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Samenvatting

X-stralen computertomografie (CT) is een krachtige, niet-destructieve beeldvorm-
ingstechniek om het inwendige van een gescand object te visualiseren. Op basis van
meerdere X-stralen beelden die uit verschillende richtingen zijn opgenomen kan een
3D model van het sample worden berekend met behulp van een reconstructiealgo-
ritme. Doordat CT een zeer flexibele beeldvormingstechniek is, kan het gebruikt
worden in een brede waaier aan toepassingen zoals medische, biomedische en in-
dustriële beeldvorming.

Om accurate visualisaties van het interne van een object te verkrijgen moet het
beeldvormingsproces en het object zelf accuraat gemodelleerd worden. Standaard
CT-algoritmes modeleren deze processen als zijnde stationair. Helaas wordt er
aan deze stationariteitsvoorwaarde vaak niet voldaan. Indien de dynamica niet-
verwaarloosbaar is, zorgt het nalaten van haar modellering voor artefacten in de
reconstructiebeelden. Om deze artefacten te vermijden (of te verminderen) zullen
er in dit werk verschillende dynamische processen gemodelleerd en vervolgens geïn-
corporeerd worden in een reeks CT-algoritmes.

In hoofdstuk 2 wordt er gefocust op de dynamica van het beeldvormingsproces.
Meer specifiek, er zal een geavanceerd normalisatiealgoritme voor X-stralenprojec-
ties worden voorgesteld. Dit algoritme compenseert voor de instabiliteit van de
inkomende X-stralenbundel, een probleem dat vaak in synchrotron lichtbronnen
wordt tegengekomen en resulteert in systematische fouten in de genormaliseerde
beelden.

In de daaropvolgende hoofdstukken wordt er gefocust op dynamische computer-
tomografie. Gedurende een dynamische tomografieopname is het object niet langer
stationair. Hierdoor zijn er twee belangrijke uitdagingen: Ten eerste veroorzaakt
de vervorming van het object zogenaamde bewegingsartefacten waardoor de recon-
structiebeelden onscherp zijn en verdubbelingen van structuren kunnen vertonen.
Ten tweede is de gebruiker vaak geïnteresseerd in de dynamica van het proces op
zich en niet enkel in het 3D-model van het object. Hiervoor moet het proces met
een voldoende hoge tijdsresolutie worden opgenomen, wat niet evident is met de
trage CT-acquisitie. Om deze problemen te overwinnen werden er twee algoritmes
ontwikkeld: een affien deformatiecorrectiealgoritme (Hoofdstuk 3) en een 4D-CT
reconstructiekader (Hoofdstuk 4).

In de volgende secties wordt een samenvatting van de verschillende hoofd-
stukken gegeven.
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SAMENVATTING

Hoofdstuk 1 – Inleiding

In dit hoofdstuk wordt de basis van X-stralenbeeldvorming, computertomografie en
dynamische computertomografie voorgesteld. Deze kennis zal veelvuldig gebruikt
worden in de daaropvolgende hoofdstukken.

Hoofdstuk 2 – Dynamische intensiteitsnormalisatie

In dit hoofdstuk wordt een geavanceerde projectienormalisatietechniek geïntro-
duceerd die de dynamica van het X-stralen beeldvormingssysteem in rekening
brengt. In CT wordt typisch de opgenomen projectiedata genormaliseerd met
gemiddelde flat fields (X-ray beelden opgenomen zonder voorwerp) die voor de
scan worden opgenomen. Jammer genoeg zijn deze flat fields in een synchrotron
vaak niet-statisch door vibrerende beamline componenten zoals de monochroma-
tor, tijdsveranderende detectoreigenschappen en andere factoren. Deze dynamica
zorgt voor significante systematische fouten in de intensiteitsnormalisatie.

Daarom wordt in de voorgestelde techniek de dynamica van deze flat fields in
rekening gebracht. Door middel van hoofdcomponentenanalyse van een set van flat
fields wordt er een set eigen flat fields berekend. Een lineaire combinatie van deze
eigen flat fields wordt dan gebruikt om elke projectie individueel te corrigeren.

Experimenten tonen aan dat de voorgestelde dynamische flat field correctie
leidt tot een substantiële vermindering van de systematische fouten in de inten-
siteitsnormalisatie van de projecties in vergelijking met conventionele flat field
correctie.

Hoofdstuk 3 – Affiene deformatieschatting en correctie in cone-beam comput-
ertomografie

In micro-CT komen lange acquisitietijden, in de grootteorde van uren, vaak voor.
Dit is nodig om een voldoende hoge signaal-ruisverhouding en spatiale resolutie
te verkrijgen. Deze lange acquisitietijden worden vooral veroorzaakt door de lage
X-stralen flux die typisch wordt terug gevonden in deze scanners. Daardoor is
er gedurende deze opnames een hoog risico op sample beweging of vervorming.
Tomografische reconstructiealgoritmes die deze dynamica niet in rekening brengen,
krijgen te maken met bewegingsartefacten in de reconstructiebeelden, waardoor de
beelden vaag zijn en strepen vertonen.

Om deze artefacten tegen te gaan, wordt er een efficiënt algoritme geïntro-
duceerd om globale affiene deformaties direct te corrigeren op de cone-beam pro-
jecties. Hiervoor wordt een relatie tussen de affiene transformatie en de cone-beam
transformatie bewezen en gebruikt. De parameters die de deformatie loodrecht op
de projectierichting beschrijven worden voor elke projectie individueel geschat door
het minimaliseren van een vlak gebaseerd inconsistentiecriterium. Het criterium
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vergelijkt elke projectie van de hoofdscan met alle projecties van een korte referen-
tiescan die voor of na de hoofdscan wordt opgenomen. De voorgestelde techniek is
data gebaseerd waardoor het plaatsen van markers of het gebruik van trackingsys-
temen vermeden wordt.

Experimenten, met gesimuleerde en experimentele data, tonen aan dat het
voorgestelde affiene deformatieschatting en correctiealgoritme in staat is om een
substantiële reductie van de bewegingsartefacten in cone-beam CT reconstruc-
tiebeelden te realiseren.

Hoofdstuk 4 – MoVIT: Een tomografisch reconstructiekader voor 4D-CT

4D computertomografie (4D-CT) tracht de temporele dynamica van een 3D sample
te visualiseren met een voldoende hoge temporele en spatiale resolutie. Opeenvol-
gende tijdspannes worden typisch sequentieel opgenomen, gevolgd door de recon-
structie van elke afzonderlijk tijdsspanne. Deze benadering heeft veel projecties
per scan nodig om reconstructiebeelden met een voldoende hoge kwaliteit (in ter-
men van artefacten en signaal-ruisverhouding) te verkrijgen. Bij gevolg is er een
balans tussen de rotatiesnelheid van de bron en detector en de kwaliteit van de
reconstructiebeelden.

In dit hoofdstuk wordt Motion Vector-based Iterative Technique (MoVIT)
voorgesteld. Dit algoritme reconstrueert het object op elke individuele tijdspanne,
waarbij ook de projecties van naburige tijdsspannes in rekening worden gebracht.
Er wordt aangetoond dat deze strategie de balans tussen de rotatiesnelheid en de
signaal-ruisverhouding verbetert.

Het reconstructiekader is op zowel numerieke simulaties en op 4D X-stralen CT
datasets van polyurethaanschuim onder compressie getest. De resultaten tonen
aan dat de beelden verkregen met het MOVIT algoritme een significant hogere
signaal-ruisverhouding hebben in vergelijking met de beelden van conventionele
reconstructiealgoritmes.

Hoofdstuk 5 – Besluit

In dit hoofdstuk worden algemene conclusies getrokken over het gepresenteerde
werk.
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Summary

X-ray computed tomography (CT) is a powerful non-destructive imaging technique
to visualize the interior of an object. Based on several X-ray images acquired from
different directions, a 3D model of the object is calculated with a reconstruction
algorithm. Due to its powerful characteristics, X-ray CT is frequently used in
numerous applications, such as medical, biomedical and industrial imaging.

In order to obtain accurate visualisations of the interior of the object, the
imaging process and the object itself should be correctly modelled. Typical CT
algorithms model these processes as stationary. Unfortunately, this stationarity
assumption is often not met. If the dynamics are non-negligible, failure to model
them leads to artefacts in the calculated reconstruction images. Therefore, several
dynamics will be modelled in this work and included in a range of CT algorithms
in order to eliminate or reduce these artefacts.

Chapter 2 will focus on the dynamics of the imaging process. More specifically,
a normalization algorithm to correct for the incoming beam variations during the
acquisition of X-ray images will be proposed. These intensity variations are often
encountered in synchrotron light sources and result in systematic errors in the
intensity normalization.

In the subsequent chapters, the focus changes to dynamic computed tomogra-
phy. During the acquisition of a dynamic tomographic scan, the object is no longer
assumed to be stationary. Due to these dynamics we are faced with two major
challenges: Firstly, the deformation causes deformation artefacts which blur the
reconstructed images and can cause doubling of certain structures. Secondly, the
experimenter is often interested in the dynamics of the process, in addition to the
3D model of the object itself. Therefore the sample should be visualised with a
sufficiently high temporal resolution, which is not straight forward with the slow
acquisition times of CT. In order to overcome these challenges, two algorithms will
be proposed: an affine deformation correction algorithm (Chapter 3) and a 4D-CT
reconstruction framework (Chapter 4).

In what follows, the chapters of this thesis are summarized.

ix



SUMMARY

Chapter 1 – Introduction

This chapter introduces the reader to the basics of X-ray imaging, computed to-
mography and dynamic computed tomography. This knowledge will be frequently
used in the following chapters.

Chapter 2 – Dynamic intensity normalization

In this chapter, an advanced projection normalisation technique is introduced that
takes into account the dynamics of the X-ray imaging system. In CT, it is common
practice to normalize the acquired projection data with averaged flat fields (X-
ray images taken without the object) taken prior to the scan. Unfortunately, in
synchrotron light sources the flat fields are often far from stationary due to source
instabilities, vibrating beamline components such as the monochromator, time
varying detector properties, or other confounding factors. These dynamics result
in significant systematic errors in intensity normalization.

In this chapter, an efficient method is proposed to account for dynamically
varying flat fields. Through principal component analysis of a set of flat fields,
eigen flat fields are computed. A linear combination of the most important eigen
flat fields is then used to individually normalize each X-ray projection.

Experiments show that the proposed dynamic flat field correction leads to a
substantial reduction of systematic errors in projection intensity normalization
compared to conventional flat field correction.

Chapter 3 – Affine deformation estimation and correction in cone beam com-
puted tomography

In micro-CT, long scan times, in the order of hours, are common to obtain a suffi-
ciently high SNR and spatial resolution due to the low X-ray flux of the scanners.
Hence, micro-CT experiments bear a high risk of sample motion and deforma-
tion during the acquisition. Tomographic reconstruction algorithms that do not
account for this suffer from motion artefacts in the reconstructed images such as
blurring or streaking.

To remedy these artefacts, we introduce an efficient algorithm to estimate and
correct for global affine deformations directly on the cone beam projections. To
this purpose a relationship between affine transformations and the cone beam
transform is proved and used. The deformation parameters that describe defor-
mation perpendicular to the projection direction are estimated for each projection
by minimizing a plane-based inconsistency criterion. The criterion compares each
projection of the main scan with all projections of a fast reference scan, which is
acquired prior or posterior to the main scan.
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SUMMARY

Experiments with simulated and experimental data show that the proposed
affine deformation estimation method is able to substantially reduce motion arte-
facts in cone beam CT images.

Chapter 4 – MoVIT: A tomographic reconstruction framework for 4D-CT

4D computed tomography (4D-CT) aims to visualise the temporal dynamics of
a 3D sample with a sufficiently high temporal and spatial resolution. Successive
time frames are typically obtained by sequential scanning, followed by independent
reconstruction of each 3D dataset. Such an approach requires a large number of
projections for each scan to obtain images with sufficient quality (in terms of
artefacts and SNR). Hence, there is a clear trade-off between the rotation speed
of the gantry (i.e. time resolution) and the quality of the reconstructed images.

In this chapter, the Motion Vector-based Iterative Technique (MoVIT) is in-
troduced which reconstructs a particular time frame by including the projections
of neighbouring time frames as well. It is shown that such a strategy improves the
trade-off between the rotation speed and the SNR.

The framework is tested on both numerical simulations and on 4D X-ray CT
datasets of polyurethane foam under compression. Results show that reconstruc-
tions obtained with MoVIT have a significantly higher SNR compared to the SNR
of conventional 4D reconstructions.

Chapter 5 – Conclusions

In this chapter general conclusions are drawn from the work presented in this
thesis.
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CHAPTER 1. INTRODUCTION

This chapter introduces the basic concepts of X-ray imaging and computed
tomography (CT). Computed tomography is a non-invasive technique that allows
visualizing the interior of a stationary object. In order to do this, several X-ray
images (typically called projections or radiographs) from different angles around
the object are acquired. Afterwards, reconstruction images of the object are cal-
culated based on the acquired X-ray projections. The CT process is conceptually
visualised in Figure 1.1.

The acquisition process of an X-ray image will be described in more detail in
Section 1.1. In Section 1.2, the theory behind the reconstruction algorithms will
be explained. In the last section, dynamic computed tomography (Section 1.3), we
no longer assume that the inspected object is stationary. Therefore the dynamic
behaviour is modelled in the image reconstruction algorithm.

(a) During the acquisition several X-ray images are ac-
quired from different angles.

(b) A reconstruction algorithms calculates the 3D object based
on the acquired projections.

Figure 1.1: Conceptual visualization of the CT scan of an apple.
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1.1. X-RAY IMAGING

This chapter will only give a concise description of the mentioned concepts. A
more detailed description of computed tomography can be found in [1, 2].

1.1 X-ray imaging

In this section the necessary equipment to acquire an X-ray image and the under-
lying physics will be discussed. Firstly, an X-ray source, generating the X-rays,
is needed. The types of sources and their characteristics will be discussed in
Section 1.1.1. Secondly, the incoming X-ray beam will interact with an object
resulting in an altered outgoing beam. This process is discussed in more detail
in Section 1.1.2. Finally, the intensity of the outgoing beam is measured with a
detector, as discussed in Section 1.1.3.

X-ray projections can be acquired using different scanners which have their own
acquisition geometry. The main geometry types are described in Section 1.1.4.

1.1.1 X-ray generation

In medical imaging and in laboratory-based micro-CT systems the generation of
X-rays is typically achieved with an X-ray tube (see Figure 1.2a). In an X-ray
tube, a filament is heated to approximately 2400K, as such the binding energy of
the electrons to the metal of the filament is overcome and electrons are emitted
[1]. These electrons are then accelerated by a high voltage (10 kV < Ua < 300 kV )
towards a tungsten anode. With the entry of the electrons in the anode the
electrons interact with the atoms of the anode with the production of a wide
spectrum of X-rays as a result.

In Figure 1.2b a typical X-ray tube spectrum of the polychromatic beam is
shown, on which two distinct features can be observed:

1. A broad continuous spectrum can be observed which is caused by a process
known as bremsstrahlung. As the electrons enter the surface of the anode,
they are decelerated by the Coulomb fields of the surrounding atoms. The
maximum energy (Emax) of the photons can be determined by Emax = eUa,
where e = 1, 602 · 10−19 C is the charge of an electron. However, typically
several photons are created during the deceleration of a single electron. As
a result, most photons will have a lower energy than Emax and will be dis-
tributed over a wide spectrum of energies, resulting in a polychromatic X-ray
beam. The intensity of the X-rays generated with this process decrease lin-
early with increasing energy [1].

2. Sharp peaks can be observed in the spectrum. These are caused by charac-
teristic X-ray emission: if an electron interacts with an inner electron of an

3



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.2: (a) Conceptual visualisation of an X-ray tube. (b)Conceptual visualisation of a
typical X-ray spectrum of a beam generated with an X-ray tube.

atom of the anode material, the inner electron can be ejected. This vacancy
will be filled by an electron of a higher shell, which will produce a photon
with an energy equal to the energy difference between the two shells. Since
the energy difference between these energy shells is fixed, this process results
into distinct peaks in the X-ray spectra.

The spot where the X-rays are created on the anode is called the focal spot.
Ideally, this spot should be a point source. Since this is in practice not achievable
manufacturers of X-ray tubes try to minimize the size of the focal spot. Failure to
do so results in penumbra blurring, resulting in a loss of spatial resolution of the
X-ray images. This effect is illustrated in Figure 1.3.

To guide the electrons to a small focal spot, their trajectory is controlled by
electron optics. However, since 99% of the kinetic energy of the incoming electrons
is transferred into heat during the interaction with the anode, serious heating
problems occur. To prevent melting, the heat can be distributed over a larger
area of the anode by the use of rotating anodes. These rotating anode tubes are
often used in medical scanners as they are capable of producing high brilliance
X-ray bundles. However, in micro focus X-ray tubes (with a typical focal spot
size of 1− 50µm) these rotating anodes are typically not used due to insufficient
stability and thus a loss of resolution. As a result, micro focus tubes can only be
operated at relatively low power [3]. To remedy this, new X-ray sources have been
introduced with a liquid metal jet anode, resulting in a better heat dissipation and
thus enabling higher power micro focus X-ray tubes [4].

Alternatively, synchrotron light sources can be used to produce X-rays [5].
In these facilities, electrons are accelerated to nearly the speed of light and are

4



1.1. X-RAY IMAGING

Figure 1.3: Illustration of the effect of a large focal spot on the acquired X-ray image.

kept circulating in a storage ring. At certain places the electron beam is guided
through insertion devices such as wigglers. These manipulate the direction of the
beam, resulting in the production of X-rays which are guided to a wide range of
work stations, often called beamlines. Some beamlines are especially equipped
with instrumentation to acquire tomographic X-ray scans. In contrast to X-ray
tubes, synchrotron light sources produce very high intensity X-ray beams. This
allows acquiring high signal-to-noise ratio (SNR) datasets and/or very fast imaging
with similar resolution as micro-CT scanners. Due to their high intensity beams
monochromators can be used, resulting in a monochrome X-ray beam. While
these monochromators drastically reduce the X-ray flux they also eliminate beam
hardening artefacts (see Section 1.1.2). More details about the exact build-up of
a tomographic beamline can be found in [6].

Synchrotron light sources can be found all over the world. A few examples are
the ESRF (France), Diamond Light Source (United Kingdom), SLS (Switzerland),
Max IV (Sweden), Elettra (Italy), APS (USA) and the Australian Synchrotron
(Australia). In Figure 1.4 an aerial view the ESRF is shown to give an impression
of the size of a typical synchrotron light source.

1.1.2 X-ray matter interaction

X-rays are primarily known for their penetrating abilities through optically opaque
materials. However, imaging of the inside of an object would be impossible if the X-
rays simply travelled through the object without interacting with it. Indeed, while
the X-ray beam travels through the sample absorption and scattering of the beam
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Figure 1.4: An aerial view of the ESRF, a synchrotron light source near Grenoble, France.

occurs, resulting in an exponential reduction of the amount of photons. While
the underlying physical interactions are Rayleigh scattering, Compton scattering,
photoelectric absorption and pair production, a much simpler model, the Beer-
Lambert law, is often used to describe the attenuation of a monochromatic X-ray
beam. The Beer-Lambert law is given by following formula:

I = I0e
−

∫
µ(x) dx,

�� ��1.1

where I0 is the incoming intensity, I the measured intensity, and µ(x) the
spatially dependent attenuation coefficients. Note that, the measured intensity
contains information about a line integral of the attenuation coefficients and thus
projects all information of a line in the volume on a single detector pixel. Due to
this property the acquired images are called projection images.

In practice, one is especially interested in the spatial variation of the attenua-
tion values. Therefore, the acquired projection data is converted to the projection
integral (p):

p =

∫
µ(x) dx = − ln

(
I

I0

)
.

�� ��1.2

The division of the measured intensity with the incoming intensity is often
referred to as flat field correction or normalisation. The negative logarithm is
known as the log correction of the projection data.

In practice the incoming intensity is measured by acquiring several projections
without object in the beam before and/or after the scan, also known as flat field or
white field images. The mean flat field is then calculated to reduce the variance of
the noise as much as possible. Then Eq. 1.2 is pixel-wise executed with the mean
flat field as the incoming intensity.

The Beer-Lambert law (see Eq. 1.1) is flawed for polychromatic radiation.
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(a) (b)

Figure 1.5: Reconstruction images of the femur of a rat (a) without beam hardening correction
(b) and with beam hardening correction (linearization approach as described in [7]). This
scan was acquired without hardware filtering of the beam to visualise the cupping effect more
clearly. This dataset was acquired with a Skyscan 1072 micro CT scanner.

Due to the energy dependency of the attenuation coefficients (µ(x,E)) the Beer-
Lambert law should be generalized to:

I =

∫ Emax

0

I0(E)e−
∫
µ(x,E) dx dE,

�� ��1.3

However, this model is seldom used in practice. Neglecting the energy de-
pendency causes cupping effects, also known as beam hardening artefacts, in CT
reconstruction images as can be seen in Figure 1.5b. In this figure a reconstruc-
tion image of the femur of a rat is shown without and with a software-based beam
hardening correction [7]. Notice that the border of the bone is much brighter on
the reconstruction image without correction although the attenuation coefficient
of the material is similar to that of the rest of the bone.

Another flaw of the flat field procedure (see Eq. 1.2) is that it assumes the
incoming beam to be stationary. However, this is often not the case in synchrotron
light sources (see Section 1.1.1) due to a number of confounding factors. The
conventional flat field procedure does not take this dynamic behaviour into account
which results in artefacts in the normalised projections if the dynamics are non-
negligible. Therefore, a dynamic flat field correction procedure was developed,
which is described in Chapter 2.

7
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1.1.3 X-ray detection

Historically, a film containing silver bromide was used to acquire X-ray images.
These days, however, silver bromide films have become obsolete and are replaced
by semiconductor flat panel detectors. These can be split in two categories: direct
and indirect detectors. Direct detectors convert the incoming X-ray beam directly
into an electric signal. However, direct detectors are until now rarely used in
imaging. The second, more popular and cheaper class of detectors are the indirect
detectors [8, 9]. These detectors convert the X-rays to visible light with a phosphors
plate also called a scintillator [1]. This visible light can then be detected with a
charge-coupled device (CCD) or CMOS based camera.

Flat panel detectors are build-up out of numerous detector elements (detector
pixels), arranged in multiple rows and colons. A typical detector has between
1000-4000 rows and columns and thus ranging from 1 to 16 mega pixel.

1.1.4 Projection geometries

The geometrical properties of the X-ray beam and the detector define the projec-
tion geometry. In the 2D case, parallel beam and fan beam geometries are the most
common. In the parallel beam case the different rays are parallel to each other. In
contrast, the rays of a fan beam originate from a single point and diverge towards
the detector. In the 3D case, the same distinction can be made. On the one hand
we have the parallel beam, on the other hand the cone beam geometry which is
the 3D analogue of the fan beam geometry. In practice both 3D geometries are en-
countered. In micro-CT, the X-rays from an X-ray tube originate, approximately,
from a single point. As a result, the acquisition geometry can be described with a
cone beam geometry. In synchrotron light sources the X-rays travel approximately
parallel to each other and thus have to be described with a parallel beam geometry.
All of the mentioned geometries are visualised in Figure 1.6.

1.2 Computed tomography

In X-ray imaging, projection images of the studied object can be acquired. How-
ever, valuable spatial information about the object is lost in the process since the
3D spatial information is projected on a single 2D detector. Computed tomogra-
phy aims to obtain this 3D information by acquiring multiple X-ray projections at
different angles around the object.

CT scanners can be split up in different classes. The most well-known class
of CT scanners is the medical CT scanner (see Figure 1.7a), which can be found
in almost every hospital. However, other types of scanners can be found in the
research and industrial environment. In biomedical research, in vivo micro CT
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(a) (b)

(c) (d)

Figure 1.6: (a) 2D parallel beam projection geometry. (b) 2D fan beam projection geometry.
(c) 3D parallel beam projection geometry. (d) 3D cone beam projection geometry.
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(a) Medical scanner:
Siemens Somatom

(b) Bio-medical scanner:
Bruker micro-CT SkyScan
1276

(c) Micro-CT scanner:
Bruker micro-CT SkyScan
1272

Figure 1.7: Examples of different types of CT scanners.

scanners (see Figure 1.7b) provide valuable information about the interior of small
animals. On the other hand micro-CT scanners (see Figure 1.7c) can also be used
to study materials with high resolution (> 1µm).

The projections acquired by these CT scanners are then entered into a recon-
struction algorithm which recovers the spatial distribution of the attenuation coef-
ficients. Reconstruction algorithms can be split up in three main groups: analytic
(Section 1.2.1), algebraic (Section 1.2.2) and statistical (Section 1.2.3) reconstruc-
tion algorithms.

1.2.1 Analytical reconstruction algorithms

In the first section (Section 1.2.1.1) the Radon transform is introduced. This trans-
form describes the 2D forward problem, in other words, it analytically approxi-
mates the acquisition process. Additionally, the 3D Radon transform is explained.
While this transform does not directly model the forward problem in 3D, it is
an important transform on which several analytic reconstruction algorithms are
based. Furthermore, some 2D analytic reconstruction algorithms are explained in
Section 1.2.1.2 and Section 1.2.1.3. Afterwards, some 3D analytic reconstruction
algorithms will be discussed. Lastly, recent advancements in the field of analytic
reconstruction techniques are mentioned.

1.2.1.1 Radon transform

The 2D Radon transform, introduced by Johann Radon in 1917, formalizes the
projection process in a 2D parallel beam geometry. A line L in 2D space can be
described with its signed distance r from the origin and an angle θ:

L = {x ∈ R2|x · nξ = r},
�� ��1.4
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(a) (b)

Figure 1.8: Schematic overview of the geometry of the (a) 2D Radon transform and (b) 3D
Radon transform.

where nξ = [cos(θ), sin(θ)]T (see Figure 1.8a).

The line integral over L of a 2D function f(x) can be calculated with:

pθ(r) =

∫
L(r,θ)

µ(x) dx.
�� ��1.5

An analogue form of this formula that is often used is:

pθ(r) =

∫
R2

µ(x)δ (nξ · x− r) dx,
�� ��1.6

where δ(.) is the Dirac delta function.

The Radon transform R2 is the transformation that maps the function µ(x)

to the complete set of projection values [10, 11]:

µ(x)
R2↔ {pθ(r)|θ ∈ [0, 2π[, r ∈ R}

�� ��1.7

This equation implies that (R2µ)(θ, r) = pθ(r). To pθ(r) is often referred to as the
sinogram or the projection data. As an example, the Shepp-Logan phantom [12]
and its sinogram is shown in Figure 1.9.

While the 2D Radon transform calculates the line integral of a 2D function,
the 3D transform calculates integrals over planes. Similar to a line in 2D, a plane
in 3D can be described with a unit normal vector nξ and the signed distance r to
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Figure 1.9: The Shepp-Logan phantom [12] (left) and its 2D Radon transform (right). Fur-
thermore, the projection process for θ = 45◦ is shown.

the origin:
A = {x ∈ R3|x · nξ = r},

�� ��1.8

where nξ = [cos(γ) sin(θ), sin(γ) sin(θ), cos(θ)]T (see Figure 1.8b). Thus the 3D
Radon transform R3 calculates the complete set of plane integrals of a function in
R3

µ(x)
R3↔ {pθ,φ(r)|θ ∈ [0, 2π[, φ ∈ [0, π], r ∈ R},

�� ��1.9

with
pθ,γ(r) =

∫
A(r,θ,γ)

µ(x) dx.
�� ��1.10

Note that the 3D Radon transform does not integrate over line integrals in R3

and thus does not model the projection process in 3D. However, the 3D Radon
transform is an important transform in CT and is the basis of several 3D recon-
struction algorithms (see Section 1.2.1.4). Furthermore, the 3D Radon transform
plays an important role in Chapter 3 since it can be used as the basis of a plane
based consistency condition.

1.2.1.2 Back projection

While the 2D Radon transform is an important result, in practice the inverse
problem has to be solved. Based on the projection images the spatially dependent
attenuation coefficients µ(x) should be obtained. In order to obtain these a simple
back projection can be performed. This procedures smears back the acquired

12



1.2. COMPUTED TOMOGRAPHY

Figure 1.10: The different steps of the FBP algorithm.

projection values in the direction from which the radiation came. Mathematically,
this process can be described as:

g(x) =

∫ π

0

pθ(x · nξ) dθ.
�� ��1.11

Although this simple formula seems to reverse the whole process, it results in a
blurry reconstruction image. While the back projection is indeed not the inverse
of the Radon transform, it is an important part of analytic (Section 1.2.1) as well
as algebraic reconstruction algorithms (Section 1.2.2).

1.2.1.3 Filtered back projection

As mentioned in the previous section, a simple back projection does not result in a
satisfying solution. However it can be proven, using the Fourier slice theorem, that
one can achieve the correct result by first applying a high pass filter on the projec-
tion data. This method is called Filtered Back Projection (FBP). Mathematically,
it is given by following formula:

f(x) =

∫ π

0

∫ ∞
−∞
|q|Pθ(q)e2πiqx·nξ dq dθ,

�� ��1.12

where Pθ(q) is the Fourier transform of pθ(r). Eq. 1.12 can be implemented as
follows:

1. The Fourier transform of the acquired sinogram is calculated, resulting in
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(a) (b)

Figure 1.11: Reconstruction of the Shepp-Logan phantom (see Figure 1.9) with (a) simple
back projection and (b) filtered back projection.

Pθ(q).

2. The Fourier transformed sinogram is multiplied with the ramp filter, |q|.

3. The inverse Fourier transform of |q|Pθ(q) is calculated, resulting in a high
pass filtered sinogram.

4. A simple back projection (see Section 1.2.1.2) of the filtered sinogram is
performed.

The different steps are also shown in Figure 1.10.
A comparison between the results of a simple back projection and a filtered

back projection are shown in Figure 1.11. Clearly, the FBP reconstruction image
is sharper than the simple back projection image.

The FBP algorithm has multiple advantages compared to other reconstruc-
tion algorithms: Firstly, the FBP algorithm is fast. This has contributed to the
popularity of FBP-like reconstruction algorithms. Secondly, the algorithm is theo-
retically exact. However, the FBP algorithm is only exact if all the projection data
is acquired. In practice this is never the case and especially with a low number of
projections the algorithm falls short. Another drawback is that it is not very flexi-
ble. For example, adding prior knowledge to the algorithm is not straightforward.
Additionally, the FBP algorithm is only valid for a parallel beam acquisition with
a circular trajectory of the gantry. For other geometries an appropriate algorithm
should be used or derived.

Datasets acquired with a fan beam geometry can thus not be entered directly
into the FBP algorithm. In order to reconstruct these images, one can rebin the
projections to parallel beam projections or use an analytic reconstruction algorithm
that is specially adapted to the fan beam geometry [1, 2]
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(a) (b) (c)

Figure 1.12: The Defrise phantom consists out of several horizontal disks and is designed
to visualise cone beam artefacts. (a) Rendering of the Defrise phantom. (b) Vertical cross-
section through the phantom. (c) Vertical cross-section through the FDK reconstruction
calculated with cone beam projections acquired on a circular source trajectory.

1.2.1.4 3D analytic reconstruction methods

Reconstruction with 3D parallel beam data with a circular trajectory is a straight
forward extension of the 2D case, since every cross-section can be described as
a 2D reconstruction. However, cone beam projections complicate the reconstruc-
tion process. The Tuy-Smith sufficiency condition states that an exact cone beam
reconstruction (see Section 1.1.4) can be calculated if all the planes intersecting
the object intersect the X-ray source trajectory at least once [13]. If this is the
case, reconstruction algorithms based on the general three-dimensional inverse
Radon transform can be used such as the ones introduced by Gangreat and De-
frise [14, 15]. However, if a cone beam dataset is acquired with a circular source
trajectory the Tuy-Smith condition is not met. While this clearly means that an
exact reconstruction cannot be obtained, good approximations can be calculated.
The most frequently used method for this purpose is the Feldkamp-Davis-Kress
(FDK) algorithm [16].

Since the reconstructions calculated with cone beam projections with a circu-
lar trajectory are not exact, they are susceptible to cone beam artefacts. These
artefacts are most pronounced if a plane perpendicular to the rotation axis and
far from the central slice is imaged. The Defrise phantom is especially designed to
visualise the effect of these artefacts as shown in Figure 1.12. Here it can be clearly
seen that the central disk is well reconstructed. However, disks further from the
center are strongly blurred.

For datasets acquired with a spiral source trajectory, other reconstruction al-
gorithms are available [17].
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Figure 1.13: Schematic illustration of the algebraic model.

1.2.1.5 Other analytic reconstruction methods

As mentioned before, the analytic methods are quite hard to adapt to prior know-
ledge. However, recently some methods were published to include prior knowledge
in the filter, for example, by training the filter with an artificial neural network
[18? ]. Another method is able to calculate a filter such that the resulting re-
construction images closely approximate the results of the SIRT algorithm (see
Section 1.2.2) [19].

1.2.2 Algebraic reconstruction algorithms

In algebraic reconstruction methods, the acquisition process is modelled with a
linear system of equations:

Ax = q,
�� ��1.13

where x = (xi) ∈ RN is a vector representing a discretized version of the scanned
object, q = (qi) ∈ RM are the simulated projection values and A = (aij) ∈ RM×N
is a matrix of which the entries aij represent the contribution of voxel value xj to
the projection value qi. This concept is schematically visualised in Figure 1.13.

In CT one wants to solve Ax = p for x, with p = (pi) ∈ RM . However, the
inverse of A does in general not exist. Nevertheless, a closed form expression of
the least-squares solution does exist:

xLS = arg min
x
‖Ax− p‖22 = (ATA)−1ATp,

�� ��1.14

where ‖y‖22 = yTy is the squared 2-norm. Unfortunately, this is infeasible to
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calculate on modern computers, even for moderate size reconstruction problems.
Therefore, several iterative methods were developed to find approximate solutions
of Ax = p, such as the Algebraic Reconstruction Technique (ART), Simultaneous
Algebraic Reconstruction Technique (SART), Simultaneous Iterative Reconstruc-
tion Technique (SIRT), Krylov subspace methods and Conjugate Gradient Least
Squares (CGLS) [2, 20, 21].

In Section 1.2.2.1 the SIRT algorithm will be discussed in more detail. Fur-
thermore, some advanced algebraic reconstruction algorithms (Section 1.2.2.2) and
the implementation of algebraic methods in this thesis (Section 1.2.2.3) will be dis-
cussed.

1.2.2.1 Simultaneous Iterative Reconstruction Technique

The SIRT algorithm solves the weighted least-squares optimization problem:

arg min
x
‖Ax− p‖R,

�� ��1.15

where ‖Ax− p‖R = (Ax− p)TR(Ax− p) and R = (rkl) ∈ RM×M is a diagonal
matrix with rkk = (

∑
l akl)

−1, the row sums of the matrix A [22]. The following
iterative formula is known to converge to the weighted least-squares minimum:

xk = xk−1 +CATR(p−Axk−1),
�� ��1.16

where C = (ckl) ∈ RN×N is a diagonal matrix with cll = (
∑
k akl)

−1, the column
sums of the matrix A. The different steps of the SIRT algorithm are visualised in
Figure 1.14. Firstly, projections of the current reconstruction image are simulated
and compared to the acquired projections. This result is called the projection
difference. Subsequently, the projection difference is weighted with the matrix
R, back projected and finally weighted with the matrix C, resulting in the SIRT
update that is added to the current reconstruction. These steps are repeated
until a stopping criterion is fulfilled. In practice, this stopping criterion is most
frequently a maximum number of iterations.

The SIRT algorithm can also be written explicitly for each component of x:

xkj = xk−1j +

(∑
i

aij

)−1∑
i

(
aij(pi −

∑
h aihx

k−1
h )∑

h aih

)
.

�� ��1.17

Note that, the SIRT algorithm can be interpreted as a maximum likelihood
algorithm. If the projections are assumed to contain independent Gaussian noise,
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Figure 1.14: The different steps of the SIRT algorithm applied on the Shepp-Logan phantom.
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the likelihood function can be formulated as follows:

P (x) = Z−1
∏
i

e

−(∑
j aijxj−pi)

2

2σ2
i ,

�� ��1.18

where Z is a normalization constant and σi the standard deviation of the i’th
projection pixel. This results in following maximum log-likelihood problem:

arg max
x

∑
i

−
(∑

j aijxj − pi
)2

2σ2
i

.
�� ��1.19

This equation can easily be rewritten in following matrix form:

arg min
x

(Ax− p)TΣ(Ax− p),
�� ��1.20

where Σ ∈ RM×M is a diagonal matrix where (Σ)ii = σ−2i . Notice the resem-
blance between Eq. 1.20 and the SIRT objective function: ‖Ax − p‖R, which
are equivalent if we assume σ2

k =
∑
l akl. This result reveals that SIRT assumes

that projections values are corrupted with independent Gaussian noise and that
rays with a larger intersection with the reconstruction volume have a larger noise
variation.

The exact solution of SIRT, arg min
x
‖Ax − p‖R, is known to be sensitive to

noise. However, since the algebraic methods converge relatively fast to a good
approximation, which is not as sensitive to noise, of the exact solution the number
of iterations can be regarded as a regularizing parameter [23]. This phenomena,
known as semi-convergence, clarifies why reconstructions with fewer iterations con-
tain typically less noise (and small details) than an image reconstructed with a large
number of SIRT iterations. This is illustrated in Figure 1.15 with the Shepp-Logan
phantom.

1.2.2.2 Advanced algebraic reconstruction algorithms

Many algebraic reconstruction algorithms are tailored in such a way that they
incorporate certain forms of prior knowledge. This can be accomplished by adding
a regularization term R to the objective function and/or adding extra constraints
on the solution:

x∗ = arg min
x∈D

(‖Ax− p‖+ λR(x)) ,
�� ��1.21

where λ > 0 is the regularization parameter that controls the strength of the regu-
larization and D ⊂ RN a subset of all the solutions satisfying the extra constraints.
The regularization term imposes certain types of prior knowledge on the solution
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(a) (b)

Figure 1.15: SIRT reconstructions of the Shepp-Logan phantom (see Figure 1.9) with (a)
with 200 iterations and (b) 2000 iterations. The projections were simulated with a photon
count of 20000 photons.

such as total variation and smoothness priors [24]. A popular constraint on the
solution is the non-negativity constraint: x ∈ {x ∈ RN |∀i = 1, . . . , N : xi ≥ 0}.
Another example is discrete tomography (such as the DART and DART-PDM
algorithm) where only solutions with a discrete number (l) of (predefined) grey
levels are allowed [25, 26]: x ∈ {τ1, . . . , τl}N . If the studied object meets these
requirements, the object can be reconstructed with significantly lower number of
projections. Other algorithms assume a porous material [27] or partially discrete
objects [28]. Another advantage of the algebraic reconstruction methods is that
one can model the physical acquisition process more accurately. For example, one
can model a continuously rotating gantry, instead of a step-and-shoot protocol
[29].

1.2.2.3 Implementation

Algebraic reconstruction algorithms are known for their high computational and
memory demands. Storing the full projection matrix A into memory is only
feasible for small tomographic problems. For example, a typical dataset with
1000 projections acquired on a 1000× 1000 pixel detector and reconstructed on a
1000× 1000× 1000 voxel grid, results in an A matrix with dimensions 109 × 109.
While this matrix is of course mainly sparse, it still is too big to be stored in mem-
ory. Therefore the elements are calculated on-the-fly with for example Joseph’s
method [30]. To keep computation times reasonable, a GPU implementation is in-
dispensable. For this purpose all forward and back projections in this thesis were
performed with th ASTRA toolbox [31, 32, 33]. This toolbox is the result of a col-
laboration between the Visionlab (University of Antwerp) and the CWI (Centrum
Wiskunde & Informatica) in Amsterdam and is a well-established toolbox in the
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tomographic community.

1.2.3 Statistical reconstruction algorithms

In Section 1.2.2 the projections are modelled as line integrals. The statistical
reconstruction methods takes an alternative route. These algorithms estimate
statistically the solution which matches the projections the closest, taking into
account the measurement statistics. The maximum likelihood method can, for ex-
ample, model the noise in X-ray projections with the Poisson distribution [1, 34].
More advanced reconstruction algorithms, such as IMPACT, model the underlying
X-ray physics even closer, resulting in more accurate reconstructions [35]. How-
ever, these algorithms require accurate prior knowledge, such as the used X-ray
spectrum, which is often not available. Statistical reconstruction algorithms are
also typically associated with long computation times.

1.3 Dynamic computed tomography

In dynamic computed tomography, the object under investigation is no longer
assumed to be stationary. In Section 1.3.1 a tomographic model for dynamic
CT is introduced. This results in two different classes of dynamic CT problems:
4D-CT and deformation compensation which are discussed in Section 1.3.2 and
Section 1.3.3, respectively.

1.3.1 Dynamic tomographic model

The conventional algebraic tomography model described in Section 1.2.2 assumes
the scanned object to remain stationary throughout the acquisition process. This
assumption is no longer valid in dynamic CT. Therefore, the standard tomographic
model has to be generalized to deal with these dynamics.

A dynamic object can be represented as a time series of images xr ∈ RN ,
where r ∈ {1, . . . , R} is the time index, with R the total number of time frames.
The projections of subscan r are represented by pr ∈ RMr . The sparse matrix
Ar ∈ RMr×N is the corresponding forward projection matrix. If the object is
assumed stationary during each time frame, the acquisition of the dynamic process
can be modelled as follows:

A1 0 · · · 0

0 A2 0
...

. . .
...

0 0 · · · AR



x1

x2

...
xR

 = Ãx̃ = p̃,
�� ��1.22
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Figure 1.16: Conceptual image of the acquisition of a 4D-CT dataset. During the deformation
of an object the gantry rotates continuously around the object while acquiring projection
images. This results in the shown sinogram.

where Ã represents the block diagonal matrix consisting of blocks A1, . . . ,AR,
x̃ = (xT1 , . . . ,x

T
R)T ∈ RRN and p̃ = (pT1 , . . . ,p

T
R)T ∈ R

∑R
r=1Mr [36, 37].

Based on this model the dynamic tomographic problems can be split up into
two categories. In the first category the time frames are CT datasets with multiple
projections that cover at least an angular range of 180◦, as such each time frame
can theoretically be reconstructed. To this category we will refer to as 4D-CT
(see Section 1.3.2). Note that, for periodic deformation, gating methods can be
applied to sort the projections in different time frames. In the second category,
to which we will refer to as deformation correction (see Section 1.3.3), the time
frames are individual projections. This means that the model allows motion in a
single rotation of the gantry.

1.3.2 4D-CT

In 4D-CT we assume that motion or deformation during a single subscan (a subset
of the projections with an angular range of 180◦ or 360◦ ) is negligible, as discussed
in Section 1.3.1.

However, due to the long acquisition time of conventional CT, two problems
arise if a fast dynamic process is imaged. Firstly, the long acquisition time of
a single time frame strongly limits the temporal resolution. Secondly, due the
object deformation during the acquisition of a single time frame, the projections
of this time frame are not consistent with each other. This results in blurry
reconstructed images due to deformation artefacts. A straightforward method to
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avoid both problems is shortening the acquisition time of a single time frame.
This can be achieved by reducing the integration time of a single projection or
lowering the number of projections per time frame. A shorter integration time,
however, reduces the signal-to-noise ratio (SNR) of the projection data, which in
turn leads to a lower SNR in the reconstructed images. Lowering the number
of projections, on the other hand, results in streaks in the reconstructed images.
Mathematically this can be regarded as follows: minimizing ‖Ãx̃ − p̃‖ for x̃ is
an ill-posed problem for a dataset with a low number of projections due to the
large null space of the forward operator Ã and the noise present in the projection
data. This results in reconstructions x̃ which are dominated by streak artefacts
and noise. As a result, the conventional workflow leads to a trade-off between the
temporal resolution/deformation artefacts and low SNR/streaking artefacts in the
reconstructed images.

Fortunately, the trade-off between the temporal resolution and SNR can be
improved by exploiting data redundancy present in 4D-CT datasets. Since in every
time frame the same, though slightly changed, object is scanned, it is beneficial
to include information about other time frames into the reconstruction process
[36]. This idea is the basis of the Motion Vector-based Iterative Technique which
introduced in Chapter 3.

As explained in the previous paragraph, exploiting the connection between dif-
ferent time frames can be beneficial. In this framework the acquisition of redun-
dant information should be avoided as much as possible. This can be accomplished
by abandoning conventional acquisition schemes as described by Kaestner et al.
[38], in particular, avoiding that the same acquisition angles are selected in ev-
ery rotation. We will refer to these acquisition schemes as interleaved projection
protocols. Two different protocols can be used: the binary and the golden ratio
decomposition. In the binary decomposition, each time frame consists of a set of
equidistant projections. However each time frame has a slightly shifted starting
angle. As such neighbouring time frames do not acquire projections with the same
projection angle. In the golden ratio acquisition scheme the source and detector
rotate over a fixed angular step: ∆θ = π

(
1 +
√

5
)
/2 radians. This acquisition

scheme assures that a projection angle is never selected twice. Additionally, the
golden ratio acquisition scheme is very flexible since it allows the user to select an
arbitrary number of projections per time frame after the acquisition, while still
using approximately equiangular projections for each time frame. As such the
user can balance the temporal versus the spatial resolution after the acquisition.
Unfortunately, due to the large angular step the time spent by rotating the source
and detector is rather large compared to conventional acquisition schemes. This
means that the golden ratio scheme is especially useful in acquisitions with long
exposure times such as neutron tomography. Therefore, the golden ration scheme
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is hardly ever used in X-ray acquisitions.

1.3.3 Deformation correction

The assumption that the deformation in a single rotation is negligible is not al-
ways applicable. In order to deal with datasets that do not fulfil this assumption
a less strict condition is imposed: the motion during a single projection should be
negligible. While in the previous paragraph it was still possible to reconstruct the
object with the projections of a single time frame without deformation artefacts,
this is no longer possible. Since the object deforms during a single time frame
the different projections will no longer be consistent with one another. As a re-
sult the reconstruction images are blurry and/or contain streak artefacts, these
artefacts are referred to as motion artefacts or deformation artefacts. The process
is visualised in Figure 1.17. Here the Shepp-Logan phantom undergoes an affine
deformation during the acquisition.

Several analytic algorithms and algebraic reconstruction algorithms were de-
veloped to correct for known motion during the acquisition [39, 40]. S. Roux et al.,
for example, introduced a 2D exact reconstruction method for objects deforming
in time by a known affine transformation [41]. These methods were generalised to
a broader range of deformations [42, 43].

However, the problem in deformation correction is two-fold. While motion
corrected reconstruction images can be computed, these algorithms require the
deformation to be known. In practice, the exact deformation is unknown and has
to be estimated. Markers and tracking systems can greatly facilitate motion esti-
mation [44, 43] but suffer from inherent disadvantages. Firstly, marker placement
is time consuming, since they have to be placed very carefully to avoid damag-
ing the sample. Moreover, markers may shift during the acquisition. Secondly, a
specialized and often costly tracking system is needed.

Alternatively, data-driven deformation estimation procedures can be used. These
algorithms don’t require the placement of markers and expensive tracking systems
since they are completely software based. Despite these advantages, data driven
motion estimation is not a trivial task. To this end an efficient deformation esti-
mation and correction algorithm for cone beam CT data of an object undergoing
affine deformation is introduced in Chapter 4.

1.3.4 Applications

Dynamic computed tomography is of great value in numerous applications. In the
following a short, non-exhaustive, overview of different applications is given.
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Figure 1.17: Top: The Shepp-Logan phantom (Figure 1.9) undergoing affine deformations.
Middle: Sinogram of the deforming phantom. Bottom: SIRT reconstruction of the deformed
sinogram.
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Medical CT Medical CT is certainly the most well-known form of computed
tomography. Since multiple dynamic processes take place in the body, such as
cardiac and respiratory motion, it is not surprising that imaging these processes
in 4D is of great interest [45, 46, 47, 48, 49, 50].

Biomedical CT Computed tomography is also of great value in biomedical
research[51, 52]. To scan the small animals, such as mice and rats, special small
animal scanners are available. For example, to study the animals pulmonary sys-
tem and function dynamic tomography is needed [53].

Industrial CT In material science, CT is a very valuable tool to non-destructively
test the properties of materials [54]. To analyse the dynamic properties of the ma-
terials dynamic CT is an important tool. These acquisitions allow to study the
properties of a material (such as a foam) under compression [55, 56, 57, 58, 59]
and the fluid flow inside porous materials [60, 61]. The latter is highly important
for petroleum research, where the extraction of oil and gas out of tight reservoirs
is closely linked with these processes [62].

Dynamic CT can even be used in the food industry, for example for imaging
the leavening of pastry products [63].
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CHAPTER 2. DYNAMIC INTENSITY NORMALIZATION

2.1 Introduction

In X-ray imaging, the acquired projection images generally suffer from fixed-
pattern noise, which is one of the limiting factors of image quality. It may stem
from beam inhomogeneity, gain variations of the detector response due to inhomo-
geneities in the photon conversion yield, losses in charge transport, charge trapping,
or variations in the performance of the readout [1]. Also, the scintillator screen
may accumulate dust and/or scratches on its surface and in the bulk, resulting in
systematic patterns in every acquired X-ray projection image.

In X-ray Computed Tomography (CT), fixed-pattern noise is known to signifi-
cantly degrade the achievable spatial resolution and generally leads to ring or band
artifacts in the reconstructed images [2, 3, 4]. This, in turn, hampers quantitative
analysis and complicates post processing such as noise reduction or segmentation
[5]. If the pattern noise is truly stationary (i.e., exactly the same in each acquired
projection image), substantial reduction of fixed pattern noise is easy.

The conventional method to reduce fixed-pattern noise is known as flat field
correction (FFC) [6]. Projection images without sample are acquired with and
without the X-ray beam turned on, which are referred to as flat fields and dark
fields. The flat fields include the non-uniform sensitivity of the charge-coupled
device (CCD) pixels, the non-uniform response of the scintillator screen, as well as
the inhomogeneities of the incident X-ray beam. Based on the acquired flat and
dark fields, the measured projection images with sample are then normalized.

While conventional FFC correction is an elegant and easy procedure that
largely reduces fixed-pattern noise, it heavily relies on the stationarity of the beam,
scintillator response and CCD sensitivity. In practice, however, this assumption
is only approximately met. Indeed, detector elements are characterized by inten-
sity dependent, nonlinear response functions and the incident beam often has time
dependent non-uniformities [7], which renders conventional FFC inadequate. In
synchrotron X-ray tomography, there is an even broader array of time dependent
fluctuations. A range of components of the synchrotron cause beam variability:
instability of the bending magnets of the synchrotron, temperature variations due
to the water cooling in mirrors and the monochromator, or vibrations of the scintil-
lator and other beamline components [8]. The latter is responsible for the biggest
variations in the flat fields. The variation of the total incident X-ray intensity over
time is another cause of flat field variation. Synchrotrons working in ’top-up’ mode
inject, at regular times, new electrons into the storage ring, resulting in a typical
saw-tooth function of the X-ray flux over time [9]. As a result, after conventional
FFC, often significant intensity variation remains in the sinogram, leading to ring
artifacts in the reconstructed image as concentric arcs or half-circles with varying
intensity.
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Little work has been presented so far to deal with temporal fluctuations in
the flat fields. In [8], an adaptive time-dependent intensity normalization was pro-
posed in which the flat field is modelled by the product of a multiplicative function
defined by dust or dirt on the surfaces of the scintillator and CCD camera, and a
function describing a time dependent intensity profile of the X-ray beam incident
on the sample. In [10], a FFC method together with an automated scanning mech-
anism was proposed in which the flat field images and projection data are acquired
every view alternately. When acquiring the flat field image, the imaging sample
is moved away from the field-of-view by a computer controlled linear positioning
stage. While such a procedure allows view-by-view normalization, the mechanical
set-up significantly lengthens the acquisition time. Moreover, it requires perfect
repositioning of the sample, which is non-trivial.

In this chapter, we propose a general, fast and simple method to account for
time dependent variations in the flat fields. It estimates the flat field at the ac-
quisition time of the projection in order to normalize the projection individually.
Firstly, the technique performs a Principal Component Analysis (PCA) of flat fields
acquired prior, during and/or posterior to the X-ray tomographic experiment [11].
Afterwards, the weights of the most important PCA components are estimated
for each projection, minimizing a total variation criterion [12]. The estimated flat
field is then used to normalize the corresponding projection.

2.2 Method

In this section, we will revisit the conventional FFC method (subsection 2.2.1),
which is the standard normalization technique in X-ray imaging. Next, in subsec-
tion 2.2.2, the proposed dynamic FFC algorithm is described, which deals with
non-stationary flat fields.

2.2.1 Conventional flat field correction

The attenuation of a monochromatic X-ray beam is described by the Beer-Lambert
law, stating that:

I = I0 · exp

(
−
∫
µ(l) dl

)
,

�� ��2.1

with I the outgoing intensity, I0 the incoming intensity, µ the attenuation coeffi-
cient of the object and l the coordinate along the X-ray path. The integral

∫
µ(l) dl

is the total attenuation of the beam along a given ray.
Prior to the reconstruction of a cross section or volume, the projection data
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are normalized with respect to I0:∫
µ(l) dl = − ln

(
I

I0

)
.

�� ��2.2

In practice, an estimate of p as well as I0 can be obtained from projections with
and without object, respectively. This normalization procedure is known as flat
field correction (FFC). Conventional FFC relies on a dark field, a flat field, and
the projection image to be normalized:

Dark field : A dark field d, often referred to as the offset field, is an image which
is captured by the detector without X-ray illumination. The signal detected
in the absence of X-rays from the X-ray source includes both the true dark
current (which is proportional to the exposure time), and the digitization
offset, which is independent of exposure time. Usually, the exposure time for
the acquisition of dark field images is equal to that of the projection images.

Flat field : A flat field f , often referred to as a white field or gain field, is acquired
with X-ray illumination, but without the presence of the sample. It is used to
measure and correct for inhomogeneities in the X-ray beam intensity profile
and detector response.

Projection image : projection images {Ij} are acquired with X-ray illumination
and the sample is positioned in the field of view of the detector. These images
are acquired while the sample rotates, usually in regular angular intervals.

Based on these images, an intensity normalized image nj is computed as follows:

nj =
Ij − d
f − d

.
�� ��2.3

Since f as well as d contain noise, the variance of the normalized image nj is
larger than the variance of Ij , due to noise propagation. To limit this effect, d
and f are replaced in practice by the average of a large number of dark and flat
fields, d̄ and f̄ , respectively [1].

2.2.2 Dynamic flat field correction

Conventional FFC as described in subsection 2.2.1 is only valid if the flat fields
are stationary (i.e., do not change over time). If this is not the case, FFC based
on a simple averaged flat field will introduce a bias in the normalized image.

We propose an advanced FFC method that accounts for higher order dynamics
in the flat fields. Thereby, each projection is normalized individually with its
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corresponding flat field:

nj =
Ij − d̄
fj − d̄

,
�� ��2.4

with fj the flat field at the acquisition moment of projection Ij . Since fj is
unknown, it has to be estimated. The main idea is to first capture the dynamics in
the flat fields from a set of flat fields (acquired prior, during or after the experiment)
and next exploit the dynamics to individually normalize each projection image.
This will be explained in a more formal way in the following subsections.

2.2.2.1 Eigen flat fields

Let f ≡ {fn} ∈ RN a column vector representing a flat field (i.e., a vector
composed of concatenated columns of a 2D projection with N pixels). If M
flat field images are acquired, these images can be stored in a flat field matrix
F ≡ {fm} = (f1, ...,fM ) ∈ RN×M . Let f̄ represent the mean flat field. Then,
each flat field fm can be represented in a low dimensional (K � N) space using
PCA. That is, it can be well approximated by a linear combination of K eigen flat
fields {uk}, the principal components, as follows:

fm ≈ f̄ +

K∑
k=1

wmkuk.
�� ��2.5

Computation of eigen flat fields Turk and Pentland proposed an efficient
procedure to compute the eigen images [13]: Given a set of M flat fields F =

(f1, ...,fM ), a centered flat field matrix A ∈ RN×M is computed by subtracting
the mean flat field f̄ from each individual flat field:

A = (f1 − f̄ , ...,fM − f̄).
�� ��2.6

The goal is then to find the eigen vectors and eigen values of the covariance matrix
C = AAT . Since C ∈ RN×N is a huge matrix, calculating its eigenvectors is
computationally expensive. Fortunately, as shown by Turk and Pentland, this
problem can be efficiently dealt with by computing the eigenvectors {vi} and
eigenvalues {λi} of the M × M matrix ATA. Then, {Avi} = {uk} and {λi}
are the eigenvectors, referred to as eigen flat fields (EFFs), and eigenvalues of C,
respectively.

Selection of the eigen flat fields Once the EFFs are computed, the most
important EFFs (i.e., the EFFs describing most of the variation in the flat fields)
have to be selected. Many criteria exist to select an optimal number of Principal

37



CHAPTER 2. DYNAMIC INTENSITY NORMALIZATION

Components (EFFs), such as the Kaisers criterion, the cumulative percentage of
total variation, or the scree test [14, 11]. Here, we opted for a statistically justified
approach based on parallel analysis [15]. Parallel analysis selects only those com-
ponents of which the eigenvalues are significantly larger than the corresponding
eigen values of a dataset with the same variation but with independent variables.
To this end, a large number (S) of matrices with the same dimensions as A are
sampled from a multivariate normal distribution with a diagonal covariance matrix
of which the elements are identical to those of the covariance matrix C. Then,
PCA is conducted on these matrices and the eigenvalues {λi,s}Ss=1 are collected.
If λi of C is larger than the 95th percentile of the set {λi,s}Ss=1 of the covariance
matrix of the sampled matrices, the ith EFF is retained.

Filtering of the eigen flat fields In the previous step, the EFFs were selected
that describe most of the variation in the flat fields. Compared to the remaining
EFFs, the signal-to-noise ratio (SNR) of the selected EFFs is much higher, but
obviously not noiseless. To limit noise propagation in the dynamic FFC method
proposed in section 2.2.2.2, the selected EFFs are filtered using a block matching
filter [16].

2.2.2.2 Dynamic flat field estimation

Once the EFFs are computed from the set of flat fields acquired prior, during
and/or posterior to the actual measurements, each measured projection is norma-
lized with its corresponding flat field f̂j (see Eq. 2.4). This flat field is generated
by linearly combining K principal EFFs:

f̂j = f̄ +
K∑
k=1

ŵjkuk,
�� ��2.7

where {ŵjk} denote the estimates of the weights corresponding to the EFFs. The
goal is then to find these weights such that the estimated flat field f̂j approaches
the true flat field fj . We assume that, if this is the case, the variation in the
normalized projection nj is minimal.

Total variation minimization Finding the optimal weights of the flat fields,
{ŵjk}, is accomplished by searching for the linear combination that minimizes the
total variation (TV) in each normalized projection nj . However, simply minimiz-
ing TV(nj) would lead to ever increasing weights {ŵjk}. Indeed, the TV of an im-
age i is a homogeneous function of degree one for a ∈ R+, i.e. TV(a i) = aTV(i).
Consequently, minimizing TV promotes images with a low mean. To prevent the
algorithm favoring normalized projections with high valued flat fields, the TV is
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multiplied with c({wjk}), the mean of the applied flat field. This results in the
following optimization problem:

{ŵjk} = arg min
{wjk}

c({wjk}) ·
N∑
n=1

∇nj({wjk})|n|
�� ��2.8

with

nj({wjk}) =
(
Ij − d̄

)
/

(
f̄ +

K∑
k=1

wjkuk − d̄

) �� ��2.9

and

c({wjk}) =
1

N

N∑
n=1

(
f̄n +

K∑
k=1

wjkuk,n − d̄n

)
.

�� ��2.10

The factor
∑N
n=1 |∇nj({wjk})|n of the objective function, which is minimized in

Eq. 2.8, denotes the TV of the normalized projection: TV (nj).

The objective function is minimized using a quasi-Newton method[17]. This
nonlinear optimization algorithm is an alternative to Newton’s method in which
the Hessian is approximated, reducing the computational cost of the algorithm.
Two stopping criteria are used: a tolerance level of 10−6 and a maximum number
of iterations (400). The weights {wjk} are estimated from down sampled pro-
jections and EFFs. This has two advantages: for one, the effect of noise on the
TV is significantly reduced, resulting in a more robust estimation. Secondly, it
substantially increases the speed of the algorithm.

Intensity rescaling The TV criterion is sensitive to structural changes but
insensitive to image offsets. Hence, we propose a rescaling of the projections
after normalization. This procedure is different for truncated and non-truncated
projections. Truncated projections are rescaled such that they have the same mean
as the conventional flat field corrected projections. For non-truncated parallel
beam projections the first Helgason-Ludwig consistency condition is used [18],
stating that the sum of all the attenuation coefficients should be the same in
every projection. Each dynamic flat field corrected non-truncated projection is
rescaled such that they have the same mean as that of the full conventional flat
field corrected dataset.

An overview of the dynamic FFC algorithm is shown in Figure 2.1.
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parallel 
analysis

Figure 2.1: Overview of the dynamic FFC algorithm.

2.3 Experiments

To validate the dynamic FFC methodology, simulations (section 2.3.1) as well as
real experiments (section 2.3.2) were performed. All reconstructions were com-
puted using the ASTRA tomography toolbox [19, 20].

2.3.1 Simulation study

A 3D spatial resolution software phantom (see Figure 2.2) was generated on a
768×768×200 voxel grid. The Astra toolbox was used to simulate 500 log corrected
projections with parallel beam geometry and an angular range 180 degrees [19]. A
set of real flat fields of a foam imaging experiment (see section 2.3.2.2), 250 prior
and 250 post flat fields, were applied on the simulated projections as described by
the Beer-Lambert law (Eq. 2.1):

Ij,sim = fj · e−nj ,
�� ��2.11

with nj the j’th simulated projection, fj the j’th flat field of the foam dataset
and pj,sim the j’th projection with simulated dynamic flat fields. This procedure
essentially simulates realistic dynamic flat fields. The remaining 50 prior and 50
post flat fields of the foam datasets were used to correct the projections with the
conventional FFC as well as to compute the EFFs in the dynamic FFC. All flat
fields were filtered with Non-Local Means to reduce noise [21].

In a first experiment, the number of flat fields and the number of EFFs were
varied between 5 to 49 and 1 to 5, respectively. In a second experiment, the number
of projections was varied from 5 to 500 in steps of 10, all with an angular range
of 180 degrees. Two EFFs, calculated from a set of 100 flat fields, were used for
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Figure 2.2: Sinograms, reconstructions and error images of slice 129 for conventional FFC
and dynamic FFC are shown. For the dynamic FFC of the 500 projections, 2 EFFs, based on
100 flat fields, were calculated. The red square in the phantom images indicates the ROI in
which the MSE was calculated.
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(a) (b)

Figure 2.3: (a) Mean posterior flat field of the aluminum peroxide dataset. (b) The first
projection of the aluminum peroxide dataset.

dynamic FFC. All reconstructions were made using SIRT with 300 iterations.
Both the normalized projections and corresponding SIRT reconstructions were

assessed visually and quantitatively. To quantify the results, the Mean Squared
Error (MSE) of the normalized projections as well as the MSE of the reconstruc-
tions was computed. The MSE in the projection domain was calculated on all
projection data and the reconstruction MSE was calculated in a 100× 100 region
of interest (ROI) (see Figure 2.2).

2.3.2 Experimental data

The dynamic FFC algorithm was tested on two X-ray tomography datasets, each
from a different synchrotron facility, and compared to conventional FFC.

2.3.2.1 Aluminum peroxide

At the Advanced Photon Source (APS) of the Argonne National Laboratory, a
tomography dataset of an aluminum peroxide structure was acquired. The dataset
consisted of 1 dark field, 100 posterior flat fields and 1500 equiangular projections,
with an angular range of 180 degrees. Each of the projections (2048× 2048 pixels)
was acquired with an exposure time of 300ms. The mean of the posterior flat
fields and a projection are shown in Figure 2.3. The dataset was processed using
conventional as well as dynamic FFC. The dynamic flat field weights {wjk} were
estimated on 20 times down sampled projections and afterwards applied to the
full scale projections. Due to the limited amount of truncation the dynamic FFC
projections were rescaled using the first Helgason-Ludwig consistency condition
[18]. Filtered Back Projection (FBP) reconstructions were made using the ASTRA
toolbox [6, 19, 20].
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Figure 2.4: (a) Mean of the prior and posterior flat fields of the foam dataset. (b) The first
projection of the foam dataset.

2.3.2.2 Foam

A ROI tomographic dataset of a foam structure was acquired at the Tomcat beam-
line of the Swiss Light Source (SLS) of the Paul Scherrer Institute (PSI). The
dataset consisted of 20 dark fields, 300 prior flat fields, 251 projections and 300
posterior flat fields. Each projection (256 × 1248 pixels) was acquired with an
exposure time of 30 ms. The mean flat field and a projection are shown in Fig-
ure 2.4. The dataset was processed using conventional FFC and dynamic FFC,
with one up to five EFFs. The dynamic flat field weights {wjk} were estimated
on 20 times down sampled projections and afterwards applied to the full scale
projections. Cross sections of the dataset were reconstructed with 200 iterations
of SIRT and with FBP.

2.4 Results and discussion

2.4.1 Simulation study

2.4.1.1 Number of EFFs and flat fields

Figure 2.2 shows the results of conventional and dynamic FFC (500 projections,
100 flat fields and 2 EFFs) on both the projections and the reconstructions. The
projections with conventional FFC clearly suffer from vertical stripes in the sino-
gram due to flat field variations. These artifacts are almost completely removed
with dynamic FFC. The effect of flat field variation manifests itself as broad ring
artifacts in the reconstruction, which are also clearly visible in the error image.
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Figure 2.5: MSE of the projections (left) and the reconstructions (right) for both conventional
FFC and dynamic FFC with 1 to 5 EFFs in function of the number of flat fields.

Both the reconstruction and error image based on dynamic FFC show a substantial
reduction of these artifacts.

In Figure 2.5, the MSE of the projections and reconstructions is shown for
conventional and dynamic FFC in function of the number of flat fields and EFFs.
It can be observed that the MSE of the projections decreases slowly in function of
the number of flat fields. Increasing the number of flat fields obviously improves
the SNR of the EFFs and, as a result, improves the quality of the dynamic FFC
projections. The MSE of the projections also decreases when more EFFs are
used, although higher order (4th and 5th) EFFs only have a limited effect on
the projection quality. This behavior was expected, as increasing the number of
EFFs improves the description of the estimated flat fields as long as they contain
sufficient structural information.

The MSE of the reconstructions shows a more complex behavior. In general,
the reconstruction quality improves with an increasing number of flat fields, which
is to be expected, mainly because the increase of SNR of the EFFs. For a rather
small number of flat fields (< 30), dynamic FFC with only 1 EFF performs best
in terms of MSE. If more flat fields are available, the SNR of the second EFF is
sufficiently high, hence improving the normalization when taking the second EFF
into account. The use of more flat fields results in less noisy high order EFFs that
enable a better description of the actual structural variation. In practice, as many
flat fields as possible should be acquired to obtain a high SNR of at least the low
order EFFs. Parallel analysis (cfr. section 2.2.2) indeed suggests a similar number
of EFFs: one EFF if less than 33 flat fields are acquired and two EFFs if 33 to 49
flat fields are used. It is clear that dynamic FFC outperforms conventional FFC
in terms of projection MSE for all numbers of flat fields. Furthermore, dynamic
FFC generally leads to improved reconstruction (quantified by the reconstruction
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Figure 2.6: MSE of the projections (left) and the reconstructions (right) for both conventional
FFC and dynamic FFC (100 flat fields, 2 EFFs) in function of the number of projections.

MSE).

2.4.1.2 Number of projections

Figure 2.6 shows the MSE in the projection (left) and reconstruction domain
(right) for conventional and dynamic FFC in function of the number of projec-
tions. Clearly, the MSE of the projections decreases substantially if dynamic FFC
is used instead of conventional FFC. After conventional FFC, one can observe
large variation in MSE as a function of the number of projections. In contrast,
after dynamic FFC, there is almost no variation of the MSE as a function of the
projections, which indicates that even severely distorted projections are properly
corrected. The MSE of the reconstructions is in all cases slightly lower for the
dynamic FFC than for the conventional FFC. This difference decreases with in-
creasing number of projections. This can be explained by the back projection
during reconstruction in which the remaining errors after FFC are averaged out.

2.4.2 Experimental data

2.4.2.1 Aluminum peroxide

The aluminum peroxide EFF’s structure consists mainly of horizontal stripes (see
Figure 2.7), with decreasing intensity with increasing order of EFF. The EFFs
clearly reveal structural variation in the flat fields as otherwise, only random noise
would have been present in the EFFs, being the only source of variation.

A projection of the aluminum dataset, corrected with conventional and dynamic
FFC with 1 to 5 EFFs is shown in Figure 2.8(a) and Figure 2.8(b-f), respectively.
The majority of the projections that are processed with conventional FFC are
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Figure 2.7: (a)-(e): EFF 1-5 of the aluminum peroxide dataset, respectively.

degraded by horizontal stripes over the whole width of the projection. In contrast,
dynamic FFC is able to remove most of the flat field variation related artifacts
if sufficient (i.e., two or more) EFFs are used to correct the projections. Parallel
analysis of the dataset suggests the use of 3 EFFs.

Inspection of the conventional FFC corrected sinogram (see Figure 2.9 for a
selection of the sinogram) reveals vertical stripes over the full width of the sino-
grams. The intensity of these stripes were observed to vary randomly between
consecutive projections. This line pattern is completely removed using dynamic
FFC. The difference (see Figure 2.9) between the two methods is up to 4% of the
signal. On the FBP reconstructed slices, however, the difference between conven-
tional and dynamic FFC is less obvious (see Figure 2.10). The variations resulting
from conventional FFC are almost randomly distributed with respect to the pro-
jection angle. During the back projection these variations are averaged out (in
each voxel). Hence, while there are often large errors in the projections cause by
incorrect FFC, only a limited effect can be observed in the reconstructions due
to the back projection averaging effect. If more than 3 EFFs are used, the recon-
structions are corrupted by small ring artifacts. This result can be explained by
the low SNR of high order EFFs, introducing systematic errors in the dynamic flat
field corrected projections. Parallel analysis was able to exclude these noisy EFFs
by selecting only 3 EFFs.
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Figure 2.8: An FFC corrected projection from the aluminum peroxide dataset: (a) conven-
tional FFC, (b)-(f) dynamic FFC with 1 to 5 EFFs, respectively.

Figure 2.9: ROI of the aluminum peroxide sinogram: (a) conventional FFC, (b) dynamic FFC
with 3 EFFs. (c) The difference between the conventional and dynamic flat field corrected
sinogram.
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(a) (b)

Figure 2.10: FBP reconstructed slice of the aluminum peroxide dataset with (a) conventional
and (b) dynamic FFC with 3 EFFs.

Figure 2.11: (a)-(e): The first five (principal) EFFs of the foam dataset.

2.4.2.2 Foam

Figure 2.11 shows the first five EFFs of the foam dataset. These EFFs show
structural patterns and not only variation due to noise, as would be expected in
the stationary flat field case. Accordingly, visual inspection of the flat fields reveals
clear variation of the flat fields over time. An up and down motion of the flat field
pattern is observed in an almost periodical manner. The period of this motion is
only a few projections long, which is fast compared to the duration of the full scan.
The structural patterns are mainly horizontal stripes originating from the up and
down motion of the pattern as can be seen in the mean flat field (Figure 2.4).
Higher order EFFs are highly degraded by noise, a consequence of the noise being
responsible for a part of the variation of the flat fields.

A corrected projection with conventional and dynamic FFC (with 1 to 5 EFFs)
is shown in Figure 2.12. Most projections in the dataset still show substantial
artifacts after conventional FFC. In contrast, dynamic FFC greatly improves the
projections. Using a single EFF has only a limited effect, but two or more EFFs
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Figure 2.12: An FFC corrected projection from the foam dataset: (a) conventional FFC,
(b)-(f) dynamic FFC with 1 to 5 EFFs, respectively.

reduce the patterns due to flat field variation almost completely. The difference
between the two methods is up to 30% of the signal.

Figure 2.13(a) and Figure 2.13(b-f) show the sinogram of a slice with con-
ventional and dynamic FFC, respectively. The conventionally corrected sinogram
clearly shows remaining artifacts (indicated by the arrows). These artifacts are
substantially reduced if sufficient, i.e. more than two EFFs, are taken into ac-
count. Parallel analysis of this dataset suggests that 5 EFFs should be used. Note
that, although the estimation procedure is only dependent on the spatial TV, the
smoothness of the sinogram indicates a decreased TV in the temporal direction.

Figure 2.14 and Figure 2.15 show a reconstructed slice with both conventional
and dynamic flat field corrected projections. The images in 2.14 and Figure 2.15 are
reconstructed with SIRT and FBP, respectively. Many of the SIRT reconstructed
volume slices show only small changes, but some images that were reconstructed
after conventional FFC are strongly degraded by broad ring artifacts caused by
dynamic flat field variations. The positions of these ring artifacts correspond with
the variable flat field induced artifacts in the sinograms, revealing that these ring
artifacts are indeed a direct consequence of flat field variations. Dynamic FFC
is able to remove these artifacts, resulting in a homogeneous background of the
reconstructed slice. The FBP reconstructions in Figure 2.15 are more severely
degraded with noise in comparison with the SIRT reconstructions. Nevertheless,
the reconstructions show the same flat field related artifacts as the SIRT recon-
structions. As both FBP and SIRT are characterized by a back projection step,
which is responsible for the relatively small improvement in the reconstruction,
the difference between these reconstruction algorithms is small. The attenuation
of the foam is low in comparison to the attenuation of the aluminum peroxide sam-
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Figure 2.13: Sinogram of a slice of the foam dataset: (a) conventional FFC, (b)-(f) dynamic
FFC with 1 to 5 EFFs, respectively. Bands containing artifacts are indicated with red arrows.

ple (section 2.4.2.1). Consequently, the flat field variations are bigger relative to
the attenuation signal, causing more pronounced artifacts in the reconstructions.
Therefore, it is to be expected that dynamic FFC will have the largest impact on
low attenuating samples.

2.4.3 General remarks

In current X-ray imaging in which conventional FFC is employed, a set of flat fields
is typically acquired prior to and/or after the object scan. Since our proposed dy-
namic FFC method captures the variability within a set of flat fields, it is indirectly
assumed that the variation in flat fields during the object scan is well represented
by the variation in the pre/post flat fields. Note that this is not a limitation of the
method itself, since intermittent flat fields acquired during the scan may also be
used. However, acquiring flat fields during the experiment involves removing the
sample during the scan and placing it back at the exact same position after the
flat field was acquired, which is technically very challenging. Moreover, this would
substantially prolong the scan time and may also introduce motion artifacts. The
number of flat fields that are typically acquired is also often limited to a few tens
of images, mainly to increase the SNR of the (conventionally averaged) flat field.
In the proposed dynamic FFC procedure, a small number of EFFs are used to
normalize the projections. However, since the SNR of these components decreases
with increasing order of the EFF, more flat fields are needed to yield a sufficient
SNR compared to conventional FFC. Fortunately, the acquisition of more flat fields
is typically not a time consuming procedure, certainly not at synchrotron facilities
where short exposure times are used.
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Figure 2.14: SIRT reconstruction of a slice (same slice as in Figure 2.13) of the foam dataset:
(a) conventional FFC, (b) dynamic FFC with 5 EFFs. The broad ring artifacts are indicated
with red arrows and correspond to the artifacts indicated on the sinograms (see Figure 2.13)

(a) (b)

Figure 2.15: FBP reconstruction of a slice (same slice as in Figure 2.13) of the foam dataset:
(a) conventional FFC, (b) dynamic FFC with 5 EFFs. The broad ring artifacts are indicated
with red arrows and correspond to the artifacts indicated on the sinograms (see Figure 2.13)
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The speed of the method mainly depends on the number of projections, the
size of the projections and the number of used EFFs. Estimation of the EEF
coefficients {ŵjk} is the most time consuming part of our technique, due to the
gradient which has to be calculated for each objective function evaluation. As
an example, dynamic FFC of the aluminum peroxide dataset (See section 2.4.2.1)
with 3 EFFs took around one second for every 2048× 2048 projection.

2.5 Conclusion

Flat field variability is a wide spread phenomenon in X-ray imaging data acquired
at synchrotron facilities. Conventional FFC does not account for temporal varia-
tions in the flat fields, resulting in systematic errors in the corrected projections.
Dynamic FFC deals with this problem by estimation of a corresponding flat field
for every projection. Validation of the technique on a software phantom showed
that dynamic FFC improves both the projections and the reconstructions with
respect to conventional FFC. Experiments on two different synchrotron datasets
showed that the proposed method is able to estimate the flat fields and obtain
normalized projections with strongly diminished or removed flat field variability
related artifacts.
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CHAPTER 3. AFFINE DEFORMATION ESTIMATION AND CORRECTION

3.1 Introduction

As mentioned in Section 1.3.3, an effective way to reduce motion artefacts in CT
is to simply reduce the scan time to limit (the risk of) sample deformation during
the acquisition [1, 2]. Faster scanning, however, inevitably leads to reduced signal-
to-noise ratio (SNR) of the reconstructed images. Especially in micro-CT imaging,
where the X-ray flux is much smaller compared to clinical CT, scan times of the
order of hours are common to obtain sufficient SNR and spatial resolution. Hence,
many micro-CT experiments suffer from a high risk of sample motion/deformation
during the acquisition, which significantly reduces the spatial resolution of the
reconstructed images. Hence, there is a clear need for reconstruction methods
that can generate high quality images from motion corrupted scans.

In this chapter a data driven deformation correction (see Section 1.3.3) recon-
struction algorithm for affine deformations is proposed. Data driven motion/defor-
mation estimation methods that only rely on data acquired during a single gantry
rotation have been proposed. Most of these techniques, however, assume 2D paral-
lel or fan beam projections [3, 4]. For example, the effect of affine transformations
on the 2D radon transform was studied in [5, 6, 7, 8]. Frysch et al. estimated
rigid motion directly on cone beam projection images [9, 10]. A fan beam and
cone beam motion correction without deformation model was proposed by Leng
et al. [11]. It estimates a motion corrected version of the motion contaminated
projections based on the rest of the projections. However, this method assumes
that a large portion of the projections are not corrupted by motion.

In this chapter, we introduce a 3D estimation and correction algorithm for
global affine deformation, which works directly on the cone beam projections. The
correction of the affine deformation is achieved by exploiting the relationship be-
tween cone beam projections and affine transformations. To estimate the affine
deformation parameters, a data driven approach is proposed that estimates the
deformation parameters of each individual cone beam projection with respect to
a fast reference scan. The estimation of the deformation parameters is performed
directly in the projection domain, avoiding time consuming reconstructions. To
achieve this, an inconsistency criterion, based on the exact reconstruction algo-
rithm of Grangeat [12, 13], is minimized by a non-convex optimization procedure.
A similar inconsistency criterion was recently introduced to compensate for rigid
motion [9, 14, 15, 16, 17].

This chapter is organized as follows. Some definitions are introduced in Section
3.2.1. Section 3.2.2 describes the relation between the cone beam projections and
affine transformations which allows to correct for affine deformations directly in
the projection domain. Next, a method to estimate affine deformation parameters
directly in the projection domain is proposed. Section 3.3 describes phantom and
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real data experiments, the results of which are presented in Section 3.4. Section
3.5 concludes the chapter.

3.2 Method

3.2.1 Definitions

3.2.1.1 Cone beam geometry

In X-ray CT, each acquired projection is associated with a projection geometry:
the source position s and the position of the individual detector elements. The
detector is assumed to be rectangular and flat with the detector center at position
dc. The position mij of the detector element at detector coordinates (i, j) can
then be described as: mij = dc + i · d1 + j · d2, with d1 being the 3D vector
from detector element (0,0) to (1,0), d2 the 3D vector from detector element (0,0)
to (0,1), i ∈ [−I/2, I/2] and j ∈ [−J/2, J/2], where I and J are the number of
detector pixels horizontally and vertically, respectively. The projection geometry
of a single projection can thus be described with the following set of vectors G =

{s,dc,d1,d2}.
For each ray, two planes can be defined that both contain the vector mij − s

and are parallel to d1 or d2.
The normals to these planes, n1(j) and n2(i), are given by:

n1(j) =
(mij − s)× d1

‖ (mij − s)× d1‖

n2(i) =
(mij − s)× d2

‖ (mij − s)× d2‖
,

�� ��3.1

with ‖.‖ denoting the Euclidean norm (2-norm). A cone beam projection of a
function f(x) (x ∈ R3) can then be described as:

CG(f(x), i, j) =

∫
f(x)δ (n1(j) · (x− s)) δ (n2(i) · (x− s)) dx.

�� ��3.2

The overall geometry is visualized in Figure 3.1. During a CT acquisition,
multiple projections are acquired, each corresponding to a specific source and
detector position.

3.2.1.2 Affine transformation

An affine transformation is a combination of translations, rotations, differential
scalings and shearings. An affine transformed volume fT (x) of f(x) can be calcu-
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Figure 3.1: Schematic overview of the geometry of a cone beam projection.

lated as follows:
fT (x) = f(Ax + u),

�� ��3.3

where A is a 3× 3 linear map and u a 3× 1 vector describing translation.

3.2.2 Affine transformation and cone beam projections

The effect of an affine transformation on the 2D Radon transform has been well
studied [5, 6, 7]. In this section, we will elaborate on the extension to cone beam
projections.

Let CG(fT (x), i, j) be a cone beam projection of an affine transformed object
fT (x) associated with the projection geometry G. Then, CG(fT (x), i, j) can be
transformed to a cone beam projection of the non-deformed object f(x), as follows
(proof in Appendix):

CG′(f(x), i, j) =
‖(A−1)Tn1(j)‖‖(A−1)Tn2(i)‖

det(A−1)
CG(fT (x), i, j),

�� ��3.4

associated with virtual projection geometry G′ = {s′,d′c,d′1,d′2}, where:
s′ = As + u

d′c = Adc + u

d′1 = Ad1

d′2 = Ad2

�� ��3.5

If all projections of a CT dataset are transformed to be consistent with projec-
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tions of the non-deformed object, then a 3D image that is free of motion artefacts
can be reconstructed.

3.2.3 Estimation of motion/deformation parameters

In Section II-B, a procedure was described to correct a cone beam projection of an
affine transformed object, which requires knowledge of that affine transformation.
In a real experiment, the deformation parameters are unknown and need to be
estimated from the measured projection data. In this section, an approach to
automatically estimate the affine deformation parameters is introduced.

The section starts with the general data acquisition and estimation strategy
(section 3.2.3.1) followed by the concept of redundantly measured planes (section
3.2.3.2). Based on this concept, an objective function is derived in section 3.2.3.3.
Finally, a strategy to optimize this objective function is introduced.

3.2.3.1 Estimation strategy

To ensure accurate deformation estimation, we propose the following acquisition
protocol. The complete acquisition consists of two parts:

Main scan: Conventional scan with N projections.

Reference scan: A short 360◦ equiangular scan with Nref projections (Nref �
N) that is acquired immediately before or after the main scan (see Fig-
ure 3.2a). Reference projections in multiple directions are required in order
to estimate the deformation parameters of projections, of the main scan, in
different directions. During the reference scan, the object is assumed to be
motionless, which is a reasonable assumption since this scan is acquired in
a very short time span. Reference scans have a limited extra cost and are
often already implemented in commercial high resolution micro-CT scanners
[18]. In practice, an angular step of 45◦ was observed to be sufficient.

For each projection of the main scan, an affine deformation has to be estimated
with respect to the reference scan. Affine deformation parameters corresponding
to a certain projection of the main scan can be estimated by minimizing a criterion
that quantifies the inconsistency between that projection and all projections of the
reference scan.

Unfortunately, not all affine parameters corresponding to a single projection
can be accurately estimated. For example, a translation in the projection direc-
tion (i.e., parallel to dc − s) will be almost indistinguishable from a scaling of the
object. To overcome this problem, only parameters that describe deformations
perpendicular to the projection direction will be estimated. To that end, we intro-
duce a change of the coordinate system for the current projection. The coordinate
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system is rotated to align the projection direction dc−s with one of the coordinate
axes. This is achieved by multiplying the vectors associated with projection geom-
etry G with a rotation matrix R. Here, without loss of generality, the projection
direction is rotated such that it becomes parallel to the y-axis. Hence, R is written
as:

R = RxRz,
�� ��3.6

with Rx and Rz a rotation around the x-axis and z-axis, respectively:

Rx =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ


Rz =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 ,
�� ��3.7

where the angles θ and φ are given by (see Figure 3.2b):

θ = sgn(dc,z − sz) arccos

(√
(dc,x − sx)2 + (dc,y − sy)2

‖dc − s‖

)

φ = arctan

(
dc,x − sx
dc,y − sy

)
.

�� ��3.8

with sgn the sign function, arctan the four-quadrant inverse tangent and dc,· and
s· the components of the vector dc and s, respectively.

Hence, the projection geometry in the rotated coordinate system is given by:

GR = {sR,dc,R,d1,R,d2,R} = {Rs,Rdc,Rd1,Rd2}.
�� ��3.9

The subscript ·R denotes that the variable is expressed in the rotated coordinate
system. The affine deformation in the rotated coordinate system is given by:

{AR,uR} = {RAR−1,Ru}.
�� ��3.10

The rotation of the coordinate system allows extracting parameters that describe
deformations perpendicular to the projection axis (i.e., the y-axis). Let qk de-
note the set of parameters in the rotated coordinate system characterizing the
deformation of projection k perpendicular to the y-axis:

qk =
[
aR,x,x aR,x,z aR,z,x aR,z,z uR,x uR,z

]T
,

�� ��3.11
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(a) (b)

Figure 3.2: (a) Acquisition protocol: A short reference scan followed by the main scan. The
order of both scans can be changed. (b) The angles θ and φ that define the rotation of the
coordinate system.

with aR,·,· an element of the matrix AR and uR,· an element of the vector uR. For
each projection k, the parameters of the vector qk are estimated by minimizing an
objective function Fk that quantifies the inconsistency of the kth projection with
respect to the reference scan:

q∗k = arg min
qk

Fk(qk).
�� ��3.12

The proposed objective function will be derived in Section 3.2.3.3.

3.2.3.2 Redundantly measured planes

During the reference and the main scan, many planes are scanned twice. All planes
that are sampled by the kth (k = 1, . . . , N) projection of the main scan and the
lth (l = 1, . . . , Nref ) projection of the reference scan contain the source positions
sk and sl. These two points define a line sl + α(sk − sl) with α ∈ R that defines
the sheaf of all planes that are sampled by both projections.

The point ck,l = dc,k+ik,ld1,k+jk,ld2,k, where the line sl+α(sk−sl) intersects
with the detector plane k, can be calculated by solving the following system of
equations for ik,l, jk,l and αk:

[
d1,k d2,k (sk − sl)

]  ik,ljk,l
−αk

 = sl − dc,k,
�� ��3.13

with αk the value of the parameter α where the line intersects with the detector
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Figure 3.3: The parameters of a plane sampled by both the kth main and the lth reference
projection.

plane. The same procedure can be repeated to calculate cl,k, the point where the
line sl + α(sk − sl) intersects with the detector plane l.

Let λ be a plane sampled by both the kth main projection and a reference
projection. The projection of λ on the main projection then corresponds to a line
defined by ck,l and a unit vector lk(ζ) = cos(ζ)

d1,k

‖d1,k‖ +sin(ζ)
d2,k

‖d2,k‖ in the detector
plane (with ζ the angle between lk and d1,k).

As a result, any plane, sampled by both the main and the reference projection,
is parametrized by the angle ζ.

The vector ll, describing the projection of the plane on the lth reference detec-
tor, should lie in the same plane as lk. Hence, ll can be determined as follows:

ll(ζ) =
1

Z
((d1,l × d2,l)× nλ) ,

�� ��3.14

with nλ(ζ) = 1
Z′ lk(ζ) × (sl − sk), the normal to the plane and Z and Z ′ normal-

ization constants. A graphical overview of the geometry of a plane sampled by
the kth projection of the main scan and the lth projection of the reference scan is
shown in Figure 3.3.

The angular range of ζ for which the corresponding planes have an actual
intersection with the detector support of two projections is highly dependent on
the direction of the projections. If two projections lie approximately opposite to
each other, the point ck,l lies on the detector. As a result, all planes, sampled by
both the main and the reference projection, have an actual intersection with the
detector support. On the other hand, if the directions of the two projections are
approximately the same, only a small angular range of ζ will correspond to planes
intersecting with the actual detector support. A more in depth discussion can be
found in [17].
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3.2.3.3 Objective function

To assess the consistency of a projection with the reference scan, a cone beam
inconsistency criterion is defined that is based on redundantly measured planes
(see Section 3.2.3.2). The inconsistency criterion is based on the exact cone beam
reconstruction method of Grangeat and compares the derivative of the 3D Radon
transform of redundantly measured planes in the reconstruction domain directly
on the projections [12, 13]. As such, it avoids computationally intensive recon-
structions to evaluate the estimated deformation parameters. The optimization of
this criterion was proposed in several recent techniques to estimate rigid motion
and geometric system parameters [14, 17, 9, 15, 19]. Although the criterion is
theoretically restricted to non-truncated data, it has been successfully applied to
truncated data as well [15, 19]. The connection with the epipolar geometry was
established in [17, 16].

A plane λ, sampled by a projection associated with projection geometry G,
containing the source position s and a point on the detector mij is projected as a
line on the detector: y(v) = vl(ζ) + mij . From the data on this line, the value of
the radial derivative of the 3D Radon transform corresponding to the plane λ can
be calculated as follows:

1. In the first step, the projection undergoes an inverse cosine weighting, similar
to the well-known Feldkamp, David and Kress (FDK) algorithm [13, 20]:

E(CG, i, j) =
CG(f(x), i, j)

|w · t(i, j)|
,

�� ��3.15

with t(i, j) = 1
Z (mij − s) the unit vector in the direction of the ray inter-

secting a detector element at position (i, j) on the projection with projection
geometry G and w = 1

Z′d1 × d2 the normal to the detector. Z and Z ′ are
normalization constants.

2. In the second step, the cone beam projections are integrated along the pro-
jection of the plane (y(v) = vl(ζ) + mij):

L(CG, i, j, l) =

∫ +∞

−∞
E (CG, i+ vl · d1, j + vl · d2) dv.

�� ��3.16

3. Finally, a differentiation in the direction perpendicular to l is performed,
resulting in the radial derivative of the 3D radon transform of the scanned
object:

H(CG, i, j, l) = ∇rL(CG, i, j, l),
�� ��3.17

with r = (w × l)/‖w × l‖. The radial derivative is approximated with the
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central difference method.

The domain of the radial derivative of the 3D radon transform can only partially
be calculated since only a limited set of planes in the reconstruction domain is sam-
pled; that is, only planes that are sampled by the cone beam, defined by projection
geometry G, are sampled. Since the goal of the objective function is to compare
planes that are sampled by the kth projection of the main scan and lth projection
of the reference scan, only the planes containing the point ck,l will be considered:
H(CGk , ik,l, jk,l, l) = H(CGk , ck,l, l). The value of the derivative of the 3D radon
transform corresponding to a plane calculated on two different projections should
be the same. As a result, the difference between these derivatives should, theoret-
ically, be zero. An intermediate inconsistency function Tk,l is defined by repeating
this procedure for different planes, which are all elements of the sheaf of planes
defined by the line sl + α(sk − sl):

Tk,l(qk) =
∑

{lk(ζ):ζ∈[0,π)}

[H(C ′GR,k
(qk), ck,l(qk), lk)

−H(CGR,l
, cl,k(qk), ll(qk))]2,

�� ��3.18

with:

C ′GR,k
(qk, i, j) =

‖(A(qk)
−1

)Tn1(j)‖‖(A(qk)
−1

)Tn2(i)‖
det(A(qk)

−1
)

CGR,k
(fT (x), i, j).

�� ��3.19

The first term of the intermediate inconsistency function Eq. 3.18 is the deriva-
tive of the 3D radon transform corresponding to the plane, sampled by both pro-
jections, calculated on an affine deformation corrected projection of the main scan.
The second term is the derivative of the 3D radon transform corresponding to the
same plane calculated on a projection of the reference scan. The points cl,k and
ck,l and the vector ll are calculated with the geometries G′R,k and GR,l. The sum
in Eq. 3.18 runs over a set of unit vectors lk(ζ) with ζ equiangular sampled over
[0, π). The number of samples of ζ indicates how many planes are checked for
consistency between every pair of projections.

To quantify the inconsistency, the deformation corrected projection is compared
with all projections of the reference scan. This results in the following objective
function:

Fk(qk) =
(

Σ
Nref
l=1 Tk,l(qk)

) 1
2

.
�� ��3.20
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3.2.3.4 Optimization

The objective function in Eq. 3.20 is minimized using a non-linear optimization
algorithm:

q∗k = arg min
qk

Fk(qk).
�� ��3.21

Here, a Sequential Quadratic Programming (SQP) non-linear optimization algo-
rithm was used [21]. This procedure is terminated when the number of iterations
exceeds tmax or if the relative decrease ε of Fk between two consecutive itera-
tions is below a fixed tolerance, εmin. These stopping criteria were chosen to be:
εmin = 10−4 and tmax = 1000. A schematic overview is shown in Figure 3.4. To
avoid local minima, a multi scale approach was applied. To reduce the computa-
tional complexity of the algorithm, Eq. 3.4 was approximated as follows

CG′(f(x), i, j) ≈ CG(fT (x), i, j),
�� ��3.22

which is approximately valid for small affine deformations.
After the deformation estimation and correction of all projections, the volume

is reconstructed at the time of the reference scan. The algorithm was implemented
in Matlab, with major parts of the code computed on the Graphics Processing
Unit (GPU) using the parallel computing toolbox.

3.3 Experiments

The proposed affine deformation estimation and correction technique was validated
on both simulated and real data.

3.3.1 Phantom study

In a first experiment, 8 (256× 256 pixels) equiangular projections (360◦ scan) for
the reference scan were generated from a dough software phantom (512×512×512

voxels, see Figure 3.5) with the ASTRA-toolbox [22, 23, 24]. A projection of the
affinely deformed phantom was simulated with the following affine deformation
parameters:

A =

1.03 0.01 −0.01

0 0.97 0.01

0 0 1.05


u = [7,−10,−11]T .

�� ��3.23
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Figure 3.4: Schematic overview of the deformation estimation technique for a single projec-
tion.
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(a) (b) (c)

Figure 3.5: Three orthogonal cross-sections of the dough phantom.

The performance of the affine deformation estimation method was studied in func-
tion of the SNR of the projections, the number of planes that are checked for con-
sistency and the projection angle of the main projection (angle φ in Figure 3.2b).
Poisson noise was applied to the projection data assuming 20000 photons in the
incoming beam per detector pixel (the photon count). Each experiment was re-
peated 10 times. The estimated and ground truth parameters cannot be compared
directly since the proposed technique only estimates deformations perpendicular to
the projection direction. The estimated deformation parameters describing these
deformations are influenced by deformations in the projection direction. To quan-
tify the quality of the estimated deformation parameters, the mean square error
(MSE) was calculated on the projections as follows:

MSE =
1

M
ΣiΣj

(
Cq∗k

(f(x), i, j)− CqId(fT (x), i, j)
)2
,

�� ��3.24

with:

Cqk(f(x), i, j) =

det(A−1)

‖(A−1)Tn1(j)‖‖(A−1)Tn2(i)‖
CG′(f(x), i, j).

�� ��3.25

In Eq. 3.24, M represents the number of pixels on the detector and
qId =

[
1 0 0 1 0 0

]T
the parameters of the identity transformation. The

MSE compares the noiseless projection of the affine transformed phantom with a
projection of the undeformed phantom created with the virtual geometry. This
measure reflects the consistency of the corrected projection with the object in
the reference state. Since the projections used to calculate the MSE are noiseless,
whereas the estimated deformation parameters are calculated on noisy projections,
the MSE is a measure of the quality of the estimated deformation parameters.
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Figure 3.6: The first (a) and last projection (b) of the main scan of the puff pastry dataset,
both acquired at the same angle. The difference between these projections is shown in (c).

For the second experiment, the same dough software phantom was used to
generate 8 (256× 256 pixels) equiangular projections (360◦ scan) for the reference
scan. The 250 projections of the main scan were generated from an affinely de-
formed phantom. The affine deformation parameters changed linearly with each
projection, starting from the identity deformation and ending with the affine trans-
formation given by Eq. 3.23. For each projection the deformation parameters were
estimated. The result of the (k − 1)th projection was used as an initialization of
the kth projection, resulting in a faster estimation. The experiment was repeated
for different photon counts.

3.3.2 Real data

The proposed deformation estimation technique was tested on a CT scan of a
leavening puff pastry, acquired with a micro-CT scanner with a horizontal gantry
[25]. Throughout the leavening process the scanner acquired projections during
5 gantry rotations, with a total scan time of 20 minutes. Each gantry rotation
consisted of 722 equiangular 401× 656 projections. Each projection was acquired
with a source voltage of 60kV, a target current of 200mA and an exposure time of
100ms. Reconstructions, with a voxel size of 12.5µm, of each of the rotations were
calculated with 300 SIRT iterations. Visual inspection of the reconstruction of the
first gantry rotation revealed almost no deformation artefacts. Eight projections
of the first gantry rotation, approximately 45◦ degrees apart, were selected as ref-
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erence projections. The next 4 gantry rotations were used to construct the main
scan with deformation. One fourth of the projections was selected as to mimic an
interleaved scanning protocol (binary decomposition), ensuring maximum angular
sampling of the object [26]. Truncation was not observed in the projections (except
for the sample holder, which was made of a low attenuating foam). The difference
between the first and last projection of the main scan is shown in Figure 3.6. The
affine deformation parameters were estimated in a two step process. Firstly, only
the z-translation and z-scaling were estimated, keeping the rest of the deformation
parameters constant at the value of the identity transformation. These two pa-
rameters were expected to describe the majority of the deformation. Secondly, all
the deformation parameters were estimated with the result of the first estimation
as an initial starting point. This strategy guides the estimation in such a way
that it avoids local minima in the objective function as much as possible. The
original and deformation corrected projections (and projection geometries) were
reconstructed on a 656 × 656 × 401 voxel grid with 300 SIRT iterations on the
distributed version of the ASTRA-toolbox[27, 28].

3.4 Results and discussion

3.4.1 Phantom study

Figure 3.7 shows the MSE of the proposed affine deformation correction algorithm
in function of the SNR (in terms of the number of photons) (Figure 3.7a), the num-
ber of compared planes between projection pairs (Figure 3.7b), and the projection
directions (Figure 3.7c). The grey areas represents the 95% confidence interval.
Figure 3.7a reveals that the algorithm can substantially reduce motion artefacts
in terms of the MSE even for very low (as low as 100 photons per detector pixel)
photon counts.

In Figure 3.7b, the MSE as a function of the number of compared planes
between every projection pair is shown. The MSE of the projection without defor-
mation correction is 5.83 × 1011, which is significantly higher than all cases with
deformation correction. The quality of the estimation improves with the number
of compared planes but levels out if more than 200 planes are compared. In gen-
eral, the optimal number of planes will increase with the number of pixels in the
detector.

Figure 3.7c shows the MSE for different projection directions with and without
deformation estimation. For all projection angles, a clear decrease of the MSE is
observed after affine deformation correction. No difference was observed between
projections that have an opposing reference projection and projections without
opposing reference projection.
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(a) (b)

(c)

Figure 3.7: MSE values for the dough phantom experiments as a function of (a) the SNR
(in terms of photon count), (b) the number of planes compared in every projection pair (the
MSE of the projection without deformation correction is 5.83 × 1011) and (c) the direction
of the main projection. The grey areas represent the 95% confidence interval.
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Figure 3.8: Reconstructions of a horizontal cross-section (perpendicular to rotation axis) of
the dough phantom undergoing affine deformation. The cross-sections were motion corrected
with different techniques: without deformation correction (top row), with deformation cor-
rected with estimated deformation parameters (estimated deformation correction) (middle
row) and with deformation correction with the exact deformation parameters (bottom row).
Left column: high photon count (50000 photons per detector pixel). Middle column: low
photon count (5000 photons per detector pixel). The images are scaled between 0 and 120.
Right column: Absolute difference of the reconstructions (5000 photons per pixel) with the
ground truth.
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In Figure 3.8, the reconstructions of the dough phantom simulation experiments
are shown for high (left column) and a low (middle column) photon counts. For the
low photon count reconstructions, a comparison with the ground truth is provided
in Figure 3.8 (right column).

Figure 3.8 (top row) shows the reconstructions without deformation correction.
The motion artefacts are clearly observable: the borders of the dough and holes are
doubled and many structures are substantially blurred. Large deviations from the
ground truth are visible in the error image. Figure 3.8 (middle row) shows the re-
constructions with the proposed affine deformation correction method in which the
deformation parameters are estimated from the cone beam projections. As can be
observed from these figures, motion artefacts are significantly reduced compared to
the reconstructions without deformation correction (top row). In the error image,
a close resemblance to the ground truth can be observed. For reference, Figure 3.8
(bottom row) also shows the reconstructions after correcting for affine deformation
using the (in practice unknown) ground truth deformation parameters. As can be
expected, the error image of deformation corrected reconstruction with the ground
truth deformation parameters shows the smallest errors.

Because of its short acquisition time, the reference scan provides a set of pro-
jections in multiple directions of the (almost undeformed) object. Other strategies
could avoid the reference scan and use only the first projection as a reference
and optimize the affine deformation parameters in such a way that all projections
are consistent. Such a strategy is however flawed in practice. Projections with
a projection direction perpendicular to that of the reference projection have only
limited redundantly measured data with this reference projection. As a result, the
reconstruction can deform in the reference projections projection direction with-
out significantly violation the optimization criterion. The addition of the reference
scan solves this problem.

3.4.2 Real data

Figure 3.9 shows the results of the puff pastry experiment: horizontal and vertical
cross-sections are shown in the left and right column, respectively. The recon-
structions of the first gantry rotation (Figure 3.9 top row) are almost deformation
free: a clear separation between the dough layers can be observed and the holes
have sharp edges. Figure 3.9 (middle row) shows the reconstruction of the main
scan without affine deformation correction. This reconstruction is corrupted by
motion artefacts. The top of the object is not well reconstructed since this part
undergoes the biggest deformation. As a result, gradual transitions between the
dough layers can be observed and the borders of the holes are not as sharp as in
the first gantry rotation. Figure 3.9 (bottom row) shows the reconstructed images
of the same dataset with the proposed affine deformation estimation and correc-
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Figure 3.9: SIRT reconstructions of the first gantry rotation and reconstructions of the main
scan without deformation correction and with deformation correction. Left column: horizontal
cross-section (top of object). Right column: vertical cross-section (middle of object).
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Figure 3.10: Zoomed in reconstructions of the first gantry rotation (left column) and re-
constructions of the main scan without deformation correction (middle column) and with
deformation correction (right column). Top row: horizontal cross-section (Horizontally: top
of object. Vertically: middle of object). Bottom row: vertical cross-section (Horizontally:
top of object. Vertically: middle of object).

Figure 3.11: Histogram of a region of interest (almost the whole puff pastry) of the puff
pastry reconstructions.
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tion technique. The reconstruction has a high spatial resolution, similar to the
reconstruction of the first gantry rotation, though with a much higher SNR. There
are clear delineations between the dough layers and the holes have sharp borders.
The only part of the reconstruction where motion artefacts are noticeable is at the
top right of the vertical cross-section (Figure 3.9: third row, right column), where
slight blurring of the protruding part can be observed. Figure 3.10 shows zoomed
images of the reconstructions shown in Figure 3.9. Nevertheless, the results of
this experiment clearly show that the proposed affine deformation estimation and
correction technique performs well in generating almost motion artefact free ima-
ges. We were able to show that the motion artefacts can be substantially reduced
and a better reconstruction quality, with a higher signal to noise ratio, than that
achieved by the first gantry rotation.

Motion artefacts have a large effect on the histogram of the reconstruction.
Figure 3.11 shows the histogram of a region of interest (almost the whole puff
pastry without background) in the reconstructions. In the histogram of the first
gantry rotation and the deformation corrected reconstruction of the main scan,
three modes can be distinguished: a mode corresponding to the holes and two
modes corresponding to the different layers in the dough (fat and dough). The
histogram of the reconstruction of the main scan without deformation correction
shows only two modes. While the holes are still distinguishable in the puff pas-
try image, the two different dough layers are merged into one broad peak in the
histogram. Since the histogram is often used in image post processing, such as de-
termining the thresholds for a segmentation, it is clear that the presence of motion
artefacts may significantly influence the results of further analysis.

An interesting (positive) side effect of the proposed motion correction tech-
nique is ring artefact reduction, which can be noticed in the reconstructions (see
left column Figure 3.10). While the horizontal cross-sections of the first gantry
rotation and the reconstruction without deformation correction are degraded by
ring artefacts, the affine deformation corrected reconstruction shows no ring arte-
facts at all. This effect is not surprising since the origin of these ring artefacts
is a combination of a deviating pixel response and the circular trajectory of the
gantry [29]. By estimating a virtual projection geometry the source trajectory will
no longer be circular and the reconstruction algorithm will no longer produce ring
artefacts.

With respect to computational load, the proposed method is efficient in the
sense that it does not involve a reconstruction step. The average computation
time to estimate the affine deformation of a single projection was only 6.3s on a
computer with an Intel Core i7-3930K CPU and a NVIDIA GeForce GTX 660
GPU.
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3.4.3 4D reconstructions

The proposed technique is able to correct for affine deformations during the ac-
quisition and results in a reconstruction at the time point of the reference scan.
Often, researchers are interested in 4D reconstructions (3 spatial dimensions and
1 time dimension) of the object and want to visualize the deformation in time.
Since an affine deformation is estimated at each projection, a reconstruction at
the time point of each projection can be calculated with Eq. 3.3. Nevertheless,
the estimated affine deformations are only accurate in the direction orthogonal to
the projection direction and, as a result, the visualized deformation may not be in
accordance to the real deformation.

This issue can be solved with multiple source-detector pairs. For example, in
a scanner with two source-detector pairs, positioned perpendicular with respect
to each other, all affine deformation parameters can be estimated, enabling an
accurate 4D reconstruction. Alternatively, the deformation parameters correspon-
ding to the projection direction might be estimated by interpolation between the
deformation parameters of projections that are as non-parallel as possible and in
temporal proximity.

3.4.4 Medical applications

The proposed method has numerous applications in micro-CT. In addition, Cone
Beam CT (CBCT) is also an important imaging tool in (bio)medical practice.
Since the geometry of these acquisitions is equivalent to the geometry in micro-
CT, the method can as well be applied in medical CBCT. The affine correction
framework can be used for rigid as well as affine motion correction. In applications
with only rigid motion (e.g. head motion), the affine parameters corresponding to
scaling and shearing are kept constant, while only estimating translation and rota-
tion. Furthermore, our method can even be used as a first order approximation of
non-affine motion correction (e.g., respiration), if a reference scan without motion
can be acquired.

3.5 Conclusion

In this chapter, an affine deformation estimation and correction technique for cone
beam computed tomography was proposed. The proposed method works com-
pletely in the projection domain, hence avoiding computationally intensive re-
constructions. To correct affine deformations, a relationship between cone beam
projections and affine transformations was proven. Estimation of the affine defor-
mation parameters for each projection is achieved by minimizing an inconsistency
condition with respect to a fast reference scan consisting of only a few projections.
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Experiments on simulated and real data showed that the proposed affine de-
formation correction method is able to remove or alleviate motion artefacts in
non-truncated cone beam projections. Moreover, it reduces ring artefacts as a
positive side-effect.

3.6 Appendix

In the following section we will proof Eq. 3.4 and Eq. 3.5.

Proof.

CG(fT (x), i, j) =

∫
fT (x)δ (n1(j) · (x− s)) δ (n2(i) · (x− s)) dx

=

∫
f(Ax + u)δ (n1(j) · (x− s)) δ (n2(i) · (x− s)) dx

�� ��3.26

Change of variables y = Ax + u:

CG(fT (x), i, j) = det(A−1)

∫
f(y)δ

(
n1(j) · (A−1(y − u)− s)

)
δ
(
n2(i) · (A−1(y − u)− s)

)
dy

�� ��3.27

Since Ax · y = x ·ATy and δ(x) = |a|δ(ax), we have:

CG(fT (x), i, j) =
det(A−1)

‖(A−1)Tn1(j)‖‖(A−1)Tn2(i)‖∫
f(y)δ

(
(A−1)Tn1(j)

‖(A−1)Tn1(j)‖
· (y − u−As)

)
δ

(
(A−1)Tn2(i)

‖(A−1)Tn2(i)‖
· (y − u−As)

)
dy.

�� ��3.28

Next, a virtual geometry is defined as:
s′ = As + u

d′c = Adc + u

d′1 = Ad1

d′2 = Ad2

�� ��3.29
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CG(fT (x), i, j) =
det(A−1)

‖(A−1)Tn1‖‖(A−1)Tn2‖

∫
f(y)

δ

(
(A−1)Tn1(j)

‖(A−1)Tn1(j)‖
· (y − s′)

)
δ

(
(A−1)Tn2(i)

‖(A−1)Tn2(i)‖
· (y − s′)

)
dy.

�� ��3.30

We will now show that (A−1)Tn1(j)
‖(A−1)Tn1(j)‖ = n′1(j):

(A−1)Tn1(j)

‖(A−1)Tn1(j)‖
=

1

Z
(A−1)T [(mij − s)× d1]

=
det(A)

Z
[A (dc + jd2 − s)×Ad1]

=
1

Z ′
[(d′c + jd′2 − s′)× d′1]

=n′1(j).

�� ��3.31

Here we used the property: A(x×y) = det(A−1)
[
(A−1)Tx× (A−1)Ty

]
. Z and Z ′

are normalization constants. We can prove equivalently that (A−1)Tn2(i)
‖(A−1)Tn2(i)‖ = n′2(i).

Substituting these relations in
�� ��3.30 , we have:

CG(fT (x), i, j) =

det(A−1)

‖(A−1)Tn1(j)‖‖(A−1)Tn2(i)‖

∫
f(y)δ (n′1(j) · (y − s′))

δ (n′2(i) · (y − s′)) dy.
�� ��3.32

If we compare
�� ��3.32 with

�� ��3.2 , we can write:

CG(fT (x), i, j) =
det(A−1)

‖(A−1)Tn1(j)‖‖(A−1)Tn2(i)‖
CG′(f(x), i, j),

�� ��3.33

with G′ = {s′,d′c,d′1,d′2}.
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CHAPTER 4. MOVIT

4.1 Introduction

In 4D-CT it is highly beneficial to include other time frames in the reconstruction
of a certain time frame, as discussed in Section 1.3.2. Previously proposed 4D-
CT reconstruction methods exploiting this strategy can be split up into different
classes. A first class assumes structural changes to be local. For example, rSIRT
assumes that only a well-defined area undergoes deformation and the rest of the
reconstruction domain is static [1]. A fluid motion model can also be incorporated
in the reconstruction algorithms as demonstrated in [2, 3]. In perfusion CT the
time curve in the artery pixels can be modelled more accurately with gamma
variate basis function, resulting in a reduced radiation dose [4]. Such algorithms
either rely on an a priori high quality reconstruction or assume that the location
of structural changes is known [3, 5, 2]. A second class regularises both the spatial
and temporal domain of the reconstructions with, for example, Markov random
fields [6, 7]. While these algorithms do not depend on a particular deformation
model they often suffer from long computation times and a large number of tunable
parameters.

The last class of methods assumes the deformation to be described as a diffeo-
morphic deformation vector field (DVF) that is included into the reconstruction
algorithm. This vector field describes the displacement of every voxel between
two time frames. Since the deformation is a priori unknown, it has to be es-
timated. Some reconstruction methods include volume registration to improve
reconstructions with deformation artefacts due to respiratory and cardiac motion
[8, 9, 10, 11]. These methods exploit the periodicity of the motion [8], assume that
a prior deformation free scan is available [10], assume multiple quiescent motion
time frames [9], or have a high number of tunable parameters [11]. These proper-
ties prevent the use of these algorithms in the context of micro-CT where a wide
range of samples and dynamics has to be studied.

In this chapter, we propose the MotionVector-based Iterative Technique (MoVIT).
It incorporates the deformation fields directly into the reconstruction process and,
as such, exploits information from projections of other time frames into the re-
construction of the image at a particular time frame. In order to estimate the
deformation field map, non-rigid volume registrations are performed on conven-
tionally reconstructed volumes of the different time frames.

The chapter is structured as follows. In section 4.2, the proposed reconstruc-
tion algorithm and deformation estimation strategy, MoVIT, is explained. Next, in
section 4.3, MoVIT is compared to common reconstruction algorithms in a numer-
ical way as well as on an experimental dataset, the results of which are discussed
in section 4.4.
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4.2 Method

In subsection 4.2.1, an overview of the stationary tomographic model will be given
and generalised (in subsection 4.2.2) to the dynamic case. Next, in subsection
4.2.3, the MoVIT reconstruction algorithm is described, which incorporates a de-
formation field into an algebraic reconstruction method (ARM) that is assumed
to be known a priori. This restriction is then abrogated in subsection 4.2.4, where
an estimation method for the deformation vector field is introduced.

4.2.1 Stationary algebraic tomography

Let x = (xi) ∈ RN be a vector of unknown volume elements representing the
scanned object. The log-corrected projection values for all projection angles θ =

(θi) ∈ [0, 2π[M are denoted by p = (pi) ∈ RM . The projection process can
be simulated as q = Ax, where A = (aij) ∈ RM×N is a matrix of which the
entries aij represent the contribution of pixel value xj to projection value qi (see
Figure 4.1).

Figure 4.1: Illustration of the projection process. The contribution aij of pixel xj to the
projection value qi is represented as the ray-intersection length of projection line i with pixel
j.

The system of linear equations Ax = p cannot be solved directly since A
is generally not invertible. A closed form expression for the (regularized) least-
squares solution can be derived. However, due to the size of the problem, the
direct calculation of this solution is infeasible on modern computers. Therefore,
algebraic reconstruction methods such as ART, SART or SIRT, start with an
initial guess x = x0 and iteratively compute new estimates xk (k = 1, 2, . . .).
This is repeated until an approximate solution of Ax = p is found. For example,
the simultaneous iterative reconstruction technique (SIRT) algorithm solves the
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weighted least-squares optimization problem argminx‖Ax − p‖R, where ‖Ax −
p‖R = (Ax − p)TR(Ax − p) and R = (rkl) ∈ RM×M is a diagonal matrix with
rkk = (

∑
l akl)

−1 [12]. The following iterative formula is known to converge to the
weighted least-squares minimum:

xk = xk−1 +CATR(p−Axk−1),
�� ��4.1

where C = (ckl) ∈ RN×N is a diagonal matrix with cll = (
∑
k akl)

−1.

4.2.2 Dynamic tomographic model

The conventional algebraic tomography model described in section 4.2.1 assumes
the scanned object to remain stationary throughout the acquisition process. This
assumption is no longer valid in dynamic CT. Therefore, the standard model has
to be generalized to deal with dynamic objects.

A dynamic object can be represented as a time series of images xr ∈ RN ,
where r ∈ {1, . . . , R} is the time index, with R the total number of time frames.
During the acquisition, the gantry rotates multiple times around the object while
acquiring projections. The projections of subscan r are represented by pr ∈ RMr .
The sparse matrix Ar ∈ RMr×N is the corresponding forward projection matrix.
If the object is assumed stationary during each time frame, the acquisition of the
dynamic process can be modelled as follows:

A1 0 · · · 0

0 A2 0
...

. . .
...

0 0 · · · AR



x1

x2

...
xR

 = Ãx̃ = p̃,
�� ��4.2

where Ã represents the block diagonal matrix consisting of blocks A1, . . . ,AR,
x̃ = (xT1 , . . . ,x

T
R)T ∈ RRN and p̃ = (pT1 , . . . ,p

T
R)T ∈ R

∑R
r=1Mr [2, 6]. Notice

that the dynamic computed tomography model does not take deformation during
a single time frame into account. As a result, deformation artefacts will occur if
excessive motion takes place during a single time frame (more than a single voxel).
To remedy this, the acquisition time of a single time frame can be reduced.

The dynamic model Eq. 4.2, however, does not include the dependencies of
the object between different time frames. The temporal dependencies between the
subsequent images xr can be modelled as follows. Each image xr is regarded as a
discretisation of fr(y) (y ∈ R3). A deformation between two time points can be
described as; fr(y) = fr′(y+ vr′r(y)) with vr′r(y) the DVF from time point r′ to
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r. The discretized version of the previous equation comes down to interpolation:

xr = τr′rxr′ ,
�� ��4.3

with the operator τr′r : RN → RN transforming the image of the object at time
frame r′ to its state at time frame r. For many interpolation methods (e.g.,
nearest neighbour, linear or cubic interpolation), the operator τr′r is actually a
linear operator and thus τr′r ∈ RN×N .

The transformations τ·· can be included in the tomographic model:

Ãx̃ = Ã

 x1

...
xR

 = Ã

 τr1
...
τrR

xr �� ��4.4

and thus,
Arxr = p̃,

�� ��4.5

with

Ar =

 A1τr1
...

ARτrR

 , �� ��4.6

the operator transforming the object at time frame r to the projections p̃, which
are acquired over the whole experiment (or a subset of the time frames). Notice
that in Eq. 4.5 the time dependency is modelled by the operator Ar, in contrast
with Eq. 4.2. As a result, the number of unknowns is reduced from RN to N with
the same number of equations.

Note that modelling the temporal dependencies with DVFs allows for an accu-
rate description if the deformation is a diffeomorphism. In other words, the DVFs
are differentiable and have a differentiable inverse, such as elastic deformations.
Unfortunately, fluid flow and structural changes such as the formation of cracks
cannot be accurately described with these models. For fluid flow specialised recon-
struction algorithms do exist [5,11]. In future research these algorithms could be
combined with the proposed MoVIT framework to take both kinds of deformations
into account.

4.2.3 MotionVector-based Iterative Technique

Assuming that the deformation of the object during the acquisition is known, an
approximation of the solution of Eq. 4.5 can be found with the MoVIT algorithm.
The basic steps of MoVIT are shown in Algorithm 1. In iteration k, the cur-
rent reconstruction of time frame r, xkr , is transformed to each of the other time
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frames r′ ∈ Nr with the deformation operator τrr′ and Nr the set of neighbour-
ing time frames of time frame r. With this transformed reconstruction and the
projections of that particular time frame, an ARM (e.g., ART, SART, SIRT, ...)
update q is calculated. These ARM updates are then transformed back to the
time frame r using τ−1rr′ with weight wrr′ . The weights wrr′ are normalized such
that

∑
r′∈Nr wrr′ = 1. The proposed calculation of the weights will be explained

in Section 4.2.4. Afterwards, the transformed updates added to the MoVIT up-
date u. This MoVIT update is then added to the current reconstruction, resulting
in xk+1

r . This scheme is repeated until the stop criterion is met or a maximum
number of MoVIT iteration is reached.

Algorithm 1: Basic steps of the MoVIT algorithm.
Calculate initial reconstruction x0

r

k = 0
while stop criterion is not met do

u = 0
for r′ ∈ Nr do

s = τrr′x
k
r ; . Transform reconstruction to r′

z = ARM(s,pr′) ; . Calculate ARM update
l = τ−1rr′ z ; . Inverse transform ARM update to r
u = u+ wrr′l ; . weight and add to total update

end
xk+1
r = xkr + u

k = k + 1
end

The MoVIT framework can be implemented with any algebraic reconstruction
method such as ART, SART, or SIRT. In the rest of this work, SIRT will be the
method underlying MoVIT[12]. To reconstruct the object at time frame r, the
framework results in following algorithm:

xk+1
r = xkr +

∑
r′∈Nr

wrr′τ
−1
rr′Cr′A

T
r′Rr′(pr′ −Ar′τrr′x

k
r ),

�� ��4.7

where Cr = (cr,kl) ∈ RN×N is a diagonal matrix with cr,ll = (
∑
k akl)

−1 and
Rr = (rr,kl) ∈ RMr×Mr is a diagonal matrix with rr,kk = (

∑
l akl)

−1. An overview
of a single MoVIT iteration is given in Figure 4.2.
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+

Figure 4.2: Schematic representation of a single iteration of the MoVIT algorithm imple-
mented with SIRT updates.

4.2.4 Deformation estimation

The deformation operators τrr′ and their inverse (see Algorithm 1) are unknown
and have to be estimated. To this end, each time frame is first conventionally
reconstructed, for example with SIRT, using only the projections corresponding to
that time frame. Afterwards, these conventional reconstructions (c1, c2, . . . , cR)

are pairwise registered with each other, resulting in DVFs. In this work, the reg-
istration needed to estimate the parameters µrr′ of a b-spline deformation model
was performed with Elastix [13]. The metric of the image registration algorithm
is the mean squared difference (MSD) and thus the registration algorithm solves:

µrr′ = argminµ

(
1

N

N∑
i=1

(cr′,i − (τ (µ)cr)i)
2

)
,

�� ��4.8

where cr′,i is the ith element of cr′ and (τ (µ)cr)i is the ith element of τ (µ)cr. The
transform τr′r is in theory also the inverse of τrr′ . However, the exact solution
of non-rigid image registration is often non-unique or nonexistent. Therefore, it
is crucial to determine the direct inverse deformation field of the obtained DVF.
This inverse DVF can be calculated with the method described in Chen et al. [14].
Evidently, it is unnecessary to determine the transform τrr and its inverse as they
are the identity transform. Note that other image registration algorithms, such as
optical flow algorithms and digital volume correlation methods, are compatible as
well with the MoVIT frame work [15]. The weights wrr′ reflect the accuracy of
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the corresponding DVFs and are calculated as follows:

wrr′ =
exp(−(krr′/b)

2)∑
l∈Nr exp(−(krl/b)2)

,
�� ��4.9

where krr′ = N−1
∑
i (cr,i − (τ (µrr′)c

′
r)i)

2 corresponds to the MSD between the
reconstructed time frame and the transformed reconstruction of the time frame r′.
The parameter b regulates the magnitude of the weights. If the MSD of a time
frame equals b, the weight of that time frame will be exp(1) times smaller than the
weight of the reconstructed time frame. The proposed method was implemented
in Matlab, and the forward and back projections were performed with the ASTRA
toolbox [16, 17, 18]. An overview of the complete framework is shown in Figure 4.3.

Conventional SIRT 
reconstructions:

Image registration: Determine weigths:

MoVIT reonstruction:

Figure 4.3: Schematic representation of the full MoVIT reconstruction pipeline.

4.3 Experiments and results

In subsection 4.3.1, the reconstruction methods, employed in the experiments, are
explained. The MoVIT method is compared to conventional reconstruction me-
thods in numerical simulations (subsection 4.3.3) and on an experimental dataset
of polyurethane foam under compression (subsection 4.3.4). The results of these
experiments are discussed in section 4.4.

4.3.1 Reconstruction methods

The proposed MoVIT algorithm was compared against two conventional recon-
struction algorithms which are independently applied on each time frame. The
first conventional algorithm is the Feldkamp-David-Kress (FDK) algorithm, re-
sulting in the reconstructions f1,f2, . . . ,fR, where fr ∈ RN [19]. The second
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algorithm is the SIRT algorithm (see Section 4.2.1) which results in the recon-
structions c1, c2, . . . , cR.

Furthermore, the MoVIT algorithm was compared to straightforward exten-
sions of FDK and SIRT. In the following, the method is demonstrated with FDK
reconstructions. An equivalent strategy was also used for the SIRT reconstruc-
tions. In a first step, the conventional FDK reconstructions are registered to each
other:

αrr′ = argminα

(
1

N

N∑
i=1

(fr′,i − (τ (α)fr)i)
2

)
,

�� ��4.10

where αrr′ are the b-spline parameters describing the deformation from time frame
r to time frame r′. Subsequently, the mean reconstructions fm,1,fm,2, . . . ,fm,R
are then calculated as follows: fmr′ =

∑
r∈Nr zrr′τ (αrr′)fr, where

zrr′ = exp [−(krr′/b)
2]
(∑

l∈Nr exp [−(krl/b)
2]
)−1 and krr′ = N−1

∑N
i=1(fr′,i −

(τ (αrr′)fr)i)
2. This technique combined with SIRT or FDK will be referred to as

SIRTmean and FDKmean, respectively.
Lastly, the MoVIT method, as described in section 4.2, with the result of

SIRTmean cmr as initialisation will be used.

4.3.2 Figures of merit

The methods were evaluated using three figures of merit: mean squared error
(MSE), the structural similarity index (SSIM) and feature similarity index (FSIM).

MSE: The MSE can be calculated with N−1
∑N
n=1 (sn − tn)

2, where s is the
calculated reconstruction and t is the ground truth.

SSIM: While MSE is a method which calculates absolute errors, SSIM quantifies
the similarity of images as perceived by the human visual system [20]. The
SSIM of a reconstruction is calculated as described in Wang et al. [20]. Since
SSIM is a similarity measure, a perfect reconstruction has a SSIM of 1, the
worst reconstruction a SSIM of 0.

FSIM: Similar to SSIM, FSIM is a method quantifying the perceived similarity
of pictures [21]. In contrast to SSIM, it takes mainly the phase congruency
and gradient magnitude into account.

4.3.3 Numerical simulations

Several numerical experiments were performed on a numerical phantom of a vis-
coelastic, open cell PU foam under compression. These models were provided
by Huntsman (Everberg, Belgium) and are based on finite element simulations
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of different stages in the compression process. Four models were voxelised on an
isotropic voxel grid of 400×400×400 from which projections of size 100×100 were
generated, in order to avoid the inverse crime of generating the data with the same
model as the one used in the reconstruction [22]. The projections were simulated in
an interleaved scanning protocol with 20 projections per time frame, where each
time frame has an angular range of 180 degrees [23]. Poisson distributed noise
was applied on the data, assuming an incoming beam intensity of 104 (photon
count). During each time frame, the foam was compressed another 1.75% of the
original sample height. The sample was reconstructed with a range of different
reconstruction techniques as described in subsection 4.3.1.

The volume registration was performed with a b-spline deformation model with
a control point spacing of 8 voxels. The b-spline parameters were optimized by
minimizing the MSD in a multi-resolution framework. The SIRT and MoVIT
algorithms were iterated until the lowest MSE was achieved. The optimal value
of the parameter b, in terms of the MSE of the reconstructions, was 0.8 and was
selected in this experiment. Renderings of the different reconstructions are shown
in Figure 4.4.

Both the SSIM, FSIM and the MSE of the reconstructions were calculated in
function of the photon count (I0) and the number of projections per time frame
(proj/time frame). These results are shown in Figure 4.5 and Figure 4.6, respec-
tively.

4.3.4 Polyurethane dataset

A dynamic X-ray CT dataset was acquired by Inside Matters with a gantry-based
high-resolution scanner [24]. A viscoelastic, open cell PU sample (provided by
Huntsman) of 11mm high was loaded in a compression stage which was mounted
in the scanner. Each dataset (= time frame) consisted out of 2000 equiangular
projections (1316 × 1312 pixels, pixel size 0.1mm, tube voltage 65 kV , exposure
time 35ms) acquired over an angular range of 360 degrees. Between these scans,
the sample was compressed l×0.5mm, where l = 0, .., L−1 is the time frame num-
ber. All reconstructions were calculated on a 1316×1316×401 isotropic voxel grid
with a voxel size of 16µm. Each time frame was reconstructed with four different
methods: 1) conventional SIRT with 2000 projections/time frame, 2) conventional
SIRT with 1000 projections/time frame, 3) SIRTmean with 1000 projections/time
frame and, 4) MoVIT with 1000 projections/time frame. MoVIT and SIRTmean
estimate the deformation and includes the projections of a single neighbouring time
frame (time frame r+1, except for the last time frame which uses time frame r−1)
to the reconstruction of a particular time frame. The SIRT reconstruction with
2000 projections has thus the best possible quality that the MoVIT reconstruction
can achieve by incorporating the projections of a single neighbouring time frame.
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(a) FDK (b) SIRT (c) FDKmean

(d) SIRTmean (e) MoVIT

Figure 4.4: Renderings of the simulated reconstruction of the compression of a foam sample
with different (a) FDK, (b) SIRT, (c) FDKmean, (d) SIRTmean, and (e) MoVIT. The red
circles indicate example areas where the struts that are better reconstructed in the MoVIT
reconstructions in comparison with the SIRTmean reconstruction.
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Figure 4.5: MSE, SSIM and FSIM of the reconstructions of the numerical phantoms (see
Section 4.3.3) in function of the photon count I0 and with 20 projections per time frame.
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Figure 4.6: MSE, SSIM and FSIM of the reconstructions of the numerical phantoms (see
Section 4.3.3) in function of the projections per time frame and a photon count of 104.
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method proj/time frame noise standard deviation

SIRT 2000 1, 22× 10−5

SIRT 1000 2, 41× 10−5

SIRTmean (2 time frames) 1000 1, 63× 10−5

MoVIT (2 time frames) 1000 1, 47× 10−5

MoVIT (3 time frames) 1000 1, 19× 10−5

Table 4.1: The standard deviation of the noise of the different reconstructions at the third
time frame of the polyurethane dataset. The standard deviation was measured in a large pore
of the sample.

Reconstructions with only 1000 projections were performed with projections with
projection numbers 1 + (rmod 2), 3 + (rmod 2), . . . ,M , where r is the time frame
number and M the total number of acquired projections/time frame. As such
neighbouring time frames have interleaved projections. The volume registration
was performed with a b-spline deformation model with a control point spacing of
8 voxels. The b-spline parameters were optimized by minimizing the MSD in a
multi-resolution framework. Based on emperical evaluation the parameter b was
chosen to be 0.6, which gave reasonable results. The MoVIT reconstruction was
initialized with the SIRTmean reconstruction, after which 50 MoVIT iterations
were performed. In Figure 4.7, the horizontal cross sections of the SIRT (1000
projections/time frame), SIRTmean and MoVIT reconstructions (2 time frames)
are compared with the SIRT reconstruction with 2000 projections/time frame,
which serves as the ground truth, with three different metrics (MSE, SSIM and
FSIM). The standard deviation of the metrics was determined by calculating the
metrics on 100 horizontal cross sections. Furthermore, Figure 4.7(d) shows the
histogram of the region showed in Figure 4.9 for the different reconstructions of
the third time frame. In Figure 4.8 and Figure 4.9, a vertical and horizontal cross
section, reconstructed with SIRT, SIRTmean, MoVIT with one additional neigh-
bouring time frame and MoVIT with two additional neighbouring time frames
(time frame r − 1 and r + 1), of the third time frame are shown, respectively.
To the last two reconstructions we will respectively refer to as MoVIT (2 time
frames) and MoVIT (3 time frames). In Table 4.1, the standard deviation of the
noise at the third time frame is reported for the described methods. This standard
deviation was measured selecting a region (16106 voxels) inside of a big pore.
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(a) (b)

(c) (d)

Figure 4.7: The mean MSE (a), SSIM (b) and FSIM (c) for the SIRT (yellow), SIRTmean
(purple) and MoVIT with 2 time frames (green) reconstruction with 1000 proj/time frame
(compared with the SIRT reconstruction with 2000 proj/time frame) for each time frame.
The standard deviation of the metrics was determined by calculating the metrics on 100
horizontal cross sections. (d) shows the histogram of the region displayed in Figure 4.9 for
the different reconstructions of the third time frame.
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SIRT 2000 proj/time frame

SIRT 1000 proj/time frame

SIRTmean 1000 proj/time frame: 2 time frames

MoVIT 1000 proj/time frame: 2 time frames

MoVIT 1000 proj/time frame: 3 time frames

Figure 4.8: Vertical cross section through the third time frame of the polyurethane dataset.
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SIRT 2000 proj/time frame SIRT 1000 proj/time frame SIRTmean 1000 proj/time frame
2 time frames

MoVIT 1000 proj/time frame
2 time frames

MoVIT 1000 proj/time frame
3 time frames

Figure 4.9: Zoomed horizontal cross section through the third time frame of the polyurethane
dataset.
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4.4 Discussion

4.4.1 Numerical simulations

Figure 4.4 shows renderings of the second time frame of the compressed foam sam-
ple computed with FDK (a), SIRT (b), SIRTmean (c), FDKmean (d) and MoVIT
(e). FDK produces the worst results: the reconstruction is very noisy and the
foam structures are very hard to differentiate from their surroundings. The FD-
Kmean algorithm improves this reconstruction significantly, however high levels
of noise are still present around the pressure plates due to cone beam artefacts.
The SIRT and SIRTmean reconstructions show the foam structure nicely, however
some struts of the foam are missing in the neighbourhood of the pressure plates.
The MoVIT reconstruction shows the foam structure clearly and is able to recon-
struct the struts close to the pressure plate better than the SIRT and SIRTmean
reconstructions (see red circles in Figure 4.4 for example regions). In Figure 4.5,
the MSE, SSIM, and FSIM are shown in function of the photon count. With re-
spect to the MSE and SSIM, the MoVIT reconstruction performs best. This is
also the case for the FSIM metric at high (> 104) photon counts or a high (> 30)
number of projections per time frame. The SIRTmean method provides slightly
worse reconstruction in terms of MSE and SSIM, but is an improvement over the
conventional SIRT reconstructions. For low photon counts and low number of pro-
jections per time point, the FSIM of the SIRTmean are slightly better than the
MoVIT reconstruction. Only at very low noise levels the MoVIT method results
in a slightly worse reconstruction quality compared to the SIRT methods, which
is caused by inaccurate deformation estimations on the very low SNR initial SIRT
reconstructions. From Figure 4.6, similar conclusions can be drawn. Here the
MoVIT method provides the best results with respect to the MSE and SSIM.

4.4.2 Polyurethane dataset

The results of the polyurethane foam dataset are shown in Figure 4.8 and Fig-
ure 4.9. The metrics of the different reconstructions in comparison with the SIRT
reconstruction with 2000 proj/time frame are shown in Figure 4.7. The SIRT
reconstruction with 2000 projections/time frame shows the foam structures very
clearly. The SNR is sufficiently high to observe small foam structures. As can be
expected, the noise of the SIRT reconstruction with only 1000 projections/time
frame has a higher standard deviation than the SIRT reconstruction with 2000
projections/time frame and image details are obscured by the noise. The noise in
the SIRTmean reconstruction (1000 projections/time frame) has a larger standard
deviation as the SIRT reconstruction with 2000 projections/time frame, however it
is considerably lower than that of the SIRT reconstruction with 1000 projections/-
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time frame. The MoVIT method is able to lower the standard deviation of the noise
even further. This is also reflected by the histograms in Figure 4.7(d), which show
a narrower background peak for the methods with a smaller standard deviation.
By taking an extra time frame into account the results of the MoVIT algorithm
improve even further. The standard deviation of the noise is even lower of that
of the SIRT reconstruction with 2000 projections/time frame. Additionally the
MSE, SSIM and FSIM metrics (see Figure 4.7) reveal that the MoVIT reconstruc-
tion is more similar to the SIRT reconstruction with 2000 projections/time frame
than the SIRTmean reconstruction. These results indicate that the improvement
of MoVIT algorithm is not simply an averaging effect which improves the recon-
struction. Indeed, incorporating more projections into the MoVIT reconstruction
process not only improves the SNR but also improves the spatial resolution.

4.5 Conclusion

In this chapter, we have presented the MoVIT framework which aims to reconstruct
dynamic CT datasets with high temporal resolution and spatial resolution. The
MoVIT framework estimates the deformation between different time frames and
enables including the projections of these time frames in the reconstruction of a
certain time frame without introducing deformation artefacts. The method was
validated on numerical simulations and a real dataset of polyurethane foam under
compression. Both experiments showed an increase of reconstruction quality with
respect to conventional reconstruction algorithms. The performed experiments
show that the MoVIT algorithm is able to successfully exploit the data redundancy
present in 4D-CT datasets. It allows lowering the acquisition time of a single time
frame without compromising the SNR of the reconstructed images.
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5
Conclusions

Dynamic processes during the acquisition of a computed tomography scan arise
in numerous applications, both in the imaging system and the scanned object. In
classical CT algorithms these dynamics are neglected. As a result, the reconstruc-
tion quality of the resulting images deteriorates in the presence of these dynamics.
In this thesis, several CT algorithms were developed with an incorporated dynamic
model in order to remove or diminish dynamic process related artefacts.

While the developed algorithms in this thesis are vastly different, they share a
similar design:

1. An appropriate dynamic model is chosen to model the dynamics of the pro-
cess as close as possible. These models have a number of unknown parameters
that have to be estimated.

2. A method to incorporate the dynamic model into the (reconstruction) algo-
rithm is developed.

3. To estimate the parameters of the chosen dynamic model an objective func-
tion is constructed. This objective function is often based on the method
developed in the previous step. The optimal parameters are those that min-
imize the objective function. In order to develop an efficient algorithm, it is
important that an evaluation of this objective function has a low computa-
tional complexity. Moreover, a convex objective function is highly desirable.
However, in practice this is often not achievable.

In the following the main conclusions of Chapters 2-4 are drawn.
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Chapter 2 – Dynamic intensity normalization

In this chapter, a dynamic flat field correction was introduced. The method was
designed to normalize datasets acquired with a varying intensity of the incoming
beam, as is often encountered in synchrotron facilities. In order to capture the
dynamics of the incoming beam principal component analysis is performed on
a set of flat fields, resulting in a set of eigen flat fields. A linear combination
of these eigen flat fields is then used to individually normalize each projection.
Experiments on a numerical phantom and on synchrotron datasets showed that
both the projections and the reconstructions contain less or no flat field variability
related artefacts compared to classical normalisation techniques.

Chapter 3 – Affine deformation estimation and correction in cone beam com-
puted tomography

In this chapter, an affine deformation estimation and correction technique was
proposed for cone beam computed tomography. This algorithm is able to estimate
the affine deformation of an object, compared to a short reference scan, on every
projection of the CT dataset. These estimates can then be used to correct the
projections individually for the affine deformation resulting in a reconstruction,
without deformation artefacts, of the object at the time point of the reference scan.
After the correction of every projection of the dataset, an accurate reconstruction
of the object at the time point of the reference can be obtained. Since the affine
deformation estimation and correction is done directly in the projection domain,
no time consuming reconstructions have to be performed. The proposed technique
was validated on both numerical and real cone beam datasets. The results reveal
that the technique is able to alleviate/remove deformation artefacts resulting from
approximately affine deformations.

Chapter 4 – MoVIT: A tomographic reconstruction framework for 4D-CT

In this chapter, the Motion Vector-based Iterative Technique (MoVIT) was intro-
duced. This technique aims at reconstructing 4D-CT dataset with a high temporal
resolution and signal-to-noise ratio (SNR). In order to achieve this the deformation
between the different time frames is estimated. This enables including the projec-
tions of these time frames in the reconstruction of a certain time frame without
introducing deformation artefacts. The MoVIT framework was validated both on
numerical and real datasets of polyurethane foam under compression. The results
show that the MoVIT framework can significantly improve the reconstruction qua-
lity, in terms of the MSE, SSIM and FSIM metrics, and improve the SNR of the
obtained images compared to a range of classical techniques.
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This work as a whole made a step forward in the incorporation of dynamic
processes into the algorithms surrounding CT. The proposed techniques clearly
show that incorporation of well-chosen dynamic models in the algorithms can sig-
nificantly improve the reconstruction quality.
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A
List of common abbreviations

Common symbols

ARM Algebraic Reconstruction Method
ART Algebraic Reconstruction Technique
CBCT Cone Beam Computed Tomography
CCD Charge Coupled Device
CT Computed Tomography
DVF Deformation Vector Field
EFF Eigen Flat Field
FBP Filtered Back Projection
FDK Feldkamp-David-Kress algorithm
FFC Flat Field Correction
FSIM Functional Similarity Index
GPU Graphics Processing Unit
MoVIT Motion Vector-based Iterative Technique
MSD Mean Squared Distance
MSE Mean Squared Error
PCA Principal Component Analysis
RMSE Root Mean Squared Error
ROI Region Of Interest
SART Simultaneous Algebraic Reconstruction Technique
SIRT Simultaneous Iterative Reconstruction Technique
SNR Signal-to-Noise Ratio
SSIM Structural Similarity Index
TV Total Variation
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