given by:

R = V UT (1.11)

t =
∑
f i
N
−R

∑
mi

N
(1.12)

1.3.3.2 Iterative closest point

Iterative closest point is an algorithm that can be applied when the correspondences
between M and F are initially unknown. A rigid transformation that aligns both
point clouds is estimated through the following iterative process:

1. First, the points of the source point cloud are matched to their closest neighboring
points in the target point cloud. An efficient way to determine the closest points
is by a Kd-Tree.

2. Next, the euclidean distance between the established pairs of corresponding
points is being minimised. To this end, the rotation and translation parameters
are estimated by the paired point matching procedure as discussed in section
1.3.3.1.

3. The moving points are updated by the above transformation.

4. The previous steps are repeated until the convergence criterion is met.

Many extensions to this basic formulation are proposed in the literature. One drawback
of minimising the point-to-point distance is that it depends on the resolution of the
two models, which can, for example, be avoided by minimising the point-to-plane
distance instead.
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1.3.3.3 Elastic surface registration

In this section we discuss an elastic registration method, proposed by Amberg et al
?. In case of elastic registration, each vertex of the moving model has a translation
vector di ∈ IR3 associated to it to model the deformation from the reference model
towards the target. For each vertex mi on the reference model, we look for the
corresponding point f̂ i on the target surface. As F is a mesh, this corresponding
point does not necessarily need to be a vertex, but can lie on a triangular cell. One
way to determine the points F̂ = [f̂1, · · · , f̂ |M |] on F which correspond to the points
M , is by casting a ray along each vertex normal and finding the intersection points
with the target surface. Additional requirements on the intersection points can be
included before considering them as corresponding points, such as requiring the same
normal direction, and/or requiring no surface crossings.

After establishing a guess for the pairs of corresponding points, we minimise the
registration energy function. The registration aims to minimise the distance between
the moving and target surface:

Ed(D) =
∑
mi∈M

wi||f̂ i − (mi + di)||2 (1.13)

with wi equal to zero if vertex i has no corresponding point on F , and equal to
one otherwise. The deformation matrix D = [d1, · · · ,d|M |]T can be regularised by
including an additional stiffness term, which penalises large deformations between
neighboring vertices:

Es(D) = α
∑
{i,j}∈E

||Di −Dj ||2 (1.14)

The previous equations can be combined in matrix notations as follows:

E[D] =
∥∥∥∥[αGW

]
D −

[
0

W (F̂ −M)

]∥∥∥∥2

F

(1.15)

with W = diag(w1, · · · , wn) and where ||.||F denotes the Frobenius matrix norm. The
matrix G is the edge-connectivity matrix. If edge r connects vertices i and j, the
matrix elements Gri and Grj equals 1 and -1 respectively. The other elements of row
r are zero. The hyperparameter α balances the two energy functions with respect
to each other, and changes during the iterative optimisation. In the beginning, the
stiffness parameter α is large, and is gradually relaxed as soon as the surfaces come
closer to each other. This allows to fine-tune the small scale deformations as soon as
the larger structures are aligned.

1.3.4 Image registration
We now consider M and F to be a moving and fixed image, respectively, and try to
find a transformation T that maps M to F .

1.3.4.1 Forward vs backward warping

In case of surface registration, the transformation T was applied on the individual
points of the moving surface in order to match them with the target object. While
the surface points are defined in the continuous space of IR3, the pixel or voxel
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1.3. Registration problem

(a) Forward warping. (b) Backward warping.

Figure 1.3: Difference between forward and backward warping.

coordinates in an image are not. They have discrete values and are defined on a
discrete grid. As a result, applying the transformation T on an image coordinate x,
will not necessarily result in a position on the image grid anymore and, hence, holes
can occur in the warped image, as illustrated in Figure 1.3. As a solution, backward
warping of the moving image is the mainstream method in image registration. The
moving image is sampled at locations, given by the inverse transformation of the fixed
image coordinates. An interpolation scheme is used to interpolate the image intensity
values at non-integer pixel positions in the moving image domain. This can be a
linear interpolation, B-spline interpolation or nearest neighbor interpolation.

1.3.4.2 B-spline transformation

The local deformation of images can be described by displacement vector fields that
relate voxels on the moving image to corresponding points in the fixed image domain.
Free-form deformations control these local displacements through only a limited
number of control points. This is realised by embedding the image in a coarse grid
of control points. Changing one control point only affects the local neighborhood of
that point. This leads to a sparse jacobian of the transformation and a more efficient
calculation of the gradient of the registration metric.

B-spline transformations are a type of free-form deformations, where the voxel-
deformations are a B-spline interpolation of the control point coefficients. Each
control point on the coarse regular grid has a B-spline coefficient vector C ∈ IRd

associated to it, with d the number of image dimensions. The control point grid, with
size (L+ 3)× (M + 3)× (N + 3) and grid spacing Sx×Sy ×Sz, partitions the original
image into tiles such that each tile comprises multiple voxels. The deformation of any
voxel in a tile is determined by the (n+ 1)d closest control points, with n being the
order of the spline. Cubic splines (n = 3) have 16 and 64 control points per voxel
for the 2D and 3D case, respectively. A 1D cubic spline is defined as a piece-wise
polynomial of the basis-functions Bn:

B0(u) = (1− u)3/6 (1.16)
B1(u) = (3u3 − 6u2 + 4)/6 (1.17)
B2(u) = (−3u3 + 3u2 + 3u+ 1)/6 (1.18)
B3(u) = u3/6. (1.19)

with u = x
Sx
− b xSx

c ∈ [0, 1[ being the relative position of (x, y, z) within a tile of the
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Figure 1.4: B-spline based free form deformation of an image ?.

grid. The same formulas apply to the basis functions in the y and z directions. The
deformation at position (x, y, z) is given by the 3D tensor product of those 1D cubic
B-splines:

dj =
3∑
r=0

3∑
s=0

3∑
t=0

Br(u)Bs(v)Bt(w)Cl+r,m+s,n+t (1.20)

with l = b xSx
−1c, m = b ySy

−1c and n = b zSz
−1c being the grid control point indexes

surrounding image position (x, y, z).

1.4 Shape statistics
Statistical shape modeling is a powerful tool to understand the shape variability in
a population of subjects ?. Instead of describing the spatial variation of each single
vertex of a shape, it looks for common variation modes across all vertices, resulting in
only a limited number of parameters to describe the shape variation. To understand
this type of statistics, we first give a general introduction to principal component
analysis, before applying it to shape modeling.

1.4.1 Principal component analysis
Principal component analysis (PCA) is a statistical method to reduce the dimensional-
ity of a dataset with correlated variables. By applying an orthogonal transformation,
it transforms the data into a smaller set of linearly-uncorrelated variables. Assume
a data matrix X ∈ IRM×N , with M the number of variables and N the number of
samples. We assume that the rows of X are zero-centered, meaning that the row
means are subtracted from the data. In that case, the covariance matrix C ∈ IRM×M

can be written as:
C = XXT

N − 1 (1.21)
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1.4. Shape statistics

(a) Original, correlated (x, y)-data. (b) Coordinate transformation to PC-space.

Figure 1.5: Example of principal component analysis on two correlated variables x and y.
The principal axes/eigenvectors, shown in red and green, are scaled by their corresponding
standard deviations

√
λi.

As the covariance matrix is symmetrical, it can be diagonalised as follows:

C = ULUT (1.22)

where L is a diagonal matrix, containing the eigenvalues λi. The columns of U
correspond to the eigenvectors, which are called the principal axes. The projections
of the data X onto those principal axes are the principal component scores and are
given by:

X̃ = XTU (1.23)
The columns of X̃ are the principal components. The ith row gives the coordinates of
the ith datapoint in the PC space. This new coordinate system expresses the data
with respect to uncorrelated variables.

The principal components are commonly calculated by SVD on X, which is given
by: X = USV T , where U and V are the left and right singular vectors and S is a
diagonal matrix containing the singular values si. Given the SVD, the covariance
matrix can be rewritten as:

C = XXT

N − 1 = 1
N − 1USV

TV SUT = U
S2

N − 1U
T , (1.24)

where we used the fact that V is an orthogonal matrix. Comparing with eq.(1.22) we
can identify that the left singular vectors of the SVD must correspond to the principal
directions. Furthermore, the singular values are correlated to the eigenvalues of the
covariance matrix as follows:

λi = s2
i

N − 1 (1.25)

The eigenvalues of the covariance matrix thus show the variances of the respective
principal components. The principal component scores of eq.(1.23) can also be
expressed in terms of the right singular vectors:

X̃ = XTU = V SUTU = V S (1.26)

The principal components are ordered with decreasing variance, meaning that the first
principal component accounts for the maximum amount of variance in the dataset.

15



Chapter 1: Digital geometry and image processing

Each succeeding principal component describes the maximum amount of variance
under the constrained that it is orthogonal to all preceding principal components. As
a result, later principal components are less significant and often represent the noise
in the dataset. This allows expressing the data by only the first k PCs with k < M .
We therefore select the first k columns of V and the k × k upper-left part of S.

Often, the eigenvectors or principal axes are scaled by their respective standard
deviation

√
λi = si/

√
N − 1, such that the different principal components have the

same range. The standardised PC scores with respect to the normalised principal
axes are given by

√
N − 1V , which follows from eq.(1.26). An example of normalised

principal axes for two correlated variables is shown in Figure 1.5.

While being the most frequently used method for dimensionality reduction, PCA is
not the only option. Kernel principal component analysis (KPCA) for example, can be
applied on more complex clustered data that can not be properly transformed into a
linear subspace, spanned by the usual principal components. Dimensionality reduction
on non-gaussian-distributed data can be achieved by independent component analysis
(ICA).

1.4.2 Statistical shape models
Statistical shape models (SSM) describe the shape variations in a population by means
of variation modes. The calculation of those modes involves two steps on a training
set of example shapes. First, the training shapes must be registered to each other by
any method as outlined in section 1.3.3, such that each subject is described by the
same semantic-meaningful set of points. Secondly, a dimensionality-reduction method,
outlined in section 1.4.1, must be applied on the set of registered shapes. In case of
PCA, the matrix X ∈ IR3M×N is now composed of the linearized vertex coordinates,
with M the number of vertices and N the number of training subjects. After deriving
the principal components, any new shape can be expressed as the sum of the mean
shape and a linear combination of the variation modes:

x = x̄+
N∑
i=1

αi
√
λiui (1.27)

with λi and ui being the normalised eigenvalues and eigenvectors of the PCA, respec-
tively.

While SSMs were originally built on only a sparse set of landmarks, they can also be
built on denser set of surface points. Besides the statistical shape information, the
models can also include statistical appearance information. Such “statistical shape
and appearance models” (SSAM) are built on an observation matrix X containing
vertex coordinates and appearances, like the Hounsfield units or bone mineral density
for example. The statistical modeling method as outlined here also holds in the
image domain. In this case the matrix X contains the B-spline coefficients of the
deformation fields that align all subjects with each other. The resulting model is
called a “statistical deformation model” (SDM) ?.

Statistical shape models are useful for morphometric studies, where they provide
more insights in the geometric variations compared to extracted measures as length,
radius, etc. From the statistical model, one can generate an arbitrarily large database
of virtual shape instances, which can help, for example, in determining to which
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portion of a population a certain implant best fits ?. These artifical databases are in
particularly interesting to train deep-learning models on (see chapter 3).

While statistical shape models are usually built for bony structures, they can be
extended with cartilage and ligament information to obtain a complete musculoskeletal
model for biomechanical simulations ?. The correlation between the joint morphology
and its biomechanical function can help in understanding why some people have more
risk for a certain injury or pathology, and can help in improving the diagnosis and
treatment process ?.

Besides explaining the statistical shape variation in the population, a SSM can also
act as a prior model in the reconstruction of a person-specific model. This is a very
efficient type of registration, thanks to the limited number of shape parameters in a
SSM. In this case, we speak of “active shape model” (ASM) or “Active appearance
models” (AAM). The latter helps the registration process by exploiting the appearance
information. Similar to the atlas-based segmentation, discussed in chapter 1.3.1, this
allows for automatic segmentation and pre-operative planning ?.

The shape information of these statistical models can also be combined with finite
element models to personalise mechanical simulations. Finite element models are used
to simulate physical processes, like for example the cartilage stress and strain in a
joint, by solving the appropriate differential equations on the discretised shape. Finite
element models are in general time-consuming to construct, but can be modified
according to the statistical shape information. In the biomedical context, this is in
particular interesting for osteoarthritis studies, for example, to study the relation
between bone shape and stresses or to assess the person-specific risk for bone fractures
??.
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X-ray imaging
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Chapter 2: X-ray imaging

Figure 2.1: X-ray spectra for different generator voltages. Data from ?.

2.1 X-ray physics
X-rays are a type of electromagnetic radiation, widely used for biomedical imaging
because of its ability to visualise the internal parts of a patient. Compared to visible
light, X-rays have a higher frequency, and therefore a higher energy. In this section
we discuss the production of X-rays, their interaction with matter and how they can
be detected for the purpose of medical imaging.

2.1.1 X-ray production
An X-ray generator circuit consists of two electrodes: a negative cathode and a positive
anode. The cathode filament is heated up by an electric current to temperatures
around 2000◦C. The high kinetic energy of the electrons at the cathode surface enables
them to escape from the cathode, which is known as thermionic emission. The freed
electrons are subsequently accelerated towards the positive anode through a voltage of
several kilo-volts, and thereby gain an energy equal to the voltage times the electron
charge:

Ee = e · V = V
eV
V , (2.1)

where the unit electronvolt (eV) is defined as the energy given to a fundamental
charge accelerated through a potential difference of 1V. The high-energy electrons
bombard the anode, which is made of a material with high-atomic number and high
melting temperature, like tungsten or molybdenum. The interaction of high-energetic
electrons with the anode material leads to the production of X-rays in a certain energy
spectrum which depends on the applied voltage between the anode and cathode. The
spectrum, shown in Figure 2.1, consists of a broad continuous spectrum and single
characteristic lines.

The bulk spectrum is caused by Bremsstrahlung, a process in which the electrons are
decelerated by the Coulomb field of the positive protons. The deceleration means a
loss of kinetic energy, which is compensated by the emission of X-ray photons. Because
of energy conservation, the maximal photon energy equals the electron energy, which
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2.1. X-ray physics

Figure 2.2: Relative importance of the 3 main
interaction processes of X-rays and gamma-
rays. At the boundary lines between two pro-
cesses the cross-sections are equal. Extracted
from ?.

Figure 2.3: X-ray interaction cross-
sections in carbon ?.

is equal to V e. Most likely, this total energy is divided over multiple photons being
emitted which therefore must have a lower energy.

The sharp peaks in the spectrum are associated to characteristic X-ray emission.
When the energy of the incoming electrons is higher than the binding energy of the
inner-shell electrons of the anode material, the inner-shell electrons can get ejected.
In that case, it leaves a hole which can be occupied by a higher-shell electron. By
occupying a lower-energy shell an X-ray photon will be emitted with an energy equal
to the energy difference between those two shells. As the energy levels of the atoms
are fixed, the emitted photons can only have these characteristic energies.

2.1.2 Interaction of X-rays with matter
While traveling through matter, X-rays undergo various sorts of interactions with
the material, resulting in an attenuation or reduction of the beam intensity. The
dominant interaction process depends on the atomic number of the material and the
X-ray energy, as can be read from Figure 2.2.

• The photoelectric effect is the dominant interaction process at the low energy
side of the X-ray spectrum, where also medical X-rays belong to. In a photo-
electric interaction, the X-ray photon kicks out an inner-shell electron from the
atom, while the photon itself gets completely absorbed during this process. Part
of its energy is used to overcome the binding energy of the electron to the atom
and the remaining part is converted into kinetic energy of the ejected electron.
For a typical medical X-ray beam energy of 40 keV, the outer layer of bones
(i.e. cortical bone) with an effective atomic number of 10.4 will undergo more
photo-electric interactions than soft tissue with an effective atomic number of
4.7 ?.

• Coherent scattering: When the energy of the X-ray photons is low compared to
the binding energy of the outer-shell electrons, there is not enough energy to
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eject the electron. The photon changes direction but preserves its energy and
momentum.

• Incoherent scattering / Compton scattering: In Compton scattering the photon
loses part of its energy to an outer shell electron, which is only loosely bound to
the atom. The electron is kicked out of the atom and the photon gets deflected.
The energy lost by the photon depends on the scatter angle. The more energetic
the photon, the more forward the scattering will be. The photon loses the
least amount of energy when the scatter angle is small and is maximal when it
changes 180 degrees in direction. Compton scattering is a common interaction,
which occurs at all energies in all materials.

• Pair production: In pair production, the photon interacts with the electric field
of the atom. The photon vanishes and creates an electron/positron pair. It
is most likely to happen at high photon energy and for high atomic number
materials.

2.1.3 X-ray detection in radiology
Radiograph images, also called RX or X-ray images, capture the remaining X-ray pho-
tons after having passed through a patient. The dependency of the X-ray attenuation
on the type of material makes it possible to differentiate between organs, bones, etc.
on such image. For the first 90 years following the discovery of X-rays in 1895, the
X-ray detection was based on chemical processes in a light-sensitive emulsion ?. While
initially on glass photographic plates, the substrate for the emulsion was later replaced
by a photographic film. In 1970s, computed radiography was developed which could
digitize the attenuation pattern stored in the phosphor image plate through laser
stimulation. A digital representation of the attenuation pattern made it possible to
more easily share and store information, but still required manual replacement of the
plates in between acquisitions.

In 1990s, with the advancement in the semiconductor technology, flat-panel detectors
were developed, starting the digital radiography era. A flat panel detector converts
the X-ray photons into electric charges which are read out by a thin-film transistor
array.

An alternative to flat panel detectors include X-ray image intensifiers, which convert the
X-rays into visible light and amplify the intensity to a measurable magnitude. These
are mostly used in fluoroscopy acquisitions, which, in contrast to radiography, image
the object in motion. The amplification of the signal is realised by a photomultiplier
tube (PMT). It consists of a negatively charged photocathode with a phosphor
coating which converts the photon in a photo-electron, and a series of positively
charged dynodes, which causes an avalanche of secondary electrons for each incident
electron.

It is important to note that radiographs or fluoroscopy images represent projections of
the patient on a 2D plane, hence, many anatomical structures overlap with each other.
All the 3D information gets piled up along the beam axis. However, by acquiring
many 2D projections at different angles around the patient, the 3D attenuation profile
can be reconstructed through computed tomography (CT)-reconstruction.
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Figure 2.4: Conebeam projection geometry.

2.2 Radiographic projection
To image a patient by X-rays, the patient is positioned between an X-ray source
and a detector. The X-ray beam can either consist of parallel or diverging X-rays.
Figure 2.4 illustrates a cone-beam projection geometry in which the X-rays originate
from a point source and diverge towards the detector plane. In medical set-ups, the
source-detector system is mounted on a gantry in order to easily acquire radiographs
from different directions around the patient.

In Figure 2.4, the world coordinate system is centered at the isocenter, being the
intersection point of the beam principal axis and the gantry rotation axis. The source
and detector are aligned such that the beam principal axis is perpendicular to the
detector plane and intersects the plane at its center.

The cone-beam projection of the patient onto the 2D detector plane is mathematically
described by a perspective projection camera matrix P , that maps every 3D world
coordinate to a 2D image coordinate. This involves transformations between three
coordinate systems: the world, camera and image reference frame. The projection
matrix P can be decomposed into the two different coordinate transformations: the
extrinsic transformation R that describes the position and orientation of the source-
detector system in the world reference frame, and the intrinsic transformation K
that describes how the image is captured, in terms of focal length, sensor resolution,
etc.

2.2.1 Extrinsic parameters
The extrinsic transformation seeks a transformation R that brings the data from the
world coordinate frame to a canonical camera reference frame, in which the source
is positioned at the origin and the beam principal axis is aligned with the z-axis.
This transformation can be parameterised by two spherical angles: left/right anterior
oblique (LAO/RAO) angle φ and cranial/caudal (CRAN/CAUD) angle θ. They
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describe the orientation of the gantry with respect to the patient.

The transformation of the world reference frame to the canonical camera reference
frame consists of a rotation by angle θ around the axis [sin(φ), cos(φ), 0], followed by
a rotation by angle φ around the beam principal axis:

R = Rz

sin2 φ(1− cos θ) + cos θ − sinφ cosφ(1− cos θ) − cosφ sin θ
− sinφ cosφ(1− cos θ) cos2 φ(1− cos θ) + cos θ − sinφ sin θ

cosφ sin θ sinφ sin θ cos θ

 (2.2)

with:

Rz =

cos(−φ+ π/2) − sin(−φ+ π/2) 0
sin(−φ+ π/2) cos(−φ+ π/2) 0

0 0 1

 (2.3)

The translation part of the extrinsic transformation accounts for the offset o between
the patient and the isocenter, defined in the camera reference frame, and brings the
source to the origin of the camera reference frame:

t =

 ox
oy

oz + d

 , (2.4)

with d the distance between the source and isocenter.

2.2.2 Intrinsic parameters
The cone-beam projection in the canonical frame can be identified as a pinhole-camera
with the source-detector distance D as focal length. In the 2D case, Thales’s theorem
proves that the projection of a point (x, z) along the z-axis onto a plane at a distance
D from the source, is given by Dz/y. The general solution can be written as a 3× 4
matrix multiplication of homogeneous coordinates:

K =

1/δx 0 sx/2
0 1/δy sy/2
0 0 1

D 0 0 0
0 D 0 0
0 0 1 0

 (2.5)

The first part of this camera intrinsic matrix transforms the physical coordinates to
unit-less pixel coordinates and aligns the center of the image plane with the optical
center. The image plane sensor is characterised by sensor size (sx, sy) and pixel size
(δx, δy).

2.2.3 Projection matrix
The extrinsic and intrinsic transformations together define the cone-beam projection,
that transforms a world coordinate to the image plane:uv

w

 =

D/δx 0 sx/2 0
0 D/δy sy/2 0
0 0 1 0

[R t
0T 1

]
x
y
z
1

 (2.6)

Note that the result is a homogeneous coordinate (u, v, w). Conversion to Euclidean
coordinates involves division of the coordinates by the third coordinate, yielding the
image coordinates: (u/w, v/w).
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Figure 2.5: Conversion relation between
Hounsfield units (HU) and density ?.

Figure 2.6: Energy-dependent mass-
attenuation for different material types ?.

2.3 Radiograph simulation
The development and validation of new computer methods in radiology often requires
a large number of radiographs with ground-truth labeling. Manually annotating
such dataset can be time-consuming. Secondly, a projection image with overlapping
structures can be difficult to interpret, resulting in subjective labeling. Instead
of acquiring radiographs, researchers therefore often rely on synthetic radiographs
generated from a surface model or 3D image, generally called “digitally reconstructed
radiographs” (DRR). In this section we describe a ray-casting method to generate
DRRs ? and conclude with limitations of this method.

2.3.1 Ray casting
DRRs can be simulated as perspective projections of a 3D image onto the 2D image
plane. Ray casting simulation methods shoot X-rays as straight lines from the source
to the detector pixels, while the intensity along each ray gets attenuated due to the
various interaction mechanisms between photons and matter. The decrease in X-ray
intensity can be understood as follows. After each infinitesimal step dx, a fraction of
the number of X-ray photons is lost. The loss of beam intensity is proportional to the
particle number density n of the medium, the beam intensity I and the path length
dx:

dI ∝ −nIdx. (2.7)

The proportionality constant reflects the probability of a photon being scattered or
absorbed, and is often combined with the particle number density n into the linear
attenuation coefficient µ. This material-specific constant is a measure for how easily
X-rays can penetrate through the material. Integrating eq.(2.7) over the path length
x of the ray yields: ∫ I

I0

dI

I
= −

∫ L

0
µ(x)dx, (2.8)

where I0 is the initial beam intensity at the source location. This results in the following
expression for the beam intensity I at a radial distance L from the source:

I = I0e
−
∫ L

0
µ(x)dx

. (2.9)
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This expression describes an exponential decrease in X-ray intensity with the distance
travelled through the medium. In case of a homogeneous object, i.e. having a uniform
density and atomic number, this reduces to the well-known Lambert-Beer law:

I = I0e
−µL. (2.10)

As the attenuation coefficient µ is zero in vacuum, the total path length L in this
equation is equal to the Euclidean distance between the points where the ray enters
and leaves the object. This equation can be used to simulate radiographs from surface
models which describe objects by their outer hull without density information.

In contrast to surface models, volumetric models allow to simulate radiographs of
non-homogeneous objects. In models composed of tetrahedral cells, for example,
the attenuation profile per tetrahedron can be described by a linear combination of
Bernstein basis polynomials Bdk (see section 1.2.1). The integral from eq.(2.9) for a
single tetrahedron can then be evaluated as follows:∫ p1

p0

µ(u)du =
∑
|k|=d

βk

∫ p1

p0

Bdk(u)du (2.11)

=
∑
|k|=d

βk
||p1 − p0||
d+ 1

∑
l⊆k

B
|l|
l (u0)B|k−l|k−l (u1) (2.12)

with (u0,u1) being the barycentric coordinates of the intersection points (p0,p1).

Volumetric images, on the other hand, are discretised into 3D volume elements, called
voxels. In a computed tomography (CT) image, the radiodensity of each voxel is
expressed by its Hounsfield unit (HU), which is a linear transformation of the linear
attenuation coefficient, such that, by definition, -1000HU and 0HU correspond to
radiodensity of air and water, respectively. The integral of eq.(2.9) is taken over all
volume elements intersected by the ray:∫ p1

p0

µ(u)du =
∑

µidxi (2.13)

with dxi being the pathlength of the ray through volume element i. The linear
attenuation coefficient µi is equal to the mass attenuation coefficient µm multiplied by
the mass density ρ. The mass density can be calculated from the Hounsfield units of
the CT image by the conversion graph of Figure 2.5. The mass attenuation coefficient
µm is energy- and material-dependent and is shown in Figure 2.6. Notice the similar
features with the graph of Figure 2.3, showing the interaction cross-sections. As the
mass attenuation coefficient depends on the type of material, the computation of
eq.(2.13) requires a labeling of the different voxels according to their material types.
This so-called segmentation of the CT data can be obtained by simply applying
different thresholds on the HU values as indicated in Figure 2.5:

M(x) =
{ air, if HU(x) ≤ −800,

soft tissue, if − 800 < HU(x) ≤ 350,
bone, if HU(x) > 350.

(2.14)

In case the object consists of different types of material, the integral of eq.(2.9) must
be evaluated for each material separately and multiplied by the mass attenuation
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(a) air (b) soft tissue (c) bone

Figure 2.7: Integrated density along the rays for each class of materials.

coefficient:
I = I0 exp

(
−
∑
m∈M

µm(E)
∫ L

0
δ(m,M(x))ρ(x)dx

)
. (2.15)

Each term of the sum calculates the attenuation due to a different material m, being
either bone, soft tissue, or air. Examples of the density integrals for the different
materials are shown in Figure 2.7.

A polychromatic X-ray beam is composed of different energies, as shown in Figure 2.1.
As the attenuation coefficient is also dependent on the energy, we need to evaluate
the total attenuation of eq.(2.15) for every energy bin of the spectrum. Integrated
over the entire energy spectrum yields:

I =
∫
p0(E) exp

(
−
∑
m∈M

µm(E)
∫ L

0
δ(m,M(x))ρ(x)dx

)
dE, (2.16)

with p(E) the spectral density. Note that the path integral must only be calculated
once per material class, as it became energy-independent after introducing the mass-
attenuation coefficient.

2.3.2 Secondary effects
There are some limitations to the simulation framework as outlined above, due to
other physical processes which would contribute to a real radiograph. As seen in
section 2.3.1, ray-casting methods model the photon-matter interactions as an effective
attenuation along a straight line. However, as seen in section 2.1.2, X-rays can undergo
a change in direction through coherent or incoherent scattering. This can only be
modeled by probabilistic methods, like Monte Carlo (MC) methods, which simulate
the trajectory of every single photon and evaluate the probability of scattering for
each photon-matter interaction. To avoid time-consuming probabilistic simulations,
recent deep-learning methods have been developed which, trained on MC outputs,
can estimate an effective scatter image ?.

Another limitation is the effect of “beam hardening”. As low-energy photons are more
likely to get attenuated than the high-energy photons (cfr. Figure 2.6), it is expected
that at large penetration depths the ray will mostly consist of higher energetic photons.
This phenomenon makes the spectral density p(E) in eq.(2.16) dependent on the
path-length x.
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Finally, real radiographs are also subject to quantum noise and electronic read-out
noise.
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Computer Vision

Artificial Intelligence

Deep Learning

Machine Learning

Figure 3.1: Venn diagram with the different subfields of artificial intelligence. The green
region indicates the subfield that this thesis focuses on.

3.1 Introduction
Artificial intelligence (AI) is a field within computer science research concerning
systems which perceive their environment and take appropriate actions autonomously
to achieve their goal. AI was founded as such during the Dartmouth summer conference
in 1956 ?. At this event 11 mathematicians and scientists came together in an attempt
to let computers mimic the human decision taking process. In the following years
different processes were taken over by computers, which could only be done by humans
until then. Natural language processing (NLP) and speech recognition were one of
the first applications of AI. The first mobile AI-based robot saw the light of day in
1972 and listened to the name “Shakey”. It was able to perceive its environment
and accomplish tasks without step-by-step instructions. Despite the important AI
milestones, AI research started to decline due to a lack of funding, which is known as
the AI winter.

In 1990s, with the development of probability theory and statistics, a new type of
AI arose, namely machine learning. The goal of ML is to learn underlying processes
from a large amount of example data. However, many early ML algorithms were
not strong enough to learn directly from the data and needed manual extraction of
features. These are details in the input data that are believed to be important to
understand the underlying process. ML models use decision trees, support-vector
machines (SVM), neural networks (NN), etc to process these features to come up
with a solution. A typical workflow consists of training, validation and testing.

The growing availability of large labeled databases and the technological advances
in computing power through CPU’s and GPU’s, made it possible to make neural
networks deeper and more complex with multiple layers. The benefit of this new
type of ML, called Deep learning, is that it does not require manual feature selection
anymore. Instead, the network is deep and complex enough to learn the relevant
features itself from the input data. DL gained popularity over classical methods as
they achieve higher accuracy and can outperform human decision making. More
so than other methods, the DL’s accuracy benefits from the large availability of
data.

Deep-learning became a successful technique in many computer vision problems. While
DL teaches machines to learn from data experiences, computer vision teaches machines
to understand visual data like images and videos. Types of problems that DL can be
applied to in the field of computer vision includes for example image segmentation,
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Figure 3.2: Building blocks of a neural network. (a) A single perceptron calculates the
weighted average of its input and applies an activation function. (b) Perceptrons can be
stacked into multiples layers in order to solve more complex problems. (c) Different types of
non-linear activation functions.

registration, object detection, landmark detection and classification.

3.2 Artificial neural networks
Similar to how our brain processes information through a network of biological neurons,
an artificial neural network solves a complex task by feeding input data to several
layers of artificial neurons. Each single artificial neuron or perceptron, shown in
Figure 3.2a, computes a weighted sum of its inputs:

y = b+
∑

wixi (3.1)

The weights wi and offset b are internal parameters of the perceptron and express the
importance of each input node to the output. The output is passed to a nonlinear
activation function, which allows the network to solve more complex tasks. Without
the non-linearity, the network would behave as a linear model irrespective of the
number of layers. Several activation functions have been proposed in the history of
neural network research, including sigmoid-function, tanh-function, rectified linear
unit (ReLU), Leaky-ReLU and exponential linear unit (ELU) ?. Their behavior is
shown in Figure 3.2c.

In order to solve more complex tasks, artificial neural networks (ANN) stack multiple
layers of perceptrons behind each other, as illustrated in Figure 3.2b. The universal
approximation property of neural networks states that a two-layer perceptron with
only one hidden layer is already capable to approximate any continuous function to
any desired accuracy ?. Each perceptron of a layer in an ANN is connected with each
perceptron of the previous layer, which is the reason why those layers are called “fully
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Figure 3.3: Convolutional operation between an input (left) and a kernel (blue).

connected layer”. Each connection has a certain weight associated which needs to be
learned during the training process.

3.3 Convolutional neural networks
Convolutional neural networks (CNN) are a specific type of network architure that
has been optimised for images. They exploit the spatial relationship between pixels
in 2D images or between voxels in 3D image volumes. In this section we discuss the
main building blocks of a CNN.

3.3.1 Convolutional layer
A convolutional layer extracts multi-scale localised spatial features from the input
data, taking into account neighboring pixels or voxels. It does this by applying a
discrete convolution between the input feature image g and a small window kernel f ,
visualised in Figure 3.3:

(f ∗ g)[x, y] =
∞∑

n=−∞

∞∑
m=−∞

f [n,m] · g[x− n, y −m] (3.2)

(f ∗ g)[x, y, z] =
∞∑

n=−∞

∞∑
m=−∞

∞∑
l=−∞

f [n,m, l] · g[x− n, y −m, z − l] (3.3)

Note that, in contrast to fully-connected layers in an ANN, a perceptron is only
connected to a small subset of perceptrons of the previous feature map. The kernel g
determines what feature the layer will filter from its input. The layer will produce a
strong response for locations in the input where it finds this patch. The weights of
the layer’s kernel are regarded as the internal parameters of the layer and need to be
optimised during training of the network. Training of the network will learn which
kernels are most useful for the specific problem. Besides, the convolutional layer has
also some non-learnable hyperparameters that control its behavior:

• The kernel size K determines the size of the sliding window.

• The stride s determines how many pixels the kernel window is shifted after
each convolution step. This is normally equal to one, such that no information
is lost.

• The dilation d determines the spacing between kernel elements.
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• Padding P of the input image will add zeros to the borders of an image, such
that no information is missed when sliding the kernel window over the image.

• The desired number of output features Fout is the number of filters and
controls the number of kernels the convolutional layer will have, or in other
words: how many patterns the layer will filter from the input.

The size of the output feature map of a convolutional layer also depends on these
hyperparameters. The size of the output feature map is given by (Hout,Wout, Fout),
with:

Hout =
⌊Hin + 2× P [0]− d[0]× (K[0]− 1)− 1

s[0] + 1
⌋

(3.4)

Wout =
⌊Win + 2× P [1]− d[1]× (K[1]− 1)− 1

s[1] + 1
⌋

(3.5)

The number of parameters used by the convolutional layer, including biases, equals
to:

n = (K2Fin + 1)Fout. (3.6)

Stacking two 3× 3 convolutions behind each other has the same receptive field as a
single 7 × 7 convolution, meaning that the area of the first feature map seen by a
single pixel in the last one has equal size. However, according to the previous formula
the 3×3 convolutions have less weights to be learned than the single 7×7 convolution.
Secondly, the 3× 3 convolutions will be better in learning complex concepts which
increases the learning capacity, as a non-linear activation can be included after each
convolution. It is therefore preferred to cascade multiple small convolutions instead
of one large convolution.

3.3.2 Pooling layer
Pooling layers reduce the spatial dimensions of the feature maps without changing the
number of features. Like a convolutional layer, it slides a window across the feature
map, but now filters the values within that window by only keeping the maximum
value (max-pool layer) or their average value (average-pool layer). Note that this
operation does not involve learnable parameters, which makes it an easy way to reduce
spatial information and save computational cost. The downside of this compressing
operation however is the loss of information.

3.3.3 Batch normalisation
In general, it is a good practice to normalise the input data to a network in order to
reduce the complexity of the data distribution and to simplify the decision boundary
that the network is supposed to model. The different scales of the input data can
otherwise result in slow and unstable training. The same reasoning applies to the
intermediate feature maps in the network. The normalisation of those feature maps are
taken care of by the batch normalisation layers. They ensure a more efficient training
which allows for larger training rates and which is less sensitive to its parameter
initialisation ?. The batch normalisation was originally proposed to be added right
before the activation function.
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The batch normalisation layer normalises each channel of its input tensor Ib,c,x,y, by
subtracting its mean µc = 1

N

∑
b,x,y Ib,c,x,y and deviding the zero-centered data by

the standard deviation σc. This results in all channels to have a similar range.

After the normalisation, it applies a linear transformation on each channel, parame-
terised by the hyper-parameters γc and βc. These learnable parameters are optimised
during training and allow to control the activation distribution. It prevents, for
example, the data distribution to fall in the linear regime of a ReLU activation
function.

Putting the two parts, together, the output of the batch normalisation layer can be
written as follows:

Ob,c,x,y = γc
Ib,c,x,y − µc√

σ2
c + ε

+ βc (3.7)

where ε is added for numerical stability.

3.4 Training a neural network
While classical methods need to repeat their parameter optimisation for every problem
instance, a deep-learning model provides a generic representation of the problem,
such that it can be applied to any problem instance without having to change its
parameters. This internal representation is parameterised by the weights and biases
of the hidden layers, which need to be optimised based on a large dataset of training
samples. It is then assumed that this learned representation can be generalised to
other unseen samples.

3.4.1 Loss function
A loss function quantifies how well the network performs in its task on a certain
dataset. In case of supervised training, the input data and its corresponding ground-
truth labels are available during the training process and can be used to define a loss
function.

The loss function depends on the type of problem. For binary classification problems,
for example, which have categorical outputs, a popular loss-functions is the cross-
entropy loss. For regression problems with a continuous output values, the L1 or L2
norm can be calculated between the ground-truth values and their network predictions.
Comparing multi-dimensional data, like images, can be done through the normalised
cross-correlation loss, which measures the correlation between images X and Y as
follows:

NCC(X,Y ) = 1
N − 1

N∑
i=1

(Xi − µX)(Yi − µY )
σXσY

. (3.8)

with N the number of samples. Instead of evaluating the mean µ and standard
deviation σ over the whole image domain, it can be calculated in a local neighborhood
of 9-by-9 pixels around each point, yielding the local normalised cross-correlation loss
?.
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3.4.2 Back-propagation
During the training of the network, the loss function L is being optimised by the
optimiser by tuning the network weights {Wi} and biases {bi} proportional to how
much they contribute to the loss function. Therefore it is important to know how
each network weight depends on a change in the loss function, which mathematically
translates into the derivative of the loss function with respect to the weights. Those
derivatives are derived by the back-propagation algorithm ?.

Assume, for the sake of simplicity, a two-layer network, where each layer takes the
weighted sum of its input (eq.(3.1)) and applies an activation function f or g. A
forward pass through the network can schematically be represented as follows:

X → Z1 = f(b1 +W1X)→ Ŷ = g(b2 +W2Z1)→ L(Ŷ , Y ) (3.9)

where X, Ŷ and Y represent the network input, the network output and the expected
output, respectively. The gradient of the energy function with respect to the weights
of the second layer is given by:

∂L
∂W2

= ∂L
∂Ŷ

∂Ŷ

∂W2
(3.10)

= ∂L
∂Ŷ

∂g

∂(b2 +W2Z1)Z1 (3.11)

Note that similar derivation can be done with respect to the bias parameter. The
gradient with respect to the weights of the first layer can be calculated through the
chain rule, as the first layer response is nested within the second layers response:

∂L
∂W1

= ∂L
∂Ŷ

∂Ŷ

∂Z1

∂Z1

∂W1
(3.12)

= ∂L
∂Ŷ

∂g

∂(b2 +W2Z1)W2
∂f

∂(b1 +W1X)X (3.13)

Note that the two first factors from eq.(3.11) are repeated. In general, any additional
layer will add an additional factor to the gradient. By saving the gradients of the last
layers, the gradients of the first layers can efficiently be calculated. It is said that the
loss-function is back-propagated through the network.

3.4.3 Optimiser
The goal of the optimiser is to minimise the training loss-function by changing the
network weights. It therefore relies on the gradient descent principle, as introduced
in eq.(1.7) for a classical optimiser. It estimates the gradient of the loss function for
the current model state with respect to the network parameters θ (i.e. weights and
biases) and updates the parameters accordingly:

θt = θt−1 − α∇θL(θt−1)

= θt−1 − α
∂L
∂θ

(θt−1), (3.14)

where the gradients are computed by the back-propagation of section 3.4.2.
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One limitation of eq.(3.14) is the fixed learning rate or step size α. It controls how
much the weights are changed for a certain change in loss function. If the learning
rate is too high, the optimiser will not converge and keep overshooting. If the learning
rate is too low, training might take very long and might end up in a local minimum.
However, one would expect to need a large learning rate in the beginning of the
optimisation and a smaller one while you get closer to the minimum. Adagrad, for
example, divides the learning rate by the square-root of the cumulative sum of all
the preceding gradients squared. This results in a monotonously decreasing learning
rate. RMSProp on the other hand can have a decreasing or increasing learning rate
depending on if the gradients remain consistent or if they change direction.

A second concern about eq.(3.14) is that updates are only based on the current model
state and not on the previous states, which can result in high fluctuating updates. This
can be solved by adding a momentum term which accumulates the preceding gradients
to calculate a parameter update. If more updates are taken into one direction the
momentum will increase while updates in dimensions which change direction will be
suppressed. As a result the convergence is accelerated in the relevant direction and
oscillations are reduced.

The Adaptive Moment Estimation (Adam) optimiser combines both, the adaptive
learning rate and the momentum acceleration, by estimating the first and second
moments of the gradient by a moving average:

mt = β1mt−1 + (1− β1)∇θL(θt−1) (3.15)
vt = β2vt−1 + (1− β2)(∇θL(θt−1))2 (3.16)

with β1 and β2 being hyper-parameters of the optimiser which control the exponential
decay rate of the average. The initialisation of mt and vt introduces a bias to the
averaging, and can be removed by multiplying with an additional factor as proposed
in the original paper ?. Ignoring this factor, the parameter update according to the
Adam-optimiser is given by:

θt = θt−1 −
α

√
vt + ε

mt, (3.17)

with α the stepsize.

3.4.4 Data batches
As networks are typically trained on large datasets, it becomes unpractical or even
impossible to load all the training data in memory at the same time to optimise the
network parameters. Therefore the dataset is typically split up into several batches of
data which are loaded in memory one by one during the training process.

The back-propagation, gradient descent and parameter update are applied to each
individual batch separately. Also the batch normalisation of section 3.3.3 is performed
on each batch instead of on the entire database. When all batches of the training
dataset have been processed, we say that one epoch has been completed. The
training is repeated over several epochs, similar to the different iterations in classical
optimisation methods.

The split of the training data into batches implies that the gradient of eq.(3.14) is only
calculated from a random subset of training data, which is an approximation to the
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Figure 3.4: Typical evolution of the training and validation loss as function of the number of
epochs.

real gradient that one would find for the entire database. Therefore, the optimisation
scheme, as outlined in section 3.4.3, is also referred to as a stochastic gradient descent
method.

3.4.5 Underfitting versus overfitting
The purpose of the network training is to find a model that minimises the training loss,
but also generalises well to unseen input data. In order to evaluate the generalisability
of the model during and after training, we typically rely on an additional validation and
test dataset, respectively. In total, we have three datasets with a ratio of 80%-10%-10%
in number of samples:

• The training dataset is used by the optimiser to optimise the network weights.

• The validation dataset provides an unbiased evaluation of the network after
each epoch. This data is seen during training, but not used to learn from. The
hyper-parameters of the model can be tuned based on the energy loss computed
on this dataset.

• The test dataset provides an unbiased evaluation of the final model.

The final model should perform well on all three datasets. In the beginning of the
training, the model under-fits all the datasets, and has a weak generalisability. As
the training continues, both, training and validation loss will decrease as illustrated
in Figure 3.4. The validation loss will eventually stagnate or even increase, while the
training loss can further be decreased. At that point, the model starts over-fitting
the training data. Instead of learning a generalisable representation of the data, it
will exactly reproduce the training data after a while, including the noise. One way
to prevent overfitting and to have the best generalisability, is by early stopping the
training based on the validation loss ?.

The overfitting/underfitting-problem is related to the fact that the number of param-
eters in a neural network needs to be in balance with the amount of training data. If
the number of parameters is low compared to the number of training data, the model
will underfit the data, meaning that it can not capture the underlying structure of
the data well. This can easily be solved by increasing the model capacity by including
more layers to the network. On the other hand, if the number of parameters is higher
than the number of training data, it can overfit the data.
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Figure 3.5: A residual block uses a shortcut connection to skip multiple layers in order to
solve the vanishing gradient problem ?.

Overfitting of the model to the training data can be prevented by so-called regu-
larisation, which improves the generalisability of the network. The most common
regularization approach is to add a penalty term to the loss function that prevents
too large network weights and thus reduces the complexity of the decision boundary.
The higher the regularization strength, the more overfitting gets reduced.

Another regularisation technique is to include dropout layers in the network, which
turn on and off certain neurons in the network with a certain probability during
training. This forces the network to learn features through different paths, resulting
in weights to be better distributed over the network.

Finally, batch normalisation, discussed in section 3.3.3, also has a sort of regularization
effect on the training. It normalises a layers output by subtracting the batch mean
and dividing it by the batch standard deviation. The layer has also two additional
learnable parameters that can shift and scale the data.

3.5 Examples
3.5.1 ResNet
After the general architecture of CNN being introduced, it is tempting to believe that
deeper networks, with multiple layers, will be more successful, as they have more
weights. However, adding too many layers leads to saturation of the training loss
and eventually to an increase of the training error, a problem known as the vanishing
gradient problem. Network weights are updated by back-propagating the energy
function throughout the network, by using the chain rule as discussed in section 3.4.2.
If succeeding gradients are small, the early layers in the network might not receive
valuable updates, despite their importance at the beginning of the network.

To solve the vanishing gradient problem, deep-residual network (ResNet) was proposed,
originally for image classification ?. Instead of learning a non-linear mapping function
H(x), it learns a residual mapping F(x) = H(x)−x, by introducing a skip connection
which bypasses one or several layers. The residual function and the layers input
are added at the end of the module, as shown in Figure 3.5. The skip connection
makes it easier to learn an identity mapping between the input and output, which
is a mechanism for the network to turn off irrelevant layers. The back-propagation
can now also skip the intermediate layers thanks to the skip-connection, hence larger
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gradients can reach the initial layers and all layers of a deep network can achieve a
similar learning rate.

3.5.2 Encoder-decoder networks
Encoder-decoder architectures often arise in many deep-learning models and consist
of two network parts. The first part, the encoder, compresses the input data into
a “latent”-space variable with smaller dimensions. Its convolutional and max-pool
layers reduce the spatial dimensions while increasing the number of features. The
decoder part, on the other hand, decompresses the latent variable by upsampling or
deconvolutions.

One example of an encoder-decoder network is the autoencoder, which is designed to
reproduce its own input. The latent variable acts as a bottleneck between the encoder
and decoder which prevents all features to be passed through. As a result the network
can only output an approximation of its input image. This property makes such type
of network for example interesting for denoising of medical images ?.

The spatial downsampling in the encoder prevents the decoder of recovering the full
spatial resolution. U-nets are designed to solve this issue by including skip connections
between the encoder and decoder layers, as can be seen from Figure 3.6. These skip
connections allow spatial information to flow from the encoder to the decoder, and
can be concatenated with the feature information from the upsampling path of the
decoder.

While U-nets were originally proposed for biomedical image segmentation ?, their
architecture has successfully been adopted in many other image processing applications.
Registration networks, for example, deploy this U-shaped architecture with skip-
connections to learn a deformation field from two input images ?. Even a series of
U-networks with feature aggregation between the different stages has been adopted
for the sake of landmark detection ?.

3.5.3 Style transfer
Neural networks are often trained on simulation data, such as DRRs for example
(section 2.3). This simulation data might however still look very different from real
data on which we want to apply the network. Augmentation of the training data, like
varying the brightness, noise, etc are techniques to improve the generalisability of the
network. However, it remains challenging to mimic the exact appearance of real data.
Alternatively, the style difference between training data and real data can be learned
by a so-called Generative Adversarial Network (GAN) ?, by decoupling the content
and style from the images. Given a real image, its style can be converted to the style
of a simulation image, for which the network has been trained.

A GAN network is composed of a generator and discriminator which compete against
each other. The generator is trained to create realistic-looking fake images based
on a 1D latent space variable. The discriminator, on the other hand, is trained to
distinguish between real and fake images. By training both at the same time, the
generator is forced to create images as close as possible to the original ones, in order
to fool the discriminator.
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Figure 3.6: U-net architecture, consisting of an encoder and decoder with skip-connections
in between ?.
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Chapter 4: GUI for JSW Assessment by Optical Marker Tracking

Abstract
Optical position tracking is an essential tool in computer-assisted interventions for
intra-operative guidance. It allows to register a pre-operative model or surgery plan
to the patient, providing additional support to the surgeon. In this paper, we propose
a two-step procedure to register pre-operative digital surface models to the surgical
scene based on optical marker data. First a paired-point matching is applied, followed
by an iterative closest point registration step. Mapping the surface model to the
camera system allows to compute properties like the joint space width and motion
asymmetry. Our method can be generalised to any joint and has been made available
through an open-source graphical user interface, enabling future research on surgical
navigation systems.

The work in this chapter has been published as:

J. Van Houtte, Sijbers, J., and Zheng, G., “Graphical User Interface for Joint Space
Width Assessment by Optical Marker Tracking”, in 4th International Conference on
Bio-engineering for Smart Technologies, 2021.
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4.1 Introduction
Recently, many orthopaedic interventions have become computer-assisted in order to
improve their clinical outcome and consistency ?. Position tracking systems are playing
a central role in such workflows as they allow to navigate surgical instruments relative
to the patient. They allow to map a pre-operative plan to the patient intra-operatively.
For anterior cruciate ligament reconstruction (ACL), for example, the tunnel position
and direction has been optimised pre-operatively based on computed-tomography
(CT) images ?. For total knee arthroplasty (TKA) such pre-operative CT is used to
select the right implant and to plan the best resections ?. During surgery, the surgeon
must be able to follow these surgical plans as close as possible.

Besides surgical navigation, position tracking is also relevant intra-operatively for
evaluating kinematics during surgery. It has been indicated in the literature that
restoration of the native knee motion in TKA, for example, leads to better clinical
outcomes ?.

An optical marker position tracking system is designed to measure the three-dimensional
(3D) position of markers attached to a patient or to a surgical instrument. The stereo-
scopic system consists of two infrared (IR) illuminators and two camera sensors. The
illuminator emits infrared light which gets reflected from the retroreflective coating of
passive spherical markers, back to the camera sensor. Active markers on the other
hand get activated by a trigger pulse emitted by the illuminator and emit IR light
themselves towards the camera.

By arranging a set of several markers into a specific configuration on a surgical
instrument, the position sensor is able to calculate the position and orientation of
that instrument, in the form of a rigid transformation. This configuration of markers
is referred to as the digital reference frame (DRF) and its design has been studied in
the literature to maximise the tracking accuracy ?. A single-face DRF has often a
co-planar arrangement of four markers, with a large distance between them to avoid
occlusions.

The tracking system computes the rigid transformation between the camera coordinate
system and each DRF. It remains a question for the user how the bone is positioned
with respect to this DRF. Different procedures exist for registering a pre-operative
digital bone model to the DRF. Either a pre-operative CT is acquired with the
markers already attached, such that the markers can directly be registered to each
other without further refinement ?. Such CT-acquisition, however, complicates the
surgical workflow. An alternative approach utilizes a digital probe to annotate physical
landmarks on the bone, which can be brought into correspondence with landmarks
on the digital surface models. This is however sensitive to the subjective placement of
the landmarks.

In this paper, we outline a two-step procedure to register a pre-operative digital
surface model to optical marker data, consisting of a landmark registration and an
iterative closest point registration. We demonstrate how the registered surfaces can
be used to efficiently evaluate motion asymmetry in the knee joint. Our procedure
has been made available through a graphical user interface (GUI), and is open-source
available1.

1https://github.com/jvhoutte/MarkerTracking
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Figure 4.1: Plastic model of femur and tibia with optical markers attached.

femur surface model tibia surface model

femur DRF tibia DRF

camera coordinate system
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Figure 4.2: Schematic overview of the transformations between different coordinate systems.
The position tracking system measures the transformationsMb between the camera coordinate
system and the digital reference frame (DRF) of bone b. The calibration solves for the
registration transformation Treg,b between the bone’s surface model and the DRF.

4.2 Methodology
4.2.1 Data acquisition
In our experiment, we used a Polaris Vega optical tracking system from Northern
Digital Inc. (NDI) to track the articulating motion of a plastic knee joint model ?.
This tracking system has a 3D positioning accuracy of 0.045mm ?. Digital reference
frames with four reflective markers each were screwed into the femur and tibia bone as
shown in Figure 4.1. The DRFs make it possible for the tracking system to indirectly
track the bones. The plastic bones were manually articulated during the marker
tracking. A CT scan was acquired from the plastic bone models in order to obtain a
digital surface model after segmentation.

4.2.2 Calibration
The goal of the calibration step is to find the transformation Treg,b that registers the
digital surface model of bone b to the corresponding digital reference frame defined
by the reflective markers. As the position of the real bones with respect to the DRF
is unknown, we sample the real bone surfaces by a digital annotator equipped with
another digital reference frame. The optical tracking system simultaneously tracks
the bone DRFs and the annotator’s DRF. We denote the tip of the digital annotator
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Figure 4.3: Registration of the tibia (top) and femur (bottom) digital surface model to their
corresponding optical surface samples (red dots), after motion-correction. The white surface
is the initialisation result after paired point registration. The blue surface is the result after
ICP-registration.

by Lreal(t) and the tracked transformation of the bone’s DRF by Mb(t). Figure 4.2
summarizes the relationship between the different transformations.

In a first step the annotator is used to annotate a small number of physical landmarks
on each bone b. Those landmark positions Lrealb (t) are measured by the optical
tracking system with respect to the camera coordinate system. To correct for any
possible movement of the bones during the annotations, we compute the landmark
positions with respect to the bone’s DRF, which is given by: M−1

b (t)Lrealb (t), with
Mb(t) the bone’s DRF transformation.

The same set of landmarks is then annotated on the digital surface model of the bone
and a paired point matching algorithm between both sets of landmarks is performed.
The resulting transform Tinit aligns the landmark positions on the surface model with
the real landmark positions in the bone’s DRF.

In a second step, the digital annotator is moved along the bone’s surface in order to
acquire a continuous set of digital points S. Next, we apply a dense surface matching
by iterative closest points (ICP) between the digital surface model and the sampled
points on the real surfaceM−1

b (t)Sb(t). The resulting transform Ticp brings the digital
surface model into closer correspondence with the real model after the initialisation.
The final registration transform for each bone is given by:

Treg = TicpTinit (4.1)

An example of both registration steps is shown in Figure 4.3. It qualitatively shows
the necessity of the last dense registration step, to obtain close registration with
the continuous set of motion-corrected points (red dots in the figure). The initial
transformation, resulting in the white surface in the figure, is sensitive to subjective
landmark placement and only provides a rough alignment. Note that the final
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Figure 4.4: Example of reconstructed poses (top row) with the corresponding joint space
width shown on the tibia joint surface by the color scale (bottom row). The green and red
dot indicate the location of the minimal joint space width for the medial and lateral side,
respectively.

transformation Treg is time independent. It is used to position the digital surface
model correctly with respect to the bone’s digital reference frame.

4.2.3 Articulated transformations
Combining the calibration transformations Treg and the time-dependent motion
transformations M(t), computed by the optical tracking system, the digital surface
model can be transformed to the camera coordinate system by:

M(t)Treg (4.2)

As the joint space width is invariant to global transformations, we choose, without
loss of generality, to keep the femur model fixed and transform the tibia relative to
the femur by:

Mvirt
t→f (t) = T−1

reg,fM
−1
f (t)Mt(t)Treg,t (4.3)

4.2.4 Asymmetry of joint space width
The previous steps allow to efficiently calculate the joint space width during articu-
lation. First, an implicit surface distance function D(.) is calculated for the femur
surface model, as illustrated in Figure 4.5. This function is defined within a region of
interest Ω ⊂ IR3, centered around the femur condyles. It computes the distance from
each point x ∈ Ω to the closest point on the femur surface model. The calculation of
the distance function D(.) is the time-consuming step but only needs to be performed
once as the femur stays fixed in space at all times. Given a point p on the tibia
surface model, the closest distance d to the femur at a particular time t can be found
by the fast evaluation of D(.):

d = D(Mvirt
t→f (t)p), (4.4)
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Figure 4.5: Illustration of the implicit surface distance function of the femur, which calculates
the distance of every point inside the region of interest to the closest point on the femur
surface. The function is evaluated for the points on the tibia model, discriminating between
the medial and lateral side of the tibia.

with Mvirt
t→f (t) given by eq.(4.3). Figure 4.4 shows the joint space width on the tibia

joint for different poses.

In order to study the asymmetry of the joint movement, we make a distinction
between the joint space width at the medial and lateral side of the tibia. Both sides
are automatically identified by calculating the symmetry plane of the tibia as follows.
First the elongation axis of the bone is calculated by applying PCA on the surface
model and extracting the eigenvector with the largest eigenvalue. This eigenvector
corresponds to the elongation axis and can be aligned with the y-axis, without loss of
generality. Next, the model is mirrored with respect to the xy-plane. The original and
mirrored models are registered to each other by ICP. The previous steps are repeated
for different roll rotation angles around the y-axis, because ICP is vulnerable to local
minima. We select the registration result with the smallest geometric error. The
centers of the lines connecting the model points with their mirrored counterparts lie
approximately on one plane. We apply a plane fit on this set of points to obtain the
symmetry plane.

4.3 Discussion
This paper described a two-step calibration procedure in which a pre-operative surface
model can accurately be registered to markers detected by an optical position tracking
system. We illustrated how, after calibration, the mapped surfaces can be used to
efficiently calculate the joint space width during articulation.

Our method has been made publicly available through a graphical user interface,
shown in Figure 4.6. It allows to load any pair of bones. After loading the surface
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Figure 4.6: Screenshot of the graphical user interface. The first window lets the user load the
data and annotate the landmarks on the digital surface models. The second window displays
the articulating surface models and the minimal joint space width in function of the time.

models and the position tracking data, the user is asked to annotate the landmarks
on the digital surface models. In the second window the transformed surface models
are visualised at each time frame. A graph shows the minimal joint space width for
the medial and lateral sides as function of the time.

While the proposed GUI is valuable for accurate point cloud registration and motion
asymmetry studies, there is still room for improvement in terms of marker usage in
the acquisition protocol. Marker-less navigation systems have been proposed to avoid
invasive marker placement. Such systems simultaneously use RGB and depth cameras
?. Based on the RGB images, a (deep-learning) segmentation method can extract a
segmentation mask of the knee joint. This mask is subsequently used to extract the
region of interest from the point cloud acquired by the depth camera. A pre-operative
surface model can be registered to this partial point cloud by means of ICP in order
to establish the relative pose. This workflow omits the use of markers and sampling
of the bone by a digital probe, but requires the knee joint always to be completely
visible. The occurrence of occlusions during full articulation of the knee makes this
method less suitable, favoring marker-based tracking methods.

Both, marker-based and marker-less tracking systems, require the registration of a
surface model to a point cloud. Only the acquisition method to obtain this point
cloud might differ. It remains open for further research how both can be combined.
Marker-less systems might, for example, benefit from an initialisation provided by a
digital annotator.

4.4 Conclusion
This paper proposed a two-step procedure to register surface models to optical marker
tracking data, consisting of a landmark-based and dense registration. The accurately
mapped surface models allow to study the asymmetry of the joint space width in a
computationally efficient manner. The method has been made available through an
open-source graphical user interface in order to support future research.
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Chapter 5: An Articulating Statistical Shape Model of the Human Hand

Abstract
This paper presents a registration framework for the construction of a statistical
shape model of the human hand in a standard pose. It brings a skeletonized reference
model of an individual human hand into correspondence with optical 3D surface
scans of hands by sequentially applying articulation-based registration and elastic
surface registration. Registered surfaces are then fed into a statistical shape modelling
algorithm based on principal component analysis. The model-building technique has
been evaluated on a dataset of optical scans from 100 healthy individuals, acquired
with a 3dMD scanning system. It is shown that our registration framework provides
accurate geometric and anatomical alignment, and that the shape basis of the resulting
statistical model provides a compact representation of the specific population. The
model also provides insight into the anatomical variation of the lower arm and hand,
which is useful information for the design of well-fitting products.

The work in this chapter has been published as:

J. Van Houtte, Stanković, K., Booth, B. G., Danckaers, F., Bertrand, V., Verstreken,
F., Sijbers, J., and Huysmans, T., “An Articulating Statistical Shape Model of the
Human Hand”, in Advances in Human Factors in Simulation and Modeling (AHFE
2018), Cham, 2019, vol. 780, pp. 433–445.
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5.1 Introduction
Shape models of faces and full-bodies have become valuable for many commercial
applications of computer vision and graphics, ranging from customized design to
motion tracking ??. Their potential for noise and artifact reduction, hole filling, and
resolution improvement, have aided to employ low-budget scanners with low mesh
quality ??. Recently, the popularity of these techniques has led to their consideration
for modelling the human hand, most often for the task of hand tracking ??.

In the context of hand tracking, shape models have been used with the primary goal
of improving pose estimation ?????. In general, these techniques consist of a fixed
prior rigged template model which can be aligned to person-specific depth images
or 3D meshes. The alignment is often achieved by solving for the articulation and
anthropometric parameters of the template that optimally match the subject’s depth
image or 3D mesh. The registration is regularized by principal component analysis
(PCA) ? or by an “as rigid as possible” (ARAP)-regularization ?.

As the focus of these techniques has been on obtaining accurate pose information,
the level of geometric detail can vary significantly between models. Many models are
composed of primitives like spheres and cylinders of fixed size, with the registration
step simply articulating these primitives ??. Others use a more realistic skin geometry,
but only allow the model to articulate ?. Accommodating variations in hand shape
and size has only recently been explored ??, and those variations have not been
restricted to a range of “natural” hand shapes and sizes.

It has been argued that detailed personalized hand models improve the accuracy
of both model registration and pose estimation ?. This argument was furthered by
Khamis et al. who regularized possible hand shapes with a low-dimensional parametric
shape model that included statistical shape variations of a population ?. Ideally,
this shape model would be based on a dataset of high-quality surface scans in the
same pose, but Khamis et al. constructed their shape basis on low-quality depth
scans which contained self-occlusions. To address the low quality, their statistical
shape model was estimated simultaneously with each individual’s hand shape and
pose parameters.

Meanwhile, recent advances in optical scanning technology, such as the 3dMD-system
?, have enabled the acquisition of high-quality (< 0.5mm error) 3D surface scans,
even from highly articulating objects like hands. It is expected that a statistical shape
model based on these high-quality scans would reveal more geometric details and it is
therefore the interest of this paper to build a high-resolution geometric shape basis
that, to the best of our knowledge, has not been seen in the literature.

Building such as statistical model requires bringing the 3D scans of different subjects’
hands into anatomical correspondence. Having an anatomical correspondence for all
points of all meshes is critical to build an accurate and interpretable model. However,
this is an especially difficult task for a complex articulating shape like the hand.

The aim of this study is to obtain reliable anatomical correspondence for building a
statistical human hand model. We propose a registration algorithm, similar to the
technique in ?, that aligns a template articulation model to a database containing
100 high-quality 3D scans of human hands. We hypothesize that the addition of
the articulation model, and its corresponding registration algorithm, will allow us to
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(a) Arm skeleton, with labelled bones (b) Bone hierarchy

Figure 5.1: Our reference articulating hand model is defined by the skeleton in (a). The
bones in this skeleton are ordered in the hierarchical tree structure in (b) with an artificial
root bone at the wrist. Arrows indicate the parent-child relationship. Colors indicate the
corresponding articulation parameters: α(blue), α and β(green), γ(red), δ(orange). See text
for further details.

more accurately obtain shape correspondences, and normalize for pose, in 3D scans of
human hands. We further hypothesize that these advances in shape correspondences
and pose normalization will facilitate the use of standard statistical shape modelling
algorithms, like PCA, on 3D scans of human hands.

5.2 Methods
At a high level, our proposed shape modelling technique works as follows. An articulat-
ing reference of the human hand, with anatomically correct rotation axes, angles, and
constraints, is constructed to act as prior in an articulation-based registration method.
This reference hand is then registered to each optical surface scan of a database in
order to make anatomically correct correspondences between them. Person-specific
deviations that cannot be captured by the reference are accommodated through a
subsequent elastic surface registration step. Finally, the registered surfaces are articu-
lated to the same pose and PCA is used to derive the statistical shape model of the
human hand. The following subsections discuss these steps in further detail.

5.2.1 Reference Articulating Hand Model
5.2.1.1 Reference surface geometry and skeleton

Our reference hand is based on a single Magnetic Resonance Image (MRI) scan of
the first author’s right hand (repetition time [TR]: 4220ms; echo time [TE]: 1560ms;
field of view [FOV]: 192mm × 520mm; resolution: 1mm3; no gap). The outer skin
surface and all relevant bones were manually segmented from the MR image.

To construct the surface mesh of the reference hand, the binary label field of each
body part, obtained from the MRI scan, was then converted to a triangulated surface
mesh using a discrete marching cube algorithm ?. The extracted skin surface mesh
was then removed of noisy outliers, smoothed in volume-preserving way ? and
remeshed uniformly ?. The reference skin mesh is denoted by M̂M = (V̂M , εM ),
with V̂M ∈ R3×NM a matrix containing the coordinates of the NM vertices in a rest
pose (the rest pose being denoted by the hat), and εM ∈ RNM×NM representing the
connectivity, which remains constant at all times.
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An abstract line-skeleton Ŝ, defined using the set of segmented bones, is shown in
Figure 5.1a. Each segmented bone b is represented by a local coordinate frame in
the skeleton (i.e. an origin and orientation). The origin of the bone is located at its
center-of-rotation hb and the orientation of its coordinate frame is as described by
the International Society of Biomechanics (ISB) ?. The orientation of each bone with
respect to the world reference frame is described by the bone-to-world rotation matrix
Cb ∈ SO(3).

5.2.1.2 Bone Hierarchy

The set of bones are ordered in the hierarchical tree structure shown in Figure 5.1b.
This hierarchy represents the parent-child relationships between the coordinate frames
of each bone in the skeleton. The root of the hierarchy is an artificial bone located
at the wrist with the same orientation as the third metacarpal bone. A wrist-rooted
armature allows us to describe arm and hand motion independently from each other,
but with respect to a common root coordinate system at the wrist (this decoupling
will be a benefit in our registration tasks). Global hand motion is described by the
third metacarpal bone, which the ISB standard defines as the parent of all other
carpal bones ?.

5.2.1.3 Articulation

The articulation of the hand is defined by the state of its joints. Using our skeleton,
the state of each joint can be described as a rotation between the local coordinate
frames of adjacent bones:

Rb = Cp(b)C
−1
b (5.1)

where p(b) is the parent of bone b as defined by the tree structure in Figure 5.1b.
The rotation matrix Rb captures how bone b is articulated with respect to its parent.
This matrix can be decomposed into three rotation angles, αb, βb, γb, which match
the ISB’s joint angle descriptions ?. The angle αb is the primary angle of articulation
and describes the bending of the fingers and flexion/extension of the wrist. The angle
β is the secondary angle of articulation and describes ulnar/radial deviations of the
wrist and the separation between the fingers. The angle γ is a roll angle around the
bone’s longitudinal axis. An additional angle, δ, is used to define pronation-supination
of the arm. This motion is modelled as a rotation around an axis connecting the
ulna at the wrist to the radius at the elbow. In the wrist-centered armature the
ulna rotates around this axis over the radius. The degrees of freedom for each bone
have been indicated by the color in Figure 5.1b: α(blue), α and β(green), γ(red),
δ(orange).

When articulating a bone with a new set of angles, we recalculate the parent to bone
rotation matrix as a concatenation of these rotation angles. From eq.(5.1) it is possible
to update the rotation matrix Rb since its parent maintained the same position in
space. Relating the rotation matrix of the rest pose with this of the articulated pose,
provides the rest-to-pose rotation matrix:

Tb = CbĈ
−1
b (5.2)

from which we can update the head position of the bone and update the bones further
down in the tree hierarchy.
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Finally, we confine, by visual inspection, all joint articulation angles to remain within
a natural range of motion. To accomplish this, we introduce a mapping from these
constrained physical angles to “dummy” unconstrained variables as described in ?.
The benefit of the “dummy” unconstrained variable is that it can be optimized in the
registration algorithm without any changes to the optimizer.

5.2.1.4 Anthropometric scaling

Besides the articulation of the skeleton, the reference model also accommodates the
anthropometric variations related to bone length and body part thickness. The model
therefore adopts an affine scaling of each bone defined by a longitudinal scaling factor
s‖ and a transversal scaling factor s⊥. The scaling matrix in world coordinates can
be written as follows:

Sb = Cb diag(s⊥b , s
‖
b , s
⊥
b )C−1

b . (5.3)

The world to bone transformation including both articulation and scaling is therefore
defined as:

Fb = SbTb. (5.4)

In the reference hand, we apply longitudinal and transversal scaling on the lower arm,
hand palm, and each finger separately. For the fingers, a single longitudinal scaling
factor is used for all phalanges of the same digit; this is justified by the fact that the
ratio of bone lengths between phalanges of a single digit obey closely the golden ratio
rule ?. Nevertheless, we allow the metacarpals to change in length independently from
the phalanges in order to maintain flexibility of the reference during the registration
task.

5.2.1.5 Skinning

To deform the reference skin mesh M̂M to a new skin mesh MM(Φ) in line with the
articulation parameters Φ of the skeleton, we employ Linear Blend Skinning (LBS) ?.
LBS updates vertices based on the skeleton’s articulation via:

vi =
∑
b

wi,bFbv̂i + tb, (5.5)

with tb = hb − Fbĥb being a translation vector. The skinning weights wi,b capture
how much vertex vi is influenced by articulating bone b. They are obtained by solving
a heat equilibrium analogy as described in ?.

During the pronation-supination movement of the lower arm, the amount of skin
sliding gradually increases over the elongation axis of the arm. This twisting behavior
cannot be explained with standard linear blend skinning since the expected skin
deformation does not follow the transformation of its underlying bone. Instead,
we model the skin deformation during pronation-supination by applying spherical
linear interpolation (SLERP) ? between Culna and Cradius, where the interpolation
parameter t linearly increases from the ulna’s head at the wrist to the radius’ base at
the elbow ?. A vertex is then rotated with the interpolated rotation matrix depending
on its location along the connection axis.

vi = [wi,ulnatTulna + wi,radius(1− t)Tradius]v̂i. (5.6)
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Group Level Degrees of freedom Relevant bones
Φj {φi} B ⊂ S

HAND
A αM3, βM3 M2-5, PP2-5
B αPP2−5, βPP2−5 PP2-5
C γroot, αM3, βM3 M2-5, PP2-5

ARM
A αR, βR U, R
B δU H
C αH H

SCALING A s⊥U,R,H , s⊥M1−5,PP1−5,PM2−5,PD1−5 U, R, M2-5, PP2-5
RIGID A global translation and rotation Root, M5

THUMB
A αM1, βM1, αPP1 PP1, PD1
B αPD1 PP1, PD1

C αM1, βM1, αPP1, αPD1, PP1, PD1
s
‖
M1,PP1,PD1, s⊥PP1,PD1

FINGER *
A αM∗, βM∗, αPP∗, βPP∗, αPM∗, αPD∗ PP*, PD*

B αPP∗, βPP∗, αPM∗, αPD∗, PP*, PD*
s
‖
M∗, s

‖
PP∗,PM∗,PD∗, s⊥PP∗,PM∗,PD∗

Table 5.1: Parameter hierarchy. The parameter set is divided in independent parameter
groups Φj . Parameters in each group are organised in different levels, where each level is
optimised at a time. Optimisation is done iteratively between levels within each group.

5.2.2 Articulation-based Registration
5.2.2.1 Hierarchical optimization

The aim of this section is to fit the articulation model, described in the previous
section, to a 3D surface scan, denoted by MT = (VT , εT ). This registration is done
by optimizing a set of model parameters Ω via a non-linear Levenberg-Marquardt
(LM) optimization scheme. The parameters include the articulation parameters,
anthropometric scaling parameters, and rigid transformation parameters, summarized
in Table 5.1. To avoid the optimizer ending in local minima, we subdivide the set Ω in
several smaller groups of parameters Ω = {Φj = {φi}j} and order the parameters in
each group Φj in a hierarchical structure which is optimized iteratively (e.g. A, A-B,
A-B-C) by the LM optimizer. By using a wrist-centered armature, we can decouple
the hand and arm related parameters and do their registration steps independently.
The order in which we optimize the defined parameter groups are: “hand”, “arm”,
“rigid”, “scaling”, “rigid”, “hand”, and “arm”. Furthermore, we optimize each finger
independently.

5.2.2.2 Landmark-based initialization

Before starting the hierarchical iterative optimization protocol, we initialize the regis-
tration by globally scaling and aligning the reference hand based on three landmarks:
two at opposite sides of the wrist and one at the middle fingertip. Additionally, the
length of the arm is set based on the distance between landmarks at the wrist and
an additional landmark at the elbow pit. This second step was performed due to
missing elbow geometry in our scan dataset, and would not be required if the elbow
is thoroughly scanned.

57



Chapter 5: An Articulating Statistical Shape Model of the Human Hand

5.2.2.3 Energy function

At each hierarchy level, we apply a LM optimization to minimize:

φ = arg min
φ

|VM |∑
i=1

wa(i, B)
∣∣∣∣min
j

(
d(V M(φ)(i),V

‖
T (j))

)∣∣∣∣2
 , (5.7)

where wa is a binary weight used to turn on and off the contribution of vertices,
depending on whether its corresponding bone is in the set of bones B considered
to be relevant for the optimisation (see Table 1). V ‖T is the subset of VT consisting
of vertices whose normals are within 72◦ from the normal at VM(i) (a more strict
threshold of 37◦ is used for the scaling and arm optimisation steps). Rather than
excluding points based on their normals, we search for the closest point that meets
this normal angle condition. By doing so, we ensure that all points on the mesh will
have a corresponding point (as long as the mesh is not too sparse). Points for which
a counterpart was not found are excluded from the energy function.

The distance measure d(p, q) used is the point-to-plane distance introduced by Park
and Subbarao ?. This is beneficial over point-to-point distance when using low
resolution mesh, but cannot be used for optimizing arm supination since corresponding
reference and target vertices lie in the same plane. In that situation, we replace the
distance measure by its point-to-point variant.

5.2.3 Shape Correspondences
Initially, the vertices in our 3D meshes are randomly ordered, meaning that, say,
vertex vi in our reference mesh does not anatomically correspond to vertex vi in
another hand mesh. The number of vertices may also be different for every mesh.
Before performing statistical analysis on these meshes, we must first establish an
anatomical correspondence between them. This correspondence is achieved in two
steps. First, the articulation-based registration, described above, is performed to align
our reference hand to the target mesh. Second, an elastic registration algorithm is
applied to provide a more precise anatomical correspondence between the reference
mesh and the target mesh ?. The final result is that the reference surface is deformed
to have its shape as similar as possible to the shape of the target surface. At this point,
the target mesh is replaced by the deformed reference, ensuring that each hand mesh
has the same number of vertices ordered in the same fashion. This consistent vertex
order ensures that every hand mesh has the same vertices in the same anatomical
positions.

5.2.4 Pose normalization
In the statistical model, we are only interested in anthropometric variations and
want to normalize as much as possible for any variation due to pose and articulation
differences. Therefore, we apply a pose normalization on the elastically deformed mesh,
using the skeleton estimated by articulation-based registration. Pose normalization
can easily be achieved by interchanging the rest and pose articulations, i.e. inverting
the rest to pose transformation matrix in eq.(5.2). Finally, all pose-normalized scans
are centered around their center-of-gravity position.
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(a) Landmark correspondence error (b) Geometric error

Figure 5.2: The anatomical and geometrical correspondence results for our registration
method and a purely elastic method. Anatomical correspondence error, using expert-denoted
landmarks, is shown in (a) while geometric errors in the hand shapes are shown in (b).

5.2.5 Shape Modelling
To investigate the principal modes of variations present in the population, we apply a
linear dimensionality reduction algorithm on the pose normalized registered scans.
A popular choice for statistical shape modelling is a principal component analysis
(PCA) ?. In our context, PCA converts the vertex sets from all meshes into smaller
sets of values through the definition of linearly uncorrelated variables called principal
components. These principal components are defined by applying an orthogonal
transformation on the original vertex coordinates. The position of vertex vi in the
statistical model is modelled as its average position µi plus a linear combination of
principal components Pi,j :

vi = µi +
∑
j

wjPi,j (5.8)

The weights wj give the contribution of each principal component (PC) to the model
instance. The calculated PCs describe orthogonal directions of variance and they are
ordered based on the fraction of variance found along the direction.

5.3 Results
In this section, we provide the results of the proposed registration and model-building
techniques after testing them on a set of 100 static optical surface scans acquired with a
3dMD system. For comparison purposes, we also applied the elastic registration on the
dataset as described in section 5.2.3 but without the articulation-based initialization
of section 5.2.2.

5.3.1 Articulation-based Registration
5.3.1.1 Anatomical Correspondence

To quantify the anatomical accuracy of the registration method, we annotated 22
anatomical landmarks on the reference mesh and on each target scan. Landmarks
were annotated at anatomical feature locations: at the elbow pit, at two opposite
points around the wrist, at each fingertip and at all finger joints. We calculated the
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Figure 5.3: Normalized compactness graph of the statistical hand shape model.

distance between the landmark positions on the moving mesh and their ground-truth
counterpart on the target mesh. These distances were computed after our articulation-
based registration, after our elastic registration, and for the result of a purely elastic
registration, without articulation-based initialization.

The landmark correspondence results are shown in Figure 5.2a. The average dis-
tance between joint landmarks after articulation and elastic registration was 5.7mm,
compared to 6.8mm without the articulation based initialization step. Anatomical
alignment is the best at the fingertips and distal joints because its estimation relies
on clear geometric features. The accuracy on the elbow pit alignment is low due to
missing data at the elbow and limited geometry information at the upper arm. Given
the improved landmark correspondence of our algorithm, we can conclude that the
articulation-based registration - as an initialization step - improves the anatomical
correspondence of the elastic registration.

5.3.1.2 Geometric Correspondence

To create shape correspondence, we replace a target mesh by the registered result.
This step may introduce geometric error where the surfaces do not match exactly. We
quantify this geometric correspondence accuracy by calculating the average distance
between the target and the elastically registered mesh, in the normal direction on
the registered mesh. The results are shown in Figure 5.2b, with the average distance
between surfaces grouped by anatomical region. The average geometric accuracy of
our algorithm was 0.12mm.

5.3.2 Statistical model
5.3.2.1 Model Performance/Compactness

The compactness of a statistical model is a widely used measure to quantify how effi-
ciently the model describes the total variance in the population ??. The compactness
measure C(m) is defined as the sum of the shape variance captured by the first m
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principal components:

C(m) =
m∑
i=1

λi, (5.9)

with λi the shape variance described by the ith PC. Figure 5.3 shows the normalized
compactness results of our statistical hand shape model. The first principal component
explains over 90% of the total variability in the dataset, while the first four PC account
for over 97%.

Our model’s first four principal components are visualized in Figure 5.4. The average
geometry is shown along with +/- three standard deviations for each principal
component. The first PC describes global scaling. The second PC describes variations
in the length-to-thickness ratio of the arm, hand and fingers. The third and fourth
PC are related to varying length and width of the fingers relative to arm size,
respectively.

5.4 Discussion
We have presented a two-step registration method for 3D meshes of human hands.
First, we matched an articulating prior model to a target scan, then we applied an
elastic registration to obtain more precise shape correspondence. We demonstrated our
method on a dataset of 100 optical 3D surface scans. We showed that the anatomical
accuracy improves by 17% by initializing the elastic registration with the articulation-
based registration result, while the average geometric accuracy stays around 0.12mm.
We further fed the registered surfaces into a statistical shape modelling algorithm and
showed that the resulting model provides a compact representation of the population’s
variation. Only four principal components are needed to describe 97% of the shape
variability in the dataset. We believe that our model is suitable for applications
like hole-filling and resolution improvement, where pose estimation is an inevitable
task. Our shape model could also be useful as a prior in a surface registration
algorithm.

Nevertheless, our results did highlight a few limitations. We observed low accuracy
on the estimation of the elbow pit location mainly due to missing data around the
elbow and limited geometry at the upper arm. We also noted that the registration
outcome highly depends on its settings (e.g. the ranges of motion, order of parameter
optimizations, vertex normal thresholds). Finally, it is likely that some articulation
information did make it into the shape model as a result of errors in the articulation-
based registration. The source of these errors include the optimization settings, but
also the limited degrees of freedom in the reference hand (e.g. the use of the golden
ratio to scale finger bones). Our future work will look at addressing these limitations
as well as extending the technique to the 4D modelling of hand motion.

5.5 Conclusion
We presented herein a registration method for 3D meshes of human hands. It was
based on the alignment of an articulating reference hand and elastic deformation.
We demonstrated the registration’s effectiveness by building a PCA shape model
of the human hand. In the future, we will improve the anatomical accuracy of the
methodology and to extend the method to model hand motion.
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(a) PC1 (b) PC2

(c) PC3 (d) PC4

LOW HIGH

Figure 5.4: First four eigenmodes of the statistical shape model. Color represents the variance
λi(j) for vertex j along the ith PC. For each PC, the shapes are shown which correspond to:
µ− 3σ, µ and µ+ 3σ.
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Abstract
Most digital models of the equine distal limb that are available in the community
are static and/or subject-specific; hence they have limited applications in veterinary
research. In this paper, we present an articulatable model of the entire equine distal
limb, based on statistical shape modeling. The model describes the inter-subject
variability in bone geometry while maintaining proper jointspace distances to support
model articulation towards different poses. Shape variation modes are explained in
terms of common biometrics in order to ease model interpretation from a veterinary
point of view. The model is publicly available through a graphical user interface
(https://github.com/jvhoutte/equisim), in order to facilitate future digitalisation in
veterinary research, like computer aided designs, 3D printing of bone implants, bone
fracture risk assessment through finite element methods (FEM) and data registration
and segmentation problems for clinical practices.

The work in this chapter has been published as:

J. Van Houtte, Vandenberghe, F., Zheng, G., Huysmans, T., and Sijbers, J., “Eq-
uiSim: An open-source articulatable statistical model of the equine distal limb”,
Frontiers in Veterinary Science, vol. 8, no. 75, 2021.
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6.1. Introduction

6.1 Introduction
Digital three-dimensional (3D) anatomical models have become an important aspect
in the digitalisation of veterinary research and medical practices [?]. Being acquired
by computed tomography (CT) imaging or magnetic resonance imaging (MRI) [?]
or by 3D optical scanning [?], those subject-specific models find their way into finite
element analyses (FEA) [?], augmented reality guidance during operations [?] and
training of radiograph segmentation networks [?].

A standard procedure in morphological studies of equine distal limb anatomical
structures focuses on one-dimensional linear or angular measures, such as: hoof angle,
hoof length, medial-lateral width of the phalanges, etc., or two-dimensional measures,
such as the joint surface. They are measured from radiographs [??], MRI-data [?],
photographs [??] or from in-situ measurements in-vivo [??] or post-mortem [?].

Another way to study morphology variations is by means of statistical shape models
(SSM), which encode the 3D shape variation of the complete bone geometry, rather
than reducing the shape to a limited set of discrete measures [?]. The benefit
of this representation, compared to linear biometrics, is that the statistical shape
variability is defined as variation modes of the geometry itself, such that it can be
exploited in numerous computer vision applications. In human medical research,
these (articulating) SSMs have been widely adopted for training segmentation neural
networks on CT-data [??]. The models also provide prior shape information for
the reconstruction of personalised 3D models from sparse point-data [?] or from
two-dimensional radiographs [??], to facilitate orthopaedic computer assisted surgeries
(CAS) or to generate personalised finite element models for mechanical simulations
[??]. Integrated in deep learning techniques, the models can discriminate between
pathological cases based on morphing parameters and thereby outperforms manual
subjective classification [?]. The inherent geometric information can also be used to
study the relationship between shape and biomechanical functions [?].

Thanks to additive manufacturing or 3D printing, physical models can efficiently be
(re-)produced from these digital models [?]. Rapid prototyping has been deployed as
didactic material in anatomy classes, to study anatomy besides classical dissection
sessions and for training of surgery techniques as an alternative to experimental
animals [??]. Orthopaedic implant design also benefits from computer aided design
(CAD) and 3D printing, as their design can be customised [??]. Osteosynthesis plates
can be designed specifically to the individual anatomy, prior to fabrication of the
plates. CAD thereby omits inter-operative bending of the plates as is the case with
off-the-shelf template designs. It has been claimed that customised implant designs
which take the shape variability into account improve the clinical outcome [?].

Despite the many potential applications, SSMs remain underexplored in veterinary
research. Firstly, this is due to lack of availability of large collections of 3D data, from
which such model can be built. Most available models are static and subject-specific
and are therefore less relevant for CAD. Secondly, there is no one-to-one relation
between the variation modes of a SSM and the linear biometrics. This might complicate
the interpretation of SSMs and make them less attractive for veterinarians.

In the field of equine veterinary research, we see most potential applications for
SSMs to the equine distal limb. The shape of the horse’s distal limb bones is an
important factor in determining the horse’s performance. Because the phalanges and
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metacarpal bones distribute the impact forces upon landing on the ground, the shape
(and bone mineral density) of the bones affect how efficiently forces are distributed
and subsequently determine its risk of fractures [?]. It has also been observed that
hoof conformation is correlated to movement asymmetry [?]. Uneven foot-bearing
can eventually lead to biomechanical injuries or lameness, and should be taken into
account for corrective shoeing and farriery [??].

The aim of this paper is to provide a workflow to generate an articulating SSM of
the equine distal limb. Furthermore, the SSM’s variation modes are associated with
conventional linear biometrics, in order to ease the model interpretation. Unlike
earlier SSMs, our model describes the statistical shape variation of the different bones
simultaneously in one model. This ensures correct jointspace distances for different
model instances and enables articulation of the model towards different poses.

We first outline the methodology to construct an articulating multi-component sta-
tistical shape model (aSSM) of the equine distal limb, which is based on the earlier
work of Balestra et al [?]. Next, we describe the major statistical variation modes, in
terms of linear biometrics. In the discussion, we provide directions of future research
and potential application areas in the field of veterinary research where the model
can be adopted.

6.2 Materials and methods
6.2.1 Data-collection and data-preparation
A random collection of 70 left and right distal front limbs of 35 coldblooded and warm-
blooded horses and ponies was donated by a commercial abattoir and bulk CT-scanned
post-mortem with a Canon Aquilion LB CT system (resolution: (0.78×0.78×0.5)mm3,
tube current: 200mA, generator power: 27 kW), from the hoof to the carpus. All legs
were unshod at the time of scanning. The hoofs did not undergo prior hoof trimming
or cleaning. Right limbs were later mirrored to resemble left limbs.

The acquired CT images were segmented using an open-source graph-cut multi-label
segmentation technique [?], followed by minor manual corrections. The segmentation
label maps were converted to digital geometry surface models by a discrete marching
cube algorithm [?] and re-meshed to a coarser curvature-adaptive mesh by ACVD [?].
Mesh artefacts were eventually resolved by MeshFix [?].

6.2.2 Construction of the articulating multi-component statis-
tical shape model

In this section, we describe the proposed methodology to build a compact repre-
sentation model of the shape variations in our population of L = 70 equine distal
limb models Si, i ∈ {0, . . . , L}, with i = 0 indicating the reference model which
was adopted from earlier work [?]. As illustrated in Figure 6.1a, each limb model
Si consists of M = 10 components (nine distal limb bones and the hoof capsule),
thus: Si = {Sij , j = 0, . . . ,M − 1}, where Sij is the jth component of the ith subject
with Nij vertices. We denote the homogeneous vertex coordinates of shape Sij by
vij = {vijp ∈ IR4, p = 0, . . . , Nij − 1}. The number of vertices per component j of
the reference model are tabulated in Table 6.1 and the resolution of the reference
model is visualised in Figure 6.1b.
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Bone j N0j
MC2 994
MC3 9159
MC4 742
PS (lateral) 817
PS (medial) 777

Bone j N0j
P1 4226
P 2 2563
P 3 2882
DS 688
hoof capsule 13460

Table 6.1: Number of vertices per component of the reference model.

6.2.2.1 Articulation model

Articulation of the surface model, as illustrated in Figure 6.2 for the different stages
of the stance phase, is limited to the major degrees of freedom of the equine distal
limb. This includes the extension and flexion around the following three joints:
metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and the
distal interphalangeal joint (DIP). The articulation model articulates the proximal
sesamoid bones and the proximal phalanx as one geometry structure [?]. This
approximation is justified by their relatively small range of motion and any latent
motion which happens in reality will end up as a shape variability in the model.
Similarly, the distal sesamoid bone and the hoof capsule are assumed to be rigidly
attached to the distal phalanx in the articulation model. Furthermore the three
metacarpal bones are rigidly attached to each other. Under these assumptions, the
articulation model effectively consists of Nb = 4 skeleton bones to transform M = 10
surface model components.

The articulation model assigns a local reference frame to each of the four skeleton
bones, as depicted in Figure 6.1a. The orthogonal reference frame is defined such
that its y-axis aligns with the elongation axis and that its z-axis is perpendicular to
the sagittal plane of the bone. The flexion, abduction and internal rotation angle are
respectively identified as the three spherical coordinates (α, β, γ) between adjacent
reference frames. Their definition is visualised in Figure 6.1c. Note that the flexion
rotation axis a of bone b corresponds to the z-axis of its parent bone p(b).

To enable articulation of the distal limb bones themselves, we also define an origin
c to each reference frame, which is chosen as the center of a circle, fitted to the
joint surface area of the bone in its sagittal plane. The local-to-world transformation
T ∈ IR4×4 brings the local reference frame of a bone, like the one in Figure 6.1c, to
its position and orientation in world coordinates. Flexion of a bone b relative to its
parent bone p(b) over an angle θ is obtained by the transformation Tp(b)Rz(θ)T−1

p(b),
where Rz(θ) ∈ IR4×4 represents a rotation over the z-axis. It should be noted that
the articulation model is a mathematical construction and is not statistically founded
by dynamic data.

6.2.2.2 Elastic registration

Initially each subject Si in the training database is described by its own set of vertices.
To statistically describe the shape variations in this database, all shapes must be in
semantic correspondence with each other, such that vertices with the same index have
the same anatomical location on all training subjects. In order to do so, we elastically
deform the reference component coordinates TijT−1

0j v0j towards its corresponding
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second metacarpal (MC2)

fourth metacarpal (MC4)

proximal sesamoid bones (PS)

distal sesamoid bone (DS)

third metacarpal (MC3)

proximal phalanx (P 1)

middle phalanx (P 2)

hoof capsule

distal phalanx (P 3)

a1

c1

a2

c2

a3
c3

a4
c4

(a) (b)

xp(b)

yp(b)

zp(b)

xb

yb

zb

sagittal plane of p(b)

β
α

γ

(c)

Figure 6.1: (a) The distal limb model consisting of nine bones and the hoof capsule. Bones
with similar colors move rigidly under skeleton articulation. Each bone has a local orthogonal
reference frame (xb,yb, zb) associated to it, which are here represented by respectively the
red, green and blue lines. The flexion/extension rotation axis of bone b is denoted by ab

and is positioned at location cb. The flexion/extension around axes a2, a3 and a4 are the
major degrees of freedom of the articulation model. (b) Model with overlayed wireframe,
indicating the resolution of the surface model. (c) Definition of the spherical angles (α, β, γ)
between a bone’s reference frame (xb,yb, zb), and its adjacent parent bone’s reference frame
(xp(b),yp(b), zp(b)). The extension/flexion angle α between two adjacent bones is measured
inside the sagittal plane of the parent bone. The corresponding rotation axis ab coincides
with the z-axis of the parent bone zp(b). The abduction/adduction angle β is measured
perpendicular to the sagittal plane of the parent bone. The associated rotation axis is
yb × zp(b). The internal rotation γ happens around the bone axis yb itself.
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10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 6.2: Distal limb model’s articulation throughout the stance phase. The percentages
indicate the completion level of the stance phase. Extension/flexion angles for the MCP,
PIP and DIP joints were obtained from the literature [??].

training subject component Sij and replace the training subject by the registration
result, without change of notation, such that each training shape is now described by
the same semantic-meaningful mesh [?].

In order to reduce a possible bias towards the chosen reference model, we repeat the
elastic registration with the mean model as reference. Note that registered shapes are
still in their original position and orientation. Replacing the subject by its registered
result introduces a geometric error of how well the original surface is approximated
by its registered surface. As illustrated in Figure 6.3, this geometric error is highly
position dependent, but overall negligible. The average unsigned geometric error over
the entire model equals (0.182± 0.002)mm.

6.2.2.3 Scale and pose normalisation

As we are interested in the intrinsic shape variability, we want to normalise all training
subjects for their global scale. All models were scale normalised based on the length
of the third metacarpal of the reference model.

Secondly, training subjects were originally scanned on their side in different unloaded
poses, which causes unwanted pose variations in the dataset. The pose normalisation
of bone b involves finding the optimal flexion angle θ∗, in a least-square sense, which
matches the bone’s geometry with the corresponding bone of the reference model in
the local reference frame of its parent bone p(b):

θ∗ = arg min
θ
‖T−1

0j v0j −Rz(θ)T−1
ij vij‖

2, (6.1)

where the one-to-one correspondences from the previous step are exploited for the
geometry matching. Note that we only optimise for the extension/flexion angle and
not for abduction, adduction and internal rotation, which are considered as remnant
posture in the shape analysis.
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Figure 6.3: Average signed geometric error of the elastic surface registration to N = 70
subjects. Vertices of the registered reference model that lie inside or outside the target model
have a negative or positive distance, respectively. The average error is a measure of the
registration accuracy, while its variance is a measure of the precision of the registration.

6.2.2.4 PCA-based statistical shape modeling

Assuming a database of L registered pose- and scale-normalised shapes Si, we can
define each shape by its shape vector si ∈ IR3F , which is a concatenation of its
F =

∑M−1
j=0 N0j coordinates. The shape vectors of the L subjects are ordered as

columns in a data-matrix X ∈ IR3F×L.

The goal of principal component analysis (PCA) is to find an orthogonal transformation
which transforms the high-dimensional shape vectors to a low-dimensional set of
linearly uncorrelated variables which are called principal components (PC) [?]. The
PC’s can efficiently be calculated by first mean-centering the rows of X and next
performing a singular value decomposition (SVD) on the low-dimensional matrix
XTX. The matrix X multiplied by the left singular vectors of this decomposition
are equal to the principal component vectors ui ∈ IR3F of X, after normalising the
columns. The singular values of the decomposition are equal to the variances σ2

i of
those PC’s. Figure 6.4 shows the original shapes in a subspace of the L−1-dimensional
shape space. The PC’s are ordered such that the first PC accounts for the largest
variation in the dataset, and each succeeding PC has the largest variance possible
under the condition that it must be orthogonal to any previous component. Any
shape can now be expressed as a linear combination of those PC’s, weighted by its
standard deviations:

s(b) = s̄+
L−1∑
i=1

biσiui (6.2)

with s̄ ∈ IR3F the mean shape vector and bi the contribution of the ith normalised
PC ui to the final shape s. In matrix notation, this reads:

s(b) = s̄+ EDb (6.3)

where the columns of matrix E ∈ IR3F×L−1 contain the normalised eigenvectors ui
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Figure 6.4: Original training shapes shown in a subspace of the L − 1-dimensional shape
space. Only the first three principal component axes are shown. Shapes can be expressed in
this shape space in terms of their PC weights b.

and D = diag(σ1, σ2, . . . , σL−1) ∈ IRL−1×L−1. The PC weights b ∈ IRL−1 allow to
generate new shape instances from the SSM, different from the training data. Given
a new shape s with the same topology as the SSM, the PC weights that approximate
this new shape most closely are given by:

b = D−1E+(s− s̄), (6.4)

with E+ the pseudo-inverse of the non-square matrix E.

6.2.2.5 Articulating statistical shape model construction

Applying PCA to the set of registered pose- and scale-normalised shape coordinates
ṽij = Rz(θ∗)T−1

ij vij , it is important for each shape vector si to also contain skeleton
information besides the geometry coordinates, because both are intertwined: if the
shape changes the underlying skeleton will have to be modified as well in order
to maintain proper articulation. The shape vector is therefore a concatenation of
the geometry coordinates of all components of the model and the position cb and
orientation ab of the rotation axes of the bones in the skeleton model, defined in
Figure 6.1a:

si = [ṽi,0 ṽi,1 . . . ṽi,M−1︸ ︷︷ ︸
geometry coordinates

logµ1
ai1 logµ2

ai2 . . . logµNb
aiNb︸ ︷︷ ︸

axis orientation

ci1 c
i
2 . . . c

i
Nb︸ ︷︷ ︸

axis position

]T ∈ IR3F ,

(6.5)
with F =

∑M−1
j=0 N0j + 2Nb. Note that we take a logarithmic map of the axis

orientation vectors ab around their intrinsic means µb, because PCA assumes that
the data is normally distributed in an euclidean (high-dimensional) space. However,
the rotation vectors are constrained to lie on the unit sphere S2, meaning that their
length is always one and they can only vary in their orientation. Hence, the vectors
lie on a curved manifold and one needs to adopt principal geodesic analysis (PGA)
instead of PCA to describe the data variability [?]. In short, it applies PCA on the
tangent space of S2, and one needs to use the logarithmic and exponential map around
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Figure 6.5: Biometrics computed on 3D models. Abbreviations of the metrics are explained
in Table 6.2.

the intrinsic mean to move back and forth between S2 and the euclidean tangent
space.

The reconstruction of a component j from the articulating SSM is obtained via:

s(b, θj) = (T (b) ◦Rz(θj))s(b), (6.6)

where s(b) can be calculated from eq.(6.3). Note that the transformation T is also
dependent on b as it depends on the rotation axis and center of the bones.

6.2.3 Biometrics
Biometrics are linear or angular measures which characterise a component’s shape and
can be expressed in terms of the variation modes of the SSM. We consider biometrics
for the hoof capsule, the third phalanx [?????], the third metacarpal, the first and
second phalanx [?] and the distal sesamoid bone. The definitions of the selected
biometrics are tabulated in Table 6.2. The metrics were automatically calculated on
the three-dimensional geometry models, instead of on two-dimensional images as is of-
ten done in the literature. Figure 6.5 shows the biometrics indicated on the 3D models.

6.2.3.1 Correlation between biometrics and PC modes

In order to change the shape (i.e. changing the PC weights) as a function of the
biometric, we applied a multivariate linear regression between the set of PC weights b
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Bone Abbr. Biometrics Description

ho
of

ca
ps
ul
e

FL Frog length Perpendicular distance between the frog apex
and the palmar hoof line.

FW Frog width Distance between medial and lateral heel but-
tress.

HA Heel angle Angle between the hoof wall at the heel and
the ground surface.

HW Hoof width
Distance between the frog apex and outer cap-
sule wall, measured perpendicular to the sagit-
tal plane.

SL Support
length

Distance between toe and the palmar hoof line
along the ground surface.

TA Toe angle Angle between dorsal hoof wall and the ground
surface.

TL Toe length Distance between toe and top of capsule, along
the dorsal hoof wall.

UR Underrun The heel angle (HA) minus toe angle (TA).

WT Wall thick-
ness

Average thickness of the hoof capsule in the
cross-section of the capsule.

P
3

CA Coffin angle Angle between dorsal aspect of P 3 and the
ground surface.

PA Palmar an-
gle

Angle between palmar aspect of P 3 and the
ground surface.

CD Capsule de-
viation Coffin angle (CA) minus toe angle (TA).

TS Toe to heel
support

Percentage of the hoof’s support length (SL)
which is ahead of the center of articulation c4
of P 3, ie: TS=TC/SL.

P
1,

P
2

CR Joint curva-
ture radius

Radius of a circle fitted to distal joint surface
(lateral view).

AD
Articular
surface
depth

Depth of the proximal articular surface, aver-
aged between medial (ADm) and lateral side
(ADl).

AW
Articular
surface
width

Width of the proximal articular surface, aver-
aged between medial (AWm) and lateral side
(AWl).

PL Phalanx
length Length, along major axis in sagittal plane

M
C
3

CR Joint curva-
ture radius

Radius of a circle fitted to distal joint surface
(lateral view).

MW Medio-
lateral width

Width of the distal joint, measured along flexion
rotation axis.

RW Sagittal
ridge width Average width of the sagittal ridge.

D
S

SA
Distal
sesamoid
angle

Angle between the palmar aspect of P 3 and
the line connecting the tip of P 3 with the distal
sesamoid’s center of mass.

SH
Distal
sesamoid
height

Distance between distal and proximal border of
the distal sesamoid bone in the sagittal plane.

Table 6.2: Definition of the biometrics. 73
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and the biometric value k:
b(k) =

[
α β

] [1
k

]
. (6.7)

The regression coefficients α, β ∈ IRL−1 represent the offset and slope, respectively.
They are determined from simulated model instances (N = 1000), created from the
SSM by using eq.(6.6) following its multivariate normal distribution.

Given a biometric value, the linear regression estimates the PC weights, from which
the corresponding SSM’s instance can be reconstructed by eq.(6.6). Figure 6.6 shows
a number of model instances corresponding to the biometric values µ− 3σ and µ+ 3σ.
Obviously, changing one biometric also changes other biometrics as they are all
correlated with each other. In order to visualize the correlations between the different
biometrics, we show the Pearson’s correlation coefficients in Table 6.3.

6.3 Results
6.3.1 Model performance
The statistical shape model’s performance was evaluated in terms of compactness,
generalisability and specificity [??] and are shown in Figure 6.7 as a function of
number of PC modes. The compactness shows the cumulative variance explained by
the statistical modes. Figure 6.7a indicates that the first 20 modes describe 95% of
the variability in the training dataset. The model’s specificity, shown in Figure 6.7b,
is the extent to which the model can generate instances of the object that are close to
those of the training set. To calculate this measure, random samples of the SSM have
been generated by using eq.(6.6), according to its multivariate normal distribution.
Each model instance has been compared to its closest training shape in the shape
space, in terms of the root mean square error of the distance between corresponding
vertices.

The generalisability indicates how well the model can be generalised to new subjects.
A leave-one-out test has been performed for calculating this measure. The SSM
has been rebuilt for L − 1 subjects and eq.(6.4) has been used to fit the obtained
model to the subject being left out. Figure 6.7c shows the root mean square error
between the subject being left out and the fitted result. We also show the recon-
struction error when fitting to the same subject with the complete model, i.e. when
the subject to which has been fitted is included in the training data. The discrep-
ancy between both curves is the effect of fitting to unknown subjects. When using
the model to fit to new instances one might expect an average geometric error of
(2.0±0.3)mm when using the first 20 PC modes, as can be concluded from Figure 6.7c.

6.3.2 Biometrics
The generation of model instances based on a biometric value, as illustrated in
Figure 6.6, exploits the multivariate regression relation of section 6.2.3.1. The linear
assumption of this regression has been evaluated by recalculating the biometric value
k̃ on the model instance s(b(k), θj), created with the biometric value k. The absolute
difference between the value k used to generate the model and the recomputed value
k̃ on this model results in a confidence interval on k which is reported in Table 6.4
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HA=13.60◦ HA=59.87◦

(a) Heel angle

TA=35.62◦ TA=62.74◦

(b) Toe angle

PA=-4.75◦ PA=14.98◦

(c) Palmar angle

CD=-8.89◦ CD=12.39◦

(d) Capsule deviation

FW=56.11 mm FW=141.03 mm

(e) Frog width

WT=5.54 mm WT=14.55 mm

(f) Hoof wall thickness

SA=13.54◦ SA=24.20◦

(g) Distal sesamoid angle

CRP1=9.28 mm CRP1=16.99 mm

(h) P1: joint curvature radius

Figure 6.6: Instances of the SSM for different biometric values. For each biometric k the
models are shown which correspond to k = µ− 3σ and k = µ+ 3σ, with µ and σ the average
and standard deviation of the biometric in our dataset. Clipped models are shown to draw
the reader’s attention to the hoof area. In case of the curvature radius (h) one can notice
the global scaling of the phalanges and hoof capsule with respect to the third metacarpal.
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Table 6.3: Autocorrelation table of the biometrics. Correlation values of -1 (red) mean that
the corresponding biometrics are anti-correlated, 0 (yellow) means no correlation and +1
(green) means positive correlation. Abbreviations of the metrics are explained in Table 6.2.
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Figure 6.7: Evaluation metrics of the statistical shape model, as a function of number of PC
modes. (a) The compactness shows the cumulative variance explained by the SSM. (b) The
specificity indicates how similar randomly generated instances are to the training shapes.
(c) Geometric error when fitting the SSM to unseen shapes (generalisability, blue) and to
training shapes on which the SSM was built (reconstruction error, black). The faint lines
show the geometric error per subject. The solid lines show the average of all subjects.

and gives a measure for the non-linearity of the relation between PC weights and the
biometric.

Non-linear effects have dominantly been observed for the angle biometrics, especially
for the heel angle and the under-run. Despite the non-linearity, the accuracy of the
other angular biometrics is less than two degrees for the full range of [µ− 3σ, µ+ 3σ].
Most linear biometrics are sub-millimeter accurate. Only the frog width, frog length,
capsule deviation and the support length of the hoof capsule have a larger difference
between the expected and measured biometric.

6.4 Discussion
In this paper, a workflow has been presented to build an articulating SSM of the
left equine distal limb, based on principal component analysis in a pose-normalised
coordinate system. As a proof of concept, the workflow has been illustrated on a
dataset of 70 cadaver limbs. The resulting model describes morphological variations,
while it can be articulated towards any possible pose. We found that 20 modes were
sufficient to describe 95% of the population’s variability and that it can be registered
to new, unseen limbs with a registration accuracy of (2.0 ± 0.3)mm. To ease the
morphological interpretation of the resulting statistical modes and to facilitate future
research, we have explained the modes in terms of common biometrics and made the
model publicly available through a graphical user interface (GUI)1, shown in Figure
6.8. The source-code of the GUI is developed in C++ on Linux.

1https://github.com/jvhoutte/equisim
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biometric min max
FL [mm] -1.26 1.41
FW [mm] -4.46 2.84
HA [◦] -3.34 0.780
HW [mm] -0.415 -0.224
SL [mm] -1.27 1.18
TA [◦] -0.502 2.00
TL [mm] -0.897 0.196
UR [◦] -5.25 1.02
WT [mm] -0.298 0.156
CD [◦] -1.74 0.882
CA [◦] -0.150 1.37
PA [◦] -0.628 1.04
TS [%] -0.0231 0.00745

biometric min max
CRP1 [mm] -0.0812 0.0225
ADP1 [mm] -0.0925 0.213
AWP1 [mm] -0.0593 0.0726
PLP1 [mm] -0.0201 0.00
CRP2 [mm] -0.00163 0.0131
ADP2 [mm] -0.0929 -0.0189
AWP2 [mm] -0.170 0.151
PLP2 [mm] -0.0220 -0.0153
CR [mm] -0.000740 0.0430
MW [mm] -0.150 0.119
RW [mm] -0.166 0.116
SA [◦] -0.455 0.443
SH [mm] -0.0457 0.0211

Table 6.4: Confidence intervals for the biometrics.

Although the resulting model has been shown to be a compact representation of
the population, there are still some limitations which can be a starting point for
future research. First, the dataset of equine limbs collected for this proof-of-concept
study was ill-controlled, combining different breeds, ages, levels of hoof conditions,
etc. This maximized the sample size, but at the same time, made it less relevant for
morphological studies. Depending on the target application, it would be beneficial to
build a model from a specific dataset.

Secondly, the authors recommend basic hoof trimming and cleaning prior to the data-
acquisition. The poor hoof conditions in our collection of limbs caused ambiguities
in the data-segmentation and most likely also affected the segmentation accuracy,
besides the reported registration accuracy. This subsequently can lead to irrelevant
variation modes in the SSM. Similarly, bone ossification between MC3 and MC2 or
between MC3 and MC4 (splints) also posed difficulties in the segmentation of both
metacarpals in some cases.

Besides the data-preparation, the model has some more theoretical limitations. The
model is not a statistical shape and pose model, in the sense that the pose variations
are not statistically described. In this paper, the pose of the model is altered based on
a mathematical model, which does not correlate with the shape instance. Changing
PC weights does not affect the range of motion. This limitation is due to the difficulty
to acquire geometry data in different poses, preferably in-vivo.

Furthermore, the model is a surface model and not a volumetric model. In order to
apply our model for finite element analyses [?], one still needs to extend the model to
a voxelised or tetrahedral model and assign material properties to its cells. The shape
variability of our model would enable easy repetitions of the FE analysis for different
shape instances. Changing only one biometric allows to study the effect of it on a
particular FE result. For kinematical studies, the model can possibly be extended to
a musculoskeletal model, by transferring muscle, tendon and ligament attachments
from the 3D Horse Anatomy of Biosphera software [??].

The main purpose of the model, as presented in this paper, lies in the compact
description of the bones statistical variability. This geometric information can be
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(a) (b)

Figure 6.8: Screenshot of the graphical user interface “Equisim”, which allows the user to
interact easily with the model, by either changing the biometric values (a) or by directly
changing the PC weights (b).

exploited in CAD of different types of orthopaedic implants, suiting different classes
of bone shapes. The ability to create different instances of the SSM also enables the
generation of extensive training databases for deep learning applications. Digital or
after 3D printing, the model can potentially have educational purposes as well.

6.5 Conclusion
In this paper, we presented a workflow to build an articulating statistical shape model
of the equine distal limb, as a way to describe its morphological variations in a compact
representation. Three-dimensional shape variations have been related to common
one-dimensional biometrics. We thereby bridged the gap between current morphology
studies and future digitalisations in veterinary research. Being available through an
open-source application, our model can be an added value in veterinary anatomy
classes and can potentially support future research in computer-aided designs, finite
element analyses and deep learning-based solutions for image processing tasks.
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Chapter 7: DL Approach to Horse Bone Segmentation from DRRs

Abstract
Convolutional neural networks (CNN) are popular for segmentation and classification
of bones in radiology. However, their training typically requires a database of thousands
of manually segmented experimental images. In many cases, such a large dataset
is not readily available in the community. In addition, manual segmentation is
often too time intensive and prone to human perception, especially in cases of low
image quality. In this paper, we show that a CNN can be accurately trained on
the digitally reconstructed radiographs (DRR) of a 3D articulating shape model
of the object of interest, bypassing the need for a manually-segmented database.
The articulating model ensures a realistic appearance of the bones of interest in
the DRR, thereby providing suitable training data for segmentation. As a proof-of-
concept, we train a CNN on DRRs with the purpose of segmenting the phalanges of a
horse leg from radiographs and show that it outperforms a geodesic active contour
segmentation method in this particular case. Our proposed training procedure is
effective for articulating objects and the resulting CNN can then be applied to real-data
segmentation tasks, if preceded by appropriate augmentation.

The work in this chapter has been published as:

J. Van Houtte, Bazrafkan, S., Vandenberghe, F., Zheng, G., and Sijbers, J., “A
Deep Learning Approach to Horse Bone Segmentation from Digitally Reconstructed
Radiographs”, in International Conference on Image Processing Theory, Tools, and
Applications, 2019.
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7.1 Introduction
The segmentation of radiographs forms the basis of many automated computer-aided
analysis pipelines. The segmentation of bones, for example, is of particular interest
for diagnosis and monitoring bone disease progression ??, detecting bone fractures ?
and motion tracking ?. Segmentation is also a crucial step for 3D bone reconstruction
from radiographs, which itself is valuable for pre-operative planning ? and implant
design ?.

In the last few years, with the emergence of fast and affordable hardware, software,
and the availability of large annotated databases, a new machine learning technique
known as deep learning (DL) has established itself as a key technology development
tool in a variety of fields. From consumer electronics ? to medical imaging ???? to
robotics ???, one can find the footprints of Deep Neural Networks (DNN) in both
regression and classification solutions. In radiology applications, DNNs are adopted
for classification, detection and segmentation problems ??.

Typically, DNN-models rely on a database of ground-truth segmentations for their
training. In many situations, however, a database of thousands of examples is not
available, or it is too time-consuming to manually segment such large amounts of
training data. Furthermore, the region of interest might not always be clearly visible
for the expert performing the segmentation, which ultimately increases inter- and
intra-operator variability.

To overcome limited training database sizes, synthetic data is often generated to train
a DNN ?, or a limited database is extended by augmenting the data ??. Yet, to
achieve an accurate segmentation result, any synthetic or augmented training data
should be representative of actual experimental data. This implies that, in case of
segmenting a bone from a skeletal structure, the adjacent bones or structures should
be represented as well. To our knowledge, we are unaware of algorithms that create
synthetic data of articulated structures for the purposes of training a DNN.

In this paper, we train a convolutional neural network (CNN) on digitally reconstructed
radiographs (DRR) of a 3D articulating structure. DRRs are realistically simulated
forward X-ray projections of a 3D surface model. The simulation approach ensures a
realistic background for the objects to be segmented. The training strategy of the
CNN by DRRs bypasses the need for a large manually-segmented database and, by
consequence, avoids operator-induced variability in the training data.

7.2 Related work
In this section, we give a brief overview of two state-of-the-art segmentation methods
used for bone segmentation from X-ray images. For a general overview of X-ray image
segmentation techniques, we refer the reader to ?.

7.2.1 Deformable models
Active contour models (ACM) are an example of deformable models used for segmen-
tation. ACMs describe the segmentation by an evolving contour which minimises
a certain energy function, without imposing prior knowledge on the object to be
segmented. This curve can either be explicitly described by a set of predefined points
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(snake) or implicitly as the zero-level set of a particular function (level set). The
evolution of the curve is typically driven by a shape-regularisation term and a force
term which either attracts the contour to an intensity-discontinuity between regions
(edge-based) or which optimises the uniformity of a property within a region (region-
based). Examples of edge-based and region-based methods include geodesic active
contour model (GAC) and active contour model without edge (ACWE), respectively
?. The region based method relies on the global energy-minimum and is therefore con-
sidered as being less sensitive to initialisation and local intensity variations. However,
it assumes that the region of interest has a uniform distribution of the image property
under consideration. Other deformable models exploit prior shape information of
the subject of interest. Point distribution models (PDM) learn the average contour
shape along with its statistical variations based on a training database. Such model
is iteratively updated by an active shape model (ASM) to find the boundary in an
image ?. ASMs have been extended later to active appearance models (AAM), which
also include statistical intensity variations ?. A variation on AAMs are constrained
local models (CLM), which combine a set of appearance models for patches around
feature points. Conventional machine learning algorithms, as Random forests, have
been used to position these feature points ?.

7.2.2 Deep learning methods
Deep learning models are made of several processing units including convolutional,
fully connected, pooling, and unpooling layers alongside with different normalization
and regularization methods such as dropout ? and batch normalization ?. The
convolutional layers in a DNN apply a sparse mapping to their input. The convolution
operation is able to extract the spatial and temporal information based on the signal
orientation. In the current work, a feedforward fully convolutional DNN is used to
segment the phalanges in a horse leg. A fully convolutional network is a network that
only consists of convolution, deconvolution, pooling, and unpooling layers. For more
information on the network design see section 7.3.3.

DNNs are playing an important role in the development of semantic segmentation
methods. The Fully Convolutional Network (FCN) ? was first introduced to solve a
segmentation problem. This network consists of several convolutional, pooling, and
deconvolution layers which resembles an autoencoder scenario due to the fact that the
input and output image sizes are the same. But in the FCN network, the output is
the segmentation map compared to the autoencoder wherein the target is considered
to be the input image.

ParseNet ? is another fully convolutional end to end DNN wherein the convolutional
layers are replaced by a feature extraction module including several normalization
steps. The celebrated SegNet architecture ? provides a high-quality segmentation
while it keeps the simplicity in the network structure. This model consists of two
fully convolutional networks placed in an encoder-decoder pair shape. The unpooling
layers in the decoder take advantage of maximum activations shared by the encoder
layers to keep the high-frequency information at the output.

The U-NET ? is another fully convolutional model and was originally developed for
biomedical image segmentation. This network consists of several convolution, pooling,
and unpooling layers. The main advantage of this architecture is the existence of
skipped connections from the lower layers to deeper layers, which facilitates the passing
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3rd metacarpal

1st phalanx

2nd phalanx

3rd phalanx

hoof capsule

skin

sesamoids

navicular

Figure 7.1: Triangular surface model of the horse leg, articulated in two different poses. The
full model is used to generate DRRs. The network is only trained to segment the phalanges
(red) from the DRRs.

of the high-frequency information from the input toward deeper layers. Another
network for binary segmentation presented in ? merges four different models using
a method called SPDNN into a single model. The final architecture resembles a
U-net without pooling layers. Instead of pooling layers, larger kernels are used in
this network. The authors claim sharper outputs compared to SegNet and U-net in
iris segmentation tasks. In the current work, this architecture is used to accomplish
the segmentation task due to the simplicity of implementation and high-quality
outputs.

7.3 Methodology
Instead of training a CNN on manually segmented experimental data, we propose to
train a CNN on DRRs with known ground-truth labels. The creation of this training
data consists of two steps: articulating a 3D surface model to a random pose and the
simulation of its DRR and its associated label-map. Thereafter, we train a CNN on
this artificially created dataset for the purpose of segmenting the phalanges from the
DRRs.

7.3.1 Multi-component model
The 3D multi-component model built for the horse leg, shown in Figure 7.1, composes
the rigid bones present in the most distal part: the third metacarpal, phalanges,
navicular, sesamoids and the hoof capsule. Their triangular surface models were
derived from a CT-volume by Panagiotopoulou et al. ?. They were adopted in this
study and equipped with an articulating skeleton, enabling rotation of the phalanges
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Figure 7.2: The network architecture ? used to perform the segmentation.

around the interphalangeal hinge joints. This type of joint allows for extension-flexion
and only a limited amount of abduction-adduction ?.

The rotation axis for both types of motion has been calculated for each bone b based
on the symmetry plane and the elongation axis of their parent bone p(b). Both
rotation axes are perpendicular to each other and have different locations in case
of hinge joints. Denoting the local-to-world transformation of bone b in rest and
articulated pose by Ĉb, Cb ∈ IR4×4, respectively, the rest-to-pose transformation of
this bone is given by:

Tb = Cp(b)R(θ, φ)Ĉ−1
p(b) (7.1)

with R ∈ SO(3) being the rotation of the bone in the reference system of the parent
bone.

The skin layer is also modeled in order to provide a realistic background for the
bones in DRRs, DRRs whose creation are explained in the next section. The 3D
non-rigid skin deformation due to skeleton articulation is modeled through linear
blend skinning ?. The updated position of vertex i after articulation is given by the
weighted average of the original vertex transformed according to the N different bone
transformations:

vi =
N∑
b=1

wibTbv
′
i, (7.2)

where the weights wib quantify the influence of the bone transformation Tb on the
position of vertex i. The skinning weights wib are calculated by solving a discretized
heat-equilibrium differential equation on the skin surface ?.

7.3.2 Training simulation data
The generation of the DRR is based on mono-energetic ray-casting through the surface
model, virtually positioned between a X-ray source point and planar image detector.
A ray with source intensity I0 casted from the source to pixel position p on the
detector plane potentially traverses multiple objects on its way. The total length a
ray passes through objects with attenuation coefficient µi, is denoted by Li. The
intensity at pixel position p is the accumulated result of beam attenuation by all
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different objects and is given by:

I(p) = I0 exp
(
−
∑
i

Liµi

)
. (7.3)

The attenuation coefficient µ is chosen fixed for all bones and chosen larger than the
attenuation by the soft tissue.

Along with the DRR, binary ground-truth label-maps are created for each bone with
the same dimensions as the DRR. The labelmap for bone j at pixel position p equals
zero if Lj = 0 and is 1 if Lj > 0. Note that each pixel can have multiple labels as
different models can potentially overlap in the projection image.
The DRR and label map are resized before being fed to the network training in order
to limit the network complexity and computation time.

7.3.3 CNN model and training
The network deployed to perform the segmentation is a fully convolutional network,
shown in Figure 7.2. This architecture has already been used in iris segmentation in
unconstrained scenarios ?. The network is designed using a method known as SPDNN
? which merges smaller networks to design a larger one. The network design workflow
is explained in ?.

The network has 13 layers starting from 3 × 3 kernels and the size of the kernels
increases by getting deeper up to 15× 15. From layer 8, the kernel size decreases to
5× 5 and at the output layer, a 3× 3 kernel is applied. Kernels with size 3× 3, 5× 5,
7× 7, 9× 9, 11× 11, 13× 13, 15× 15 are assigned to get 10, 10, 20, 20, 30, 30, and 40
channels, respectively, except the last layer which is a single channel mapping. The
ReLU ? activation function has been used in all the layers except in the last layer
which is taking advantage of the sigmoid nonlinearity. There is a batch normalization
layer placed after each convolution except the last layer. The loss function used for
training is the mean binary cross-entropy given by:

L = −
Bs∑
k=1

W∑
j=1

H∑
i=1

tijk
BsWH

log(oijk) + (1− tijk) log(1− oijk) (7.4)

where o and t are the network output and the target respectively, and Bs, W , and H
are the batch size, width and height of the images. The parameters updated using
the ADAM ? optimization method with learning rate, β1, β2 and ε equal to 10−5, 0.9,
0.999 and 10−8, respectively. All the parameters are randomly initialized uniformly
between −0.25 and 0.25. The training was done for 1000 epoch on the MXNET ?
framework in python 2.7 on a TitanXp GPU.

7.4 Experiments
The proposed pipeline has been tested on its ability to segment the three phalanges of
a horse leg from DRRs. This is in particular a challenging task because these bones
are encapsulated by a dense hoof capsule, causing low contrast. Secondly, separation
between adjacent bones are usually small.

For the generation of the training dataset we articulated the shape model towards
10.000 different random poses. The poses were constrained within the allowed range
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of motions. The global model orientation was confined such that the medial-lateral
direction always coincides approximately with the source-detector axis. For each pose,
a DRR was simulated, along with the ground-truth label-map.

The CNN was trained and validated on 70% and 20% of the generated database of
DRRs, respectively. The remaining 10% was used for testing the network’s capability
of segmenting the three phalanges. We compared the resulting segmentations with
those obtained by geodesic active contour segmentation (GAC), using the open-source
implementation of ?. A visual comparison is shown in Figure 7.3.

The GAC segmentation typically needs to be initialised with a circular region of which
the center was annotated by an expert for each image in the test dataset. Besides the
initialisation, the outcome is also sensitive to the parameters of the algorithm. The
hyperparameters of GAC, explained in ?, with which we found the best results after
fine-tuning were: α = 650, σ = 4, smoothing= 4, threshold=0.5, balloon= 1.

The segmentations by the CNN and the GAC were validated by means of binary
metrics, defined in ?, and are listed in Table 7.1. From that table it is clear that the
CNN performs better in segmenting the phalanges according to all six metrics.

The accuracy metric is defined as the ratio of all true results over the total number
of pixels. The sensitivity or true positive rate is the probability that the classifier
can correctly detect positive pixels and is significantly lower for the GAC than the
CNN, indicating that the levelset-classifier often underestimates the actual size the
region. Similarly, the specificity or true negative rate measures the probability that
the classifier correctly detects background pixels. The high specificity in this case is
caused by the large number of background pixels in the images.

The precision or positive predictive value is the probability that a positive outcome
of the classifier is true positive. The f1 score is the harmonic average of sensitivity
and precision. The Matthew Correlation Coefficient (MCC) is a metric, equal to one
for a perfect model, 0 in case of random output and -1 for an inverse segmentation
output.

From Table 7.1 we also observe that the metrics of the GAC-method have larger
standard deviations than those of the CNN-approach, indicating larger variability in
outcome and thus lower predictability for the GAC. This is believed to be caused by the
sensitivity of the GAC method to its initialisation and the selected hyper-parameter
settings.

7.5 Discussion
The purpose of this paper was to segment the different phalanges of a horse leg
from radiographs. Because of low contrast, high noise level and motion blurring, in
experimental images we have adopted a CNN-approach, fostered by earlier results
?.

Because of lack of sufficient training data for this application, we have trained a CNN
on DRRs which were simulated from an articulating shape model. We showed that the
network is able to correctly segment unseen DRRs and found that it performs better
in classifying the different phalanges than GAC-method according to all discussed
comparison metrics.
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Figure 7.3: Segmentation of the three different phalanges on a DRR test-sample by GAC
(left) and the proposed CNN (right). The color indicates the true positive (yellow), false
negative (green) and false positive (red) regions. The ground-truth labelmap is thus given
by the union of the yellow and green region, while the segmentation is the yellow plus red
region.
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Table 7.1: Evaluation metrics for the segmentation results.

metric phalanx 1 phalanx 2
CNN GAC CNN GAC

accuracy 99.911 ± 0.049 99.20 ± 0.94 99.910 ± 0.043 99.26 ± 0.75
sensitivity 95.5 ± 4.7 75 ± 17 93.8 ± 5.1 64 ± 13
specificity 99.9954 ±0.0072 99.78 ± 0.90 99.9950 ± 0.0073 99.77 ± 0.77
precision 99.6 ± 1.7 92 ± 16 99.4 ± 4.2 90 ± 20
f1 score 97.4± 3.4 81 ± 13 96.5± 4.4 73± 14
MCC 0.974± 0.031 0.82 ± 0.13 0.965± 0.044 0.75 ± 0.13

metric phalanx 3
CNN GAC

accuracy 99.871±0.050 98.82 ± 0.54
sensitivity 92.9±3.9 43 ± 19
specificity 99.995±0.011 99.86± 0.49
precision 99.68±0.76 92 ± 17
f1 score 96.1±2.7 55 ± 17
MCC 0.961±0.024 0.60 ± 0.14

The large variation on the metric values of the GAC-method indicates a high un-
predictability in outcome. We claim that this is due to the algorithm’s sensitivity
to the initialization and to the fine-tuning of the parameters. Although ACWE is
generally considered as being more robust than GAC, the assumption of uniform
intensity within a region did not hold in this specific application and performed less
than GAC.

The training strategy of the CNN by DRRs, bypasses the need for a huge manual-
segmented database and therefore avoids possible operator-induced variability. Fur-
thermore, the DRR-based training enables the creation of arbitrary large databases
and allows to control the amount of pose variability in the database.

However, the current network is not directly applicable on real data because of two
limitations in the training process. First of all, the training data does not have
the same characteristics as real data, in terms of contrast, intensity, noise, etc. To
solve this, the training data should be augmented in order to mimic the real data.
Augmentation has been shown to make CNN use-able in real world applications ?
?, but requires additional knowledge about the image characteristics from a specific
acquisition.

Secondly, only one surface model has been used to create the DRRs. As a consequence,
the network is not generalised to different individuals. Inter-subject variability can
be included in the training data by deforming the DRRs or by adopting a statistical
shape model to create the DRRs from. Augmenting the appearance and shape of the
training data will be covered in future works.
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7.6 Conclusion
We presented a CNN to classify the three phalanges of a horse leg from a DRR-image.
The network was trained on DRRs, simulated from an articulating shape model of
the horse leg, incorporating the relevant bones and skin surface. Results showed
that the proposed CNN outperforms a levelset-based segmentation method. In the
future, we plan to augment the training data, to make the network applicable on real
experimental data.
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Abstract
Deep learning-based (DL) solutions are increasingly been adopted for 2D/3D regis-
tration as they can achieve faster 3D reconstructions from 2D radiographs compared
to classical methods. This study proposes a novel semi-supervised DL-network for
2D-3D registration, in which an atlas is registered to two orthogonal radiographs.
The deformation of the atlas is composed of an affine transformation and a local
deformation constrained by a B-spline-based statistical deformation model. The
validaton of the network on digitally reconstructed radiographs from 22 femur CT
images shows that the atlas can accurately be registered.

The work in this chapter has been published as:

J. Van Houtte, Gao, X., Sijbers, J., and Zheng, G., “2D/3D Registration with a
Statistical Deformation Model Prior Using Deep Learning”, in 2021 IEEE EMBS
International Conference on Biomedical and Health Informatics (BHI) (pp. 1-4).
IEEE.
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8.1. Introduction

8.1 Introduction
The three-dimensional (3D) reconstruction of bones from two-dimensional (2D) radio-
graphs is crucial in many biomedical engineering domains, such as kinematical studies,
pre-operative planning, implant design, and post-operative evaluations ??. The re-
construction is known to be a degenerate, ill-posed problem, because of the limited
number of projections. To resolve the ambiguity of the reconstruction, classical meth-
ods tackle the problem as a registration of a 3D atlas to the 2D projections. Statistical
models have frequently been adopted to constrain the possible local deformations in a
physical way ??.

Much research in 2D/3D registration has recently turned to deep learning (DL)
solutions to achieve real-time 3D reconstructions ?, being essential for intraoperative
guidance and robotic-assisted surgeries ??. In contrast to the classical methods,
current DL approaches often do not register an atlas to the radiographs, but directly
decode the 3D image values from the encoded 2D image, ignoring the fundamental
degenaracy of the problem ???.

Being composed of one or two 2D image encoders and a 3D decoder, these networks
require a method to bridge between the different dimensionalities of the feature
maps, which lacks any connection with the actual physical image generation process.
Also, the combination of different projection directions is not physically well founded.
The 3D registration to biplanar radiographs is often, by construction, limited to
orthogonal radiographs ??, because of the way in which both directional feature maps
are combined.

Cone-beam projections from 3D volumes can actually be simulated by integrating the
attenuation along a ray throughout the volume and has previously been integrated
in neural networks ??. Gao et al. generalised the concept of spatial transformers to
perspective projections, providing a much simpler and computationally efficient way
to simulate cone-beam projections ?.

In this paper, we propose a semi-supervised end-to-end neural network, which differs
from the encoder-decoder architectures proposed in the current literature in that
our network estimates a registration field like 3D/3D registration networks ?. The
registration field, being learned from a 3D atlas image and two radiographs, warps the
atlas image such that the forward projection of it matches the input radiographs. The
deformation field is fully parameterised by an affine transformation and a B-spline-
based statistical deformation model (SDM). To the authors’ knowledge, this is the
first study to present a DL-approach for 2D/3D registration with a B-spline-based
SDM.

8.2 Methodology
8.2.1 B-spline-based statistical deformation model
The B-spline-based SDM is constructed from Ns training computed tomography (CT)
images, which were registered beforehand to an atlas image V ∈ IRVx×Vy×Vz by a B-
spline-based free-form deformation (FFD). The B-spline coefficients C are defined on
a coarse regular lattice of B-spline control points with size (L+ 3)× (M + 3)× (N + 3).
The displacement field that brings the atlas into alignment with each training volume,
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is expressed as the 3D B-spline tensor product of 1D cubic B-spline coefficients
C:

φ(C) =
3∑
r=0

3∑
s=0

3∑
t=0

Br(u)Bs(v)Bt(w)Cl+r,m+s,n+t. (8.1)

where Bi(.) are B-spline basis functions. The indexes −1 ≤ l ≤ (L+ 1), −1 ≤ m ≤
(M + 1), −1 ≤ n ≤ (N + 1) are the indexes of the grid control points, while u, v,w
are the relative positions of the image space coordinate in the lattice. As the size of
the control point lattice is much smaller than the size of the atlas image, the B-spline
FFD gains speed compared to a regular FFD.

The B-spline-based SDM is computed as the singular value decomposition on the set
of Ns B-spline coefficient vectors. The SDM expresses any feasible B-spline coefficient
vector as a linear combination of the eigenvectors pk of the decomposition:

C({αk}) = C̄ +
Nm∑
k=1

αkσkpk, (8.2)

where σk are the associated singular values to the eigenvectors pk. The vector C̄ is
the average B-spline coefficient vector. The principal component (PC) weights {αk}
will act as the model parameters and Nm ≤ Ns − 1 is the number of selected modes
in the model. Each instance C({αk}) determines a forward FFD from the atlas to a
floating image by (8.1).

8.2.2 Pseudo-inversion
The forward FFD of (8.1) can be used to warp a floating image backwards to the atlas
image domain. For 2D/3D registration, however, this 3D floating image is unknown,
and one needs to warp the atlas image backwards by the inverse of (8.1), which is
computationally expensive to compute in case of a regular FFD. We therefore apply
the pseudo-inversion algorithm on the B-spline coefficients themselves ?. First, the
forward displacement corresponding to the coefficients C is calculated by (8.1). Next,
a fixed-point based inversion calculates the inverted displacement on only the control
points ?. Finally, the backward B-spline coefficients Cbck on the control points are
recursively determined ?. The 3D B-spline tensor product of (8.1) applied on those
backward B-spline coefficients yields the displacement field φ(Cbck) that can warp
the atlas to the floating image. For more details we refer the reader to ?.

8.2.3 Projective spatial transform
We use the projective spatial transformer (ProST) from ? to simulate a 2D perspective
projection image Î ∈ IRSx×Sy from a 3D volume V̂ . This method defines a fixed
canonical grid G ∈ IRSx×Sy×K of K sampling points, uniformly distributed along
each ray connecting the source and each pixel of the 2D detector plane. Given a
particular projection geometry, this canonical grid can be transformed by an affine
transformation Tgeom in order to represent the actual projection geometry. The
3D image volume can be interpolated at the transformed grid positions Tgeom(G).
The cone-beam projection is then obtained by integrating along each ray, which is
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Figure 8.1: Architecture of the end-to-end 2D/3D registration network. The network takes
as input two 2D digitally reconstucted radiographs (DRR) and a 3D atlas and estimates a
deformation field which is parameterised by 7 affine parameters and 29 PC weights {αk}.
Both parameter sets are separately regressed by two identical networks. For the first network,
we indicate the number of features at each level, which are identical for the second network.

equivalent to a “parallel projection” of the interpolated volume:

Î(i,j) =
K∑
k=1

(V̂ ◦ (Tgeom(G)))(i,j,k). (8.3)

In contrast to ?, we define two fixed projection angles corresponding to lateral (LAT)
and anterior-posterior (AP) projections. Instead of rotating the projection geometry,
we keep Tgeom fixed and apply the affine transformations in the image domain itself
to solve the pose problem.

8.2.4 Registration network architecture
The registration network estimates a registration field Ψ that maps the atlas image
V (with associated label map S) to the moving image space, such that the forward
projection of the warped atlas, V ◦ Ψ, matches the input radiographs Ii, with i ∈
{AP,LAT}. The registration field Ψ can be decomposed into an affine transformation
T and a local backward B-spline-based deformation field φ(Cbck), which is constrained
by the SDM. Both components are fully parameterised by respectively 7 affine
parameters (rotation, translation and isotropic scaling) and Nm PC weights {αk}
of the SDM. The two sets of parameters are separately regressed by two sequential
networks, depicted in Figure 8.1.

First a U-net with skip-connections, similar to ?, learns a 3D volumetric feature map
V̂ ∈ IRVx×Vy×Vz×Nf from the 3D atlas image V , with Nf = 16 the number of features.
The U-net consists of 4 encoder layers and 6 decoder layers with skip connections in
between.

The resulting 3D feature map is projected by a ProST layer, along the AP and lateral
direction. Note that the projected feature maps Îi still have the same number of
features as the volumetric feature map V̂ . The input radiographs Ii are first convolved
such that they have also the same number of features. The ProST output Îi and the
convolution of the input radiograph Ii are concatenated into a 2Nf -channel 2D image
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and fed to a 2D encoder. Each projection direction i has its own encoder. Each of
the five encoder levels consists of a strided convolution, a batch-normalisation layer
and a Leaky-Relu activation. Each level reduces the spatial size of the feature map
by a factor two and doubles the number of features. At each encoder level, the AP
and lateral features (and the preceding combined features) are concatenated and
convolved.

The accumulated 2D feature map at the last encoder level is flattened and fed to
a dense layer which regresses the seven parameters of the affine transformation T
between the floating image and the atlas. The bias and kernel weights of the dense
layer are initialised by respectively zero and a narrow normal distribution, such that
the initial affine transformation during training is close to identity.

The 3D feature map V̂ is warped by the affine transformation T by a spatial transform
layer ?. The transformed 3D features are fed into a similar network as before in
order to regress the Nm PC weights {αk}, which determine the B-spline coefficients
C through (8.2). The pseudo-inversion on C yields the backward B-spline coefficients
which determine the backward B-spline-based deformation field φ(Cbck) through
(8.1). The composition of the affine transformation T and the backward deformation
field φ(Cbck) is given by: T ⊕ φ(Cbck) = T + φ(Cbck) ◦ T .

8.2.5 Network loss function
The network loss-function, used to evaluate the registration quality during training,
consists of a normalised cross-correlation (NCC) between the warped atlas and the
ground-truth CT-image Vgt, and a Dice loss between the warped atlas label map
and the ground-truth label map Sgt. Both metrics are evaluated after the affine
registration and after the B-spline-based deformation:

L = γ(NCC(Vgt, V ◦ T ) +NCC(Vgt, V ◦ (T ⊕ φ(Cbck))))
+ δ(Dice(Sgt, S ◦ T ) +Dice(Sgt, S ◦ (T ⊕ φ(Cbck))))

+ ζ

Nm∑
k=1

α2
k, (8.4)

with γ = 1.0, δ = 0.1 and ζ = 10−6 weights to balance the different loss terms. The
last term is the Mahalanobis distance and acts as regularisation on the PC weights.
It favors instances C of the SDM that are close to the average C̄.

8.3 Experiment
8.3.1 Dataset
The training dataset consists of 40 CT-images of naked cadaver femur bones. The
validation dataset was acquired separately on different patients and constitutes of
22 CT images, from which the femur bone was masked. The SDM was built on
the training dataset. Based on the compactness of the SDM, we have selected the
first Nm = 29 variation modes from the SDM as they account for up to 99% of
the shape variability in the training dataset. The other modes are regarded as
noise and discarded from the set of degrees of freedom optimised by the registration
network.
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Input DRR’s (AP+LAT) Ground-truth Warped atlas Warped label map Distance error

Figure 8.2: Registration of the 3D atlas to orthogonal pairs of DRRs (left columns). The
third to fifth column show the same coronal slice of the ground-truth CT-volume, the warped
atlas volume together with the deformed grid and the warped label map on top of the
ground-truth CT-volume. The last column shows the surface model generated from the
deformed atlas segmentation map with the unsigned surface distance error represented by
the color map.

The training and validation datasets were augmented off-line by applying random
affine transformations on the 3D CT-data, resulting in 1200 and 330 images, respec-
tively. From the transformed CT volumes near AP and lateral digitally reconstructed
radiographs (DRR) were simulated with DeepDRR software ?. The AP and lateral
orientations of the femur were defined based on the femoral shaft and neck axis.
Pose variations around the perfect AP/lateral view were allowed within a range
of 30◦ internal/external rotation and within a range of 10◦ extension/flexion and
abduction/adduction.

The volume size and voxel spacing of the CT volumes and of the atlas equal (192×
128× 192) and (0.66× 0.66× 1)mm3, respectively. The size and pixel spacing of the
DRRs equal (141× 213) and (0.9× 0.9)mm2, respectively.

8.3.2 Results
The entire model, including the pseudo-inversion of the B-spline coefficients and the
ProST layer, was implemented in Tensorflow. The network was trained by Adam
optimizer for 50 epochs with a learning rate of 10−5, on a NVIDIA Tesla V100
GPU.

The trained model was evaluated on the validation dataset in terms of the Dice
metric and the average signed surface distance (ASSD). The average metric values
are tabulated in Table 8.1. Figure 8.2 shows two examples of the 2D/3D registration.
Ground-truth and estimated surface models were created from the ground-truth label
map and the warped atlas label map, respectively. The unsigned distance between
those surface models highlight the anatomical features, like the greater and lesser
trochanter, as challenging parts to register accurately.
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Table 8.1: Average validation metrics

Dice ASSD (mm)
Initial 0.515 ± 0.083 8.48 ± 1.49
Affine 0.855 ± 0.038 2.16 ± 0.54
Affine + SDM 0.908 ± 0.018 1.29 ± 0.21

8.4 Discussion
This study presents an end-to-end DL-approach to 2D/3D registration, which differs
from the typical encoder-decoder network architectures ?. Instead of directly decoding
the intensity values of a 3D volume without guarantees on feasibility and smoothness
of the reconstruction, this model estimates a deformation field that warps an atlas
image.

Although we used lateral and AP radiographs in this study, the network is not limited
to this particular combination of projections, nor to orthogonal projections. The
network can be trained for any combination of projection geometries, as long as the
calibration is known beforehand. In the future, we will investigate how re-training
the network for each different projection geometry can be avoided.

The network as presented in this study is semi-supervised. The training of the network
relies on the auxiliary ground-truth CT-volume and 3D label map associated to the
DRR. This type of data is not always available however. Future research could address
unsupervised learning schemes for such cases.

As the network is trained on DRRs, the model might not generalise well yet to real
experimental radiographs. This will be tackled in future work by augmenting the DRR
appearance during training or by including style transfer prior to the network.
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Abstract
The registration of a 3D atlas image to 2D radiographs enables 3D pre-operative
planning without the need to acquire costly and high-dose CT-scans. Recently,
many deep-learning-based 2D/3D registration methods have been proposed which
tackle the problem as a reconstruction by regressing the 3D image immediately from
the radiographs, rather than registering an atlas image. Consequently, they are less
constrained against unfeasible reconstructions and have no possibility to warp auxiliary
data. Finally, they are, by construction, limited to orthogonal projections.

We propose a novel end-to-end trainable 2D/3D registration network that regresses a
dense deformation field that warps an atlas image such that the forward projection of
the warped atlas matches the input 2D radiographs. We effectively take the projection
matrix into account in the regression problem by integrating a projective and inverse
projective spatial transform layer into the network.

Comprehensive experiments conducted on simulated DRRs from patient CT images
demonstrate the efficacy of the network. Our network yields an average Dice score
of 0.94 and an average symmetric surface distance of 0.84mm on our test dataset.
It has experimentally been determined that projection geometries with 80◦ to 100◦
projection angle difference result in the highest accuracy.

Our network is able to accurately reconstruct patient-specific CT-images from a
pair of near-orthogonal calibrated radiographs by regressing a deformation field that
warps an atlas image or any other auxiliary data. Our method is not constrained to
orthogonal projections, increasing its applicability in medical practices. It remains a
future task to extend the network for uncalibrated radiographs.

The work in this chapter has been published as:

J. Van Houtte, Audenaert, E., Zheng, G., and Sijbers, J., “Deep learning-based
2D/3D registration of an atlas to biplanar X-ray images”, International Journal of
Computer Assisted Radiology and Surgery, 2022, 1-10.
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9.1 Introduction
Radiography or X-ray imaging is the most common imaging procedure for many
orthopaedic interventions thanks to its ability to visualise internal structures with a
relatively low radiation dose and low acquisition cost. Apart from diagnosis, it is a
valuable imaging technique for intraoperative guidance and post-operative evaluation.
It also plays a crucial role in pre-operative surgical planning and the selection of
the right implants. In case of total hip arthroplasty surgeries, for example, it has
been shown that the proper positioning and orientation of the acetabular component
largely determines the functional outcome of the implant ??. Thereby, it is essential
that parameters such as the centre of rotation of the hip joint, leg length, and hip
offset remain preserved after the surgery and thus are correctly assessed on the
radiographs.

Although many surgical planning tools rely on two-dimensional (2D) radiographs, their
clinical interpretation can be hampered by overlapping structures and magnification
effects. The assessment from radiographs can also be influenced by the patient’s
positioning. To avoid the difficulties associated with 2D projections, three-dimensional
(3D) computed tomography (CT) images are preferred for surgical planning because
they are less ambiguous ?. They also allow to study the cortical and cancellous bone,
in addition to the outer bone surface ?. CT-based planning, however, is associated
with higher radiation doses and to far more expensive image acquisitions. Previous
research has therefore suggested the reconstruction of a patient-specific 3D model from
two or more 2D radiographs by registering a 3D CT atlas image to 2D radiographs,
referred to as 2D/3D registration ?.

9.2 Related work
Recently, deep-learning (DL) methods have been proposed that reconstruct a 3D
image from 2D radiographs by means of a neural network that encodes the 2D
radiographs into a latent variable which is decoded into a 3D CT volume ????.
Compared to 3D/3D registrations, these networks need to bridge between the different
dimensionalities in the encoder and decoder, which can be done by reshaping the
2D feature maps ? or by treating the feature channel as the third spatial dimension
?. Others exploit the orthogonality between biplanar projections by copying each
feature map along a different dimension ?. The X2CT-GAN network uses two different
mechanisms to bridge the dimensionalities ?. They apply a fully connected layer on the
flattened latent variable, before applying a nonlinear activation function and reshaping
it into a 3D feature map. For the skip connections, they apply 2D convolutions on
the 2D feature maps, which are then copied along the third axis and fed into a 3D
convolutional layer.

In this paper, we propose a novel atlas-based 2D/3D registration network that
estimates a registration field based on a pair of calibrated radiographs. The main
contributions of our proposed method are as follows:

• It follows a registration approach instead of a reconstruction approach, by
regressing a deformation field which can be used to warp an atlas or any
auxiliary data like segmentation maps. This avoids an additional segmentation
step to extract a surface model.
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Figure 9.1: Architecture of the 2D/3D registration network consists of an affine and local
registration module. The affine module regresses the 7 affine parameters of the transformation
T by encoding the anterior-posterior (AP) and lateral (LAT) radiographs. The atlas image
V is warped by the regressed transformation before being fed into the local registration
module, which regresses the 3D local deformation field φ by encoding and decoding the AP
and lateral radiographs separately.

• It decomposes the total registration function into an affine and a local part in
order to reduce restrictions on the orientation of input data.

• It is not restricted to orthogonal projections, unlike other DL-methods in the
literature. To this end, we propose an inv-ProST layer to better combine
bi-directional feature maps, as an extension to ?.

• It is validated on simulated digitally reconstructed radiographs (DRRs) from
a large collection of patient CT images, and compared to other registration
approaches in the literature ??.

9.3 Methodology
9.3.1 Registration network architecture
9.3.1.1 Overview of network

The registration network, shown in Figure 9.1, estimates a registration field Ψ that
maps the atlas image V (with associated label map S) to the moving image space, such
that the forward projection of the warped atlas, V ◦Ψ, matches the input radiographs
Ii, with i ∈ {AP,LAT}. The registration field Ψ can be decomposed into an affine
transformation T and a local backwards deformation field φ. Both transformations
are separately regressed by two sequential network modules and composed at the end
of the network to yield the total deformation field Ψ = φ+ T ◦ φ, which is used to
warp the atlas image.
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9.3.1.2 Projective spatial transform layer

The projective spatial transformer (ProST), introduced by Gao et al. ?, simulates
a 2D perspective projection Î ∈ IRSx×Sy from a 3D volume V by sampling this
volume at grid locations G ∈ IRSx×Sy×K . The grid consists of K sampling points,
uniformly distributed along each ray connecting the X-ray source location to each
pixel of the 2D detector. This canonical grid can be transformed by an affine
transformation Tgeom in order to represent the actual projection geometry. This
projection geometry transformation Tgeom is known for calibrated radiographs and
serves as input parameter to the network. The 3D volume V can be interpolated
at the transformed grid positions Tgeom(G) to obtain an X-ray beam-aligned image
volume Vbeam ∈ IRSx×Sy×K in the beam-space:

Vbeam = V ◦ (Tgeom(G)). (9.1)

The cone-beam projection is then obtained by integration along each ray, which is
equivalent to a “parallel projection” of the interpolated volume:

Î(i,j) =
K∑
k=1

V
(i,j,k)
beam . (9.2)

9.3.1.3 Affine registration module

The affine registration network consists of two ProST layers which project the 3D
atlas image along the AP and lateral direction. The ProST output Îi and the input
radiograph Ii are concatenated into a 2-channel 2D image and fed into a 2D encoder,
corresponding to the ith projection direction. Each of the five encoder levels consists
of a strided convolution, a batch-normalisation layer and a leaky rectified linear
activation unit (Leaky-ReLU). Each level reduces the spatial size of the feature map
by a factor two and doubles the number of features. At each encoder level, the AP
and lateral features (and the preceding combined features) are concatenated and
convolved.

The accumulated 2D feature map at the last encoder level is flattened and fed into
a dense layer which regresses the seven parameters of the affine transformation T
between the floating image and the atlas. The bias and kernel weights of the dense
layer are initialised by zero and a narrow normal distribution, respectively, such
that the initial affine transformation during training is close to identity. A spatial
transform layer warps the atlas image V by the affine transformation T ?, before
being fed to the local registration network.

9.3.1.4 Local registration module

The local registration network consists of two separated U-net-shaped networks,
each associated with a different projection direction. Each U-net-shaped network is
composed of a 2D encoder and 3D decoder and is preceded by a ProST layer that
projects the affine transformed atlas image. Each level of the 2D encoder consists
of a strided and non-strided 2D convolution. By consequence, each level halves the
spatial size and doubles the number of features of the feature maps. After each 2D
convolution, a batch normalisation and a Leaky-ReLU activation are applied. The
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last 2D feature map is copied M = 4 times along the first dimension to obtain a 3D
feature map.

The spatial dimensions of the 3D feature map are increased by the 3D decoder, while
reducing the number of features as follows: [64, 32, 32, 16, 16, 16]. Each decoding step
applies a 3D convolution with stride one and a Leaky-ReLU activation, followed by
upsampling the feature map by a factor of two. The 3D feature maps are defined
in the beam-space, which gives a natural meaning to the above operations. While
stacking 2D maps corresponds to increasing the number of sampling points per ray,
the upsampling also increases the number of rays.

The network has skip connections between the 2D encoder and 3D decoder at each
resolution level of the U-shaped network in order to recover spatial information loss
that might have happened during down-sampling. Along each skip connection, the
2D feature maps are copied along the first dimension a number of times, such that its
shape corresponds to the 3D decoded feature map’s shape. After copying the feature
map, the skip connection applies a 3D convolution, a batch normalisation, and a
Leaky-ReLU activation to the feature map.

9.3.1.5 inv-ProST

The decoded 3D feature maps are defined in the beam-space and need to be converted
to physical space to align them with each other before combining them. Therefore,
we apply an “inv-ProST” layer to the 3D feature maps, which samples the feature
maps at locations G−1:

V̂ = Vbeam ◦ (Tgeom(G−1)), (9.3)

with G−1 the canonical sampling coordinates in the beam space, which are determined
by the length of the rays connecting the source location with each voxel and by the
intersection point of those rays with the detector plane.

It can be verified that successively applying the ProST of eq.(9.1) and inv-ProST of
eq.(9.3) on an image volume V results in approximately the same image V apart from
interpolation approximations. Only voxels in the original image that fall outside the
cone-beam become zero in the final image.

After the inv-ProST layer, the output tensors of the AP and the lateral network
branches can be combined by concatenation, and convolved into a 3-channel tensor
which is interpreted as a stationary velocity field. This velocity field is integrated
by a “scaling and squaring”-method to obtain a diffeomorphic deformation field φ
??.

9.3.2 Semi-supervised learning
The training of the network is semi-supervised, which means that the training of the
network relies on auxiliary data. In our experiment, the segmentation labels of the
ground-truth CT volumes were used to mask the image volumes before feeding them
into the network, as we are only interested in reconstructing the femur bone from the
radiograph images.

The registration quality of the end-to-end network during training and validation is
quantified by a loss function that consists of a normalised cross-correlation (NCC)
function between the ground-truth image volume V f and the warped atlas image V
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after the affine and local registration. Furthermore, it contains a regularisation term
on the smoothness of the local deformation field:

L = −LNCC(V ◦ T, V f )− LNCC(V ◦Ψ, V f ) + δLsmooth(φ) (9.4)

The hyper-parameter δ = 0.01 balances the contribution between the smoothness
term and the image similarity loss. Note that the loss function does not include the
label maps anymore, as the images themselves are already masked.

9.4 Experiments
In this section, we evaluate the performance of our network. Section 9.4.1 discusses
the generation of the different datasets and provides details on the evaluation and
training procedure. Section 9.4.2 presents the registration results for AP and lateral
radiographs while comparing with other methods. We also report the sensitivity to
inaccurate input parameters and the accuracy for non-orthogonal projections. An
ablation study is presented in section 9.4.3.

9.4.1 Experimental settings
9.4.1.1 CT-data preprocessing and augmentation

A total of 315 angio-CT images were acquired and split into a training set of 235
subjects, a validation set of 40 subjects for model selection, and a test set of 40
subjects used to report performance. From each CT-image, the left and right femurs
were extracted and rotated to a reference system that aligns the anterior-posterior and
lateral views of that femur with the x and y-axis of the image. The femur reference
frame of each image was defined based on the neck and shaft axis of the femur. To
allow some pose variation around this canonical reference pose, we applied random
affine transformations to the image with strict constraints. The randomised angles
were allowed within a range of 10◦ extension/flexion, 10◦ abduction/adduction and
10◦ internal/external rotation.
After transforming the images to a pose that is close to that of the reference, the
images were cropped around the femoral heads and resized in order to maintain the
highest resolution as possible. The left femur images were flipped to resemble right
ones. The final CT volumes have a size equal to (192× 128× 192), and a resolution
of (0.664× 0.664× 1)mm3. Each image has a corresponding segmentation map S,
obtained by graph-cut segmentation method followed by manual corrections ?.

9.4.1.2 Generating DRR

Digitally reconstructed radiographs (DRR) were simulated from the femur-centred
CT volumes by DeepDRR software ?. DRRs were created with an image size of
(422 × 640), and downsampled to (160 × 224) to fit the network’s input size. The
source-detector distance and the isocenter distance of the projection geometry were
fixed to 1000mm and 925mm, respectively. Two different datasets of DRRs were
generated:

• A dataset with orthogonal projections. The projection geometry was fixed to
provide lateral and AP projections. The acquisition geometry corresponding to
this dataset resembles best the experimental settings in the literature.
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• A dataset with generalised projection geometries. Projection matrices were
parameterised by the left/right anterior oblique (LAO/RAO) angle θ, which was
randomly varied between -30◦ and +30◦, around the perfect lateral and AP view.
The cranio-caudal angle was set to a constant value of zero degrees. Different
combinations of LAO/RAO angles were made for biplanar experiments.

For both datasets, the CT label maps were projected along with the CT images to
obtain a 2D labelmap for the DRRs. The DRRs were masked by these labelmaps
before feeding them into the network. Note that other structures, in front and behind
the femur, are still visible in the masked DRRs.

9.4.1.3 Evaluation metrics

The registration accuracy of the network is evaluated by means of the Dice score and
the Jacard coefficient, which measure the overlap between the warped atlas label map
and the ground-truth label map ?:

Dice(A,B) = 2 |A ∩B|
|A|+ |B| (9.5)

Jac(A,B) = |A ∩B|
|A ∪B|

(9.6)

We also report the average symmetric surface distance (ASSD), which measures the
average geometric distance between the ground-truth and registered bone surfaces.
The similarity between the warped atlas image and the ground-truth image volume
is quantified by the structural similarity index (SSIM), which takes the luminance,
contrast and structure into account. As our method is a registration method, its
ability to estimate the right intensity values of the image volume is limited. It can
only warp an atlas with fixed intensity values.

9.4.1.4 Training details

We implemented our network by using the TensorFlow library. The network was
trained for 300 epochs on a NVIDIA Tesla A100 graphics card. The model requires
18.7GB of memory when being trained with a batch size equal to one, and has a
computational complexity of 722GFLOPS. The loss-function was minimised using
the Adam optimizer, with the learning rate set to 10−5.

9.4.2 Experimental results
9.4.2.1 Comparison with other methods

This section describes the results of the registration to AP and lateral DRRs, by
our proposed network and by two other networks for comparison. The evaluation
metrics are listed in Table 9.1. Figure 9.2 illustrates the qualitative performance of
the network by some registration examples.

The first comparison method registers a B-spline-based statistical deformation model
(SDM) to a pair of radiographs by regressing its principal component weights ?. This
is a deep-learning implementation of the classical method of Yu et al.(2017) ?. The
SDM guarantees plausible shapes and provides smoother deformation fields than our
proposed method, as can be seen in Figure 9.2. Nevertheless, it is outperformed by
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Figure 9.2: Examples of 2D/3D registration based on AP and lateral radiographs by different DL
models. The first two columns show the lateral and AP input radiographs overlapped with the
contours of the DRRs from the predicted 3D image volume. The third column shows a coronal slice
of the warped atlas volume with the deformation grid. The fourth column shows a coronal slice of
the predicted segmentation map, overlaid on top of the ground-truth image. The last column shows
the geometric reconstruction error between the reconstructed and ground-truth surface model.
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Figure 9.3: Sensitivity of the registration accuracy to inaccurate LAO/RAO projection angle
inputs. The true angles θtrue in this experiment correspond to perfect AP and lateral views.

our method in terms of registration accuracy (p = 10−30), as reported in Table 9.1.
This indicates that the constraint on the deformation field by the SDM is too strong
to correct for small-scale deformations. The lower SSIM value is due to the different
atlas image being used for the SDM-based method. This atlas has an average intensity
profile which cancels out more subtle local intensity variations.

The second comparison method is a re-implementation of the work of Kasten et al.
?, in which the 3D binary labelmap of the femur is immediately regressed from the
biplanar radiographs, without deforming an atlas image. This method achieves a
larger Dice score than our method (p = 4 · 10−4), but lacks information about the
internal structures. As it does not regress the 3D intensity values, the problem is
considerably simplified.

Figure 9.2 shows a good alignment for our method between the input DRRs and the
simulated perspective projections of the registered atlas images, including the cortical
bone. The geometric distance error between the estimated and ground-truth surface
model highlights the lesser trochanter as a challenging region to register accurately
for all methods, while global structures like the femoral neck and shaft are more
accurately reconstructed.

9.4.2.2 Sensitivity to inaccurate input

Our network requires calibrated radiographs as input, meaning that the corresponding
projection matrix, parameterised by the intrinsic and extrinsic parameters, needs
to be known. However, the orientation of an imaging system, like a C-arm system,
can never exactly be determined in practice, especially if both projections are taken
at different times and the patient moves in between both acquisitions. In this
experiment, we study how the uncertainty on the LAO/RAO projection angle affects
the registration accuracy for projections which are in reality orthogonal. Figure 9.3
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Figure 9.4: Dice scores for different biplanar configurations. Projection angles vary 60 degrees
around the perfect AP and lateral angle. The dashed diagonal line shows the configurations
with 90 degrees difference between the two projection directions. The bin size is four degrees.

Table 9.1: Registration accuracy of our proposed method and comparison methods ??.

Dice Jac SSIM ASSD
SDM ? 0.921 ± 0.017 0.854 ± 0.028 0.327 ± 0.083 1.16±0.21
Kasten et al. ? 0.943 ± 0.015 0.892 ± 0.025 – 0.83 ± 0.18
Ours 0.939±0.016 0.886±0.027 0.932±0.013 0.84±0.20

shows the evaluation metrics with respect to the difference between the ground-truth
and input projection angle. For a discrepancy of five degrees, the average dice score
gets reduced from 0.94 to 0.90.

9.4.2.3 Generalised projection geometries

We retrained and evaluated the registration network on the DRR dataset with
generalised projection angles. Instead of perfect AP and lateral DRRs, projections
were randomly generated in a range of 60◦ around the AP and lateral views. By
training the network on such generalised dataset, the network can be reused for any
projection geometry.

The overall average dice score on the generalised validation dataset (N = 2880) equals
0.923 ± 0.033. Figure 9.4 shows the median Dice scores for different combinations
of LAO/RAO projection angles. The Dice score is maximal for near-orthogonal
projection geometries, where the angle between both projection directions is between
80 and 110 degrees. It is interesting to note that projections do not necessarily need
to correspond to perfect AP and lateral views.
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Table 9.2: Quantitative results for the effectiveness of different network components. The
mean and standard deviation (between brackets) of the evaluation metrics are tabulated
for the different network variations. The bottom table shows the p-values of a paired t-test
between the original network and each variation on the network architecture.

aff aff+local
Dice Jac SSIM ASSD Dice Jac SSIM ASSD

Original 0.860 0.755 0.893 2.04 0.939 0.886 0.932 0.84
(0.024) (0.036) (0.015) (0.35) (0.016) (0.027) (0.013) (0.20)

2 aff encoders 0.855 0.748 0.891 2.13 0.940 0.888 0.933 0.82
(0.023) (0.035) (0.016) (0.34) (0.016) (0.027) (0.013) (0.20)

wo skip 0.846 0.734 0.887 2.29 0.937 0.883 0.931 0.86
(0.035) (0.050) (0.016) (0.52) (0.017) (0.029) (0.013) (0.21)

single 3D dec 0.853 0.744 0.890 2.16 0.930 0.870 0.925 0.97
(0.021) (0.032) (0.017) (0.33) (0.018) (0.030) (0.014) (0.24)

wo inv-ProST 0.851 0.742 0.889 2.18 0.932 0.873 0.927 0.95
(0.026) (0.038) (0.015) (0.36) (0.016) (0.027) (0.013) (0.21)

2 aff encoders 10−7 10−7 10−7 10−9 10−2 10−2 10−1 10−2

wo skip 10−8 10−8 10−9 10−7 10−3 10−3 10−3 10−3

single 3D dec 10−10 10−10 10−8 10−11 10−21 10−21 10−23 10−22

wo inv-ProST 10−12 10−13 10−13 10−12 10−17 10−17 10−16 10−17

9.4.3 Ablation study
To study the effectiveness of individual components in our registration network, we
re-trained our network, omitting some modules. We used the same dataset as in
section 9.4.2 for training, validation, and testing. The evaluation metrics, listed in
Table 9.2, are compared to the original results of section 9.4.2 by means of a two-sided
paired t-test.

9.4.3.1 Effectiveness of affine network structure

In this experiment, the affine network of section 9.3.1.3 was modified by removing the
intermediate concatenations of AP and lateral feature maps. Instead, they were only
combined at the end of the affine module, right before regressing the affine parameters.
While the affine initialisation is significantly worsened by this, the local registration
remains unaffected. It shows that the local registration has a large enough capture
range to correct for variations left unseen by the affine initialisation.

9.4.3.2 Effectiveness of skip-connections

Removing the skip connections in the local network significantly reduces the registra-
tion accuracy (p = 10−3). Secondly, it also increases the training time from 300 to 700
epochs, especially due to the slower training of the affine network. The mismatch in
learning rate between the affine and local network can be explained by the vanishing
gradient problem. In deep neural networks, the gradient might become very small for
the early layers in the network, resulting in a negligible parameter update. The skip
connections provide an alternative path to back-propagate the loss-function, which is
essential for updating the early network layers.

9.4.3.3 Effectiveness of two separate 3D decoders

Instead of treating the AP and lateral feature maps separately by two distinct encoder-
decoder modules, this network variation combines both feature maps at each level
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of the 2D encoder, similar to the affine network structure, and only contains one 3D
decoder. Skip connections are included between the combined 2D feature maps and
3D decoder. The affine registration module remains the same as depicted in Figure
9.1. The results in Table 9.2 show a highly significant reduction in the affine and local
registration accuracy, indicating the preference to decode the 3D feature maps for
each projection direction separately.

9.4.3.4 Effectiveness of inv-ProST layer

The inv-ProST layer is responsible for spatially aligning the decoded 3D feature maps
into a common coordinate system, before regressing the deformation field. If the
inv-ProST layer is left out and the 3D feature maps are directly concatenated instead,
the registration accuracy is significantly reduced (p < 10−16).

9.5 Discussion
In this work, we presented a DL-model for 2D/3D registration, which substantially
differs from other DL-methods in the literature. Instead of directly reconstructing
the 3D image volume from a pair of DRRs, like in the model of Kasten et al. ?, our
network estimates a deformation field that can warp an atlas to the floating space.
This has the advantage that large deformations and unlikely shapes can be penalised.
Secondly, the estimated deformation field can also be used to warp auxiliary data
like label maps. Finally, our network is not restricted to perfect AP and lateral
projections.

The comprehensive experiments performed on simulated DRRs from patient CT
images show the efficacy of our registration method. The network achieves an average
Dice score of 0.94 on the test dataset with orthogonal AP and lateral radiographs.
While these biplanar views are the standard in musculoskeletal imaging, the acquisition
of perfectly orthogonal AP and lateral radiographs is not always achievable in medical
practice. Occasionally, instead of horizontal lateral projections, other lateral views,
like the frog-leg or Judet view, are sometimes preferred, depending on the underlying
disorder ?. It was experimentally determined that our method still achieves satisfying
results for projection geometries deviating from orthogonality by up to ±10◦.

The pair of radiographs that serves as input to our network needs to be calibrated,
meaning that the intrinsic and extrinsic parameters of the projection matrix need
to be known for both images. The deep network of Gao et al. ? allow uncalibrated
radiographs as input. Their network learns a convex similarity metric with respect to
the pose parameters, which is close to the square of geodesic distances in SE(3). In
the application phase, this convex similarity function can be optimised over the pose
parameters by a conventional gradient descent method. It remains a topic of further
research to implement this approach to our network in order to enable uncalibrated
radiographs as input and to increase the applicability of the network for medical
practices.

Furthermore, the input radiographs to our network need to have the femur masked out.
While manually annotating the contours would be a subjective and time-consuming
task, automatic methods are proposed in the literature to obtain accurate femoral
segmentation maps from radiographs ?. Selection of the region of interest and
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segmentation would also be an important pre-processing step for registration of more
complex anatomical structures.

9.6 Conclusion
This paper presents a novel end-to-end 2D/3D-registration network that registers a 3D
atlas image to a pair of radiographs. The network regresses a pose similarity transform
and a dense deformation field for local shape variations. It effectively accounts for
the projection matrix through a projective and inverse-projective spatial transform
layer. The experiments show an average Dice score of 0.94 and an average symmetric
surface distance of 0.84mm on the test dataset, which illustrate the effectiveness of
our network.
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The registration or alignment of different data with each other is an important pre-
processing step in the data-analysis of many biomedical problems. In this manuscript,
different registration methods were developed for a versatile of applications through
both, classical and deep-learning-based approaches.

Articulating statistical shape modeling
As a registration typically involves the optimisation of many parameters, it is often
beneficial to regularise the parameter space to a smaller subspace, by, for example,
exploiting the prior knowledge on shape variability through a statistical shape model
(SSM). While statistical shape modeling has extensively been studied before for static
objects, it was the goal of part II of this thesis to extend the framework to articulating
bodies, such as human knees, hands and horse limbs. Compared to a SSM, articulating
SSMs introduce additional parameters to control the motion. The true biomechanics,
however, is often too complex for this additional articulation model and a trade-off
has to be made between the number of articulation and shape parameters. In general,
it is better to keep the articulation model as simple as possible and describe remnant
motion as effective shape variations.

The framework we have developed in this thesis for building an articulating SSM
relies on a mathematical articulation model to normalise the poses of the training
subjects, before applying principal component analysis (PCA) on the geometry and
pose parameters together. The resulting model can be articulated into different poses
for any shape instance, while avoiding model intersections. The skin deformations are,
however, not data-driven. Modeling of skin effects, like skin bulging or fat deformation
during motion, requires a different unified model to correlate shape and poses ?.
Although the articulation model is not based on dynamic data, the SSM of the bones
can possibly be extended to a musculoskeletal model for biomechanical simulations
through frameworks as OpenSim ?.

Articulating SSMs enable a lot of new application areas. Our SSM of the human hand,
for example, can potentially be used for automated splint design, based on low-quality
3D scans. While low-quality scans exhibit many artefacts, as holes, sharp edges, etc,
a SSM fitted to the 3D scan can give a smooth surface approximation, which is a
requirement for product development on top of a surface. Our articulating SSM of
the equine distal limb on the other hand is the first of its kind in the veterinary field.
In the first place it contains a lot of morphological information, which goes beyond
the usual discrete biometrics. This statistical shape information can potentially be
used for the design of off-the-shelf horse shoes or orthopaedic implants. The SSM
has the ability to generate many instances in different poses which makes it useful
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for veterinary training and for the generation of a training dataset for deep-learning
models.

Deep learning-based registration
Articulating statistical shape models have also extensively been adopted as prior
models in 2D/3D registration by Guoyan et al., among others ??. The 2D/3D
registration aims at aligning a 3D CT-model to one or more 2D radiographs. The
usage of a statistical model to bypass the need for a 3D personalised model, reduces
the operation cost, time and the radiation dose to the patient.

The goal of Part III of this PhD was to develop a deep-learning-based solution to
this problem. Instead of optimising the principal component (PC) weights through
a classical optimisation method, a DL-model was developed which regresses the PC
weights of a statistical deformation model (SDM) from a pair of radiographs. The
drawback of this method is that it involves two separate modeling steps: building a
SDM and training the DL-model. Both models require their own independent set of
training data.

To avoid the hassle in model training of the first DL-model, a second DL-model
has been developed that regresses a 3D deformation field that warps an atlas image,
without using a SDM-prior. This approach differs from other 2D/3D registration
methods which directly regress the 3D image, without the use of a warping field. The
intermediate step of a warping field, gives the possibility to constraint the amount of
deformation and to ensure the feasibility of the solution. Secondly, the warping field
can be used to warp additional data, like label maps. On the other hand, warping an
atlas does not allow for person-specific bone density reconstructions.

Comparing the performances of both networks, it was found that the latter outperforms
the SDM-based network. A plausible explanation for this might be that the SDM
over-constrains the possible deformations of the atlas. Given the fact that the SDM
was built on a relatively small dataset, it is possible that the generalisability of the
SDM could still be further improved. Secondly, the different inherent architecture
of the networks can play a role in the observed difference, as we did not optimise
against the network size in this work. Despite its lower performance and its need
for additional training data, the SDM-based network remains an attractive method,
because of its simpler architecture and shorter training and inference time.

Generalisability remains a common challenge to, both, statistical shape modeling and
deep learning models. Features which were not part of the training database will not
be reconstructed, as for example: a broken bone or an implant.

Our developed networks require calibrated radiographs as input, meaning that the
intrinsic and extrinsic parameters of the projection need to be known. While the
sensitivity of the networks prediction on the extrinsic parameters have been assessed
in this thesis, future efforts can generalise the network to uncalibrated radiographs.
The current DL-model has been trained for specific intrinsic parameters, meaning
that the network would need to be re-trained for different projection geometries. In
this respect, the classical registration methods are more easily transferable between
different projection geometries.

Another concern regarding generalisability is the performance of the network for
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different image appearances, such as image brightness, motion blur, artefacts, etc. As
the networks are trained on DRRs, the performance on real radiographs can not be
guaranteed, despite the efforts to make the DRRs as realistic as possible. One way to
improve the generalisability towards the input appearance is to train a separate GAN
network for style transfer.

The presented DL-models were semi-supervised, meaning that the ground-truth 3D
image was available during training for each radiograph. This was realised through
many simulations, but this is not always possible. Extensions to non-supervised
training schemes can be considered in the future.

Despite of the remaining challenges, the solution to the 2D/3D registration can
potentially be used in medical situations that currently only rely on radiographs
but would benefit from a 3D data representation. This is the case for diagnosis,
pre-operative surgical planning, intra-operative guidance and post-operative follow-
up.
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