
Faculty of Science
Department of Physics

Advances in biplanar X-ray imaging:

calibration and 2D/3D registration

Thesis submitted for the degree of doctor of Science: Physics at the
University of Antwerp to be defended by Van Thi Huyen NGUYEN

Promoters:
Prof. Dr. Jan Sijbers
Prof. Dr. Ir. Jan De Beenhouwer Antwerp, 2022





Doctoral committee:
Prof. Dr. Joris J. J. Dirckx
Prof. Dr. Peter Aerts
Prof. Dr. Jan Sijbers
Prof. Dr. Ir. Jan De Beenhouwer

Other jury members:
Prof. Caroline Vienne
Prof. Sam Van Wassenbergh
Prof. Luis Filipe Alves Pereira

Contact information:
* Van Thi Huyen Nguyen
Vision Lab, Department of Physics
University of Antwerp (CDE)
Universiteitsplein 1, Building N (N1.14)
B-2610 Antwerp, Belgium
� +32 (0) 3 265 22 45
# van.nguyen@uantwerpen.be
� https://visielab.uantwerpen.be/people/van-nguyen





I would like to dedicate this thesis to my loving parents and brother . . .





Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor,
Prof. Jan Sijbers. Thank you for giving me the opportunity to pursue
my Ph.D. at the University of Antwerp, and introducing me to a very
new, yet interesting field of research on X-ray Computed Tomography.
Thank you for patiently teaching me the first lessons on X-ray and X-ray
imaging when I just started. I also really appreciate that I have been
given both freedom to explore my ideas, and close supervision to keep
me on the right tracks in my research. Thank you for being encouraging
and supportive to let me present my research in the scientific confer-
ences of the field whenever it was possible. I would also like to thank
my co-supervisor, Prof. Jan De Beenhouwer, who has always openly
shared his technical insights in X-ray Computed Tomography since the
start of my Ph.D. Thank you for always being available to discuss and to
share with me both the general knowledge about X-ray and X-ray imaging
system, as well as the very detailed technical methods to formulate and
analyze the problems. I have learned a lot from both of my supervisors,
not only about X-Ray CT, but also the method of critical thinking and
questioning to improve my knowledge every day. Thank you, Jan and
Jan, for always being patient and finding time in your busy schedules
to guide me through difficult problems during my Ph.D. at VisionLab.
Thank you for spending countless time and effort to help me in writing
the scientific articles, and my Ph.D thesis. Without your supervisions
and supports, it could not have been possible for me to finish my Ph.D.
I also express my appreciation to my doctoral committee, Prof. Dr. Joris J.
J. Dirckx and Prof. Dr. Peter Aerts, who were always kind and supportive
throughout my doctoral study. I would also like to thank my doctoral jury
members, Prof. Caroline Vienne, Prof. Sam Van Wassenbergh, and Prof.



Luis Filipe Alves Pereira for your valuable time, critical, yet constructive
comments and suggestions to help me complete my Ph.D. thesis.
I also want to thank my coworker, Joaquim Sanctorum, who is always
enthusiastic, motivating, and helpful. Thank you for always being avail-
able for discussions, and updating each other’s research to keep a close
collaboration and to exchange our knowledge. Thanks a lot to Luis Filipe
Alves Pereira, Zhihua Liang for your thoughtful suggestions and discus-
sions about deep learning research. Thank you, Sam Van Wassenbergh,
Falk Mielke, Jeroen Van Houtte, for sharing your insightful knowledge in
biology and 2D/3D registration. Without your collaborations and kind
supports, it would not have been possible for me to finish my Ph.D.
Special thanks to Jonathan Sanctorum. I feel so lucky to have been shar-
ing the office with you, and I really enjoyed our office chats. Thanks for
always being a good hearer and giving me your great attitudes. Thanks
so much, Tim Elberfeld and Árpád Marinovszki, for making me feel at
home when I just arrived in Antwerp.
And nothing could have been possible without my loving family. I want
to express my profound gratitude and thankfulness to my loving parents
and brother. Thank you a lot for always being by my side and giving me
the mental supports during my Ph.D. journey.
To my loving boyfriend, thank you a lot for being in my life, Tu Hoang.
Thanks for not being tired of talking about my research, listening to me
complaining about everything, and giving me a shoulder whenever I need.
And many thanks to my girls - Thanh Bui, Danh Bui, Minh Nguyen,
Trang Bui. I am fortunate to have been knowing you. Thanks for sharing
the nice time together and being my mental therapists when I struggled
with my research. Knowing you has made my Ph.D. life easier.
Thank you a lot, Hang Bui, for always encouraging and supporting me
since I started looking for a Ph.D.
Last but not least, thank you a lot to all of the VisionLab’s members and
colleagues at the University of Antwerp for being kind and supportive
during the time I have been at VisionLab.
Thank you all again for accompanying me along my Ph.D. journey. Your
presences and supports have made this Ph.D. possible to me!

Van Nguyen
Antwerp, December 2022

viii



TABLE OF CONTENTS

List of figures xi

List of tables xiii

Summary 1

1 X-ray imaging fundamentals 5
1.1 X-ray physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 X-ray formation . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 X-ray matter interaction . . . . . . . . . . . . . . . . . 9
1.1.3 X-ray image formation . . . . . . . . . . . . . . . . . . 10

1.2 X-ray projection model and geometry . . . . . . . . . . . . . 11
1.2.1 Projection models . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Projection geometry . . . . . . . . . . . . . . . . . . . 14

1.3 X-ray cone-beam acquisition geometry . . . . . . . . . . . . 15
1.3.1 Geometric transformations . . . . . . . . . . . . . . . 16
1.3.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . 22

2 Deep neural networks 25
2.1 Fundamentals of deep learning . . . . . . . . . . . . . . . . 26

2.1.1 Machine learning . . . . . . . . . . . . . . . . . . . . . 26
2.1.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.3 Training a deep learning model . . . . . . . . . . . . 30

2.2 Convolutional neural networks . . . . . . . . . . . . . . . . 31
2.2.1 Foundations of the convolutional neural networks . 31
2.2.2 Optimization algorithms . . . . . . . . . . . . . . . . . 36

2.3 Deep residual network - ResNet . . . . . . . . . . . . . . . . 39
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 39



TABLE OF CONTENTS

2.3.2 Network architecture . . . . . . . . . . . . . . . . . . 40

3 Biplanar X-ray cone-beam geometry calibration 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 3D2YMOX system . . . . . . . . . . . . . . . . . . . . 46
3.2.2 LEGO calibration phantom . . . . . . . . . . . . . . . 47
3.2.3 Extraction of the bead centers . . . . . . . . . . . . . 48
3.2.4 Biplanar geometry parameters . . . . . . . . . . . . . 50
3.2.5 Geometry calibration . . . . . . . . . . . . . . . . . . 51

3.3 Experiments and results . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Simulation of experimental datasets . . . . . . . . . 52
3.3.2 Experiments with simulated data . . . . . . . . . . . 53
3.3.3 Experiments with real data . . . . . . . . . . . . . . . 57

3.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . 64

4 Automatic landmark detection and mapping with BoneNet 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 3D pose parameterization . . . . . . . . . . . . . . . . 71
4.2.2 Landmark-based 2D/3D registration . . . . . . . . . 73
4.2.3 3D landmarks . . . . . . . . . . . . . . . . . . . . . . 73
4.2.4 Automatic detection of 2D landmarks with BoneNet 75
4.2.5 Simulation of articulated transformation . . . . . . . 78

4.3 Experiments and results . . . . . . . . . . . . . . . . . . . . 80
4.3.1 Training data . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Train BoneNet . . . . . . . . . . . . . . . . . . . . . . 83
4.3.3 2D landmarks detection . . . . . . . . . . . . . . . . . 84
4.3.4 3D pose reconstruction . . . . . . . . . . . . . . . . . 88

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Conclusion 97

List of publications 103

x



LIST OF FIGURES

1.1 Configuration of a typical X-ray source. . . . . . . . . . . . 7
1.2 Generation of X-ray. . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 X-ray spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 An example of an attenuation grid. . . . . . . . . . . . . . . 12
1.5 Projection models. . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Projection geometry and system matrix. . . . . . . . . . . . 15
1.7 X-ray cone-beam geometry. . . . . . . . . . . . . . . . . . . . 16
1.8 X-ray cone-beam acquisition system . . . . . . . . . . . . . 17
1.9 Cartesian coordinate system with the right-hand rule. . . . 18
1.10Visualization of a 2D forward transformation. . . . . . . . . 21
1.11Visualization of a 2D inverse transformation. . . . . . . . . 22
1.12Trilinear interpolation grid . . . . . . . . . . . . . . . . . . . 23
1.13A visualization of 3rd-order polynomial interpolation . . . . 24

2.1 Machine learning system. . . . . . . . . . . . . . . . . . . . . 27
2.2 A deep network architecture. . . . . . . . . . . . . . . . . . . 29
2.3 A convolutional network architecture . . . . . . . . . . . . . 31
2.4 Convolution with padding. . . . . . . . . . . . . . . . . . . . 32
2.5 Convolution with stride. . . . . . . . . . . . . . . . . . . . . 33
2.6 Activation functions. . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Residual block. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 The 3D2YMOX system and LEGO calibration phantom . . . 46
3.2 A biplanar cone-beam geometry of an X-ray CT system. . . 50
3.3 Marker center extraction. . . . . . . . . . . . . . . . . . . . 54
3.4 Geometry calibration errors with NCC and BeadNet center

extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xi



LIST OF FIGURES

3.5 Reconstruction of simulated data. . . . . . . . . . . . . . . . 56
3.6 Comparison between NCC and deep learning method. . . . 56
3.7 Reconstructions of the simulated test phantom dataset . . 58
3.8 Reconstruction of a LEGO phantom with real dataset. . . 59
3.9 Comparison between reconstruction results of the NCC and

BeadNet method. . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10Line profile of reconstructed slices. . . . . . . . . . . . . . . 60
3.11Reconstructions of the real test phantom dataset . . . . . . 61
3.12Reconstructions of real datasets . . . . . . . . . . . . . . . . 62
3.13Reconstructions of a real dataset with the calibrated geometry 63
3.14Reconstructions of a real dual source dataset . . . . . . . . 64

4.1 An example of an X-ray cone-beam acquisition geometry. 71
4.2 Example of joints and joints’ local coordinate systems. . . 72
4.3 BoneNet architecture. . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Samples of input images for BoneNet training. . . . . . . . 77
4.5 Examples of bones and their weight maps. . . . . . . . . . . 81
4.6 Articulated transformation of the bones. . . . . . . . . . . 82
4.7 Geometric landmarks of the bones. . . . . . . . . . . . . . 82
4.8 Training and validation losses. . . . . . . . . . . . . . . . . 83
4.9 Sample projection with different noise levels . . . . . . . . . 85
4.102D landmark extraction errors with different noise levels . 86
4.11Visualization of the landmark detection errors. . . . . . . . 87
4.12Visualization of the 3D pose estimation errors. . . . . . . . 89
4.132D view of the pose reconstructions. . . . . . . . . . . . . . 91
4.14Vertical slices extracted from registered volumes. . . . . . 92
4.153D views of the pose reconstructions. . . . . . . . . . . . . 92

xii



LIST OF TABLES

2.1 Variants of ResNet architecture. . . . . . . . . . . . . . . . . 41

3.1 Marker center detection errors. . . . . . . . . . . . . . . . . 53
3.2 Calibration errors of the geometric parameters for a simu-

lated biplanar X-ray CT system . . . . . . . . . . . . . . . . 57
3.3 Calibrated geometry parameters of the 3D2YMOX system

with two identical calibration phantoms. . . . . . . . . . . . 61

xiii





SUMMARY

X-ray Computed Tomography (CT) is a powerful technique for non-
invasive evaluation and visualization of an object’s internal structure. A
CT image is computed from a set of X-ray radiographs of the object ac-
quired from different directions relative to the object in a preset scanner
geometry. To obtain an artifact-free 3D tomographic image of the object,
it is crucial to establish a correct geometry description of the system
configuration for CT reconstruction. Unfortunately, it is not possible
to obtain accurate geometry information without repeating calibration
for every new system setting in an experimental X-ray scanner. Geome-
try calibration typically involves describing and estimating the physical
arrangement of the X-ray source, rotation stage, and detector prior to
computing the CT image. If the geometry parameters are not derived
correctly, the CT image is subjected to misalignment artifacts that de-
stroy the internal detail of the object. In this thesis, a phantom-based
calibration method is presented to estimate the geometry setting of a
biplanar X-ray CT system. Successfully calibrating the system geometry
opens possibilities for different applications using the X-ray radiographs
acquired with the same X-ray system.
Chapter 1 and 2 provide background knowledge on X-ray imaging and
X-ray CT, as well as foundations to build and train a deep neural model.
A typical residual neural network (ResNet) is also presented in chapter 2.
Chapter 3 focuses on calibrating an experimental biplanar X-ray cone-
beam system using a LEGO phantom. More specifically, a procedure
to construct the calibration phantom using the LEGO bricks and metal
markers, followed by a deep learning-based marker tracking method
and geometry alignment, will be presented. Chapter 4 discusses 2D/3D
registration, one of the X-ray CT applications in biomedical imaging
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SUMMARY

for the study of animal kinematics. The registration method aligns the
projections of reference 3D landmarks to a set of 2D landmarks for an
estimation of the object’s 3D pose. An automated 3D landmark extrac-
tion procedure and a trained deep neural network facilitate 2D landmark
detection and tracking in fluoroscopy images.
The summary of each chapter is as follows.

Chapter 1 - X-ray computed tomography

Chapter 1 aims to provide background knowledge for further studies in
geometry calibration of an X-ray acquisition system and 2D/3D registra-
tion using X-ray cone-beam data. First, the principle of X-ray physics
and X-ray imaging are discussed. Next, a practical projection model de-
scribing X-ray beam-voxel interaction as well as a linear model for X-ray
computed tomography are presented. Finally, a review on a common
X-ray circular cone-beam geometry and basic geometric transformations
provides foundation for the followed applications in the geometry cali-
bration, and 2D/3D registration. This knowledge will be revisited in the
subsequent chapters.

Chapter 2 - Deep neural network

Chapter 2 discusses fundamentals of machine learning and deep learning
building blocks and algorithms. The basic concept of machine learning
and deep learning models, followed by an overview of the current deep
network architectures are presented in the first section. Furthermore,
the widely-used convolutional neural network, its building blocks, as
well as techniques that are commonly employed when implementing a
convolutional neural network model are also discussed. Finally, ResNet
architecture is presented to provide background knowledge of a deep
network model that will be applied in marker and landmark tracking
applications.

Chapter 3 - Biplanar cone-beam geometry calibration

Chapter 3 presents a phantom-based calibration technique that esti-
mates the geometry setting of a modular biplanar X-ray CT system.
Self-calibration techniques however do not perform well with complicated
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object geometries or with objects larger than the field of view. They are
time intensive due to the iterative process coupled with CT reconstruction
and are not well-adapted for estimating a large number of parameters.
With phantom-based calibration procedure, biplanar X-ray CT acquisi-
tion geometry can be estimated, after which the calibrated parameters
can be used to correct for the geometry misalignment prior to the re-
constructions of different CT datasets acquired in the same geometry.
First, a method for constructing an optimal calibration phantom using
LEGO bricks and spherical steel markers is discussed in detail. Due to
difficulties in the extraction of the marker centers from the calibration
radiographs, a ResNet-based neural network was trained to facilitate the
calibration procedure. Then, a calibration objective function is formu-
lated and a strategic geometry optimization scheme is introduced to find
its global minimum, consequently returning an accurate estimate of the
geometry parameters. The method is validated with both simulated and
real datasets.

Chapter 4 - 2D/3D registration

Chapter 4 presents a 2D/3D registration application for the reconstruc-
tion of 3D poses of an animal from X-ray radiographs. A high quality
3D CT image is acquired and employed as the reference model to esti-
mate the 3D pose parameters of an animal from its X-ray fluoroscopy
acquisition. The registration procedure is based on geometrical land-
marks (points-of-interest) that are detected in the 3D reference model
and the 2D X-ray projections. 3D landmarks are extracted from the
reference 3D CT model with the shortest coordinate variance scheme to
keep the landmarks close to the object’s surface but distant from each
other. The 2D landmarks in the fluoroscopy images are detected using a
ResNet-based neural network architecture. A tool is also implemented
to simulate the articulated transformation of joints for generating the
training dataset of the deep neural network as well as validation data of
the whole procedure. The procedure is evaluated with simulated data for
numerical and feasibility studies.
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Conclusion

In the conclusion chapter, the main contributions of the thesis with
discussions about the limitations as well as potential extensions of the
work in the future will be presented.
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This chapter discusses the basic concept of X-ray generation as the
results of interaction between high speed electrons and atoms in an
X-ray tube of a common X-ray scanning system. Interaction of X-rays
with material, as well as formation of X-ray images and acquisition
geometry are presented in Section 1.1. Section 1.2 discusses a computed
tomographic reconstruction technique that is commonly used to compute
3D reconstruction of an object from a set of X-ray images. Finally, X-
ray geometry and geometry transformation are presented as a general
concept. In this chapter, only the basic knowledge of X-ray and X-ray
imaging are provided. A more detailed and complete discussion can be
found in [? ? ].

1.1 X-ray physics

1.1.1 X-ray formation

X-rays, discovered by Wilhelm Conrad Röntgen in 1895, are a form of
electromagnetic waves with frequencies ranging between 3 × 1016 and
3× 1019 Hz [? , chapter 4]. From a quantum mechanic point of view, an
X-ray is considered as the transmission of X-ray photons throughout
space. Each photon carries a fixed amount of energy E, which relates to
its frequency f :

E = hf (1.1)

with h = 6.62607015× 10−34(m2kgs−1) the Planck’s constant.
X-rays are generated by X-ray sources ([? , chapter 2], [? , chapter
4]), one of which is shown in Fig. 1.1. Both the cathode filament and
anode of the source are made from a high atomic number element, such
as tungsten, which can easily release electrons and has a high melting
temperature. The cathode filament is heated up at a temperature up
to 2 000◦C to emit thermal electrons. This heating process enables the
electrons to acquire enough kinetic energy to escape the binding energy
of the electrons to the filament. The electrons are then accelerated in an
electromagnetic field inside a vacuum tube before hitting the positively
charged anode. When the electrons interact with the anode’s matter,
the X-ray photons are emitted as the result of several processes taking
place close to the anode surface. Most of the energy released during

6
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Vacuum tube

Cathode
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Fig. 1.1 Configuration of a typical X-ray source with the cathode being heated
up to emit thermal electrons. These electrons are attracted by the positively
charged anode. Interactions between emitted electrons and the anode generate
X-ray photons.

the interaction between incoming electrons and the anode’s atoms is
converted to thermal energy. To prevent damage by heating, a rotating
anode disk is used to distribute the heat over the anode.
The properties of the X-ray beam is defined by the current and voltage

of the X-ray source. The current, measured in mA, refers to the number
of electrons transmitted in a period of time when the X-ray source is
turned on. The number of X-ray photons is proportional to the product
of the current and exposure time (mAs). Voltage U measures the electric
potential difference between the cathode and the anode of the X-ray
source. It directly relates to the energy of the electron beam since the
electrons are accelerated by this voltage after escaping the filament. In
medical diagnosis, the acceleration voltage is between 25kV to 150kV, and
10kV to 300kV is usually used for radiation therapy.
X-rays are generated as the result of two interactions, namely, Bremsstra-

hlung ("braking radiation" in German) and characteristic radiation. Fig. 1.2
illustrates electron interactions resulting in Bremstrahlung radiation (a,
b,c) or characteristic radiation (d). The Bremsstrahlung interaction oc-
curs when a high-speed electron passes near or collides with the nucleus
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e−

e−

Bremsstrahlung
X-ray

(a)

e−

e−

Bremsstrahlung
X-ray

(b)

e−

Bremsstrahlung
X-ray

(c)

e−

e−

e−

Characteristic
X-ray

(d)

Fig. 1.2 When an electron comes close to or collides with an atom’s nucleus, it
is deflected (a, b) or absorbed (c), emitting X-ray photons. When an incoming
electron interacts with an inner shell electron, and if an atom’s electron is
released, it creates a vacant position in this inner shell. This position is taken by
an electron from an outer shell forming X-ray photons due to energy discrepancy
between the two atom shells (d).

of an anode’s atom because the positively charged nucleus attracts the
electron and slows it down. During this interaction, X-ray radiation is
generated with an energy proportional to the energy loss of the electron.
The electron deceleration depends on the distance between the incom-
ing electron and the nucleus. If the distance is large, the energy loss
is small, and as a result, low energy X-ray will be released (Fig. 1.2a)
and vice versa (Fig. 1.2b). When a high-speed electron collides with the
nucleus, it looses all its energy, and consequently, a high-energy X-ray
photon is released. This process corresponds to the upper spectrum
(high frequencies) of the X-rays (Fig. 1.2c). Bremsstrahlung radiation
produces most of the X-ray photons of an X-ray source (80%), and it has a
continuous spectrum (Fig. 1.3). When a high-speed electron hits another
electron at the inner shell of an anode’s atom, and an atom electron is
ejected from its position, the atom is ionized. When one of the outer shell
electrons takes the vacant position, an X-ray photon is emitted with the
energy corresponding to the energy discrepancy between the inner and
outer shells. It is called characteristic X-ray, and visualized in Fig. 1.2d.
During the interaction of the incoming electron beam with the anode’s
matter, only a fraction of the electrons’ kinetic energy is converted to
X-rays, and most of it (99%) is converted to thermal energy. Therefore, it

8
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#
of

p
h

ot
on

s

energy (keV)

Characteristic X-rays

Bremsstrahlung X-rays

Bremsstrahlung
X-rays

Fig. 1.3 X-ray spectrum with Bremsstrahlung X-rays generated as the re-
sults of electrons losing kinetic energy when interacting with anode’s atoms
(Fig. 1.2a,b,c), and characteristic X-rays emitted as outer shell electrons occupy
vacant inner shell positions (Fig. 1.2d).

is important to spread the incoming electrons over the anode surface by
using a rotating anode.

1.1.2 X-ray matter interaction

When X-ray photons travel through a target object, they interact with
the target atoms ([? , chapter 2], [? , chapter 4]). More specifically, the
X-ray photons interact with both electrons and atom’s nuclei when they
penetrate the object. During these interactions, they may be absorbed
or scattered through the photoelectric effect, Rayleigh and Compton
scattering [? ]. When a high energy X-ray photon collides with a low
binding energy electron, it results in the ejection of this electron, and
the X-ray photon is completely absorbed. In contrast, when the atomic
number of the material is low, the binding energy is small compared to
the photon energy. Consequently, the X-ray photons penetrate through
the object without losing much energy. The object becomes transparent to
the incoming X-ray beam as the detector hardly detects the energy losses.
Rayleigh scattering occurs when a photon hits an electron without losing
its energy but the direction of the photon is diverged after the collision.
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This type of scattering mainly happens when the atomic number of the
material is high. Compton scattering occurs when a very high-energy
photon collides with an atom electron resulting in ejection of the electron
from its orbit. The remaining energy is converted to an X-ray photon that
follows a different direction relative to the incoming X-ray photon.

1.1.3 X-ray image formation

When X-ray photons travel through materials, they either interact with
the atoms or pass through without any interaction [? , chapter 4]. The
interactions cause the photons to lose energy, deflect their direction, or
even be absorbed completely. The scattered photons that are deflected
or lose all their energies and disappear are not detected on the detector.
The detector records various reductions of the incoming photons after
traveling through the object, namely attenuation. X-rays that do not
penetrate the object are measured with greatest intensity on the detector.
The X-ray attenuation is proportional to the density of the object, the
object compositions, and the materials. The intensity of the detected
X-rays on the detector plane is described by the Beer-Lambert law:

I = I0e
−

∫
µ(l)dl (1.2)

with I0 the intensity of the incident X-rays emitted from the anode, and
I the measured incoming X-ray intensities on the detector. The linear
attenuation coefficient of the object material µ(l) is represented as a
function of the object thickness l.
X-ray photons can be detected through an indirect or direct detection
process [? ? ? ]. In an indirect detector, first, the incident X-rays pass a
scintillator layer to convert X-ray photons to visible light photons. The
visible lights are then magnified in an intensifier layer before being con-
verted into charges, which will then be recorded by the detector elements.
With a direct detection process, X-ray photons are converted directly to
charges using photoconductors for recording digital X-ray images. The
acquired image measures the residual intensities of the X-rays after they
are attenuated through the object. This process forms object projections
as 3D information of the object are accumulated and projected onto a 2D
detector plane. An ideal source setting and detector design could detect,

10
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and convert the same intensity I0 for every detector element. However,
due to the differences in the detector response, unattenuated X-rays
could be recorded differently by the different detector elements. In prac-
tice, the measure of the attenuation with respect to the thickness of the
object is of interest. Therefore, a log form of the projection is used for
computed tomography as it represents the object density and thickness.

ρ =

∫
µ(l)dl = − ln

I

I0
(1.3)

where I/I0 is referred to as flat-field correction and Eq. (1.3) is the log
correction. In practice, I0 is obtained by measuring the X-ray radiation
on the detector plane without the object’s presence.
In a fluoroscopy X-ray system, the image intensifiers may cause dis-
tortions in the acquired images. Two major distortions are pincushion
distortion and radial, sinusoidal distortion [? ? ? ]. While the pin-
cushion distortion is due to the mapping from a curved input phosphor
of the image intensifier onto a flat image plane, the later distortion is
caused by interaction between electrons in the image intensifier and the
homogeneous electro-magnetic field of the earth and/or inhomogeneous
distribution of ferromagnetic components in the sample rotation stage [?
]. Several techniques that relied on a rectilinear grid of known spacing
and a non-magnetic metal with random pattern can be applied to correct
for such distortion [? ? ? ? ? ]. The image distortions must be corrected
for prior to any further application or usage of the X-ray radiographs
acquired with such systems.

1.2 X-ray projection model and geometry

1.2.1 Projection models

Each 2D X-ray image is saved as a 2D grid of digital image pixels in
computer systems. Pixel values measure accumulated attenuations of the
X-rays traveling through the object materials [? ]. Fig. 1.4 demonstrates
a 2× 2 attenuation grid that is projected onto a 1D projector in different
directions. fi denotes the attenuation coefficient of the object material at
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ρ1
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ρ4

f1 f2

f3 f4

Fig. 1.4 An example of a 2× 2 attenuation grid with attenuation coefficient fi
and the measured intensities ρj.

object grid index ith.

f1 + f2 = ρ1

f3 + f4 = ρ2

f1 + f3 = ρ3

f1 + f4 = ρ4

(1.4)

Eq. (1.4) only describes the accumulated attenuation when the X-ray
beam traverses and assumes a binary interaction with a voxel, which
is normally not the case in reality. To better handle spatial informa-
tion of the object as well as the X-ray trajectories, the amount of object
voxel areas covered by X-rays during acquisition is quantified as spatial
weights/coefficients. The weighting scheme takes the acquisition geome-
try into account, and hence, better describes an X-ray system in reality.
The weights can be computed using different projection models [? ]. The
following discussion considers three models applied to a 2D object, which
is discretized into a grid of 2D digital pixels. A 3D object with a voxel grid
is an extension of the 2D grid to 3D space.
The line model: The line model, as shown in Fig. 1.5 (a), infers atten-
uation weights aij as intersections of X-rays with object pixels, with i, j

the pixel position in the 2D grid. The intersections are measured as the
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(a)

l i
j

(b)

∆ξ

r

(c)

l
′
ij

lij

Fig. 1.5 Projection models represent different weighting schemes for X-rays
traversing object voxels, i.e. line (a), strip (b), and interpolation (c) models.

lengths of the line sections within the pixels that the rays pass through.
The object pixels are considered zero-width pixels in the line model.

aij = lij (1.5)

The strip model: The strip model considers the X-ray beams with a
width of ∆ξ. Weight aij is measured as the portion of pixel area ρij covered
by ray r when it penetrates the object (Fig. 1.5b).

aij =
r

ρij
(1.6)

The interpolation model (Joseph’s model): The interpolation model,
first, defines the intersection between a ray with the line that connects
two neighboring pixel centers. Next, the intensity of a virtual pixel, which
is constructed and centered at the intersection, is computed as weighted
sum intensities of the two neighboring pixels with line segments from
the either center to the intersection (Fig. 1.5c). Now, Eq. (1.4) can be
rewritten and generalized as below.

a11f1 + a12f2 + · · ·+ a1nfn = ρ1

a21f1 + a22f2 + · · ·+ a2nfn = ρ2

. . .

am1f1 + am2f2 + · · ·+ amnfn = ρm

(1.7)
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which can be expressed under a matrix form:

Ax = ρ (1.8)

with

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . .

am1 am2 . . . amn

 (1.9)

x =
[
f1 f2 . . . fn

]T
(1.10)

ρ =
[
ρ1 ρ2 . . . ρm

]T
(1.11)

with A the system matrix, x the unknown object discretized grid of n

pixels, and ρ the acquired X-ray projection data of m detector elements.

1.2.2 Projection geometry

Since the weighting schemes depend on the relative orientation and
position of the object grid in the acquisition geometry, it is crucial to
correctly describe the system geometry prior to the CT reconstruction.
A fan-beam geometry with the line projection model is demonstrated in
Fig. 1.6, with the original detector position colored in black, and ρi a
sample pixel. When a correct system geometry is taken into account,
weight lij is associated with pixel ρi. If geometry misalignment occurs,
for example, the detector is rotated and translated relative to its desired
position, the detector pixel ρi and its new associated coefficient lmn need
to be correctly identified. The weights will be mapped to wrong pixel
values if the displacements of the detector are not accounted for. The
CT reconstruction involves solving the system of linear equations Ax = ρ

(Eq. (1.8)). With the incorrect equation coefficients, it is not possible
to derive a correct solution. Various iterative reconstruction techniques
are implemented around the fundamental idea of finding an optimal
solution for this system of linear equations [? ? ? ]. However, the
misalignment induces reconstruction artifacts in the form of blurring in
the reconstructed CT images [? ]. Therefore, it is crucial to measure and
estimate the system geometry in advance to reduce geometry misalign-
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y

x

detector

ρ
i

S

l ij

displaced detector

ρ
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ρ
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Fig. 1.6 Relation between projection geometry and system matrix coefficients.
In an ideal, known geometry (dark plotted detector), system matrix coefficient
lij is associated with projection pixel ρi. In a misaligned geometry with detector
displacement, lij relates to pixel ρk while ρi is shifted to be mapped to lmn.

ment artifacts in a CT reconstruction. Apart from artifact reduction in
CT images, a calibrated geometry also provides valuable prior knowledge
when the acquired X-ray radiographs are used in a 2D/3D registration
application.

1.3 X-ray cone-beam acquisition geometry

Fig. 1.7 A conceptualization of a cone-beam X-ray acquisition system is
shown in Fig. 1.7 with the X-ray cone-beam represented as a gray shade.
The cone-beam geometry is usually simplified to a form of four rays
connecting source point and four detector corners (dashed lines between
S and the detector corners in Fig. 1.7). During an X-ray acquisition, 3D
object information is projected onto a 2D plane. The process is modelled
by the Beer-Lambert law (Eq. (1.2)), which relates to integration of the X-
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Od
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S

xr
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zr ≡ zd

Fig. 1.7 An example of an ideal circular X-ray cone-beam geometry. In this
setting, the perpendicular projection of the source S coincides with the detector
center Od. Both distances from the source S to the center of rotation Or and the
detector center Od can be estimated correctly.

ray attenuation over the object thickness along the penetration trajectory.
Multiple X-ray images from different directions relative to the object are
acquired to recover the 3D information of the object. A typical circular
cone-beam X-ray system is shown in Fig. 1.8, with an object mounting
stage and a pair of X-ray source/detector. The circular geometry can be
obtained by either stationing the object stage and rotating the source and
the detector simultaneously or vice versa.

1.3.1 Geometric transformations

Geometry information is crucial for a misalignment artifact-free CT recon-
struction. Due to possible displacements of the X-ray source, the detector,
or the rotation axis, it is required to correctly describe the acquisition
geometry in the CT reconstruction. Generally, this can be done by manip-
ulating the system geometry based on the displacement information [? ?
], [? , chapter 2]. The following discussion provides background knowl-
edge about geometry and geometry transformation which will be used
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Source/detector trajectory

Object

Detector

Source

Fig. 1.8 X-ray cone-beam acquisition geometry with different acquisition angles.
A dataset of X-ray radiographs is acquired at different projection angles.

throughout the calibration, and 2D/3D registration application. A point
in 3D space is represented by its coordinates (xp, yp, zp)

T with respect to
a reference coordinate system Oxyz. In this thesis, a right-hand rule is
applied to define rotation direction in both geometry calibration and the
2D/3D registration applications. The direction of the rotation is defined
as follows. The right-hand thumb points towards the positive direction of
the z-axis, and the curl of the other fingers indicates the rotation from
the x-axis to the y-axis (Fig. 1.9). The rotation around the z-axis following
this direction is counter-clockwise and has a positive sign if we look at
the coordinate system from above the z-axis. A similar rule is applied
to the other axes to define the positive/negative (or clockwise/counter-
clockwise) direction of the corresponding rotation angles.
A 3D object can be stored as a voxelized volume with a reference co-

ordinate system in the computer systems. Orientation and position of
the object are defined with respect to the reference coordinate system in
virtual 3D space. By manipulating the reference coordinate system, the
object perspective changes accordingly. In an X-ray cone-beam system,
a coordinate system attached to the rotation center is usually chosen
as the reference coordinate system. Therefore, it is possible to perform
a rigid transformation of an object in an X-ray acquisition geometry by
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O
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Fig. 1.9 Cartesian coordinate system with the right-hand rule.

simply manipulating the rotation center coordinate system. A non-rigid
transformation requires computation of displaced voxel positions and
voxel intensity after applying a transformation model to the voxel coor-
dinates. Affine transformations include scale, shear, translation, and
rotation [? ? ], [? , chapter 4], [? , chapter 3]. However, only translation
and rotation are sufficient to model geometry misalignment of an X-ray
acquisition system as scaling factor can be achieved by adjusting the ob-
ject, source, or detector position with respect to the reference coordinate
system (Section 3). For a 2D/3D registration of an animal object, which
will be discussed in Section 4, a more complex transformation will be
modeled to replicate a limb motion. The basic recipes remain the same
as the translation and the rotation of an object are defined with respect
to a reference coordinate system.

1.3.1.1 Translation

A translation involves movements of a given point (xp, yp, zp)
T along the

three axes (x, y, z) of the 3D coordinate system Oxyz with respective
distances of {∆x,∆y,∆z}. The translated point coordinates (xtp, y

t
p, z

t
p)

T

are computed by Eq. (1.12).
xtp = xp +∆x

ytp = yp +∆y

ztp = zp +∆z

(1.12)

18



1.3 X-RAY CONE-BEAM ACQUISITION GEOMETRY

1.3.1.2 Rotation

Rotations of the point about the three axes x, y, and z with respective
angles {θ, φ, η} are modeled under the matrix form as presented below.

Rx(θ) =

1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 (1.13)

Ry(φ) =

 cos(φ) 0 sin(φ)

0 1 0

−sin(φ) 0 cos(φ)

 (1.14)

Rz(η) =

cos(η) −sin(η) 0

sin(η) cos(η) 0

0 0 1

 (1.15)

An arbitrary rigid rotation of a point or object in the 3D space is obtained
by matrix multiplication, for example, R = Rx(θ)Ry(φ)Rz(η).

1.3.1.3 Homogeneous coordinate system

A homogeneous coordinate system is usually used to represent transla-
tion under a matrix form. It is obtained by adding an extra coordinate
to the 3D point representation [? ]. Point p is now represented in the
homogeneous coordinate system as p = (xp, yp, zp, 1). The translation of
the point p can be rewritten as shown in Eq. (1.16).

xtp
ytp
ztp
1

 =


1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1



xp

yp

zp

1

 (1.16)

with translation matrix T defined as:

T =


1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1

 (1.17)
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And the rotations matrix in the homogeneous coordinate system are
reformulated in Eq. (1.18), Eq. (1.19), and Eq. (1.20) for rotations
around (x, y, z) axes, respectively.

Rx(θ) =


1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

 (1.18)

Ry(φ) =


cos(φ) 0 sin(φ) 0

0 1 0 0

−sin(φ) 0 cos(φ) 0

0 0 0 1

 (1.19)

Rz(η) =


cos(η) −sin(η) 0 0

sin(η) cos(η) 0 0

0 0 1 0

0 0 0 1

 (1.20)

The translation and rotation can now be combined by a matrix multipli-
cation to have a transformation matrix in the homogeneous coordinate
system. For example:

TRx(θ) =


1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1



1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

 =


1 0 0 ∆x

0 cos(θ) −sin(θ) ∆y

0 sin(θ) cos(θ) ∆z

0 0 0 1


(1.21)

1.3.1.4 Forward transformation

Forward transformation refers to a direct computation of the voxel co-
ordinate displacements with respect to the transformation parameters
([? ], [? , chapter 3]). An example of a 2D forward transformation ap-
plied to a 2D pixel grid is shown in Fig. 1.10. The new coordinates of
the object pixels (x, y) are obtained by simply multiplying the original
coordinates with the transformation matrix. As a transformation matrix
almost always contains float coefficients, transformed pixel coordinates
are likely non-integer numbers (xt, yt). However, due to the discretiza-
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Source V Target V t

T

(x, y)

(xt, yt)

Fig. 1.10 Visualization of a 2D forward transformation.

tion of the digital image pixels stored in the computer systems, all the
pixel coordinates must be represented by integer numbers. Therefore,
multiple pixels from the original image are likely mapped to the same
pixel in the target transformed image. There are also pixels in the target
image that are not linked to any pixels in the source image, which create
discontinuities in the target image as shown in Fig. 1.10 (blank pixels in
between surrounding gray pixels). The same scenario is applied to the
3D voxels and volumetric image forward transformation.

1.3.1.5 Inverse transformation

Inverse transformation is a commonly used technique to tackle discon-
tinuities in the transformed image [? ], [? , chapter 3]. In general, an
inverse transformation maps each target voxel with a voxel in the source
volume and therefore eliminate discontinuities. Visualization of inverse
transformation is shown in Fig. 1.11. Like forward transformation, an
inverse transformation matrix contains non-integer coefficients. Each
integer pixel (xt, yt) in the target volume is likely to be mapped to a single
non-integer source pixel (x, y). Since the non-integer pixel does not hold
an intensity, an interpolation is followed to derive the corresponding value
for the target pixel. Extended to 3D space, it is possible to obtain inverses
of translation and rotations by applying opposites of the translations Eq.
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Source V Target V t

(xt, yt)

T−1
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Fig. 1.11 Visualization of a 2D inverse transformation.

(1.22) and the rotations Eq. (1.23).

T−1 =


1 0 0 −∆x

0 1 0 −∆y

0 0 1 −∆z

0 0 0 1

 (1.22)

R−1
x (θ) = Rx(−θ) =


1 0 0 0

0 cos(−θ) −sin(−θ) 0

0 sin(−θ) cos(−θ) 0

0 0 0 1

 =


1 0 0 0

0 cos(θ) sin(θ) 0

0 −sin(θ) cos(θ) 0

0 0 0 1


(1.23)

1.3.2 Interpolation

Inverse transformation usually faces non-integer voxel mapping, i.e., a
mapped source voxel is often non-integer, and therefore requires using
neighboring voxel intensities to derive its expected grayscale. This pro-
cess is referred to as interpolation, in which intermediate data points are
obtained based on given existing neighbors [? ? ]. Trilinear and tricubic
spline interpolation are among the common techniques used to infer the
intensity value of a float voxel based on its neighboring voxels in a regular
Cartesian grid.
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Fig. 1.12 Neighboring points (blue) in a regular Cartesian grid that are used for
the interpolation of an intermediate point at the middle (red).

Trilinear interpolation algorithm relies on a grid of eight neighboring
voxels (blue) to compute intensity of an unknown voxel P (red) (Fig. 1.12).
A straight line is fitted to a pair of intermediate points along each dimen-
sion to compute intermediate anchor points (orange). These intermediate
anchors are then used to calculate the value of the target point (blue).
Tricubic spline is a form of interpolation where intermediate points are
computed by fitting a polynomial of a certain degree to its neighboring
points. The value of the unknown point is obtained by evaluating the
polynomial at the unknown point’s coordinates. In this thesis, a poly-
nomial of degree 3 will be used for the interpolation, which is usually
regarded as cubic spline interpolation [? ]. Tricubic spline interpolation
is the 3D extension for the cubic spline method that is applied to 3D data.
A 3× 3-neighboring voxels are used for inferring intermediate data points.
A cubic spline is fitted to three neighboring voxels along each volume
dimension to derive an anchor point for the later computation. In other
words, along each dimension, two polynomials y = gi(x), i = 1, 2 are inter-
polated for each of a pair of control points (xi−1, yi−1) and (xi, yi), i = 1, 2

Fig. 1.13.
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(x1, y1)

(x2, y2)(x0, y0)
P (x, y)

Fig. 1.13 A visualization of a 3rd-order polynomial (cubic spline) interpolation
with three control points (blue) for an unknown point (red).
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This chapter discusses the fundamentals and applications of deep
learning. Section 2.1 focuses on the basic concept and architectures of
machine learning and deep learning models. Next, computational opera-
tors and techniques in convolution neural networks will be presented in
Section 2.2. Finally, Section 2.3 provides an overview of a deep residual
network (ResNet), which will be applied in chapter 3, 4. A more detailed
and complete discussion can be found in [? ? ].

2.1 Fundamentals of deep learning

2.1.1 Machine learning

Machine learning describes the computation techniques that extract and
reveal meaningful information from input data [? , chapter 1]. Data
refers to anything that can be recorded, measured, and stored in the
form of raw numbers, pictures, sounds, language characters, etc. The
meaningful information is any information that can be of interest in the
study, or that can serve a particular purpose. Typically, the meaningful
information is defined prior to designing a machine learning algorithm so
that the algorithm is built and customized for desired details from the
data.
The data contains data points that map each measurement (temperature,
price, wind speed, etc. ) to a specific value. Each data point is referred to
as sample with the corresponding measurement (feature) and mapped
value (label/ground truth). A machine learning algorithm is usually de-
scribed as a mathematical model under the form of a learning function
with learnable coefficients. The model represents the expected behaviors
of input features, which are then compared to recorded or measured
(ground truth) values. A cost/loss function is formulated to measure
difference between the expected values and the provided labels.
A training refers to a process in which the learning function evaluates
every data point and update the mathematical model coefficients so that
the expected data behavior (prediction) would be close to the measured
data. An example of a machine learning process is shown in Fig. 2.1.
First, the learning function is computed at each sample feature data to
get the corresponding prediction. The predicted value is then compared
to the respective label, and the loss is derived. After that, coefficients
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Feature
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Update learnable coefficients

Fig. 2.1 An example of a machine learning system with input containing a
feature vector and a ground-truth label. The learning function computes the pre-
diction based on the input feature and compares it to the given label. Learning
function coefficients are then updated based on the loss between the prediction
and label.

of the learning function are updated accordingly so that the predictions
evolve towards the true labels. The dataset that is used for training is
often referred to as training data. In a machine learning application,
there are often the values that need to be predefined, such as the rate to
update the learning function coefficients or the number of times that the
data evaluation will be performed. These types of values are regarded as
hyperparameters, and preset for the training. The coefficients of a ma-
chine learning model that are updated and finetuned during the learning
process are referred to as parameters, and are adjusted by following a
particular scheme.
There are two major categories of machine learning techniques, super-

vised and unsupervised learning. Supervised learning techniques include
classification and regression. Classification techniques focus on training
a model that can recognize and distinguish different types of objects in
the training data and is capable of inferring an object from a sample
that is not included in the training. Regression techniques learn a gen-
eral "trend" of the training data to predict possible "future" data points.
Regression usually involves fitting a linear (straight line) or non-linear
(curved) mathematical model to the training data. A prediction results
from evaluating the fitted model at the new data points. Unsupervised
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learning techniques include clustering, noise reduction, and dimension
reduction. Clustering involves sorting data into groups of similar items
or characteristics. Noise reduction refers to the techniques that suppress
the unwanted signal from original data to enhance interested characteris-
tics or meaningful information in the data. Features of the data are often
highly-dimensional. However, not all features provide useful information,
as some could be redundant. Dimension reduction techniques reduce
the number of features, or discard unwanted features to simplify data,
enhance the features that convey meaningful information, and increase
the quality of output results.

2.1.2 Deep learning

Deep learning is a rapidly growing subset of machine learning in recent
years. It has been applied to various problems in computer vision, natural
language processing, or data analysis due to its robustness, simplicity
in implementation with end-to-end training capabilities [? , chapter
1], [? , chapter 20]. Instead of predesigning a mathematical model
to describe data behavior, deep learning uses specialized computation
layers stacked together to create a "deep" computational architecture to
extract meaningful information from data [? , chapter 20]. The word
"deep" implies the multi-layer architecture of this learning model. The
specialized computation layers are usually the simple computational
operators that encode input data into abstract representations. A deep
learning model is built by stacking the simple operators in a particular
mechanism to perform complex computation and representation of input
data. An example of a deep learning model with four layers (an input, two
hidden, and an output layer) is shown in Fig. 2.2. Each of the two hidden
layers contains four computation elements called artificial neurons (or
perceptrons), and an output layer has three neurons. The neurons and
layers can be constructed in particular methods, creating various deep
neural network architectures to solve specific problems. There are several
major deep neural network architectures [? ], including:

• Unsupervised networks:

– Autoencoders learn and compress input x to an abstract form
f(x) and then reconstruct the input into another version (usu-

28



2.1 FUNDAMENTALS OF DEEP LEARNING

Input Layer 1 Layer 2 Output layer

O
u

tp
u

t

Fig. 2.2 An example of a deep learning system with an input, two hidden, and
an output layers.

ally a derived version) of it as the output g(f(x)). An ideal
autoencoder would be the network that produces g(f(x)) = x

but would not describe the training data too closely or exactly.
Autoencoders are usually applied in denoising and data dimen-
sion reduction ([? , chapter 14], [? , chapter 25]).

– Generative Adversarial Networks (GANs) are trained based on
a clever strategy that two deep networks compete with each
other ([? ], [? , chapter 27]). One network learns to create
new samples that do not exist in the training samples but are
very similar to them so that the other network cannot identify
whether the newly generated samples belong to the training
data or not. The network that is responsible for generating the
synthetic samples is called generator, while the other network
is referred to as discriminator.

• Convolutional Neural Networks (CNNs) refer to a group of deep neu-
ral networks that are constructed based on convolution operators
[? , chapter 9]. A CNN usually contains multiple convolution layers
that perform feature extractions on the input data. CNNs are widely
used in image understanding applications and will be discussed in
detail in Section 2.2.
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• Recurrent Neural Networks (RNNs) refer to the deep neural models
that are designed specifically to process sequence data x(t), with t

ranging between 0 and τ . RNNs generally try to learn from received
sequence data to predict future data ([? , chapter 10], [? , chapter
22]). The sequence data is the type of data that carries information
throughout time, i.e., current data information depends on previous
or future data, such as an audio sequence, human language, any
kind of data recorded over time, etc. During training, RNNs compute
a new state h(t) of the data based on the previous state h(t−1) and the
new incoming input sequence x(t) as h(t) = f(h(t−1), x(t)). The idea
behind it is that predicting future information does not require stor-
ing the sequence data x(t+1) from the beginning of time. RNNs only
generate a fixed and meaningful length of data for the future state
vector h(t), which will then be compared to ground-truth training
state y and update the training model parameters.

2.1.3 Training a deep learning model

A deep learning model is designed and built based on the result or
information that is expected to to be extracted/learned from the data. The
training process is initialized with default or random values of the network
parameters. Training is an iterative process in which the training data is
evaluated multiple times in order to adjust the parameters accordingly.
This repetition is called epoch. Depending on the size of the training
datasets as well as the model inference results, the number of training
epochs ranges from several hundred to thousands. During the training,
we also need to evaluate whether the model is performing correctly on a
separate, independent dataset (validating dataset) apart from the training
data through a validation. When the training completes, the network
parameters are tuned towards the expected outputs. The trained model
will be tested or evaluated on one or different study datasets, which must
not contain samples in the training or validation data. This process is
regarded as testing and the datasets is referred to as test dataset. It is
recommended to split the original dataset into 60%, 20%, and 20% [? ,
chapter 8] for training, validation, and test set. In practice, the ratios
might differ as upto 88% of the data can be put into traning, and only
4% and 8% are used for validation and test set, respectively [? ]. The
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Fig. 2.3 An example of a convolutional neural network with typical building
blocks.

optimum split of the test, validation, and train set depends upon factors
such as the use case, the model architecture, the number of samples in
the orginal data set, or the dimension of the data [? ].

2.2 Convolutional neural networks

2.2.1 Foundations of the convolutional neural networks

A convolutional neural network is constructed from different building
blocks, including convolution, activation, pooling, and fully connected
layers [? ? ]. The building blocks can be combined and arranged in
many different ways to create various depths and architectures for spe-
cific training purposes and data. CNNs are usually applied to process
grid-like data, such as images, since the convolutional operator is robust
and efficient in extracting useful information from this type of data. An
example of a CNN with the typical building blocks is shown in Fig. 2.3. A
CNN model can be represented as a function f of input x and learnable
parameters ω Eq. (2.1).
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Input

Kernel

Output

Fig. 2.4 Convolution of a 3× 3-kernel with a 4× 4 input array padded by 1 in
both horizontal and vertical direction.

F = f (x,ω) (2.1)

During a training process, predictions/inferences F are computed with
respect to input data via a forward-propagation f(x,ω). The training
process minimizes the differences between the predictions and the truth
values y, provided as training labels. The learnable parameters are up-
dated via a back-propagation process that is based on a gradient descent
algorithm with a certain learning rate. During such process, the gradient
of the training loss with respect to individual parameters is computed,
and the network parameters ω are updated using (Eq. (2.2)). A more
detailed discussion will be presented in Section 2.2.2.

ω = ω − ∂f

∂ω
(2.2)

Convolution operation perform linear convolutional operations on input
data. Convolution kernel or filter mask refers to a small matrix used in
a convolution operator . The convolutional process computes the sum
of the elementwise product of image pixel intensities with the kernel
coefficients (see Fig. 2.4) after the filter is rotated by 180◦ [? , chapter
3]. The kernel sizes are predefined as hyperparameters while the kernel
coefficients are initialized randomly or assigned to scalar values at the
beginning of the training. The kernel coefficients are updated during
the training based on the back-propagation using different optimization
algorithms (Section 2.2.2).
With any kernel size k that is larger than 1, it is not possible to com-

pute the convolution for the outermost pixels of the image grid as kernel
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Input
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Output

Fig. 2.5 Convolution of a 3×3-kernel with a 4×4 input array padded by 1, stride
1 and 2 in horizontal and vertical directions, respectively.

centers cannot be placed at these pixels. As a result, the convolution
image has a smaller size than the input. Padding is the technique that
lines extra pixels to the outer borders of an image enabling computation
of the outermost pixels’ convolution hence increasing the effective size
of the convolution result. Padded pixels are usually set to zero, and the
padding size is set prior to the training. An example of a padding of 1
with a convolution of 3× 3-kernel size is shown in Fig. 2.5 with padded
pixels highlighted in between the two blue rectangles.
When computing the convolution of a kernel with an image, the kernel
center is virtually placed at different pixel positions across the input grid.
Distance between the two consecutive kernel center positions is referred
to as stride. In other words, the stride is the number of pixels skipped in
horizontal or vertical directions when performing the convolution opera-
tor over an image [? ]. The stride step is another hyperparameter that is
chosen before the training.
Activation functions non-linearize the results from convolution oper-

ation. Previously, the activation functions such as sigmoid or tangent
hyperbolic (tanh) functions Fig. 2.6 were widely used. The Eq. (2.1) can
be rewritten as follows:

F = f (σ (x,ω)) (2.3)

with σ (x,ω) an activation function. The parameters ω are updated based
on the gradient of the loss function with respect to the parameters using
the chain rule:

∂f

∂ω
=

∂f

∂σ

∂σ

∂ω
(2.4)
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Fig. 2.6 Activation functions.

As a result, if sigmoid (Fig. 2.6a) or tanh (Fig. 2.6b) are applied, the partial
derivative of the activation function (Eq. (2.4)) approaches zero when the
function saturates. The parameters are therefore not updated properly to
make the training progress. Recent CNNs exploit a rectified linear unit
(ReLU) as the activation function since it suppresses gradient vanishing
and increases the learning speed of a deep neural model. ReLU simply
finds the value f(x) = max(x, 0) (Fig. 2.7). A parametric ReLU (PReLU) [?
] with learnable parameters α was also introduced to increase conver-
gence rate with f(x) = max(x, 0) + αmin(0, x). Leaky ReLU is a variance of
PReLU where α is fixed as a hyperparameter (Fig. 2.7). At the last layer
of a neural network, typical activation functions are usually chosen to
return expected outputs. For example, when dealing with classification
problems, a dense layer is often placed at the end of the networks with
the same number of outputs as the number of categories. For this type of
network, a softmax is often followed to simply scale the outputs so that
they add up to 1.
Pooling layer provides a simple down sampling operation over convo-

lution outputs. Max pooling is a typical pooling operator that extracts
maximum values of feature patches. Global average pooling performs
extreme down sampling as pixel values of a whole image/feature map are
averaged to get 1× 1 matrix. There are no learnable parameters in this
pooling layer, however patch sizes are predefined for the training.
Fully connected (FC) layer is the neuron that receives an input from
every neuron of the previous layers. FC is also called a dense layer. A
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Fig. 2.7 Rectified linear unit (ReLU) (a) and PReLU with parameter α (b).

fully connected network or multi-layer perceptron is constructed from a
stack of only dense layers.
Loss functions (cost functions) measure differences between network
inferences (expected values) and the given labels (ground truths). The
loss function is defined prior to the training based on the deep learning
problems, expected outputs, etc.. Cross-entropy or softmax loss function
is usually employed in multi-class classification problems. First, a dense
layer with a softmax activation function is implemented at the output
layer to obtain expected probability p ∈ [0, 1]. Then cross-entropy loss is
computed using Eq. (2.5).

L (p, y) = −
∑
i

yi log(pi) (2.5)

where yi, pi the true labels and predicted values from the network outputs,
respectively, and i ∈ [1, N ], N the number of network outputs. Euclidean
loss function or mean-squared error is a typical loss function used in
regression problems. Computation of the Euclidean loss is as follows:

L (p, y) =
1

2N

N∑
i=1

(pi − yi)
2 (2.6)

The L1-norm can also be employed as a loss function which measures
absolution different between predictions and ground-truth values Eq.
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(2.7).

L (p, y) =
N∑
i=1

|pi − yi| (2.7)

Regularization is applied to suppress overfitting in training a CNN model
[? , chapter 20]. Overfitting occurs when the trained model has a low
error when evaluating on training data but results in a high loss on other
validation/testing datasets. This phenomenon is also regarded as high
variance, and is often caused by a network architecture that is too deep.
There are several common techniques to tackle this issue:

• Dropout is the technique in which random neurons of the network
are dropped during each training epoch. This technique allows
feature learning to be distributed across the whole network. Dropout
also simplifies the network architecture, hence preventing overfitting
to the training data.

• Drop-weights is another method involving adding a regularization
factor into the formation of the loss function. By adjusting the
regulation factor, the weights are zeroed-out in hidden units, and
the network architecture is simplified.

• Data augmentation effectively increases the amount of data for
training by employing various techniques. For example, geometric
transformation or data simulation can be used as an image data
augmentation tool.

• Batch normalization normalizes intermediate outputs of hidden
layers allowing faster convergence, avoiding gradient vanishing,
overfitting, etc.

2.2.2 Optimization algorithms

During training, the learnable parameters of a deep neural network are
updated to minimize the cost function through a learning algorithm
(optimizer). Therefore, it is vital to choose a suitable optimizer for a
converged training [? ]. The optimizers use partial derivatives of the loss
function with respect to the learnable parameters as the backbone for
the parameter updates.
Gradient descent algorithm
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The parameters are updated throughout the training by a gradient de-
scent mechanism. A learning rate is defined as the step size of parameter
updates, while the training epoch represents the number of repetitions
in which the network parameters are updated. The gradient descent al-
gorithm is as follows. First, the 1st-order derivative of the lost function L
is computed with respect to individual parameters. Then the parameters
are updated using Eq. (2.8).

ωe = ωe−1 − α
∂L
∂ω

(2.8)

with α the learning rate, ω the learnable parameters, and e the current
epoch. Training usually performs on a large amount of data, i.e. batch.
Often, due to memory limitations, training data is divided into multiple
smaller mini-batches. Different parameter update strategies can be ap-
plied depending on the types of data and network performance.
Batch gradient descent is the technique where the loss function is evalu-
ated on the whole training dataset at once. Subsequently, the parameters
are updated in a stable manner as the gradient is computed using the
whole dataset. This method can only be applied to small training datasets
that fit the memory of the training computer system.
Stochastic gradient descent, in contrast, computes the gradient for
each sample in the training data. The parameters are therefore updated
sample-wise. Although this technique allows faster gradient computation
than batch gradient descent, it could create an unstable and noisy con-
vergence.
Mini-batch gradient descent exploits the advantages of both batch and
stochastic gradient descent techniques as the training dataset is divided
into multiple smaller mini-batches. The parameters are updated based
on the gradients computed with respect to these mini-batches. Therefore
the technique has a faster computation than the batch gradient descent
and more stably converges than the stochastic gradient descent method.
For these reasons, the mini-batch gradient descent has been widely em-
ployed in training a deep neural network, especially with a large amount
of data.
Simply applying gradient descent in a training could experience a very
slow convergence or a fast decay of the learning rate. Different optimizers
are proposed to improve the speed and the occurrence of training conver-

37



SUMMARY

gences [? ].
Gradient descent with momentum utilizes the gradient decent tech-
nique with the weights computed based on the result from the previous
training step via a momentum factor β1, with the moving average of the
weight (moving weight velocity) initialized to zero. The moving weight
velocity ∆ωe in the current epoch e is computed based on the previous
weight update and the current gradient descent with momentum factor
β1 and learning rate α Eq. (2.9).

∆ωe = β1∆ωe−1 + (1− β1)
∂L
∂ω

ωe = ωe−1 − α∆ωe

(2.9)

The momentum factor is set in the range [0, 1]. With a low momentum
factor, the moving weight velocity tends to adapt quickly to the gradient of
the cost function (large (1− β1)), which could trigger slower convergence
when the optimizer navigates through a plateau landscape of the cost
function as the gradient is small. In contrast, a high momentum factor
allows fast optimization convergence as the weights move towards the
extrema at stable high speeds when it is in the direction of the extrema.
Root mean squared propagation - RMSprop employs squares of gradient
as regularization factor to compute propagation rate Λ of the parameters.

Λωe = β2Λωe−1 + (1− β2)

(
∂L
∂ω

)2

ωe = ωe−1 − α
∂L
∂ω

1√
Λωe + ϵ

(2.10)

with ϵ ≈ 0 a factor to prevent division by zero. RMSprop can prevent
too slowly or fast decay of the learning rate by adjusting β2. A low β2

allows slower learning rate adaptation to the gradient direction and vice
versa. However, it takes up more memory than the gradient descent with
momentum due to extra computation of the propagation factor Λ for every
network parameter.
Adaptive moment estimation - adam exploits the advantages of both
momentum and RMSprop to adaptively adjust the updating step for each
parameter in the model [? ]. Apart from the moving average ∆ωe, adam
also utilizes the square of the gradient as a correction factor Λωe for
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adaptive moment computation Eq. (2.11).

∆ωe = β1∆ωe−1 + (1− β1)
∂L
∂ω

Λωe = β2Λωe−1 + (1− β2)

(
∂L
∂ω

)2

∆ωcorr
e =

∆ωe

(1− β1)
e

Λωcorr
e =

Λωe

(1− β2)
e

ωe = ωe−1 − α
∆ωcorr

e√
Λωcorr

e + ϵ

(2.11)

with e the current training epoch.
When applying adam, hyperparameters such as exponential decay rate
β1, β2 are usually fixed to the default values. In contrast, the learning
rate α is tuned based on the target training model and data. Adam also
requires most memory usage in comparison to the other optimization
methods. However, it remains a widely default optimizer in training a deep
learning model due to its learning efficacy. In practice, hyperparameters
β1, β2, ϵ are usually set to default values of 0.9, 0.999, and 10−8, respectively,
and α is tuned for specific model and data.

2.3 Deep residual network - ResNet

2.3.1 Introduction

As deep neural networks are designed deeper, the networks face gradient
vanishing when going through the back-propagation for the parameter
updates. This phenomenon occurs when more layers are added to the
network, and the training accuracy gets saturated quickly, so we observed
a higher training error in a deeper network. This phenomenon also occurs
when the added layers are identity mapping of existing shallow models.
Deep residual network (ResNet) [? ] was introduced to tackle this issue by
introducing a residual block. An example of a residual block is presented
in Fig. 2.8 with a connection that carries out identity mapping of input
x to the output of the block. The residual block should have more than
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Weight layer

Weight layer

Identity of x

x

ReLU

ReLUF(x,ω) + x

Fig. 2.8 An example of a residual building block with two convolution layers.

one weighting layer so that the deep residual network can benefit from
the residual block building [? ].

2.3.2 Network architecture
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Fig. 2.9 ResNet architecture with four residual building blocks marked by
different colors (blue, dark cyan, orange, red). Each contains two stacked
convolution layers.

An example of a deep residual network with four residual building blocks
(ResNet18) is shown in Fig. 2.9. Each building block contains two stacked
residual layers (represented by a shortcut from input to output of each
layer). ResNet can also be implemented deeper up to 152 layers. Table
2.1 shows different ResNet architectures with the corresponding number
of residual building blocks, kernel sizes, as well as expected input and
output size of the networks. Since the networks are evaluated on a
dataset of 1000-class-dataset, the output layer is a 1000-dimension-fully-
connected layer. For each residual layer (first column), size of the output
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Table 2.1 Variants of the ResNet architecture. Residual building blocks are in
the square brackets with followed corresponding number of output channels,
and number of residual blocks.

layer output size ResNet18 ResNet34 ResNet50 ResNet101 ResNet152

conv1 112× 112 7× 7, 64, stride 2

conv2_x 56× 56
3× 3, max pooling, stride 2[

3× 3, 64

3× 3, 64

]
× 2

[
3× 3, 64

3× 3, 64

]
× 3

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

conv3_x 28× 28

[
3× 3, 128

3× 3, 128

]
× 2

[
3× 3, 128

3× 3, 128

]
× 4

1× 1, 128

3× 3, 128

1× 1, 512

× 4

1× 1, 128

3× 3, 128

1× 1, 512

× 4

1× 1, 128

3× 3, 128

1× 1, 512

× 8

conv3_x 14× 14

[
3× 3, 256

3× 3, 256

]
× 2

[
3× 3, 256

3× 3, 256

]
× 6

 1× 1, 256

3× 3, 256

1× 1, 1 024

× 6

 1× 1, 256

3× 3, 256

1× 1, 1 024

× 23

 1× 1, 256

3× 3, 256

1× 1, 1 024

× 36

conv3_x 7× 7

[
3× 3, 512

3× 3, 512

]
× 2

[
3× 3, 512

3× 3, 512

]
× 3

 1× 1, 512

3× 3, 512

1× 1, 2 048

× 3

 1× 1, 512

3× 3, 512

1× 1, 2 048

× 3

 1× 1, 512

3× 3, 512

1× 1, 2 048

× 3

pooling 1× 1 average pooling, 1 000-d fc, softmax

features are shown in the second column ([· × ·]). In the third column,
kernel sizes ([· × ·, ]) and the number of output channels ([, ·]) are in the
square brackets with the corresponding stacked layers ([ ] × ·]) next to
it. Due to the robustness in feature learning and transferable trained
models, ResNet has been applied to various research topics such as 2D
landmark detection and tracking [? ? ? ] or abnormality/disease studies
[? ? ? ].
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3.1 Introduction

Biplanar X-ray cone-beam CT refers to an X-ray acquisition system with
two source/detector pairs positioned at different viewing angles relative
to a target object. With such a setting, data can be acquired simultane-
ously from two, e.g., orthogonal directions or in dual-energy mode. The
biplanar X-ray systems are widely used in image-guided radiotherapy
applications as they provide a fast acquisition, and reduce the exposure
of the patients to ionizing radiation [? ? ? ]. The biplanar acquisition
also allows reconstruction of 3D object motion from only a few X-ray
radiographs when combined with a pre-recorded CT volume [? ? ? ]. A
biplanar circular cone-beam X-ray CT system (3D2YMOX - 3-Dimensional
DYnamic MOrphology using X-rays) [? ] was built for morphological
studies of the living animals. The system is highly modular, and geom-
etry misalignment appears in every new acquisition setup. To obtain
a high-quality tomographic reconstruction and exploit the benefits of a
biplanar X-ray CT setup, the system needs to be calibrated by estimating
the geometric relationship between the X-ray source and the detector
pairs with respect to the rotation axis prior to image reconstruction.
Many studies have dealt with single cone-beam X-ray CT system cal-
ibration. They include self-calibration methods [? ? ? ? ], which
calculate the geometry parameters of the acquisition system directly from
the acquired radiographs of the target objects, and calibration phantom-
based techniques [? ? ? ? ]. Several self-calibration methods estimate
the geometry parameters by using an iterative alignment of simulated
and measured projection data [? ], or refining the sharpness of the
reconstructed CT images [? ]. Both approaches are computationally
expensive due to iterative CT reconstruction being required. Some other
self-calibration techniques effectively reduced calculation costs with the
projection-based procedures. For example, Wang et al. [? ] and Kyung-
taek et al. [? ] correct for the geometry misalignments of a parallel 3D
geometry based on the acquired projections. However, self-calibration
with a projection-based procedure depends on the object’s orientation
and position with respect to its projection’s coordinate system. Therefore
calibration prior to each scan is required, even with an unchanged geom-
etry.
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Most X-ray CT geometry calibration methods that rely on fiducial markers
employ specifically designed phantoms in which the position of the mark-
ers is measured accurately using Coordinate Measuring Machines (CMM).
While Liu et al. [? ] introduced a phantom that carried 12 spherical
zirconia markers placed on a triple helix glass phantom, Cho et al. and
Chetley et al. [? ? ] designed a phantom with two rings of evenly placed
steel markers on an acrylic cylinder. Efforts have been made to reduce
the complexity of a calibration phantom with a phantom of vertically
arranged markers proposed by Gross et al. [? ], or a 14-marker phantom
presented by Mennessier et al. [? ].
Only a few studies have been reported on estimating the geometry of a
biplanar X-ray CT system with a calibration phantom, [? ? ]. Chang et
al. presented a method to calibrate a dual-axis tomosynthesis using an
acrylic plate phantom holding non-solid and solid spheres. Sawall et al.
[? ] method did not require knowing the sphere marker’s position but
needed a well-measured nominal system geometry, which is not fulfilled
in the 3D2YMOX system.
A LEGO phantom-based calibration technique was presented for a single
cone-beam X-ray system [? ]. However, the relative angle between the two
systems was not taken into account. It is necessary to have a comprehen-
sive calibration procedure that estimates the relative position of the two
cone-beam X-ray CT systems. If this biplanar angle is known, it could be
possible to exploit the benefits of a biplanar X-ray CT setup. For example,
the system field-of-view can be extended beyond the physical size of a
single system detector [? ] or enhancing CT reconstruction quality as
extra data can be acquired in an acquisition from two orthogonal X-ray
systems. By choosing two different source energies, more object detail
may be revealed in the CT images. Furthermore, when the biplanar
geometry is fully calibrated, the two CT volumes obtained from two single
systems can also be registered automatedly.
This chapter presents a complete procedure to calibrate the geometry of
a modular biplanar cone-beam CT system with a LEGO phantom con-
taining metal markers strategically placed in designated bricks [? ? ].
The LEGO phantom is easy to build and customize based on the size
of target systems. The marker position relative to the phantom can be
calculated from the dimensions of LEGO bricks at a reliable accuracy
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as LEGO bricks are molded with a dimensional tolerance of 5 µm [? ].
Furthermore, the proposed calibration method requires no pre-calibrated
geometry information, and is capable of calibrating a modular biplanar
cone-beam X-ray CT system such as the 3D2YMOX system. The chapter
is structured as follows. Section 3.2 presents the proposed methodology
to build a low-cost calibration phantom using LEGO bricks, and metal
markers along with a deep learning-based procedure to estimate the bead
centers accurately. Section 3.3 discusses the experiments that were
performed to validate the proposed method. Finally, further discussions
and conclusions are presented in Section 3.4.

3.2 Methods

3.2.1 3D2YMOX system

Rotation
stage

D1

S1

D2

S2

(a)

7
6
.2

m
m

47.7
m

m

47.7 mm

(b) (c)

Fig. 3.1 The 3D2YMOX system (a), LEGO calibration phantom with embedded
metal markers in the blue bricks (b) and its transparent view (c).

Fig. 3.1a shows the 3D2YMOX system (3-Dimensional DYnamic MOr-
phology using X-rays system) [? ] used for morphological and biome-
chanical research on living animals. The system consists of two X-ray
source/detector pairs {S1, D1} and {S2, S2}, and a rotation stage, which
is mounted on a wheeled tripod (Fig. 3.1a). The sources S1 and S2 are
mounted on two ceiling gantries that allow to easily position them in
3D space. The orientation of each source around three principal axes is
controlled by attached side handlebars. In addition, the two detectors
D1 and D2 are put on two trolleys with hydraulic lifts to adjust their
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horizontal and vertical position. Moreover, each detector has a steering
wheel that manipulates its orientation in 3D space. Consequently, each
device is positioned independently from the others. Therefore, in any new
installation, the position and orientation of the source and the detector
as well as the position of the stage may change dramatically. With such a
setup, it is challenging to align the sources, detectors, and rotation stage
properly and accurately measure the geometry. It is therefore essential
to perform a calibration to estimate the system geometry as accurately
as possible.

3.2.2 LEGO calibration phantom

Phantom-based calibration methods make use of marker (metal bead)
positions in the measured X-ray projections to estimate the geometry
parameters. The phantom must be built to maximize the contrast be-
tween the LEGO structure and the metal markers in the radiographs
to facilitate the markers extraction from the X-ray projections. Steel
markers with a diameter of 4 950 ± 10 µm are embedded in the hollow
cylinders of the bricks by pushing the LEGO bricks on a flat surface to
press the metal markers exactly one diameter deep into the cylinders.
Then these marker-bearing bricks are placed such that no two markers
are within the same vertical bricklayer in the phantom (blue LEGO bricks
in Fig. 3.1). This design avoids overlapping markers in the projections.
Moreover, the markers are placed close to the phantom’s facets to maxi-
mize the coverage area of their projection trajectories on the detector field
of view. As studied by Ferrucci et al. [? ], the coordinate changes due to
geometry misalignments are dependent on the marker positions relative
to the rotation axis. A strategic design of the phantom can address
these coordinate deviations in the misaligned geometry. The phantom
dimensions and the number of markers can be adjusted to the size of the
system field-of-view. The dimensions of the LEGO bricks and the metal
markers were measured by an electronic caliper with 10µm accuracies.
The 3D positions of the metal markers in the phantom are calculated
relatively to the dimensions of a single LEGO brick.
According to the company disclosure [? ], the LEGO bricks are molded
with a dimensional tolerance of 5µm. With a detector pixel size of 142

µm and a magnification factor of ≈ 1.3 [? ], the effective voxel size of the
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3D2YMOX system is around 100 µm. Therefore, the dimensional tolerance
of the LEGO bricks is ≈ 20 times smaller than the effective voxel size
of the target system. With the current 292 × 292 mm image intensifier
screens of the 3D2YMOX system, the LEGO calibration phantom was
built with only eight bricklayers tall (76.2 mm), a width of 47.7 mm (sin-
gle 6× 2-brick width), and five metal markers. This structure prevents
accumulated dimensional errors of the bricks horizontally. Vertical accu-
mulated tolerance is still below the effective voxel size of the 3D2YMOX
system. Two identical calibration phantoms were built to validate the
feasibility of reproducing the LEGO phantom and to study the effect of the
dimensional tolerance on the geometry calibration of a real biplanar X-ray
CT system. In addition to the calibration phantoms, a test phantom was
built from the LEGO bricks and metal markers with a different structure
and size from the calibration phantom for evaluating CT quality as well
as calibration accuracy.

3.2.3 Extraction of the bead centers

In the template matching-based method [? ], the center of each bead
is estimated from the center-of-mass (CoM) of its corresponding region
of interest (ROI), which is extracted from the calibration projections.
However, cone-beam effects and the overlapping projection of the holding
structure on the ROIs complicate the CoM calculation. It calls for a
robust method that can handle different cone-beam geometry effects as
well as asymmetric ROIs and derive center locations more accurately.
The center estimation procedure can be described as finding a mapping
model F that takes the marker ROIs x as inputs with parameters W and
returns the corresponding center coordinates. W is obtained through an
optimization process that minimizes the difference between F(x,W) and
ground-truth center coordinates (ugt, vgt).

Ŵ = argmin
W

{[
F(x,W)−

(
u′, v′

)]2} (3.1)

In Eq. (3.1), F represents any deep learning model that learns abstract
features from the input ROIs and maps them to the center coordinates of
the bead in the ROI considering t being the hyperbolic tangent function
and t(ugt) = u′, t(vgt) = v′. Two deep learning models (BeadNet) were
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trained separately for each center coordinate regression. The goal of
BeadNet is to find abstract features of a marker ROI that map to cor-
responding center coordinates. Choosing a feature learning model is
important to have accurate center inference. ResNet50 [? ] emerges
as a deep learning model that is trained on more than a million images
for object classifications. ResNet50 is 50 layers deep and is divided into
five convolution layers. We exploited the robustness of the pre-trained
ResNet50 model in learning abstract object features to continue training
for our marker center extraction. The output layer of the model is re-
placed by a hyperbolic tangent function to adapt to the regression of the
markers’ coordinate offsets. To this end, two BeadNets were trained at a
learning rate of 0.01 using adam adaptive learning rate optimizer with a
batch size of 40 ROIs.
The generation of training data is one of the critical steps for deep learn-
ing applications. The X-ray energy spectrum can be different for each
acquisition. Hence, the training dataset included projections of the cali-
bration phantom simulated with different X-ray source spectra. Moreover,
as the cone-beam X-ray CT system was parameterized using 12 degrees-
of-freedom, the training dataset needs to replicate possible geometry
configurations, which are common settings of the 3D2YMOX system. A
set of 400 projections were simulated for each of 120 angles covering
360◦ rotation. For each set, the object and detector orientations and
translations were modified by a random value generated from a uniform
distribution in the intervals of between −10◦ and 10◦ and between −30

and 30 mm, respectively. The object yaw φo was generated randomly
up to 200◦ simulating varied orientations of the calibration phantom. A
1 100 mm source-detector distance (SDD) along with varied source-object
distances (SODs) were simulated for typical positions of the sources, the
object, and the detectors of the 3D2YMOX system.
Reference marker center orbits that correspond to the simulated geome-
tries were calculated analytically, with which 25 ROIs were extracted
around each marker from every simulated radiograph using reference
marker positions. The training dataset contains the marker ROIs and
their corresponding ground-truth center coordinate offsets. The xy-
coordinate offsets of a ROI are computed as signed differences between
the ROI’s center and the correct coordinates of the marker’s center. Then,
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tangent hyperbolic function is applied to the offsets converting them to
the output ranges of the deep learning model. In this work, the size of
the ROIs is 39× 39 pixels and they mainly cover the center patches of the
marker projections.

3.2.4 Biplanar geometry parameters

The geometry of a biplanar X-ray CT system can be calibrated separately
for each single-source system. However, the biplanar angle α between
the two systems is not estimated in this procedure. A comprehensive
calibration procedure is needed to fully estimate the geometric parameters
of a dual-source cone-beam X-ray CT setup.
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Fig. 3.2 A biplanar cone-beam geometry of an X-ray CT system.

Fig. 3.2 shows an aligned biplanar cone-beam geometry in the black plot.
Two perpendicular source-detector pairs with reference to their projection
axes are hereafter referred to as S1, D1 and S2, D2. The sources and the
detectors are stationary during acquisition while the object is rotated
around the rotation axis. The distances from either source to its corre-
sponding detector (SDD) and the rotation axis (SOD) are known for each
acquisition. Two 3D coordinate systems Orxryrzr and either Od

1x
d
1u

d
1v

d
1 or

Od
2x

d
2u

d
2v

d
2 that originate at the center of rotation, and the center of the
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detector panel, are aligned.
To calibrate the system geometry, the position and orientation of the
calibration phantom need to be defined accurately, for which they are
described by six DOFs with respect to the Orxryrzr. The DOFs include
three distance coordinates {∆xo,∆yo,∆zo} and three orientation angles
roll θo, yaw φo, pitch ηo about (xr, yr, zr) axis, respectively. The po-
sition and the orientation of each detector are defined by six DOFs
{∆xdi ,∆ydi ,∆zdi , θ

d
i , φ

d
i , η

d
i } with respect to the Od

i x
d
i u

d
i v

d
i , i = {1, 2}. The mis-

aligned detectors, and corresponding geometry parameters are demon-
strated in Fig. 3.2, blue plot.
The distance from the sources to the rotation axis and to the detectors are
measured after a new acquisition setup. The measurement uncertainties
can be modeled by two more parameters ∆sod1 and ∆sod2. The angle be-
tween the two optical axes of the two systems is parameterized by biplanar
angle α. The biplanar cone-beam geometry setup is therefore described
by 21 DOFs β = {∆xo,∆yo,∆zo, θo, φo, ηo,∆sodi, α,∆xdi ,∆ydi ,∆zdi , θ

d
i , φ

d
i , η

d
i },

i = {1, 2}.

3.2.5 Geometry calibration

Calibration datasets were acquired with the biplanar cone-beam system,
and the technique presented in [? ] was followed to extract the centers of
the markers from the radiographs. Marker-based calibration methods
make use of the markers’ positions on the detector to estimate the ge-
ometry parameters. The reference and the corresponding 2D measured
coordinates of marker k in projection n on the detector plane are denoted
as (urefnk , vrefnk ) and (umea

nk , vmea
nk ), respectively. For every projection angle, the

vector that represents the system geometry is transformed with respect
to the misalignment parameters. The reference (urefnk , vrefnk ) coordinates
are defined as the intersections of the rays from the source through the
3D marker centers (xk, yk, zk), with the detector plane.
The measured (umea

nk , vmea
nk ) coordinates are extracted from the calibration

data with template matching technique [? ] and fine-tuned using deep
learning (BeadNet) [? ]. BeadNet is trained from the predefined neural
network model ResNet50 [? ] using a simulated dataset containing X-ray
bead projections from different geometry configurations.
The geometry parameter set β is estimated by the interior point optimiza-
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tion [? ] of the calibration cost function. The loss is computed as the total
Euclidean distance between the reference (urefnk , vrefnk ) and the measured
(umea

nk , vmea
nk ) coordinates across all projections pn (n = 1, ..., N), and marker

centers k = 1, ...,K with respect to β:

β̂ = argmin
β

{
N∑

n=1

K∑
k=1

[(
urefnk (β)− umea

nk

)2
+
(
vrefnk (β)− vmea

nk

)2
]}

(3.2)

where β = {∆xo,∆yo,∆zo, θo, φo, ηo,∆sodi, α,∆xdi ,∆ydi ,∆zdi , θ
d
i , φ

d
i , η

d
i }, i =

{1, 2}. By iteratively adjusting the geometry parameters to align the ref-
erence coordinates (urefnk , vrefnk ) to those on the calibration radiographs
(umea

nk , vmea
nk ), the geometry parameters are estimated.

In the experiment with real datasets, all the geometry parameters are
initialized to 0 as no prior knowledge of the geometry parameters is avail-
able in the 3D2YMOX system. A complete biplanar geometry calibration
procedure is as follows. The phantom orientation around the vertical
axis φo and its position ∆yo are estimated first to align the object ver-
tically. Next, the phantom translations {∆xo,∆yo,∆zo} are calibrated,
followed by its orientation parameters {θo, φo, ηo}. Then, the calibration
phantom parameters along with the biplanar angle are estimated using
both datasets, followed by ∆sod1 and the orientation and translation of
D1 optimization. Finally, ∆sod2 and D2 geometry parameters are esti-
mated before all 21 DOFs are fine-tuned. This whole procedure is iterated
until the calibration cost function shown in Eq. (3.2) converges. The
procedure is iterated 30 times for parameter fine-tuning as either cost
function residual or parameter updates are less than 10−6 (◦ or mm)
during iterative optimization. The calibration took around 450 seconds
to finish on an Intel(R) Core(TM) i7-6800K CPU @ 3.40 GHz PC, with six
CPU cores multithreading.

3.3 Experiments and results

3.3.1 Simulation of experimental datasets

The training and validation datasets were generated using the LEGO
phantom STL models, and the ASTRA CAD projector toolbox [? ]. The
system vector geometry was calculated with respect to the geometry mis-
alignment parameters for every projection angle using the ASTRA Toolbox
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[? ? ]. Then, the ASTRA CAD projector simulated X-ray radiographs
of the phantom with a 150 keV polychromatic spectrum, the predefined
vector geometries, and a detector pixel size of 142 µm, which corresponds
to the pixel size of the 3D2YMOX system.
The 44 validation datasets were generated replicating different X-ray
cone-beam geometries. Corresponding marker ROIs along with the initial
marker center coordinates were extracted, which are later corrected by
the trained BeadNets. Two more simulated datasets, with the same
detector translation and orientation parameters but different randomly
generated object positions and orientations, were generated for 3D CT
reconstruction evaluations, including the calibration phantom and a test
phantom projections.

3.3.2 Experiments with simulated data

3.3.2.1 BeadNet evaluation using simulated datasets

The bead centers were extracted from the validation dataset with con-
ventional Normalized Cross-Correlation (NCC) method [? ] and BeadNet
(Table 3.1). As can be seen in the Table 3.1, the bead center coordinates
are estimated more accurately using BeadNet with a factor of two in com-
parison to the NCC method. In order to further evaluate the impact of the
bead center coordinate errors on the geometry calibration, a preliminary
calibration experiment is performed for a biplanar source/detector X-ray
system using extracted bead centers of the testing datasets. Fig. 3.4
shows the calibrated geometry parameter errors when employing results
from the BeadNet model (orange), and the NCC-based method (blue).

Table 3.1 Errors of marker center detection using NCC template matching and
deep learning methods.

(pixel) u v

NCC 0.62± 0.49 0.54± 0.36

BeadNet 0.27± 0.16 0.25± 0.15

Employing the BeadNet estimated coordinate centers, the translation
parameters are calibrated with highest median errors of around 2.5 mm,
and the third quartile of 5 mm (center and upper bar of the orange boxes,
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simul_bead_center_mark_ncc_dl_gt-eps-converted-to.pdf

Fig. 3.3 An example of a marker center’s coordinate extraction using the NCC
(red), BeadNet (white), and ground-truth (green). BeadNet (white) derives closer
coordinates to the ground-truth (green) than the NCC method (red).

Fig. 3.4). In contrast, using the conventional NCC method, the parameter
median errors are up to 10 mm, with the third quartile of 16 mm. A
similar result can be observed for the orientation parameter estimations.
Using the conventional NCC bead centers, the calibration errors of the
orientation parameters in 75% of the testing datasets are up to 0.8◦ while
it is only 0.3◦ when using the BeadNet estimates.

3.3.2.2 Reconstruction from simulated phantom projections

Fig. 3.5 shows the cross-sections of a real phantom reconstruction before
(Fig. 3.5a), and after (Fig. 3.5b, 3.5c) geometry alignment. The vertical
translation of the detector ∆yd was estimated more accurately using
the marker centers obtained with BeadNet. This is why the two axial
slices shown in Fig. 3.5b and in Fig. 3.5c are not aligned but are shifted
vertically in the 3D CT volumes. Apparent artifacts can be observed
in the reconstructed slices before correcting the geometry (Fig. 3.5a),
while the brick structure is clearly revealed in Fig. 3.5b and Fig. 3.5c.
These images demonstrate that the misaligned geometry was substan-
tially compensated in the reconstruction. However, a closer view at a
brick region in the reconstructed volumes (Fig. 3.6) shows that residual
blurring is still clearly visible in the reconstruction with the results from
NCC bead center extraction method Fig. 3.6a. In contrast, the artifact is
significantly reduced in the result with BeadNet Fig. 3.6a. This artifact
reduction demonstrates that the more accurately derived bead centers
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Fig. 3.4 Estimation errors of the translation (a) and the orientation (b) param-
eters using the NCC method (red) and BeadNet (blue) to extract the marker
centers.

using BeadNet have a positive impact on the CT reconstruction quality.
The noiseless simulated biplanar datasets included a calibration and a

test dataset of 61×2, and 600×2 radiographs generated with a calibration
phantom, and the test phantom, respectively. The ASTRA CAD projector
[? ] casts the X-ray beams through the CAD models of the phantoms in
the biplanar cone-beam geometry, which was modified with the geometry
parameters, to generate the simulated radiographs of the phantoms. The
detectors were simulated as two square flat panels with 2 048×2 048-pixels
resolution and pixel size of 142 µm.
As shown in Table 3.2, optical translations (translations along the pro-
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(a) (b) (c)

Fig. 3.5 Cross-sections of the reconstructed volume using simulated dataset
before (a) and after geometry calibration with the NCC technique (b) and BeadNet
(c). The red squared regions are shown in Fig. 3.6.

(a) (b)

Fig. 3.6 With the NCC method, misalignment artifacts still appear at the edges of
the bricks in the reconstruction (a), while the artifacts are substantially reduced
in the CT slice using BeadNet (b).

jection axes)
{
∆xd,∆sod

}
are estimated with errors on the order of sev-

eral millimeters as the differences are 470, 3 600, 820 and 8 200 µm for{
∆xd1,∆xd2,∆sod1,∆sod2

}
, respectively. However, the other translation pa-

rameters, including
{
∆xo,∆yo,∆zo,∆yd

}
, and ∆zd, are estimated with a

maximum deviation from the ground-truth values of 170 µm. Orientation
parameters are calibrated with a precision below 0.1◦.
In a calibration procedure, the biplanar angle α, and all other geom-

etry parameters were initialized to 90o and 0, respectively. SOD and
SDD were fixed to the simulated ground-truth values of {779, 1 123} mm
and {783, 1 141} mm for {S1, D1} and {S2, D2}, respectively. To further
evaluate the impact of the calibration errors on the CT reconstruction
quality, the geometry of the {S1, D1} and {S2, D2} systems were modified
with the initialized, and calibrated geometric parameters prior to the
reconstructions of the test phantom, and a piglet specimen. A SIRT
algorithm was used to reconstruct the datasets with high-performance
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Table 3.2 Calibration errors of the geometric parameters for a simulated biplanar
X-ray CT system. Optical translations ∆xd and ∆sod are estimated with errors
on the order of millimeters (red) due to the high correlation between them.

(mm) ∆xo ∆yo ∆zo ∆xd
1 ∆yd

1 ∆zd
1 ∆sod1 ∆xd

2 ∆yd
2 ∆zd

2 ∆sod2

Init. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GT −7.96 12.6 −12.6 19.7 −18.5 −10.1 7.21 −10.2 −17.8 14.0 11.9

Err. 0.014 0.12 0.002 0.47 0.036 0.002 0.82 3.6 0.17 0.001 8.2

(o) θo φo ηo α θd
1 φd

1 ηd
1 θd

2 φd
2 ηd

2

Init. 0.00 0.00 0.00 90.0 0.00 0.00 0.00 0.00 0.00 0.00

GT 4.08 187 4.29 94.1 3.81 2.02 2.08 4.24 2.01 0.67

Err. 0.004 0.015 0.010 0.008 0.006 0.031 0.021 0.007 0.098 0.070

GPU primitives ASTRA toolbox [? ? ]. Four transverse images of the
reconstructed phantom with S1 and S2 datasets are shown in Fig. 3.7.
Without calibration, the geometry misalignments induce severely blurry
edge in the LEGO bricks (see Fig. 3.7 a,b). After applying the transforma-
tion to the geometry vector with estimated parameters, the misalignment
artifacts are corrected (see Fig. 3.7 c,d). We obtain sharp and clear LEGO
bricks as well as phantom structures. The two slices are also aligned as
the biplanar angle was accounted for.

3.3.3 Experiments with real data

The geometry of the 3D2YMOX system was calibrated with a real LEGO
phantom. The calibration data were firstly flatfield and log corrected
before they were undistorted to remove the pincushion distortion due to
the intensifier curvature [? ], and the sigmoidal distortion caused by the
magnetic field generated during the stage rotation [? ]. The bead center
trajectories were extracted by the NCC method and BeadNet, and used to
estimate the geometry parameters.
In this validation, the geometry was corrected for the misalignments
before reconstructing a real test dataset obtained in the same geometric
configuration with that the calibration projections were acquired. Fig. 3.8
shows the reconstructed slices of the test phantom before (Fig. 3.8a),
and after (Fig. 3.8b, 3.8c) calibration. Without compensating the ge-
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(a) S1 initial geometry (b) S2 initial geometry

(c) S1 calibrated geometry (d) S2 calibrated geometry

Fig. 3.7 Reconstructions of the test phantom with initial and calibrated biplanar
geometry parameters for simulated biplanar datasets. The LEGO bricks are
sharply recovered, and misalignment artifacts are eliminated in the CT slices
with calibrated geometry (c,d) compared to without applying misalignment
correction (a,b).

ometry misalignment, the reconstructed volume suffered from severe
artifacts in the form of blurred edges of the LEGO bricks (Fig. 3.8a). In
Fig. 3.8b and Fig. 3.8c, however, the shapes and edges of the bricks are
well recovered in the reconstruction. This artifact reduction demonstrates
that our estimation algorithm is capable of calibrating a real X-ray CT
system. Moreover, the artifacts are better suppressed in Fig. 3.8c than in
Fig. 3.8b, as highlighted in red, and displayed in Fig. 3.9a, and Fig. 3.9b,
respectively. Additionally, Fig. 3.10 shows the accumulated intensity
profiles that were plotted through the center rows (dashed red) in the
ROIs Fig. 3.9a, and Fig. 3.9b from the conventional NCC method (orange)
and BeadNet (blue), respectively. The line plots indicate that the contrast
was slightly improved in the reconstruction from the BeadNet method.
Along with the test phantom, a piglet dataset was used to evaluate the
quality of the CT images with calibrated geometry. Real X-ray radiographs
of the calibration phantoms, the test phantom, and the piglet were ac-
quired by the 3D2YMOX [? ] system at a resolution of 2 048× 2 048-pixels.
In this acquisition, the datasets were acquired with two source energies
and currents of 57 kV, 40 mA, and 59 kV, 40 mA for S1 and S2, respectively.
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(a) (b) (c)

Fig. 3.8 Cross-sections extracted from the reconstructions of a LEGO test
phantom before (a) and after geometry calibration using the NCC method (b),
and BeadNet (c) to extract the marker centers. Without compensating for the
geometry misalignment, the internal brick structures are distorted (a). In (b,
c), the artifacts are considerably reduced, revealing sharp edges and apparent
shapes of the LEGO bricks. Moreover, the artifacts are better suppressed
in (c) than in (b) as highlighted in red and shown in Fig. 3.9b and Fig. 3.9a,
respectively.

(a) (b)

Fig. 3.9 Misalignment artifacts persist at the LEGO bricks’ edges and distort
the shapes in the NCC method (a). In contrast, the edges are better recovered
and sharper in the CT slice using BeadNet (b).

The X-ray tubes were limited to six seconds of continuous radiation to
avoid overloading the X-ray tube. Four modes of acquisition are available
with a maximum of 900 X-ray frames per rotation. With these technical
constraints, it is beneficial to incorporate both datasets into a single CT
reconstruction to enhance the CT quality in either single or dual-energy
mode. In these experiments, each test phantom dataset contains 360

biplanar projections, while 450 projections of the piglet were acquired
from each cone-beam X-ray system for CT reconstruction.
The X-ray image intensifiers in the 3D2YMOX system cause two major
geometric distortions, namely pincushion and sigmoidal distortion [? ].
The pincushion distortion is the result of the incident X-ray to be detected
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Fig. 3.10 Intensity profiles plotted through the rows (dashed boxes) in Fig. 3.9a
and Fig. 3.9b.

on a curved input phosphor, while the latter is due to the magnetic inter-
action of the produced photo-electrons inside the image intensifier. The
projection-dependent distortion correction described in [? ] was applied
to correct for these distortions. Flatfield and log correction were applied
to the acquired radiographs to compensate for the different responses in
the detectors.
As shown in the simulated experiments, ∆sodi along with the detector
position on the optical axis (∆xi, i = {1, 2}) are highly correlated, and all
impact the magnification of the object projection. Taking into account
both parameters induces significant redundancy and error in the calibra-
tion. Therefore, ∆sodi is eliminated in the followed experiments with the
real datasets. Only detector displacements along two optical axes ∆xdi ,
i = {1, 2} are accounted for calibration.
The biplanar geometry was calibrated with 90 radiographs acquired from
each single-source system. In these experiments, all the geometry param-
eters were initialized to 0. SOD and SDD were fixed to the measurements
of {1 002, 1 303} mm and {978, 1 226} mm for S1, D1 and S2, D2, respectively.
The procedure was repeated with both calibration phantom datasets, and
the initializations along with the estimated geometry parameters are
shown in Table 3.3. As can be seen in the table, the detector translation
and orientation parameters are calibrated with maximum differences of
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3.5 mm and 6.2◦, respectively. Both calibrations with the two phantoms
derive the same value of the biplanar angle α.

Table 3.3 Calibrated geometry parameters of the 3D2YMOX system with two
identical calibration phantoms.

(mm) ∆xo ∆yo ∆zo ∆xd
1 ∆yd

1 ∆zd
1 ∆xd

2 ∆yd
2 ∆zd

2

Inits. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Phantom 1 −16.6 66.1 −10.1 −5.31 −31.6 −3.35 −4.67 −30.63 −0.06

Phantom 2 16.7 65.4 −22.3 −1.85 −30.8 −3.61 −6.08 −29.6 −0.05

(◦) θo φo ηo α θd
1 φd

1 ηd
1 θd

2 φd
2 ηd

2

Inits. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Phantom 1 0.401 −28.9 0.612 89.6 −0.049 −3.41 −0.89 0.459 −2.00 −1.12

Phantom 2 0.118 42.6 0.372 89.6 −0.424 2.79 −4.90 0.441 −1.44 −1.02

To study the impact of these differences of the calibrated parameters
with two calibration phantoms in the quality of the reconstructed images,
a test phantom dataset acquired in the 3D2YMOX system was recon-
structed with two sets of calibrated parameters by ASTRA toolbox [? ? ]
SIRT algorithm. Two CT slices of the test phantom are shown in Fig. 3.11.
As shown in the figures, more apparent misalignment artifacts appear
in the reconstruction with calibrated geometry by phantom 2 (Fig. 3.11b,
lower-left corner), compared to the result with phantom 1 (Fig. 3.11a).

(a) Calibration with phantom 1 (b) Calibration with phantom 2

Fig. 3.11 Reconstructions of the test phantom acquired by the 3D2YMOX system
after biplanar geometry calibration with real calibration phantoms.

Fig. 3.12 shows four CT slices from the reconstructed volumes of the test
phantom (a,b), and the piglet (c,d) biplanar dataset without geometry
calibration. The reconstructed slices a of the test phantom Fig. 3.12
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(a) S1 (b) S2

(c) S1 (d) S2 - rotated

Fig. 3.12 Reconstructions of the test phantom and the piglet with real datasets
acquired by the 3D2YMOX system and the initializations of the biplanar geometry
parameters. The misalignment artifacts are less severe in the reconstruction
with {S2, D2} datasets (b, d) compared to (a, c) due to the initializations of the
geometric parameters turning out to be more precise.

with dataset from S1 is in a different orientation compared to the slice
from the S2 dataset (Fig. 3.12b). In Fig. 3.12d, the CT slice of the piglet
specimen with the S2 dataset was rotated to a similar orientation as in
Fig. 3.12c for a better visualization. This orientation difference is mainly
due to the uncalibrated biplanar angle. Moreover, without compensating
for the geometry misalignment, the LEGO bricks and the piglet’s internal
structure are blurry due to the misalignment artifacts. The effect of
misalignment is more severe in the reconstruction with the S1 datasets
as shown in Fig. 3.12a,c compared to the CT slices from S2 (Fig. 3.12b,d)
due to less accurate initial measurements of SOD1 and SDD1.
With a corrected geometry, the misalignment artifacts are significantly
suppressed, revealing a clear image of the LEGO bricks, and the piglet
skeleton as shown in Fig. 3.13. The CT slices obtained with the S1 and
S2 datasets are aligned in the same orientation when the biplanar angle
was accounted for. This result suggests a possibility of having a dual-
energy view of an object acquired with the 3D2YMOX system. To study
the benefit of the dual-source acquisition, three reconstructions of the
test phantom were performed using two single-source and a dual-source
datasets. The single-source datasets are a subset of the full rotation
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(a) S1 (b) S2

(c) S1 (d) S2

Fig. 3.13 Reconstructions of the test phantom (a, b) and the piglet (c, d)
datasets acquired by the 3D2YMOX system with calibrated geometry. The LEGO
bricks and the piglet structure are clearly visible in the CT slices with geometry
correction.

dataset with a missing angular range of 60◦. Two single-source datasets
are concatenated to generate a dual-source dataset as if it was acquired
with a biplanar angle, which is a sequence of the projection angles of
{S1, D1} and their shifts by the biplanar angle α. The geometries of both
systems were corrected with calibrated parameters for the reconstruction
of the dual-source dataset. As shown in Fig. 3.14, the CT slices recon-
structed with the single-source datasets (a, b) are subjected to missing
wedge artifacts. The LEGO bricks were only partly visible in both slices,
while in the dual-source slice (c), the LEGO bricks are well reconstructed.
This experiment demonstrated that, with a calibrated biplanar geometry
of the 3D2YMOX system, it is possible to reconstruct two datasets ac-
quired simultaneously and/or in dual-energy mode from the two single
cone-beam X-ray systems.
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(a) S1 (b) S2 (c) S12

Fig. 3.14 Reconstructions of the test phantom datasets from single (a, b), and
dual (c) X-ray source of the 3D2YMOX system with simulated 60◦-missing wedge
of either single system. The reconstruction of the dual-source dataset (c) shows
that the missing wedge artifact can be corrected by incorporating both single
datasets into the biplanar reconstruction.

3.4 Discussion and conclusion

In this chapter, a comprehensive method to calibrate the 3D2YMOX sys-
tem was presented, a highly modular biplanar X-ray CT system, with a
LEGO phantom. The simulation experiments demonstrated that a LEGO
phantom could be used to accurately calibrate the geometry of a biplanar
X-ray CT system, except for the optical translation parameters. This can
be explained by a high correlation between these two parameters, due
to which the errors cancel each other out in the reconstruction. The
translation of the rotation center along the optical axis was excluded from
the calibration with real datasets to verify this correlation. The piglet CT
reconstructions show misalignment artifact significantly reduced after
biplanar geometry alignment.
When the biplanar angle is accounted for in the reconstruction, the
two CT volumes obtained from the individual X-ray systems are aligned.
Moreover, the two datasets acquired with each X-ray cone-beam system
can be combined for a biplanar reconstruction, opening up the possibility
of a dual-energy and/or faster scan. Experiments with two real LEGO
phantom datasets demonstrated that our proposed method could be ap-
plied to practical dual X-ray CT systems. Further study on the difference
between the geometry parameters estimated with two identical calibration
phantom datasets and its impact on the reconstruction quality needs to
be done.
In the experiment with the real datasets, the differences in CT recon-
struction quality between the datasets acquired with S1 and S2 can be
explained by the fact that the two single cone-beam X-ray systems are
not identical. The X-ray projections, and the flatfield images acquired
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from the two systems, differ in terms of intensity and noise level. They,
therefore, result in unequal reconstruction quality and contrast. A fur-
ther study needs to be done on acquisition settings in terms of hardware
and software configurations to optimize the CT reconstruction quality.
In conclusion, the proposed LEGO calibration procedure can be a valu-
able solution to calibrate the biplanar geometry of dual cone-beam X-ray
CT systems. In future work, thoroughly evaluation the CT reconstruction
quality with the calibrated biplanar geometry parameters is necessary.
Further study on quantifying calibration accuracy in terms of voxel
resolution also needs to be done.
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4.1 Introduction

Understanding 3D kinematics of an animal has long been a topic of inter-
est in veterinary research [? ? ? ]. Such motions can be reconstructed
by aligning a 3D reference model to a series of X-ray projection images,
which is generally known as 2D/3D registration [? ]. Intensity-based
and feature-based methods are the two major approaches of 2D/3D
registration [? ? ].
Intensity-based 2D/3D registration methods rely on the pixel/voxel gray
values to reconstruct the 3D poses of an object from 2D images with
reference to a 3D model. A similarity measure (SM) is computed as the
intensity or gradient difference between the acquired 2D projections of
the object and simulated projections of the 3D reference model [? ? ?
? ]. The object’s pose parameters are then estimated by minimizing the
SMs. These methods, however, usually require a good initialization of the
pose parameters to avoid the optimizations converging to local minima.
Khamene et al. [? ] dealt with this problem by pre-calibrating the system
geometry, and Varnavas et al. [? ] pre-registered the target pose to a
broad range of possible poses within a 2D library generated from a 3D
CT object model. The intensity-based registration accuracy also depends
on the SM robustness, which is sensitive to the different gray value
distributions across image modalities or acquisition setups. To tackle
this issue, Birkfellner et al. [? ] presented stochastic rank correlation as
an intensity invariant SM with stochastic sampling, while Munbodh et
al. [? ] calculated SM from Poisson and Gaussian distribution models of
CT and X-ray images, respectively. Intensity-based methods also involve
computationally expensive simulations of the 2D radiographs during
parameter estimation. Finally, projecting a 3D CT volume onto a 2D
plane suffers from the loss of depth information [? ].
Feature-based registration techniques circumvent the computational cost
of the intensity/gradient-based methods [? ? ]. The object’s geomet-
ric features, such as curves, surfaces, landmarks, etc., are extracted
and mapped to the corresponding features on the 3D model to obtain
the orientation and translation parameters of the object. Feature-based
registration methods allow fast estimation of the pose parameters as no
reconstruction or simulation of the 2D radiographs is required during
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optimization. Baka et al. [? ] and Ito et al. [? ], for instance, estimated
the 3D motion model of an object by matching the simulated and mea-
sured object curves. However, obtaining corresponding curves proved
to be challenging as they are subject to the image’s dynamic range and
contrast. Geometrical landmarks have been suggested to represent a
bone for kinematics registration [? ? ? ]. Joint kinematics are usually
modeled as a combination of articulated transformations of individual
bones, and geometric landmarks are manually annotated by experienced
operators. Haase et al. [? ] applied an active appearance model to
track the geometrical landmarks of birds of different species. However,
manual landmark annotation and tracking relies on the acquisition setup
and experts’ experience, such as that from a radiologist. Annotating
the landmarks or automatically detecting them while maintaining the
mapping for registration is non-trivial, raising the need for an automated
and robust landmark detection method. Cai et al. [? ] automated the
landmark candidate selection based on Harris corner detection, which
relies on the local intensity of image patches and does not account for
global correlations, hence reducing its robustness.
Recently, following the advance of deep learning techniques in solving
a wide range of computer vision problems, deep networks have been
proposed for automated landmark detection [? ? ? ? ]. Since deep
learning models can learn and generalize abstract features from a large
amount of data, they are robust for landmark detection. Liao et al. [? ]
applied a Siamese network to detect a set of points of interest (POIs) in
an input X-ray image. Although the POIs selected from CT models by a
random method result in convergence during training, the randomization
might induce overlapping POIs in 2D projections. DeepLabCut [? ] is a
well-known deep network for automatic landmark detection and tracking
in optical images, which requires relatively few (hundreds) of labeled
images to fine-tune a ResNet-based neural network for a new type of
data or object. The method was applied to marker tracking on an X-ray
videography scene that followed the positions of the markers attached
to animals during their feedings [? ]. However, DeepLabCut requires
manual landmark annotation in video frames that are used to generate
the training dataset. This procedure is non-trivial and prone to human
errors, especially with multiple landmarks usually distributed densely on
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each bone in biological X-ray data. PVNet [? ] is another deep learning
model recently proposed to automatically detect nine 2D landmarks in
optical images. To tackle the complexity of 3D pose reconstruction from a
single X-ray radiograph of a biological object, PVNet requires customiza-
tions for inference of more landmarks and application to X-ray images.
In this chapter, the challenges of automatic landmark detection and
tracking are tackled by a strategic approach that consists of two building
blocks: an automated 3D landmark extraction technique, and a deep neu-
ral network for 2D landmark detection [? ]. For 3D landmark extraction,
a technique based on the shortest voxel coordinate variance is proposed
to extract the 3D landmarks from the 3D tomographic reconstruction
of an object. For 2D landmark detection, a customized ResNet18-based
neural network, BoneNet, is proposed to automatically detect geometrical
landmarks on X-ray fluoroscopy images. It relies on a simulation module
to generate well-labeled training, validation, and test dataset to eliminate
human errors in manual landmark annotation. The module simulates
different articulated poses of an animal using a single high-resolution
3D CT model. 3D reference landmarks are then extracted automatically
using the same CT model. To this end, two techniques based on a short-
est coordinate variance to define two types of 3D landmarks: bounding
and SIFT (Scale-Invariant Feature Transform) landmarks are presented.
The bounding landmarks [? ] are selected from the object voxels, while
the SIFT landmarks are obtained from 3D SIFT keypoints extracted for
conventional image matching [? ]. Finally, BoneNet, inspired by PVNet [?
], is trained to detect 2D landmarks in fluoroscopy images automatically.
The network architecture is customized to better extract abstract features
from complex X-ray image data with more landmarks.
The chapter is organized as follows. Section 4.2 presents the proposed
methodology for 3D landmark extraction from the reference model of the
object, along with the process of detecting the 2D landmarks accurately
with deep learning and reconstructing the object poses using a least-
squares optimizer [? ? ]. A technique to simulate realistic 3D articulated
motions of the object is also presented in this section. Then, experi-
ments using simulation data to validate the feasibility of the proposed
method are discussed in Section 4.3. Finally, further discussion and

70



4.2 METHODS

the conclusion are presented in sections Section 4.4 and Section 4.5,
respectively.

4.2 Methods

4.2.1 3D pose parameterization

D
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Fig. 4.1 The geometry of a cone-beam acquisition system with an X-ray source
S and a detector plane D. Object position and orientation with reference to
the acquisition coordinate system Orxryrzr are represented by six parameters
{xo, yo, zo, θo, φo, ηo}. (Color map represents voxel intensities.)

The animal motion in an X-ray video can be described by a rigid motion
for representing its body’s position and orientation with respect to the
acquisition geometry, and articulated transformations of bones of interest
and soft tissues relative to individual joints. 2D/3D registration involves
both estimation of the animal body’s transformation in the acquisition
geometry and its 3D pose with respect to the reference model. Fig. 4.1
shows the geometry of an X-ray cone-beam acquisition system that is
used to acquire animal fluoroscopy images. The system is assumed to be
calibrated and the X-ray radiographs are corrected for pincushion and
sinusoidal distortions in advance using the techniques presented in [?
? ]. In other words, the perpendicular projection of the X-ray source on
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Fig. 4.2 An example of joint coordinate systems of a piglet hindlimb with two
major bones (femur and tibia). Each local coordinate system is represented by
three axes (xji , yji , zji) which are the vertical, longitudinal, and transverse axis
of joint ji, i = 1, 2, respectively.

the detector plane Odudvd coincides with the detector center Od. Also, the
distances from the source to the acquisition system’s isocenter (SOD)
and the detector plane (SDD) are assumed to be known. In this setting,
the 3D position and orientation of the animal are represented by six
parameters {xo, yo, zo, θo, φo, ηo} about three axes (xr, yr, zr).

As the locomotion of an animal involves a chain of contraction and
relaxation of different muscles and tendons [? ], the articulated transfor-
mation of bone ji can be modeled by rotations around the bone’s principal
axes. The axes include the vertical xji, longitudinal yji, and transverse
axis zji (Fig. 4.2) with three corresponding rotations, namely yaw θji, roll
φji, pitch ηji. The three axes form the bone local coordinate system
originating at the joint Oji. In the scope of this work, only clockwise and
counterclockwise rotations of the bones about their transverse axes are
considered, i.e., the rotation ηji around the zji axis. As joint j1 is chosen
as a parent joint for articulated transformation, the orientation ηo about
the horizontal axis xo is equivalent to the joint rotation ηj1, therefore,
ηo is suppressed to avoid redundancy in the pose reconstruction. In
total, 5 +N parameters τ = {xo, yo, zo, θo, φo, ηji} are reconstructed, with
i = 1 . . . N and N is the number of joints under consideration.
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4.2.2 Landmark-based 2D/3D registration

The goal is to align 2D detected landmarks from acquired fluoroscopy
images with projections of their 3D reference landmarks to estimate τ .
In other words, the registration parameters are the result of minimizing
the total distances between 2D detected landmarks (um, vm), and the
computed projections of 3D reference landmarks (ur, vr) using τ across
all N joints and K landmarks. The estimated parameters τ̂ are defined
in Eq. (4.1):

τ̂ = argmin
τ

{
N∑
i=1

K∑
k=1

ωik

(
(urik(τ )− umik)

2 + (vrik(τ )− vmik)
2
)}

(4.1)

where the distances between the measured and reference landmarks are
penalized by different weights ωik based on their hypothesis covariances
[? ], which will be further discussed in Section 4.2.4.
To avoid local minima during estimation of the parameters, the object’s
position and orientation with respect to the acquisition coordinate system
are estimated before the joint parameters are reconstructed. The detailed
process is as follows. First, the projection angle φo is adjusted to align
the object orientation to the acquisition angle. Next, the object coordinate
along the vertical axis yo is estimated prior to the reconstruction of
the three offsets {xo, yo, zo}. After that, the two joint articulation angles
{ηj1 , ηj2} are estimated. Finally, the object orientations with respect to the
world coordinate system {θo, φo} are estimated. This process is iterated
until the loss function evaluation or all the parameter updates are less
than 10−8.

4.2.3 3D landmarks

3D reference landmarks should be key points characterizing the shape
of the bones and should be easily distinguishable in the 3D reference
model as well as in the 2D radiographs of the whole object. Several
methods define 3D reference landmarks based on the 3D model of the
object. One of the commonly used methods in computer vision finds a
bounding box around the object and uses its vertices as the 3D reference
landmarks for registration [? ? ]. Peng et al. [? ] introduced a
technique based on Euclidean distance between voxels and the object’s
center (C) to define 3D landmarks of an object given its 3D model. The
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method avoids involving inaccurate bounding box vertices as the 3D
landmarks are drawn from the voxels that belong to segmentation of
the 3D object. Although the method showed its advantages over the
conventional shape description based on bounding box, there is a risk
of choosing 3D landmarks that are too close to each other, resulting in
overlap in the 2D radiographs. The reason behind this is that a new
landmark was defined as the object voxel with the largest distance to the
C of the already selected landmarks. The C therefore starts to overlap
with the original object’s C, and new landmarks may gather close to the
existing landmarks. To solve this problem, a comprehensive scheme
based on the shortest voxel coordinate variance to keep the landmarks
distant from the C and from each other was introduced. Two types of
landmarks are determined, namely bounding (similar to [? ]) and SIFT
(Scale-Invariant Feature Transform) landmarks [? ]. While the bounding
landmarks are selected from ordinary bone voxels, the SIFT landmarks
are selected from 3D SIFT keypoints of the bone volume. The 3D SIFT
keypoints are the local extrema of the image’s Laplacian of Gaussian
d(x, σ) within a sliding window of 2n-connected l1 neighborhoods [? ] that
is computed with Eq. (4.2):

d(x, σ) = I(x) ∗∆gσ(x) (4.2)

where d(x, σ) is approximated by the difference of Gaussian g(x) at two
different scale spaces gσ(x) and gσ+δ(x), with σ and σ+δ the two Gaussian
standard deviations, and I(x) the 3D object image. The SIFT keypoints
were selected if they satisfy Eq. (4.4), with a scale threshold α [? ].

d(x, σ) = I(x) ∗ (gσ+δ(x)− gσ(x)) (4.3)

|d(x, σ)| ≥ αmax
x,σ

|d(x, σ)| (4.4)

The landmarks should distribute near/over the bone surface to better
characterize its shape and avoid overlapping 2D projections. The shortest
coordinate variance scheme is applied to draw the bounding and SIFT
landmarks from their initial bone voxels and SIFT keypoints sets, respec-
tively. The scheme to select a list of landmarks from their initial set is as
follows:

1. Compute voxel center coordinates (C) as the mean of all voxel coor-
dinates of the bone segment.
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2. Compute 3D coordinate variances of the bone voxels. These vari-
ances correspond to the eigen values obtained from principal com-
ponent analysis (PCA) of the bone voxel coordinates. The smallest
and the largest eigen values imply the bone minor and major di-
mensions, respectively. The landmarks should spread closely to the
bone surface to better describe its shape. Therefore, the smallest
eigen value σmin is used to compute a distance threshold in the later
step.

3. Choose the first landmark with the largest Euclidean distance to
the C. Add the landmark to the list.

4. All the other landmarks l are added if their distances to the C are
largest, and their distances to the existing landmarks m in the list
satisfy dlm ≥ λσmin, with a scale threshold λ chosen heuristically
depending on the bone shape and size.

4.2.4 Automatic detection of 2D landmarks with BoneNet

To correctly reconstruct the 3D pose parameters of an animal, 2D land-
marks must correspond to 3D landmarks of the reference model and
be detected with the lowest possible coordinate errors. Peng et al. [? ]
trained a deep neural network (PVNet) to automatically detect 2D land-
marks in an optical image scene. The 2D coordinates of each landmark
were encoded by a voting vector field that points toward the landmark
position in the 2D image. PVNet was based on the ResNet18 architec-
ture [? ], and obtained by first discarding subsequent pooling layers of
ResNet18 when the feature maps were 1/8 size of the original input sam-
ples. Then, the fully connected layer was replaced by a convolution layer
at the network output. Finally, up-sampling (interpolation) combined
with skip connections and convolutions were applied to reconstruct the
original image sizes for the bone segments and voting vector fields of the
landmarks.
PVNet inherited from ResNet18 four main convolution blocks, which

were constructed from sequences of basic blocks in the feature encoding
stage. Each basic block is formed by two 2D convolutions followed by
batch normalization and a ReLU unit. PVNet was designed for accurate
inference of only nine landmarks in optical images [? ], which resulted
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2D conv ReLU max pooling concatenation upsampling

Fig. 4.3 BoneNet, the proposed customized network architecture for automatic
2D landmarks detection of a complex biological object with newly added basic
blocks in the convolution blocks (orange dashed lines) and connection (orange
arrow). The vertical, dashed line separates the feature learning (left) and the
interpolation stage (right) of the deep network.

in an unstable and slow convergence when applying to X-ray images
with a higher number of landmarks. Therefore, the model needs to be
adapted to such data. We customized PVNet as follows. New 1,1,2, and
1 basic blocks were added to the four convolution blocks in the original
PVNet model, respectively. A new connection from the 3rd convolution
block replaced the shortcut from the 2nd convolution block to the first
up-sampling layer. The number of features in the subsequent layers
were also adjusted accordingly. Fig. 4.3 shows a simplified architecture
of the customized network, named BoneNet, with the new basic blocks
in the convolution blocks marked by the orange dashed line. The new
connection is highlighted with the orange arrow. The rest of the network
is identical to the original PVNet architecture. The convolution blocks (left
hand side of the dark dashed line in Fig. 4.3) learn and optimize network
parameters for image feature extraction. The interpolation layers (right
hand side of the dark dashed line in Fig. 4.3) propagate the extracted
features and reconstruct original dimensions for the outputs.
BoneNet is trained with a dataset that contains X-ray projections of the
bone, corresponding bone binary masks, and 2D ground-truth coor-
dinates of the bone’s landmarks. Landmark 2D coordinates are then
converted to 2D vector fields as in [? ]. Fig. 4.4 shows samples of the
BoneNet training dataset with 2D landmarks of the femur and the tibia
marked by white crosses (a), a ground-truth femur segment (b), and the
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Fig. 4.4 Visualization of an input projection (a) with the femur’s and tibia’s 2D
landmarks, a femur segment (b), and the vector field (blue arrows) of a landmark
(orange) (c).

corresponding vector field of a landmark (orange star) under the vector
form (blue arrow) (c). Like PVNet, BoneNet predicts the bone segment
and a voting vector field for each landmark of a given input image. The
exact coordinates of each landmark are computed from its voting vector
field using the voting scheme described in [? ]. A set of pixel hypothe-
ses is voted for each landmark with corresponding voting scores. Each
landmark is then represented by the weighted mean of its hypothesis
coordinates µ̂, and a coordinate covariance σ computed as weighted mean
squared Euclidean distances between the hypotheses and the mean co-
ordinates µ̂. The Mahalanobis weight ω of the corresponding landmark
in Eq. (4.1) is penalized with the inverse of the covariance σ as a higher
σ represents a less accurate estimation of the corresponding landmark
[? ]. In general, a training dataset contains input images I(x, y) with the
ground-truth bone segments Mgt, and the ground-truth 2D landmark
coordinates (xgt, ygt). The learning loss is composed of smooth L1 and
cross entropy loss ℓ(·) for vector field and segment training, respectively
[? ]. The smooth L1 loss is computed as the differences between the
2D predicted f (I(x, y),ωc) and the ground-truth vector fields. The cross
entropy loss ℓ(·) is computed from the predicted segments g (I(x, y),ωm)

and the ground-truth segments. BoneNet then optimizes the parameters
(ωc,ωm) to minimize the learning cost L(ωc,ωm) (Eq. (4.5)).

L(ωc,ωm) = ∥[Mgt ⊙ f (I(x, y),ωc)]− [Mgt ⊙ I(x, y)− (xgt, ygt)]∥smoothl1

− ℓ (Mgt, g (I(x, y),ωm)) (4.5)

with ωc,ωm the learnable weights.
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4.2.5 Simulation of articulated transformation

A training dataset comprises X-ray radiographs of the bone, the 2D
ground-truth bone segments that contain the landmarks, and the 2D
ground-truth coordinates of the landmarks. Training BoneNet requires
an extensive, well-labeled dataset, which must be diverse in terms of the
landmark relative positions and orientations in the image plane. X-ray
images can be simulated from 3D CT volumes of the animal using the
ASTRA Toolbox volumetric projector [? ? ].
In principle, one could manually manipulate the joint configuration of the
animal sample for every 3D CT scan to generate realistic representations
of the animal articulation poses. However, the scanning procedure is
time-intensive as a large number of CT scans is needed to cover possible
joint configurations. Additionally, the 3D landmarks extracted from each
3D CT scan are inconsistent across the scans due to changes in the
object’s orientation and position with respect to the scanning volume
geometry. A simulation of both rigid and articulated transformations of
the animal sample can facilitate this manual procedure. It also maintains
the mapping of the 3D landmark coordinates throughout the 3D models
as they can be computed with respect to the transformation parame-
ters. In this work, a 3D CT volume of a piglet hindlimb acquired with
a high-quality X-ray imaging system, FlexCT [? ], is used as the base
model for the simulation. The 3D model is with a size of 1 416× 1 416× 416

voxels, and voxel size of 45µm. It was then downscaled to the size of
850× 850× 250 voxels for a more efficient data processing. Then, the rigid
transformation of the object with respect to the acquisition geometry is
simulated using the ASTRA toolbox vector geometry [? ? ].
Finally, in the articulation transformations, the voxels in the joint areas
might undergo more than one affine transformation as the result of con-
secutive rotations of individual bones relative to the joint local coordinate
systems. The resulting transformation is modelled as a weighted fusion
of the separate rotations. The weights ωf (x) are obtained as a convolution
of a 3D Gaussian kernel with a standard deviation σf and width of kf
sampling rate with the segment volumes of individual bones (Eq. (4.6)).

ωf (x) = g(σf , kf ) ∗ V(x) (4.6)

The 3D bone segments are obtained by the following morphological op-
erations in Matlab [? ]. First, Otsu threshold is applied to remove soft
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tissues from the original 3D CT model of the limb. Next, small segments
with a few voxels are excluded. Only the segments of the bones of interest
are retained. Finally, a morphological closing scheme (a dilation followed
by an erosion of 25 × 25 × 25 structuring element window) is applied to
fill the empty holes inside each segment. The segments are then labeled
with a 3D 6-connected component technique.
The Gaussian weights are used in a fuzzy polyaffine fusion scheme intro-
duced by Arsigny et al. [? ] to combine individual transformations that
occur in a small interval of time 1/S with S the fusion time scale. Affine
transformation of an individual bone includes rotations about its local
coordinate system. Principal component analysis (PCA) of non-weighted
voxel coordinates is used to define the bone local coordinate system.
Three orthogonal eigen vectors (êx, êy, êz) represent three bone principal
axes, namely the vertical xji, longitudinal yji, and transverse axis zji

(Fig. 4.2). A bone origin is then defined by sliding its C along the major
semi-axis by the axis length, followed by a visual verification to ensure
the origin is at the expected end of the bone. Given a rotation matrix Rt,
t = 1 . . .m, with m the number of rotations, rotation angle αt is computed
by:

αt = arccos

(
tr(Rt)− 1

2

)
(4.7)

with tr(Rt) the trace of Rt. Arsigny et al. [? ] defined the transformation
speed At of rotation Rt as At = log(Rt), with log(Rt) computed by:

log(Rt) =

0 if αt = 0

αt
2 sinαt

(Rt −RT
t ) if αt ̸= 0 and αt ∈ (−π, π)

(4.8)

The 2nd-order scheme [? ] that computes fusion of m individual transfor-
mations Rt occur in the time interval 1/S is simplified to:

T 1/S
2 (x) = x+

∑m
t ωft(x)

(
eAt/S − I

)
x∑m

t ωft(x)
(4.9)

with x the object voxel coordinate, wft(x) the fusion weight applied to
transformation tth of the voxel x, and I the 3× 3 identity matrix.
Finally, polyaffine transformation of x at kth point in time is obtained by
taking compositions (◦) of k sub-transformations T 1/S

2 (x) (Eq. (4.10)).
T k/S
2 (xk) = T 1/S

2 (xk−1) ◦ · · · ◦ T
1/S
2 (x0)︸ ︷︷ ︸

k compositions

(4.10)
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with 1 ≤ k ≤ S, and x0 the initial position of x.
Inverse transformation fusion can be obtained by simply taking the
opposite of rotation angle αt. Target voxels are then mapped to source
voxels by applying the inverse warping model. As the mapped source
voxels are usually non-integer-coordinate-voxels, an interpolation scheme
is needed to derive the target voxel intensities afterward. In this work,
a 3D cubic-spline interpolation tool is implemented that fits a 3rd-order
polynomial to the known integer neighboring voxels of an unknown
floating voxel to compute its intensity [? ]. The method is deployed
on a GPU infrastructure to increase computational performance as the
interpolation is voxel-wise, and a volume usually contains millions of
voxels.

4.3 Experiments and results

4.3.1 Training data

A large dataset is needed to train BoneNet. The dataset must contain
the X-ray images of the hindlimb in different configurations of the bones
as well as various limb’s positions and orientations with reference to
the 2D image space. In the following experiments, all simulation data
was generated from a single 3D CT model of a piglet hindlimb sample
with muscle removed by dissection. The articulation poses of the limb
are simulated using the fuzzy polyaffine fusion scheme discussed in the
Section 4.2.5 with a fusion scale S of 18. Fusion weights ωf (x) were
computed by the convolution of a Gaussian kernel with σf = 13 and width
kf of 23 with the bone segments.
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(a) Femur (pastel) and tibia
(red) segments.

(b) Gaussian weight maps.

Fig. 4.5 The femur and the tibia segments (a) of a piglet hindlimb and their
Gaussian weight maps (b).

The femur (pastel) and tibia (red) segment of the piglet hindlimb are
shown in Fig. 4.5a. Their Gaussian weight maps (Fig. 4.5b) were normal-
ized for fusion of the polyaffine transformations of the individual bones.
This allows deformation of the 3D CT model of a piglet hindlimb (Fig. 4.6a)
via two rotations around the femur and tibia transverse axes (Fig. 4.6b).
As shown in Fig. 4.6, the transformed slice structure Fig. 4.6d is similar
to the source slice Fig. 4.6c. It must be noted that the two slices are
not exactly corresponding as the femur and the tibia are rotated around
their principal transverse axes, and these axes are not parallel to the vol-
ume axis. The smooth transition in the femur-tibia joint area (Fig. 4.6d)
demonstrates that our polyaffine fusion and tricubic interpolation can be
used for further simulation of the articulated motions of the limb.
To cover possible poses of the limb, the femur and the tibia were rotated
around their transverse axes with six and five equally spaced angles in
the range from −30◦ to 35◦ and from −20◦ to 35◦, respectively. In total,
30 polyaffine transformed volumes of different articulated poses of the
limb were generated. Fig. 4.7 shows 20 bounding (green) and 20 SIFT
(orange) landmarks extracted for a piglet femur by applying the shortest
coordinate variance scheme presented in Section 4.2.3. The number
of landmarks was chosen heuristically to be 20 for each bone with λ

adjusted to (2.1, 3.2) and (2.4, 4.2) for the 3D bounding and SIFT landmark
detection of the femur and tibia, respectively. As shown in Fig. 4.7, the
landmarks are easily distinguished and distributed close to the surface
of the bone. The 3D bounding and SIFT landmarks of the femur and the
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(a) Original vol-
ume.

(b) Transformed
volume.

(c) Original
slice.

(d) Transformed
slice.

Fig. 4.6 Original volume (a) and a the polyaffine transformation (b) for rotations
of the femur and tibia around their principal transverse axes, with two slices
from the original (c) and polyaffine (d) transformed volume. The two slices are
not aligned as the transverse axes are not parallel to the volume coordinate axis.

Fig. 4.7 The bounding (green) and SIFT (orange) landmarks of a bone with
random bone voxels in blue. The landmarks are distinguishable and at a
distinctive distance from each other.

tibia were also transformed to obtain the corresponding coordinates in
the deformed volumes. These volumes were then used for simulation of
the 2D X-ray radiographs of the limb with the following scheme.

Rigid positions and orientations of the whole limb with reference to
the 2D image space were simulated using the ASTRA Toolbox vector
geometry [? ? ]. Forty angle intervals were equally sampled from two
ranges between −30◦ and 30◦ and between 150◦ and 210◦, which replicate
the projection angles of a practical acquisition. With each of these angle
intervals of ±1.5◦, 13 X-ray projections were generated using the ASTRA
volumetric projector whose vector geometry is computed with the dis-
tances SOD,SDD of 6 550± 180 and 10 000± 540 voxels, respectively. The
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(a) Training losses. (b) Validation losses.

Fig. 4.8 Evolution of training and validation losses over training epochs. All the
losses decrease stably and plateau at the final epochs.

limb 3D positions (xo, yo, zo) along the horizontal, vertical and projection
axis were modified with ±180, ±120, and ±180 voxel units, respectively.
The rigid rotations around two horizontal axes were adjusted in the range
of ±15◦, and binning factor is set to 6. The 2D projections of the bounding
and SIFT landmarks as well as the 2D masks of the corresponding bone
segments were also computed using the same geometry and volumetric
projector. Additionally, each noiseless projection was scaled to a maxi-
mum intensity I0 randomly generated in a range of 2 000± 350 to diversify
the noise level in the simulated dataset. Then, Poisson distributed X-ray
projections were simulated by replacing each projection pixel by a ran-
dom draw from a Poisson distribution with a mean corresponding to the
noiseless projection pixel value. In total, the generated dataset contains
15 600 simulated X-ray radiographs of the piglet limb with ground-truth
masks of the bones and the 2D ground-truth coordinates of the 20 bound-
ing and 20 SIFT landmarks of the corresponding bones. The dataset was
then shuffled and divided into training, validation, and test sets of 11 700,
3 120, and 780 samples, respectively. This test set was used to examine
the prediction loss after the training completed.

4.3.2 Train BoneNet

To find out whether the customized BoneNet is capable of predicting
accurate 2D landmarks in X-ray radiographs, it was trained, validated,
and tested on a simulated dataset. BoneNet was trained with a maximum
of 600 epochs or until the training and validation losses plateau. Like

83



SUMMARY

PVNet [? ], the adam optimizer [? ] minimizes the smooth L1 loss, which
is equivalent to the Huber loss [? ], and cross entropy loss (chapter 9,
Murphy 2012 [? ]) for the vector fields and object segment learning,
respectively. A multistep learning rate scheduler [? ] that adjusts the
base learning rate of 10−5 by a multiplication rate of 0.5e (e the current
epoch) was applied for the first five training epochs. Four models were
trained individually for 20 bounding and SIFT landmarks of the femur
and the tibia. As can be seen in Fig. 4.8a, the training losses descend
rapidly over the first 30 epochs and steadily decrease over the rest of the
training. The validation losses (Fig. 4.8b) were computed for 3 120 samples
of the corresponding dataset. Although intermittent spikes of the losses
throughout the training epochs can be observed, overall, both the training
and validation losses plateau over the last epochs. The models also do
not overfit to the training data as both the losses gradually and stably
descend. This is further demonstrated in the numerical evaluation of the
2D landmark detection for a test dataset in Section 4.3.3. The validation
curves (Fig. 4.8b) evolve smoother in comparison to the training losses
as the validation points are generally computed after training epoch
backpropagations, namely after updates of the model parameters with
respect to training batches.

4.3.3 2D landmarks detection

To study 2D landmark detection accuracy using the BoneNet predicted
segments and voting vector fields, a numerical evaluation using a sim-
ulated dataset was performed. A study dataset was generated indepen-
dently from the training set by following procedure. Using the same
initial CT volume, nine articulated volumes with different femur and
tibia rotations from the training set were simulated. More specifically,
three femur (ηj1) and tibia pitches (ηj2) were equally sampled from two
ranges between −19◦ and 30◦ and between −16◦ and 30◦, respectively.
The X-ray images were also generated with a different sampling rate of
eight ±7.5◦-angle-intervals in the ranges from −30◦ to 30◦ and from 150◦

to 210◦. The distances SOD,SDD were also manipulated with 6 450± 180

and 10 200± 540 voxels, respectively. The other rigid parameters including
{xo, yo, zo}, {θo, φo, ηo} were randomly sampled in the same ranges with
the training set.
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In the first experiment, the noise sensitivity of the BoneNet model that was

(a) Noiseless. (b) Noise level 1. (c) Noise level 2. (d) Noise level 3.

Fig. 4.9 Four sample projections from each of the simulated datasets with
noiseless (a), low (b), moderate (c), and high noise level (d).

trained with the low noise training dataset was studied. Four datasets
of 200 projections were generated with the aforementioned parameters,
and the ASTRA toolbox. In addition to a noiseless dataset, three different
noise levels were introduced to generate datasets with noise levels 1, 2,
3 corresponding to I0 of 2000 ± 350, 650 ± 150, and 250 ± 50, respectively.
Four sample projections are shown in Fig. 4.9 to illustrate the effect of
different noise levels on the projection data. Next, 2D landmark detection
was performed on the four datasets with the BoneNet model that was
trained with the low noise data, (I0 of 2000± 350). The method presented
by Peng et al. [? ] was applied to compute the exact coordinates of each
landmark based on its masked voting vector field. Each landmark is
represented by a mean 2D coordinate hypothesis µ̂ and a covariance σ.
The coordinate errors were calculated as the absolute differences between
the ground-truth values, and the inferred mean hypotheses µ̂ for each
landmark. The landmark detection errors are summarized in Fig. 4.10.
Since the BoneNet model was trained with a dataset of noise level 1,
following discussion will use the results obtained for noisy dataset 1
(Fig. 4.10b) as a base line to assess the 2D landmark detection errors.
The 2D landmarks in the noiseless dataset were estimated less accurately
in comparison to the three noisy datasets as 75% of the samples are
estimated with the errors up to 1.4 pixels (upper bars of the blue/orange
boxes in Fig. 4.10a). More specifically, for the noise levels 1 and 2,
third-quartile error levels of around 0.6 pixels were obtained, while these
approximate 0.8 pixels for the level 3 dataset. The higher errors for the
noiseless dataset are likely caused by the absence of noiseless samples in
the training data. That is, during a training epoch, the forward evaluation
of the network learning function (Eq. (4.5)) was computed using the noisy

85



SUMMARY

� � � � � � 	 
 � � �� �� �� �� �� �� �	 �
 �� ��
���������

�

�

�

	

�

��

��
��
��
���

��
�

����������
�
�
σ

(a) Noiseless.

� � � � � � 	 
 � � �� �� �� �� �� �� �	 �
 �� ��
���������

�

�

�

	

�

��

��
��
��
���

��
�

����������
�
�
σ

(b) Noise level 1.
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(c) Noise level 2.
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(d) Noise level 3.

Fig. 4.10 2D landmark extraction errors (x,y) and the covariance σ for four
datasets with different noise levels using BoneNet trained with a dataset of
noise level 1. With a higher third-quartile of around 1.4 pixels, the noiseless
dataset was estimated less accurately than the noisy datasets as they have the
third-quartiles of less than 0.8 pixels. However, there are higher numbers of
outliers in the results of noise level 3 (black diamond points in d) in comparison
to the other three datasets (black diamond points in a,b,c).

data. The learnable network parameters were then updated through the
back-propagation process to derive the output feature vectors that best
describe landmark positions in a noisy scene. When the trained network
was used to infer a landmark in a noiseless image, the output feature
map was computed using the same learned parameters. Therefore, it is
possible that the feature vector is not mapped correctly to the expected
position of the landmark. The relatively low inference accuracy of a deep
neural network (trained with noisy data) on a noiseless or less noisy
testing dataset has also been reported in other studies [? ? ? ]. More
experiments are needed to analyze BoneNet’s performance on noiseless
data and data with different noise levels in both training and testing
dataset. This experiment also demonstrates that, although having a
relatively higher noise level (Fig. 4.9d) compared to the level applied to
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the training dataset, the BoneNet model is still capable of detecting 2D
landmarks at noise level 3, albeit with a slightly reduced accuracy. We
also observe outliers with larger coordinate inaccuracies for noise level 3
as the error levels are up to 10 pixels, and more number of landmarks
detected with errors of around and above 4 pixels (black diamond points
in Fig. 4.10d) in comparison to the results for noise levels 2 and 3 (black
diamond points in Fig. 4.10b, 4.10c). However, the results generally
indicate that, if BoneNet is trained with a similar noise level to the testing
or real data, the model would be robust to noise, and could tolerate a
broad range of noise levels. Furthermore, adding noise to the training
data is also considered as a data augmentation technique that could
reduce overfitting, and help the model cope with noise in the real data [?
, chapter 7], [? ? ].
To test how accurately the landmarks were detected for the different
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(c) Femur
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(d) Tibia

Fig. 4.11 Visualization of the estimated 2D landmark coordinate errors. The
femur landmarks are detected with lower coordinate errors as the third quartiles
and maxima are around 0.5 and 1.2 pixels and both lower than 1.1 and 2.2 pixels
of the tibia landmarks.

bones and landmark types, another dataset containing 200 X-ray pro-
jections was simulated using ASTRA toolbox volumetric projector. The
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four trained BoneNet models infer the landmark voting vector fields and
the bone binary masks in the study X-ray radiographs for two type of
bones (femur and tibia) and landmarks (SIFT and bounding). The femur’s
landmarks are estimated more accurately than the tibia’s as the respec-
tive upper whiskers (vertical, black lines of blue/orange boxes) extend
to 1.1 pixels and 2.5 pixels, and inter-quartile ranges (blue/orange box
areas) are around 0.1–0.6 and 0.2–1.1 pixels (Fig. 4.11). Median coordinate
errors are up to 0.3 and 0.6 pixels for the femur and tibia landmarks,
respectively, demonstrating that 50% of the landmark samples are es-
timated lower than these errors. Although all landmarks are detected
with a median error of less than 0.6 pixels, several landmarks tend to be
less accurately estimated than the rest, such as the fifth of the femur
bone (Fig. 4.11b). As the covariance measures (σ) are proportional to the
error levels of the corresponding landmarks (blue/orange), the higher
the covariance, the less confident the estimated landmark coordinates.
Consequently, the less accurately detected landmarks are weighted less
in the pose reconstruction cost function Eq. (4.1).

4.3.4 3D pose reconstruction

The final experiment is to study how the predicted 2D landmarks perform
in 3D pose reconstruction for the study samples. The voted landmarks
were used to estimate the 3D pose parameters with two joint rotations
(the femur and the tibia) τ = {xo, yo, zo, θo, φo, ηj1 , ηj2}. SOD, SDD, and ηo

are fixed to the ground-truth values, and all the other parameters are
initialized to 0. A numerical study was performed for the reconstruction
of 3D poses of the 200 simulated samples. The results are summarized
in Fig. 4.12. The offsets of the limb with reference to the horizontal axis
parallel to the detector plane (xo), and the vertical axis (yo) are estimated
with median errors of around 20 voxel units indicating that errors of 50%
of the samples lower than this value.
Since, the magnification factors were simulated around 1.5, the projection
of a point can be 30 voxels units offset from the correct position. However,
the binning factor is 6, so the offset approximates to five pixels. The limb
position along the projection axis zo is estimated with a median of 60 vox-
els, and 75% of the samples having zo error of less than 125 pixels (middle
and upper bars of the green boxes in Fig. 4.12a, 4.12c, respectively). If
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Fig. 4.12 Estimation errors of the pose parameters using the bounding (a,b)
and SIFT (c,d) landmarks. The estimations using the bounding return lower
error ranges in comparison to the results using SIFT landmarks, especially for
the rotation parameters (b,d).

the respective simulated distances of SOD,SDD, which are 6 450 ± 180

and 10 200± 540 voxels, are accounted for, the computed error makes up
around 2% of the projection magnification. Therefore, this gap is hardly
visible in the projected image in terms of pixel positions. As shown in
Fig. 4.12b, 4.12d, 50% of the samples are with the rigid {θo, φo} and the
articulated {ηj1 , ηj2} rotation errors below 1.9◦ and 0.9◦, respectively. The
rigid rotations {θo, φo} of 75% of the test samples are reconstructed more
accurately using the bounding landmarks, with an error of 3◦ in compar-
ison to 4◦ for the SIFT landmarks (upper bar of the blue/orange boxes
in Fig. 4.12c, 4.12d. The articulated rotations {ηj1 , ηj2}, have lower third
quartile levels of around 2◦ using either the bounding or SIFT landmarks
as demonstrated in Fig. 4.12c, 4.12d, upper bars of the green/red boxes.
In general, the rotation parameters reconstructed with the bounding
landmarks are more accurate as the upper whiskers and interquartile
ranges are lower than the results using the SIFT landmarks (Fig. 4.12c,
4.12d).
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As the parameters were estimated with notable numerical errors, a fur-
ther visual inspection was conducted for two typical test samples whose
errors situated in the upper (high error), and lower (low error) whisker
areas of Fig. 4.12. The results associated to the high and low error sample
are shown in the first and second row of Fig. 4.13–4.14, respectively. First,
2D views of initial (a,c), reconstructed (b,d), and ground-truth (c,f) poses
for the two test samples are visualized in Fig. 4.13. The ground-truth,
detected, and registered landmarks are highlighted in blue, orange and
red, respectively. As can be seen in the first column of Fig. 4.13, both
the initial orientation and position of the limb do not match the detected
landmarks (orange). After the registration (Fig. 4.13b, 4.13e), the detected
landmarks (orange) are aligned with the bone and close to the recon-
structed landmarks (red). While the landmarks computed with high-error
parameters do not always overlap the detected and ground-truth land-
marks (Fig. 4.13b), the low-error computed landmarks are well-aligned
with the detected ones (Fig. 4.13e). The inaccurate parameters also pose a
visible gap in the tibia projection between Fig. 4.13b and Fig. 4.13c. With
well reconstructed parameters, no difference can be seen in the estimated
and ground-truth projections shown in Fig. 4.13e and Fig. 4.13f.
To further inspect the visual impact of the registration errors, two slices
were extracted at the same position from the ground-truth and recon-
structed volumes for each of the two test samples. Registration residuals
were computed between these slices and the results are summarized in
Fig. 4.14. The gap is clearly visible with high magnitude of misalignment
in the residual slice of the high error sample Fig. 4.14c. However, a
marginal residual is observed in the accurate pose reconstructed sample
Fig. 4.14f.
Finally, registration errors are shown in 3D to give an insight into the
estimation of the femur and tibia rotation around their transverse axes
{ηj1 , ηj2}. The corresponding 3D views for the two testing samples are
shown in Fig. 4.15 with the reference, ground-truth (target) are in blue
and orange, respectively. Before 3D registration, the orientation of the
limb (blue) is misaligned with the target pose (orange) (Fig. 4.15c). Surface-
to-surface distances were computed between ground-truth and registered
volumes Fig. 4.15b, 4.15d . The registration errors are clearly visible as
hot color regions in Fig. 4.15b. Furthermore, the magnitudes of the
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(a) (b) (c)

(d) Initial pose (e) Estimated pose (f) Ground-truth pose

Fig. 4.13 Visualization of the 2D views for the initial (a,d), estimated (b,e), and
ground-truth (c,f) poses of the two test samples with predicted (orange), ground-
truth (blue), and reconstructed (red) landmarks. The 2D detected landmarks
(orange) are not aligned with the computed landmarks (red) in the initial poses
(a,d). After registration, the estimated and detected landmarks align with the
bones. However, the reconstructed landmarks (red) of the high error sample do
not always overlap the detected landmarks (orange) (b). This is not the case with
the accurate registered sample as the ground-truth (blue), detected (orange),
and registered (red) landmarks are aligned correctly (e).

registration errors are as high as 37 voxel unit (red regions). In compari-
son, gaps of around 15 voxels are scattered over the surface of the bone
(dark to light cyan regions in Fig. 4.15b). With an accurate estimate of
the parameters, there are only marginal gaps (≈ 2 voxels) between the
reconstructed and the ground-truth 3D poses marked by cyan regions in
Fig. 4.15d.
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(a) (b) (c)

(d) Ground-truth slice (e) Estimated slice (f) Residual slice

Fig. 4.14 Visualization of the slices extracted from the same positions in the
3D ground-truth (a,d) estimated (b,e) volumes of the two testing samples. The
difference between the corresponding ground-truth and estimated slices are
shown as residual images in (c,f). The residual of the high error sample (c) is
more apparent with a substantial magnitude in comparison to a minor and less
visible gap for the accurate registered sample (f).

(a) (b)

(c) Initial 3D pose (d) Surface-to-surface distance.

Fig. 4.15 3D views for the registration of the 3D pose of the limb (orange) with
reference to the original volume (blue) for the high (first row) and low (second
row) pose reconstruction errors. With the high error, the 3D estimated volume
does not entirely overlap the target volume that the gaps are represented by
a large surface-to-surface distance (up to 37 voxels) (b). An accurate estimate
of the parameters can be observed in (d) with maximum surface-to-surface
distance of around 2 voxels.
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4.4 Discussion

In this chapter, a comprehensive landmark-based method was introduced
for 2D/3D registration to reconstruct the 3D pose of an object using its
fluoroscopic X-ray image and a 3D reference model. The method aligns
the 2D detected landmark positions in the X-ray image with the 2D
projections of corresponding 3D landmarks. As previous 3D landmark
selection methods are prone to overlapping projected landmarks, a short-
est coordinate variance scheme was developed to detect the potential 3D
reference landmarks. With the shortest coordinate variance threshold,
the 3D landmarks were distributed over the object surface and at a dis-
tinctive distance from each other. This scheme facilitated distinguishing
the 3D landmarks in the reference models as well as detecting the 2D
landmarks in the 2D fluoroscopy images.
The conventional landmark extraction methods do not allow to easily
map the 2D detected landmarks to the 3D reference landmarks for an
accurate alignment of the object. Therefore, a deep learning method was
introduced to overcome this obstacle. In general, a trained deep learning
model with a well-labeled dataset can predict the positions of the 2D
landmarks in a 2D X-ray radiograph. Although there are various deep
learning models introduced for landmark detection and registration, a
deep neural network that fits our specific object (piglet limb) and the
number of landmarks to be detected was not available off the shelf. One
of the most relevant models is PVNet [? ], which was introduced to detect
2D landmarks in optical images. PVNet originally tackled occlusion in
visible light photography. This model was designed to handle only nine
2D landmarks in the scenes. However, our preliminary experiments for
the limb data suggested having less than 20 landmarks is insufficient
to reconstruct the 3D poses of the limb using a single X-ray radiograph.
Therefore, BoneNet, which is inspired by PVNet was presented, to adapt
to a higher number of landmarks and a more complex biological object.
By adding five more convolution basic blocks to the feature encoding
stage in the original PVNet, BoneNet was capable of robustly extracting
feature vectors from the X-ray imaging data and propagating the features
towards upscaling layers. A shortcut from a feature encoding layer to an
interpolation layer was replaced to transfer more feature vectors to the
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output and derive more landmarks. The simulation results show that
BoneNet was able to detect the 2D landmark positions in 2D fluoroscopy
images accurately. The numerical evaluation for pose reconstruction us-
ing the detected landmarks demonstrated promising rigid and articulated
parameter estimations. However, further study is needed to clarify the
source of errors as well as to minimize the residual errors in both 2D
landmark detection and 3D pose reconstruction.
The neural network training requires a large amount of diverse labeled
data in terms of the object’s positions, orientations, and articulation
poses. Therefore, the polyaffine fusion scheme [? ] was also applied for a
realistic data simulation. An inverse transformation and a 3D tricubic
spline interpolation module were also implemented for a smooth and
continuous 3D volume transformation. This module and the ASTRA
Toolbox [? ? ] served as a data curation tool to prepare the BoneNet
training dataset, and the validation and test data to evaluate our whole
registration method as the ground-truths were known. The 3D landmark
positions were also computed consistently across the transformed 3D
volumes by using the same transformation model and parameters.
In the scope of this thesis, only a single piglet limb from which the muscle
was dissected was considered as a test object. Such simulation neglected
the presence of muscle and other types of soft tissue in a real animal
model that would certainly complicate the 2D landmark detection. There-
fore, in future work, an evaluation of our proposed method with more
complex objects, including limbs with muscles, soft tissues, and ulti-
mately, a whole piglet model, is needed. A whole limb study would include
acquiring CT scans of the limb to use as a reference model, followed by
3D landmark extraction, simulation of the 2D X-ray datasets, as well as
training, and evaluation with the new data. Moreover, the current noise
simulation considers neither X-ray source model nor detector responses.
Although the preliminary results indicate a high robustness to noise,
a further study is necessary to train and to evaluate the performance
of BoneNet at the noise level of a real X-ray fluoroscopy system. Such
studies are the prerequisite steps towards the evaluation of BoneNet on
2D landmark detection in real X-ray fluoroscopy radiographs. In the
current implementation, a deep neural model was trained specifically
for each landmark type (bounding, SIFT) and bone (femur, tibia). This
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training technique is inefficient as a more complex object requires numer-
ous models to be trained. Therefore, the current BoneNet architecture
needs to be improved to learn and predict different types of landmarks
and bones using a single training model. The current technique uses
only a single cone-beam X-ray radiograph for 3D pose reconstruction. In
the future, X-ray images from a biplanar X-ray scanner, e.g. [? ], could
be employed to gain the accuracy of the 3D pose parameter estimation
as more geometric information is taken into account. The method also
need to be evaluated with real X-ray fluoroscopy images for a complete
reconstruction of the piglet 3D locomotion.

4.5 Conclusion

In general, the proposed method tackled the difficulties in generating a
well-labeled training dataset for 2D landmark detection using a manual
approach. The method employed an automated procedure to robustly
detect 3D landmarks compared to the CoM-based technique [? ]. The
computed 3D landmark coordinates across the transformed volumes
allowed computing the 2D landmark positions accurately for the training
dataset. This procedure also eliminates human errors in manual land-
mark annotations. The customized PVNet architecture (BoneNet) showed
stable convergences over the training with two types of landmarks and
a biological sample. The inferences of the bone segments and landmark
vector fields with BoneNet resulted in accurate detection of the 2D land-
marks in X-ray data from which the 3D poses of the object could be
accurately reconstructed.
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In this thesis, two major problems are addressed: geometry calibration for
a modular biplanar X-ray cone-beam system and 2D/3D registration in
which a 3D CT image is mapped onto fluoroscopic images. For geometry
calibration of a modular biplanar X-ray cone-beam system, the geometry
information that is estimated or compensated based on the acquired
data of an object itself is known as self-calibration. Self-calibration
techniques do not perform well with complex object geometries or with
objects larger than the field of view. Moreover, their iterative optimization
processes are coupled with CT reconstruction that are not well-adapted
to estimate a large number of parameters as in a biplanar X-ray cone-
beam system. This thesis presents a simple and effective method to
construct and employ a LEGO phantom to calibrate an X-ray cone-beam
system. The calibration phantom allows multiple datasets sharing the
same geometry calibration results for the misalignment compensation
in their CT reconstructions. For 2D/3D registration using fluoroscopic
images and 3D CT images, among a broad range of studies dealing
with 2D/3D registration problems, several methods estimate 3D pose
parameters based on the intensity profile of entire input images. In
an X-ray data application, an intensity-based method faces difficulties
as it usually requires simulation of X-ray images with unknown X-ray
source model and spatial information loss. A landmark-based registration
method could tackle the difficulties of the intensity-based method as only
landmark positions are involved in the registration process.
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Biplanar X-ray cone-beam geometry calibration

Geometry misalignment occurs in various X-ray acquisition systems.
Therefore, it is crucial to have the geometry information estimated prior to
the CT reconstructions to suppress misalignment artifacts in CT images.
Geometry calibration with a LEGO phantom is easy to reproduce and
customize to fit the geometry of an arbitrary X-ray system. Hence, the
estimated geometry based on the scan of the calibration phantom can
be used to compensate for the geometry misalignment of scans of other
objects acquired with the same system configuration. Experiments with
the datasets acquired with the 3D2YMOX system showed significantly
reduced misalignment artifacts in the CT reconstructed volumes. The
main contributions to geometry calibration are as follows.

• Effortless building of a LEGO calibration phantom from off-the-
shelf available materials (LEGO bricks and metal markers). Both
materials are readily available and require no dedicated design and
production. Both of the materials also come in various sizes and
shapes. Therefore, the phantom structure can be easily customized
to the target system.

• Application of ResNet50 neural network facilitates extraction of
calibration marker centers and increases extraction accuracy. The
ResNet50 model learns abstract features and maps marker regions
of interest to accurate marker centers. By training ResNet50 with
a large amount of well-labeled data, the model could generalize
region of interest features and infer correct center positions of given
markers.

Compared to single-source systems, biplanar X-ray CT systems allow ac-
quiring projection data within a reduced amount of time for an extended
field of view or dual X-ray energies. More geometry parameters are re-
quired to fully characterize the configuration of the 3D2YMOX system,
as it consists of a dual-source/detector pair. The calibration procedure
was extended to a biplanar cone-beam X-ray system by exploring the
effectiveness of a LEGO phantom. Simultaneous, joint estimation of 21
parameters for the dual-source/detector systems are presented. Various
applications arise with the success of calibrating a biplanar X-ray CT
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system, including dual-energy CT reconstruction and biplanar recon-
struction by combining datasets from both X-ray systems.

2D/3D registration

The 3D musculoskeletal motion of animals is of interest in various bio-
logical studies. It can be derived from X-ray fluoroscopy acquisitions by
means of image matching or manual landmark annotation and mapping.
Often, a 3D model of an animal is aligned with 2D X-ray images of the
same living animal to estimate the 3D pose parameters of the object
in the 2D images. In this thesis, a proof of concept application was
presented for a preliminary study in the reconstruction of 3D poses of an
animal movement during X-ray fluoroscopy image acquisition. The main
contributions of 2D/3D registration are as follows.

• A comprehensive 3D landmark extractions method was implemented
with the shortest coordinate variance threshold. The 3D landmarks
were distributed over the object’s surface and at a distinctive dis-
tance from each other. This scheme facilitated distinguishing the
3D landmarks in the reference models as well as detecting the 2D
landmarks in the 2D fluoroscopy images.

• A ResNet-based model was applied for automated 2D landmark
detection on X-ray images. While the conventional landmark extrac-
tion methods do not allow to easily map the 2D detected landmarks
to the 3D reference landmarks for an accurate alignment of the
object, a deep learning method can overcome this obstacle. In
general, a trained deep neural network model with a well-labeled
dataset can infer the positions of the 2D landmarks in a 2D X-ray
radiograph accurately. The original PVNet model based on ResNet18
architecture was customized for X-ray data and a custom number
of landmarks to be detected.

• A realistic simulation tool of articulation transformation allows sim-
ulation of a large amount of diverse labeled data in terms of the
object’s positions, orientations, and articulation poses for evalu-
ation and deep network training. An inverse transformation and
a 3D tricubic spline interpolation module were also implemented
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for a smooth and continuous 3D volume transformation. The 3D
landmark positions can be computed consistently across the trans-
formed 3D volumes by using the same transformation model and
parameters. This procedure also eliminates human errors in manual
landmark annotations.

Although significant misalignment artifact reduction can be seen in the
CT reconstructions using the calibrated geometry parameters, there are
residual artifacts in the reconstruction images. Further studies are
required to address the source of these artifacts, as well as suppress
them in the CT volumes. Additionally, calibration marker centers are
not directly inferred from the marker region of interest with the cur-
rent approach as BeadNet only inferred the center offsets of the marker
centers. The offsets are later used to correct for the extracted marker
coordinates obtained from the NCC method. Therefore, an end-to-end
method is necessary to facilitate the center extraction process as well as
increase extraction accuracies. As a preliminary application, ResNet50 is
employed to learn and infer the center offsets of the calibration markers.
However, applying a shallower variant of the ResNet architecture could
also be possible. Further evaluations need to be done to find a successful
model candidate in terms of training and inference performance.
The numerical evaluation for pose reconstruction using the detected
landmarks demonstrated promising rigid and articulated parameter esti-
mations in the proposed 2D/3D registration method. However, further
studies are necessary to clarify the source of errors as well as to min-
imize the residual errors in both 2D landmark detection and 3D pose
reconstruction. In the scope of this thesis, a single muscle-dissected
piglet limb was considered a test object. For future work, an evaluation
with more complex objects, including limbs with muscle and, ultimately,
a whole piglet model, is needed. On top of that, in the current imple-
mentation, a deep neural model is trained specifically for each landmark
type (bounding, SIFT) and bone (femur, tibia). This training technique
is inefficient as a more complex object requires numerous models to
be trained. Therefore, improving the current BoneNet architecture is
essential to learn and predict different landmark types and bones by a
single training model. Furthermore, the current technique uses only a
single cone-beam X-ray radiograph for 3D pose reconstruction. In the
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future, X-ray images from a biplanar X-ray scanner can be employed to
gain the accuracy of the 3D pose parameter estimation as more geometric
information is taken into account. Eventually, evaluation of the method
with real X-ray fluoroscopy images completes the reconstruction of the
piglet 3D locomotion.

Future work

This thesis presented a phantom-based calibration procedure to estimate
the geometry of a highly modular, biplanar X-ray CT system. With a
successful calibration of the system geometry, two CT volumes acquired
in a biplanar X-ray system are automatically registered. The biplanar CT
application creates a possibility for dual-energy CT reconstructions of a
single object. Such application will allow to study objects composed of
multiple materials with substantially different X-ray attenuation coeffi-
cients, as it is very challenging to obtain the detailed internal structures
for these kinds of objects by a single source energy acquisition. In prac-
tice, first, each X-ray source spectrum must be calibrated in order to
perform a dual-energy acquisition with the biplanar X-ray CT system.
Next, based on the X-ray attenuation coefficients of the materials in the
study object, different source energies are applied to obtain respective
high contrast images for each of the target materials. Finally, a high qual-
ity CT reconstruction is a prerequisite requirement for studying object
internal structure, therefore, common CT artifacts such as ring artifact
or residual misalignment artifact must be corrected for.
The implementation of a proof-of-concept for 2D/3D registration for the
pig limb in this thesis could be extended to perform 4D CT for a pig
locomotion reconstruction. Eventually, it could also be applied to the
different kinds of animals. Furthermore, if two CT models are simulta-
neously acquired by a biplanar X-ray system with a dual-energy setting,
they are auto-registered. The model with a detailed skeleton of an animal
could be used to reconstruct 3D motion of the animal from a fluoroscopy
videography. Then, the 3D CT model with better soft tissue contrast
structures could be transformed with respect to the reconstructed mo-
tions of the skeleton model. As a result, it is possible to obtain 4D CT
reconstruction of both the skeleton and muscle/soft tissues of an animal
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through the 2D/3D registration and biplanar X-ray CT. This data could
be used to study the motion patterns of animals, as well as the develop-
ment of different types of animals’ muscles/soft tissues over time. The
challenges of this application lie on three major issues. First, a complete
articulated transformation of the whole animal anatomy must be derived
from the animal skeleton 3D model. Next, a deep learning model must
be customized and trained for a large number of bones and geometrical
landmarks inference. The current BoneNet model can be applied to
multiple bones and their landmarks, however, further experiments are
needed to find its maximum capabilities as well as to customize for an
optimal network architecture for a whole skeleton’s landmark detection.
Finally, the deep neural network requires a realistic and a large amount
of data for the training process, therefore, the articulation simulation
method applied in this thesis must be accommodated for more number of
joints, and a complex whole animal body articulation. A realistic dataset
for such training also requires simulating soft-tissues deformation with
respect to the motion of the bones in the animal body. Solving all three
problems simultaneously could pose difficulties in debugging when any
experiments fail. Therefore, one could take several steps toward the final
goal. First, performing a 2D/3D registration with a simulation data of
an animal’s limb with muscles intact. Then, successful experiments in
this stage could lead to a next study with motion reconstruction of a real
limb in a real X-ray fluoroscopic video. In the next stage, simulation of
several limbs or even a whole animal’s body can be taken into account
before performing final experiment with the whole animal’s body motion
reconstruction in the real X-ray fluoroscopic images.
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