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Summary

Fiber-reinforced composites are an important part of modern material sci-
ence. They are used in every area of our lives in some shape or form. Car
manufacturers use them to make the car body lighter and give it better com-
pression properties if there is an accident. Concrete mixed with fibers is
now a widely used material not only in construction, but also in private
home renovation and improvement. Wind turbines have blades made of
plastic, reinforced with longer strands of glass fibers to make them lighter
and stronger against the forces of the wind. The more the field progresses,
the more the composites can be improved and their applications diversified.
A fiber-reinforced composite consists of a base or matrix material that em-
beds some sort of fibrous material, which is the reinforcement component.
This can be glass or carbon fibers, steel bars or natural fibers like bamboo.
They can be added in layers, bundles, weaves or loosely dispersed within the
material before its set.

A preferred method for investigating composites is X-ray computed to-
mography. This technique can generate a fully 3-dimensional image, that
reveals the inside structure of the analyzed samples. As X-rays penetrate
most materials easily, it is possible to acquire images of the attenuation of
the incoming radiation when placing such a material sample between the
source and the imaging device. Several of those so-called projections are col-
lected over a large angular range, preferably 180◦ or more. Using mathemati-
cal methods the volumetric image, the reconstruction, can then be computed
from the projections.

The thesis you are reading is dealing with the problem of the quantitative
and statistical analysis of such composites, using X-ray computed tomogra-
phy. More precisely, it shows approaches to detect the fibers in volumetric
images of glass fiber-reinforced polymers and analyze their structure to give
insight into their geometrical properties. After introducing the foundations
for the work, a first framework for the extraction and analysis of straight
fibers, called PARE, is introduced. This framework is then extended to also
deal with fibers with arbitrary curvature. Parametric models for both straight
and curved fibers are presented and it is shown how those parametric mod-
els can be improved using numerical optimization based on the information
in the X-ray projection images.
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Samenvatting

Vezelversterkte composieten vormen een belangrijk onderdeel van de mod-
erne materiaalwetenschappen. Ze worden op elk gebied van ons leven in een
of andere vorm gebruikt. Autofabrikanten gebruiken ze om de carrosserie
lichter te maken en betere compressie-eigenschappen te geven bij een ongeval.
Beton gemengd met vezels wordt niet enkel in de bouw veel gebruikt, maar
ook bij renovaties en verbeteringen van particuliere woningen. Windturbines
hebben wieken uit kunststof, versterkt met langere strengen glasvezel om ze
lichter en sterker te maken tegen de krachten van de wind. Hoe meer het
veld vordert, hoe meer de composieten kunnen worden verbeterd en hun
toepassingen kunnen worden gediversifieerd. Een vezelversterkte composiet
bestaat uit een basis- of matrix-materiaal waarin een soort vezelachtig mate-
riaal is ingebed, wat de versterkingscomponent is. Dit kunnen glas- of kool-
stofvezels, stalen staven of natuurlijke vezels zijn zoals bamboe. Ze kunnen
in lagen, bundles, of weefsels worden toegevoegd of los van elkaar in het
materiaal worden vespreid voordat het hard wordt.

Een voorkeursmethode voor het onderzoeken van composieten is röntgen-
computertomografie. Deze methode kan een volledig driedimensionaal beeld
genereeren, dat de interne structuur van geanalyseerde monsters onthult.
Aangezien röntgenstralen de meeste materialen gemakkelijk doordringen,
is het mogelijk om beelden te verkrijgen van de verzwakking van de bin-
nenkomende straling wanneer een dergelijk materiaalmonster tussen de bron
en het beeldvormingsapparaat wordt geplaatst. Verschillende van die zoge-
naamde projecties worden verzameld over een groot hoekbereik, bij voorkeur
180◦ of meer. Met behulp van wiskundige methoden kan vervolgens het vol-
umetrische beeld, de reconstructie, worden berekend uit de projecties.

Het voorgelegde proefschrift behandelt het probleem van de kwantitatieve
en statistische analyse van dergelijke composieten met behulp van röntgen-
computertomografie. Meer precies toont het benaderingen om de vezels te
detecteren in volumetrische beelden van glasvezelversterkte polymeren en
hun structuur te analyseren om inzicht te krijgen in hun geometrische eigen-
schappen. Na de introductie van de basis voor het werk, wordt een eerste
framework voor de extractie en analyse van rechte vezels, PARE genaamd,
geïntroduceerd. Dit framework wordt vervolgens uitgebreid om ook vezels
met een kromming aan te pakken. Parametrische modellen voor zowel rechte
als gebogen vezels worden gepresenteerd en er wordt getoond hoe die parame-
trische modellen kunnen worden verbeterd met behulp van numerieke opti-
malisatie op basis van de informatie in de röntgenprojectiebeelden.
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Chapter 1

Introduction

The development of advanced composite materials consisting of a bulk ma-
terial component and one or more reinforcing components is an essential
part of material science in its quest of making existing materials stronger and
lighter [2]. During the development process, researchers and engineers need
to know what properties a newly created material has or will have. Tradi-
tionally, new materials are analyzed in a process called non-destructive test-
ing (NDT). This can be using load testing, for example, where a small sam-
ple of the material is created and then twisted, pulled, pushed or otherwise
deformed and the forces and mechanical stresses that are developed in the
testing machines are recorded [3]. This process seamlessly transitions into
destructive testing, where the material sample can actually be destroyed dur-
ing these tests. Some methods also grind small sections off of a material and
pictures are taken of the revealed surface to get more information about the
structure inside the sample [4]. However, this destructive way of retriev-
ing the information can deform the material sample in a way that may yield
wrong conclusions.

The preferred methods of getting information about a material in a in a
non-destructive way are visual in nature. The topic of this thesis is one of
these visual methods, X-ray micro-computed tomography (µCT). It enables
the visualization of the three dimensional structure of a material on the mi-
cron level [5]. During a µCT scan, an X-ray beam is directed at a sample of a
material to investigate. Acquiring images of these X-rays from several known
directions enables the reconstruction of a 3D volumetric image that contains
information about the internal structure of the sample. µCT can reveal the
fine structures that influence the properties of the material significantly, while
being non invasive and flexible to accommodate various experimental setups.
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Traditionally, the material properties are investigated by applying a pipeline
of image processing operations to the resulting tomographic images of the
materials. The behavior of materials under force loads typical for the de-
sired application, can be also be investigated using so-called representative
elementary volumes or representative volume element (RVE). A RVE is the
smallest (simulated) volume that can be used for a virtual force measurement
experiment that will result in the same measurement as the measurement
on the real material. The representative elementary volumes can be created
based on the statistical information retrieved via µCT.

As the demand for lighter, more complex (multi-)material objects grows,
better tools are required to investigate their properties. This includes the need
for increasingly higher resolution scans with pixel sizes in the low microme-
ter range, which produces vast amounts of data. While in the past the visual
interpretation of images was commonplace, material science has now grav-
itated towards quantitative imaging. One reason for that is to reduce the
amount of data while preserving the accuracy achieved by the high resolu-
tion of modern imaging setups: A few parameters, estimated from a high
resolution 3D volume, can be stored more easily than the amount of voxels
that represent the same object with comparable resolution. Especially objects
of interest with a large aspect ratio, such as glass fibers embedded in a resin
matrix, can benefit from moving from voxel based representations to model
based ones. Models can take various forms, from single scalar parameters
modeling a distribution of values, to entire mesh models of objects contained
in a volume. The central question for the research presented in this thesis was:

How can a feedback loop be inserted into the processing pipeline used
to generate these models?

The typical image processing workflow is unidirectional and comprised
of the components acquisition, reconstruction, processing, and analysis. these
techniques can be used to derive data such as the orientation distribution of
fibers, the size distribution of included air bubbles and many other values.
However, this workflow allows erroneous estimations to cascade into further
errors later on. Using a feedback mechanism the estimates can be the basis to
initialize a guess for the model, which then serves as the a priori knowledge
for another round of estimation.
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The work presented here shows one possible answer to this question in
the context glass fiber-reinforced polymer (GFRP). Different models are pre-
sented and their parameters estimated using image processing. A feedback
mechanism, which iteratively refines the model estimates, is then introduced.
The thesis begins with a more detailed explanation of the methods used within
the presented work. The following chapters introduce said work, from mod-
eling straight fiber composites towards more flexible models of curved fibers
and their application to both simulated data and realistic datasets.
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Chapter 2

Foundation

Computed tomography (CT) is an essential technique in NDT. It enables the
imaging of the microstructure of materials and thus their computational anal-
ysis. This chapter introduces the foundations for this imaging technique by
explaining the production of the X-rays, followed by an explanation about
how this radiation interacts with matter (see Section 2.2). During the imaging
process, this interaction with matter is recorded by detecting the X-rays pass-
ing through an object with a light sensitive detector. The resulting images, so-
called projections or radiographs, contain information about the inner struc-
ture of the object (see Section 2.3). This structure can be reconstructed using
the X-ray transform [6] which has a close relation to the Radon transform.
Several reconstruction algorithms based on the X-ray transform have been
proposed and are explained in Section 2.4. Reconstruction leads to a visual-
ization of the material structure, like the sample of rockwool shown in Fig-
ure 2.1. Section 2.5 deals with the manufacturing of advanced materials and
how the structures of those materials can be analyzed using image processing
techniques and NDT methods, focusing on X-ray CT as the main method of
NDT. The contents of sections 2.2 and 2.3, including the figures, are largely
based on the author’s unpublished master’s thesis [7].

2.1 Non-destructive Testing

Early microscopists interested in the inner structure of plants, seeds, raw
building materials, snow, small animals and even humans started prepar-
ing their subjects in a way that enabled the cutting of thin slices or creation of
flat faces. At first these slices were the only thing to be investigated and tech-
niques were developed to gain quantitative information from these sections.
For example, steel used to be (and still is) characterized by grinding and pol-
ishing a flat face and then taking images of that face to analyze the content
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FIGURE 2.1: Example of a volume render of a X-ray computed
tomography (XCT) reconstruction of a fibrous material - rock-
wool. The scan was taken using the FlexCT scanner at the
VisionLab [8]. The sample was kindly provided by Jonathan

Sanctorum from his roof insulation.

of carbon in the steel [4]. The resulting images of material slices, however,
could also be stacked together to form a fully volumetric image of the sam-
ple with the downside of having to not only destroy it in the process, but
the preservation process also potentially modifying the sample, sometimes
significantly [9, 10]. This was the foundation of the field of stereology [11],
which aims to gain quantitative measurements of material structures. Today,
non-destructive testing of materials via various imaging techniques or other
measurements replaces the destructive slice by slice analysis [12]. Some of
the techniques used to that end are presented subsequently.

The visual inspection of parts by means of visible light camera images is
by now the industry standard for quality control. Applications include the
investigation of welds [13], inspection of printed circuit boards (PCBs) [14]
and the testing of the integrity of the packaging of medications [15].

Fluorescence spectroscopy is a technique used in materials science, bio-
chemistry and biophysics to investigate the chemical composition of mate-
rials by their emitted light spectra [16]. With this technique it is possible to
sequence DNA [17] or localize functional molecules in cells [16].

Different electromagnetic spectra can also be exploited by extending the
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visual range of digital cameras in hyperspectral imaging techniques. Here,
the camera is sensitive to infrared and/or ultraviolet light and can give ad-
ditional information about the observed specimen. This can be used, among
other things, to visually test the ripeness of fruit [18] or monitor the growth
of plants under different conditions [19].

Microscopy can of course be used in non-destructive ways as well. Confo-
cal (X-ray) laser microscopy provides 2- or 3-dimensional visualization of ma-
terial surfaces and internal structure [20]. Using electron microscopy atoms
in materials can be localized and the structure of nano-particles characterized
[21].

For the investigation of mechanical properties of materials, one can apply
forces in what is called load testing [22] or a representative mathematical
model can be created that enables the simulation of the resulting mechanical
properties via finite-element analysis [23]. The model itself can also be used
to gain statistical information about material distribution and other relevant
features. Often such a representative model can be estimated from scans of
a material sample using X-ray computed tomography (XCT), which is the
subject of this thesis.

2.2 X-rays

X-radiation is a form of electromagnetic radiation that has a wavelength in
the order of roughly between 10−8 m and 10−13 m . In the beginning stages of
the field of research, they were generated using an X-ray tube (Figure 2.2).
This is a vacuum glass tube containing a cathode and an anode (or anti-
cathode).

X-ray beam

cathode 

electron beam

Tungsten anode

FIGURE 2.2: Schematic of an X-ray tube. The electrons hit the
anode and are decelerated by the material. This generates X-

ray radiation that is emitted from the tube.
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A voltage of 20 to 600 kV accelerates the electrons from a heated cathode
towards an anode [24]. Hitting the anode the electrons decelerate rapidly
during entry into the first few micrometers of the anode surface. This rapid
deceleration causes the emission electromagnetic radiation in form of X-rays.

The photons generated this way are made up of two types of radiation,
called Bremsstrahlung and characteristic radiation. Together those form what
is generally known as X-rays [24, 25, 26].

2.2.1 Bremsstrahlung

The Bremsstrahlung, i.e. the continuous part of the spectrum, as seen in Fig-
ure 2.3, can be calculated by Kramers’ law, which gives a function I0(λ)dλ
expressing the intensity I0 of the spectrum in a wavelength interval dλ:

I0(λ)dλ = K
(

λ

λmin
− 1
)

1
λ2 dλ, (2.1)

where λ is the average wavelength in the interval, λmin is the minimum wave-
length computed from (2.2) and the constant K is an empiric constant, pro-
portional to the atomic number Z of the anode element [27]. Its name derives
from the German ”bremsen” (English: to brake), because it is emitted as a
result of the deceleration.

The minimum wavelength of that spectrum is given by the Duane-Hunt
law

λmin =
hc

e Ucathode
, (2.2)

where e is the charge of an electron. Ucathode is the voltage of the cathode used
to produce the electron beam [28]. The constants c and h are the speed of light
in vacuum and Planck’s constant, respectively. This means that the only pa-
rameter that can be changed in order to influence the minimum wavelength,
is the cathode voltage. The only thing that is influenced by the material, is
the spectral intensity, but not the wavelength distribution, as seen in Eq. (2.1),
where K is only a scaling factor.

The other part of the X-ray spectrum is composed of individual peaks at
different wavelengths, which are specific to the anode material. Since these
peaks can be used as a signature of an element, this radiation is called char-
acteristic radiation. There are two characteristic peaks, that can be observed
in an X-ray spectrum.
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FIGURE 2.3: Resulting theoretical Bremsstrahlung spectra us-
ing different anode voltages, with the atomic number Z = 74
(Tungsten). The y-axis shows arbitrary units proportional to

the intensity.

2.2.2 Characteristic Radiation

The peaks of the characteristic radiation spectrum correspond to the Kα and
Kβ peaks of the respective element. The Kα peak corresponds to radiation
emitted when an electron releases energy while transitioning from the L to
the K shell. The Kβ similarly corresponds to the energy released in the tran-
sition from the M to the K shell[25].

The frequency fα at which these peaks occur for the Kα line for example
can be calculated by Moseley’s law

fα =
3
4

R (Z− 1)2 (2.3)

with Rydberg’s constant expressed as a frequency R = 3.29 · 1015 Hz [29].

2.2.3 Refractive Index for X-rays

In traditional optics we learn that the refractive index of the least dense medium
(a vacuum) is n = 1 and for every other medium that refracts light it is n ≥ 1.
Moreover, it is common knowledge that there are only a few materials that
are visually transparent, that is they let radiation in the visible light spectrum
pass through. For X-rays however, the refractive index is complex valued
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and defined as
n∗ = 1− δ + iβ, (2.4)

where 1− δ is the real part, with

δ =
1

2π
reρeλ

2, (2.5)

and β

β =
µphλ

4π
, (2.6)

denotes imaginary part, representing an alternative notation of the usual re-
fractive index n. The real part of the refractive index is usually smaller than
1. The decrement δ is composed of the wavelength λ, the electron density
ρe of the material and the radius of the electron re = 2.818 · 10−15 m. The
parameter µph in (2.6) is the photoelectric absorption coefficient [25]. Due to
its high energy most materials behave like glass does for visible light from
the perspective of X-rays, so refraction occurs in most materials acccording
to Snell’s law. The behavior of the refraction however, is altered compared to
visible light, because of the refractive index being lower than 1. An example
for that would be the direction of a beam of light entering a denser medium.
In visible light optics the expected outcome would be that the beam of light
will be refracted towards the perpendicular/surface normal. For X-ray op-
tics, the reverse is true – i.e. the beam will be refracted away from it.

2.3 Tomographic Projection

For now the properties of X-rays have only been discussed in general terms
of their production and how they function within the context of optics. For
tomographic applications it is however important to also understand the in-
teraction of the specific range of electromagnetic radiation with matter more
closely.

2.3.1 Lambert-Beer law

The Lambert-Beer law describes by how much the radiation penetrating a
medium gets attenuated while traveling a distance l through this medium

I(l) = I0e−
∫

µ(l)dl . (2.7)
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The attenuation of the material is given by its material dependent attenua-
tion coefficient µ, which varies depending on the location in the object [6].
We can see that given no object and therefore no attenuation, the equation
yields I0, which is the intensity of the X-ray beam. Of course from (2.1), it can
be seen that this intensity largely depends on the energy used to generate the
X-rays. In this thesis the above simplification of the Lambert-Beer law is suf-
ficient, but there exist works that deal with a full spectrum dependent initial
intensity. That model is commonly referred to as the polychromatic forward
model [30]. Consequently, Equation 2.7 is called the monochromatic forward
model. A direct result of the polychromatic nature of the incident radiation
is a skewing of the spectrum that arrives at the detector compared to the ra-
diation exiting the source. This process is called ”beam hardening”, because
it skews the energy distribution towards the higher energy (also referred to
as ”harder”) X-rays, because the lower energy part of the spectrum is either
more absorbed by the material or refracted away from the detector.

2.3.2 Measuring X-ray Intensities

Modern (visible) light detectors, as they can be found in cameras and phones,
are essentially arrays of silicone photodiodes [31]. Due to the better signal-
to-noise ratio (SNR), silicone-based detectors are most often used and are
the furthest evolved technologically. However, the response of the silicone
diodes is in the wavelength range of 190-1100 nm [32], which is several or-
ders of magnitudes higher than the wavelength of X-rays around 0.25 nm.
An easier solution than making a photodiode that is sensitive in the X-ray
spectrum is to use an existing detector sensitive in the visible spectrum and
converting the X-rays to visible light [6]. One way to convert X-rays into
visible light is to use their ionizing property and ionize a gas, which then be-
comes luminescent. This principle is also used in the Geiger-Müller counter
[33]. This method is not used in many detectors anymore due to the low con-
version efficiency. The more useful method is the use of a solid scintillator
material [6]. These materials can be manufactured as thin slabs and then at-
tached to a photon detector. The X-rays entering the medium, often made
from cesium iodide, bismuth germanate or cadmium tungstate, generate lu-
minescent light. The material absorbs the incoming radiation and emits radi-
ation of a longer wavelength in a process called scintillation, which gives the
materials their name. The choice of material influences the time of the ”after
glow”, sensitivity to incoming wavelength, spectrum of the emitted light and
quantum efficiency.
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FIGURE 2.4: Acquisition of a detector image without illumi-
nation (darkfield, top left), without an object but with illu-
mination (flatfield, top right), X-ray projection (bottom left)
and illumination/flatfield corrected projection (bottom right)
of a coffee mug, scanned during one of the experiments at the

FlexCT scanner [8].

2.3.3 Flatfield and Darkfield

Knowing how one ray behaves and interacts with an object is great, but to
obtain insights into an object’s density differences, the attenuation coefficient
needs to be related to how the intensity of the attenuated light changes. Ad-
ditionally the intensity has to be sampled in various places. This requires
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solving Equation 2.7 for
∫

µ(l)dl for all detector pixels in a recorded projec-
tion image. ∫

µ(l)dl = −ln
(

Ip(l)
I0,p

)
, ∀p ∈ p (2.8)

p = −ln
(

I
I0

)
. (2.9)

The incident intensity I0 : R2 7→ R, the beam intensity when unobstructed by
any object, has to be measured before, during, or after the experiment. The
above equation is often referred to as ”log correction”, because of using the
natural logarithm. The incident intensity is called the ”flatfield”, so the term
”flatfield correction” is used interchangeably. Due to the nature of the digital
detectors used to record the X-ray beam, this does not fully correct the mea-
sured image, though. Detectors exhibit noise, even when no light is being
recorded. The pixels can also have an erroneous constant offset that is al-
ways detected by the detector, shifting the incident intensity by that amount.
This thermal noise and the constant offsets can be recorded and also used to
correct the image. Because it is measured with the X-ray beam turned off, this
is referred to as the darkfield Id. Thus, Equation 2.8 becomes

p = −ln
(

I − Id

I0 − Id

)
. (2.10)

Additionally some detector pixels might be defective, signaling to the
computer that the pixel did not record any intensity, or that its intensity was
at the maximum level. These pixels are referred to as dead pixels and hot
pixels, respectively. To correct for these errors, the median value in a region
around each of those pixels can be inserted to minimize the wrong pixel’s
influence. This process is visualized in Figure 2.4.

With (2.10) the spatial density distribution of the object can be recon-
structed from several projection images acquired from different angles. This
can be either done with a line detector that rotates around the object, or with
a 2D detector, as described in Subsection 2.3.2. The former will result in a
reconstruction of a slice through the object of interest, the latter in a full three
dimensional reconstruction.
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2.3.4 Noise

Due to the type of detectors used, the acquired images will exhibit noise.
Noise is part of any image acquired with an imperfect means of recording
incident intensity. It appears in images as local variations of recorded in-
tensity with a magnitude related to the SNR. These variations are a result
of the discretization of the incident radiation during the acquisition process,
which causes different amount of photons hitting adjacent detector pixels
even when exposed to similar flux of radiation.

An accurate statistical model of the noise is called Poisson noise (also
known as shot noise) [34]. The Poisson distribution

Pf(N = k) =
λk

ee−λe

k!
, (2.11)

with k discrete events and an expected value of λe can model the pro-
cess of k photons with an expected wavelength of λe, which is more in line
with the physical process than the Gaussian model often used when model-
ing noise. A Poisson distribution with a sufficiently high amount of discrete
events approximates a Gaussian distribution with a mean equal to the ex-
pected value λe of the Poisson distribution.

A key difference with shot noise versus Gaussian noise is that both the
event count and the expected value change based on the incident intensity.
That is, an object in the beam not only attenuates the X-rays, reducing the
amount of photons hitting the specific spot of the detector ”behind’ it, it also
skews the energy distribution due to beam hardening, as explained in Sec-
tion 2.3.1. In many cases it can still be sufficient to model the noise using a
Gaussian distribution.

2.3.5 X-ray Transform

For the three dimensional volumetric reconstructions of samples a method
called tomography is employed. It uses the properties of a mathematical
transform called the Radon transform [35] which can be expressed mathe-
matically in the following way:

R f (s, ϑ) =

∞∫
−∞

f (s sin ϑ + t cos ϑ,−s cos ϑ + t sin ϑ)dt, (2.12)

where s ∈ Rn and ϑ ∈ [0, π).
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FIGURE 2.5: Line parameters as used in the (2D) Radon trans-
form.

Equation (2.12) is a special case of the Hough transform [36], which de-
scribes a similar process but for arbitrary curves in spaced with an arbitrary
amount of dimensions. The Radon transform describes a function that maps
the line integral of a function f along a line g with the offset s in the direc-
tion ϑ to a position (s, ϑ) in a so-called accumulator. A visualization of the
relationship between g, s and ϑ is shown in Figure 2.5.

The X-ray transform represents the mathematical expression of an X-ray
experiment, where the absorption of the material influences the amount of
radiation that hits the detector. The value that is measured at the detector
pixel is the Radon transform in an arbitrary direction and offset s that lets the
line hit the pixel. When the sample is now rotated during the experiment -
which represents the function f in front of the X-ray beam - we get a linear
sampling of the the semi-circle [0, π) over all offsets that lie in the sample.
Each discrete rotation angle yields one image, or slice. In Figure 2.6 the result
of a Radon transform on the Shepp-Logan phantom [37] can be seen. Because
points in the source image produce sinusoidal shapes in the Radon transform,
it can also be referred to as sinogram.
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2.4 Tomographic Reconstruction

Using the inverse Radon transform R, these sinogram slices can be recon-
structed into the volumetric density distribution of the sample that attenu-
ated the X-ray beam. For this, the backtransform B is defined at first

B f (x) =
π∫

ϑ=0

f (x1 cos ϑ + x2 sin ϑ, ϑ)dφ, x =

(
x1
x2

)
∈ R2. (2.13)

Unfortunately this is not the same as the wanted back transform R f (x).
Therefore the Fourier slice theorem is used to do the back projection.

Theorem 1 (Fourier Slice Theorem) The one-dimensional Fourier transform of
a parallel projection is equal to a slice through the middle of the two-dimensional
Fourier transform of the original object that was projected. Knowing the one-dimensional
Fourier transforms of all the projections, it is therefore possible to reconstruct the
two-dimensional Fourier transform of the original object. [38]

Essentially this means applying a one dimensional Fourier transform along
the direction defined by the angle θ at the perpendicular offset σ.

FR f (σ, θ) = f̃ (σ cos θ, σ sin θ), σ ∈ R, θ ∈ [0, π). (2.14)

FIGURE 2.6: Shepp-Logan phantom and corresponding sino-
gram over the full circle with 360 projections.
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Then a two dimensional inverse Fourier transform is applied to the result,
while using a conversion between polar and Cartesian coordinates

ω =

(
ω1 = σ cos θ
ω2 = σ sin θ

)
(2.15)

to account for the rotation of the sample.

f (x) =
1

(2π)2

∫
R2

f̃ (ω)e−2πixωdω. (2.16)

Changing the integration limits and applying equation (2.16) this can be rewrit-
ten as

f (x) =
1

2π
BF σ(| · | ⋆FsR f )(x), (2.17)

where ⋆ denotes pointwise multiplication. Using the convolution theorem
above equation can be once again rewritten to give the formula for the filtered
back-projection

f (x) =
1

2π
B
(
(R f ) ∗ g

)
(x), x ∈ R2, (2.18)

where

g(s) =
∞∫
−∞

|σ|e−2πisσdσ, s ∈ R. (2.19)

Theorem 2 (Convolution Theorem) An important property of the Fourier trans-
form is that a convolution operation f ∗ g in real space can be represented by a point-
wise multiplication, denoted by the ⋆-operator, in Fourier space [6]. That is

f ∗ g = F (F ( f ) ⋆F (g))). (2.20)

With (2.18) the slice images taken in the X-ray tomography experiments
can be transformed to give a volumetric model of the density distribution in
the object, depending on the attenuation of the radiation.

2.4.1 Analytic Reconstruction of Cone Beam Data

The technique described above is used to reconstruct tomographic data. It is
called filtered backprojection (FBP), because the oversampling in the lower
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frequencies and the undersampling in the higher frequencies are compen-
sated using a filter. The mathematically correct way to do this, is to apply the
ramp filter, as described in (2.19)) [38].

A limiting factor of FBP is that it still assumes the presence of perfectly
parallel light paths, often called parallel beam geometry. Laboratory sources
such as the FlexCT system in the VisionLab [8] use X-ray sources that do
not provide such a parallel beam. Instead the distance between source and
detector is small. This, in combination with the shape of the anode, causes
the beam shape to resemble a cone instead, naming the resulting geometry
a cone-beam geometry. This geometry is the most prevalent in laboratory
sources, and so a reconstruction technique that does not make wrong as-
sumptions is required.

The Feldkamp, Davis, and Kress (FDK) algorithm is an approximate the-
oretical solution to this problem [39]. Its base principle is to re-sample projec-
tion images acquired with a known and precisely defined cone beam setup
into parallel slices of fan beam projections and then solving the tomography
problem with a modified Fourier Slice Theorem. This modified version of the
backprojection was first described by Parker [40].

Visualizations of the cone beam, fan beam and parallel beam geometries
are shown in Figure 2.7. Fan beam data, as shown in Figure 2.7 (b), is a
series of projections acquired with a line detector, where the light source dis-
tributes light in a triangular area, the outermost rays hitting the detector after
longer traversal time than the central rays. The name fan beam derives from
its shape. Its equivalent in 3D is the cone beam, where the triangular cross
section is apparent both in the vertical as well as the horizontal axis of the
detector.

The reconstruction in the fan beam case uses a weighting scheme to prop-
erly distribute the intensity values with respect to the locally changing geom-
etry.

BFDK f (x) =
π∫

ϑ=0

wfan f (x1 cos ϑ + x2 sin ϑ, ϑ) ∗ g dϑ (2.21)

where

wfan =
R2

(x1 cos ϑ + x2 sin ϑ)2 (2.22)

is the weighting to approximate fan beam data from the cone beam data. The
parameter R is the distance to the detector. The filtering term g is the same as
defined in (2.19). The filter is applied per row instead of the total image.
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FIGURE 2.7: Schematics of the basic projection geometries
parallel beam (a), fan beam (b), and cone beam (c). Indicated
as a star is the source position, a cross denotes the detector
center and the lines show the detector extents as well as the
area covered by the X-ray beam. Shown superimposed in blue
on the detector is a circular region of the smallest cone that

contains the detector fully.

This filtering is crucial step in this reconstruction method. The backpro-
jection process ”smears” the recorded intensity over the reconstruction area.
Due to the concentric circular geometry, the sampling of the intensities is
denser in the center of the circular reconstruction region and less dense to-
wards the outside. The filtering operation weighs the intensities inversely
proportional to the sampling density, generating a less blurry reconstruction.
An illustration of the effect of the filtering is shown in Figure 2.8.

2.4.2 Algebraic Reconstruction

Another way of reconstructing an object from its projections is algebraic re-
construction. This method of reconstructing formulates the problem of ob-
taining a reconstructed image as a set of mathematical equations. The light
intensities measured on every single pixel on the detector are seen as inde-
pendent pieces of information which reflect the solution of a line integral
from the source to that pixel. Expressing the line integral of each projected
pixel as an linear equation with a known solution, the operation of projection
can be expressed in the so-called projection matrix W

p = Wxv, (2.23)
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FIGURE 2.8: Effect of filtering in the filtered backprojection.
Shown is the Shepp-Logan phantom (a), 360 equiangular pro-
jections (b), the unfiltered reconstruction using backprojection

(c) and the filtered reconstruction (d).

where p are the obtained projections and xv is the object/volume that caused
the projections. Both xv and p are considered vectors, the projection matrix
W ∈ RNxM, where N is the number of elements in the reconstruction and M
the number of elements in the projection. As a system of linear equations,
this matrix also has an inverse. This inverse can be used to compute the
original object xv from the projections p if the projection matrix is known and
invertible.

xv = W T p. (2.24)

The FDK algorithm would be expressed as

FDK(xv) = WT(g ∗ wfan(xv)) (2.25)

in this notation [41].
The term ”algebraic reconstruction” is just another name for solving the

tomography problem using iterative solvers for large linear systems of equa-
tions. One very popular such reconstruction algorithm is called simulata-
neous iterative reconstruction technique (SIRT), which is a technique based
on gradient descent.

With gradient descent, a function’s minimum (in this case the reconstruc-
tion) is iteratively found by searching a minimum along a line and from there
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computing a new line and searching the minimum again until a global min-
imum is found, or another stop condition is met. Using the notation anal-
ogous to [42], the line search can be formulated as a one-dimensional opti-
mization problem:

min
α>0

f (xk + αpk). (2.26)

The direction of this line search is the direction of the steepest descent, which
mathematically is given by the gradient of f

pk = −∇ f (xk) (2.27)

The subscript k indicates the guess at the k’th iteration of the optimization.
A new guess xk+1 ∈ R is given based on the previous iteration

xk+1 = xk + αpk (2.28)
= xk − α∇ f (xk). (2.29)

Written in matrix form as the FDK algorithm above, the gradient descent
algorithm becomes

xv,k+1 = xv,k − α∇ floss(xv,k) (2.30)

xv,k+1 = xv,k − αW T(Wxv,k − pk), (2.31)

where the projection difference

Wxv − p (2.32)

is chosen as the objective function floss for the minimization of the problem
[43]. The step size α along the gradient direction can be varied.

The SIRT algorithm is a variation of this algorithm and based on a class of
solvers which include other well known methods like ”Cimmino’s method”
and ”Kaczmarz’s method” [44]. SIRT updates all elements in the reconstruc-
tion in one single iteration, hence the ”simultaneous” in its name. The initial
estimate is often just a vector of zeros and is iteratively updated using the
residual of the projection difference, weighted with the inverse column and
row sums, represented by two diagonal matrices C1 and R1, respectively. An
overview of the algorithm is given in Algorithm 1.

The similarity of line 5 in Algorithm 1 to Equation 2.31 is apparent. Here
the diagonal matrices C1 and R1 function as both the step size α as well as
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Algorithm 1 SIRT
1: xv,0 ← xv
2: C1 ← diag

(
1/||cj||1

)
3: R1 ← diag (||ri||1)
4: for k = 0; k < num_iter; k++ do
5: xv,k+1 ← xv,k + C1W TR1(p−Wxv,k)
6: end for

a regularization factor based on the sums of the contributing pixels in the
reconstruction xv and projection p.

In the same way, other, more general purpose algorithms like Newton-
Krylov optimizers [45] or the Barzilai-Borwein (BB) method [46], can be used
to solve the tomography problem. The BB method is a variation of the gra-
dient descent algorithm, where the parameter α is chosen to approximate
the ideal step size for steepest descent and is used in the presented research
for reconstructions in addition to SIRT. The way to compute that step size
is shown in Algorithm 2. The dot product of the differences between the
current best estimate xv,k and the previous best estimate xv,k−1 and the differ-
ences between the gradient of the current iteration and the previous iteration
is divided by the magnitude of the gradient differences.

Algorithm 2 BB
1: xv,0 ← xv
2: grad←W T(p−Wxv,k)
3: α← 1/||grad|| ▷ initial step size
4: for k = 0; k < num_iter; k++ do
5: gradp← grad ▷ Store gradient of previous iteration
6: grad←W T(p−Wxv,k)
7: α← ((xv,k − xv,k−1) · (grad− gradp))/||(grad− gradp)||
8: xv,k+1 ← xv,k + αgrad
9: end for

This leads to small step sizes when the gradient magnitudes are far apart
between iterations and large step sizes when they remain similar.

Both analytic and algebraic reconstruction have their uses. FDK is com-
monly used as a reconstruction algorithm for medical CT, where the geom-
etry is fixed and reconstructions need to be available quickly. Algebraic re-
construction techniques usually take longer to reconstruct a usable image,
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but offer more flexibility in the acquisition geometry. Some examples of such
geometries are explained in the following section.

2.4.3 Non-standard geometries and the ASTRA toolbox

An advantage of algebraic reconstruction over analytic reconstruction is the
fact that the system of equations does not imply any sort of physical setup in
its model. Both FBP and FDK rely on the fact that the geometry of the acquisi-
tion is configured in a certain way. If the actual geometry deviates from these
assumptions, the reconstruction quality can suffer or it can even be entirely
impossible to reconstruct any useful data. With an algebraic approach, each
pixel in the projection is independent of all the others from the viewpoint
of the acquisition. This means that, at least theoretically, each of those pixel
values could be measured under a different view angle or source-detector-
distance, as long as the geometry is fully defined and can be related back to
the object if combined with the remaining projections. Using this fact, the
flexibility of laboratory sources grows. The FleXCT project at the University
of Antwerp for example, uses a modified Tescan UniTOMXL scanner with
10 degrees of freedom, allowing for a set of non-standard geometries to be
used during XCT scans [8]. Some possible scanning non-standard geome-
tries are described in the following paragraphs. They are visualized using
the software package flexraytools, which was developed by the author in
the context of that project.

The All Scale Tomographic Reconstruction Antwerp /Amsterdam (AS-
TRA) toolbox [47] is a software toolbox for algebraic and analytic reconstruc-
tion developed at the University of Antwerp in collaboration with the Cen-
trum voor Wiskunde en Informatica (CWI) in Amsterdam. The toolbox pro-
vides a Python and MATLAB interface to a number of C++ routines that,
with the support of graphical processing units (GPUs), can simulate mathe-
matically correct forward projections and reconstruct volumetric data from
acquired projections. The interface is designed to allow for arbitrary config-
urations of parallel or cone beam geometries.

A common problem in clinical settings is that patients breathe and move
slightly during a scan. The standard ”step and shoot” method often causes
misalignment between acquisitions of different projections, making the im-
age blurry and in the worst case unusable [48]. To speed up the acquisition
and reduce this source of errors, the source and detector are rotated contin-
uously while the patient is moved through them. This results in a helical
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FIGURE 2.9: Trajectory of source (∗) and detector (·) during a
helical scan. The blue line indicates the linear movement axis,
here the Z-axis. The red box indicates a possible volume that
can be imaged by this geometry. Of course, the direction for a
medical scan would be rotated by 90 ◦, rotating around a bed.

FIGURE 2.10: Trajectory of source (∗) and detector (·) for
a standard cone beam scan and a source and detector pair
stacked on the top and bottom, showing the geometry of a
stacked scan with a ”step and shoot” acquisition scheme. The
geometry has been exaggerated for visualization purposes.
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trajectory of source and detector and makes it possible to reconstruct the re-
gion of interest (ROI) in a single continuous acquisition, usually short enough
for the patient to hold their breath. Helical CT can also be applied in mate-
rial science, where objects that do not fit into the field of view (FOV) can be
scanned fully using a helical acquisition scheme, as shown in Figure 2.9.

For better reconstruction quality the traditional ”step and shoot” method
can also be combined with a linear displacement along the rotation axis, also
increasing the field of view (FOV) in the direction of the linear displacement,
as shown in Figure 2.10. To ensure the reconstruction to be possible, the scans
are made with some overlap, so that the images can later be registered to one
another. They are then converted to one continuous projection image to be
reconstructed.

As long as the acquisition can be performed fast enough, an acquisition
can also be performed as a time resolved acquisition. This is referred to as
4-dimensional (i.e. time-resolved) computed tomography (4D CT). During a
typical scan with a standard rotating geometry, the acquisition is performed
several times and several reconstructions are made. Each individual recon-
struction represents a time snapshot of the state of the observed object at that
time. Using motion correction and other techniques using temporal informa-
tion, the reconstructions can be improved [49].

Variation of the acquisition geometry is heavily utilized in NDT. The time
resolved acquisition of tomographic images is a great tool to investigate com-
pression properties of materials, reaction of a material to extreme tempera-
ture or the analysis fluid dynamics. In cases where the investigated sample
is limiting the geometry of the scan, algebraic reconstruction techniques can
still reconstruct the structure from limited angles [50] and the use of addi-
tional information aids in improving the data quality in these cases [51]. It
is also possible to reconstruct smaller parts of large samples using so called
ROI tomography [52].

2.5 Investigation of Material Structures

The work presented in this thesis focuses on the analysis of composite mate-
rials and the analysis of their components using non-destructive testing. This
chapter introduces the production of said materials, their properties and how
they are analyzed in the industry.

Material structures come in a wide variety of shapes and forms. Tradition-
ally in material engineering and material science the structure of a material
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becomes important when the material currently used for a task is failing to do
this task well enough or for long enough. This can be a mechanical part fail-
ing because of repeated cyclic loads or exposure to forces that wear it down
over time [53]. Other use cases can be found in the search for a completely
new material that is supposed to replace another with a cheaper, lighter,
stronger or otherwise more advantageous material. One class of highly re-
searched materials are so-called compound materials. Those materials com-
bine good properties of multiple materials to make a better, unified material.
An example for such a material is the subject of this thesis - a glass fiber-
reinforced polymer (GFRP). GFRP combine a polymer resin of some chosen
polymer as the material matrix and reinforce the structure by adding fibrous
material, in this case glass fibers. The polymers are easy to work with, as they
are easily moldable and can cure to very hard materials. However the mate-
rial in itself can be very heavy and has low tensile strength when it becomes
too thin. Adding fibers increases the strength of the material body, allowing
it to resist much greater forces than without the added fibers [54]. They also
increase the strength-to-weight ratio, which enables the use of less material
for the same strength in a component [2].

One subject of material science is thus the analysis of what kind of ma-
terials or which combination of materials gives the most advantageous com-
pound for a given task. A valuable tool in this research is the non-destructive
testing of samples of those materials.

2.5.1 Glass fiber-reinforced polymers

Glass fiber-reinforced polymers are polymer materials whose mechanical prop-
erties have been altered by introducing glass fibers into the material during
the manufacturing process.

To produce the glass fibers, glass is melted in furnaces at 1310 - 1390 ◦C,
extruded through a heated feeder channel and funneled into a so-called bush-
ing containing anywhere between 400 and 1600 or more small holes of around
2 mm diameter. The bushing forms the molten glass into thin streams, which
can be pulled by the already cooled section with a constant force and speed
of up to 80 m/s. Due to the pulling the cross section diameter reduces dras-
tically to approximately 10 µm, like shown in Figure 2.11. Once the flow of
glass is established, the fibers can be continuously produced and rolled up
on a spindle, named the ”spun cake” or directly processed further into a wo-
ven material or small chopped pieces [55]. They are also often coated with a
material that prevents breaking.
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FIGURE 2.11: Principle of glass extrusion from a single hole
in the bushing. The input hole diameter D narrows down to
the filament diameter d, which is usually around 200 times
smaller. This figure is a simplified recreation of Fig. 22 in [55].

These glass fibers are added into a liquid polymer resin and can be in-
jection molded or cast into various shapes. The building of suitable molds
and the design and modeling of the injection molding process is a complex
topic requiring various fluid and flow simulations [56]. During the injec-
tion molding process, the polymer is heated to liquidity and then injected
into a mold as a fiber suspension. The fibers are mixed in just before being
pumped out of the nozzle [57]. Fibers usually align along the flow direction
of the matrix material close to the injection point and deviate in orientation
due to turbulent flow or the restrictions of the mold boundaries. Usually the
fiber orientation is different at the mold border compared to the body of the
resin. Even the polymer without fibers in it aligns itself because of the shear-
ing and stretching that happens to the molecule chains in the flow [56]. The
amount of fibers, their distribution, length and thickness as well as flow rate,
polymer viscosity and cooling curve are important parameters in this pro-
cess that heavily influence the final product [56]. Because of this vast amount
of parameters, simulations are essential to predict the outcome of the manu-
facturing process, but testing after a part is manufactured remains crucial as
well. The design process of GFRP is thus similar to an iterative optimization
with simulation, manufacturing and NDT as the elements of each iteration.
Models are used in this context to simulate NDT experiments with material
parameters that address shortcomings of the previous iteration, which are
then verified after the manufacturing of the new material.

Of course the fibers can also be mixed into the resin without injection,
similar to what happens with fiber reinforced concrete. The fiber orientation
distributions in such a material are random and can be almost isotropic [58].



30 Chapter 2. Foundation

Other manufacturing methods use weaves of fibers that are laid into a resin
to reinforce it or even applied to a surface to reinforce and the polymer is
brushed on like paper-maché.
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Chapter 3

Parametric Reconstruction of
Straight Fibers

As described in the previous chapter, non-destructive testing plays a big role
in the research of materials. This thesis describes the efforts in a particu-
lar sub-topic of non-destructive testing - fiber-reinforced composite analysis.
Fiber reinforced composites, while strong and versatile, are still being de-
veloped and new combinations of material matrices with different types of
fibers are being analyzed. The work done in this thesis aims to provide a set
of tools in addition to the existing frameworks, that lets researchers analyze
fiber composites on an individual fiber level and conduct further investiga-
tions from there.

Before any analysis can take place, a sample of, for example, a GFRP has
to be analyzed in a tomographic scanner and a reconstruction of the sample
is computed.

Fiber analysis methods and algorithms that work on those reconstructions
all have common steps that have to be taken. At first the voxels in the recon-
struction have to be classified into ”fiber” and ”non-fiber” voxels. With all
the ”fiber voxels” in the reconstruction identified, the methods start diverg-
ing. Some methods extract statistical information directly from the volume
[59]. Other methods analyze fill percentages [60] and yet other methods start
clustering the voxels to obtain representations of the individual fibers, which
in turn can be used to obtain statistical and geometrical information about,
i.e. the orientation distribution [61], length distribution [62] and/or models of
the entire fiber population [63]. It is also possible to model individual fibers.
In that case, it is important to segment those fibers, which can be done using
traditional image processing [64] or neural network based methods [65].

The contribution(s) discussed in this thesis fall into the last category. In
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Input Volume Template Matching Local Maxima Clustering Optimization

FIGURE 3.1: Processing pipeline of the fiber analysis method
discussed in this chapter. Starting from a reconstruction, the
voxels representing fibers are identified, clustered and con-
verted into mathematical representations and then optimized.

the following sections, the steps mentioned above will be explained in gen-
eral, followed by a detailed description of the methods used in the contribu-
tions. An overview of these steps is show in Figure 3.1.

3.1 Fiber Detection

What differentiates a fiber voxel from a non-fiber voxel? In many image pro-
cessing tasks - be it 2D pixels or 3D voxels - the first question that arises will
be the separation or segmentation of an object or classes of objects from some
kind of background. The simplest way of doing this is a so-called ”thresh-
olding” operation. Given a threshold value that lies somewhere in the in-
terval of the pixel values, this operation assigns a low value, often 0, to any
pixel whose value is lower than that threshold, and a high value, often 1, to
any other pixel. Methods like Otsu’s thresholding [66] are designed to sep-
arate images containing exactly two classes by using the information about
the pixel value distribution contained in the histogram.

This very simple operation does of course not always lead to the proper
results. Often the intensity distribution in an image is too in-homogeneous
to make use of a static threshold. Methods like local adaptive thresholding
[67] can remedy some of those problems, but often times more sophisticated
processing chains are required.

The tomographic images of fibers that are dealt with in this thesis suf-
fer from intensity inhomogeneity due to reconstruction, physical effects like
beam-hardening [6] and sometimes inadequate resolution.

Current methods to characterize the structural properties of GFRP from
high resolution µCT images rely on a sequential work flow comprised of vol-
umetric reconstruction from a large number of projections (typically > 1000)
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and subsequent fiber segmentation and image analysis [68, 69, 70]. Many of
them involve extracting the center lines of the fibers. However, their individ-
ual methods of extracting the center lines and the use of the data differs in
these approaches. Emerson et al [71] use a dictionary learning approach to
extract the centers of very low resolution fibers slice by slice, relying on the
unidirectional fiber direction distribution of their datasets. Pinter et al.[62]
use the local Eigenvalues and a circular voting approach. Huang et al.[72]
use skeletonization to extract the center lines and some use a template match-
ing based approach [73]. Other methods involve fitting cylinder segments to
local orientation vector fields [74] to detect the fibers by ”walking” along the
center line. Of course, deep learning can also be employed for this purpose
[65]. In the method presented in the following chapter, the fiber extraction is
based on template matching.

3.1.1 Template Matching

A common task in image processing is to find an object in an image, or in
this case a volume. If the shape of the object is known, an approach called
template matching can be employed to solve this task.

This can be done using something like the morphological hit-or-miss trans-
form, or a cross correlation, also commonly referred to as template matching.
A cross correlation of a function f : R2 7→ R and a template g : R2 7→ R is
defined in terms of a convolution of f with g∗, a mirrored version of g [75]

( f ∗ g∗)(x) =
∫

R2

f (y)g(y− x)dy, x ∈ R2. (3.1)

This can be trivially extended to R3. From (3.1) it can be seen that the template
g is essentially moved over all locations of f and the correlation is recorded
in a second image or volume at that location. Note that this is not the same as
the statistical measure called correlation. The smaller the difference between
the template and the local region it covers, the higher the correlation value in
that location. The template can then be found in the image by detecting local
maxima, as shown in Figure 3.2.

Lewis [76] describes a fast variant of this procedure that additionally nor-
malizes the intensities, such that only the ”shape” of the template is matched.
It is called normalized cross-correlation (NCC). It allows finding templates
independently of the contrast or absolute intensity, as long as the gray values
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match. Using the integrals of the image and template

f̄ =
∫

R2

f (x)dx

ḡ =
∫

R2

g(x)dx

to center the value distributions and the distance of the image and template
from these integrals

s f =

√√√√∫
R2

( f (x)− f̄ )2dx

sg =

√√√√∫
R2

(g(x)− ḡ)2dx

as a normalization factor, the NCC can be written as [75]

( f − f ) ∗ (g− g)∗

s f sg
. (3.2)

3.1.2 Template Matching to extract Fibers

In a CT reconstruction, fibers have circular cross section, with the intensity
falling off smoothly towards the background. To detect the voxels represent-
ing a fiber using template matching, the choice fell on a Gaussian with stan-
dard deviation that would make the full-width at half-maximum equal to the
fiber radius rfiber

σ =
rfiber

2
√

2 ln 2
. (3.3)

After applying this template using Equation 3.2, the local maxima are ex-
tracted from the resulting image. The voxels with an intensity lower than an
empirically chosen threshold t ∈ R are set to 0, the remaining voxels are left
untouched. The intensities of the non-zero voxels in the template matching
result are then cross referenced with the original image. Voxels that do not



3.2. Straight Fiber Model 35

FIGURE 3.2: Image of overlapping smiley faces hiding the
letter A (left), the letter itself (middle) and the response of
the normalized cross correlation when using the letter as a
template (right). For better visibility the letter is colored dif-
ferently in the image, the template response was calculated
on grayscale images. The red circle marks the location of the

peak in the response.

have an intensity within 25% of the fiber attenuation µfiber are discarded. All
remaining voxels are used for the following step, the clustering [77].

3.2 Straight Fiber Model

The steps described in the previous section all involve processing of the voxel
volume and are therefore bound by the resolution of a voxel. While this rep-
resentation is straightforward and sufficient for a lot of use cases, it does have
several disadvantages in the case of fibers. Fibers are long, thin, stick-like ob-
jects that lie in arbitrary orientations inside an embedding polymer. The reso-
lution of a single voxel must be significantly smaller than the fiber diameter to
be able to see and detect the fibers in a reconstruction. The minimum amount
of pixels to detect a feature in an image is given by the Nyquist-Shannon
sampling theorem [78], which implies that the smallest feature detectable in
a discrete image is sampled by 2 pixels. It is, however, better to have more
data available for a robust detection. A rule of thumb in image processing
is that an object can be effectively detected when its features are spread over
5 pixels. Following that rule of thumb and assuming a glass fiber diameter
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FIGURE 3.3: Cylinder model of a fiber with the parameters
used for describing the fiber indicated. Note that the radius
r is assumed to be constant and does not need to be deter-

mined.

of 14 µm the voxel resolution should be in the order of 2 µm for reliable de-
tection. This also means that with a length of around 400 µm for glass fibers,
200 voxels are needed to get an accurate image of the entire fiber. If the center
line of the fiber is used to represent it as an ”object” in some analysis algo-
rithm, hundreds of coordinates are needed to describe the individual fiber.
With a large number of fibers this can quickly get inefficient. It is therefore
convenient to describe the entire fiber object by a concise set of parameters,
which not only are more compact than chains of voxel coordinates, but also
suffer less from stepping artifacts from the discretization on the lattice grid.

Straight fibers can be conveniently described as cylinders with a very high
aspect ratio. Assuming the radius of the fiber is known, this means a fiber can
be completely described by a center position, a direction vector and a length.
Using spherical coordinates to describe the direction unit vector, this results
in a descriptor based on 6 scalars.

ox, oy, oz, aθ , aϕ, l.

The center of the fiber is represented by ox, oy, oz ∈ R, the orientation by
aθ ∈ [0, 2π) and aϕ ∈ [0, π), and the length by l ∈ R. A visualization of the
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parameters is shown in Figure 3.3.

3.3 Fiber Clustering

In the fiber detection algorithm used here, it is assumed that fibers are straight,
cylinder-like objects of higher density inside the volume. As highlighted in
Subsection 2.3.5, points or small circular objects convert to sinusoidal curves
in the projection space. This gives the set of projection images of a scan the
name sinogram. In the same transformation, a straight line in real space maps
to a point in projection space. This fact can be used to detect line-like struc-
tures inside images.

3.3.1 Hough Transform

A generalization of the Radon transform is the so-called Hough transform,
which was already discussed in Subsection 2.3.5. It describes an integral
along a generalized curve C. ∫

C

f (x)dx. (3.4)

It is required that C is a parameterized curve. It can be described as the set
C = {x(t) : t ∈ Dx}, with x a differentiable, parametric function of t in the
domain Dx ∈ R. After using the substitution dx = ||x′||dt this becomes∫

Dx

f (x(t)) ||x′(t)||dt. (3.5)

Assuming the parameters of C are represented by a parameter vector (a1, a2, . . . , an),
the general Hough transform is given by

f̂ (a1, a2, . . . , an) =
∫

Dx

f (x(t)) ||x′(t)||dt, (a1, a2, . . . , an) ∈H, (3.6)

with H ⊆ Rn the Hough parameter space or accumulator [75].
As fibers can be seen as straight line segments with some thickness, con-

sider the parametric line description introduced in Subsection 2.3.5. A line
can be represented by an angle ϑ and some offset s from the origin. This rep-
resentation is used in the Radon integral, as it gives a convenient description
of the line integrals in real space, coding the projection space as a parameter
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FIGURE 3.4: Lines passing through a common point p. The
point o will have a high value in the Hough accumulator, as
all the integrals of the lines passing through it get added at its
position. This figure is a reproduction of Figure 3.4 from [79]

with slight changes.

space spanned by the angle ϑ and the perpendicular distance of the offset
from the origin. Extending the representation from two to three dimensions,
a line can be represented by a position vector in 3D space, the offset from the
origin, and two angles for the (unit) direction of the line in spherical coordi-
nates.

Consider a point o in space and all lines Ln passing through that point
as shown in Figure 3.4. If all the points on each line would be assigned the
value of the integrals of all lines passing through them, there would be a lo-
cal maximum in that point. The Hough transform operates on this principle.
An accumulator array with the dimensionality of the curve parameter space
is created with some discretization. Each cell in that discretized accumulator
will be assigned the sum of all line integrals passing through them. Thus a
local maximum in the accumulator indicates the presence of the parameter-
ized shape with the parameters being the coordinates of the center of the cell
[79].

A variation of the Hough transform, called the iterative Hough transform
[80] is used in the Parametric Reconstruction (PARE) algorithm. It works on
scattered point data and changes the accumulator parameters. As described
above, such a vector form requires 2 or 3 parameters for the direction vector
(depending on the representation) and 3 parameters for the position vector,
which in the end would require an accumulator of 5 or 6 dimensions. In the
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algorithm used here, the lines are described with 4 parameters [81] in a form
called Robert’s parameterization [82], saving on the number of dimensions
and thus storage and computaional resources. Roberts represents the line
with the parameters x0, y0, ϕ, θ. The line direction vector is represented in
spherical coordinates, (ϕ, θ), omitting the radius r = 1 for the unit vector,
which can be used to calculate the direction vector in Cartesian coordinates

b =

 bx
by
bz

 =

 cos ϕ cos θ
sin ϕ cos θ

sin θ

 . (3.7)

The azimuth θ ∈ [0, 2π) and the elevation angle ϕ ∈ [0, π). The position
b ∈ R3.

The position of the line is defined by an arbitrary point in space, but con-
tains redundant information. Thus, Roberts computes the two coordinates
x0, y0 using the information contained in the direction vector and the offset
vector o = (ox, oy, oz) of the line

x0 =

(
1− b2

x
1 + bz

)
ox −

(
bxby

1 + bz

)
oy − bxoz (3.8)

y0 =

(
bxby

1 + bz

)
ox −

(
1−

b2
y

1 + bz

)
oy − byoz. (3.9)

The angular accuracy of the iterative Hough Transform algorithm is limited
by the sampling of directions and relies on the iterative subdivision of an
icosahedron’s faces into triangles as visualized in Figure 3.5. Each vertex of
the subdivided icosahedron is projected onto the unit sphere to yield the unit
vector of the sampled direction.

The spatial discretization depends on the size of the axis-aligned bound-
ing box (AABB) of the points the transform will be applied to. The AABB is
described by two points omin = (xmin, ymin, zmin) and omax = (xmax, ymax, zmax),
which are the minimum and maximum of the coordinates in the points that
the transform will be applied to. The distance between two samples dsample
is computed as

dsample =

√
(xmax − xmin)2 + (ymax − ymin)2 + (zmax − zmin)2

64
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FIGURE 3.5: Several subdivisions of an icosahedron to pro-
duce uniformly distributed directions on the unitsphere. The
indicated number of unique directions is half the number of
vertices, as the polyhedron is mirrored along the x-y plane
passing through the origin. The initial icosahedron has 12 ver-

tices, giving 6 unique directions.

from the diagonal of the AABB. The number 64 is arbitrarily taken from the
original source code that the authors of [80] provide.

3.3.2 Assigning Fiber Voxels to Clusters

Using the iterative Hough transform [80], the fiber voxels detected as de-
scribed in Section 3.1 can be combined into individual fiber clusters. The it-
erative Hough transform algorithm initially performs a normal Hough trans-
form on the point cloud and determines the parameters of one line using the
single highest peak in the accumulator. In the next step, the algorithm finds
all points in the point cloud that are within a distance of dx to the found line.

With the points close to the line identified, a least squares fit is performed
to yield the parametric description of the line. The points used in this process
are removed from the point cloud. Then this process is repeated until either
all points in the point cloud are removed or there are less than the minimum
amount of points for a line fit left. The minimum amount of points for the
line fit is a user parameter and is set to nmin = 3.

As a trade off between accuracy and speed, 5 subdivision steps are chosen
for this use case. Subdividing the icosahedron 5 times results in 5121 samples
with an average spacing of 2 ◦ [81].
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After detection in the Hough accumulator the lines are described in the
traditional form using a 3D position vector and a vector with spherical coor-
dinates for the direction. As the radius of the fiber is assumed to be constant
and known a priori, the only remaining parameter is the length of the fiber,
which is of course not contained in the line equation.

Due to the fact that the iterative Hough transform deals with point clouds,
an initial estimate of the length can be obtained by the distance of the two
points furthest from the line’s centroid. Naturally, only points used in the
least square fit are considered for this computation. The maxima detected in
the template matching step (see Subsection 3.1.1) can be offset from the true
fiber end by a length in the order of the fiber radius, because the maximum
value of the template matching always lies in the center of the template, here
a Gaussian. The additional thresholding step can move the point by up to a
voxel. Therefore the fiber length is systematically underestimated.

To remedy this, the fiber ends need to be detected. Using Bresenham’s
line algorithm [83] the voxel values along the fiber axis are recorded, with
the line segment symmetrically extending 0.75 times the length of the fiber
on either side of the centroid. The resulting 1-dimensional intensity profile
is then filtered by a median filter [84] to remove high frequency noise while
preserving edges in the signal. Additionally a Gaussian filter [84] is applied
to the signal, as it preserves inflection points in step functions, but effectively
smoothes the signal. The filtered signal is then interpolated using B-Splines
[85, 86], which enables detection of the two inflection points in the signal
representing either end of the fiber. To that end, the locations of the roots in
the second derivative with the highest absolute value in the first derivative
of the spline, are chosen as candidates for being the end points. The two
candidates of either side of the centroid are chosen as the points where the
slope is higher than the threshold

thresh = µpolymer + 0.3(µfiber − µpolymer).

Here µpolymer is the average voxel intensity of the embedding polymer matrix
and µfiber the average voxel intensity of the fibers in the reconstruction. These
values, just as the radius, are assumed to be known beforehand. The precise
value of the attenuation coefficients is not needed. A variation of up to 25%
will change the outcome of the procedure only slightly. The final end point
positions are determined by linearly interpolating the integer coordinates of
the two voxel positions in the Bresenham line, using the fractional part of the
detected coordinate. The new length of the detected fiber is the Euclidean
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distance of the two points determined that way.
An illustration of such a line profile through a fiber and the interpolation

with its derivatives is shown in Figure 3.6.

FIGURE 3.6: Line profile as it could appear in a voxel vol-
ume when sampling along a fiber, shown as a schematic be-
low the profile. The interpolating spline (red) as well as the
first (dashed orange line) and second derivatives (black dash-
dotted line) and the detected end points (triangles facing up
and down) are indicated. This figure is directly taken from
[77], as per the guidelines of SpringerOpen. Figure repro-

duced from [77] under CC 4.0

3.4 Optimization of Straight Fibers

In the previous chapters the algorithms used to obtain fiber models have been
described in detail. One advantage to switch to a model based representation
of a fiber from a voxel based one, is that storing the information about it re-
quires less memory than the voxel based representation. At the same time
it is more accurate, as it does not suffer from discretization effects anymore.
Of course, the model is obtained from a representation that does suffer from
those effects, but it has the potential to have an increased accuracy. A way
to achieve this, is to try and detect the fibers with sub-voxel accuracy. That
is, the fiber detection algorithm determines the location and morphology of
the fiber with an error smaller than the size of one voxel. Using a priori in-
formation about the fibers, or any object of interest that is to be detected, can
result in such an increased accuracy. This is similar to the approach used
in Subsection 3.3.2 to detect the end points of the fibers using spline inter-
polation. The a priori knowledge here is the fact that the material border of
the fiber is, mathematically speaking, a perfect step function, as the material
of the fiber instantly transitions into the material of the embedding polymer
matrix. The location of the edge can therefore be determined by finding the

https://creativecommons.org/licenses/by/4.0/
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inflection point of the interpolating spline, which coincides with the inflec-
tion point of the step function and thus with the true location of the edge.
This method uses the a priori information that the inflection point of a step
function does not change if convolved with a Gaussian and that such a con-
volution can be seen as a simplified model of the point spread function [87]
of the imaging system. The point spread function describes how an imaging
system transforms a perfect point into some distribution, often a Gaussian. It
is often expressed as the so-called optical transfer function, which describes
the distribution in terms of frequency response in Fourier space [88].

Similarly, already obtained information like the projections can be used
as a priori information. The reconstruction is obtained from the projection
images and then the fiber models are detected in the reconstruction. During
the processing steps information is lost. Relating the obtained model back
to the projections using numerical optimization can lead to more accurate
results [89].

3.4.1 Gradient Descent for Fiber Optimization

As described in Section 3.2, an individual fiber is parametrized with its center
point, a direction vector and its length. The optimization of the fiber models
can be described as the solution of the linear equation

Wxv(ξ) = p, (3.10)

where W is the system matrix describing the forward projection operation
(see Equation 2.12). The vectors xv and p are the sample and resulting projec-
tions, respectively. Here the sample is expressed as a function of the parame-
ter vector ξ, which is a collection of the parameters of all N fibers

ox = (ox,1, ox,2, . . . , ox,N)

oy = (oy,1, oy,2, . . . , oy,N)

oz = (oz,1, oz,2, . . . , oz,N)

aθ = (aθ,1, aθ,2, . . . , aθ,N))

aφ = (aφ,1, aφ,2, . . . , aφ,N))

l = (l1, l2, . . . , lN))

ξ = (ox, oy, oz, aθ, aφ, l).
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With this formulation the optimization/minimization problem becomes

ξ̂ = arg min
ξ
||Wxv(ξ)− p||2, (3.11)

which yields a solution vector ξ̂, for which the projection distance (2.32) is
minimal.

This problem is solved by applying gradient descent, which is described
in Subsection 2.4.2. In practical implementation, some numerical properties
of gradient descent and optimization algorithms in general have to be dis-
cussed. With (3.11) we assume that the system is linear, but we do not make
any assumptions about differentiability. In fact, it is not known if the problem
can be formulated as a function that can be differentiated with respect to the
fiber parameters. However, it is assumed that the function behaves approxi-
mately like a differentiable function and that a gradient can be approximated
using a discretization technique called finite differences [90].

Finite differences is a way to approximate gradient information, when
there is none available. If a differentiable function can be approximated by
a Taylor series, its derivative can be approximated using the same series as
well. Take a function f (x) that is at least r times differentiable, where r ≥ 2.
Its Taylor expansion is

f (h) +
f ′(h)

1!
(x− h) +

f ′′(h)
2!

(x− h)2 + ... +
f (r)(h)

r!
(x− h)r, (3.12)

with h ∈ R, some scalar at which the function f is evaluated and f (r) the r′th
order derivative of f . Assuming the series is only continued until order 2, the
equation can be rearranged to give

f (x− h)− f (x)
h

≈ f ′(x) +
1
2

h f ′′(x + ϵh), (3.13)

where 0 ≤ ϵ ≤ 1. This implies that the gradient at a location x ∈ R can
be approximated by subtracting a small scalar h from x and calculating the
difference between the function values. The smaller the difference, the better
the approximation to the real derivative.

An additional source of numerical instability is the fact that the parame-
ters of the fibers have vastly different scales. A length difference of a couple
voxels is relatively small, whereas changing the location of the fiber centroid
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by the same amount can lead to a vastly different fiber model when consid-
ering the resulting projections. To reduce this problem and to be able to use
a single scalar as the finite differences delta δ, the fiber parameters are scaled
into the interval [0, 1].

The initial values ξi of a single fiber become the center of the interval,
0.5, per parameter. The boundaries of the interval, 0 and 1, are given by
ξ ± ∆ i. The values for ∆ i are chosen empirically to be to be 5 voxels for the
position parameters ox,i, oy,i, oz,i, three times the angular spacing in the Hough
accumulator for the direction parameters aθ,i and aφ,i and 10 voxels for the
length li.

The fibers are optimized individually, keeping the remaining fibers in the
population fixed. To that end, the volume xv is pre-initialized by inserting the
N − 1 fixed fibers before starting the optimization. This is done by sampling
the fibers on a regular lattice grid, ”voxelizing” them. The fiber that is opti-
mized can be inserted into this pre-existing volume with each new parame-
ter configuration using the same technique. The projections of this generated
volume are simulated using the ASTRA toolbox [47] and the projection error

RMSE(ξ) =
1
2

√
||p− p′(ξ)||2 (3.14)

of the projections p used for reconstruction and the estimated projections
p′(ξ) = Wxv(ξ) serves as the scalar function to be optimized.

Using the arbitrarily set value δ = 0.2 for the finite differences, the gradi-
ent direction is estimated according to (2.27), the current parameter value is
varied by adding and subtracting δ for each parameter value in the parameter
vector and evaluating (3.14) for the new values.

To only consider estimates ξest that improve the estimates, the contribu-
tion to the approximated gradient is set to 0 if neither new parameter value
yields a lower or equal projection error.

The approximated gradient is thus

∇ = RMSE(ξi + δ)− RMSE(ξi − δ) (3.15)

The new estimate ξnew is computed using (2.28) with the approximated
gradient and a step size of 1.

If the error is lower or equal to the error of the previous estimate, ξnew
is the new parameter vector of the fiber. If it is not lower, the delta value is
decreased to 75% of its current value. This process is repeated for a minimum
of nmin = 18 times and a maximum of nmax = 35 times. The iteration stops
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either at the upper limit of repetitions or if the rate of change of the error,
defined as

ρi = 1− RMSE(ξi)

RMSE(ξi+1)
, (3.16)

is lower than 0.001.

3.5 Simulations and Experiments

To test the method described above, two different fiber samples were simu-
lated. In the following, the process of generating the fiber models and render-
ing the models into a voxel grid is described. Subsequently, the experimental
setup is explained and finally the results of those experiments are shown.

3.5.1 Simulation of GFRP Phantoms

Glass fiber-reinfored materials are made up of some matrix material, usually
a polymer, and the glass fibers themselves. Those glass fibers can be un-
ordered, as well as highly aligned. To simulate a sample of such a material,
the fibers need to be placed in some space in a way they do not intersect. To
that end the random sequential adsorption (RSA) [91] algorithm is employed
here. A pseudo-code version of the algorithm is shown in Algorithm 3.

The algorithm ”adsorbs” shapes by randomly generating them and then
testing if they intersect the already placed shapes. If there is no collision with
any other shape, the shape is appended to the list of generated shapes. Oth-
erwise the shape is moved randomly without changing the other parameters
and the process is repeated at most num_tries times. Shapes are placed until a
pre-defined number of shapes is reached. In cases where no more shapes
can be placed, but where the desired number of shapes has not yet been
reached, the user can provide a maximum number of iterations. The max-
imal amount of shapes that can be adsorbed is called the ”saturation limit”
and varies based on the shape being adsorbed [92].

More complex approaches exist, like the mechanical migration method in-
troduced by Schneider [93] or the random-walk based method by Altendorf
& Jeulin [94], which can increase the packing density over RSA. These ap-
proaches were omitted in this work, as the simulation provided sufficiently
accurate fiber volumes and real data by nature has representative packing
density.
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Algorithm 3 Random Sequential Adsorption

1: procedure RSA(num_tries, num_shapes)
2: shapes← empty_list()
3: while length(shapes) < num_shapes do
4: new_shape← new_random_shape()
5: for i = 0; i < num_tries; i++ do
6: if not collides(s, new_shape) ∀s ∈ shapes then
7: shapes.append(new_shape)
8: break
9: else

10: new_shape.move_random()
11: end if
12: end for
13: end while
14: return shapes
15: end procedure

3.5.2 Testing Collision of Fibers

For the RSA algorithm to properly work for fibers, it needs to be possible to
find out if two fibers collide. A collision of two cylinders, which is the shape
used to represent the fibers, is expensive to compute exactly. Computing if
two lines intersect is not hard [95]. Adding a radius to the lines changes the
computation from requiring an intersection point (or whether the lines inter-
sect) to finding the smallest distance between the lines and finding if their
distance is smaller than their combined radii. Making those tubes cylinders,
adds additional logic to find if they intersect in the body of the cylinder or if
the closing faces on either end do [96]. Especially when thousands of colli-
sion tests need to be performed, as is the case in RSA, some simplifications
need to be made to keep the computation time low.

Using an inexact computation simplifies this problem a lot. If the cylinder
is instead seen as a ”capsule”, i.e. a cylinder with half domes on either end
instead of flat circular ends, the collision equation reduces to computing the
distance between the central line segments of the two cylinders. Let the two
line segments be expressed by two points in space

L1 = (1− s)p0 + sp1

L2 = (1− t)q0 + tq1,
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with the loci s ∈ [0, 1] and t ∈ [0, 1]. The radii of the fibers are rL1 and rL2 ,
respectively. The minimal distance between those lines is given by the con-
nection of two points: one on each of the lines, such that the connecting line
is perpendicular to both lines. The (squared) length of this line segment is
expressed as a function of s and t

R(s, t) = |L1(s)− L2(t)|2 = as2 + 2bst + ct2 + 2ds− 2et + f , (3.17)

with

a = (p1 − p0) · (p1 − p0), b = (p1 − p0) · (q1 − q0)

c = (q1 − q0) · (q1 − q0), d = (p1 − p0) · (p0 − q0)

e = (q1 − q0) · (p0 − q0), f = (p0 − q0) · (p0 − q0)

The two fibers intersect if the distance R(s, t) ≤ rL1 + rL2 , so minimizing
R(s, t) will yield the desired solution. Equation 3.17 can be rewritten as the
quadratic function

R(s, t) = sTMs + 2KTs + f , (3.18)

with

K =

[
d
−e

]
M =

[
a −b
−b c

]
s =

[
s
t

]
.

The minimum of R is at a point where the gradient is 0

∇R = 2Ms + 2K = 0. (3.19)

The loci at which the minimum is reached are computed as

s = −M−1K =
1

ac− b2

[
be− cd
ae− bd

]
. (3.20)

The numerical implementation of this solution is described in detail in
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FIGURE 3.7: Schematic of two capsules and the geometrical
features needed to compute if they intersect or not. Shown in
dashed lines are the contours of the cylinders and their half
dome end caps. The thick black line represents the center line
of the cylinder. Shown in red is the shortest connection be-

tween those center lines.

[97]. Figure 3.7 shows the important geometrical features needed for com-
puting the intersection of the capsules.

3.5.3 Voxelization of Fiber Models on a Cubic Lattice

The above description of the optimization of fiber parameters has the prereq-
uisite for a function to exist, that produces projections from the fiber models.
In this context such a function can exist, but it is hard to find. The solution
employed here is the rendering of the fiber model onto a voxel lattice grid
that corresponds to the lattice grid of the reconstruction, such that the projec-
tions of this rendered lattice matches up with the projections that produced
this reconstruction. This of course requires the geometry to match as well.



50 Chapter 3. Parametric Reconstruction of Straight Fibers

It is assumed that the geometry is known completely, as it is also a require-
ment for a successful algebraic reconstruction (see Subsection 2.4.2). The fiber
model is translated to voxels by testing per voxel, whether or not this partic-
ular voxel is located inside the cylinder c describing the fiber

c(x, y, z) =

{
µfiber if y2 + z2 ≤ r2

fiber and |x| ≤ lfiber
2

µpolymer otherwise
. (3.21)

The fiber cylinder is first transformed in such a way that the x-axis aligns
with the main axis of the cylinder. Then the above function is sampled at in-
teger voxel positions within the voxel grid and the pixel values set to the cor-
responding result, either µfiber or µpolymer. To achieve smooth transitions be-
tween fiber material and polymer material, the voxels located inside the fiber
are sub-sampled n times, resulting in n3 samples per voxel. The correspond-
ing voxel is set to the average value of the subsamples obtained that way.
If a voxel is already set to a non-background value, it is not set to µpolymer,
but to the maximum of the existing and the newly computed value, to avoid
partially erasing already placed fibers.

3.5.4 Experiments

The shown PARE algorithm was verified by extracting the fibers from sev-
eral simulated volumes. To that end, the previously described voxelization
procedure was used to render fibers with varying parameters into a volume
of fixed size. The straight fibers were assigned random orientations drawn
from a Van Mises - Fisher distribution (VMF) distribution

fp,VMF(x; µVMF, κ) = CF exp(µVMF
Tx), (3.22)

where
CF = κ/(4π sinh κ), (3.23)

where the vector µVMF = (α, β) denotes the mean direction of the distribu-
tion and κ the concentration parameter, where a large value of κ corresponds
to a lower variance, i.e. a higher concentration around the mean direction
[98]. This is also illustrated in Figure 3.8. The fiber center positions are also
randomized in a box smaller than the target volume, so that the fibers do not
protrude out of the volume boundaries.

Two distinct phantoms with 1003 voxels were generated. The target for
the RSA algorithm was 150 fibers. Due to the random tries for placing the
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FIGURE 3.8: Illustration of three expressions of VMF distribu-
tions shown on the unit sphere as point samples.

fibers, not all of the fibers will be placed. Depending on the parameters for
the fiber distribution, the adsorbed volume will ultimately contain a varying
number of fibers. After processing, phantom A contained 109 fibers drawn
as described from a VMF distribution with µVMF = (π

2 , 0) and κ = 40. The
fibers for phantom B were drawn from a VMF distribution with µVMF = (0, 0)
and κ = 7. It contained only 72 fibers after RSA was finished because of the
greater variance in the distribution. The intensities for both the fibers and
the background polymer matrix were manually estimated from an existing
real tomogram of a GFRP sample. The fiber attenuation was estimated to
be µfibers = 0.76± 0.05 and the polymer attenuation to be µpolymer = 0.23±
0.07. The mean values of those estimated attenuation values was taken for
the simulated phantoms prior to adding noise. Phantom B is shown in Figure
3.9A together with a central slice of phantom A (Figure 3.9B) and the same
central slice of a reconstruction of phantom A (Figure 3.9C).

From those phantoms, forward projection images were created using a
simulated cone-beam geometry in the ASTRA toolbox, as that is the most
commonly used geometry in industrial and desktop X-ray scanners. The
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(A) Ground truth of the
synthetic phantom B with

72 individual fibers.

(B) Central slice of phan-
tom A with 109 individual
fibers of varying position,

direction and length.

(C) Central slice of the re-
construction of the phan-
tom shown in (b) from 100

simulated projections.

FIGURE 3.9: Full rendering and the central slices of the gen-
erated phantoms and the reconstruction after adding noise.

Figure reproduced from [77] under CC 4.0.

phantom was placed in the origin of the system. The source-detector dis-
tance (SDD) was 250 mm and the source object distance (SOD) was 14 mm.
The simulated detector had square pixels with a size of 50 µm. This yielded
an effective (isotropic) detector pixel size of 2.8 µm in the reconstructions,
with a magnification of around 17.86 in the center plane of the phantom. In
Figure 3.9b and Figure 3.9c the central slice along the yz-plane of phantom A
and the same slice of a reconstruction of said phantom from simulated pro-
jections are shown.

Using the generated data, the performance of the PARE method was eval-
uated as a function of both the number of projection angles available and the
SNR. In all cases 100 SIRT iterations were used as the base line for the re-
constructions of the two generated phantoms. The first experiment was per-
formed with additive, Gaussian distributed white noise, which was added to
the projection data before the reconstruction. The detection and subsequent
optimization was repeated for each noise level σ, as indicated in Table 3.1.

3.5.5 Finding fiber pairs between two sets

The simulation experiments enable the comparison of the fiber estimation
quality compared to the ground truth of the fibers in the phantom. To be able
to compare the fibers properly, a mapping between a set of detected and/or
optimized fibers and the ground truth set needs to be found. Regarding each

https://creativecommons.org/licenses/by/4.0/
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σ SNRA SNRB

0.5 17.06 dB 16.88 dB
1.0 14.05 dB 13.87 dB
2.0 11.04 dB 10.86 dB
3.0 9.27 dB 9.10 dB
4.0 8.03 dB 7.85 dB
5.0 7.06 dB 6.88 dB

TABLE 3.1: SNR for the noise levels used in our experiments
for both phantoms. Table reproduced from [77] under CC 4.0.

fiber in either set as a vector in a parameter space, the fiber parameter vec-
tors corresponding to each other between the two sets are the ones closest to
each other in Euclidean space. Mathematically, the one-to-one mapping per-
formed can be described as follows. Let the sets of fiber parameter vectors be
Fgt and Fest the ground truth and estimated parameters, respectively. The set
Fgt is the set of all reference fiber parameters an. The mapping from one set
to the other is iteratively defined as

fan = arg min
b∈Fest\{ fa1 ,..., fan−1}

||an − b||2. (3.24)

The first link
fa1 = arg min

b∈Fest
||a1 − b||2. (3.25)

This implies that the mapping depends on the order of processing if two
or more fiber parameter vectors from one set have the same distance to one
single fiber parameter vector in the other set. This case is assumed to be
unlikely, and even if it occurs, the error value will presumably be the same
for all of them, so the order is not important. If there were less or more fibers
detected than are in the ground truth, only the parameter vectors that fit best
are mapped and the rest is discard as not detected. The comparison is only
done for the parameters of detected fibers that have a partner in the ground
truth set.

3.5.6 Performance in presence of noise

In Figures 3.11, 3.12 and 3.10 the length, direction and position errors are
shown in function of the standard deviation σ of additive noise we added to

https://creativecommons.org/licenses/by/4.0/
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the projection data. As expected, the errors increase with increasing σ. The
length estimates are barely changing for the lower noise levels σ = 0.5 and
σ = 1.0 and are in the same range as the errors for 100 projections in the
previous tests. This is also expected, as we used 100 projections consistently
for this experiment. The SNR for the different noise levels and phantoms are
laid out in table 3.1. The SNR value is computed with the following equation

SNR = 10 log
(

µsignal

σnoise

)
, (3.26)

where µsignal is the mean of the measured intensity of the projections and
σnoise the corresponding noise level.

The length and the centroid estimates seem to be more affected by the
noisy projections than the direction estimates. In the case of the highest noise
level, the length estimate is 2 voxels too large in the upper quartile for phan-
tom A and around 1 voxel for phantom B.

This is most likely due to the way voxels change in the simulated projec-
tions of the model. When varying the direction vector, more voxels change
their value compared to when the length or centroid position is changed.
This in turn means that the optimization is more sensitive to small changes
in direction, especially when the fibers are very long.

3.5.7 Performance varying the number of projections

In Figures 3.13,3.14 and 3.15 the quality of the estimation with PARE in func-
tion of the number of projections is shown. In all figures there are two box
plots for each projection, where the black boxplot refers to results for phan-
tom A and the orange one corresponds to phantom B. It can clearly be seen
that the algorithm can retrieve the individual fiber centroids with around
±0.5 voxel accuracy in the upper and lower quartiles, even with as low as 30
projections for both phantoms.

It can be observed in Fig. 3.15 that the errors in the coordinate direction
that corresponds to the mean axis of the direction distribution are higher.
While the direction estimation is not affected by this, the length estimation
and centroid estimation are correlated. The length estimation can retrieve the
fiber length up to ±1 voxels for 30 projections. The direction vector can be
approximated to about 0.6 ◦ for the upper quartile.

This error naturally decreases with an increasing number of projections,
as there is more information available for computing the projection error
making the procedure more sensitive to small parameter changes.
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FIGURE 3.10: Centroid position error for for several noise lev-
els on both phantoms A and B on the estimated centroid po-
sition of the fiber. Outliers were capped at ±4 voxels, but are
still shown outside the horizontal dotted lines. Figure repro-

duced from [77] under CC 4.0.

https://creativecommons.org/licenses/by/4.0/
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FIGURE 3.11: Length error for several noise levels on phan-
toms A and B with respect to the estimated fiber length. Out-
liers were capped at ±6 voxels, but are still shown outside
the horizontal dotted lines. Figure reproduced from [77] un-

der CC 4.0.

With 100 projections, the error for the centroid position is as low as ±0.3 vox-
els which is around the accuracy of the sub-sampling we do for the voxeliza-
tion of the fibers in the phantoms. The direction can be estimated to around
0.4 ◦ for phantom A and 0.25 ◦ for phantom B. Lengths are estimated between
0.2 and 0.7 voxels for phantom A and between 0.9 and 1.8 voxels for phantom
B.

3.6 Discussion

The PARE algorithm demonstrates the use of a parametric fiber model. The
parameters of that model are estimated directly using the available projection
domain, thereby largely avoiding reconstruction artifacts that may otherwise
influence the fiber position and direction estimation. As a result, the param-
eter estimation is robust even for a very small number of projections. Most
algorithms trying to estimate fiber parameters use several thousands of pro-
jection images to compute quantities on their fiber specimen [68, 71, 73].

However, PARE is limited by a couple of factors. The rigid cylinder model
is adequate for fibers that are not bent, which is a reasonable assumption in
GFRPs that have moderate aspect ratios. In case of high aspect ratio fibers,
the model would need to be extended to allow bending. Altendorf and Jeulin

https://creativecommons.org/licenses/by/4.0/
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FIGURE 3.12: Direction error for for several noise levels on
phantoms A and B with respect to the estimated direction vec-
tor. Outliers were capped at 1 ◦, but are still shown outside
the horizontal dotted lines. Figure reproduced from [77] un-

der CC 4.0.

proposed an approach to model fibers as short fiber segments on a chain and
generated random fiber networks from it using a random walk approach [94].
A similar model of cylinders chained together for example, could be used to
represent the fibers in our approach, but would require heavy modification
of the Hough transform or a different approach for the clustering of detected
fiber center lines altogether. As the Hough transform can be defined for an
arbitrary parameterized curve [79], the model could be transformed to ap-
proximate weaving in carbon fibers for example. This would of course in-
crease the number of parameters in the Hough accumulator exponentially
and therefore might not be practical for very complicated fiber systems. The
sampling of the fiber direction already poses problems in the case of very
short fibers, which can be detected with a high deviation from their true di-
rection. In the following chapters further techniques will be introduced that
address some of these shortcomings and extend the model to curved fibers.
The optimization algorithm is also going to change to accommodate the new
model.

https://creativecommons.org/licenses/by/4.0/
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FIGURE 3.13: Length error for varying number of projections
on phantoms A and B with respect to the estimated fiber
length.Outliers were capped at ±6 voxels, but are still shown
outside the horizontal dotted lines. Figure reproduced from

[77] under CC 4.0.

FIGURE 3.14: Direction error for varying number of projec-
tions on phantoms A and B with respect to the estimated di-
rection vector.Outliers were capped at 2 ◦, but are still shown
outside the horizontal dotted lines. Figure reproduced from

[77] under CC 4.0.

https://creativecommons.org/licenses/by/4.0/
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FIGURE 3.15: Centroid position error for varying number of
projections on both phantoms A and B on the estimated cen-
troid position of the fiber. Outliers were capped at ±2 voxels,
but are still shown outside the horizontal dotted lines. Figure

reproduced from [77] under CC 4.0.
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Chapter 4

Parametric Reconstruction of
Curved Fibers

The PARE method presented in the previous chapter shows clearly that it is
possible to increase the fiber detection accuracy of single fiber detection meth-
ods by optimizing the fiber model based on the projection data. The method
served as a proof of concept, but was not applied to any real data. The main
reason here is that the model does not accommodate the morphology of real
fibers.

FIGURE 4.1: Example of a GFRP tomograph showing straight
fibers in various orientations. The dataset was acquired us-
ing a ZEISS Xradia 520 Versa [99] and shows a sample from
a glass fiber-reinforced crimp fabric. These materials help in-

creasing strength in wind turbine blades.
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Even straight fibers, like the one shown in Figure 4.1 have small devi-
ations from the perfect straightness. For the straight fibers, optimization
should be possible. However, the more the fibers become curved, the more
this curvature needs to be modeled to enable optimization. In the following
sections the work towards a new framework curved Parametric Reconstruc-
tion (cuPARE) is laid out.

4.1 Introduction

Many GFRP analysis methods focus on a specific feature of the fiber-reinforced
composite, such as the orientation or length distribution of the fibers. Zauner
et al. [73] use a template matching and binary thinning to extract fiber cen-
ter lines and modeling the fibers in composites from them. On fiber bundle
level, Bhattacharya et al. [100] introduced MetaTracts, a tractography ap-
proach based on Hessian analysis and hierarchical clustering. Emerson et al.
[101] apply semi-automatic dictionary learning (InsegtFibre) for the segmen-
tation of fiber voxels from uni-directional GFRP samples and detect their cen-
ters per slice, stacking the resulting points on top of each other, subsequently
clustering into individual fiber traces. While tracking individual fibers re-
quires higher resolution than methods that extract parameter distributions, it
provides the opportunity to extract various statistical measures without hav-
ing to re-analyse the tomograms.

A compact parametric description of the fibers contained in a GFRP sam-
ple is therefore convenient. Indeed, parametric models are easier to manipu-
late than a list of coordinates describing the center line and take significantly
less memory to store than the voxel grids. Several ways of describing fibers
as parametric curves in 3D space have been proposed. Adluru et al. [102]
use cosine series to represent and match long fiber traces from magnetic reso-
nance imaging tractography data and Lemkaddem et al. [103] employ splines
for a similar purpose. Zhao et al. [104] represent single fibers in yarn plies
with circular helices. The stress analysis following the extraction of the fibers
is often carried out using either finite element analysis [23] as a general pur-
pose approach or mathematical models tailored to the application [105], for
which a parametric representation could be used.

Parametric Reconstruction (PARE) is a theoretical framework for estimat-
ing such parametric representations of individual straight fibers from tomo-
graphic reconstructions of GFRP samples and optimizing their orientation,
location and length based on the projections used for the reconstruction [77].
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FIGURE 4.2: Image processing steps to convert a GFRP re-
construction to a fiber model. Figure reproduced from [106]

under CC 4.0.

It offers a convenient way to improve upon fiber traces by optimizing directly
in projection space. That is, PARE allows to retrieve fiber parameters even if
only few projections are available. The validity of the PARE framework has
been shown on simulated data. Unfortunately, it has only been developed for
perfectly straight fibers, and has not yet been demonstrated on real data.

In this work, a new framework called curved Parametric Reconstruction
(cuPARE) is proposed. cuPARE extends the fiber model to curved fibers and
estimates the parameters of that model within an automatic processing pipeline
from reconstructions from only a few projections. The individual steps of the
framework are visualized in Figure 4.2 and explained in more detail in the
following sections.

4.2 Curved Fiber Model

A first step towards making curved fibers detectable and optimizable, is to
extend the fiber model to include more parameters. In PARE the fiber is rep-
resented by a centroid in cartesian coordinates, the direction vector relative
to that centroid in spherical coordinates, and a length. With these 6 scalars it
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is possible to describe any straight fiber. However, adding curvature to this
model is not straight forward. One solution might be to add an offset vector
perpendicular to the fiber orientation vector and displace the centroid, but
not to displace the ends. This would add 2 more scalars, if using spherical
coordinates. But what if the fiber forms an S-curve? The addition of further
deviations in the fiber shape will make this style of model more and more
complicated and less and less flexible.

The simplest way is to take the data as is and represent a single fiber by a
radius and a collection of point coordinates that make up the center line. This
model is very flexible as each individual point can be moved. However, the
flexibility comes at the cost of cumbersome manipulation.

4.2.1 Arc-length Parameterization

A more extensible solution is the introduction of a parametric curve, repre-
sented by a function of the form f : R→ R3, mapping some scalar indicating
the position along the curve to a coordinate in 3D space. The modeling would
then require finding the parameters of an appropriate function f to represent
a single fiber. This kind of representation is called ”arc-length parameteri-
zation” because the scalar parameter of the function describes the position
or locus along some curve. Normalizing the parameter by the length of the
curve leads to the scalar always lying in the interval [0, 1], which can have
advantageous effects in the optimization that will follow later. A single step
size along the gradient direction can provide different sized steps in parame-
ter values, which can lead to a higher number of iterations being required to
get the optimization to converge [42].

Of course, there already exist several different representations for curves
in space, two of which subsequently will be explained and investigated with
regards to their suitability to the presented problem. Approaches not using
arc-length parameterization, like splines, which fit functions piece-wise be-
tween the given samples, also have been used. Splines will not be considered
in this thesis, as they usually require more parameters and are not as easily
manipulated, which will be necessary for the optimization procedure.

4.2.2 Cosine Series Representation

Cosine Series Representation (CSR) is a arc-length parameterization method
that uses coefficients of a cosine series expansion to represent curves. They
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were introduced by Adluru et al.[102] to represent white matter fiber bun-
dles for Diffusion Tensor Imaging [107], a technique which is part of Mag-
netic Resonance Imaging (MRI). A more detailed overview of this technique
follows in Subsection 4.4.1.

Given a set of coordinates ζ = (ζx, ζy, ζz) that lie on some curve to be
found, this method estimates a least square fit to those points using a cosine
series via Fourier coefficients in a search space

Hk =

{
k

∑
l=0

clψl(t) : cl ∈ R

}
⊂ L2[0, 1], (4.1)

which spans up to the k-th degree eigenfunctions ψ0, ψ1, . . . , ψk. The eigen-
functions are Fourier cosine basis functions

ψl(t) =
√

2 cos(lπt). (4.2)

The k first functions (ordered by their eigenvalues λl = l2π2) form the ortho-
normal basis of the entire space of square integrable functions L2[0, 1]. This
way the least squares solution for a curve fitting the given points only needs
to consider the most important basis functions of that subspace. Thus, the
solution for the estimated curve is given by

ĝ = arg min
f∈Hk
|| f − ζ||2, (4.3)

where the norm is defined as

||ψ|| = ⟨ψ, ψ⟩1/2.

This solution can be represented as the k-th order series expansion

ĝ =
k

∑
j=0
⟨ζ, ψj⟩ψj. (4.4)

This minimizes the distance between all points along the curve, represented
by the locus u, and some function f . The coefficients of the representation are
the weights for each of the basis functions, which together form this function
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f . As a function of the normalized arc-length the curve becomes

g(u) =
k

∑
j=0

axj

ayj

azj

ψj(u), (4.5)

where the coefficients a(x,y,z)j
can be directly estimated in a matrix expression.

The matrix has the size k× 3
This representation is able to adequately model the morphology of very

complex traces of white matter in the brain and can easily be scaled in the
degrees of freedom by changing the maximum degree of the eigenfunctions.

4.2.3 Polynomial Representation

Similarly, polynomials can be used for the representation of curves. By using
one polynomial of degree k per coordinate direction gx, gy, gz that described
the projection of the curve onto the xy, zy and xz plane. Exactly like with the
CSR, they form a vector equation that yields the coordinates ζ of the curve as
a function of the (normalized) location u.

g(u) =

gx(u)
gy(u)
gz(u)

 =

∑k
j=0 axj u

j

∑k
j=0 ayj u

j

∑k
j=0 azj u

j

 . (4.6)

The parameters of the polynomial can be estimated in a least squares
sense from a set of given coordinates by minimizing the error just like in
Equation 4.3, where the function f is a polynomial of degree k. However, the
higher the degree of the polynomial, the higher the likelihood of the curve
fit being inadequate. This is caused by a phenomenon called ”Runge’s phe-
nomenon”, which describes the behavior of the polynomial at the ends of the
provided curve points, given that they are equidistant. The higher degree
polynomials tend to deviate very quickly from the estimated curve outside
of the domain of the provided points [108]. To test which of the models is
best suited to be used as fiber center line representation, the quality of fit was
investigated.

4.2.4 Parameter estimation with polynomials and CSR

To investigate the quality of fit, a dataset of estimated fiber center lines was
used. The center lines were detected in the dataset shown in Figure 4.1 using



4.2. Curved Fiber Model 67

FIGURE 4.3: Segmentation Graphical User Interface (GUI) of
InsegtFibre with an example region loaded and partially an-
notated. Marked in cyan, the background is shown, the fore-

ground is annotated in pink.

the InsegtFibre framework [101].

InsegtFibre is a software toolbox to extract fiber voxels from reconstruc-
tions using a supervised dictionary learning method and provides function-
ality to track individual fibers through time sequences of reconstructions. The
fiber voxel extraction takes a user input in form of in-painting of regions of
the image representing the background and foreground, i.e. the fibers. The
input informs the dictionary learning procedure and the tool shows a sugges-
tion of segmented fiber voxels. The more in-painted regions are provided, the
more accurate the segmentation of the fiber voxels. Figure 4.3 shows the in-
terface of InsegtFibre with some fibers segmented out by hand on the left,
and a proposed segmentation on the right. The dataset used is the same as in
Figure 4.1.

Both types of representation were then fitted to the fiber traces obtained
with InsegtFibre, shown in Figure 4.4, with varying degrees of freedom k. The
quality of fit was then evaluated by calculating the average distance measure

da,b,min =
1
m

m

∑
j=1

distmin(ζa,j, ζb), (4.7)
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FIGURE 4.4: Fiber traces acquired using InsegtFibre from the
slices of the reconstruction shown in Figure 4.1.

where distmin(ζa,j, ζb) is the minimum distance between a sample point ζa,j
from m sample points and a curve ζb given by line segments, connecting all
available samples for the curve. This measure will be referred to as dminavg,
subsequently. Similarly, replacing distmin by distmax, the maximum distance
was used to estimate the maximum deviation from the curve. It is referred
to as dmaxavg in the following. These distance measures, as well as others,
were introduced in [109]. The interpolated fiber center lines were treated as
fibers with a constant radius of 5 voxels and imported into the FIAKER tool
to evaluate the quality of fit of the estimated curves to the reference dataset.

FIAKER [109] is a visualization tool developed for the analysis of fiber char-
acterization algorithms. It is used in this context for evaluating quality of fit,
but was also used in the remainder of the work with cuPARE for the inves-
tigation of mistakes in the representation of individual fibers. The provides
feedback on a fiber population level as well as on an individual fiber basis
and allows to simultaneously visualize several datasets as progressions in an
algorithm, for example.

The dminavg and dmaxavg measures were calculated for each fiber in each
dataset using FIAKER, with the unaltered InsegtFibre traces as a ground truth
reference [110]. The measures were calculated in units of voxels.
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FIGURE 4.5: Minimum average distance (dminavg) from the
ground truth of the curves estimated from the dataset shown
in Figure 4.4 using polynomials and CSR as a function of the
degrees of freedom k. Note that the y-axis is different for k =
1, to make the plots with lower errors more visible for k > 1.

In Figure 4.5 the minimum average distance dminavg between the Insegt-
Fibre fiber traces and the CSR and polynomial interpolation is shown in func-
tion of the number of degrees of freedom k. The distances for k=1 are the
highest, falling off exponentially with increasing k. The straight fibers ex-
hibit small local deviations from the perfectly straight line, making curves
with higher degrees of freedom fit better to the data. Both methods, CSR and
polynomials, behave very similarly.

This changes, however, when looking at the dmaxavg measure in Fig-
ure 4.6. Here the polynomials fit to the data closer than the curves inter-
polated with CSR.

For the shown data the curvature is minimal, so the usefulness regard-
ing interpolation of strongly curved fibers is limited. To simulate curved
fibers, the given traces obtained with InsegtFibre were rotated based on their
z-coordinate, such that the fibers were twisted into a helix shape. The re-
sulting fiber traces were then interpolated as before using both polynomials
and CSR. The resulting datasets are shown superimposed on each other in
Figure 4.7 as visualized in FIAKER.

The same measures are shown as boxplots in Figures 4.8 and 4.9. It is
clear that the added curvature significantly increases the distance of the in-
terpolated curves from the ground truth data and that a linear model is even
less suitable for those fibers, indicated by the significant difference in distance



70 Chapter 4. Parametric Reconstruction of Curved Fibers

k=1 k=1
k

0

2

4

6

8

10

dm
ax
av
g

k=2 k=2 k=3 k=3 k=4 k=4 k=5 k=5
k

0

1

2

3

4

5

6

7

8

dm
ax
av
g

csr
poly

FIGURE 4.6: Maximum average distance (dmaxavg) from the
ground truth of the curves estimated from the dataset shown
in Figure 4.4 using polynomials and CSR as a function of the
degrees of freedom k. Note that the y-axis is different for k =
1, to make the plots with lower errors more visible for k > 1.

FIGURE 4.7: Screenshot of the twisted fibers produced from
the straight fibers in Figure 4.4. in the FIAKER visualization
and analysis tool. Shown on the left are the source dataset
(gt) as well as datasets of estimated curves using CSR and

polynomials with different values for k.
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between the data with k = 1 and the rest. Like in the previous experiment,
the cosine series representation has a similar lower bound as the polynomial
representation, however with k > 2 the polynomials fit much closer to the
ground truth data.
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FIGURE 4.8: Minimum average distance (dminavg) of the
curved fibers from Figure 4.7 to their interpolated counter-
parts as a function of the degrees of freedom k. Note that the
y-axis is different for k = 1, to make the plots with lower er-

rors more visible for k > 1.

Because of these results, the choice was made to use polynomials to repre-
sent the fibers in the model based optimization. Using the polynomial model,
a fiber can be fully described by listing all coefficient values

ξ j =

a(j)
x0 , a(j)

x1 , . . . , a(j)
xk

a(j)
y0 , a(j)

y1 , . . . , a(j)
yk

a(j)
z0 , a(j)

z1 , . . . , a(j)
zk

 (4.8)

and the radius.

4.3 Fiber Detection

The detection of curved fibers works similarly to the procedure described
in Section 3.1. After an initial reconstruction, the non-fiber voxels are sup-
pressed using the H-Dome transform [111] on the initial reconstruction x.
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FIGURE 4.9: Maximum average distance (dmaxavg) of the
curved fibers from Figure 4.7 to their interpolated counter-
parts as a function of the degrees of freedom k. Note that the
y-axis is different for k = 1, to make the plots with lower er-

rors more visible for k > 1.

The H-Dome transform is a morphological operation based on grayscale re-
construction that accentuates local maxima by removing low brightness areas
lower than a predefined threshold h ∈ R. Using a seed image, in this case the
original reconstruction with the constant value h subtracted, a gray scale re-
construction is performed, yielding an image with local structures lower than
the h suppressed. The parameter h depends on the local contrast and is cho-
sen empirically per data set

The image with the suppressed background is then matched with a spher-
ical template. This is a change from PARE, where the template was a Gaus-
sian with the assumption that the reconstruction could be blurry and thus
a blurry sphere would work well. In further testing it became clear that a
solid sphere also works well on blurry fibers, but the reverse is not necessar-
ily true. Therefore, a spherical template was chosen. The sphere was givena
radius equal to the average fiber radius in the reconstruction. As in the pre-
vious chapter, the fiber radius is assumed to be known a priori. In practice,
fiber radii vary slightly, but detection works well with an average value.

The local maxima in the template matching image indicate the fiber cen-
ter line, which can be extracted using thresholding. The threshold is set to
a value of 66% of the maximum intensity in the reconstruction by default,



4.3. Fiber Detection 73

but can be adapted to the reconstruction if needed. The threshold was de-
termined empirically by computing a histogram and selecting a value close
to the intensity peak, such that most of the lower intensities would be seg-
mented out.

The fiber center lines are extracted from the resulting binary image by bi-
nary thinning. During this thinning the fiber center line can develop branches
or loops, which is caused by intensity inhomogeneities in the reconstruction.
To remedy this, a binary closing operation is applied to the binary image prior
to the thinning operation to close any holes that might exist in the fibers. Any
branching that still remains is removed by removing any non-zero voxel with
3 or more non-zero neighbors. The locations at those voxels are then traced
to acquire the trajectories of the fibers.

4.3.1 Binary Thinning

Binary thinning is a so-called morphological operation [112]. Morphological
operations are applied to binary images, e.g. images that are divided into a
fore- and background, and change the morphology of the foreground. Dur-
ing the thinning algorithm, pixels are removed from the foreground based on
the Euler characteristic of the connected components contained in the image.
The Euler-characteristic of a (not necessarily convex) polygon with v vertices,
e edges and f convex faces can be calculated with the Euler-Poincaré formula
[75]

χ(X) = v− e + f . (4.9)

A convex polytope Xc always fulfills v = e and f = 1, so χ(Xc) = 1. A non-
convex polytope will be first divided into convex sub-shapes and all vertices,
edges and faces are counted separately and are then added. If a polytope has
holes in it, χ <= 0. Polytopes with the same topology, e.g. a donut and a cup,
always have the same Euler characteristic. On a voxel grid all shapes can be
defined as polytopes. Adding or removing a pixel that belongs to a connected
component can alter its Euler-characteristic. Voxel configurations in a 2× 2×
2 grid can be defined based on a chosen adjacency system that define vertices,
edges and faces of the polytope defined by the non-zero voxels in a volume.
Simply counting all occurrences of each of those configurations and adding
their contribution in (4.9) yields the Euler characteristic for each connected
component or the whole volume [12].

The thinning algorithm checks pixel configurations that do not alter the
connectivity of connected components. The pixels that are part of these con-
figurations can safely be removed without altering the Euler-characteristic.
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(a) (b)

FIGURE 4.10: Binary object (a), with the black pixels indicat-
ing non-zero values, and its skeleton (b) computed using the

thinning algorithm described in Subsection 4.3.1.

The algorithm iterates over the image until no more pixels can be removed
from the image without changing the Euler characteristic. What is left is
called the ”skeleton” of the image. An example of skeletonization in the 2D
case is shown in Figure 4.10.

In application to fibers, this means that the fiber voxels can be segmented
and the medial axis of the connected components can be extracted in that
way [72] as described above. The implementation [113] in the Insight Toolkit
(ITK) [114] is used for computing the skeleton in this work.

4.4 Fiber Tracing

Working with curved fibers brings with it additional requirements when ex-
tracting individual fibers from a reconstruction. The fiber voxel extraction
described in the previous section is only slightly adapted in this method com-
pared to PARE, but the resulting voxel coordinates do not form straight lines
anymore. This means the Hough transform would have to be adapted to
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accommodate more parameters, while being limited by the sampling in the
Hough accumulator space.

Such an increased parameter space would require several additional di-
mensions, rapidly increasing the storage space required, due to a phenomenon
dubbed ”the curse of dimensionality” [115]. It refers to the effect that if the
dimensionality of a space increases, the volume of the space grows exponen-
tially at a rate that makes most realistically possible sampling methods in a
Hough parameter space sparse. This in turn significantly reduces the best
possible accuracy that can be achieved with such a discrete space. A more
flexible option is to ”follow” the fiber center lines algorithmically, recording
the visited voxels and chaining them together to a single fiber cluster. Such
algorithms have been developed to map brain connectivity from diffusion
Magnetic Resonance Images and are commonly referred to ”tractography”
algorithms.

4.4.1 Tractography

Tractography is a term for techniques that visualize the connectivity of nerves
in the brain using local direction information. The direction information is
derived from the diffusion tensor, that is obtained using diffusion-weighted
Magnetic Resonance Imaging [107]. Diffusion MRI measures the magnetic
resonance of molecules, enabled by the nuclear magnetic resonance (NMR)
phenomenon [116]. The nuclei of atoms absorb electromagnetic radiation and
subsequently re-emit radiation themselves - the response - when a static mag-
netic field is perturbed by an oscillating magnetic field. The frequency of that
oscillation determines the kind of response and needs to be adjusted to the
nuclei that are measured. Because human (and animal) tissue is filled with
water, a useful nucleus to adjust to is hydrogen. Water is constantly moving
in a process called Brownian motion. The molecules flow towards areas with
lesser concentration of water and away from areas with high concentration.
This movement is called diffusion. Inside the white matter fibers of the brain
the diffusion is restricted by the geometry of the fibers. The flow rate is conse-
quently highest along the direction of a white matter fiber bundle and lowest
perpendicular to it. In a standard MRI, the response of the molecules is mea-
sured using multiple radio frequency pulses, called the spin echo sequence[117]
and then interpreted. If the measurement is repeated after a small time inter-
val, the so called diffusion time, and combined with a change in the static
magnetic field, the movement of the water molecules cause the response to
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FIGURE 4.11: Tractography of a brain using a pub-
licly available dataset from http://www.sci.utah.edu/~gk/
DTI-data/. Visualization by Thomas Schultz, CC BY-SA 3.0,

taken from wikipedia on 09.09.2022.

differ slightly between those evaluations [118]. From those differences the
direction of the diffusion can be calculated.

With this direction information, the white matter fibers can be visualized.
A simple approach is to send an imaginary particle from a random spot and
let it ”walk” with a constant speed, always following the diffusion tensor’s
main direction. Recording each location this particle ”visits” results in a path
that follows the fiber structures in the brain. Repeating this with multiple
particles results in images like the one shown in Figure 4.11.

Fiber Assignment by Continuous Tracking (FACT) [119] is an algorithm
that generates traces from the diffusion tensor in exactly that way. The diffu-
sion directions are given by the Eigenvectors νλi of the tensor. The relations
between the Eigenvalues λ1, λ2 and λ3 corresponding to each of those Eigen-
vectors indicate the ”shape” of the diffusion. For example if λ1 ≈ λ2 ≈ λ3,
the diffusion is isotropic. Anisotropic diffusion along a cylindrical structure
could be indicated by λ1 >> λ2 ≈ λ3, where the major direction is approxi-
mately aligned with λ1.

The fiber traces are generated by starting at a random voxel in the MR
image and moving a subvoxel-sized step into the direction indicated by the
major axis of the diffusion tensor. This process is repeated until either the end

http://www.sci.utah.edu/~gk/DTI-data/
http://www.sci.utah.edu/~gk/DTI-data/
http://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/Tractography#/media/File:DTI-sagittal-fibers.jpg
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of the volume is hit, or until the stopping condition R < 0.8 is fulfilled. The
value R is computed as the inner product of the principal direction vectors of
a neighborhood around the current voxel:

R =
s

∑
i=0

s

∑
j=0

||νλ1i · νλ1j ||
s(s− 1)

, (4.10)

where νλ1i and νλ1j the normalized principal diffusion direction at one of the
voxels and s is the number of voxels that are considered for this computation.
The region considered is a 26-neighborhood (3× 3× 3) for the 3D case and
a 8-neighborhood (3× 3) for the 2D case. The value for R is large when the
direction vectors are strongly aligned and small when they are not. Once a
trace has stopped based on the stopping criterion, the algorithm is repeated
in the opposite direction from the original starting point. Applying these
steps for a number of random points in the volume reveals the structure of
the connections of the nerves in the brain.

4.4.2 Fiber Assignment by Continuous Tracking for cuPARE

Applying this technique to reconstructions of GFRP requires some adjust-
ment, as CT data does not provide local direction information. To acquire
this additional information, the local direction can be computed using the
Hessian matrix

H =


∂2 f
∂x2

1

∂2 f
∂x1x2

∂2 f
∂x1x3

∂2 f
∂x2x1

∂2 f
∂x2

2

∂2 f
∂x2x3

∂2 f
∂x3x1

∂2 f
∂x3x2

∂2 f
∂x2

3

 = (∇∇T)( f ). (4.11)

It represents the partial second derivatives of all coordinate directions, which
can be used to estimate the local curvature in an image [61]. As described
in [120], the fiber traces are found by computing the Hessian matrix for each
voxel in the reconstructed volume and computing the Eigenvalues and Eigen-
vectors. The Eigenvector corresponding to the Eigenvalue with the smallest
magnitude is the vector indicating the direction of lowest curvature [121].
That vector serves as a substitute for the the diffusion tensor’s principal di-
rection axis.
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To be mainly sensitive to structures of the size of the analyzed fibers, the
definition of the Hessian is slightly altered to accommodate a scale σ

Hσ = (∇∇T)( f ∗ gσ). (4.12)

Here the term gσ represents a smoothing of the function f with a Gaussian
kernel with standard deviation σ. The value for sigma is the fiber radius
σ = rfiber. With this smoothing, structures that are thinner than 2σ produce
a significantly smaller response in the output image, effectively suppressing
them. If multiple different fiber radii are present in the image, this operation
can be repeated for each of those radii. In that case, the response at each
voxel in the reconstruction is the maximum of all responses in the computed
Hessian images. Applying the FACT algorithm without any changes results
in traces that follow the directions of the fibers nicely. However, due to the
smoothing the vector field spreads out in all directions, causing feathered out
ends. A visualization of traces using the software tool MRTrix3 [122] is shown
in Figure 4.12.

FIGURE 4.12: Result of applying the unchanged FACT algo-
rithm to a simulated volume of straight fibers using the direc-
tion information obtained from its Hessian. It is clearly visible
that the fiber direction can be approximated well, but that the

traces feather out at either end of each fiber.

As FACT is designed as a visualization algorithm, the method needs to be
adapted to generate only one trace per fiber and to not combine fibers that are
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distinct objects in the volume. To that end, the fiber center lines are extracted
and only the direction information in those voxels is used at first. A small,
straight, cylindrical region is created around each starting voxel, with its axis
aligned with the principal direction vector. From that cylinder segment on,
the tracing continues to stack cylinder segments, jumping several voxels at
the same time. The stopping criterion from (4.10) was found to not work well
due to noise, so new criteria were added.

The tracing starts from a random point in the list of all detected fiber vox-
els, subsequently called seed points. The following procedure is repeated
until all the seed points are assigned to a trace:

1. If there are seed points left, randomly select one of them, otherwise stop
iterating;

2. A line segment with length 3rf is centered around the point. Its direc-
tion is chosen from the local direction vector field at that point, linearly
interpolated.

3. Find the closest other seed point to the end point of the line segment.

4. This point will be the next point in the tracing if the two consecutive
line segments meet the following criteria

(a) The angle between the direction vectors of the two line segments
is < θ1

(b) The distance of the two closest points on the line segments is < r f

(c) The angle between the current line segment’s direction vector and
the connection line through the two closest points is < θ2.

Here, rf is the radius of the fibers and the angles θ1 = 10 ◦, and θ2 = 20 ◦

were found to give good results.

5. If the conditions are met, remove all seed points from the list that would
be located inside a cylinder with the line segment as its central axis and
radius rf. Then go to step 2. If the condition is not met, stop the tracing
and go to step 6;

6. Start the tracing from the same initial point chosen in step 1, but in the
opposite direction, as it is done by Teßmann et al.[123]. Flip all vectors
in the tracing in the same way; If this is the second time going through
this step, go to step 1;
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xz plane xy plane yz plane

FIGURE 4.13: Slices through a vector field obtained using
the described Hessian processing. In light gray the fiber vox-
els are shown, superimposed on that is the vector field. The
color of the vectors corresponds to their x, y, z components
encoded as RGB, respectively. Overlaid in yellow is the trace
line rendered as a tube. Figure reproduced from [120], © So-

ciety of Photo-Optical Instrumentation Engineers (SPIE).

The result of the algorithm is a list of sets of 3D coordinates that describe
each individual fiber trace that was found. Some of these traces might be-
long to the same fiber, but are initially detected as separate. To combine those
segments a final clustering is applied, where fiber traces that are intersecting
or touching are combined into one fiber segment. This step uses the same
criteria as in item 4, but on the larger segments instead of the local direction
vectors. The merging of the fiber traces is repeated until no more touching or
intersecting fiber segments are found. A visualization of a local direction vec-
tor field around a simulated fiber is shown in Figure 4.13, with the resulting
traced line highlighted.

This procedure is fully automatic, as opposed to semi-automatic methods
like MetaTracts [100], which use different software packages for the individ-
ual sub-tasks such as tracing and clustering.

4.5 Optimization of Curved Fibers

With the curved fibers clustered by their center line coordinates, the next
step is to convert the chain of points into a concise representation that can
be adjusted easily based on few parameters as described in Section 4.2. For
cuPARE the chosen representation is based on polynomials, which are well
understood and easily adjustable in terms of the number of parameters. This
means that both complex curvatures as well as simple arches can be repre-
sented without having to change representation. An example of a fiber curve
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(a)

(b)

FIGURE 4.14: (a) Curve representing a fiber in 3d space and
the voxels it was estimated from. A wire frame around the
curve is shown to visualize the triangle mesh model that is
used to represent the fiber for generating projections. (b)
shows a close up of a part of the voxels (light red and blue),
center line (dark green). The wire frame (black) is partially cut
to reveal the voxels and center line. Figure reproduced from

[106] under CC 4.0.

based on its voxel coordinates is shown in Figure 4.14. The wireframe sur-
rounding the center line is a representation of a mesh model generated from
the model. This model is used in a later processing step of the algorithm to
generate fiber projections.

After the tracing step the processing could be considered finished, as the
fibers have been detected and parameterized. However, like in the PARE al-
gorithm this representation can still be made more accurate by applying an
optimization step. The PARE algorithm used gradient descent to this end,
but experiments with the curved fibers showed that gradient descent was
not suited well for this adapted algorithm. The gradient information, which
a lot of optimization algorithms use, is hard to estimate from finite differ-
ences. Therefore the choice fell on a numerical optimization method that
works without derivatives - the Nelder-Mead Simplex algorithm [124].

4.5.1 Nelder-Mead Simplex Algorithm

The Nelder-Mead Simplex algorithm is an unconstrained optimization algo-
rithm. As most optimization algorithms, it requires an objective function
f : Rn → R, which maps an n-dimensional parameter vector to a scalar.
The algorithm gets its name from the way it evaluates the objective function.
A simplex is a generalization of a triangle in 2D that connects n + 1 vertices
in an n-dimensional space, such that the faces form the convex hull of all

https://creativecommons.org/licenses/by/4.0/
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0-simplex 1-simplex 2-simplex 3-simplex

FIGURE 4.15: Examples of simplices in 0, 1, 2 and 3 dimen-
sional space.

vertices. The first four simplices: a point, line segment, triangle and a tetra-
hedron, are visualized in Figure 4.15. A simplex is called a regular simplex if
the connections of the vertices of the convex hull are all the same length.

Before the start of the iterations, a simplex, denoted with△S, with a side
length of δ is generated and the objective function at the n + 1 vertices is
evaluated.

The method iteratively moves the vertices of the simplex to approximate
the optimimum of the objective function f . The first step is to sort the vertices
of the simplex x1, . . . , xn+1 from smallest to highest objective function value

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1). (4.13)

Vertex x1 is called the best vertex and consequently the last vertex in the order
is called the worst vertex. From this state the algorithm uses one of four pos-
sible operations, depending on the objective function values of the vertices.

1. reflection, associated with the parameter α,

2. expansion, associated with the parameter β,

3. contraction, associated with the parameter γ,

4. shrink, associated with the parameter η.

The parameters are used to compute new vertices for the simplex as shown
in Algorithm 4.
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Algorithm 4 Nelder-Mead simplex algorithm

1: evaluate f (xi)∀xi ∈ △S and sort so that (4.13) holds.
2: Reflection:
3: compute reflection point xr = x̄ + α(x̄− xn+1).
4: if f (x1) < f (xr) < f (xn) then
5: xn+1 ← xr
6: end if
7: Expansion:
8: if f (xr) < f (x1) then
9: compute expansion point xe = x̄ + β(xr − x̄).

10: xn+1 ←
{

xe if f (xe) < f (xr)

xr otherwise
11: end if
12: Outside Contraction:
13: if f (xn) < f (xr) < f (xn+1) then
14: compute contraction point xoc = x̄ + γ(xr − x̄)
15: if f (xoc) < f (xr) then
16: xn+1 ← xoc
17: else
18: go to line 28
19: end if
20: end if
21: Inside Contraction:
22: if f (xr) ≥ f (xn+1) then
23: compute contraction point xic = x̄− γ(xr − x̄)
24: if f (xic) < f (xn+1) then
25: xn+1 ← xic
26: end if
27: end if
28: Shrink:
29: for 2 ≤ i ≤ n + 1 do
30: xi ← x1 + η(xi − x1)
31: end for



84 Chapter 4. Parametric Reconstruction of Curved Fibers

4.5.2 Application of Nelder-Mead to Curved Fibers

To keep the optimization parameter space as low dimensional as possible,
each individual fiber is optimized separately. Thus, for a single fiber param-
eter set the optimization problem becomes

ξ̂ j = arg min
ξ j∈R3(k+1)

floss(p, Wxv(ξ j), (4.14)

where floss is the chosen objective function, k the degree of the polynomials
representing the fiber center line, p the measured projection data and Wxv
the forward projection of an estimate of the reconstruction as a function of
the fiber parameter list ξi.

The parameter values are converted to be in the range of [0, 1] while they
are manipulated during optimization, for improved numerical stability. To
convert to the normalized range, the whole population of estimated fibers
is considered. The conversion is therefore mapping 0 to the lowest value
that each coefficient had in the population and 1 to the highest value in each
coefficient. This keeps the step-size the same for each parameter, even when
the parameters had vastly different ranges originally. Once a fiber model
needs to be projected, the values are converted back to their original range.

With the more complex fiber model, the objective function becomes in-
creasingly complex as well. The mean of the sum of the squared projection
differences or root mean squared error (RMSE) is notoriously sensitive to
slight differences in intensity. As the main objective is to estimate the fiber
shape, the Structural Similarity Index Loss (SSIM Loss) [125]

SSIMloss(A, B) =
1
2

(
1− 1

M

M

∑
i=1

SSIM(ai, bi)

)
(4.15)

=
1
2
(1−MSSIM(A, B)) .

was chosen as the objective function for the optimization. The SSIM measure
is computed on M local windows ai and bi, which are corresponding regions
in the projections A and B and then averaged resulting in a scalar measure.
This measure is widely used in Deep Learning in combination with the RMSE
to tackle similar problems in image similarity assessment and has proven to
be much more robust as a measure than the RMSE in our experiments. To
compensate for noise, the projections can be smoothed with a Gaussian fil-
ter of variable width, depending on the noise level of the input images. In
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addition to the SSIM Loss, we also introduce a penalty term which keeps
the fiber that is currently being optimized within the bounding box Ω of the
reconstructed volume. Due to the representation as a polynomial on the in-
terval [0, 1], the minimum and maximum coordinates can be obtained from
g(u = 0) and g(u = 1). The term g(0) corresponds to the constant coefficients
of g and g(1) to the sum of all coefficients. With the conditions

Ωmin ≤ g(0) ≤ Ωmax (4.16)

and
Ωmin ≤ g(1) ≤ Ωmax. (4.17)

the total penalty added to the SSIM Loss becomes

p(g, m) = mL(Ωmin − g(0))
+ mL(Ωmin − g(1))
+ mL(g(0)−Ωmax)

+ mL(g(1)−Ωmax),

(4.18)

where m is the current iteration of the optimization, meaning that the penalty
for the same parameter values increases over time. The function L is the
logistic function

L(x) =
1

e−104x
. (4.19)

The constant −104 was determined empirically and serves to sharpen the
transition between the penalty and non-penalty regions compared to the un-
modified logistic function.

4.5.3 Projection of Mesh Models

In our previous work [77], fiber voxel models were generated from their para-
metric descriptions and subsequently the voxels were projected using the AS-
TRA toolbox [47]. While this approach is simple and effective, it requires
expensive computations both for generating and projecting the voxels. In
this work, a triangle mesh representation based on the parametric fiber de-
scriptions is used to project the fibers. That mesh model is generated using
the Visualization Toolkit (VTK) 1 tube filter [126] on the detected fiber cen-
ter lines. To achieve realistic volume borders, the tube model is cut off at

1using VTK version 9.1
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the volume boundary using Boolean operations on the meshes [127], if it is
protruding out of said volume. The resulting fiber mesh is projected using a
custom, GPU accelerated, mesh projector [128], which reduces the computa-
tional load significantly.

4.5.4 Reduction of Computational Cost

The projections for the optimization can be the ones used for reconstruction
of the volume, a subset thereof or even a small set of higher resolution pro-
jections acquired separately. Additionally, the projections can be cropped
during the optimization of an individual fiber to reduce the computational
complexity of computing the objective function (4.15). To that end, the axis
aligned bounding box of the current fiber being optimized is computed in
reconstruction space. The bounding box is then projected onto the detector
for each projection angle and the largest overlapping region of all projected
bounding boxes is determined. Finally, the region is extended in its largest
dimension to span the whole width or height of the detector. As a result, the
memory footprint can be reduced significantly, depending on the orientation
and position of the fiber relative to the rotation axis of the tomography setup.
Depending on the fiber orientation, this reduces the amount of data to be
transferred from and to the GPU.

4.5.5 Computational Complexity

The algorithm presented here comes at a high computational cost due to the
amount of data contained in a three dimensional image. It is therefore impor-
tant to implement the individual operations efficiently. The reconstruction,
which is a pre-requisite, is not considered in this section. The purely voxel
based image operations like thresholding and the removal of voxels with
a certain amount of non-zero neighbors, have a time complexity of O(nr),
where nr is the number of voxels in the reconstruction. The most computa-
tionally expensive operation in the fiber voxel detection pipeline (see Subsec-
tion 4.3) is the thinning operation. Binary thinning is achieved by iteratively
removing voxels that do not alter the topology of the connected components,
based on pre-defined pixel configurations, as described in Subsection 4.3.1.
The time complexity for the thinning/skeletonization is therefore O(nr · i),
where i is the number of iterations needed, which is assumed to be i≪ nr. It
is possible to parallelize this step at the cost of guaranteed topological preser-
vation, which has not been done in this work. The Nelder-Mead optimization
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algorithm has a time complexity of O(n · j), with the simplex transformation
taking n operations and j the number of iterations until convergence [129].
During the optimization, the objective function is evaluated multiple times.
It depends on the number of pixels in all projections np as well as the size of
local window mp used in the computation of the SSIM loss, O(np ·mp). The
projections that are simulated for the comparison with the measured projec-
tions can be computed in O(nf · np) time in the worst case, where nf is the
number of faces in the mesh model. This depends on the relative size of the
mesh’s faces compared to the detector pixels. Assuming the computation of
the objective function to be the most costly operation in the optimisation, the
time complexity can be assumed to beO(nf · np ·mp · j) or lower. The meshes
of the fibres that are not changed, can be pre-computed from the remaining
mesh models, adding an additional one-time overhead. Assuming the opera-
tions in the simplex transformation to be negligible compared to the compu-
tation of the objective function, the total complexity of cuPARE optimization
can be assumed to be at least O(nf · np ·mp).

4.6 Experiments and Results

The cuPARE algorithm was tested with both simulated and real data. The
simulations were performed in the same way as in Subsection 3.5.1, using
RSA to accumulate fibers and the ASTRA toolbox to simulate the projections.
The cuPARE algorithm was then applied to a realistic, publicly available data
set of unidirectional glass fibers embedded in a polymer resin (XCTH) [99],
which was already used in Subsection 4.2.4.

For the optimization of the simulated dataset the stop condition for the
optimization of each fiber was either after 1000 iterations, or if the simplex
vertex with the best and the simplex vertex with the worst value in floss had
at most a difference of 1× 10−7.

At first the method was verified using simulated data. Like in Subsec-
tion 3.5.1, a fiber composite phantom was simulated consisting of a polymer
matrix and glass fibers. The RSA algorithm was again used to position fiber
shapes into a volume in random orientations following a VMF distribution
(see (3.22)) in R3 with the mean direction µ = (1, 0, 0)T.

Instead of creating straight fibers, the fibers are generated with curvature
using a parabola fit. To that end, a straight fiber is created and its center
point is then moved in a random direction perpendicular to the main axis by
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a random amount. Then a parabola is fitted through these three points, yield-
ing the center line of the generated fiber. This displacement, influencing the
amount of curvature, was randomly chosen from the interval [6, 14] voxels.

A simulated reconstruction of the generated dataset, which will be re-
ferred to as Sim, is shown in Figure 4.16. Here, 186 fibers were added to a
volume of size 400×400×400 voxels with varying amounts of curvature. The
fiber radius was (9.75± 0.45) µm (6.5± 0.3 voxels) with a voxel size of 1.5 µm,
simulating slight variations in the fiber production process. The spread pa-
rameter κA was arbitrarily set to 50, modeling nearly uni-directional fibers.

FIGURE 4.16: Reconstructions with 200× 200× 200 voxels of
the simulated datasets. The reconstruction was performed
using 100 iterations of the Barzilai-Borwein [46] algorithm
and the background was made transparent to make the fibers
more visible. Note that the fibers are oriented along the X-

axis. Figure reproduced from [106].

To simulate a realistic experiment, the projection geometry for the simu-
lated datasets was modeled after the scanner setup in our laboratory [8]. The
source-object distance (SOD) was 19.9 mm and the source-detector distance
(SDD) 1795.0 mm and a 1024×1024 detector with a pixel size of 75 µm. This
geometry was then used to project the 400 × 400 × 400 phantom with 200
equidistant projections distributed on the full circle.
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4.6.1 Volume Overlap Measures

The quality of the reconstructed fiber model of the simulation experiments
was evaluated based on the generated ground truth data. This was done by
means of a volumetric overlap measure introduced by Fröhler et al. [130].
In Subsection 4.2.4 the dminavg and dmaxavg measures were used to assess
the quality of fit for the curve estimation. Distance based measures are well
suited for that task, however matching pairs between two sets of fibers, for
example a ground truth and an estimate, they often do not result in the match
that a human observer would have assigned. The issue here is that fibers
that are close in distance can be fibers running parallel to the fiber that is the
”true” match, while that ”true” match has some kind of error that increases
the distance of some of the fiber points relative to its match in the other set.
This happens when one of the fibers is shorter than the other, or merges with
a neighboring fiber due to a tracing error. Additionally the measures are
directional, meaning that the choice of ”reference” fiber influences the end
result of the computation, as indicated by Figure 4.17a.

To solve these issues, overlap based measures were introduced in [130],
which approximate a match that a human observer would assign. Each fiber
is approximated by a sequence of cylinders with a fixed radius and length.
A fixed number of points is sampled within one of the fibers to be evalu-
ated. Then it is checked for each of those points whether or not that point
lies within the other fiber. The number of points sampled is equal in each
straight segment and depends on the volume quotient of the entire fiber and
the segment. That way even sampling over the entire fiber is guaranteed.
Whenever there is a transition from one segment to the next, there is a small
section that could be sampled twice, once in each segment and a small sec-
tion that is not sampled at all. This is visually explained in Figure 4.17c. With
low curvature these volume sections are small, thus the error introduced by
this is negligible, akin to the error the spherical end caps introduced in the
collision detection in Subsection 3.5.2.

The number of points contained in both fibers is an approximate mea-
sure for the overlapping volume between the two fibers. With the total fiber
volumes the overlap measure can be computed as

do
3( fa, fb) = 1−O( fa, fb)


V( fa)
V( fb)

if V( fa) < V( fb)
V( fb)
V( fa)

otherwise
, (4.20)
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FIGURE 4.17: Visualization of how the distance based (a)
and overlap based (b) measures are computed. Subfigure (c)
shows the small region of error introduced by every transition
between straight segments. Figure reproduced from [130] un-

der CC 4.0.

where O( fa, fb) denotes the volumetric overlap of two fibers fa and fb, and
V(•) denotes the volume of a fiber.

If a mesh model and a continuously defined center line are available, as
is the case in cuPARE, the computation of the overlap measures can be made
more precise by considering the relation between the volume of a cylindrical
tube following the center line and the volume of the intersection fa ∩ fb of
the two fibers fa and fb. The intersection can be computed using a Boolean
operation on the two meshes using a package such as PyMesh [127], as shown
in Figure 4.18. This more precise computation is used when the actual quality
of the match is supposed to be evaluated, as opposed to the matching fiber
in two sets. The former is computationally more expensive, the latter less
precise.

4.6.2 Variation of Noise Level

An obvious first assessment is the performance of a method in the presence
of noise. Therefore, Poisson noise was added to the projection data, varying
the simulated photon count per detector pixel from 250 photons up to 5000

https://creativecommons.org/licenses/by/4.0/
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FIGURE 4.18: Visualization of two partially overlapping fiber
meshes and their common volume. In subfigure (a) the green
and blue meshes are shown solid, in (b) the same meshes were
made transparent and in dark gray the mesh resulting from

the Boolean intersection of the two meshes is shown.

photons. Additionally an intensity drop-off from the center due to the X-
rays hitting the detector at an oblique angle as well as the increased distance
due to the flatness of the detector according to Lambert’s cosine law [87] was
simulated. Finally, a point spread function [87] was simulated by applying a
Gaussian filter with a standard deviation of σ = 0.3 pixels.

To simulate a lower resolution scan, the ”binned” by a factor of 2. Binning
is the operation of combining several pixel values into one ”bin”, which gets
assigned the average values of the pixels it contains. A binning factor of n in
this context means that a section of n× n pixels is averaged and treated as a
single pixel the new, binned image. These lower resolution images are used
for reconstruction in the further experiments, the higher resolution images
are used for the optimization procedure.

Reconstruction from the projections was performed using 100 iterations
of the BB reconstruction algorithm with a lower bound of 0. This resulted
in a voxel grid of 200 × 200 × 200 which can be analyzed by the cuPARE
algorithm.
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FIGURE 4.19: Boxplot of the overlap dissimilarity values for
each fiber in Sim before and after optimization relative to
the ground truth. Orange boxplots show the estimated fibers
compared to the ground truth, blue boxplots show the same
fibers after being optimised. Figure reproduced from [106].

The peak signal-to-noise ratio (PSNR)

PSNR = 10 log10

(
max(pgt)

MSE(pgt, pnoisy)

)
(4.21)

of the simulated projections is reported in Table 4.1. Here pgt is the noiseless
projection and pnoisy the projection with added Poisson noise. The function
MSE(•) denotes the mean squared error.

The result of the fiber detection quality as well as the quality of the fiber
models after optimization are shown in Figure 4.19. It is clear that cuPARE is
robust with respect to the amount of noise in the reconstruction, given a mini-
mum sufficiently high PSNR/photon count. This is due to the fiber detection
failing when the photon count drops below the threshold of 1000 photons.
Improvement during optimization largely consists of the detection getting
better with increasing PSNR, so the number of outliers declines as a func-
tion of the amount of noise. The median value of the overlap dissimilarities is
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PSNR of the datasets in the noise experiment
Photons per pixel PSNR low res [dB] PSNR high res [dB]

250 26.22 26.24
500 29.25 29.29

1000 32.23 32.32
2000 35.15 35.33
3000 36.83 37.10
4000 37.98 38.35
5000 38.86 39.32

TABLE 4.1: PSNR (computed using (4.21)) values of the pro-
jections of the datasets with varying noise levels. Both the
PSNR of the projections used for reconstruction (low resolu-
tion, middle column) as well as the projections used for op-
timization (high resolution, rightmost column) are reported.
The leftmost column indicates the number of simulated pho-

tons per detector pixel.

essentially constant from 1000 photons per pixel, while the spread of the dis-
tribution decreases slightly and the number of outliers reduces greatly. The
failure of the detection step with the low PSNR value exhibits itself in the
fibers being split into many smaller pieces, which individually are aligned
well with the fiber direction, but cannot be properly clustered in the trac-
ing step. Slight mistakes in the fiber tracing can however be compensated
through the optimization.

4.6.3 Variation of Number of Projections

A second important aspect of the optimization procedure is the amount of
available information in the projection space, i.e., the number of projections.
With more projections available, the accuracy of the optimization feedback
loop increases, but the computational complexity increases as well. To find a
good balance between those two factors, cuPARE was used to optimize the
same detected fibers in Sim with varying amounts of projection images. A
subset of 2 to 13 projections, equidistantly spaced on the circle was chosen
for the experiments. To reduce the influence of noise, the fibers detected in
the dataset with the largest PSNR from the previous experiment was chosen
as the starting point for the optimization.
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After optimization, the dissimilarity overlap was computed for the result-
ing fiber populations. Figure 4.20 shows the boxplots of the resulting overlap
dissimilarities before and after optimization.
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FIGURE 4.20: Boxplots of the overlap dissimilarity values af-
ter optimizing the fibers obtained from the dataset with 5000
simulated photons per pixel. The orange boxplot shows the
match before optimization, the blue boxplots show the influ-
ence of the number of projections available to the optimizer.

Figure reproduced from [106].

At first glance, the optimization succeeds in improving the fiber model
accuracy even with only 2 projections available, with the improvement in
the form of a reduction of the overlap dissimilarity. On further evaluation of
the boxplots, the outliers show that some of the fibers move further away
from their ground truth counterparts in terms of overlap dissimilarity for both
2 and 3 available projections. From 5 projections until 13, the improvement is
apparent versus the initialization.

4.6.4 Variation of Curvature

Finally the curvature of the fibers was investigated. To that end, five addi-
tional datasets, shown in 4.21, with increasing curvature were generated.

The interval for the curvature offset described in Section 4.6 is defined by
its center and a variation. For example, the interval [6, 14] is generated by a
center value 10 and the variation value 4.
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(a) (b) (c)

(d) (e)

FIGURE 4.21: Reconstructions of simulated datasets contain-
ing fibers with varying curvature. The offset to generate the
arch for the curved fiber was varied between 10 voxels (sub-
figure (a)) and 90 voxels (subfigure (e)) in steps of 20 voxels.
The estimation quality of the fibers is shown in Figure 4.22.

Figure reproduced from [106].

Keeping the variation the same, only the center value was varied for this
experiment. The lowest curvature offset, 10 voxels, was the curvature offset
chosen in the earlier experiments for Sim. Additionally the values 30, 50, 70
and 90 voxels were used. The corresponding datasets cover more volume be-
cause of the increased curvature, so only a small region in the center of the
volume was chosen to make sure most fibers stay within the volume bounds.
With increasing curvature, the initial estimates’ overlap dissimilarity scores be-
come worse.

As with the other experiments, the cuPARE algorithm was then used to



96 Chapter 4. Parametric Reconstruction of Curved Fibers

extract the fiber information, varying the parameters to fit the different cur-
vatures. The extracted fibers were then optimized; the results of this opti-
mization are shown in Figure 4.22.

The optimization procedure yields around the same median overlap dis-
similarity 0.07 ± 0.02 for each dataset, however the number of outliers and
the spread of the distribution increases with a larger curvature. The increase
in outliers can be explained by the fact that more and more fibers are cut off
by the volume boundaries. This effect is clearly visible in Figure 4.21.
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FIGURE 4.22: Boxplots of the overlap dissimilarity values when
varying the curvature of the fibers in the datasets. Each in-
dicated curvature offset corresponds to the displacement of
the central point of the arch by that many voxels in a random
direction, as outlined in Subsection 4.6.4. Figure reproduced

from [106]

4.6.5 Real Data

As a final experiment, the cuPARE method was applied to a publicly avail-
able dataset of high resolution scans of a uni-directional glass fiber-reinforced
polymer sample reconstructed from 4201 projections [99]. Due to the original
projections used for the reconstruction of the dataset not being available, an
experiment was simulated. To that end, a region of 500× 500× 500 voxels
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(A) (B)

FIGURE 4.23: Cutout of a region of 500 × 500 × 500 voxels
from the high resolution dataset from [99] used as a realistic
phantom after downsampling to 250× 250× 250 voxels. The
intensities in the reconstruction were normalized to a range
of [0, 1] and the polymer matrix (dark blue) was made semi-
transparent to make the fibers more visible. Every voxel un-
der 0.4 intensity was made invisible. Subfigure (a) shows
the cutout unaltered, Subfigure (b) shows the same cutout
region after applying a ”twisting” affine transform to simu-
late stronger curvature in the fibers. Figure reproduced from

[106].

was cut out of the high resolution X-ray CT dataset (named XCTH in [99]).
Using the ASTRA toolbox [47] 200 equiangular cone-beam projections, dis-
tributed over 360 degrees, were simulated from a downsampled version of
that cutout with a size of 250× 250× 250 voxels as a phantom. This down-
sampled phantom is shown in Figure 4.23a. In what follows, this dataset will
be referred to as XCTH.

The fibers were extracted from a BB reconstruction with 100 iterations
using the processing pipeline described above. Without a ground truth avail-
able for the fiber models, two additional fiber extraction methods were ap-
plied to this data and all 3 sets of detected fibers were used with the opti-
mization framework described in Section 4.5. In total, the volume contains
between 750 and 1000 fibers or pieces of fibers. The true number of contained
fibers is unknown; each method detected a different amount of fibers.

For easier handling of the data the intensities of all datasets are expressed
normalized, that is within the range [0, 1], where 1 is the maximum intensity
of the used datatype and 0 is the minimum intensity. The intensity of the
polymer matrix was estimated at 0.04± 0.02 and the intensity of the fibers
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FIGURE 4.24: Relation between the slice index of the slices of
the dataset shown in Figure 4.23b and the rotation angle of the
image. The index 0 corresponds to the lowest Z-coordinate,

the highest index to the highest Z-coordinate.

was estimated at 0.61± 0.22.
The geometry to simulate those projections was defined with an source-

detector distance (SDD) of 55 mm and an source-object distance (SOD) of
10 mm. The voxel size was set to 1 µm and the pixel size of the 1024× 1024
detector was 2 µm. This reduces the effective pixel size to 0.36 µm. This small
effective pixel size does not affect the resolution of the simulated projections,
as the voxels that are projected using ASTRA are of a fixed size of 1 µm, as
described in [99]. During the optimization in the last step of the experiment,
the fiber models do benefit from the smaller pixel size because they are de-
fined by their vertices, whose position in space is defined with floating point
precision. The vertex coordinates are encoded as multiples of the voxel size.

A second experiment with curved fibers was set up by applying a rotation
to the slices of the full sized reconstruction with the angles varying with the
shape of a Gaussian with an amplitude of 270 ◦, such that the images close to
the central slice were more rotated than the images towards the extremities.
The relation between the slice index starting from the bottom slice as index 0
is shown in Figure 4.24.

This produces a phantom containing curved fibers, as can be seen in Fig-
ure 4.23b. The fiber estimates generated by InsegtFibre were transformed in
the same way, to get a reference estimation.

The different methods yielded varied results in the fiber detection step on
the straight fiber volume. cuPARE detected 1034 fibers or fiber fragments, the
InsegtFibre method found 766 and using the Fiber Characterization Pipeline
”Template Matching” (FCP-TM) of Zauner et al. [73] 856 fibers and fiber frag-
ments were identified. The fibers detected by InsegtFibre were found on the
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original reconstruction XCTH at full size and then cropped to the investigated
region. The true number of fibers contained in the investigated volume is un-
known. Both FCP-TM and cuPARE were applied to the downsampled data.
A comparison of the reconstruction with renderings of the fiber estimates
from each method are shown in Figure 4.25.

The individual optimized fibers are shown in separate plots to show the
morphological differences before and after optimization. All fiber estimates
approximate the contained fibers well visually, but there are apparent differ-
ences between them. The cuPARE detection is quite fragmented, especially in
the areas around the volume border. Similar problems appear in the result of
the FCP-TM, but there a fewer fragments. This is likely due to the difference
in clustering of the fiber objects. The best single fiber detection is achieved
with InsegtFibre, but here some fibers are completely missing in the lower
right corner. This is due to the fact that InsegtFibre goes through the volume
on a slice-by-slice basis and very sheer cuts through fibers lead to a worse
detection of the fiber location. The cuPARE method and FCP-TM consider
the whole 3D volume for analysis, which mitigates that problem, but brings
additional clustering complexity.

The InsegtFibre result was chosen as the de-facto ground truth, because
the fibers were detected on the full resolution reconstruction and should there-
fore be more accurate. The direct comparison was done on the five fibers with
the highest overlap between all models from the entire fiber population. This
means that all methods have almost identical starting conditions before the
optimization. The fiber models obtained with FCP-TM and cuPARE were op-
timized based on the simulated projection data as described above. With the
added complexity of real data, the number of projections was increased to 50
and the convergence threshold for the Nelder-Mead optimizer was set to 5e-
9, two orders of magnitude lower than for the simulation experiments. The
maximum number of iterations was increased to 2000.

Figure 4.26 shows a render of the per-vertex Euclidean distances between
the surfaces of the mesh models of cuPARE and FCP-TM relative to the result
of InsegtFibre. The initial model (seen in Subfigures (b) and (d)) shows good
agreement in the center of the fiber in both cases, but at the ends the detected
fiber deviates with increasing magnitude from the center towards the end. In
particular, the first fiber from the bottom shows great deviation in Subfigure
(b). The optimization procedure manages to even out the deviations (Subfig-
ure (c)), which leads to a better agreement with the reference overall. At the
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FIGURE 4.25: Comparison of the traces of dataset XCTH . (a)
shows the full sized reconstruction as in Figure 4.23a, (b)
shows a rendering of the fiber CAD models acquired from
the traces from InsegtFibre, (c) the fiber models obtained with
cuPARE and (d) the fiber models obtained with FCP-TM. Fig-

ure reproduced from [106].
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FIGURE 4.26: Visualization of the per-vertex Euclidean dis-
tance between the reference fiber models, the models from the
fiber detection by FCP-TM and cuPARE and the optimized
models of both of those methods. Note that the orientation
of the fibers is changed compared to the previous figures to
allow larger images of the meshes. Figure reproduced from

[106].

same time it also causes small deviations in the center region of the fibers (see
Subfigure (e)). Overall the optimization increases the agreement with the ref-
erence model, though the diagonal fibers are not moving or even get pushed
away from the reference. The average distance from the reference mesh is ≤
1 voxel, but can reach values up to 3.12 voxels, especially at the fiber ends.

The detection results from the dataset with the simulated curvature are
shown in Figure 4.27. With cuPARE 1291 fibers were detected in the vol-
ume, InsegtFibre had 852 fibers. The FCP-TM method was not applied to
this dataset as it was designed for straight fibers. In the volume rendering
Figure 4.27 a lot more small fiber fragments can be seen compared to the un-
altered reconstruction. Also in this case it happens mostly at the volume bor-
ders. The effect is reinforced by the fact that the strong curvature splits fibers
into smaller segments that intersect at a sheer angle with the volume border.
The detection in the center of the volume has a very good agreement with the
reconstruction and the overall curvature of the twisted fibers is comparable
to the source dataset.
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FIGURE 4.27: Rendering of the fibers in the real dataset
shown in Figure 4.23b detected by cuPARE. Figure repro-

duced from [106].

The five fibers with the smallest overlap dissimilarity between InsegtFibre
and cuPARE were optimized and then compared as in the previous exper-
iment by computing the per-vertex Euclidean distances between the fiber
meshes. This is shown in Figure 4.28. The fiber models are on average further
away from their reference and improve at the fiber ends after optimization.
This indicates that the estimates are slightly further off the reference than
for the straight fibers. While the agreement between the reference and the
estimates improves in some areas, the overall optimization is less effective
compared to the straight fibers in the same dataset. This most likely has to
do with the additional complexity of the curvature, as the fibers follow an
S-curve, which requires more iterations to be changed in all degrees of free-
dom.

4.7 Discussion

The cuPARE algorithm is able to detect curved as well as straight fibers in
simulated and realistic data and create a mathematical model of the individ-
ual fibers in those datasets. It was shown that it is possible to estimate the
shape of those individual fibers based on very few projections and retrieve
model parameters with good agreement to the ground truth. For real data it
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FIGURE 4.28: Visualization of the per-vertex Euclidean dis-
tance between the reference fiber models, the models from
the fiber detection by cuPARE and their optimized counter-
parts from the curved version of the real dataset shown in

Figure 4.23b. Figure reproduced from [106].

could be shown that the morphology of the fibers can be adjusted well using
the presented approach, compared to a reference method used on a higher
resolution reconstruction.

In terms of computational efficiency, improvements could be made by di-
rectly computing a projection image from the coefficients of the center line.
However, this would require a tailor-made projector for such objects, which is
currently not available to the author’s knowledge. Such a change would also
improve the stability of the optimization by introducing less in-directions
from the model to the projections, which all can propagate errors through
the individual steps. The current way of generating the fiber model using the
VTK tube filter [126] can produce jumps in the objective function for small
variations, which decreases numerical stability of any optimization proce-
dure and forces the user to iterate for longer.
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Chapter 5

General Conclusions and Future
Perspectives

In this thesis, a new framework for detection and modeling of individual
fibers in GFRP was introduced. Starting from a simplified, straight fiber
model (chapter 3), the framework was extended to curved fibers and applied
to real tomographic scans of GFRP (chapter 4). It was shown that it is able
to reliably detect the individual fibers in a reconstructed volume, given some
initial knowledge about the fiber attenuation and the radius. The fiber mod-
els are close to the original reconstruction data and are matched to the raw
scan data via numerical optimization based on the projections. The procedure
works even in the presence of noise and with very few projections, which re-
duces data and computational requirements. The framework was presented
using the example of GFRP, but is general in nature. Further experiments
could be conducted in the applicability to related problems. Without adjust-
ing the model or processing pipeline, it should be possible to apply cuPARE
to fiber bundles or concrete reinforced with steel bars, given that the recon-
struction quality is sufficient. The framework should also naturally extend to
having the fiber radius as an estimated parameter.
The introduction of an additional data ”cleaning” step before the fiber de-
tection step could further improve performance on real data. Artifacts like
beam-hardening, streaks and partial volume effects are currently not addressed.
In the work of Pelt et al. [131], for example Multi-Scale Dense convolutional
Neural Networks (MSDNN) are used to improve reconstructions made with
limited data. A number of experiments regarding the improvement of the
SNR using MSDNN was already presented at the ICTMS conference in 2019
[132].
The general nature of the framework also allows replacement of different
steps and models, possibly enabling analysis of more complex composites or
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classification of defects like pores, foreign inclusions, fibers made from dif-
ferent materials or woven fiber bundles [133]. To that end, the model would
have to be extended to be able to represent the new types of objects and the
detection and clustering algorithms would need to be adjusted to differen-
tiate between the objects reliably. A recently introduced neural network for
segmentation called Segment Anything Model (SAM) [134] could be used as
a starting point for the detection in such a case, given further research into
the topic.
Due to the large amount of data, the method unfortunately scales poorly to
large amounts of fibers. Here, the introduction of a numerical optimization
based on derivatives, if possible, could prove helpful. That, as well as an
effort to optimize all fiber parameters at once could significantly reduce the
required amount of iterations as well as improve numerical stability. This, of
course, would require a serious research effort, as the parameter space would
grow extremely large. Another way to improve the stability of the optimiza-
tion, would be to change the optimization model entirely by computing the
analytic derivatives per vertex of the fiber mesh and then moving the vertices
accordingly. This would enable a smooth transition between two fibers that
are close in parameter space, but would require coming up with a way of
converting a mesh back to a fiber model, which currently is not possible in
the presented framework. Koo et al. [135] lay the groundwork for such an
approach and Renders et al. [136] already apply a similar method to 4D CT
images of foam.

The work presented in this thesis, like most scientific work, shows several
ways forward in this direction of the field of NDT. The framework provided
by cuPARE provides ample opportunity to develop better models, more effi-
cient algorithms and make the technique applicable in an industry setting.
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Abbreviations

µCT micro-computed tomography
4D CT 4-dimensional (i.e. time-resolved) computed

tomography

AABB axis-aligned bounding box
ASTRA All Scale Tomographic Reconstruction

Antwerp /Amsterdam

BB Barzilai-Borwein

CSR Cosine Series Representation
CT computed tomography
cuPARE curved Parametric Reconstruction

FACT Fiber Assignment by Continuous Tracking
FBP filtered backprojection
FCP-TM Fiber Characterization Pipeline ”Template

Matching”
FDK Feldkamp, Davis, and Kress
FOV field of view

GFRP glass fiber-reinforced polymer
GPU graphical processing unit

ITK Insight Toolkit

MRI Magnetic Resonance Imaging
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MSDNN Multi-Scale Dense convolutional Neural Net-
works

NCC normalized cross-correlation
NDT non-destructive testing
NMR nuclear magnetic resonance

PARE Parametric Reconstruction
PCBs printed circuit boards
PSNR peak signal-to-noise ratio

ROI region of interest
RSA random sequential adsorption
RVE representative volume element

SAM Segment Anything Model
SDD source-detector distance
SIRT simulataneous iterative reconstruction tech-

nique
SNR signal-to-noise ratio
SOD source-object distance

VMF Van Mises - Fisher distribution
VTK Visualization Toolkit

XCT X-ray computed tomography
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