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Samenvatting

Het schatten en reduceren van ruis uit Magnetische Resonantie (MR) beelden
is belangrijk voor interpretatie, analyse, accurate parameterschatting en
verdere verwerking van deze beelden. Ruis blijft één van de belangrijkste
oorzaken van kwaliteitsvermindering in MRI en maakte reeds het onderwerp
uit van diverse papers in de MRI literatuur. Deze thesis omvat de beschrijving
van nieuwe methoden voor het schatten van ruis en voor het reduceren van
ruis in MRI beelden die zowel met enkelvoudige als met meervoudige spoelen
werden opgenomen. De belangrijkste bijdragen in deze thesis kunnen als volgt
worden samengevat: (i) Schatting van ruis uit MRI beelden in afwezigheid
van achtergrond signaal (ii) Effectieve ruisreductie van MRI beelden en (iii)
Methoden voor de schatting en reductie van ruis in MR beelden opgenomen
bij meervoudige spoelen.

De meeste van eerder voorgestelde methoden voor ruisreductie zijn gestoeld
op de Rayleigh verdeelde achtergrondgebieden in magnitude MRI beelden.
Deze methoden kunnen vanzelfsprekend niet gebruikt worden indien weinig of
geen achtergrond signaal aanwezig is. In deze thesis stellen we twee verschil-
lende object gebaseerde methoden voor, voor de schatting van het ruisniveau
vanuit Rice verdeelde magnitude MR data, welke geen gebruik maken van
achtergrond data. De eerste methode is gebaseerd op de lokale schatting
van de ruisvariantie via maximum likelihood schatting; de tweede methode
is gebaseerd op de lokale schatting van de scheefheid van de magnitude MR
data distributie.

Voor de reductie van ruis in MRI beelden, wordt een maximum likeli-
hood schattingsmethode voorgesteld die gebaseerd is op gerestricteerde,
lokale omgevingen. De conventionele maximum likelihood methoden voor het
schatten van het onderliggende signaal, baseerden zich op de Rice verdeling,
waarbij het signaal constant of traagvariërend werd verondersteld in een
lokaal gebiedje. Indien deze aanname niet geldig is, leidt dergelijke filtering



Samenvatting

echter tot wazige randen en verlies van kleine details. Om hiervoor een
oplossing te bieden wordt het concept van gerestricteerde lokale omgevingen
voorgesteld waar het ruisloze, onderliggende signaal wordt geschat voor elke
pixel vanuit een set van voorgeselecteerde omgevingspixels. Daartoe wordt
eerst een referentiebeeld gecreëerd van het ruizige beeld uitgaande van een
recent voorgesteld niet-lokale-gemiddelden algoritme. Dit referentiebeeld
wordt gebruikt als voorkennis voor verdere ruisreductie.

Hoewel in de literatuur veel methoden werden voorgesteld voor het
schatten en reduceren van ruis, werden slechts weinig algoritmen beschreven
voor de schatting van ruis en het onderliggend signaal uit MR beelden
die werden opgenomen met multi-kanaals-oppervlaktespoelen. Dergelijke
meervoudige spoelen worden hoe langer hoe meer gebruikt in de prak-
tijk. Meervoudige opnamespoelen werden aanvankelijk ontwikkeld om de
signaal-ruis-verhouding (SNR) van de op te nemen beelden te verbeteren.
In een later stadium werden parallelle MRI (pMRI) technieken ontwikkeld
om het MRI opnameschema te versnellen via onderbemonstering van de
k-ruimte. Echter, parallelle beeldvormings- en reconstructiemethoden kunnen
de statistische eigenschappen veranderen van de data in het gereconstrueerde
beeld. De onderbemonstering van de k-ruimte resulteert in een spatiaal
variërend ruisniveau. In deze thesis worden methoden voorgesteld voor
het schatten van het ruisniveau en onderliggend signaal van MR beelden
afkomstig van multi-opnamespoel-systemen, waarbij de gereconstrueerde
data een niet-centrale χ-verdeling volgt.

vi



Summary

Estimation and removal of noise from Magnetic Resonance (MR) images is
important for proper interpretation, analysis, accurate parameter estimation
and for further preprocessing of these images. Noise remains one of the main
causes of quality deterioration in MRI and is a subject in a large number of
papers in the MRI literature. This thesis aims to provide new approaches
for noise estimation and noise removal from both single and multiple coil
acquired magnitude MR images. The main contributions in this thesis can
be summarized as: (i) Estimation of noise from MRI in the absence of a
background region (ii) Effective denoising of MRI and (iii) Methods for noise
estimation and denoising of multiple-coil acquired MR images.

For noise estimation, most of the methods proposed earlier exploited
the Rayleigh distributed background region in the magnitude MR images.
These methods, however, cannot be used for images in which no background
information is available. In this thesis, we propose two different object based
approaches for noise level estimation from Rician distributed magnitude
MR data. These methods don’t rely on the image background. The first
method is based on the local estimation of the noise variance using maximum
likelihood estimation and the second method is based on the local estimation
of the skewness of the magnitude data distribution.

For the denoising of MRI, we propose a maximum likelihood estima-
tion method using restricted local neighborhoods. Conventionally, maximum
likelihood methods incorporate the Rice distribution to estimate the true
underlying signal from a local neighborhood within which the signal is
assumed to be constant. However, if this assumption is not met, such filtering
will lead to blurred edges and loss of fine structures. As a solution to this
problem, we put forward the concept of restricted local neighborhoods where
the true intensity for each noisy pixel is estimated from a set of preselected
neighboring pixels. To this end, a reference image is created from the noisy



Summary

image using a recently proposed non local means algorithm. This reference
image is used as a prior for further noise reduction. A scheme is developed
to locally select an appropriate subset of pixels from which the underlying
signal is estimated.

Even though many methods were proposed in the literature for MRI
noise estimation and denoising, not many approaches were suggested for
estimating noise or underlying true signal from MR images acquired with
multichannel surface-coil arrays. Nowadays, multiple coil MRIs are becoming
more common. Multiple coil systems were initially developed to enhance the
signal to noise ratio (SNR) of the acquired images and later parallel MRI
(pMRI) techniques were employed to it, to accelerate the acquisition process
through k-space subsampling. However, parallel imaging and reconstruction
methods can influence the statistical distribution of the data. The subsam-
pling of k -space makes the noise level in the image spatially varying. In this
thesis we propose methods for estimating the noise level and underlying true
signal from multiple-coil acquired MR images in which the data follows a non
central-χ distribution.
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Chapter 1

Introduction

Contents
1.1 MR physics and imaging principles . . . . . . . . . . . . . . . 2

1.2 Noise in MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Noise distribution in MRI . . . . . . . . . . . . . . . . . . . . 8

1.4 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . 19

Magnetic Resonance Imaging (MRI) is based on the phenomenon of nuclear
magnetic resonance (NMR or MR), which was first described and measured
by Isidor Rabi [1] and later the technique was expanded by Felix Bloch [2, 3]
and Edward Purcell [4]. For their discovery of NMR, Rabi was awarded the
Nobel price in physics in 1944 and Bloch and Purcell shared the Nobel price
in Physics in 1952. The potential of NMR spectroscopy was recognized almost
immediately after its discovery and was used for chemical and physical molec-
ular analysis. Later this wonderful phenomenon was exploited for imaging for
which the MRI community mainly owes to the pioneering work of Raymond
Damadian [5], Paul Lauterbur [6], Anil Kumar and Richard Ernst [7] and
Peter Mansfield [8]. Despite its relatively slow beginning, MRI has become an
indispensable diagnostic tool and an important noninvasive imaging modality
since the early 1980s. MRI has found a number of applications in the fields
of biology, engineering, and material science. Because it provides unique con-
trast between soft tissues and high spatial resolution, MRI has revolutionized



1.1. MR physics and imaging principles

diagnostic imaging in medical science [9]. An important advantage of diagnos-
tic MRI as compared to CT is that the former does not use ionizing radiation
since MRI operates in the radio frequency (RF) range.

In this chapter, the principles of MRI are introduced first, followed by the
source of noise in MRI and its statistics. Finally, the main contributions of
this thesis are summarized and the structure of the thesis is explained.

1.1 MR physics and imaging principles

A brief introduction to MRI is given in this section. For a deeper study of
MRI physical principles, it is referred to the works in [10, 11, 9]; part of the
material of this section has been extracted from these texts.

NMR is based upon the interaction between an applied magnetic field and
a nucleus that possesses spin. Nuclear spin or nuclear spin angular momentum
is one of several intrinsic properties of an atom and its value depends on the
precise atomic composition [10]. A nucleus with a spin quantum number, I=0,
does not interact with an external magnetic field and cannot be studied using
NMR. The 1H nucleus, consisting of a single proton with a spin of 1/2, is the
most commonly used MR active nuclei for probing the human body and is
primarily because of two reasons. (i) 1H is by far the most abundant in the
body (mainly in H2O) (ii) its response to an applied magnetic field is one of
the largest found in the nature [10, 11].

In addition to its spin, a charged nucleus also has a local magnetic moment
(~µ) given by

~µ = γ~p (1.1)

where ~p is the spin angular momentum of the nucleus and γ is a constant
for each nucleus, known as gyromagnetic ratio. The collective behavior of
the spin system can be represented using a macroscopic magnetization vector
~M , which is the vector sum of all the microscopic magnetic moments in the
object:

~M =
Ns∑
i=1

~µi (1.2)

2
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where ~µi is the magnetic moment of the ith nuclear spin and Ns is the total
number of spins. In the absence of an external magnetic field, the spins are
oriented randomly, and as a result the net magnetization ~M will be zero.
However, when placed in a magnetic field of strength ~B0, two notable effects
occur. First, the ~B0 field polarizes the sample, inducing a net magnetization
moment ~M0 in the z-direction. By convention, the direction of the applied
field is called the z -direction or longitudinal direction. Second, the nucleus
will precess at a frequency ω0. This precessional frequency is proportional to
the strength of the magnetic field and is called the Larmor frequency. The
relationship between ω0 and ~B0 is given in the Larmor equation as:

ω0 = γB0 (1.3)

The magnetization M0 per unit volume is given by:

M0 =
nI~2γ2I(I + 1)

3kT
B0 (1.4)

where nI is the number of nuclear spins per unit volume, ~ is the reduced
Plank’s constant, k is Boltzmann’s constant and T is the absolute tempera-
ture. This induced magnetization, M0, is the source of signal for all the MR
experiments.

To obtain an MR signal, an RF magnetic pulse ~B1 tuned to the Larmor
frequency of the spins is applied in the xy (transverse) plane to excite the
spins out of equilibrium state. Effectively, ~B1 applies a torque which rotates
the magnetization vectors by a prescribed angle dependent on the strength
of ~B1 and its duration. If the excitation is set for a 900 tip angle, then
upon turning the excitation off, the tipped vectors precess in the xy plane
at the Larmor frequency. After excitation, the net magnetization ~M relaxes
back to its original state. The time constant characterizing the return of the
magnetization vector along the z-axis (longitudinal axis) is called T1 (spin-
lattice relaxation time), while the time constant characterizing the decay of
the vector component in the xy plane (transverse plane) is called T2 (spin-
spin relaxation time). The dynamics of ~M due to excitation and relaxation
are phenomenologically described by the Bloch equations [3]:

d

dt
Mx(t) = γMyB0 − Mx

T2

(1.5)
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1.1. MR physics and imaging principles

d

dt
My(t) = −γMxB0 − My

T2

(1.6)

d

dt
Mz(t) = −Mz −M0

T1

(1.7)

where Mx, My and Mz are the components of ~M along x, y, and z directions.
The solutions to the differential equations in Equations (1.5), (1.6) and (1.7)
are [9]:

Mx(t) = [Mx(0) cos(ω0t) + My(0) sin(ω0t)] exp(−t/T2) (1.8)

My(t) = [−Mx(0) sin(ω0t) + My(0) cos(ω0t)] exp(−t/T2) (1.9)

Mz(t) = M0 + [Mz(0)−M0] exp(−t/T1) (1.10)

where Mx(0), My(0) and Mz(0) are the initial values of Mx, My and Mz. By
defining the transverse magnetization, Mxy, as Mxy = Mx(t) + iMy(t), where
i =

√−1, we can write:

Mxy(t) = M0e
−t/T2eiω0t (1.11)

and
Mz(t) = M0(1− e−t/T1) (1.12)

where Mxy(0) = 1 and Mz(0) = 0. The precessional frequency ω0 is typically
demodulated out of the transverse magnetization to obtain:

Mxy(t) = M0e
−t/T2 (1.13)

From Faraday’s law of induction, the rotating magnetization vectors induce
an electromotive force (EMF) in an RF receiver coil oriented to detect changes
in the magnetization in the xy plane. The generated time signal is called free
induction decay (FID). In general, a set of FIDs will be recorded and precessed
to reconstruct and MR image.

If the applied field is only the main static field ~B0 in the z-direction, then
all spins possess the same resonance frequency and if excited, behave like os-
cillators inducing signals at that frequency. Because the excitation/receiver
RF coil encompasses the entire region of interest, it is not possible to excite a
selected portion of the volume nor is it possible to distinguish the signals gen-
erated from different spatial location if only B0 exists. Introducing magnetic
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1.1. MR physics and imaging principles

field gradients allow spatial information to be obtained from analysis of the
MR signal. This gradient can be expressed as a vector ~G = Gxî + Gy ĵ + Gzk̂,
where Gz is the slice selection gradient, Gx, the frequency encoding and Gy,
the phase encoding. In the presence of Gradient ~G, the magnetic field ~B can
be written as:

~B(~r) = (B0 + ~G · ~r)k̂ (1.14)

where ~r = xî + yĵ + zk̂. The presence of magnetic field gradients requires an
expanded version of the Larmor and can be written as:

ω(~r) = γ(B0 + ~G · ~r) (1.15)

where ω(~r) is the frequency of the proton at ~r. The above equation states
that, in the presence of a gradient field, each proton will resonate at a unique
frequency that depends on its exact position within the gradient field. The
MR image is simply a frequency and phase map of the protons generated by
unique magnetic fields at each point throughout the image. After, frequency
and phase encoding, the signal in the k-space for a particular slice can be
written as

s(kx, ky) =

∫

x

∫

y

Mxy(x, y)e−i(xkx+yky)dxdy (1.16)

where
kx = γ

∫ t

0

Gxdt (1.17)

and
ky = γ

∫ t

0

Gydt (1.18)

Eq. (1.16) shows that the data matrix s(kx, ky) is a sampling of the Fourier co-
efficients of the function Mxy(x, y). Therefore, by applying a two-dimensional
inverse Fourier transform to the k -space data s(kx, ky), the result will be an
estimate of the function Mxy(x, y). Because of quadrature detection, there will
be two k-space images with 900 phase difference and these two data streams
are usually represented as real and imaginary parts of the “complex” MR sig-
nal. Inverse Fourier transform of the complex k-space will generate a complex
image. Magnitude and phase images are then created from the complex MR
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1.2. Noise in MRI

image. Although all information is in the complex images, it is common prac-
tice to work with magnitude and phase images instead as they have more
physical meaning (proton density, flow, etc) [12]. Fig. 1.1 shows the MR im-
age of a kiwi fruit at various stages, i.e. from k-space to magnitude image.

1.2 Noise in MRI

The principal source of noise in MRI is thermal in origin which is produced
by the stochastic motion of free electrons. These free electrons collide with
atoms, resulting in an exchange of energy and generates random electrical
fluctuations. The source of noise in MRI are these randomly fluctuating cur-
rents in the sample (imaged object) and in the receiver coil. The resulting
noise power given by the Johnson formula [9] is:

〈V 2〉 = 4kT (Rcoil + Rbody) (1.19)

where V 2 is the noise power, k is the Boltzmann’s constant, T is the absolute
temperature (in Kelvin) and Rcoil and Rbody are the effective resistances in the
receiver coil and the sample respectively. Thus the total noise power within
a bandwidth ∆f is 4kT (Rcoil + Rbody)∆f . The thermal noise is considered to
be white, additive and follows a Gaussian distribution with a variance σ2

g and
mean zero. A formula for calculating the effective resistance of the sample
is derived in [13]. Often, the dominant source of noise is from the body and
not from the receiver coil. The body, being a conductive medium, generates
fluctuating fields that will be picked up by the receiver coil. However, in cer-
tain cases, such as low-field imaging and small-volume imaging, the resistance
inherent to the receiver coil will represent the dominant source of noise [11].
An additional noise source is from the pre-amplifier through which the signal
from the coil is passed.

The noise variance is also influenced by the imaging parameters. These
parameters include the number of samples in the x and y directions (Nx, Ny),
the number of averages (n), the field of view in the x and y directions (wx,
wy) and the sampling interval (∆t). The relationship of these parameters to
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1.2. Noise in MRI

(a) (b)

(c) (d)

(e) (f)

Figure 1.1: MR image of a Kiwi fruit (a) and (b) k-space images (c) and (d) real and

imaginary parts of the complex image after inverse Fourier transform (e) magnitude

image (f) phase image.
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1.3. Noise distribution in MRI

the image noise variance was discussed in detail by Parker and Gullberg [14]
and is given as [14, 15]:

σ2
g [s

′
n(x, y)] =

NxNy〈V 2〉
nw2

xw
2
y∆t

K (1.20)

where s′n is the inverse Fourier transformed signal with n averages and K is a
factor depending on the filter characteristics.

1.3 Noise distribution in MRI

As discussed earlier, the acquired raw complex MR data in the presence of
thermal noise in the k - space is characterized by a Gaussian probability
density function (PDF). The k - space data is then Fourier transformed to
obtain the magnetization distribution. The data distribution in the real and
imaginary components will still be Gaussian due to the linearity and the
orthogonality of the Fourier transform. However, complex images as such is
not used for any analysis. To use both parts of the complex data values,
we calculate magnitude images and phase images. This thesis mainly deals
with the magnitude images, so phase images will not be discussed further.
Since the computation of magnitude image is a non linear operation the noise
distribution in the magnitude image will be no longer Gaussian but Rician
distributed.

The magnitude image M , is computed as the root Sum of Squares (SoS)
of the real and imaginary part of the complex signal for each pixel, which can
be written as:

M(x) =
√

R(x)2 + I(x)2 (1.21)

The derivation of the PDF of the resulting distribution of M is discussed in
the remaining part of this section. Let mr and mi be the means and σ2

g the
variance of the Gaussian random variables R and I respectively. Then the
PDF of the random variables Y1 = R2 and Y2 = I2 can be written as [16]:

PY1(y1) =
1√

2πy1σg

e
− y1+m2

r
2σ2

g cosh
(√

y1mr

σ2
g

)
, y1 ≥ 0 (1.22)
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1.3. Noise distribution in MRI

and

PY2(y2) =
1√

2πy2σg

e
− y2+m2

i
2σ2

g cosh
(√

y2mi

σ2
g

)
, y2 ≥ 0 (1.23)

respectively. The characteristic functions corresponding to Eqns.(1.22) and
(1.23) are:

ψY1(jυ) =
1

(1− j2υσ2
g)

1/2
e

jm2
rυ

1−2υσ2
g (1.24)

and

ψY2(jυ) =
1

(1− j2υσ2
g)

1/2
e

jm2
i υ

1−2υσ2
g (1.25)

respectively. Now let Y = R2 + I2. The corresponding characteristic function
can be written as:

ψY (jυ) =
1

(1− j2υσ2
g)

e
jυ(m2

r+m2
i )

1−2υσ2
g (1.26)

This characteristic function can be inverse Fourier transformed to yield the
PDF of Y :

pY (y) =
1

2σ2
g

e
−a2+y

2σ2
g I0

(√
y

a

σ2
g

)
, y ≥ 0 (1.27)

where a2 = m2
r + m2

i and I0 is the 0th order modified bessel function of the
first kind. Now, we define a new random variable M =

√
Y . The PDF of M ,

obtained from Eq.(1.27) by a simple change of variable, is [16]

pM(m) =
m

σ2
g

e
−m2+a2

2σ2
g I0

(
ma

σ2
g

)
,m ≥ 0 (1.28)

This is the PDF of the Rician-distributed random variable M . The shape of
the Rician distribution depends on the signal to noise ratio(SNR), which is
here defined as the ratio a/σg. Fig. 1.2 shows the Rice PDF as a function of
the magnitude m for various values of the SNR. In Fig. 1.3, the histogram of
the background region of the real, imaginary and magnitude images shown in
Fig. 1.1 is displayed. The Gaussian and Rician nature of the data distribution
in complex and magnitude images can also be observed from these true images.
In Fig. 1.4, the distributions of pixels in different regions of a simulated noisy
MR image is displayed.
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Figure 1.2: Rician PDF for different SNR values.

The kth raw moment of the Rice PDF can be analytically expressed as a
function of the confluent hypergeometric function of the first kind, denoted
by 1F1:

E[Mk] = (2σ2
g)

k/2Γ

(
1 +

k

2

)
1F1

[
−k

2
; 1;− a2

2σ2
g

]
(1.29)

where Γ represents the Gamma function. The first few moments of the Rice
PDF are given below

E[M ] = σg

√
π

2
e
− a2

4σ2
g

[(
1 +

a2

2σ2
g

)
I0

(
a2

4σ2
g

)
+

a2

2σ2
g

I1

(
a2

4σ2
g

)]
(1.30)

E[M2] = a2 + 2σ2
g (1.31)

E[M3] = σ3
g

√
π

2
e
− a2

4σ2
g

[(
3 + 3

a2

σ2
g

+
a4

2σ4
g

)
I0

(
a2

4σ2
g

)

+

(
2
a2

σ2
g

+
a4

2σ4
g

)
I1

(
a2

4σ2
g

)] (1.32)

E[M4] = a2 + 8σ2
ga

2 + 8σ4
g (1.33)
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Figure 1.3: Histogram of the background region of the Kiwi fruit in Fig.1.1 (a)

histogram of the real part (b) histogram of the imaginary part (c) histogram of the

magnitude image.
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Figure 1.4: Distribution of pixels in different regions of a simulated noisy MR image

(a) simulated noisy MR images with noise level σg = 30, (b) distribution of pixels in

the background region (c) distribution of pixels in the CSF region (d) distribution of

pixels in the grey matter region (e) distribution of pixels in the white matter region.
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1.3. Noise distribution in MRI

When a = 0, the Rice distribution becomes a Rayleigh distribution and the
corresponding PDF can be written as:

pM(m) =
m

σ2
g

e
− m2

2σ2
g ,m ≥ 0 (1.34)

The raw moments of the Rayleigh PDF can be analytically expressed as:

E[Mk] = (2σ2)k/2Γ

(
1 +

k

2

)
(1.35)

The first four moments of the Rayleigh PDF are explicitly given by:

E[M ] = σg

√
π

2
(1.36)

E[M2] = 2σ2
g (1.37)

E[M3] = 3σ3
g

√
π

2
(1.38)

E[M4] = 8σ4
g (1.39)

In the MR image background, where the SNR is zero due to the lack of
water-proton density in the air, the data will follow a Rayleigh distribution.

At high SNR, i.e. when a/σg →∞, the Rician distribution approaches a
Gaussian distribution. The asymptotic expansion of the Bessel function I0(x)

when x is large is

I0(x) ∼ ex

√
2πx

(1.40)

then the Rice PDF in Eq. (1.28) can be written as:

pM(m) =
1

σg

√
2π

e
− (m−a)2

2σ2
g (1.41)

which is the PDF for Gaussian distribution.
Acquisition of MR images with multiple-coils are becoming common

nowadays. When MR images are acquired with multiple coils and recon-
structed using SoS, the composite magnitude signal ML(x) can be written as
[17, 18]

ML(x) =

√√√√
L∑

l=1

Rl(x)2 + Il(x)2 (1.42)
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1.3. Noise distribution in MRI

where L is the number of coils. The PDF of the composite magnitude image
ML can be derived in a similar manner as in the case for Rice distribution.
Assuming Y =

∑L
l=1 R2

l + I2
l , the characteristic function of Y can be written

as:

ψY (jυ) =
1

(1− j2υσ2
g)

L
e

jυ(
∑L

l=1 m(l)2r+m(l)2i )

1−2υσ2
g (1.43)

The corresponding PDF after the inverse Fourier transform is:

pY (y) =
1

2σ2
g

( y

a2

)(L−1)/2

e
−a2+y

2σ2
g IL−1

(√
y

a

σ2
g

)
, y ≥ 0 (1.44)

where a2 =
∑L

l=1 m(l)2
r + m(l)2

i and IL−1 is the L− 1th order modified bessel
function of the first kind. Now, if we define a new random variable ML =

√
Y ,

the PDF of ML can be written as

pML
(m) =

mL

σ2
ga

L−1
e
−m2+a2

2σ2
g IL−1

(
ma

σ2
g

)
,m ≥ 0 (1.45)

The PDF given in Eq. (1.36) is the PDF of the generalized Rice distribution
or also known as the PDF of the non central chi (nc-χ) distribution. The kth

moment of ML is given by [16]:

E[Mk
L] = (2σ2

g)
k/2e−a2/2σ2

g
Γ(2L+k

2
)

Γ(L)
1F1

[
2L + k

2
; L;

a2

2σ2

]
(1.46)

The first two even moments of the nc-χ PDF can be written as :

E[M2
L] = a2 + 2Lσ2

g (1.47)

and
E[M4

L] = a4 + 4(L + 1)a2σ2
g + 4L(L + 1)σ4

g (1.48)

In the background, the non central chi (nc-χ) distribution simplifies to a
central chi distribution and as SNR increases, nc-χ distribution approaches
a Gaussian distribution. The PDF of the central chi distribution (or the
generalized Rayleigh distribution) is given by:

pML
(m) =

m2L−1

2L−1σ2L
g Γ(L)

e
− m2

2σ2
g ,m ≥ 0 (1.49)
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Figure 1.5: nc-χ PDF for different values of L.

The kth moment of the central chi PDF is given by:

E[Mk
L] = (2σ2

g)
k
2
Γ(2L+k

2
)

Γ(L)
(1.50)

The main moments of the central chi PDF are given below.

E[ML] =
√

2
Γ(L + 1/2)

Γ(L)
σ3

g (1.51)

E[M2
L] = 2Lσg (1.52)

E[M3
L] = 3

√
2
Γ(L + 3/2)

Γ(L)
σg (1.53)

E[M4
L] = 4L(L + 1)σ4

g (1.54)

Fig. 1.5 shows the PDF of the nc-χ distribution with different values of L.

1.4 Main contributions

The main contributions presented in this thesis are:
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• Methods to estimate the noise level from the MR images in the absence of
background region are proposed. Most of the methods proposed earlier
exploited the Rayleigh distributed background region in the MR images
to estimate the noise. The performance of these methods depends on the
level of noise and the availability of the background region. For e.g. the
methods in [19, 20, 21, 22] estimates the noise variance from the back-
ground mode of the image histogram. These methods are based on the
observation that the regions representing the background and signal can
be easily distinguishable from the image histogram. However when the
noise is too high, estimation with these methods will be a problem since
it becomes difficult to distinguish the background and signal region from
the histogram. This is demonstrated in Fig. 1.6. Also the presence of
artifacts (e.g. Ghost artifacts) can influence the estimation for the meth-
ods based on background region. For e.g., the images given in Fig. 1.7 is
a challenging one for background based methods. However, the most im-
portant factor is that none of the background region based methods will
work in the absence or with very less background region. The proposed
methods in this thesis are object based methods that doesn’t depend on
the background region for noise estimation.

• A maximum likelihood (ML) estimation method to denoise MR images
corrupted with Rician noise is proposed. In the early days, many authors
applied the conventional classical denoising techniques to denoise MRI.
These methods assumed the noise in the MRI as Gaussian. The major
drawback of these methods are that the biasing effects of Rician noise
was not taken into account. This bias will increase with decreasing SNR.
This is demonstrated in Fig. 1.8. Later many methods were proposed to
denoise MR images. Most of these methods exploited the second moment
of the Rice distribution to reduce the bias in the denoised images. i.e. the
image is denoised with the methods based on the Gaussian assumption
and to reduce the bias, 2σ2

g is subtracted from the squared denoised
image. However, in [23] it is shown that the sample size and SNR has
a significant influence on the process of estimating the true underlying
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signal using this approach. ML methods were proved to be better than
the aforementioned methods. Conventionally for MR image denoising,
ML estimation methods incorporate the Rice distribution to estimate
the true, underlying signal from a local neighborhood within which the
signal is assumed to be constant. However, if this assumption is not met,
such filtering will lead to blurred edges and loss of fine structures in the
image. In this thesis, as a solution to this problem, we put forward the
concept of restricted local neighborhoods, where the true intensity for
each noisy pixel is estimated using ML estimation method from a set of
preselected neighboring pixels.

• A method to denoise MR images acquired with multiple coils is put
forward. Many methods have been proposed in the literature for MRI
noise estimation and denoising. However, not many approaches were
suggested for estimating the noise or underlying true signal from MR
images acquired with multichannel surface-coil arrays. For multiple coil
systems, the data distribution depends on the reconstruction techniques
used. However, if the magnitude image from surface-coil arrays are re-
constructed as the root sum of squares, in the absence of noise corre-
lations and subsampling, the data is assumed to follow a non central-χ
(nc-χ) distribution. Even though, multiple coil systems were initially
developed to enhance the SNR of the acquired images (the smaller the
sensitive volume of a coil, the lower the noise from the adjacent structures
and better the SNR will be), later parallel MRI (pMRI) techniques were
employed to it to accelerate the acquisition process through k-space sub-
sampling(in the phase encoding direction). The subsampling of k -space
and the correlations between the data from different coils makes the noise
level in the image spatially varying. In this thesis, we propose a method
based on the non local ML estimation for the estimation of the noise
level and underlying true signal from multiple-coil acquired MR images.
Both the nc-χ distribution and the spatially varying nature of the noise
is taken into account in the proposed method.
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Figure 1.6: Issues with histogram based methods for noise estimation (a) and (b)

noisy images with a noise level of σg = 20 and σg = 60 respectively (c) and (d)

corresponding histograms.
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Figure 1.7: Images with artifacts in the background region
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Figure 1.8: Rician Bias : This experiment was conducted with σg = 1 and varying

a from 0.5 to 20

1.5 Thesis organization

The thesis is structured as follows:

• Chapter 1 is the present chapter, which introduces the purpose of this
thesis and gives an overview of MRI.

• Chapter 2 presents object based methods to estimate noise from MR
images. Two new methods based on the local ML estimation and local
skewness based estimation of the noise variance are introduced in this
chapter.

• Chapter 3 presents a restricted local ML estimation method to denoise
MR images corrupted with Rician noise. Conventionally, ML methods
incorporate the Rice distribution to estimate the true, underlying signal
from a local neighborhood within which the signal is assumed to be
constant. However, if this assumption is not met, such filtering will lead
to blurred edges and loss of fine structures. As a solution to this problem,
we put forward the concept of restricted local neighborhoods where the
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true intensity for each noisy pixel is estimated from a set of preselected
neighboring pixels.

• Chapter 4 presents a method to estimate the noise and underlying true
signal from MR images acquired with multiple coils. Even though many
methods were proposed to denoise MR images, only few deal with the
estimation of true signal from MR images acquired with multiple coils.
The proposed method take care of nc-χ distributed noise, which arises
when using SoS reconstruction, and also the spatially varying nature
of the noise which is common in SENSE and GRAPPA reconstructed
images.
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Noise estimation from MR images
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Abstract:

In this chapter, we address the estimation of the noise level in magnitude
MR images in the absence of background data. Most of the methods pro-
posed earlier exploited the Rayleigh distributed background region in the MR
images to estimate the noise level. These methods, however, cannot be used
for images where no background information is available. We propose two
different approaches for noise estimation in the absence of image background.



2.1. Introduction

The first method is based on the local estimation of the noise variance us-
ing ML estimation and the second method is based on the local estimation
of the skewness of the magnitude data distribution. Experimental results on
synthetic and real MR image data sets show that the proposed estimators
accurately estimate the noise level in a magnitude MR image.

2.1 Introduction

Estimation of the noise variance from MR images is often of key importance as
the noise variance is an input parameter for many image post-processing tasks
such as noise reduction, segmentation, parameter estimation, or clustering
[1, 2, 3, 4]. The estimated noise variance also gives a measure of the quality of
the MR data and could potentially help in improving the design of scanners
[5]. Noise in the MRI can be estimated from either complex or magnitude
images. However, it is a common practice to work with magnitude and phase
images instead as they have more physical meaning (proton density, flow, etc)
[6]. Also, complex images are not always available as the usual output of
the scanners are magnitude images. As discussed in the previous chapter,
magnitude MR data in the presence of noise can be well modeled by a Rician
distribution when the images are acquired using single coil, but may not follow
Rician distribution when multiple-coils are used for data acquisition. In this
chapter, we consider only the cases where the Rician model can be used.

The straight forward and most reliable approach to estimate noise from
the magnitude images is to use a double acquisition method. When two images
of the same subject are acquired under identical imaging conditions, noise
variance can be estimated using the averaged and single images [6]. However,
it is not always possible to acquire the same measurement twice. For. e.g.,
time-sensitive acquisitions in contrast material-enhanced studies, functional
studies or studies with limited imaging time, experiments cannot be repeated
to derive the image noise [7]. In those cases, noise has to be estimated from
single images.

In the past, many methods have been proposed in the literature for the
estimation of the noise level from single magnitude MR images [8, 1, 9, 10, 4].
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A survey of these methods are given in Aja-Fernández et al. [11]. Most of
the methods proposed earlier estimate the noise level from the background
area of the magnitude MR images where the noise follows Rayleigh distribu-
tion due to the absence of signal [12]. Unfortunately, these methods cannot
be used for images where no background information is available. For MR
images other than the brain, like cardiac or lung images, background data
may not be available. For example, in case the field of view (FoV) is small,
such that noise assumptions based on Rayleigh distribution fail [11]. Also,
the new scanning techniques and software eliminates most part of the noisy
background, which in fact affect the methods based on Rayleigh model that
need a certain amount of background pixels to perform proper estimation [13].
The above mentioned issues with the methods based on the Rayleigh model
drives the need to develop methods that doesn’t depend on the background
region for noise estimation. Recently, Aja-Fernández et al. in [4] proposed a
method that doesn’t rely on the background region to estimate the noise level
in MR images. Their method was based on the assumption that there exists
many high SNR regions in the image. Since Rician distribution approaches a
Gaussian distribution at high SNR, the noise variance can be estimated from
these regions. However, at low SNR, the Rician distribution is not approxi-
mated well by a Gaussian distribution, causing a bias in the estimated noise
level.

In this chapter, we propose two different approaches to address the afore-
mentioned issues related to the Rician noise estimation. The first method is
based on the ML estimation of the local variance for each pixel of the image
using a local neighborhood. The global noise variance can then be computed
from the mode of the distribution of the estimated local variance. The ML
method simultaneously estimates the underlying true signal and noise vari-
ance from the Rician distributed data if the underlying signal is constant [14].
It will be experimentally shown that the proposed method based on local ML
estimation of variance is highly accurate in estimating the noise level, but has
a rather high computational complexity. Therefore, a computationally more
efficient method is also proposed. This method is based on the local skewness.
A correction factor for the variance estimated with the Gaussian assumption
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is introduced based on the estimated skewness for the actual computation of
the noise standard deviation σg.

2.2 Methods

When enough background region is present in the image, noise level can be
directly estimated from the pixels in these regions. Let MB represents the non-
signal background area in the MR image. Then based on the first moment of
the Rayleigh distribution (ref :Eq.1.36), the noise level can be estimated as:

σ̂g =

√
2

π
〈MB〉 (2.1)

where σ̂g is the estimated noise standard deviation and 〈MB〉 represents the
mean of the Rayleigh background region. Even though it is a straightforward
and simple approach, the drawback of this approach is the requirement of an
explicit segmentation algorithm for extracting the background. In addition,
conventional segmentation methods might not work properly when the noise
level is too high and/or in diffusion weighted MR images, where the scalp
regions are sometimes misclassified as background regions[15]. Background
segmentation with a conventional segmentation algorithm is shown in Fig. 2.1.
Even though its performance is acceptable for the given simulated image,
remains of the object is evident in the segmented background region of the
diffusion weighted image. Also, artifacts(e.g.Ghost artifacts) can influence the
estimation. Many methods were proposed to estimate the noise variance from
the image background without explicit segmentation. [8, 16, 17, 10, 4] are to
name a few. In [8], [16], [17] and [10] the noise variance were estimated from
the background mode of the image histogram. These methods are based on
the observation that the regions representing the background and signal can
be easily distinguishable from the image histogram. These methods work well
at reasonable noise levels. However when the noise is too high, estimation
with these methods will be a problem since it becomes difficult to distinguish
the background and the signal region from the histogram. A more robust
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(a) (b)

(c) (d)

Figure 2.1: Background segmentation from MR images (a) and (c) noisy MR images

with Rayleigh background (b) and (d) segmented background regions.

method was the one based on local statistics proposed in [4]:

σ̂g =

√
2

π
mode{〈M(i)〉} (2.2)

where 〈M(i)〉 corresponds to the local mean computed for each pixel at loca-
tion i.

However, none of the aforementioned methods work in the absence of
background region. In [4], a method is proposed to estimate the noise level
in the absence of background region. This is based on the fact that at high
SNR the Rician distribution approaches normal distribution. In that case,
the noise standard deviation can be estimated from high SNR homogeneous
regions. If there exists many such piecewise homogeneous high SNR regions,
the noise can be estimated automatically without manually selecting a region
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of interest as [4]:
σ̂2

g = mode{σ2
M(i)}, (2.3)

where σ̂2
g is the variance of the estimated noise and σ2

M(i) corresponds to
the local variance computed around each pixel at i. However, at low SNR,
Eq. (2.3) will lead to an under estimation of the noise level. In section 2.2.1,
we discuss how to measure the noise variance from an MR image without
depending on high SNR or background regions.

2.2.1 Noise estimation using local maximum likelihood estimation

Let m1,m2, ..., mn be n statistically independent observations from a region
of constant signal intensity a. Then the joint pdf of the observations can be
written as [9]

p ({mi}|a) =
n∏

i=1

mi

σ2
g

e
−m2

i +a2

2σ2
g I0

(
ami

σ2
g

)
(2.4)

Given the observed data and a model of interest the unknown parameters in
the pdf can be estimated by maximizing the corresponding likelihood function.
Therefore the ML estimate of the underlying signal amplitude a and noise
variance σ2

g can now be computed by maximizing the likelihood function L(a)

or equivalently lnL(a), with respect to a and σ2
g :

lnL =
n∑

i=1

ln

(
mi

σ2
g

)
−

n∑
i=1

m2
i + a2

2σ2
g

+
n∑

i=1

ln I0

(
ami

σ2
g

)
(2.5)

The ML estimate is then found from the global maximum of lnL w.r.t. a and
σ2

g [9]:
{âML, σ̂2

ML} = arg{max
a,σ2

g

(lnL)} (2.6)

The above procedure assumes the underlying signal to be constant within the
local neighborhood from which the signal and noise variance is estimated. If
this assumption is valid for most of the local pixel neighborhoods, a robust
estimator of the noise variance is given by the mode of all ML estimated local
noise levels:

σ̂2
m = mode{σ̂2

ML(i)}, (2.7)
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where σ̂2
m is the estimated noise variance and σ̂2

ML(i) is the local ML estimate
of the noise variance at each pixel i. In fact, most of the MR images are piece-
wise constant with a reasonably small number of classes (e.g. MR image of
brain) [18]. Since the noise is estimated from the available piecewise constant
regions in the image, this method neither depends on the image background
nor on the high SNR regions of the image.

2.2.2 Noise estimation using measurement of local skewness

Even though the method based on local ML estimation is accurate, a drawback
is its time complexity. In this section, we propose a method based on the local
computation of the skewness of the magnitude data distribution to estimate
the noise variance. The variance of the Rician distribution in terms of the
moments can be written as

σ2
r = E[M2]− E[M ]2 (2.8)

where

E[M ] = σg

√
π

2
e
− a2

4σ2
g

[(
1 +

a2

2σ2
g

)
I0

(
a2

4σ2
g

)
+

a2

2σ2
g

I1

(
a2

4σ2
g

)]
(2.9)

and
E[M2] = a2 + 2σ2

g (2.10)

Expanding Eq. (2.8) we will get:

σ2
r = a2 + 2σ2

g −
(

σg

√
π

2
e
− a2

4σ2
g

[(
1 +

a2

2σ2
g

)
I0

(
a2

4σ2
g

)

+
A2

2σ2
g

I1

(
a2

4σ2
g

)])2 (2.11)

It is difficult to derive an expression for σ2
g from Eq. (2.11) due to the presence

of Bessel functions. However, when the noise follows a Rayleigh or Gaussian
distribution (at low or high SNR), Eq. (2.11) will reduce to simple equations:

σ2
g = σ2

r

(
2− π

2

)−1

(2.12)
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and
σ2

g = σ2
r (2.13)

respectively. In general, σ2
g can be computed by multiplying σ2

r with a correc-
tion factor [19]. In this work, we propose a correction factor based on skewness
of the Rician distribution :

σ2
g = σ2

r × ϕ(S) (2.14)

where ϕ(S) is the correction factor which is a function of the skewness S of the
Rician distribution and is in the range [1, (2 − π/2)−1]. i.e. when the Rician
distribution approaches a Rayleigh distribution (at low SNR), the correction
factor tends to (2 − π/2)−1 and when the Rician distribution approaches a
Gaussian (at high SNR), the correction factor tends to 1. The proximity of
the Rician distribution towards Rayleigh or Gaussian can be measured using
its skewness, which is defined by:

S =
2E[M ]3 − 3E[M ]E[M2] + E[M3]

(E[M2]− E[M ]2)
3
2

(2.15)

where

E[M3] = σ3
g

√
π

2
e
− a2

4σ2
g

[(
3 + 3

a2

σ2
g

+
a4

2σ4
g

)
I0

(
a2

4σ2
g

)

+

(
2
a2

σ2
g

+
a4

2σ4
g

)
I1

(
a2

4σ2
g

)] (2.16)

S can now be analytically computed using Eq. (2.15). The skewness of the
Rician distribution is a monotonically decreasing function of the SNR, defined
as a/σg, with values range from 0.631 (for SNR=0) to 0 (for SNR=∞). Hence,
the correction factor ϕ at various SNR can be computed by exploiting the
skewness of the Rician distribution. The skewness and correction factor as a
function of SNR is depicted in Fig. 2.2 and Fig. 2.3 respectively.

Now, if we keep σg constant and vary the value of a from zero to a high
value we can compute ϕ (ϕ = σ2

g/σ
2
r) for every value of S from 0.631 to 0.

The value of σ2
r is calculated using Eq. (2.8). This relationship is shown in

Fig. 2.4. A lookup table can then be created to represent this relationship.
Now, for every S, a corresponding value for ϕ can be found from the lookup
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Figure 2.2: Relation between the SNR and skewness for Rician distributed data
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Figure 2.3: Relation between the SNR and correction factor for Rician distributed

data

table. A polynomial equation which is an approximation of the look up table
is given below

ϕ(S) =
9∑

i=0

piS i (2.17)

The values for the coefficients (with 95% confidence interval) are given in
Table 1.

Now, to compute the noise variance in an MR image, the skewness (S)
and variance (σ2

r) are computed locally for each pixel i. The correction factor
for each pixel can then be found from the lookup table and the corresponding
noise variance for each pixel is estimated using Eq. (2.14). Following a similar
reasoning as in the previous section, the noise variance can now be estimated
as the mode of all local estimates of noise variance around each pixel, which
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Figure 2.4: Relation between the skewness and variance correction factor for Rician

distributed data

can be written as
σ̂2

s = mode{σ̂2
L(i)} (2.18)

where σ̂2
s is the estimate of the noise variance in the image and σ̂2

L(i) is the
estimated noise variance for a neighborhood around pixel i.

Table 2.1: Values of the coefficients in Eq. (2.17)

Coefficient Values

p0 1.00075704

p1 2.8981188340

p2 7.29432278777× 101

p3 1.1626792136360× 103

p4 -9.83885598962208× 103

p5 4.78139607638493× 104

p6 -1.374485785417688× 105

p7 2.306704056296062× 105

p8 -2.0866638136498138× 105

p9 7.85625551923769× 104
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2.3 Experimental Results

Experiments were conducted on both real and synthetic MR images with
and without background region. The window size used in our experiments
for local estimates were 9 × 9. For simulations we used the standard MR
image phantom of the brain obtained from the Brainweb database [20] and a
cardiac MR image, both with intensity values in the range 0-255. The cardiac
image, in contrast to the brain image, contained no background areas. Both
images were artificially corrupted with Rician noise with noise level σg as 50.
Fig. 2.5 shows the distribution of the local estimates of σg computed using
ML and skewness based methods for both the brain and the cardiac images.
It can be observed from the distributions that their mode is almost equal to
the true standard deviation of the noise. This experiment demonstrates the
independency of the proposed estimators to the image background.

Now, to show the the reliability of the proposed methods in estimating
the noise level at both low and high SNR, we conducted the experiments on
the cardiac MR image after corrupting the image with Rician noise with σg

varying from 10 to 100. Results of this experiment are shown in Fig. 2.6.
The mean of 100 experiments divided by the actual value of σg is depicted.
The value closer to 1 is the best estimate. The results are compared with the
estimator given in Eq. (2.3). Since, at high SNR the Rician PDF approaches a
Gaussian PDF, the estimation based on Eq. (2.3) will be closer to the true σg.
However, as SNR drops, as expected, it can be seen from the figure that the
Gaussian assumption introduces a bias. It can also be observed from the graph
that the proposed estimators are significantly less biased. The estimator based
on the local ML estimation of σg is more close to the true σg than the one
based on the skewness. However, the time complexity of the skewness based
method is less than that of the ML based method. The graph in Fig. 2.7 shows
the elapsed time for noise estimation with ML and skewness based methods
for image size varying from 50 × 50 to 300 × 300. In Fig. 2.8 and in Fig. 2.9,
the accuracy and precision of the proposed ML based and skewness based
estimators for various window (sample) size is depicted.

For the experiments on real data we used the MR image of a cherry
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Figure 2.5: Noisy MR images of the brain (a) and heart (b), both corrupted with

Rician noise with σg = 50. On the right, the distribution of local estimates of σg

computed using both ML (solid red line) and skewness based methods (dashed blue

line) are shown for both the brain (c) and the cardiac (d) images.

tomato (with a mean intensity of around 10,000). A set of MR images was
reconstructed by averaging 1 to 12 images. Images reconstructed with 1, 6
and 12 averages are shown in Fig. 2.10. Averaging was done in the complex
k -space. The resulting noise variance as a function of the number of averages
over n images was then estimated. The theoretical reduction of the noise
standard deviation as a function of the number of images n over which the
average is taken, is known to be 1/

√
n. Since the experimental setup for all

acquisitions were identical except for averaging, the estimated noise standard
deviation σ̂g multiplied by

√
n is expected to be constant as a function of n. It

can be seen from Fig. 2.11 that the proposed methods exhibits this property.
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Figure 2.6: The estimated σg / actual σg for various values of σg ranging from 10

to 100. This experiment was done on the Cardiac MR image. The red and blue line

corresponds to the proposed methods using ML and skewness, respectively, and the

green line corresponds to the estimator given in Eq. (2.3). The shaded area shows

the standard deviation for 100 experiments.
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Figure 2.7: Elapsed time for noise estimation with ML and skewness based methods

for image size varying from 50× 50 to 300× 300.

35



2.3. Experimental Results

3x3 5x5 7x7 9x9 11x11 13x13 15x15
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Window size

E
st

im
at

ed
 σ

g
/A

ct
u

al
 σ

g

 

 
Precision
Accuracy

Figure 2.8: Precision and accuracy of the proposed ML based estimator for different

window size.
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Figure 2.9: Precision and accuracy of the proposed skewness based estimator for

different window size.

(a) (b) (c)

Figure 2.10: MR images of cherry tomato (a) acquired without averaging (b)acquired

with 6 averages (c) acquired with 12 averages.
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Figure 2.11: Estimated σg as a function of the number of averages n used during

the acquisition. MR image of a cherry tomato was used for this experiment.

2.4 Conclusion

Two different approaches based on the local estimates of the variance and
skewness were proposed to address the estimation of the noise from MR im-
ages when the Rayleigh background data or high SNR image regions are not
available. The estimation of σg based on local ML is slightly more accurate
than the method based on the skewness. However, the time complexity of
the ML based method is significantly larger than that of the skewness based
method. Experimental results on synthetic and real MR images show the
reliability of the proposed methods. Even though the proposed methods are
based on the noise characteristics of magnitude image data acquired with sin-
gle coil MRI, it can, under certain conditions, be extended for multiple coil
imaging methods.
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Abstract:

In this chapter, we will discuss a method that we proposed to denoise
magnitude MR images, which are Rician distributed. Conventionally, ML
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methods incorporate the Rice distribution to estimate the true, underlying
signal from a local neighborhood within which the signal is assumed to be
constant. However, if this assumption is not met, such filtering will lead
to blurred edges and loss of fine structures. As a solution to this problem,
we put forward the concept of restricted local neighborhoods where the true
intensity for each noisy pixel is estimated from a set of preselected neighboring
pixels. To this end, a reference image is created from the noisy image using a
recently proposed non local means algorithm. This reference image is used as
a prior for further noise reduction. A scheme is developed to locally select an
appropriate subset of pixels from which the underlying signal is estimated.

3.1 Introduction

As discussed in chapters 1 and 2, the data acquired by an MRI system are
inherently corrupted by noise which has its origin in the thermal Brownian
motion of electrons. Noise remains one of the main causes of quality deterio-
ration in MRI and is a subject in a large number of papers in MRI literature,
e.g [1, 2, 3, 4, 5, 6]. Other than visual analysis, processing techniques such
as segmentation, registration or tensor estimation in diffusion tensor MRI
(DT-MRI) will be affected or biased due to noise [7, 8].

Noise can be naturally minimized by averaging images after multiple ac-
quisitions. This, however, may not be feasible in clinical and small animal
MR imaging where there is an increasing need for speed [9]. Thus, post pro-
cessing techniques to remove noise in the acquired data are important. Also,
time-sensitive acquisitions in contrast material-enhanced studies, functional
studies, diffusion MRI (dMRI) or studies with limited imaging time, experi-
ments cannot be repeated to do averaging.

Several filtering techniques to improve the quality of the MR images have
been proposed in the literature. Most of the methods proposed earlier can
be mainly classified as either based on Partial Differential Equations (PDEs),
wavelets or Non Local Means (NLM). A PDE based approach for filtering MRI
was first attempted by Gerig et al. [10]. In their work, they demonstrated that
anisotropic diffusion is an effective filtering technique for MRI in the sense that
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it can significantly decrease the image noise and simultaneously preserve fine
details in the image. A major drawback of their method, however, was the
incorrect assumption about the noise distribution. The noise was assumed
to be Gaussian instead of Rician, as a result of which a bias is introduced
in the filtered image. Such a bias becomes particularly important in low
SNR MR images, such as diffusion weighted images [11]. To account for the
Rice distribution, an adaptive anisotropic diffusion method for magnitude MR
data was proposed by Sijbers et al. [12]. Finally, Samsonov and Johnson [13],
presented a noise adaptive nonlinear diffusion filtering technique to denoise
MR images with spatially varying noise levels.

All aforementioned PDE methods are based on classical 2nd order Perona-
Malik [14] anisotropic diffusion. Although such methods are effective in de-
noising images, they tend to cause staircase effects in the filtered images [15].
To reduce this effect, a noise removal algorithm for MRI based on fourth order
PDE was suggested by Lysaker et al. [16]. The main strength of this method
is its ability to process signals with a smooth change in the intensity value.
Basu et al. [17] used a data likelihood term combined with Perona-Malik
anisotropic diffusion to effectively denoise an MR image. Recently Krissian
and Aja-Fernández [18] proposed a noise driven anisotropic diffusion filter for
denoising MR images, in which the diffusion is controlled by the local statistics
in the image derived from the linear minimum mean square error (LMMSE)
estimator for the Rician model.

A second class of noise filtering schemes are wavelet based [19, 20, 21].
These algorithms exploit the decorrelating properties of the wavelet transform
to suppress noise coefficients using statistical inference. Among these meth-
ods, [19] got much attention, in which a bias removal was proposed, based on
the observation that the squared Rician distributed data exhibits a chi-squared
distribution with two degrees of freedom. However, in [9], it is mentioned that
the aforementioned wavelet based filters may introduce characteristic artifacts
that can be quite problematic. A trilateral filter was proposed in [22] to take
into account the local structure in the image, in addition to intensity and
geometric features. Recently Delakis et al. [23] proposed a wavelet based
denoising algorithm for images acquired with parallel MRI.
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During the past years, NLM based denoising methods gained much popu-
larity [24]. Manjón et al. [9] were the first to attempt MRI denoising with the
NLM approach. Coupé et al.[25] proposed an optimized blockwise version of
the NLM algorithm for denoising MR images. Wiest-Daesslé et al. [26] sug-
gested an adaptive NLM filter which behave better for Rician corrupted MR
data. Aja-Fernández et al. [27] incorporated the LMMSE approach in NLM
to make it adaptive for Rician data. Recently, Manjón et al. [28] proposed an
adaptive NLM denoising method for MR images with spatially varying noise
levels. Apart from the above discussed methods, other popular approaches
proposed for MR denoising are the methods based on ML estimation [29, 30]
and the filtering based on smoothing splines [31].

In this chapter, we propose a method to denoise magnitude MRI based
on the ML estimation method using a restricted local neighborhood. ML
estimation can be applied locally (also referred as local ML(LML)) or non
locally as proposed by He and Greenshields [30], in which ML estimation is
applied on a set of pixels selected based on the similarity of the neighborhood.
One drawback of the non local ML (NLML) estimation method is the use of
a fixed sample size for the ML estimation, which causes either under or over
smoothing. The disadvantage of the LML method is the blurring of edges and
the distortion of fine structures in the image. This is because the assumption
that the signal in the selected small neighborhood is constant, is generally
not valid. In this chapter, we put forward the concept of a restricted local
neighborhood as a solution to this problem.

3.2 Methods

3.2.1 Signal estimation using LML

As discussed in Chapter 2, the ML estimator of underlying true intensity a

from a set of magnitude observations {mi} can be defined as an estimator
maximizing the log likelihood function:

lnL =
n∑

i=1

ln

(
mi

σ2
g

)
−

n∑
i=1

m2
i + a2

2σ2
g

+
n∑

i=1

ln I0

(
ami

σ2
g

)
(3.1)
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and
âML = arg{max

a
(lnL)} (3.2)

where aML is the estimated true intensity and σ2
g in Eq. (3.1) is the noise

variance in the complex image, which can be estimated using the methods
explained in the previous chapter.

The straightforward approach to denoise MR images using the ML esti-
mation method in Eq. (3.2) is to apply the method locally for each pixel with
the assumption that the underlying area is constant for a local region. How-
ever, this assumption is not valid for regions with edges and fine structures
and as a result these regions will get blurred. The effects of applying local
ML (LML) on a noisy image can be observed from Fig. 3.1. It can also be
observed from Fig. 3.1(c) and Fig. 3.1(d) that the image denoised with a win-
dow size of 3 × 3 × 3 is, not surprisingly, less blurred than the one denoised
with a window size of 5× 5× 3. However, selecting a very small window size
is less effective for denoising, especially in smooth areas, since the number of
samples for estimation is smaller.

In the proposed method, we consider only the pixels that have an under-
lying gray level value close to that of the center pixel in the local window for
the true signal estimation, instead of selecting all pixels in the window. This
approach can reduce the side effects of LML estimation. However, selection
of pixels with similar underlying gray value from a noisy image is a difficult
problem. To solve this issue, we used a reference image. The reference image
is created by applying the NLM algorithm over the noisy image. Based on the
information from the reference image, corresponding pixels are selected from
the noisy image for true signal estimation.

3.2.2 Non local means algorithm

The NLM method which we used to create the reference image is briefly
explained in this section. The NLM method was proposed by Buades et al
[24] and is based on the Markovian hypothesis which states that pixels with
a similar neighborhood have a similar gray level value. Given a noisy image
M = {mi|i ∈ Ω}, where Ω represents the image space and mi corresponds to
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(a) (b) (c) (d)

Figure 3.1: Denoising MRI with LML method (a) Original image (b) Original image

corrupted with Rician noise of σg = 15. (c) Noisy image denoised with LML of

window size 3× 3× 3 (d) Noisy image denoised with LML of window size 5× 5× 3.

The blurring effect generated by the LML method can be observed from the denoised

images.

the noisy image value at location i, then the filtered value at a point i, ri, is
calculated using the NLM method as a weighted average of all the pixels in
the image [24]:

ri =
1

ci

∑
jεΩs

wi,jmj, (3.3)

where Ωs represents the neighborhood pixels and

ci =
∑
jεΩs

wi,j (3.4)

is a normalization constant and the weight wi,j is determined by the similarity
of the Gaussian neighborhood between pixels i and j, which can be expressed
as:

wi,j = exp

(
−‖Ni −Nj‖2

2,u

h2

)
(3.5)

where Ni denotes a square neighborhood centered at pixel i, ‖ · ‖2
2,u is a

Gaussian weighted Euclidean distance function, u is the standard deviation
of the Gaussian kernel and h acts as a degree of filtering.
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3.2.3 Signal estimation using restricted LML

To overcome the drawback of the LML estimation method, we propose a
restricted LML (RLML) estimation method. In RLML, only the pixels in the
local neighborhood of the noisy pixel mi that have an underlying gray level
value close to the underlying gray level value of mi, will be considered for the
true signal estimation. However, as mentioned earlier, selection of pixels with
similar underlying gray value from a noisy image is a difficult problem. To this
end, we create a reference image using the above mentioned NLM method.
Now, to denoise a noisy pixel mi at i, a list li is created from the neighbors
of mi:

li = {mj, (j ∈ Ωm)| abs(f(mj)− f(mi)) < t} (3.6)

where Ωm represents the neighborhood space around mj, f(mj) = rj and
f(mi) = ri. The threshold t used for the classification is calculated from the
reference image as the range of the intensity dispersion of a uniform area. This
can also be automatically computed from the reference image, R, as the mode
of all the local distributions of the range computed around the neighborhood
of each pixel:

t = mode{range(RF )w} (3.7)

where RF represents the foreground region of the reference image and w is
the neighborhood window size. Contrary to complex valued images, where
the noise is Gaussian distributed, in magnitude images the range of intensity
dispersion has a dependency on the local SNR due to the non linear operation
used to create the magnitude images. Hence, to reduce the error in the classi-
fication of pixels in the reference image, the threshold t is computed only from
the foreground region of the image. Fig. 3.2 shows the distribution of the local
range for a uniform region in the reference image and also the distribution of
the local range computed with a neighborhood size of 3× 3 and 5× 5. It can
be observed from the plots in the figure that the mode of the distributions of
the local range is close to the actual range of the intensity dispersion of the
selected homogeneous region. Once a list is created as mentioned in Eq. (3.6),
the denoised pixel âi at location i can be computed by substituting the val-
ues in the list li as the Rician distributed magnitude data points in Eq. (3.1)
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Figure 3.2: Computation of threshold from ROI and from the mode of the local

distribution of range (a) Reference image with ROI (marked as red) (b) distribution

of intensity in the ROI (c) distribution of local range computed using 3×3 and 5×5

neighborhood.

and then maximizing the log likelihood function. Applying this procedure to
all pixels in the noisy image will give the denoised image. The method is
summarized in Algorithm1.

Algorithm 1 Algorithm for signal estimation using RLML
1: Estimate the noise standard deviation σg from the input magnitude image M

using the method described in [32].

2: Create the reference image R using Eq. (3.3)

3: Compute the threshold t from R by applying Eq. (3.7) using a neighborhood

window of size n× n× n

4: for every pixel mi of M do

5: Create the list li as mentioned in Eq. (3.6) using a neighborhood window of

size w × w × w

6: Substitute the values in the list li in Eq. (3.1)

7: Estimate âi by maximizing Eq. (3.1) with respect to the unknown true inten-

sity.

3.2.4 Spatially varying noise levels

Once we know σg and the samples li we can compute the underlying true
intensity using the above mentioned procedure. When measuring the noise in
MR images, it is often assumed that the noise level σg is the same across the
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image. However this is not always the case. Parallel MRI (pMRI) acquisition
techniques such as sensitivity encoding (SENSE) introduces spatially varying
noise in the image when the k-space is subsampled to decrease the acquisition
time[33, 28, 8].

When dealing with images with spatially varying noise, the noise map σs

should be used instead of σg to get optimal results with the proposed method.
The noise map σs in a SENSE reconstructed image depends on the geometry
factor g and the reduction factor R and is given by [33]:

σs = g
√

Rσf (3.8)

where σf is the noise level in the fully sampled k-space.
However, in the absence of such a noise map (if only magnitude image is

available), both underlying intensity and the noise variance can be estimated
simultaneously from the samples li by maximizing the log likelihood function
in Eq. (3.1) with the assumption that the noise level is same in a small enough
local region. The ML estimate is then found from the global maximum of lnL
w.r.t. a and σ2

s [29]:

{âML, σ̂2
sML} = arg{max

a,σ2
s

(lnL)} (3.9)

3.3 Experiments and Results

To evaluate and compare the proposed method with the state-of-the-art meth-
ods, we did experiments on both synthetic and real MR images. To conduct
the experiments on synthetic data, we used the standard MR image phantom
of the brain obtained from the Brainweb database [34] (T1-weighted, intensity
values in the range 0-255) and for the experiments on DWI, we simulated a set
of DWI of the human brain using the methods in [35, 36]. For the experiments
on real data, we used the MR images of a Kiwi fruit. The proposed algorithm
was compared with the following recently proposed methods.

1. NLML: The non local maximum likelihood method [30] with search win-
dow size = 11× 11× 11, neighborhood size = 3× 3× 3, and sample size
25.
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2. UNLM: Unbaised non local means [9] with search window size = 11 ×
11 × 11, neighborhood size = 3 × 3 × 3, value of the decay parameter
h = σg.

3. RNRAD: Noise driven anisotropic diffusion filter for MRI [18]. Local
statistics were computed on a 3× 3× 3 neighborhood and time step as
dt = 1/6. For simulations, the number of iterations was chosen as the
one with best PSNR when compared with the original image.

4. ARNLM: Adaptive Rician non local means filter with wavelet mixing
[28].

For quantitative analysis of the denoising methods we used the Peak Signal
to Noise Ratio (PSNR), the Structural Similarity Index Matrix (SSIM)[37],
Bhattacharrya coefficient (BC)[38] and the Mean Absolute Difference (MAD).

Fig. 3.3 shows the visual quality comparison of the image denoised with
NLML, UNLM, RNRAD and the proposed RLML method. This experiment
was conducted on a 2D slice of the synthetic image of the brain in the 3D
environment after corrupting the image by noise with σg = 20. The proposed
RLML filter was executed with the following parameters: neighborhood size
for denoising as 7×7×3 and the neighborhood size for the local computation
of the range as 3× 3× 3.

In visual analysis, the expectations are (i) perceptually flat regions should
be smooth as possible (ii) image edges and corners should be well preserved
(iii) texture detail should not be lost and (iv) few or ideally no artifacts [30, 39].
It can be observed from Fig. 3.3 that the image denoised with the proposed
method is closer to the original one (based on the above mentioned criteria)
than the images denoised with the other approaches. Also the comparison of
the histograms of the simulated true image and the denoised images displayed
in Fig. 3.4 shows that the image denoised with the proposed method is more
close to the ground truth than other images. Fig. 3.5 shows the quantitative
analysis of the proposed method with other recently proposed methods. All
the methods to which the proposed method was compared were based on
the Rician noise model. In the quantitative analysis, the background was
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excluded; that is, only the area of the image inside the skull was considered.
It can be studied from the plots in Fig. 3.5 (taken as a mean of 15 experiments)
that the proposed method outperforms other approaches in terms of PSNR,
SSIM, BC and MAD.

Fig. 3.6 and Fig. 3.8 show the results of the experiment conducted on the
synthetic image of the brain with spatially varying noise which was generated
using the method mentioned in [28]. The noisy images are then denoised
with the proposed RLML and also with the recently proposed ARNLM filter.
Since the NLM approach is not effective in case of spatially varying noise,
we used the adaptive NLM (ANLM) proposed in [28] as the reference image
for threshold computation. Both visual and quantitative analysis show that
the image processed with RLML is more effective than ARNLM in denoising
spatially varying noise.

Fig. 3.7 shows the experiments on the synthetic image reconstructed with
SENSE method with an acceleration factor of 2. This experiment was con-
ducted on the standard Brainweb test image by multiplying the test image
with 4 different coil sensitivities. Noise of σg =20 was added to the complex
image before creating the reduced FOV images. Four reduced FOV images
with a reduction factor of 2 were created. Full FOV complex image was then
created from the reduced FOV images using the SENSE reconstruction algo-
rithm. The reconstructed image was then denoised with ARNLM and also
with the proposed method .

For the experiments on DW-MRI, we simulated a set of DW images of
the human brain with the following parameters: b = 1200s/mm2, voxel size =
1.79×1.79×2.4mm3, image size = 107×79×60 and the gradient orientations
= 15. The DW images was then corrupted with Rician noise of σg = 100.
The denoised DW images was then generated using the proposed method and
other methods mentioned earlier. The fractional anisotropy (FA) map was
calculated for the ground truth, the noisy and the denoised methods (see
Fig. 3.9). Fig. 3.10 shows the absolute difference of the estimated FA map
with the original FA map for the noisy and all denoising methods. The MAD
of the FA residuals shows that the error in the FA map computed from the
image denoised with the proposed method is comparatively smaller than the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 3.3: Denoising MRI with various methods :(a) Original image (b) Original

image corrupted with Rician noise of σg = 20 (c) (b) denoised with NLML method

(d) (b) denoised with UNLM method (e) (b) denoised with RNRAD method (d)

(b) denoised with RLML method (g), (h), (i), (j) are the residual images (in the

range 0 - 25) of (c), (d), (e), (f).
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Figure 3.4: Comparison of the histograms of the simulated ground truth (GT) with

the histogram of the denoised images (a) with NLML (b) with UNLM (c) with

RNRAD (d) with RLML.
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Figure 3.5: Quantitative analysis of the proposed method with other recently pro-

posed methods based on (a) PSNR (b) SSIM (c) BC and (d) MAD for image cor-

rupted with Rician noise of σg varying from 5 to 80.
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(a) (b) (c) (d)

Figure 3.6: Denoising MRI with spatially varying noise levels (a) Noisy image with

spatially varying noise (b) noise modulation map (c) noisy image denoised with

ARNLM method (d) noisy image denoised with proposed RLML method.

(a) (b) (c)

Figure 3.7: Denoising SENSE reconstructed MRI with 4 coils and acceleration factor

= 2 (a) Noisy image with spatially varying noise (b) with ARNLM (PSNR : 31.1639

(c) with RLML using Eq. (3.9) PSNR : 31.7544
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Figure 3.8: Performance comparison of the RLML method against a recently pro-

posed ARNLM method in terms of (a) PSNR (b) SSIM (c) BC and (d) MAD for

image corrupted with spatially varying Rician noise of σg varying from 5 to 80.
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other methods.
Fig. 3.11 shows the results of applying the different denoising methods on

an MR image of a kiwi fruit. Two sets of kiwi fruit images were reconstructed,
one without averaging and the other by averaging 12 acquisitions. Averaging
was done in the complex k-space. The denoising algorithms were then applied
over the image reconstructed without averaging and the resultant denoised
image was compared with the image reconstructed by averaging 12 acquisi-
tions. It can be observed from the images that the visual results are much
better for RLML in terms of image contrast. Quantitative analysis of the
experiments on the kiwi fruit was done based on the second order moment of
the Rice distribution :

E[M2] = a2 + 2σ2
g (3.10)

If we assume the denoised image â as the ground truth, then σ̂2
g can be esti-

mated as
σ̂2

g =
〈M2〉 − 〈â2〉

2
(3.11)

where 〈〉 denotes the spatial average of the whole image. The closer the
estimated σ̂2

g to the actual noise variance, the closer the denoised image â to
the ground truth. The result of this experiment is given in Table. 3.1. It is clear
from the table that the σ̂g estimated for the image denoised with the proposed
RLML method is more close to the actual noise standard deviation. The
estimated standard deviation of the noise from the image acquired without
averaging is 27.5. The expected value of σ̂g (estimated using Eq. (3.11)) after
reconstructing an image by averaging multiple acquisitions or by denoising is
a value close to 27.5. Among the denoising methods considered, the estimated
value of σ̂g more close to 27.5 is the one denoised with RLML. This experiment
on the real data set additionally indicates that the image denoised with the
proposed method is more close to the ground truth than other methods.

3.4 Conclusion

A new method to denoise MR images by applying the ML method locally to
the restricted neighborhood is proposed in this chapter. A scheme is developed
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Experiments on the DWI atlas of the human brain (a) FA map computed

from the ground truth (b) FA map computed after corrupting the original image

with Rician noise of σg = 100 (c) FA map computed from the image denoised with

NLML method (d) FA map computed from the image denoised with UNLM method

(e) FA map computed from the image denoised with RNRAD method (d) FA map

computed from the image denoised with the proposed RLML method.
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(a) (b) (c)

(d) (e)

Figure 3.10: Absolute FA residuals (a) Noisy (MAD : 0.1189) (b) NLML method

(MAD : 0.0560) (c) UNLM method (MAD : 0.0531) (d) RNRAD method (MAD :

0.0640) (e) proposed RLML method (MAD : 0.0505).
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Experiments on the MR image of a Kiwi fruit (a) Original image

reconstructed with 1 average (b) Original image reconstructed with 12 averages (c)

(a) denoised with NLML method (sample size :18) (d) (a) denoised with UNLM

method (e) (a) denoised with RNRADmethod (f) (a) denoised with RLML method.
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Table 3.1: Quantitative analysis of the proposed method with other recently pro-

posed methods based on Eq. (3.11). This experiment was conducted on the MR

image of a kiwi fruit.

Method Estimated

σ̂g based on

Eq. (3.11)

Kiwi fruit with 1 average (noise standard deviation = 27.5)

Kiwi fruit with 12 averages 31.01

NLML 32.84

UNLM 38.17

RNRAD 23.75

RLML 30.18

to locally select the appropriate subset of pixels from the neighborhood of each
pixel. Through this approach the side effects of LML method, the blurring
effect and the distortion of fine structures, can be reduced. Experiments have
been carried out on simulated and real data sets. Quantitative analysis at
various noise levels based on the similarity measures, PSNR, SSIM, BC and
MAD shows that the proposed method is more effective than other state-of-
the-art methods. Experiments were also performed on DW images to prove
the efficacy of the proposed method. Mean absolute difference of the FA
residuals shows that the image denoised with the proposed method is more
close to the ground truth.
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Chapter 4

Estimation and removal of noise

from multiple-coil MR images
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Abstract:

Estimation and removal of noise from MR images is important for proper
analysis, accurate parameter estimation and for further preprocessing of these



4.1. Introduction

images. Many methods have been proposed in the literature for MRI noise
estimation and denoising. However, not many approaches were suggested for
estimating noise level or underlying true signal from MR images acquired with
multichannel surface-coil arrays. If the magnitude image from surface-coil ar-
rays are reconstructed as the root sum of squares, in the absence of noise
correlations and subsampling, the data is assumed to follow a non central-χ
distribution. However, parallel imaging and reconstruction methods can in-
fluence the statistical distribution of the data. The subsampling of k -space
makes the noise level in the image spatially varying. In this chapter we pro-
pose a method for estimating the noise level and underlying true signal from
multiple-coil acquired MR images in which the data follows a non central-χ
distribution. Experiments were conducted on both simulated and real data
sets to validate and to demonstrate the effectiveness of the proposed method.

4.1 Introduction

Stochastic noise is one of the main causes of quality deterioration in MRI and,
hence, estimation and removal of noise remains an active area of research.
Consideration of how noise affects the true signal is important for proper
interpretation and analysis of MR images [1]. As discussed in the previous
chapters, it is usually assumed that the noise in the MRI k-space data from
each receiver channel is normally distributed. Due to the orthogonality of
the Fourier basis functions, the noise remains Gaussian distributed after an
inverse Fourier transform. However, the subsequent nonlinear operation, being
the computation of the root of the sum of squares (SoS) of the Gaussian
distributed complex image(s), leads to a magnitude image, which is no longer
Gaussian distributed. In single coil systems, such magnitude data is governed
by a stationary Rician distribution. For multi-coil systems, the magnitude
image is non central Chi (nc-χ) distributed, provided that the k space is fully
sampled and no correlations between the coil data exists [2, 3].

For multi-coil systems, the data distribution also depends on the recon-
struction techniques used. Multiple coil systems were initially developed to
enhance the SNR of the acquired images (the smaller the sensitive volume of
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a coil, the lower the noise from the adjacent structures and better the SNR
will be) and later pMRI techniques were employed to it to accelerate the ac-
quisition process through k-space subsampling. The advantages of pMRI are
numerous (for e.g. fast imaging, breath-hold scans, increased temporal resolu-
tion, reduction of certain artifacts etc). The main trade-off from using pMRI
is that the SNR decreases by at least the square root of the acceleration factor
and the noise displays inhomogeneous spatial distribution.

In the recent past, several adaptive filtering techniques to improve the
quality of magnitude MR images have been proposed [4, 5, 6, 7, 8, 9]. The
Rician nature of the noise was incorporated in most of these methods to make
it a suitable candidate for denoising magnitude MR images. However, none of
the aforementioned methods are adapted to deal with nc-χ distributed data.
Employing a Rician model to describe nc-χ distributed data (if the number of
coils > 1) may, however, introduce a bias in the estimated parameters. This
bias will increase with increasing number of coils. However, multi-channel
MRI acquisition schemes with pMRI techniques are becoming increasingly
popular. Very recently, Brion et al. [10] proposed a method to estimate the
underlying true signal from nc-χ distributed data. In their paper, a Linear
Minimum Mean Square Estimator (LMMSE) method was used to estimate
the true underlying intensity. In this chapter, a recently proposed non lo-
cal maximum likelihood (NLML) estimation method [11] is extended to deal
with nc-χ distributed and the spatially varying nature of the noise, which
significantly increases its applicability.

In section 4.2 and 4.3, the theory behind the denoising method is clarified.
In section 4.4, results are shown on simulated as well as experimental MR
images. Finally, conclusions are drawn in section 4.5.

4.2 Theory

In a multiple-coil MR acquisition system, the acquired signal in the presence
of noise, in each coil can be typically modeled as a complex Gaussian process.
Thus, the complex signal in each coil l (for l = 1, 2, ...L) after the inverse
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Fourier transform can be expressed as [3]

Cl(x) = Sl(x) + nl(x; σ2
g) (4.1)

where Sl(x) represents the true complex signal in the absence of noise for each
coil l and nl(x; σ2

g) = nlr(x; σ2
g) + jnli(x; σ2

g), the complex Gaussian noise in
each coil l. If no subsampling is done, the composite magnitude signal ML(x)

can be written as [12, 3]

ML(x) =

√√√√
L∑

l=1

|Cl(x)|2 (4.2)

Assuming absence of noise correlation and that the L coils are statistically
independent, the probability density function (PDF) of the composite magni-
tude signal, ML, follows a nc-χ distribution defined by:

pML
(m) =

mL

σ2
g

a1−Le
−m2+a2

2σ2
g IL−1

(
ma

σ2
g

)
,m ≥ 0 (4.3)

where a is the underlying true composite magnitude signal in the absence of
noise, σ2

g , the variance of the Gaussian noise in the complex data which is
assumed to be the same for all L channels and IL−1 is the (L − 1)th order
modified Bessel function of the first kind.

4.3 Methods

The objective of the proposed method is to estimate the true underlying inten-
sity a from the composite magnitude image in which the observations follow
a nc-χ distribution. For this purpose, we extended the NLML method which
was originally proposed for denoising images with Rician noise.

4.3.1 Extended NLML Method

Let m1,m2, ..., mn be n i.i.d nc-χ observations. Then the joint PDF of the
observation is

p ({mi}|a) =
n∏

i=1

mL
i

σ2
g

a1−Le
−m2

i +a2

2σ2
g IL−1

(
mia

σ2
g

)
(4.4)
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Given the observed data and a model of interest, the unknown parameters
in the PDF can be estimated by maximizing the corresponding likelihood
function. The unknown parameter in Eq. (4.4) is the true underlying intensity
a. However, if σ2

g is not known in advance, it can also be estimated along with
a by maximizing the likelihood function L or equivalently lnL, with respect
to a and σ2

g :
{âML, σ̂2

ML} = arg{max
a,σ2

g

(lnL)} (4.5)

where

lnL =
n∑

i=1

ln

(
mL

i

σ2
g

)
+ n ln

(
a1−L

)−
n∑

i=1

m2
i + a2

2σ2
g

+
n∑

i=1

ln IL−1

(
mia

σ2
g

) (4.6)

and âML and σ̂2
ML are the estimated underlying true intensity and the noise

variance respectively. Nevertheless, to estimate âML and σ̂2
ML for each pixel

in the image using Eq. (4.5), samples {mi} with identical underlying intensity
and noise variance need to be selected. As mentioned in the previous chapter,
the straightforward approach to select samples {mi} is to select all pixels
from a local neighborhood. However, it is clear that around edges and fine
structures the assumption of uniform underlying intensity is violated, and, as
a result, blurring will be introduced in the image. An alternate approach is
to use non local (NL) pixels instead [11]. The NL pixels are selected based on
the intensity similarity of the pixel neighborhood. If the neighborhoods of two
pixels are similar, then their central pixels should have a similar meaning and
thus similar gray values [13]. The similarity of the pixel neighborhoods can be
computed by taking the intensity distance (Euclidian distance) between them
[11]:

di,j = ‖Ni −Nj‖ (4.7)

where di,j is the intensity distance between the neighborhoods Ni and Nj of
the pixels i and j. For each pixel i, the intensity distance d between i and
all other non local pixels j as defined by Eq. (4.7), in the search window are
measured. The first k pixels are then selected as {mi} after sorting the NL
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pixels in the increasing order of the distance d for the maximum likelihood
(ML) estimation. Even though, in theory the search window is the whole
image, for complexity reasons most implementations restrict the search area
to a window surrounding i. In our implementation, a search window of size
11× 11× 11 was used.

If the noise level is spatially invariant, the noise standard deviation, σg,
can be estimated from the background region of the image. This σg can be
used in Eq. (4.6) to estimate the underlying true intensity a. Estimating a

using ML with a known σg converges faster and will be more precise than
estimating both a and σg simultaneously. The noise level can be estimated
from the background as:

σ̂g =

√
2

π

2L−1(L− 1)!

(2L− 1)!!
〈MB〉 (4.8)

where 〈MB〉 is the mean of the central χ distributed background region. An
explicit segmentation is needed in this case to extract the background re-
gions, which can be sometimes difficult. Also, artifacts (e.g. Ghost artifacts)
can influence the estimation. Explicit segmentation, and to some extent, the
influence of artifacts can be avoided by using the local statistics for noise
estimation as suggested in [3] as:

σ̂g =

√
2

π

2L−1(L− 1)!

(2L− 1)!!
mode{〈MB(i)〉} (4.9)

where 〈MB(i)〉 corresponds to the local mean computed for each pixel i in the
image.

4.3.2 Estimation of the number of coils L

An important parameter in the nc-χ pdf is the number of coils L. Usually the
experimenter knows L in advance. However, L can also be computed from
the data statistics. If the k -space is not subsampled and if the background
pixels in the acquired magnitude image follow a central χ distribution, then
the number of coils can be estimated from the SNR of the background region
(the ratio of the mean of the central χ distributed background region and its
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standard deviation). This SNR from the background region will be constant
for a particular L [14, 2]. This can be easily proved from the moments of the
central-χ distribution.

Let MB represent the background region of the composite magnitude im-
age. Then the first and second moments of MB can be written as [12, 14]:

〈MB〉 = βLσg (4.10)

and
〈M2

B〉 = 2Lσ2
g (4.11)

where

βL =

√
π

2

(2L− 1)!!

2L−1(L− 1)!
(4.12)

The variance of MB in terms of the moments can be written as:

σ2
MB

= 〈M2
B〉 − 〈MB〉2 (4.13)

Substituting Eq. (4.10) and Eq. (4.11) in Eq. (4.13) yields

σg =
σMB√
2L− β2

L

(4.14)

Now by substituting Eq. (4.14) in Eq. (4.10) we can compute the SNR as:

〈MB〉
σMB

=
βL√

2L− β2
L

(4.15)

This SNR will always be a constant for a particular value of L as long as
the background follows a central-χ distribution. SNR for different values
of L computed using Eq. (4.15) is given in Table. 4.1. In summary, L can
be predicted by measuring the SNR of the background region of the image.
However, when the k-space is subsampled or if there exists correlation between
the data from different coils, then the background region will not strictly follow
a central-χ distribution and as a result the values in Table. 4.1 may not hold.
This is discussed in detail in the work of Aja-Fernández et al. [15].
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Table 4.1: SNR of the central χ distributed background region for different values

of L

L 1 2 4 8 16 32 64

SNR 1.9131 2.7548 3.9429 5.6146 7.9694 11.2918 15.9845

4.4 Experiments and Results

Synthetic experiments for image denoising were carried out on the standard
BrainWeb MR volume [16]. In the first experiment, a synthetic image was
created by multiplying the BrainWeb image with eight complex-valued coil
sensitivities. Gaussian noise was then added to the real and imaginary parts
of the image from each coil before creating the final magnitude image using
the SoS method. Due to the SoS operation, the noise in the magnitude image
follows a nc-χ distribution. This noisy image is then denoised with the pro-
posed method and also with the LMMSE method in [10], which was recently
proposed for denoising nc-χ distributed MR images. The denoising methods
were executed with the following parameters.(i) proposed method : search
window size : 11× 11× 11, neighborhood size : 3× 3× 3 and sample size k =
20 (ii) LMMSE : window size: 5× 5× 5. The noise variance σ2

g used in both
methods was estimated using Eq. (4.9).

The visual quality comparison of the methods can be made from the
results given in Fig. 4.1. As mentioned earlier, in visual analysis, the expec-
tations are (i) perceptually flat regions should be as smooth as possible (ii)
image edges and corners should be well preserved (iii) texture detail should
not be lost and (iv) few or ideally no artifacts [11, 17]. It can be observed
from Fig. 4.1 that the image denoised with the proposed method is closer to
the original one (based on the above mentioned criteria) than the image de-
noised with the LMMSE approach. This is clearly visible from the residual
images. For quantitative analysis, the experiment was repeated with various
values of σg varying from 5 to 30 and the results based on PSNR and mean
SSIM [18] are given in the Table. 4.2. In the quantitative analysis, the back-
ground region was excluded; that is, only the area of the image inside the
skull was considered. The values in Table. 4.2 highlight the effectiveness of
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Table 4.2: Quantitative analysis of the proposed method with LMMSE method

proposed in [10]. This experiment was conducted on the synthetic image of the

brain reconstructed with SoS method with L = 8.

σg 5 10 15 20 25 30

Noisy

PSNR 35.23 28.15 23.29 19.73 16.87 14.48

MSSIM 0.9318 0.8129 0.6938 0.5978 0.5157 0.4466

LMMSE

PSNR 37.05 32.42 30.12 28.95 28.11 27.45

MSSIM 0.9618 0.9131 0.8703 0.8407 0.8155 0.7882

Proposed

PSNR 36.01 35.38 34.01 32.27 30.45 28.71

MSSIM 0.9706 0.9612 0.9371 0.9021 0.8612 0.8118

the proposed method for denoising nc-χ data.
In the second experiment, synthetic images were reconstructed with SoS,

SENSE [19] and GRAPPA [20] method using 4 coils. For SENSE and
GRAPPA an acceleration factor of 2 were used. Gaussian noise of standard
deviation, σg = 10, was added to the complex synthetic image (4 complex
images with different sensitivities) to create the noisy image. The SoS im-
age was reconstructed from the complex images by taking the root sum of
squares. For SENSE and GRAPPA reconstruction experiment, the complex
k-space images were created by taking the Fourier transform of the complex
noisy image. These k-space images were then subsampled with a factor of 2.
SENSE and GRAPPA methods were then applied to reconstruct the images
from the subsampled k-space images. The PULSAR toolbox [21] was used
for the SENSE and GRAPPA reconstruction. The proposed denoising algo-
rithm was then applied over all the 3 reconstructed magnitude images (i.e.,
SoS, SENSE and GRAPPA). In the case of denoising SENSE reconstructed
images, the number of coils L should be taken as 1, since the final magnitude
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Denoising of MRI with nc-χ distributed noise. (a) Ground Truth re-

constructed with SoS method with L = 8 (b) Ground Truth corrupted with nc-χ

distributed noise of σg = 15 (c) denoised with LMMSE method (d) denoised with

proposed method (e) and (f) corresponding residual images of (c) and (d) (scale

0-25).
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images is generated from only 1 complex (composite) image. Hence in SENSE
reconstructed images, the noise will be Rician distributed (which is a special
case of nc-χ with L=1), but spatially varying. The result of this experiment
is shown in Fig. 4.2.

It can be observed from the results that the proposed method performs
well in all the cases. However, there is some bias in the denoised image of the
GRAPPA reconstructed image which is visible in the residual image. This
bias is because of the influence of the signal correlation in L. The denoising
experiment was executed with a constant value for L (in this case L=4). Even
if the coils are initially uncorrelated (which was the case in our simulations),
signals will be correlated due to GRAPPA reconstruction [22]. The correlation
will increase with the increase in the number of coils used for image acquisition.
Correlations will affect the number of degrees of freedom of the distribution
[15]. As a result, the value of the number of coils, L, will reduce and vary
across the image. Ignoring effective L can thus create bias in the denoised
image especially when there is high signal correlation. However, estimation of
effective L requires raw MR data from each coil. Also, maximum likelihood
estimation might not converge properly when the selected samples doesn’t
exactly follows the nc-χ distribution (especially when estimating A and σ

simultaneously with a large L).
For the experiments on the real data, we acquired ex vivo MR images

(2D) of a mouse brain with a 2 × 2 channel phased array coil using Bruker
7.0 T scanner. The images were acquired with SoS and GRAPPA (with
an acceleration factor of 2) and later an image was also reconstructed with
SENSE (with an acceleration factor of 2) from the raw data using the PULSAR
tool box. The proposed denoising method was then applied on all the three
reconstructed images. The results are shown in Fig. 4.3. This experiment
on the real data set additionally indicates the effectiveness of the proposed
method. We also analyzed the background region of the acquired SoS image
to check whether there is any significant correlation between the data from
different coils. If there is no significant correlation, the background region
of the SoS image should follow a central-χ distribution. Fig. 4.4 shows the
distribution of the background region of the mouse brain image acquired with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Denoising of multiple-coil acquired MRI. (a)[PSNR: 29.49,MSSIM:

0.8256], (b)[PSNR: 24.44,MSSIM: 0.6749] and (c)[PSNR: 24.77,MSSIM: 0.6848] are

images acquired with L = 4 and σg = 10 and reconstructed with SoS, SENSE and

GRAPPA (acceleration factor: 2) respectively. (d) [PSNR: 34.88, MSSIM: 0.9714],

(e) [PSNR: 31.81, MSSIM: 0.9079] and (f) [PSNR: 28.41, MSSIM : 0.9111] are the

denoised images of SoS, SENSE and GRAPPA reconstructed images. (g),(h) and

(i) are the corresponding residual images (scale 0-25) with respect to the Ground
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Experiments on ex vivo mice images. (a) (b) and (c) original mice image

acquired with 2× 2 channel phased array coil and reconstructed with SoS, SENSE

and GRAPPA. (d), (e) and (f) are the corresponding denoised images using the

proposed method.

SoS method. Comparison with the true central-χ distribution shows that
there is no significant correlation between the signals from different coils in
this case.

4.5 Conclusion

We have proposed a method to denoise MR images in which the data follows a
nc-χ distribution. The proposed method is an extension of the NLML method
which was proposed for denoising images corrupted with Rician noise. We
extended this method to nc-χ distributed data and also the spatially varying
nature of the noise is incorporated. Experiments were conducted on both
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Figure 4.4: Actual distribution of the background region of the mice image (acquired

with SoS with L = 4) compared with the central-χ PDF (with L = 4 and σg

estimated from the background region of the image).

simulated and real images. The experimental results shows that the proposed
method is very effective for MR images which follows nc-χ distribution.
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Conclusions

The objective of this thesis was to to develop effective methods for the
estimation and removal of noise from MR images acquired with both single
and multiple coils. MR images are always corrupted with noise and the SNR
of the image is influenced by several factors like the strength of the main
magnetic field, pulse sequence design, tissue characteristics, RF coil used and
imaging parameters like voxel size, number of excitations, receiver bandwidth
etc. Noise estimation and denoising plays an important role in the further
processing of these images. Several methods were proposed in the literature
for the estimation of the noise from magnitude MR images. However one
drawback of most of those methods were their dependency on the Rayleigh
distributed background region. New object based methods were introduced
in this thesis to overcome those limitations.

For the denoising of MR images corrupted with Rician noise, we pro-
posed a restricted local ML estimation method. Instead of selecting all the
pixels in the local neighborhood region, the proposed RLML method selects
only the pixels that is believed to have an underlying intensity close to that
of the center pixel in the local window for the ML estimation of the true
underlying intensity. Through putting restrictions on the pixel selection and
thus by reducing the model violations, the proposed method preserves the
fine structures in the image and also reduce the blurring effects which is
common with local ML approach. Comparisons with the state-of-the art
methods for denoising shows that the proposed method is more effective in
terms of the quality matrices used for quantitative analysis and also based
on the visual analysis. However there are still room to improve the proposed
method. One drawback of the proposed method is its dependency on the
reference image. It might be possible to use some statistical approaches for
suitable sample selection from local neighborhood to avoid the dependency of
the proposed method on a reference image. Further research is needed in this
direction. Another area for improvement is in the threshold calculation. At



Conclusions

present a global threshold is used for pixel classification. A local threshold
value can further improve the performance of the proposed method.

A generalized non local ML estimation method for noise estimation
and denoising of MR images acquired with multiple coils is proposed in the
last chapter. When more than one coil is used for image acquisition and if
the magnitude images are created using the SoS method, then magnitude
data generally follows a nc-χ distribution. However, parallel imaging and
reconstruction methods can influence the statistical distribution of the data.
The subsampling of k -space for reducing the acquisition time makes the
noise level in the image spatially varying. Both the nc-χ distribution and
spatially varying nature of the noise is taken into account in the proposed
method. In the non local ML method, the samples for ML estimation is
selected in a non local fashion based of the intensity similarity of the pixel
neighborhood. This non local way of selecting the samples help in finding the
similar pixels (with the same underlying intensity). This method is highly
efficient when compared to local ML estimation. However one little concern
in the non local ML estimation method is regarding the number of samples
to be selected for ML estimation. In our implementations, this is fixed and
generally determined in a heuristic way. An adaptive way of selecting the
samples can further improve the results.
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