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Summary

Additive Manufacturing (AM), or 3D printing, has revolutionized industrial pro-
duction by enabling the creation of complex parts and products through the
successive layering of materials. This technique offers significant advantages in
prototyping and customization, streamlining the transition from digital models
to physical objects. However, challenges such as anisotropic properties, surface
finish issues, and internal defects necessitate robust quality control measures.

This thesis investigates advanced non-destructive testing methods, focusing
on X-ray inspection techniques, to enhance the reliability and quality of AM
components. Key contributions include:

e Automatic Simultaneous Multi-Mesh Registration and X-ray system spec-
tral estimation: Introduction of an automated technique for aligning X-ray
CT scans with their corresponding CAD models, facilitating precise de-
fect localization and comparison, which can incorporate estimation of the
poly-chromatic behaviour of the scanning system.

e Compensation for X-ray Scattering: The development of a novel software
method to mitigate X-ray scattering effects, thereby improving image clar-
ity and defect detection accuracy, suitable for radiographic and X-ray Com-
puted Tomography (X-CT) setups.

e 3D Deep Learning Models: Application of state-of-the-art deep learning
methods tailored for 3D defect detection in X-CT images, utilising vol-
umetric data in an efficient, 3D patch-wise approach to identify internal
flaws.

These approaches, addressing critical issues such as X-ray scattering and beam
hardening, aim to jointly improve the image quality and ease the 2D /3D compar-
ison of the manufactured object and its digital model. By cross-validating these
techniques on real-world data, through a series of experiments, this research
makes a step forward towards ensuring the structural integrity and defectiveness
of AM samples. The findings contribute to the broader adoption of X-rays inspec-
tion setups in AM industries where safety and reliability of samples are critical,
such as aerospace, medical devices, and automotive sectors, and where reduction
of operational costs is usually desired.
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Samenvatting

Additive Manufacturing (AM), of 3D-printen, heeft de industriéle productie
gerevolutioneerd door de creatie van complexe onderdelen en producten mogelijk
te maken via opeenvolgende lagen materiaal. Deze techniek biedt aanzienli-
jke voordelen in prototyping en maatwerk, waardoor de overgang van digitale
modellen naar fysieke objecten wordt vereenvoudigd. Echter, uitdagingen zoals
anisotrope eigenschappen, problemen met de oppervlakteafwerking en interne
defecten vereisen robuuste kwaliteitscontrolemaatregelen.

Deze thesis onderzoekt geavanceerde niet-destructieve testmethoden, met de
focus op rontgeninspectietechnieken, om de betrouwbaarheid en kwaliteit van
AM-componenten te verbeteren. Belangrijke bijdragen omvatten:

e Automatische Gelijktijdige Multi-Mesh Registratie en Spectrale Schatting
van het Rontgensysteem: Introductie van een geautomatiseerde techniek
voor het uitlijnen van rontgen-CT-scans met hun overeenkomstige CAD-
modellen, wat precieze defectlokalisatie en vergelijking mogelijk maakt,
waarbij de schatting van het polychromatische gedrag van het scansysteem
kan worden opgenomen.

e Compensatie voor Rontgenverstrooiing: De ontwikkeling van een nieuwe
softwaremethode om rontgenverstrooiingseffecten te verminderen, waar-
door de beeldhelderheid en nauwkeurigheid van defectdetectie verbeteren,
geschikt voor radiografische en réntgen Computed Tomography (X-CT) op-
stellingen.

e 3D Deep Learning Modellen: Toepassing van state-of-the-art deep learn-
ing methoden, afgestemd op 3D-defectdetectie in X-CT-beelden, waarbij
volumetrische gegevens efficiént worden gebruikt in een 3D patch-wise be-
nadering om interne fouten te identificeren.

Deze benaderingen, die kritieke kwesties zoals rontgenverstrooiing en verhard-
ing van de bundel aanpakken, zijn bedoeld om gezamenlijk de beeldkwaliteit te
verbeteren en de 2D /3D-vergelijking van het vervaardigde object en zijn digitaal
model te vergemakkelijken. Door deze technieken te cross-valideren op real-world

13
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data, via een reeks experimenten, levert dit onderzoek een stap vooruit in het
waarborgen van de structurele integriteit en de foutloosheid van AM-monsters.
De bevindingen dragen bij aan de bredere acceptatie van rontgeninspectieopstellingen
in AM-industrieén waar veiligheid en betrouwbaarheid van monsters cruciaal zijn,
zoals lucht- en ruimtevaart, medische apparaten en de automobielsector, en waar
verlaging van operationele kosten meestal gewenst is.



 Chapter

Introduction

cro:AMAdditive Manufacturing (AM), commonly known as 3D printing, is a new
approach to industrial production that enables the creation of parts and prod-
ucts through the successive layering of materials [Gibson2015, Frazier2014].
This technique contrasts with traditional subtractive manufacturing, where ma-
terial is removed to achieve the desired shape [Bourell2009]. In AM, a digital
3D model designed using cro:CADComputer-Aided Design (CAD) software is di-
rectly translated into a physical object by adding material layer by layer, making
the process highly efficient and flexible [Wohlers2011].

Within the framework of Industry 4.0, AM is standing out due to its integra-
tion of smart technologies and digital processes in manufacturing [Huang2015].
The ability of AM to quickly prototype and create complex geometries without
needing extensive tooling or assembly lines demonstrates the versatility and cus-
tomization at the heart of Industry 4.0. The straightforward translation of CAD
designs into physical items streamlines development, greatly reduces lead times,
and promotes innovation and rapid response to market demands.

However, AM has its weaknesses. The layer-by-layer construction can result
in anisotropic properties, meaning the material properties may vary in different
directions [DebRoy2018]. Surface finish and dimensional accuracy can also be
inferior compared to traditional methods, potentially requiring additional post-
processing [Herzog2016]. The variability in material properties and the presence
of internal defects are critical concerns that necessitate thorough inspection and
quality control [Thijs2010], especially in industries such as aerospace, medical
devices, and automotive, where the unexpected failure of a part is highly unde-
sirable.

To ensure the reliability and integrity of AM parts, cro:NDTNon-destructive
testing (NDT) techniques are commonly employed. These methods allow for
the examination of materials and structures without causing damage. Key NDT
techniques used in the context of AM include visual inspection, ultrasonic testing,
thermography, and X-ray inspection [Leach2020].

15
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X-ray inspection, through cro:DXRDigital X-ray radiography (DXR) and
cro:X-CTX-ray Computed Tomography (X-CT), is widely used in AM due to
its ability to reveal internal structures and defects with high resolution. DXR
produces a two-dimensional image, capturing variations in material density and
thickness. X-ray CT, on the other hand, provides three-dimensional images by
compiling multiple radiographic images taken from different angles. This tech-
nique allows for detailed analysis of internal features and detection of flaws such
as cracks, voids, and inclusions [Seifi2016].

Nevertheless, X-ray imaging is not without its challenges. Two common is-
sues that can hinder defect detection are X-ray scattering and beam hardening
[Thompson2020]. X-ray scattering occurs when X-rays deviate from their orig-
inal path as they pass through a material, leading to image blurring and reduced
contrast [Maire2013|. Beam hardening happens when lower energy X-rays are
absorbed more than higher energy ones, causing artifacts in the images that can
obscure or mimic defects [Smith2017]. Moreover, the lack of detailed informa-
tion about the X-ray source spectrum and the sensitivity of detectors further
complicates the application of poly-chromatic approaches to address beam hard-
ening.

To enhance defect detection in AM parts, comparing X-ray images with their
corresponding CAD models can be highly effective [Pavlov2017]. This can be
done by directly comparing the surface mesh obtained from X-ray CT scans
with the original CAD mesh [Tang2020]. Alternatively, virtual projections of
the CAD model can be created and compared with the actual X-ray images
[Cloetens2018]. These methods help in identifying deviations and locating de-
fects with greater accuracy [Masood2014].

Within this context, the thesis you are reading delves into the exploration
of novel ways for defect detection through automatic multi-mesh registration
and scanning system spectral behaviour estimation (Chapter 3), enhancement of
X-ray images through X-ray scattering compensation (Chapter 4), and employ-
ing the latest deep learning methods tailored efficient 3D segmentation through
a patch-wise approach (Chapter 5). By identifying internal flaws that could
compromise performance or safety, these techniques help maintain high-quality
standards and enhance overall confidence in AM-produced components, while
lowering technical and operational requirements.
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Foundation

This thesis explores X-CT image processing and inspection techniques for AM
samples. This foundational chapter introduces the AM process, discusses common
AM defects, outlines X-CT imaging principles, and delves into the application of
deep learning for semantic image segmentation.

2.1 The Additive Manufacturing Process

AM constructs objects by sequentially adding material layer by layer, contrasting
sharply with traditional subtractive manufacturing techniques that remove ma-
terial through cutting, drilling, or milling. The AM process begins with a digital
3D model created using Computer-Aided Design (CAD) software. This model
is then sliced into thin cross-sectional layers by the printer’s software, and the
printer constructs the object by adding material layer upon layer based on these
slices [Gibson2010].

Various methods of additive manufacturing are employed to achieve the layer-
ing process. Fused Deposition Modeling (FDM) uses a heated thermoplastic fila-
ment extruded through a nozzle to build each layer [Crump1992]. cro:SLAStereolithograpl
(SLA) utilizes a vat of liquid resin that is cured layer by layer using a UV laser
[Hull1986]. Selective Laser Sintering (SLS) employs a laser to sinter powdered
material, binding it together to form a solid structure [Deckard1990]. Direct
Metal Laser Sintering (DMLS) and cro:SLMSelective Laser Melting (SLM) use
high-power lasers to fuse metal powders [Kruth1998]. Since SLA and SLM are
utilized for the AM samples in this thesis, these processes are explained in further
detail.

SLA is one of the earliest and most widely used 3D printing technologies. It
employs a vat of liquid photopolymer resin, which is cured layer by layer using
a UV laser [Hull1986], as outlined in Fig. 2.1. The process begins with the
printer platform being submerged slightly below the surface of the liquid resin.

17
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e _
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Figure 2.1: Schematic of the SLA process.

The UV laser traces the first layer of the design onto the surface, polymerizing
and solidifying the resin in the desired pattern. After each layer is completed,
the platform lowers slightly, and the next layer is traced and cured on top of the
previous one. This process is repeated until the entire object is formed, with
typical layer thicknesses ranging from 25 to 100 micrometers, allowing for high
precision and fine detail [Malek1995].

The advantages of SLA include high precision and smooth surface finishes,
making it ideal for applications requiring detailed features and fine tolerances.
However, the materials used in SLA, typically photopolymers, can be brittle and
may require post-processing steps such as washing to remove excess resin, addi-
tional UV curing to ensure full polymerization, and support removal to finalize
the part [Gibson2010]. Common defects in SLA include layer delamination,
resin pooling, and incomplete curing [Malek1995]. Layer delamination occurs
when cured layers fail to bond properly, often due to insufficient laser power
or rapid movement of the build platform. Resin pooling happens when excess
resin accumulates in certain areas, causing inconsistencies in layer thickness. In-
complete curing can result in soft or uncured spots within the printed object,
affecting its mechanical properties and durability. These defects can be identified
through visual inspection, mechanical testing, or advanced imaging techniques
like X-ray CT and mitigated by optimizing printing parameters and thorough
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Figure 2.2: Schematic of the SLM process.

post-processing [Williams2002].

SLM is a highly advanced additive manufacturing technique that uses a
high-power laser to fully melt and fuse metallic powders to create solid three-
dimensional objects [Kruth1998|. Unlike SLA, which uses liquid resins, SLM
works with a variety of metal powders, including stainless steel, titanium, alu-
minum, and cobalt-chrome alloys. The process begins by spreading a thin layer
of metal powder across the build platform, as outlined in Fig. 2.2. The laser then
selectively melts the powder according to the CAD data, fusing it to form a solid
layer. After each layer is completed, the build platform lowers, and a new layer
of powder is spread on top, repeating the process until the entire object is formed
[Frazier2014].

SLM is particularly valued for its ability to produce parts with complex ge-
ometries and high mechanical properties [Yap2015]. It is extensively used in
industries such as aerospace, automotive, and medical, where strong, lightweight,
and customized components are essential. Despite its advantages, SLM can be
expensive due to the cost of metal powders and the high energy consumption
of the lasers. Additionally, the process can induce residual stresses in the parts,
which may require heat treatment post-processing [Gibson2010].

Among undesired inner porosity arising from the SLM technique, cro:LoFLack-
of-fusion (LoF) and cro:KHKeyhole (KH) pores are known to have the highest
share in the total porosity. LoF pores arise when there is insufficient melting
and bonding between adjacent powder layers or tracks [Yap2015], as shown in
Fig. 2.3.a. This defect typically results from inadequate laser energy, excessive
scanning speed, or incorrect layer thickness. When the energy input is too low,
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Laser

Laser Motion

Figure 2.3:  Formation of (a) LoFs and (b) KH pores. From
Ref. [poudel2022feature], used under Creative Commons CC-BY license.

the powder particles do not fully melt, leading to incomplete fusion between lay-
ers. This creates irregular voids within the material, compromising structural
integrity and potentially leading to premature failure under load [King2014].
LoF pores are often irregular in shape and size and can be distributed through-
out the part, making them challenging to detect and characterize [King2014].
KH pores form during the SLM process when excessive laser energy creates deep,
narrow cavities in the melt pool [Yap2015], as shown in Fig. 2.3.b. This oc-
curs when the laser power is too high or the scanning speed is too slow, leading
to a keyhole-mode melting. In this mode, the laser penetrates deeply into the
powder bed, creating a vapor depression that can collapse, trapping gas and
forming elongated, keyhole-shaped pores [King2014]. These pores act as stress
concentrators, significantly reducing the material’s mechanical properties, such
as tensile strength and fatigue resistance [King2014].

The materials used in additive manufacturing are diverse, including poly-
mers, metals, ceramics, and composites. Common polymers such as PLA and
ABS are favored for their ease of use and versatility. Engineering-grade plastics
like nylon and polycarbonate serve more demanding applications [Gibson2010].
Metals like titanium, aluminum, and stainless steel are utilized in industries
such as aerospace and medical for their strength and durability. Ceramics are
printed for applications requiring high heat resistance or electrical insulation
[Gibson2010]. Composite materials, which combine polymers with fibers like
carbon or glass, provide enhanced mechanical properties for high-performance
applications [Gibson2010].

A significant challenge in additive manufacturing is the occurrence of defects.
These defects act as stress concentrators, reducing mechanical properties such
as tensile strength and fatigue resistance [King2014]. Accurate detection and



2.2. X-ray imaging and Computed Tomography 21

characterization of these defects are crucial for ensuring the reliability of AM
components [Yap2015]. NDT methods are essential across various industries for
evaluating material properties without causing damage. These methods ensure
product integrity and reliability, detect defects, and prevent failures throughout a
product’s lifecycle. Surface methods like visual inspection or dye penetrant test-
ing are limited to surface-breaking flaws and cannot provide information about
subsurface conditions [Shull2002]. Internal NDT methods, such as X-ray testing,
are crucial for identifying internal defects that are not visible from the surface.

2.2 X-ray imaging and Computed Tomography

X-rays imaging is a NDT method essential for evaluating material properties with-
out causing damage. X-rays penetrate materials to varying degrees, making them
particularly useful for identifying internal defects such as cracks, voids, and inclu-
sions. The generation of X-rays typically involves X-ray tubes, where high-energy
electrons are accelerated and directed toward a metal target, usually tungsten .
When these high-speed electrons collide with the target material, their sudden
deceleration causes the emission of X-rays. This process produces characteristic
X-rays, specific to the target material, and Bremsstrahlung (braking radiation),
a broad spectrum of X-rays generated by the deceleration of electrons.

Once generated, X-rays pass through the object being inspected and are ab-
sorbed by a detector. In industrial environment, photon-integrating detectors are
the most common choice for their contained cost. These detectors measure the
intensity of the transmitted X-rays and convert this information into an image.
Areas where X-rays are absorbed more strongly appear darker on the resulting
radiograph, indicating denser or thicker regions, while areas where X-rays pass
through more easily appear lighter, revealing internal structures. As an example,
a bevel gear is shown in Fig. 2.4, where it is noticeable to peripheral part of the
gear are less attenuating the X-rays than the central, bulkier part.

In Fig.2.4, careful observation reveals non-uniform grey values in rectangular
areas where the imaged objects are not absorbing X-rays. These irregular patterns
are caused by variations in the gain and electrical bias of the detector’s read-
out circuitry. To correct these inconsistencies, a log-correction must be applied,
utilizing both white-field and dark-field images from the X-ray scanning system,
as illustrated in Fig. 2.5.

The white-field image is captured without any object in the X-ray beam
path, representing the detector’s response to uniform X-ray exposure. Conversely,
the dark-field image is obtained with the X-ray source turned off, capturing the
detector’s inherent noise and biases. By applying a log-correction using these
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Figure 2.4: Few radiographs of a bevel gear.
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Figure 2.5: An example of (a) white-field image and (b) dark-field image.
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Figure 2.6: Main interaction mechanisms of X-rays with matter, which are asso-
ciated with image formation. From Ref. [seibert2005x] (©) SNMMI.

reference images, we can normalize the radiographs, thereby reducing the impact
of detector non-uniformities and enhancing image quality [Hsieh2003].

X-ray imaging quality can be significantly affected by various factors related
to the interaction mechanisms between X-rays and matter, such as scattering and
beam hardening. These phenomena are rooted in the fundamental interactions
of X-rays with the atoms in the material they penetrate, primarily involving the
photoelectric effect, Rayleigh scattering, and Compton scattering, as schemati-
cally shown in Fig. 2.6.

Scattering occurs through two primary mechanisms: Rayleigh scattering and
Compton scattering. Rayleigh scattering, also known as coherent scattering, in-
volves the deflection of X-rays without a change in their energy. This type of
scattering is more prevalent at lower X-ray energies and contributes to a reduc-
tion in image contrast and detail due to the scattered X-rays deviating from their
original paths [Seibert2005]. Compton scattering, or incoherent scattering, in-
volves the interaction of X-rays with loosely bound electrons in the material. This
interaction results in the X-rays being deflected and losing energy in the process
[Hsieh2003]. Compton scattering is more significant at higher X-ray energies
and, as for Rayleigh scattering, contributes to image degradation.

Beam hardening is primarily caused by the photoelectric effect, which is highly
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dependent on the energy of the X-rays and the atomic number of the mate-
rial. The photoelectric effect occurs when X-ray photons are absorbed by atoms,
causing the ejection of inner-shell electrons [Hsieh2003]. This effect is more
pronounced at lower X-ray energies and with materials of higher atomic num-
bers. As the X-ray beam passes through the material, the lower-energy X-rays
are absorbed more readily than the higher-energy ones, resulting in a progressive
increase in the average energy (or "hardening”) of the X-ray beam. This prefer-
ential absorption of lower-energy photons leads to artifacts in the X-ray images,
such as false density variations or streaks, which can compromise the diagnostic
quality of the images.

X-CT builds on traditional X-ray methods by constructing a three-dimensional
representation of an object from multiple two-dimensional X-ray images taken at
different angles. The X-CT imaging process involves rotating the X-ray source
and detectors around the object, capturing numerous radiographs, and using com-
putational algorithms to reconstruct a detailed 3D image of its internal structure,
as in Fig. 2.7. X-CT can also be done in a discrete way, which incorporate prior
knowledge about the limited number of materials within the object to enhance
the reconstruction process [DART]. By recognising that many objects are com-
posed of a few distinct materials, discrete tomography methods can improve the
overall quality of the reconstructed images, as in Fig. 2.8. Both traditional and
discrete X-CT offers unparalleled insights into the internal features of objects.
X-CT is particularly advantageous for its high-resolution imaging capabilities,
which allow for the detection of small, subsurface defects that might be missed
by other NDT methods.

2.3 Deep Learning for semantic segmentation

DL has emerged as a powerful tool for image processing, particularly in the
domain of semantic segmentation, which involves partitioning images into mean-
ingful regions. Segmentation is crucial in X-CT imaging for isolating specific
structures or areas of interest within the reconstructed volume, such as detecting
defective zones in AM prints. DL models can be trained for segmentation using
various training paradigms, broadly categorized into supervised and unsupervised
methods, as illustrated in Fig. 2.9.

Supervised training relies on labeled datasets to train models, where regions
of interest are already identified and annotated. During this process, the model
learns to recognize similar patterns in new images, providing accurate segmenta-
tion based on the examples it has seen during training.

Unsupervised training does not rely on labeled data. Neural models in this ap-
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(a) (b) (c)

Figure 2.7: Three orthogonal cross-sections of a bevel gear after X-CT recon-

struction of the radiographs. The planes of the cross-sections are indicated by
the colored lines in each image: (a) referenced in green, (b) in blue, and (c) in
red. This reconstruction accounts for beam-hardening and X-ray scatter.

Sepw

Figure 2.8: Cross-sections of a discrete X-CT reconstruction of the bevel gear
shown in Fig. 2.7. Compared to Fig. 2.7, it is noticeable the limited colormap
with just two colour values, black (air) and white (gear material).
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Figure 2.9: Two training paradigms for DL methods in defect segmentation.
Supervised networks use labeled data for direct inference of defects in X-CT
images. Unsupervised networks aim to generate a defect-free version of the input
image, with anomalies identified by differences between the input and output
images.

proach are designed to reproduce the input image as the output, learning the sta-
tistical characteristics of defect-free images. During inference, the networks can-

not reproduce defects, and the difference between input and output images high-
lights the defective zones. This method identifies patterns and structures without

prior knowledge, useful for datasets lacking labeled examples [bozorgtabar2020salad,
kim2022virtual]. Autoencoders, variational autoencoders (VAEs), and genera-

tive adversarial networks (GANSs) are commonly used for unsupervised anomaly
detection, trained to reconstruct normal data with anomalies detected through

high reconstruction errors [baur2020autoencoders].

The quality of segmented images depends on the initial X-CT reconstruction,
scan resolution, and DL model robustness. Higher resolution scans provide more
detailed segmentation, while advanced DL models trained on diverse datasets
enhance performance by capturing finer details and reducing errors. Despite the
computational intensity and the need for large datasets, volumetric information
within the X-CT can be fruitfully used through 3D patch-based approaches, as
recently proposed, which drastically reduce the memory footprint of DL models
[perez2021torchio]. Compared to traditional machine learning methods, DL
approaches offer significant improvements in the accuracy and efficiency of im-
age segmentation and defect detection, making them invaluable nowadays in the
analysis of complex X-CT data.
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Multi-mesh registration from few
X-ray projections

One effective strategy for defect detection in AM is the comparison of measured
X-ray radiographs with simulated radiographs derived from digital CAD models.
This method necessitates accurate simulation of X-ray projections that reflect
the multi-chromatic nature of the scanning system and the scanned objects. Key
to this approach is the precise alignment or registration of the surface mesh,
contained within the CAD model, with the X-ray radiographs, a process com-
plicated by the need for detailed knowledge of the object’s properties and the
spectral information of the X-ray scanning system.

The challenge lies in the availability of these details. Typically, end-users lack
comprehensive information about the object’s X-ray attenuation coefficients of
the scanned objects and the spectral behavior of the scanning system. Address-
ing these gaps often involves complex estimations or the use of supplementary
systems, posing significant hurdles for practical implementation.

This chapter introduces an innovative methodology utilizing the CAD-ASTRA
toolbox [paramonov2024cad]|, which enables efficient X-ray mesh projection
and facilitates multi-object pose estimation with a minimal number of radio-
graphs. CAD-ASTRA’s capability to simulate projections from complex geome-
tries makes it particularly advantageous in industrial settings, where spatial con-
straints on X-ray source and detector placement are common.

Leveraging CAD-ASTRA, which differential implementation has been devel-
oped specifically for this task, combined with PyTorch [paszke2019pytorch|
for optimisation, this chapter focuses on registering multiple object meshes using
sparse X-ray projections. By employing a differentiable projector within CAD-
ASTRA, the process integrates seamlessly with gradient-based optimisers, allow-
ing for simultaneous determination of the 3D position, orientation, and spectral
characteristics the scanning system. This approach not only enhances the accu-
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racy of defect localization but also streamlines the inspection process, aligning
with the operational needs of modern manufacturing environments.

Through this methodology, the author aim to address the inherent challenges
in mesh registration for X-ray radiograph analysis, providing a robust basis for
an efficient framework for defect detection in AM components.

3.1 Related works

The pose estimation of objects within industrial settings traditionally relies on a
comprehensive set of projections, through X-CT reconstructions. This technique
allows for the inference of pose through the registration of CAD models with
point clouds kim2021robust]| or extracted meshes [sukowski2022automated,
iuso2021cad]. However, the feasibility and desirability of 3D X-CT images may
be limited in certain scenarios. In recent developments, efforts have been directed
towards achieving pose estimation based on a low number of X-ray projections.
A notable industrial approach utilizing deep learning was proposed by Presenti
et al. [presenti2023fast|, demonstrating pose estimation efficacy with as few as
one projection. While such approaches exhibit promising performance in con-
trolled environments, challenges arise from the specialized training procedures
and the inherent black-box characteristics of many deep learning methods, imped-
ing widespread adoption. Another recent contribution explored pose estimation
from X-ray projections by employing a CAD model and matching 2D-3D im-
age features through mesh projections [tanmatching]. The proposed approach
shares similarities with this method, with the additional benefit of overcoming
challenges associated with complex geometries and overlapping meshes, where
image features might be hardly discernible. In this study, a multi-mesh registra-
tion from X-ray projections is presented, using a mesh projector implemented as
a differential program, elucidating the capabilities of the proposed method.

3.2 Methods

CAD-ASTRA utilizes watertight triangular surface meshes' to represent homoge-
neous volumes as enclosed entities. These meshes incorporate information about
the source and detector positions and orientations to simulate X-ray acquisition,
considering object attenuation. The initial guess for mesh position and orien-
tation, represented by p, serves as a starting point, with source and detector
positions assumed from scan metadata.

! A watertight surface mesh is a closed surface mesh free from self-intersections and overlaps.
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Each mesh m € RV*3

comprising N vertices undergoes transformation via
a roto-translation operator Ag, : RN*3 5 RNX3 Here, the pose vector 6 =
[a, 8,7, tz, ty, t.] defines the 3D mesh’s position and orientation, in terms of Euler
Z-Y-Z angles (a, S, 7, respectively) and translation along the z, y, and z axis
(tz, ty, t2), respectively.

The projection operator Proj,; maps mesh vertices to W projection images,
each image consisting of M pixels:

Proj, : RV*3 — RM>W (3.1)

with d representing metadata linked to the meshes.

Estimation of the pose py, for the k-th of the K meshes composing the scene,
is achieved through linear programming, aiming to minimize the sum of squared
differences in the projection space between measured projections P € RM*W
(adjusted for dark and bright fields) and projections simulated by Proj,:

K 2

P — ) " Proj [Ag, [m]]
k=1

élu- éK:ar min
’ ’ & 01, 0K

(3.2)

2

Any objective function, as the one denoted in 3.2, can be conceptually de-
composed as a concatenation of an error function g on the simulated projection
function Proj,, depending on a roto-translation through the operator A by a pose
vector ). This leads to a compact formulation as fy(z) = g(Proj,(Ag, (z))). Op-
timising the linear programming problem 3.2 through analytical gradient methods
requires knowledge of all the Jacobians involved in the Jacobian of the composed
function f;. The analytical gradient is then defined as:

V fa(m) = Jact Jach,o; Vg (Projy(m)) (3.3)

where direct access to the Jacobian-vector product of Jacp,,; is provided by CAD-
ASTRA, whilst the other Jacobian-vector products are computed through auto-
grad patterns [bradbury2018jax, paszke2019pytorch]. Optimising 3.2 with
analytical gradient-based methods, offers computational efficiency, particularly
in scenarios with detectors with high spatial-resolving capability.

As real X-ray projections in industrial scenarios are commonly employing a
poly-chromatic X-ray source, accurate polychromatic forward model is needed
to reduce the likelihood of undesired local minima in 3.2. Therefore, the Proj,
operator is substituted by the poly-chromatic operator PolyProj,;, where:

E K
PolyProj,; = Z SeDebe exp(— Z Leklk) - (3.4)
k=1

e=1
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In the above formula, the X-ray attenuation of photons is based on the energy-
dependent intensity of photons s. emitted by the X-ray source, the detector
response D, and the energy d. contained in the energy bin e. The product
Qe = seD 6 defines the weight of each energy bin e, contributing to the total
spectral behavior Q@ = [y, ..., Qg], with E denoting the number of energy bins.
For each mesh, the attenuation is measured by its spectral linear attenuation i j,
and the path-length [; crossed by a geometrical ray pointing at a detector pixel.

If such a model is implemented in frameworks that leverage automatic differ-
entiation patterns, such as PyTorch, it is possible to optimise even the new linear
programming problem using 3.4 without expensive numerical approximations.
As the poly-chromatic characteristics of the X-ray source and detector, as well as
the spectral linear attenuation of each scanned material, may be unknown, these
parameters can be jointly optimized with a proper cost function. For experiments
with no prior knowledge on the exact scanning system spectral characteristics,
the linear programming problem in 3.2 is enriched with regularization on the
first derivative of the system spectral behavior, under the assumption of smooth
spectral behavior:

2
+Vel; . (3.5)
2

K
P — ) " PolyProj [Ag, [mu]]
k=1

0~1~-' éK:ar min
’ ’ & 01,0k,

Pose Refinement through Re-Iteration: To mitigate cases where local
minima occur due to symmetry in the object with respects to the vertical axis,
an additional step of re-iteration may be introduced (with results presented sep-
arately). After the initial registration, the algorithm systematically rotates the
objects around their symmetry axis and re-executes the registration procedure.
This process helps in overcoming challenges posed by symmetry, enhancing the
robustness of the pose estimation, especially in scenarios with highly symmetric
objects.

3.3 Experiments

In this section, the experiments conducted on three distinct scanned objects are
presented using one or more supporting scanning elements. The scanned objects
include an aluminum step-wedge, and two samples printed through AM, which are
a cro:SS316LStainless steel 316L (SS316L) cantilever and a SS316L cylinder-like
object. The supporting elements, constructed from cro:PA12Polyamide (PA12),
consist of cylinders with a height of 1 cm and diameters ranging from 3 to 5
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cm, as well as a hollow shaft with a 0.5 cm diameter. The FleXCT scanning sys-
tem [FlexCT] was utilised, with different source-to-object and source-to-detector
distances, kVp and pre-filtering settings for each scan.

The objective of these experiments was to showcase two different applica-
tions of the registration technique, one involving limited information about the
scanning system and the other utilizing limited projection information.

3.3.1 Registration with limited scanning system information

In this experiment, limited scanning system information refers to uncertainty
regarding the spectral behavior of the scanning system and the objects’ poses.
The registration process addresses a challenging scenario by iteratively estimating
the spectral behavior and poses through the solution of the linear programming
problem in 3.5. The initial pose of the objects and supporting elements is set as a
shifted and rotated configuration from a vertically aligned state. The registration
is performed using 100 projections acquired in a circular trajectory around the
object.

3.3.2 Pose estimation performance by reducing the number of
projections

In this experiment, the linear programming problem from 3.2 based solely on
projection error is employed. The initial pose of the scene’s objects is realisti-
cally estimated with the assumption that the objects and supporting elements
are vertically aligned. The registration is conducted by reducing the number of
projections from 100 to 10 (100, 50, 10), all acquired in a circular trajectory
around the isocentre.

3.3.3 Pose estimation performance by reducing the angular range

Similar to the preceding experiment, the linear programming problem presented
in 3.2 is employed, assuming that the objects are vertically aligned. In this ex-
periment, only two projections are utilized, chosen from a complete circular scan
around the isocenter. The angle between these two projections is systematically
decreased (90 degrees, 50 degrees, 10 degrees) to assess its influence on pose
estimation stability.

To ensure the accuracy and repeatability of this experiment, the mesh regis-
tration is iterated five times, initiating from different projections for each scene
and for each angular case. This repetition aids in investigating the consistency
and reliability of the obtained results.
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3.4 Results and discussions

In this section, the outcomes of the experiments described in section 3.3 are shown
through 3D rendering of the scene of the initial and final objects spatial config-
uration (through Mayavi libraries [d5725237]) and figures of the residual errors
(i.e. difference between projections and simulated projections). For the latter,
the projection-wise cro:RMSERoot mean squared error (RMSE) is computed and
shown to ease the comparisons. Animations showing the evolution of the residual
errors throughout the optimisation steps are available online as supporting media
(https://osf.io/da6p3/).

3.4.1 Registration with limited scanning system information

A scaled 3D rendering, showing both the initial and final poses of the objects from
Experiment 3.3.1, is presented in Figs. 3.1, 3.2, and 3.3. These figures include the
X-ray source and detector, forming a digital twin of the actual scanning setup.

To assess the accuracy of the registration results, attention is directed to the
residual images (Fig. 3.4). These images display the residuals for one of the 100
projections utilized in this experiment. During the registration procedure, the
position of each mesh in space is adjusted to minimize the residual. Discrepan-
cies that persist between the real and simulated projections may stem from object
deformations, especially noticeable in the case of CAD printed samples, uncer-
tainties in the actual chemical composition of samples, and additional physical
effects not simulated, such as X-ray scattering.

3.4.2 Pose estimation performance by reducing the number of
projections

The results of the registrations are depicted in Figs. 3.5, 3.6, and 3.7, showcasing
initial residual errors and final errors (a-c) for three scanning scenarios with 20,
10, and 5 projections. Timings for these registrations are presented in Table 3.1.

For the cantilever, reducing the number of projections does not seem to limit
the quality of the registration. However, for the cylinder scene, a mismatch in the
identification of teeth in the bottom part of the cylinder indicates convergence to
a minimum different from the one identified in the previous experiment (Fig. 3.4).
To address this, a few more iterations of the registration algorithm, incorporating
a starting rotational offset against the vertical axis, successfully mitigate issues
arising from the high symmetry of the cylinder. This refinement leads to more
accurate results, as depicted in Fig. 3.6 (d-f).
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Figure 3.1: Graphical rendering of the X-ray setup of one projection, showing the
initial (left) and final (right) pose of the cantilever and its supporting element.
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Figure 3.2: Graphical rendering of the X-ray setup of one projection, showing
the initial (left) and final (right) pose of the cylinder and its supporting element.
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Figure 3.3: Graphical rendering of the X-ray setup of one projection, showing the
initial (left) and final (right) pose of the stepwedge and its supporting elements.
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RMSE: 5.94e-01 RMSE: 4.41e-01 RMSE: 1.07e+00
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Figure 3.4: An X-ray projection residual showing the initial pose (top row) of the
cantilever (left), the cylinder (center) and stepwedge (right) with their supporting
element, and the final pose (bottom row) of the objects after the registration
procedure.
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RMSE: 7.77e-01 RMSE: 1.46e-01 RMSE: 1.38e-01 RMSE: 1.41e-01

Initial state 20 projections 10 projections 5 projections

Figure 3.5: A X-ray projection residual showing the initial pose of the cantilever
and its supporting element aligned along the vertical axis, and the final pose of
the objects after registration using 20 projections, 10 and 5.

Scene ‘ ‘ Cantilever ‘ Cylinder ‘ Stepwedge

20 10 5 20 10 5 20 10 )
326 185 113 | 263 157 138 | 312 225 216

# of projections
Time (s)

Table 3.1: Pose estimation timings for each scene, varying the number of projec-
tions.

In contrast, the registration of the stepwedge exhibits stable behavior, ex-
cept for the most challenging case with only 5 projections. In this instance, the
supporting straw-like object demonstrates a different pose convergence. This be-
havior is attributed to the near transparency of the thin plastic straw to the
majority of X-ray photons produced by a 230 kVp X-ray source. The attenu-
ation values are comparable to flat-field fluctuations observed during the scans,
contributing to the pose convergence variation.

To inspect the stability of the estimated pose as a function of the number
of projections, a further analysis is conducted by repeating this last scenario of
the stepwedge 5 times, starting from different sets of projections. The results are
summarised in Table 3.2, which shows the angle of rotation against the estimated
rotational axis in relation to the number of projections. The results consistently
indicate that lowering the number of projections increases the likelihood of ending
up in undesired minima for the estimated pose parameters.
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RMSE: 3.73e-02 RMSE: 3.71e-02 RMSE: 3.73e-02
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Figure 3.6: A X-ray projection residual showing the initial pose of the cylinder
and its supporting element aligned along the vertical axis, and the final pose of the
objects after registration using 20 projections (a), 10 (b) and 5 (c¢). Systematic
rotation of the objects’ poses around their vertical axes allows for mitigating the
risk of local minima, resulting in more favorable registration outcomes with 20
projections (d), 10 (e), and 5 (f) compared to the configurations in (a-c).
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RMSE: 6.27e-01 RMSE: 3.22¢-02 RMSE: 2.79¢-02 RMSE: 3.37¢-02
15 0.6
10 0.4
0.5 0.2
0.0 0.0
—0.5 -0.2
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Initial state 20 projections 10 projections 5 projections

Figure 3.7: A X-ray projection residual showing the initial pose of the stepwedge
and its supporting elements aligned along the vertical axis, and the final pose of
the objects after registration using 20 projections, 10 and 5.

H 20 projections 10 projections 5 projections
Rot. angle (deg) || 179.96 £ 0.01 179.94 + 0.72 177.13 £ 1.28

Table 3.2: Pose estimation results for the scene with the stepwedge, presented
as the rotation angle of the stepwedge relative to an estimated rotation axis.
The results are provided as the average and standard error across 5 repetitions,
starting from different sets of projections.
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Scene H Cantilever Cylinder Stepwedge
Time (s) || 258.0 £ 4.6 3827 £32 4453 £6.5

Table 3.3: Pose estimation timings for each scene, by using 2 projections. Results
are given as average and standard error of the mean, across all the 5 repetitions.

3.4.3 Pose estimation performance by reducing the angular range

Similar to the preceding experiments, the results, presented as projection resid-
uals, are depicted in Figs. 3.8, 3.9, and 3.10. Timings for these registrations are
presented in Tab. 3.3. Given the significant limitation of projective information
in this scenario, results are showcased for both the conventional application of
the algorithm and a re-iteration of the registration procedure.

In the scanning scenarios involving the cylinder and stepwedge, the results
exhibit consistent behavior with the findings of previous experiments. However,
in the case of the cantilever, the more challenging registration scenario results
in an unrealistic positioning of the main object, noticeable for the case with a
angular distance of 50 deg. The difficulty arises from a more impervious solution
space, making it easier to fall into local minima, as demonstrated in the more
challenging case with 10° in Fig. 3.8.c. Again, re-iteration of the registration
algorithm leads to more accurate pose estimation, as graphically shown in the
bottom row of Fig. 3.8.

The accuracy and stability of the registration procedure, including the re-
iteration procedure, for all scenes in this experiment are extensively reported in
the supplementary material (pages 109 and 110), in terms of the average and
standard error of the estimated pose parameters for each object. In this analysis,
the registration runs 5 times with different pairs of angles. The results indi-
cate that the estimated position is relatively stable throughout the repetitions,
and the error of the pose parameters is relatively low. The maximum devia-
tions are recorded for the stepwedge, as its distance from the source (500 mm)
is significantly higher than in the other two cases (cantilever 86.68 mm, cylinder
43.33 mm). The rotational angle shows a standard error of 1.76° across the repe-
titions, while its translation is determined with an error of 2.41 mm. Exceptions
are observed for supporting elements, as they appear in their CAD model as
perfectly symmetrical around their vertical axis. As also the surface mesh of the
cantilever is perfectly symmetric to one of its intersecting planes, the rotation-
related parameters have higher error due to the ambiguity arising from of its
Symmetry.
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RMSE: 1.51e-01 RMSE: 3.89e-01 RMSE: 1.10e-01

RMSE: 7.77e-01

a) 90 deg b) 50 deg c) 10deg

RMSE: 1.50e-01 RMSE: 1.32e-01 RMSE: 1.10e-01

Initial state

d) 90 deg e) 50deg f) 10deg

Figure 3.8: A X-ray projection residual showing the initial pose of the cantilever
and its supporting element aligned along the vertical axis (left side). The final
poses of the objects are presented after executing the registration procedure us-
ing 2 projections with angular ranges of 90deg (a), 50deg (b), and 10deg (c).
Systematic rotation of the objects’ poses around their vertical axes allows for mit-
igating the risk of local minima, resulting in more favorable registration outcomes
with different angular ranges 90 deg (d), 50 deg (e), and 10deg (f) compared to
the configurations in (a-c).
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Figure 3.9: A X-ray projection residual showing the initial pose of the cylinder
and its supporting element aligned along the vertical axis (left side). The final
poses of the objects are presented after re-executing the registration procedure
using 2 projections with angular ranges of 90deg (a), 50deg (b), and 10deg (c).
Systematic rotation of the objects’ poses around their vertical axes allows for
mitigating the risk of local minima, which resulted in different outcomes for the
angular ranges 90 deg (d), 50 deg (e) and 10 deg (f).
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Figure 3.10: A X-ray projection residual showing the initial pose of the stepwedge
and its supporting elements aligned along the vertical axis (a). The final poses
of the objects are presented after re-executing the registration procedure using 2
projections with angular ranges of 90 deg (b), 50deg (c), and 10deg (d). System-
atic rotation of the objects’ poses around their vertical axes allows for mitigating
the risk of local minima, resulting in more favorable registration outcomes with
different angular ranges 90 deg (e), 50deg (f), and 10deg (g) compared to the
configurations in (b-d).
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3.5 Conclusion

In conclusion, this novel approach to 3D mesh registration in few-view indus-
trial X-ray imaging, utilizing an X-ray mesh projector with compatibility for
the ASTRA toolbox and auto-differentiation libraries like PyTorch, emerges as
a resource-efficient alternative. The method, utilising a X-ray mesh projector
implemented as differential program specifically for this task, has demonstrated
efficacy in achieving 3D multi-mesh registration in multiple X-ray scanning sce-
narios.

The experiments revealed the robustness of this approach in simultaneous
multiple object registration, even under poly-chromatic conditions with limited
knowledge about the scanning system’s spectral characteristics or sparsity in pro-
jection domain. When using 2 projections, the higest error on the rotational angle
was up to 1.76° and 2.41 mm on the translation, for the case of the stepwedge
with source-to-object distance of 500 mm. However, challenges surfaced, partic-
ularly when objects had a high degree of symmetry or in case projective model
inaccuracies were present. Addressing these challenges is crucial for enhancing
the applicability and accuracy of the proposed methodology.

Despite identified challenges, this method highlights resource efficiency, elim-
inating the need for resource-intensive X-CT reconstruction allowing registration
even in a fixed multi-head X-ray radiography scanning system. This study marks
a significant advancement, showcasing the practicality and efficiency of the pro-
posed methodology. As a future prospect, the method’s adaptability opens pos-
sibility to proceed in mesh deformation estimation from X-ray projections. This
potential extends the utility of the approach presented here, making it a valuable
candidate for enhancing industrial inspection workflows.
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PACS: Projection-driven with
Adaptive CADs X-ray Scatter
Compensation

Ensuring high-quality imaging is of paramount interest during the evaluation of
AM components. In X-ray imaging, however, image quality is often compromised
by artifacts such as X-ray scattering and beam hardening. These artifacts can
obscure defects or mimic their presence, leading to inaccurate assessments.

Among these issues, X-ray scatter presents a significant challenge. As X-rays
pass through an object, they can deviate from their original path. This scattering
effect is influenced by the material properties and geometry of the scanned ob-
ject, complicating the accurate detection and characterization of defects. Scatter
artifacts cause image blurring, reduced contrast, and streaking artifacts, partic-
ularly with high-absorbing objects. Effective scatter compensation methods are
essential to enhance image clarity and reliability.

To address this challenge, this chapter introduces cro:PACSProjection-driven
Adaptive CADs X-ray Scatter compensation (PACS), which leverages CAD mod-
els to simulate and correct for scatter effects, thus enhancing defect detection ca-
pabilities without the need for prior CT reconstructions or extensive deep learn-
ing models. PACS eliminates the need for deep learning training and geometry-
dependent scatter library calculations. Additionally, to expedite simulations,
acceleration strategies are described and utilised for downsizing the simulation
problem.

The effectiveness of PACS in improving the reliability and accuracy of X-ray
inspections for AM components is demonstrated across various scenarios, includ-
ing poly-chromatic radiography-based analysis, discrete poly-chromatic X-CT re-
construction (based on DART [six2019poly]), and conventional poly-chromatic
X-CT reconstructions. Its performance is compared against established scatter
compensation methods, highlighting PACS’s advantages in practical applications.
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4.1 Related Works

The quest for mitigating the effects of X-ray scattering has led to the develop-
ment of various hardware- and software-based solutions. Hardware approaches
include adjustments in detector positioning [sorenson1985scatter], the use of
bow-tie filters [liu2014dynamic|, anti-scatter grids [vogtmeier2008two], and
beam-stop/beam-hole arrangements [schorner2011comparison|. While these
methods can effectively reduce scattered radiation, they often require specific
modifications to the scanning setup, limiting their applicability and flexibility.

In contrast, software-based methods provide versatile alternatives for scatter
compensation. Scatter-deconvolution techniques, for example, model the X-ray
source as an array of pencil beams, each contributing to the scattered radia-
tion [rew:firstPaperScatterKernel]. These methods estimate scatter-kernel
parameters based on the known composition of the object, allowing for the sub-
sequent deconvolution of scattered radiation in the projection domain. Various
enhancements to this approach have been proposed, including asymmetry consid-
erations [rew:scatter:asymmetrical-kernels|, attenuation-dependent kernels
[rew:scatter:adaptive-kernels], accurate scatter models [bhatia2016separable],
and energy-dependent kernels [rew:scatter:energy-kernels].

Deep learning methods have also shown promise in scatter compensation, par-
ticularly through the use of U-Net models [rew:scatter:DL-unet1, rew:scatter:DL-unet2,
rew:scatter:DL-unet3, rew:scatter:DL-unet4]. Despite their potential, these
approaches often lack explainability and trustworthiness. Recent advancements
aim to address these issues by incorporating more transparent models. For in-
stance, Roser et al. utilize splines to model and suppress low-frequency scatter
components, with parameters controlled by a neural network [roser2020deep],
while Iskender et al. propose a neural model that simulates X-ray propagation
and scattering across perpendicular planes [rew:DL:physicsbased].

Heuristic techniques leveraging prior knowledge of specific X-CT applications,
such as object symmetries [rew:scatter:heuristic-breast] or approximating
scatter as blurred projections [rew:scatter:heuristic|, offer targeted solutions
for specific artifact types. Analytical methods capable of modeling first-order
scattered radiation in homogeneous or composite objects [rew:scatter:analytical],
as well as simulation-based approaches using Monte Carlo or deterministic meth-
ods for voxelized volumes [maslowski2018acuros, rew:scatter:sim-few-proj2]
or surface meshes [xia2019scatter, iuso2021cad], provide further avenues for
scatter compensation.

All of the X-ray scatter compensation methods mentioned above require a
training procedure, such as those employing scatter-kernels or deep learning,
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impose constraints on the object’s shape, or assume the availability of a prior X-
CT reconstruction. The requirement for a computationally expensive and data-
demanding prior X-CT reconstruction can be circumvented by employing a mesh
projector (e.g., [paramonov2024cad]). The mesh projector efficiently estimates
the position and orientation of AM parts during scanning using only a few X-ray
projections, eliminating the need for a full X-CT reconstruction. This approach
enables the application of simulation-based scatter compensation techniques in
scenarios where obtaining an X-CT scan is not feasible, such as when only a few
projections are available. Moreover, the originally-designed surface meshes can
be deformed and adapted to the real printed sample, allowing for accurate X-ray
scatter compensation for both the printed part and any other objects present
in the scene, such as physical supports. Finally, the use of the mesh projector
avoids the necessity of aligning meshes with different digital origins, which often
result in differing sampling patterns between the CAD model and the surface
mesh extracted from the X-CT scan [lorensen1998marching].

4.2 Materials

Scans were acquired with the FleXCT X-ray scanning device, as detailed in [FlexCT).
The device was equipped with a 2880 x 2880 detector with pixels of size 150 pm.The
scanned object was an AM component, specifically a bevel gear, which was
fabricated using a Form 34 Low Force Stereolithography (LFS)™ 3D printer

by Formlabs, utilizing Draft Resin (Formlabs). During the scan, the AM part
was supported by 3D-printed components constructed from Polyamide 12. The
source-to-detector distance was 800 mm and the source-to-object distance was
320mm. A tube voltage of 150kV,, was applied and the beam was filtered with
1.5 mm aluminum.

The complete scan comprised 3000 projections, equiangularly distributed in
the range [0°, 360°]. However, in the industrial quality inspection of AM samples,
such a high number of projection images may not always be available. To ac-
commodate this, three datasets were created, each corresponding to a distinct in-
spection scenario. The first dataset was designed for projection-based inspection
and consisted of ten equiangularly sampled projections, and therefore labelled
"10P’°. The second dataset included 100 equiangularly sampled projections and
was intended for X-CT inspection using discrete reconstruction of X-CT images,
and therefore labelled '100P’. Lastly, the third dataset, designed for X-CT-based
inspection through conventional CT reconstruction, encompassed the entire set
of 3000 projection images, and is thus referred to as '3000P’. A discrete recon-
struction applied to 100P was obtained through the poly-chromatic version of
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DART [six2019poly] (poly-DART), while conventional X-CT image reconstruc-
tion was achieved using poly-chromatic projective error minimisation based on
Barzilai-Borwein optimisation [barzilail988two], referred to as poly-BB. Both
poly-DART and poly-BB were built on a distributed version of the ASTRA tool-
box [palenstijn2016distributed].

4.3 Methods

The proposed scatter compensation pipeline relies on three essential operations:
1) estimating the object’s pose and shape from few X-ray projections (Section
4.3.1), 2) predicting scatter for each individual X-ray projection (Section 4.3.2),
and 3) compensating for scattered radiation in the actual X-ray projections (Sec-
tion 4.3.3).

4.3.1 Multi-object pose and shape estimation

Accurate scatter compensation in X-CT scans requires estimation of the pose
of the scanned objects and possible deviations from their nominal shape (e.g.,
due to the printing process). To achieve this, the nominal surface model of each
object from its CAD model is employed along with a mesh projector (CAD-
ASTRA [paramonov2024cad]) to iteratively estimate the object’s position and
orientation. This rigid pose estimation then serves as the starting point for
iterative estimation of the (possibly deformed) object shape.

Let K denote the number of objects, where each object k£ =1, ..., K is repre-
sented by its surface mesh denoted as my = (Vi, Ni). Here, Vi, = {v;,} € RV*3
represents the V' vertices of the mesh, and Ny, = {n;} € RN>*3 the normals of its
N triangular faces. During pose estimation, the mesh vertices V;, undergo a roto-
translation described by a pose vector ), € RS, consisting of three parameters
for translation and three for orientation. The iterative refinement begins with an
initial position and orientation assumption, where all objects are initially aligned
along the vertical axis passing through the center of rotation of the scan. Subse-
quently, the estimation process minimises the discrepancy between the measured
projections P € RM and the simulated projections, where M is the product of
the number of projections and their number of pixels, leading to:

2

01, - ,0x =arg min (4.1)

01,0k

K
P — " PolyProj, [Ag, [Vil]
k=1

2

Here, the PolyProj, : RV>*3 — RM operator simulates the poly-chromatic projec-
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tions through the metadata d representing the vertices connectivity and material
optical properties, while Ag, : RY*3 — RV*3 represents a roto-translation oper-
ator that depends on the pose parameters 6.

Subsequently, registered meshes are employed for estimating the deformed
shape of the AM samples. This deformation is described as per-vertex shifts from
the nominal registered surface mesh of the CAD model. Similar to pose estima-
tion, this involves iterative refinement of a linear programming problem. Besides
a data consistency term, regularisation terms are introduced penalise significant
changes in mesh topology. This linear programming problem is formulated as:

K

P~ PolyProj, [Aék [Vk]]
k=1

Vi,---, Vg =arg min
01, .0k

K
+ 3 (allVi = Va3 + B IN; - Nl
k=1

Here, for each k-th mesh, the distance between the vertices Vj, and original ver-
tices V;* is measured, where the difference V;* — V}, symbolically represents the
difference v}, —v;, between each of the ¢ vertices of the k-th mesh. An analogous
explanation applies to N/ — N}, and n;‘k — nj. These regularisation terms are
governed by the parameters a and § during minimisation of the projection error
of (4.2). Both the linear programming problems (4.1) and (4.2) are solved using
the Adam optimiser.

4.3.2 X-ray interaction simulation

From the available simulation software [guillemaud2003sindbad, badal2009acceleratin
sarrut2021ladvanced, kawrakow2000accurate, ay2005development], as well

as specialised X-ray scatter simulation [maslowski2018acuros, elshemey2009monte],
the Monte Carlo (MC) photon transport simulator GATE [sarrut2021advanced]
(version 9.2, built on Geant4 version 11.1.2) was chosen due to its widespread
adoption and extensive validation in literature. Information about the scanning
system, such as scanning geometry and X-ray source operating parameters, was
obtained from the experimental scan data and used for the GATE simulations.
Additionally, the adapted surface meshes of all objects in the scan (as detailed in
Section 4.3.1), were incorporated into the simulation. The simulation was config-

ured to produce two outputs: the X-ray radiation detected by the detector, P,

and the portion of P that underwent at least one either Compton or Rayleigh
scattering event within the object or its supporting elements. This portion is
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referred to as §. Since the FleXCT detector, along with the majority of indus-
trial X-CT systems, is energy-integrating, the simulated detector is designed to
compute the cumulative energy contribution of each incident photon. Each con-
tribution is multiplied by the detector’s sensitivity corresponding to the photon’s
energy.

In addition to P and S , the white-field image W, which represents the unat-
tenuated X-ray radiation, is obtained through an identical simulation without
attenuating objects. To minimise the statistical MC fluctuations in the radiation
detected by each pixel of the simulated white-field image, the simulated white-
field image is fitted with an analytical function for point-wise radiative emission
over a finite square detector element. The derivation of this analytical function
for flat detectors is provided in A.4.

Accelerating MC simulations

X-ray physical interaction simulations conducted with GATE are known for their
high accuracy, but also for slow execution times. To address this issue, the
proposed approach focuses on two main strategies: parallelisation of simula-
tions and leveraging the physical behavior of X-ray scattering. For the paral-
lelisation of simulations, an MPI-based manager that is tailored for the GATE
simulations has been developed. This manager is responsible for partitioning
simulation tasks across CPU-clusters, running parallel instances across comput-
ing nodes, and merging the results. The MPI-manager is publicly accessible
on GitHub [mpiforgate], it is platform-independent in terms of workload man-
agement systems (e.g., PBS, SLURM), uses the ITK [mccormick2014itk] and
MPI [dalcin2021mpidpy] libraries, and is fully implemented in Python.

The knowledge on the scattering pattern of X-rays is harnessed to reduce
computational complexity by optimizing the number of simulated photons per
projection and the number of projections themselves. Previous research by Colijn
et al. [colijn2004accelerated| offered foundational insights into accelerating
simulations by exploiting the spatial smoothness of scatter signals. However,
self-absorption of scattered radiation by the object potentially leads to higher
scatter frequencies for complex object shapes. Building upon this foundation,
the simulation software is utilised for determining how many photons will give a
reliable measure of scattered radiation, to identify the minimal number of photons
needed to simulate each projection. This is done by monitoring the power of the
spatial scatter signal (see Fig. 4.1) for the first projection, for increasing number
of simulated photons. As the photon count at each pixel increases along with the
signal-to-noise ratio of the scatter signal, the bandwidth €2, of the scatter signal
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Figure 4.1: Every minuscule region of the scanned object (brown) scatters X-ray
radiation with a specific density per steradian. This figure illustrates the contri-
bution of a scattering region of the object on the detector reading throughout
three subsequent X-ray projections. Spatial frequencies of the scattered radiation
are observed across the detector for a specific projection, while temporal frequen-
cies are observed across subsequent projections for a specific detector pixel.

(representing the highest frequency encompassing 95% of the total power within
[0,€,]) gradually converges to a stable value (as determined experimentally in
Section 4.4.1). The number of photons determined in this way was used for all
subsequent projections. As a consistent part of the scatter signal is contained in
Q.n, the rest of the spectrum can be cleaned from the MC noise with a low-pass
Butterworth filter, known for its maximally flat response in the passband €Q,,.
By utilising the filter as a zero-phase filter, the filter order is chosen as the lowest
order necessary to achieve a maximum power suppression of 0.025dB in the ;-
band, along with a minimum —30dB power suppression of frequencies beyond
the stopband €25, which is 10% higher than ,,. These numeric values that select
the filter order were found to be sufficient for the denoising task.

By exploiting the temporal smoothness of the scattered radiation on the de-
tector pixels (i.e., smoothness between subsequent projections, see Fig. 4.1),
the computational burden of simulating the entire X-ray projection stack is
reduced to the simulation of just a few projections. These few scatter esti-
mates, through Fourier interpolation, provide the X-ray scatter estimates cor-



Chapter 4. PACS: Projection-driven with Adaptive CADs X-ray Scatter

52 Compensation

X-ray source

Detector

Figure 4.2: The X-ray scatter footprint of a minuscule region of the scanned object
exhibits low spatial frequencies in conventional X-CT acquisition setups. This
makes two scattering regions indiscernible if they are close enough, despite the
linear absorption associated with these regions being resolved by the tomographic
reconstruction.
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responding to all other projections. This is a substantial difference from previous
works [maslowski2018acuros, xia2019scatter, bootsma2013spatial], where
scatter estimates were computed using linear interpolation, and the selection of
key projections was done manually. In principle, nearby scattering regions of
the scanned object at a distance d may not be clearly discernible from their
scatter footprint (Fig. 4.2). Consequently, during an X-CT reconstruction that
ignores the scattered radiation in the forward model (e.g. FDK, SART, SIRT),
the scatter-affected projections drive the reconstructed volume to be explanatory
of the (mainly low) spatial frequencies of the scatter signal, as well as the scatter
signal variation among projections. By sub-sampling these projections, the vari-
ation of the scatter signal among these projections can be constrained to have
the same impact on the reconstruction as for the spatial scatter signal. In case
of circular cone-beam computed tomography (CBCT), the constraint is imposed
through known relations [izen2012sampling], based on the data completeness
theorem for the central cross-section [wu2023cone], which establish a connec-
tion between spatial sampling and angular sampling for reconstructing a given
object. Let g(x,y) € R indicate the linear attenuation of said object, contained
in a circle of radius r, such that g(z,y) = 0;¥(z,y), € R?, |/22 + 92 > r. As-
suming that the spectral band of g can be reasonably €,-limited (as is commonly
done for X-CT reconstructions [izen2012sampling, zhao2015generalized]),
it follows that a condition on the minimal number of samplings along each view
is necessary to recover the 4-limited g [izen2012sampling]:

T

Ay < Q, (4.3)
Here, Ay represents the scaled spacing between pixels on the flat detector, mea-
sured relative to the object center (Ay = As- %, where R is the source-to-object
distance and D the source-to-detector distance), where As denotes the spacing
between pixels. Moreover, to ensure that g can be fully recovered, the angular
spacing A among views of the circular trajectory must also satisfy the inequality
([izen2012sampling]):

T [(R+r 2
ez () (2 "

Given that the spatial bandwidth €2, of the scattered radiation is already es-
tablished, the object bandwidth €, that described the spatial scatter is linearly
determined and consequently constrains the angular sampling, as indicated by
(4.4). Finally, after determining the subset of X-ray projections to simulate using
this angular sampling, resampling in Fourier space provides the missing estimates

for scatter.
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Variance reduction techniques in MC simulations of X-ray photons are known
to improve the efficiency of the simulations. These methods strategically allocate
computational resources to areas where interactions are most important, reducing
statistical noise. As these techniques may introduce a bias in scatter estimates,
which is adversary to the scope of the study, they are not used here.

4.3.3 X-ray scatter compensation

After obtaining the estimate of scattered radiation, the next step is to com-
pensate for the scatter in the projections. It is important to note that the
measured and simulated projections depend on the number of photons physi-
cally generated and simulated, respectively. Additionally, the presence of dark
currents affecting the measured projections must be properly handled during
X-ray scatter compensation — a factor that was overlooked in previous stud-
ies [rew:scatter:sim-all-proj, maslowski2018acuros, rew:scatter:sim-few-proj2,
xia2019scatter]. To address these factors, the following corrections are applied.

First, the projections P are corrected using the white-field W and dark-field
D images to account for gain and dark currents. This results in

P-D

Pcm"rzi
W —-D

(4.5)
Similarly, the same correction is applied to the simulated projections, which do
not have dark currents, leading to P, = 13/ W and Seorr = S / W. In the
absence of scatter, the dynamic range of P, and PCOM would be within to the
interval [0, 1]. However, the presence of scattered radiation causes some pixel
values to exceed 1. Since a portion of the absolute value of P,,.. and P, is
attributed to scattered radiation, this scattered radiation is compensated in the
measured projections with Py, = Piypr — SCOM. Finally, the dynamic range of the
measured projections can be restored by reversing the white/dark-field correction
using P = P,.(W — D) + D and are ready for reconstruction.

4.4 Experiments

The three experiments presented in this section are conducted sequentially, with
the information gathered from experiments in Section 4.4.1 and 4.4.2 serving as a
foundation for the last one (Section 4.4.3). After determining the optimal number
of photons required for a reliable estimation and establishing the bandwidth of
the X-ray scattering signal to downsize the simulation task (Section 4.4.1), the
next step involves multi-mesh registration and adaptation based on a minimal
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set of X-ray projections (dataset 10P), as detailed in Section 4.4.2. This step
enables the subsequent simulation and compensation of X-ray scattering from
the scanned X-ray projections 4.4.3.

4.4.1 Spatial frequencies of X-ray scatter on the detector

In this experiment, the scattered radiation of the scanned sample is measured
through simulations that were run with different number of photons (10%, 109,
..., 1013)) with the information provided in Section 4.2 and 4.3.2. The aim of
the experiment is two-fold: to find the number of photons to be used for a reli-
able estimation of the X-ray scattered radiation for the X-ray scan, and to find
the bandwidth of the X-ray scattered signal. The latter is used to determine
the angular downsampling of the X-ray scatter simulations. The analysis is con-
ducted in the frequency domain, where the bandwidth 2,,, of the X-ray scattered
radiation is defined as the band in which 95% of the power is contained.

4.4.2 Multi-object pose and shape estimation

In this experiment, the aim is to infer the pose of the objects (the gear and
its supporting elements) from the scanned X-ray projections and to adapt any
surface mesh to the corresponding object, to compensate for deformation arising
from a non-ideal 3D printing process. The operation is conducted in two sub-
sequent phases. First, the pose of the object is estimated through minimisation
of the linear programming problem (4.1) while the poly-chromatic behaviour of
the source and detector are continuously estimated jointly with the object pose.
Then, while the spectral behaviour and the pose remain fixed, the linear pro-
gramming problem described with (4.2) is optimised by adjusting the vertices’
positions in order to account for the objects’ deformations. The optimisation of
both the linear programming problems is performed with the lowest number of
projections (dataset 10P).

4.4.3 X-ray scatter compensation

In this experiment, the surface meshes of all the components of the X-ray scene,
along with their chemical composition information, are used for the compensation
of the X-ray scattered radiation. The full compensation procedure is described
in section 4.3.3. This process was systematically applied to all datasets, and
the outcomes were analysed according to the inspection scenario — whether it
is projection-based inspection, X-CT inspection using discrete reconstruction, or
conventional X-CT inspection. Projection-based inspection, suitable for rapid
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assessments where tomographic information is unnecessary, relies on the sparse
set of projections from the 10P dataset. In contrast, X-CT inspection with dis-
crete reconstruction offers enhanced analysis and tomographic visualization of
internal features and defects compared to projection-based methods, leveraging
the denser 100 equiangularly sampled projections of the 100P dataset. Conven-
tional X-CT inspection, providing the highest level of tomographic detail and
resolution for precise reconstruction, is employed when thorough examination
and accurate measurement are imperative, despite the increased computational
and time demands. This method utilizes the extensive data from the 3000P
dataset. Specifically, for projection-based and conventional X-CT inspection in-
spections, the results are supplemented with an assessment of residual errors
using the mesh-projector (cfr. Section 4.4.2). In each case, the obtained results
were benchmarked against the performance of a recent flavour of scatter kernel
superposition method [bhatia2016separable] for scatter compensation.

4.5 Results and discussions

4.5.1 Spatial frequencies of X-ray scatter on the detector

Fig. 4.3 shows the results of simulation runs with increasing number of photons,
and all replicating the same geometrical setup of a scanned X-ray projection.
More in-depth insights can be obtained from Fig. 4.4, which shows the power
spectrum of the detector readout. As expected, the white noise related to the
MC-statistics diminishes its power by 10 dB for every order of magnitude of the
number of simulated photons. As a consequence, the 95% of the power of the
detected signal falls between a smaller bandwidth, as the number of photons
increase, which is in accordance with the literature affirming that scattered ra-
diation is mostly composed of low-frequencies. The 95% power bandwidth is
reported in Table 4.1 and shows that after a certain number of simulated pho-
tons (10!!), the bandwidth of the signal does not vary anymore. This is the lowest
number of photons that is simulated during the simulation of each projection dur-
ing the scatter compensation phase. The related bandwidth has been used to set
up the low-pass filter, which led to Fig. 4.5a. For this bandwidth, the number of
projections to be simulated during the scatter compensation phase, as selected
according to Eq. (4.4), is 30, which resulted in almost 11h of computation time
with 2048 cores (AMD Epyc 7452).
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Figure 4.3: Rayleigh and Compton scatter for different numbers of simulated
photons, divided by the average value.
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Figure 4.4: One-sided power spectrum, extracted from the vertical distribution
of frequencies of the 2-D Fourier space, for the scattered radiation shown in
Fig. 4.3. The white-noise, related to the MC-statistics, lowers its power with
higher number of photons, while the low-frequency scatter components become
noticeable.
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| 10° ph.  10'° ph.  10'! ph.  10'2 ph.  10'3 ph.
Q. rad/px] | 3.138  9.942e-03  6.628¢-03 6.628¢-03  6.628¢-03

Table 4.1: The 2D bandwidth of the scattered radiation, which contains 95% of
the total power, is reported here for different numbers of simulated photons.

10.0
1.4
7.5
12 50
1.0 25
0.8 0.0
0.4 -5.0
0.2 -75
0.0 -10.0
(a) Filtered image (10™ (b) Percent-wise relative

photons) error

Figure 4.5: (a) The X-ray projection after application of the Butterworth filter,
using 10! photons, and (b) the relative difference between the filter and related
unfiltered image, showing that only the MC-white noise has been removed by the
filter.

4.5.2 Multi-object pose and shape estimation

The optimisation of the linear programming problem (4.1) refined the initial
pose of the objects within the scanned scene, which is noticeable in Fig. 4.6 from
residual images (i.e. difference between simulated projections and scanned pro-
jections) and measures of the Root Mean Squared residuals (RMSres). Starting
from the initial object pose configuration that resulted in high projection errors
(Fig. 4.6a), the optimization led to improved spatial positioning of the objects
(Fig. 4.6b), highlighting a significant reduction in projection-wise error. How-
ever, some regions in the post-registration image still exhibit high errors, which
can be attributed to actual 3D printing deformations.

By optimising the linear programming problem (4.2), the surface meshes of
the CAD model were adjusted to match the true shape of the 3D printed objects
(Fig. 4.6¢). A visual representation of this deformation is provided in Fig. 4.7,
where the displacement of each vertex is measured as Euclidean distance, influ-
encing the heatmap colour representation in the figure.
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RMSres: 1.35 x 107! RMSres: 3.38 x 1072
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RMSres: 2.06 x 1072

(c) After mesh adaption

Figure 4.6: Residual images of the bevel gear and its supporting elements for
three different instants of the multi-mesh registration/adaption procedure. The
figure shows how an initial pose guess of the various elements can be adapted to
the actual scan, while accounting for deformations, in an automatic way.
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Displacement Magnitude (mm)

) ’ ' (b) Heatmap of superficial deformation
a) A photo of the bevel gear

Figure 4.7: The adaption of the surface mesh of the CAD model to the actual
object is considered to arise from a faulty 3D printing process, A heatmap of the
Euclidean displacement of each surface mesh vertex provides a clearer visuali-

sation of the deformed shape compared to the projection-wise representation of
Fig. 4.6b and 4.6c¢.

4.5.3 X-ray scatter compensation

In Fig. 4.8, an analysis of the scatter compensation for the projection from the
dataset 10P in projection space is presented. Despite the visual similarity between
the chosen projection and its scatter-compensated versions, certain details are
more apparent in the residual images. These images depict the absolute residual
between the dark/white-field corrected X-ray projections and the poly-chromatic
projections of the meshes.

Examining the images in Fig. 4.8, the central part of the residual image
for a measured projection (Fig. 4.8b) reveals a whitish halo. This halo is less
pronounced in the scatter-compensated projection using the Scatter-Kernel Su-
perposition (SKS) method [bhatia2016separable], as noticeable in Fig. 4.8d,
and almost imperceptible in the scatter-compensated projections using PACS
(Fig. 4.8f). Additionally, all residual images (Fig. 4.8b, 4.8d and 4.8f) display the
general shape of the scanned sample, resulting from minor inaccuracies in mesh
estimation. Furthermore, two macroscopic defects can be observed. Close-ups
and line profiles of these macroscopic defects, provided in Fig. 4.9, indicate that
the scatter-affected projection has a non-zero value even outside the defective
zone. These values arise from the mismatch between the actual object surface
and its surface mesh. To quantitatively evaluate the performance of the scatter
compensation methods of the results shown in Figures 4.8 and 4.9, the RMSres is
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Unprocessed SKS PACS
RMSres  (3.778 + 0.046)x1072  (2.094 + 0.046)x102 (1.539 + 0.044)x10~2

Table 4.2: Measure of the mean squared residual throughout all projections of
dataset 10P. The residual is interpreted as the difference between the projections
and the simulated poly-chromatic projections.

Unprocessed SKS PACS

# of pore-voxels 1816 1001 368
Sgrensen—Dice coefficient 0.061 0.069 0.074

Table 4.3: Measure of the number of detected pores through the poly-DART re-
construction of the few projections of dataset 100P. The similarity of the detected
pores with those of the ground truth is measured with the Sgrensen—Dice score.

computed along with its standard deviation and it is reported in Table 4.2. This
evaluation, encompassing all projections in dataset 10P, highlights that PACS
yields the least amount of residuals than the SKS method.

With the dataset 100P, a discrete X-CT reconstruction is performed. Em-
ploying this technique enables the creation of a (voxel-wise) multi-label volume,
offering a three-dimensional discrete representation, as depicted in Fig. 4.10. The
application of this technique highlights macroscopic defects more distinctly, as ob-
served in the images in Fig.4.11b, 4.11f and 4.11h. Furthermore, it allows for the
detection of pores within the X-CT. However, in practice, the presence of imag-
ing noise and scattered radiation may lead to the identification of spurious pixels
unrelated to real pores.

In Fig. 4.11, the 3D rendering visually displays the distribution of spurious
pores in the reconstructed volume. Notably, scatter-compensated projections
result in a reduced occurrence of these defects. The number of detected pores
and their similarity to the voxel-wise manually-labelled ground truth of pores
are quantified and presented in Table 4.3. This analysis suggests that scatter
compensation significantly contributes to a higher fidelity of pore representation,
with PACS outperforming SKS in terms of the Sgrensen-Dice coefficient. The
reason for higher concentration of detected pores in the top part of the gear is
related to X-ray scattering artefacts, and it is explained by using the dataset
3000P, where more information can be extracted from X-ray projections.

Utilising the complete set of projections (dataset 3000P) allows for regular
X-CT reconstruction, ensuring faithful results. In Fig. 4.12, a cross-section anal-
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Figure 4.8: X-ray projections are presented on the left for three cases: (a) without
scatter correction, (c) with scatter correction using SKS, and (e) with scatter
correction using PACS. Accompanying these, the residual images are depicted as
(b) uncorrected, (d) corrected with SKS, and (f) corrected with PACS. Two red
boxes highlight macroscopic defects for a detailed analysis in Fig. 4.9.
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(b) Close-up residual image (defect 2)

)
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(c) Line profile (defect 1) (d) Line profile (defect 2)

Figure 4.9: Close-ups of two defects highlighted in the residual images of Fig. 4.8.
Line profiles through these close-ups reveal the varying behavior of residual gray
values across the defects, where it is desirable that high values are associated with
the defective area, while zero values are associated with the absence of defects.

(a) Poly-DART reconstruction (b) Two macroscopic 3D printing defects

Figure 4.10: From the limited data in the 100P dataset, the binary poly-DART
reconstruction (a) of the bevel gear holds meaningful information, as for the 3D
printing defects (b).
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(a) 3D view of pores (unprocessed)

il

(b) Gear defect (unprocessed) (¢) Region with many detected pores
(unprocessed)
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(d) 3D view of pores (SKS)

(e) Gear defect (SKS)

-

(f) Region with many detected pores
(SKS)
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(g) 3D view of pores (PACS)

(h) Gear defect (PACS) (i) Region with many detected pores
(PACS)

Figure 4.11: Comparison of Poly-DART reconstructions: unprocessed X-ray pro-
jections (a-c), scatter-compensated with SKS (d-f), and scatter-compensated pro-
jections with PACS (g-i). The 3D visualization (a,d,g) highlights all detected
pores within the Poly-DART reconstruction, with a visibly higher number in the
top part of the bevel gear. The images (b,e,h) show a cross-section with the
correct reconstruction of a defective area, while the (c,f,i) images focus on the
variable number of pores detected by each Poly-DART reconstruction. The cor-
relation of the detected pores with the ground truth is shown in Table 4.3.
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Unprocessed SKS PACS
Gray value (2.654 4+ 0.001)x10~2  (2.719 4 0.001)x1072  (2.768 & 0.001)x 10?2
SNR 87.2 92.6 96.9

Table 4.4: Measure of the average gray value level and SNR throughout the bevel-
gear region of the poly-BB reconstruction of dataset 3000P, for unprocessed X-ray
projections, SKS scatter-compensated projections and the scatter-compensated
projections with PACS.

Unprocessed SKS PACS
Average CNR 4.23 £ 0.37 4.45 +£0.40 4.70 £ 0.40

Table 4.5: Measure of the average CNR of pores in the poly-BB reconstructions of
the uncorrected, SKS scatter-compensated and scatter-compensated projections
with PACS, for the dataset 3000P.

ysis of the poly-BB reconstruction is presented in a region previously identified
as challenging for poly-DART. The line plot in the figure illustrates that the
standard deviation and average gray values of poly-BB are smaller for scatter-
compensated images, providing an explanation for the spurious pores detected
with the 100P dataset. These values, evaluated across the volumetric gear re-
gion, are detailed in Table 4.4. A consequence of the higher signal-to-noise (SNR)
value is that the contrast of pores is enhanced. This is evaluated across all pores
and reported in Table 4.5, through their contrast-to-noise (CNR) ratio, which
confirmed the expectations.

Examining the residual values (Fig. 4.13) offers a deeper insight into the re-
sults observed in Figures 4.11 and 4.12. The presence of spurious pores (Fig. 4.11)
and the additional noise and non-constant trend of line profiles (Fig. 4.12), un-
expected for a homogeneous material, is attributed to X-ray scattering artefacts.
These artefacts gradually diminish with the application of scatter-compensation
techniques. The evaluation of average absolute residuals, confirming the visual
findings, is reported in Table 4.6.
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Figure 4.12: A cross-section of the poly-BB reconstruction of (a) unprocessed

X-ray projections, (b) SKS scatter-compensated projections and (c) the scatter-
compensated projections with PACS of the complete 3000P dataset.

Unprocessed SKS PACS
RMSres (3.146 & 0.034)x1073  (2.909 + 0.035)x1073 (2.819 + 0.035)x10~3

Table 4.6: Measure of the root mean squared residual throughout the dataset
3000P. The residual is interpreted as the difference between the poly-BB recon-
struction and the simulated poly-BB reconstruction in the space occupied by the
gear.
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RMSE: 2.61 x 1073 RMSE: 2.45 x 1073 RMSE: 2.37 x 1073
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Figure 4.13: A cross-section of the residual poly-BB reconstruction of unprocessed
X-ray projections (a), SKS scatter-compensated projections (b) and the scatter-
compensated projections with PACS (c) of the complete 3000P dataset. The Root
Mean Squared Error (RMSE) evaluated throughout the whole image is reported
on top of each figure.
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4.6 Conclusions

A new approach (PACS) was proposed to accurately compensate for X-ray scat-
ter in projection images. This method involves registering and adapting CAD
models of AM objects, followed by a Monte Carlo simulation of X-ray scatter in
the projections, and then compensating for it in the actual radiographs. Results
demonstrated that accurate registration of CAD models is possible using only few
projections, rendering simulation-based X-ray scatter compensation approaches
a viable option in scenarios where few projections are available or desirable.
The adaptability of such approach addresses common constraints encountered
in industrial scanning setups, including throughput, cost, and spatial limitations.
Replacing the CAD model with another object before scanning, in response to
changing industrial needs, incurs no additional overhead compared to alternative
methods. Furthermore, this method, inherently coupled with a mesh projector,
allows for the analysis of residual differences between real and simulated projec-
tions. This feature facilitates the identification of deformities or defects within
the scanned object.

Multiple experiments consistently demonstrate superior accuracy in X-ray
scattering artefact reduction of PACS compared to one of the latest SKS scatter
compensation methods. The absence of training procedures and the ability to
easily adapt to any scanned object make PACS the method of choice for scans in
the context of AM. As PACS relies on Monte Carlo simulations for X-ray scat-
ter compensation, strategies to reduce the computational load were investigated.
However, employing GATE as a simulation backend remains computationally in-
tensive, which can be further reduced using modern GPU solutions specialised in
X-ray scatter simulations, as presented in recent works [maslowski2018acuros].

A noteworthy future prospect arising from this work is the development of an
X-ray scatter estimation pipeline that would rely solely on the mesh projector.
Coupling the mesh projector with an analytical description of the 1st order scat-
ter [yao2009analytical], evaluated across the entire surface mesh, is expected to
yield significant improvements in speed. This is particularly true in cases where
the inspected object is small, or the detector is positioned sufficiently far from
the X-ray source.



Voxel-wise pore segmentation with
3D patch-based neural models

In this chapter, the analysis and segmentation of porosity and defects within AM
samples using deep learning techniques are the focus. Detecting anomalies from
X-CT data is a challenging task due to factors such as inhomogeneous density, low
contrast-to-noise ratio, and beam hardening artifacts, which can lead to incorrect
segmentation.

Data-driven DL approaches have shown superior performance over traditional
machine learning techniques in handling complex and varied definitions of anoma-
lies [wong2021lautomatic, bihani2022mudrocknet, kim2022achieving, sarkon2022:s
Anomalies can be detected using supervised or unsupervised methods. While su-
pervised methods require annotated datasets, unsupervised methods are more de-
sirable as they do not require annotated training data. This reduces the technical
overhead and mitigates the impact of noisy annotations on model performance.
However, unsupervised methods often face challenges such as high recall rates
and low precision compared to their supervised counterparts [yang2022visual].

Most studies on voxel-wise segmentation tasks using DL techniques focus on
analyzing stacks of 2D images [bouget2019semantic, ar2020segmentation,
fend2021reconstruction, wang2022deep, mehta2022federated, wang2022centerne
For voxel-wise segmentation of pores in AM samples, a 2D approach is sub-
optimal since small pores usually span only a few voxels in three dimensions in
X-CT images and suffer from a low contrast-to-noise ratio. Additionally, pores
often exhibit anisotropy, increasing the risk of being overlooked by 2D pixel-wise
segmentation methods [maskery2016quantification]. Recognizing this short-
fall, Wong et al. introduced 3D pore detection models, initially using a UNet ar-
chitecture, which demonstrated promise but did not explore deep supervision, al-
ternative neural models, or training patterns extensively [wong2021automatic].

Deep supervision can yield more reliable results by encouraging hidden lay-
ers of the models to comply with the desired output [li2022comprehensive].

71
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However, training supervised models on datasets with reduced porosity may
severely affect detection performance due to class imbalance between pore and
non-pore voxels [bria2020addressing]. Additionally, supervised models are
highly sensitive to training labels. Unsupervised models, particularly those based
on cro:VAEVariational Autoencoder (VAE), often produce blurry representations
of input images due to learning a low-dimensional representation that may not
capture fine details [guo2020variational]. Therefore, the voxel-wise anomaly
score from these models can be enhanced with more complex anomaly scores or
dedicated post-processing [zimmerer2018context, baur2021autoencoders].

With this chapter, 2D supervised and unsupervised DL models are revis-
ited and extended to 3D for voxel-wise segmentation of pores in X-CT sam-
ples of varying alloys. Utilizing a 3D patch-based approach and integrating
data augmentation, this segmentation method aims to be independent of the
material and shape of AM samples, ensuring spatial consistency by operating
within the 3D image domain. Several deeply supervised models are trained, in-
cluding UNet++ [zhou2018unet++], UNet 3+ [huang2020unet]|, MSS-UNet
[ZHA02020100357], and ACC-UNet [ibtehaz2023acc|, with a traditional
UNet [ronneberger2015u] serving as a baseline for comparison. To address
class imbalance due to the low amount of defects, models are trained using the
cro:FTLFocal Tversky Loss (FTL) function, which penalizes anomalies more ef-
fectively [abraham2019novel]. Optimal parameters for the FTL function were
determined through parameter search.

A roster of unsupervised models, including VAE [kingma2013auto], ceVAE
[zimmerer2018context|, gnVAE [dilokthanakul2016deep|, vqVAE [van2017neural],
and RV-VAE [nicodemou2023rv], were additionally evaluated, comparing older
and novel architectures. To reduce misclassifications, the anomaly scores of these
models are post-processed due to their inability to represent object surfaces ad-
equately. Finally, the supervised models are retrained using the post-processed
output of an unsupervised model instead of potentially noisy annotations, effec-
tively making the training process unsupervised to evaluate the impact on model
performance. The best performing model is further tested to assess the decrease
in performance when lowering the number of X-ray projections and exposure.

Summarizing, the main contributions of the work presented in this chapter
are as follows:

e First cross-validated assessment of multiple 3D DL models for voxel-wise
pore segmentation in AM samples, comparing supervised and unsupervised
approaches using a patch-based method. The neural networks, initially de-
signed as 2D models, were tailored for the 3D context to harness volumetric
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Figure 5.1: Some samples used in this study. From left to right, a stainless steel
316L (CLM), a CoCr-DG1 (PLM), and a TiAl6V4 (CLM) sample.

information effectively.

e A post-processing algorithm is proposed and evaluated to address the issue
of blurry image representation in VAE models.

e The impact of using unsupervised model labels instead of heuristic algo-
rithm labels for training the DL models is evaluated.

5.1 Materials

Various DL models for voxel-wise segmentation of pores were trained using 3D
X-ray CT images of AM samples. To this end, AM samples were manufactured
through the selective laser melting process, in a continuous (CLM, [meiners1998shaped|)
or pulsed laser melting (PLM, [abe2001manufacturing]) strategy. Five cylin-
drical samples of different materials were 3D printed (as shown in Fig. 5.1): one
with TiAl6V4, two with CoCr-DG1 alloy and two with SS316L. Printing the
test objects in multiple materials allowed to assess the effectiveness of voxel-wise
pore segmentation across different materials. In the CAD model used for the
3D printing, the cylinders had an eight of 20 mm and a diameter of 5 mm. In
addition to the cylindrical samples, a SS316L cube with an edge length of 9 mm
was also printed. The cube was specifically printed to provide an object with
different shape and poorer X-CT image quality, which is useful for evaluating
porosity in a challenging visual environment and to ensure that DL models are
not learning information regarding the shape of the object. These samples were
essential for this study as their X-CTs provided the digital dataset with which
the neural networks could be trained to classify the porosity. Porosity was in-
tentionally induced in all samples using controlled laser parameters, as described
in [booth2022encoding].
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Next, 3D images of the AM samples were generated by scanning them with
a micro-CT X-ray system [FlexCT] and reconstructed with the FDK algo-
rithm [feldkamp1984practical] with a 10 gm resolution. The imaging settings,
such as filament power, peak kV of the anode, exposure time, source filter, etc.,
were selected for each cylindrical sample to ensure comparable image quality.
However, the geometrical distances and the number of projections were kept con-
stant for all cylindrical samples, with a source-to-detector distance (SDD) of 650.0
mm, a source-to-object distance (SOD) of 43.33 mm, and 4283 projections. The
cubic sample was scanned with different SDD (950.0 mm) and SOD (63.33 mm)
and had a lower number of X-ray projections (2878) than the other scans. The
X-CT of the cubic sample was also affected by severe cone-beam artefacts and
poor beam-hardening compensation. The cubic sample was particularly challeng-
ing due to its different geometry and visual environment (as noticeable in Fig.
5.2), making it useful for evaluating porosity.

5.2 Methods

Several DL models were trained to segment porosity from X-CT scans of AM
samples at the voxel level. Voxel-wise annotations, necessary for both training
and performance evaluation, were provided using the method described in sec-
tion 5.2.1. These models employed either supervised or unsupervised approaches,
detailed in section 5.2.2.

For the training of supervised models, the class imbalance of labels was ad-
dressed using the FTL function, which will be discussed in section 5.2.4. The
class imbalance arose from the low amount of pores (positive instance of labels)
within the training dataset. After training, and only for the unsupervised mod-
els, the anomaly score is post-processed, as unsupervised models are known to
produce blurry representations of the input. The post-processing procedure is
explained in section 5.2.5.

5.2.1 Dataset annotation

To assign a label to each voxel of the X-CTs comprising the datasets, which
indicates whether it is a pore or not, a 3D processing algorithm was applied. The
high-level pseudo-code in Algorithm 1 outlines the pore identification process.
The algorithm for extracting pores from volumetric X-CT images begins by
creating a binary mask to distinguish low-value voxels using Otsu threshold-
ing (Otsug,). Subsequently, a background mask is obtained through FloodFill
starting from a corner of the X-CT image, isolating low-attenuating values. The
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Figure 5.2: A slice of the X-CT of a cylindrical sample (left) and of the cubic
sample (right), with equal colour-map and scale. While all the X-CT of cylindrical
samples share similar image quality, the cube has stronger artefacts (which are
particularly visible at the extremities of the cube) and consequently less contrast.
The histograms (a) and (b) refer to the cylindrical sample and of the cubic volume,
respectively. The two peaks in each histogram are related to the background
(lower) and foreground (higher) colours. The quality of each sample is defined by
its distance between the peaks and the broadness of the bells, which are influenced
by artefacts and noise.



76 Chapter 5. Voxel-wise pore segmentation with 3D patch-based neural models

Algorithm 1 Pore Extraction from X-CT Images

: Input
: cT Volumetric X-CT image

: OQutput

POTemask Volumetric binary mask representing pores

1
2
3
4
5:
6: Get low-value voxels through Otsuyy,, of CT

7: Get the background mask by FloodFilling the low-values from a corner of CT
8: Get the watertight object mask from binary inversion of the background mask
9: Get low-value voxels by Otsuy,, of C'T' inside the object mask

10: porejise  Collect connected low-value voxels inside the object

11:

12: for all pores in pores do

13: if size of pore < minimal size then
14: remove pore from porej;q

15: end if

16: end for

17: poremask < Convert pores; to a volumetric mask

binary inversion of this background mask yields the watertight object mask, ef-
fectively separating the image into air and the watertight object. To identify
low-value voxels corresponding to pores, a second Otsu thresholding operation
is applied within the object. To address the potential misclassification of pores
due to imaging noise, pores-voxels are screened based on shape criteria. Initially,
pores in a 6-connected 3D neighbourhood are identified and listed. The bound-
ary box of each pore is then examined, and the pore is excluded from the list if
its boundary box is smaller than 2 in at least one dimension. This shape-based
filtering is implemented to improve the reliability of the pore identification pro-
cess [DUPLESSIS20181102, kim2017investigation]. The filtered porey;s is
then converted into a volumetric binary mask (poreqsk), providing a voxel-wise
representation of pore locations. It’s important to note that any residual misclas-
sification arising from partial-volume effects and imaging artefacts contributes to
the overall noise of the labels.

Accurately and reliably labelling the X-CT scan of the cubic sample was a
challenging task due to its poor image quality, as discussed in section 5.1. Given
the limitations of automated voxel-wise annotation, manual labelling was the
only viable option to achieve the desired level of accuracy and dependability in
the labels.
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5.2.2 Deep learning models

The study used two types of models: VAE-based models (VAE [kingma2013auto],

ceVAE [zimmerer2018context|, gmVAE [dilokthanakul2016deep], vqVAE [van2017n
and RV-VAE [nicodemou2023rv]) and UNet-based models (UNet [ronneberger2015u],
MSS-UNet [ZHA02020100357], UNet++ [zhou2018unet++], UNet 34+ [huang2020us
and ACC-UNet [ibtehaz2023acc]). The VAE-based models were trained in an
unsupervised manner using unlabelled data, while the UNet-based models were

trained in a supervised manner. Starting from their original 2D implementation,

these networks were extended to accept 3D inputs of size 643 by substituting all

2D layers with their 3D counterparts.

Supervised models

UNet is a popular encoder-decoder architecture that has shown promising re-
sults in many semantic voxel-wise segmentation tasks. MSS-UNet, UNet++,
and UNet 3+ are extensions of the original UNet architecture. MSS-UNet incor-
porates multi-scale guidance in the decoding process during training, enabling it
to capture more fine-grained details and to have a more coherent processing of
information in the decoding stage. UNet++ includes a nested and dense skip-
connection structure to capture more multi-scale features, while UNet 3+ uses a
more powerful encoder with multi-resolution inputs. To ensure consistency, UNet
and MSS-UNet were built using the same encoding/decoding building blocks
as for UNet++ and UNet 3+ [huang2020unet]|. This approach made it eas-
ier to compare the results of different architectures and understand how they
impact the final outcome in voxel-wise segmentation tasks. Vision Transform-
ers have recently addressed complexity challenges, making them a viable and
competitive solution for visual tasks, where a notable work is [liu2021swin].
Building on these advancements, the core concepts of Transformers have been
integrated into ResNet models, surpassing the performance of Swin Transform-
ers. Another notable development involves incorporating essential Transformer
ideas into a convolution-based neural model called ACC-UNet. This model has
shown promise in segmentation tasks, motivating its use in the current study.
MSS-UNet, UNet++, UNet 3+ and ACC-UNet are deeply supervised during
this study, which means they are trained with a loss function calculated on mul-
tiple inner layers to supervise the learning process effectively. In contrast, the
original UNet architecture is not deeply supervised.
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Unsupervised models

The VAE-based models were trained in an unsupervised manner to learn a com-
pressed and disentangled representation of the input data. During training, the
VAE models learned to reconstruct images from the compressed representations
that resemble the input images as closely as possible. The reconstruction er-
ror, which quantifies the discrepancy between the input and output of the un-
supervised models, was adopted as the anomaly score. Since the introduction
of the VAE model in 2014 by Kingma and Welling, it has been used in a vari-
ety of studies for voxel-wise anomaly detection (e.g. [chen2019unsupervised,
lin2020anomaly, chatterjee2021unsupervised]). The ceVAE model has sim-
ilar architecture as VAE but a more complex definition of the loss. During train-
ing, ceVAE uses "masked” input data where certain patches within the image
are fixed to a specific value. The model uses an ad-hoc loss function to infer
the missing or distorted voxels within the masked zone, which helps the network
to capture the context of the image. This peculiarity of the model may have a
positive impact on the score, since it can prevent the network to learn to rep-
resent the pores within the training dataset. On the contrary, the gmVAE and
vqVAE models are more complex than the VAE architecture, enabling them to
catch features of the input 3D images that could not be interpreted by the coarser
architecture of VAE. The gmVAE model assumes that each input data point’s
latent representation is generated by one of several possible Gaussian distribu-
tions, each with a different mean and variance, and identifies which distribution
in the mixture is most likely to have generated the latent representation of each
input data point during training. The vqVAE model is based on the idea of
vector quantisation, where the continuous latent space is discretised into a set of
discrete codes. The model comprises an encoder network that maps the input
images to a discrete code book, followed by a decoder network that maps the dis-
crete codes to the reconstructed input images. The vqVAE model was adapted
to 3D inputs without additional alterations, except for an extra encoding/de-
coding stage that processes larger input patches of 643 instead of the default
323. The RV-VAE model eliminates stochastic sampling, directly incorporating
latent space information into decoder layers as continuous random variables. Ap-
plying the inherent mathematical prior during decoding leads to a more precise
representation, making it appealing for segmentation tasks. As a final sigmoid
activation function was used for all the neural models, the related RV-model for
this function is provided in the appendix A.3.
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5.2.3 Training

The deep learning framework was based on the Pytorch [paszke2019pytorch]
2.0.1, Pytorch-lightning [falcon2020pytorchlightning] 2.0.2 and the CUDA [cuda]
11.6 libraries and it is publicly available (https://github.com/snipdome/nn_
3D-anomaly-detection). The 3D patch extraction, aggregation and data aug-
mentation were based on the TorchlO libraries [perez2021torchio] version 0.18.84.
A unique main seed propagated throughout the libraries ensures that all the ex-
traction from random distributions were reproducible. Each of the models was
trained with the Adam optimiser (learning rate of 0.0001) and halted through
early stopping when the loss value did not decrease by more than 0.0001 for 40
consecutive epochs.

5.2.4 Focal Tversky Loss function

In this pore segmentation task, the number of voxels belonging to the foreground
class (pores) is much smaller than the number of voxels belonging to the back-
ground class, in the training dataset. This class imbalance results in a bias
towards the background class during training, which leads to poor voxel-wise
segmentation performance. In order to address the problem of class imbalance
in semantic segmentation tasks, the FTL was proposed as a modification to the
Tversky Loss [abraham2019novel|, and is defined as follows:

FTL=(1- s ! (5.1)
N TP + o FN + S FP ‘

The FTL depends on the number of true negatives (TN), false negatives (FN), and
false positives (FP), where FN and FP are weighted by a and 3, respectively. By
adjusting the values of these parameters, the FTL can be fine-tuned to emphasise
either precision or recall. In addition, the FTL also includes a parameter v, which
controls the degree to which the FTL prioritises correcting misclassifications by
adjusting the weight given to the Tversky Loss function. If v = 1, the FTL
reduces to the standard Tversky loss and, if is also true that a = g = 0.5, to
the Dice-Sgrensen loss. If v > 1, the FTL function will assign a higher weight
to the correction of misclassifications. This means that the loss function will be
more sensitive to false negatives and false positives, and the model will prioritise
the correction of misclassifications over the correct classification of the majority
class. As a result, the model will be better at identifying instances of the minority
class but may struggle to accurately classify instances of the majority class. The
degree to which the model’s sensitivity to misclassifications increases will depend
on the value of 7. In case of deep supervision, the FTL is calculated at each
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supervised stage and averaged with geometric progression weights (1, 1/2, 1/4,
etc.).

5.2.5 Post-processing

During the prediction or testing procedure, each of the models inferred patches
belonging to the X-CT scan and then aggregated them back together to obtain
an output volume with the same size as that of the input.

Only for the unsupervised models, the output was post-processed to amend
the scarce quality that these models have in representing the fine details of the
samples, as the surface. The surface of each of the samples has unique char-
acteristics, due to different printing processes and polishing procedures, which
can never be properly represented with an Autoencoder (AE). While AEs are
designed to learn a concise representation of the input, their ability to faithfully
reproduce high-fidelity images depends on factors such as the training dataset’s
size and diversity, the complexity of input data, and the model’s architecture and
hyperparameters. As this is a beneficial feature that makes the AEs potentially
unable to reproduce anomalies that may be present in the training dataset, it
comes with the cost of inaccuracies near the surface of the samples. To counter-
act this, a compensation mechanism that suppresses the anomaly score near the
sample surface is introduced. The computation of the new voxel-wise anomaly
score, denoted as Apores, involves subtracting the spatially blurred derivative D
of the inferred volume V from the original anomaly score A. As previously men-
tioned, the neural models struggles to faithfully represent the surface of samples,
leading to pronounced derivatives of the inferred volume along the border. The
elements of D are determined by the sum of the absolute voxel-wise derivatives
in the z, y, and z directions of the predicted volume V. These derivatives are
represented as dijr = [|020ijk | + ||0y0ijk|l + 1|020ijk||, where 055 corresponds to
the (,7, k) voxel in V.

The formulation for A,.es is expressed as:

Apores = max(0, A — \* G- (D)) (5.2)

Values for the standard deviation ¢* of the Gaussian smearing kernel G and
the scaling factor \* are determined through an on-the-fly optimisation process
outlined in Formula 5.3. This optimisation process aims to minimise the disparity
between the anomaly score and the Gaussian-blurred absolute sum of derivatives,
utilising the mean of the L1-norm as a metric. Both A and ¢ are considered to
be positive parameters in this context.

The optimisation problem is formally stated as:
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A 0" = arg H)\linHA — AGs(D)|1 (5.3)

The results of the experiment 5.3.5 show the benefits of applying the proposed
technique.

5.3 Experiments

The X-CT images were organized into training, validation, and testing sets, as
explained in section 5.3.1. All models were trained using a common training
framework, detailed in section 5.3.2. For the evaluations presented in this section,
the labelled X-CT volumes were compared with the output of the DL models,
after the output 3D patches were aggregated.

More specifically, the patch-extraction pipeline extracted overlapping patches
from the input volume, each with half of their length overlapping with neigh-
boring patches. These patches were segmented by the neural networks and then
combined by computing an average value among the overlapping patches. This
approach ensured a comprehensive evaluation of the model’s performance on the
X-CT volumes.

5.3.1 Dataset

The X-CT images of several AM samples composed the digital dataset for train-
ing, validation, and testing of the DL models. In a 5-fold manner, the X-CT
images of the cylindrical samples were organised into 4 samples for the train-set
and 1 sample for the validation-set. Noise, image artefacts, and misclassified
voxel-wise labels (commonly referred to as 'noisy labels’) can negatively affect
training and lead to inaccurate predictions. To mitigate the influence of noisy
labels during training and to expand the training sets, data augmentation was
employed [song2022learning]. The data augmentation created novel spatial
configurations by flipping of patches in random directions and elastic distortion
while teaching the networks to be resilient against noise, specific attenuation of
samples, and artefacts such as cone-beam and beam-hardening. After data aug-
mentation was applied at every training epoch to each of the cylindrical samples,
which have around 800x800x2000 voxels, 3D patches of 64x64x64 voxels were
extracted and supplied to the neural networks.
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5.3.2 Training

The deep learning framework was based on the Pytorch [paszke2019pytorch]
2.0.1, Pytorch-lightning [falcon2020pytorchlightning] 2.0.2 and the CUDA [cuda]
11.6 libraries and it is publicly available (https://github.com/snipdome/nn_
3D-anomaly-detection). The 3D patch extraction, aggregation and data aug-
mentation were based on the TorchlO libraries [perez2021torchio] version 0.18.84.
A unique main seed propagated throughout the libraries ensures that all the ex-
traction from random distributions were reproducible. Each of the models was
trained with the Adam optimiser (learning rate of 0.0001) and halted through
early stopping when the loss value did not decrease by more than 0.0001 for 40
consecutive epochs.

5.3.3 Parameter search for the FTL function

As different values of the «, 3,7y parameters sensibly affect the performance of
models trained with the FTL function [iuso2022evaluation]|, the optimal values
were identified with grid search approach. A 5-fold cross-validation strategy
evaluated the performance of the model with different parameter combinations,
while the v parameter was kept at 0.5 (as in [iuso2022evaluation]). The grid
search space spanned the parameter-space uniformly from 0.1 to 0.9 for each
of the variables, for a total of 4 steps. For each combination of o and 3, the
model was trained in a 5-fold cross-validation, resulting in a total of 16 different
combinations of o and § and a total of 80 model trainings. In addition to the «
and [ parameters, another grid search identified the optimal vy parameter in the
FTL. A higher value of v puts more emphasis on minimising false positives and
false negatives, which can be useful in tasks where the cost of misclassification is
high. So, even though the author of the FTL had suggested a value of 4/3 for
the v parameter [abraham2019novel|, the optimal v parameter turned out to
vary for the current application of this work. The v grid search had a total of 8
steps ranging from 1/3 to 2, for a total of 40 trainings.

5.3.4 Cross-validation of performance of the DL models

All the supervised and unsupervised models have been trained in a 5-fold cross-
validation, for a total of 50 trainings. In the case of supervised models, they
were trained with the optimal parameters found during the experiment 5.3.3.
After training, the performance has been evaluated, for each fold, on both the
validation-set and the challenging test-set.



5.3. Ezperiments 83

5.3.5 Cross-validation of performance of post-processed unsu-
pervised models

For this experiment, the unsupervised models are compared in cross-validation
before and after the application of a post-processing algorithm presented in sec-
tion 5.2.5. Since the post-processing happens after the aggregation of all the
patches composing a X-CT volume, it is possible to compare the models before
and after post-processing, without the need to re-train the models. Also in this
case, the performance has been evaluated, for each fold, on both the validation-set
and the challenging test-set.

5.3.6 Cross-validation of performance of supervised models re-
trained with unsupervised models

In this experiment, the anomaly score of the (best performing) unsupervised
model of experiment 5.3.5 was used as label for the training of supervised mod-
els, for each fold. Training in such a way would make the overall pipeline un-
supervised, which, apart from being a favourable feature for the user, it would
theoretically allow the UNet-family to reproduce the task of the unsupervised
model (and its post-processing algorithm). A total of 25 trainings has been per-
formed.

5.3.7 Model complexity

For this experiment, all the neural models have been compared with regards to
their memory footprint and computational cost. The networks were fed with
a one-element batch with size 1x64x64x64 and analysed during their complete
forward and backward operation.

5.3.8 Cross-validation of performance of the best performing model
in extreme visual scenarios

In this final experiment, the best performing model in the previous experiments
has been tested when the image quality of the challenging test-set has been wors-
ened by lowering X-ray exposure and number of projections. This test is designed
to show how the performance decreases in extreme visual scenarios. The number
of X-ray projections of the challenging test-set was reduced to 50% and 33.3%.
The simulation of lower exposure of X-ray projections is achieved by adding Pois-
son distributed noise. The exposure was lowered to 75%, 50% and 25% of the
original values, which corresponded in an increase in the imaging noise over the
X-ray projections.
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Dice-Sgrensen score

IRl (.74 £ 006 0.74=£004 0.75=x0.07 0.75=£0.07

IR 0.78 £ 0.04 0.76 £0.06 0.76 £ 0.06 | 0.73 = 0.07

kY@ 0.75 £ 0.05 0.76 £0.07 0.74 £ 0.07 = 0.70 = 0.05

INE 0.76 = 0.06 = 0.73 £ 0.07 0.72 £ 0.07 = 0.71 =£ 0.06

0.1 0.37 0.63 0.9

8

Table 5.1: Average Dice-Sgrensen score and standard error of the models evalu-
ated across the related validation dataset, depending on the a/f parameters of
the FTL.

5.4 Results and discussions

Section 5.4.1 presents the cross-validation results for selecting the optimal param-
eters of the FTL function. These parameters were used to train all the supervised
models employed in the voxel-wise segmentation task cross-validation, whose re-
sults are shown in sections 5.4.2 and 5.4.4. Section 5.4.4 compares the supervised
models trained with the FTL function using heuristic labels and labels generated
by the post-processed output of the best performing unsupervised model. The
best performing unsupervised model was established based on the performance
results presented in Section 5.4.3.

5.4.1 Parameter search for the FTL function

The initial parameter search for o and 8 has been conducted on all the folds of
the cross-validation, and the average results are shown in Table5.1. As apparent
from the results, the optimal values for the o and 8 parameters are 0.633 and
0.1, respectively. Subsequently, with these optimal parameters, the optimal ~
parameter has been searched for each fold, and summary results are shown in
Fig. 5.2. In this case, there is good agreement among folds that v = 1 ensures
the best performance. For the sake of completeness, the fold-wise results have
been included in the appendix for both parameter searches (A.2).
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Dice-Sgrensen score

0.76 £0.04 0.78 £0.04 0.79 £0.03 0.82 +0.04 0.72 £0.03 0.70 £0.06 '0.64 £0.06

v 033 0.5 0.67 1.0 1.33 1.5 1.67 2.0

Table 5.2: Average Dice-Sgrensen score and standard error of the models evalu-
ated across the related validation dataset, depending on the v parameters of the
FTL.

Model AP AUC
MSS-UNet2® 0.784 &+ 0.050 0.975 &= 0.013
UNet® 0.815 + 0.025 0.982 £ 0.009

UNet++2  0.750 + 0.026  0.974 + 0.009
UNet-3+2  0.873 + 0.036 0.992 + 0.003
ACC-UNet®  0.658 + 0.078  0.955 + 0.014
VAE® 0.711 4 0.101  0.999 + 0.001
ceVAE®  0.746 + 0.094 0.999 + 0.001
gmVAE® 0.607 &+ 0.156  0.974 + 0.014
vqVAE® 0.602 4 0.129  0.990 + 0.004
RV-VAE®  0.728 £ 0.082  0.999 + 0.001

Table 5.3: Average ROC-AUC and AP scores (with confidence interval) of the
supervised (A) and unsupervised () models evaluated on the validation dataset.

5.4.2 Cross-validation of performance of the DL models

The segmentation results of the cross-validation technique were evaluated using
two metrics: the cro:AUCArea under the curve (AUC) of the cro:ROCReceiver
operating characteristic (ROC) curve and the cro:APAverage precision (AP) of
the cro:PRPrecision-recall (PR) curve. While the AUC is a commonly used met-
ric, it can be misleading in the presence of class imbalance [hanczar2010small,
saito2015precision|. To address this issue, PR curves were used to evaluate the
performance of algorithms, as recommended by [saito2015precision]. There-
fore, both PR and ROC curves were used to evaluate the models.

The voxel-wise classification task of the models was evaluated for each fold,
whose summary ROC-AUC and AP values are shown in Fig. 5.3 for the valida-
tion dataset and the challenging test set. The cross-validated results related to
the validation dataset (represented with blue colour in Fig. 5.3) indicate that
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Figure 5.3: Point-plots of the average ROC-AUC and AP scores (with confidence
interval) of the models evaluated on the validation dataset and on the challenging
dataset. The quantitative values are shown in Table 5.3 and Table 5.4.



5.4. Results and discussions 87

Model AP AUC
MSS-UNet® 0.572 &+ 0.019 0.856 £+ 0.017
UNet® 0.581 4+ 0.008 0.880 + 0.014

UNet++2  0.583 + 0.021 0.848 + 0.014
UNet-3+2  0.541 £+ 0.010  0.882 + 0.008
ACC-UNet®  0.418 £ 0.018  0.786 & 0.016
VAE 0.615 + 0.038  0.990 + 0.002
ceVAE®  0.635 + 0.021 0.990 + 0.001
gmVAE® 0.374 &+ 0.092  0.838 + 0.044
vqVAE® 0.313 + 0.025  0.871 + 0.009
RV-VAE®  0.634 + 0.014  0.985 + 0.001

Table 5.4: Average ROC-AUC and AP (with confidence interval) of the super-
vised (A) and unsupervised (<) models evaluated on the challenging test-set.

supervised models have been generally better trained to be consistent with la-
bels than the unsupervised methods. The results on the challenging dataset with
high artefacts and manually labelled (represented with orange colour) show a
clear drop of the score for all the models, as expected for the considerations in
5.2.1. Moreover, it is noticeable that the score of some of the unsupervised mod-
els is even higher than that of the supervised ones for the challenging dataset.
Although these results may not seem consistent with the validation dataset, it
should be noted that in both cases the labels were generated in different ways:
either with a heuristic labelling algorithm or via manual annotation. Among
the supervised models, there is no significant difference in performance, which
suggests that deep supervision and the different architecture of the models is
not inducing a significant difference in performance. On the other hand, a no-
ticeable difference in scores is present between ceVAE and gmVAE/vqVAE on
the challenging dataset, which is significant for vqVAE with a confidence of 95%
(Welch’s t-test, p-value 1.98x10~4 (AUC) and 1.05%10~° AP). The higher degree
of complexity of gmVAE and vqVAE is not favourable to the segmentation task
by the mean of the anomaly score. These models have been capable of learning
how to reproduce defects within the input samples, so the reconstruction error is
not as high in the proximity of defects as it is with simpler VAEs. On another
note, VAE and ceVAE are most robust with respect to the quality of the input
image, since the AP/AUC scores are almost unvaried between the validation and
the challenging test-set (AP/AUC differences lower than or approximately equal
to a decimal point), when opposed to the other models (AP/AUC differences
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Model AP AUC

VAE 0.964 £ 0.020 0.998 £+ 0.001
ceVAE 0.964 £+ 0.021 0.999 + 0.001
emVAE 0.516 + 0.144 0.913 + 0.033
vqVAE 0.512 + 0.122 0.948 + 0.019
RV-VAE 0.951 + 0.020 0.998 + 0.001

Table 5.5: Average ROC-AUC and AP (with confidence interval) of the unsu-
pervised models evaluated on the validation dataset, with post-processing of the
output. Solely the performance of unsupervised models is shown, since the post-
processing of the output is defined for them only.

Model AP AUC

VAE 0.824 £+ 0.007  0.989 & 0.002
ceVAE  0.830 £ 0.003 0.989 + 0.001
emVAE  0.234 & 0.089  0.555 £ 0.099
vqVAE 0.138 £ 0.020 0.587 4+ 0.028
RV-VAE 0.777 & 0.004 0.981 £ 0.001

Table 5.6: Average ROC-AUC and AP (with confidence interval) of the unsu-
pervised models evaluated on the challenging test set, with post-processing of
the output. Solely the performance of unsupervised models is shown, since the
post-processing of the output is defined for them only.

exceeding a decimal point).

5.4.3 Cross-validation of performance of post-processed unsu-
pervised models

By applying post-processing to the output of the VAE models (Fig. 5.4), the con-
siderations of the previous section about supervised models become more evident.
When post-processing is applied to the output of the VAE and ceVAE models,
which have not learned to visually represent pores, their AP scores increase by
almost 2 decimal points on both datasets, while their AUC remains almost un-
changed. On the other hand, post-processing adversely affected the performance
of gmVAE and vqVAE, which is to be expected since the derivative of the output
of these models is non-negligible near the edge of the sample as well as near the
pores. This behaviour is noticeable in the ROC andPR classifier curves for the
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Figure 5.4: Point-plots of the average ROC-AUC and AP of the models (with
confidence interval) evaluated on the validation dataset and on the challenging
dataset, with and without post-processing. Solely the performance of unsuper-
vised models is shown, since the post-processing of the output is defined for them
only. The values in textual form are shown in Table 5.5 and Table 5.6.
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Figure 5.5: Graph of the ROC andPR curves of cross-validated performance for
all models. The graphs represent the median trend of the fold-wise performance
on the challenging dataset without (left) and with post-processing (right) of the
aggregated output.

Model AP AUC
MSS-UNet 0.651 4= 0.008  0.889 £ 0.005
UNet 0.639 + 0.008 0.882 &+ 0.004

UNet++  0.751 £ 0.030 0.902 £ 0.015
UNet-3+ 0.627 £ 0.006  0.894 £ 0.006
ACC-UNet  0.586 £ 0.008  0.874 £ 0.004

Table 5.7: Average ROC-AUC and AP (with confidence interval) of the super-
vised models re-trained with the labels generated by ceVAE and evaluated on the
challenging dataset.

challenging case as shown in Fig. 5.5 (other ROC andPR graphs are shown in
the A.1). The greater complexity of gmVAE/vqVAE models enables them to
replicate defects within the samples, leading to a reduction in anomaly scores
and compromising performance. This effect intensifies with the application of
post-processing, as illustrated in Fig. 5.6, where a validation sample is inferred
by both ceVAE and gmVAE with and without post-processing of the anomaly
scores. These results highlight that a more complex architecture is not always
advantageous, particularly when anomalies exist within the training dataset. Ad-
ditionally, it can be observed from Fig. 5.3 and Fig. 5.4 that the scores of VAE
and ceVAE are still resilient against the poor image quality of the challenging
test-set, compared to the drastic drop in performance of the supervised networks.



5.4. Results and discussions 91

0.190

0.165
(¢) ceVAE, post-processed
0.140
0.115
0.090

(a) A sample slice.

(d) gmVAE (e) gmVAE, post-processed

Figure 5.6: A slice took from a validation dataset (a) and its voxel-wise anomaly
score accordingly to ceVAE (b) and gmVAE (d). Post-processing the anomaly
scores (c, e) reveals a beneficial impact, particularly for models that unequivocally
classify pores as anomalies. The color-scale represents the intensity levels in the
anomaly score images.
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Figure 5.7: Graph of the ROC and PR curves of cross-validated performance
for all models. The graphs represent the median trend of the fold-wise per-
formance on the challenging dataset, with Otsu-based labels (left) and post-
processed ceVAE-generated labels (right).

5.4.4 Cross-validation of supervised models trained with labels
generated by an unsupervised model

By using ceVAE (the best performing model) to generate labels for the samples,
the supervised models could be trained from scratch to detect pores. The neces-
sary steps for the production of these labels by ceVAE were the post-processing
(with the algorithm described in section 5.2.1) and the suppression of smaller
pores. The results are shown in Fig. 5.8 and Fig. 5.7. Higher performance is
achieved by using the unsupervised labels, confirmed by both AUC and AP for
all the models. These results confirm the observations in section 5.4.2 that the
different architectures of the models are not significantly affecting the scores for
this voxel-wise segmentation task.

5.4.5 Model complexity

Table 5.8 presents key metrics related to the model complexity of each neural
model, including the number of parameters, peak memory usage, and Multiply-
Accumulate Operations (MACs). The number of parameters indicates the quan-
tity of floating-point numbers that need to be stored in video memory, reflecting
the minimal memory occupancy required to store the model. Conversely, the for-
ward /backward peak memory highlights the memory needed to process an input
with a batch size of 1. Lower memory requirements lead to larger permissible
batch sizes, consequently reducing training times. The MACs value encapsulates
information about the speed of the neural models to process a single 3D patch.
In the case of X-CT volumes sized at 800x800x2000, comprised of numerous over-
lapped patches by half of their patch-length, the forward operation during the
inference phase necessitates multiple repetitions to process the entire volume.
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Figure 5.8: Point-plots of the average ROC-AUC and AP (with confidence inter-
val) of the supervised models evaluated on the challenging dataset. The graphs
highlight the different performance when these models were supervised by the

Otsu-based method and with the labels provided by the unsupervised models.
The values in textual form are shown in Table 5.7



94 Chapter 5. Vozxel-wise pore segmentation with 3D patch-based neural models

Model # Parameters Forward/Backward Peak Memory MACs Total MACs

MSS-UNet 1.328 M 383.740 / 424.840 MB 14.270 G 69.678 T
UNet 1.325 M 353.924 / 390.925 MB 14.124 G 68.967 T
UNet++ 1.503 M 933.490 / 1005.831 MB 34.821 G 170.024 T
UNet-3+4 1.672 M 1571.642 / 1720.766 MB 84.881 G 414.460 T
ACC-UNet 5.062 M 6897.734 / 7269.893 MB 39.724 G 193.966 T
VAE 29.024 M 44.703 MB / 189.918 MB 3.698 G 18.058 T
ceVAE 140.650 M 33.765 MB / 778.901 MB 8.344 G 40.742 T
gmVAE 383.650 M 774.129 MB / 1842.710 MB 207.48 G 1013.096 T
vqVAE 2511 M 17.688 MB / 32.701 MB 8.471 G 41.361 T
RV-VAE 29.024 M 223.288 MB / 230.196 MB 0.456 G 2176 T

Table 5.8: Model complexity metrics for each neural model, including for-
ward /backward peak memory usage and MACs, are specified for batch-size 1.
Total MACs represent operations for processing an 800x800x2000 voxel volume,
with a 3D patch overlap of half the patch-length.

The cumulative MACs operations, represented as ”Total MACs” in the table,
quantify the overall computational workload.

It is noteworthy that the memory usage of the UNet-family generally ex-
ceeds that of the VAE-family in forward/backward passes, with the exceptions
of ceVAE and gmVAE. Specifically, the high memory requirements of ceVAE are
visible only during the training procedure, as it is related solely to the backward
pass. Nevertheless, ceVAE has shown good performance during the previous ex-
periments (Section 5.4.3 and 5.4.4). Conversely, the huge memory requirement
of gmVAE and MACs do not directly translate in outstanding performance for
the prior experiments.

5.4.6 Cross-validation of performance of the best performing model
in extreme visual scenarios

By reducing the number of X-ray projections of the challenging X-CT scan and
reducing the exposure of each X-ray projection, the quality of the reconstructed
X-CT scan decreased. The best performing model, which was shown to be the
post-processed ceVAE, was applied to these X-CT scans. An exemplary visual
representation of the voxel-wise segmentation is shown in Fig. 5.10, related to
the post-processed output of the ceVAE model, trained on the 1st fold. In this
figure, a small portion of a slice of the cube is shown, in which pores are visible
that were induced with off-nominal parameters of the melting laser during the
printing. The degradation of the segmentation performance is noticeable due to
the increasing number of voxels classified as pores (as shown in Fig. 5.9). Inter-
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Figure 5.9: Point-plots of the average ROC-AUC and AP (with confidence inter-
val) of the anomaly score of ceVAE evaluated on the challenging test-set when
the image quality is lowered by reducing the number of X-ray projections or ex-
posure.

estingly, while reducing the number of X-ray projections from 4283 (the dataset
used for training/validation) to 2878 (the original challenging test-set) did not
significantly affect the performance (Fig. 5.4), further reductions in the number
of projections had a significant impact on the performance scores (Fig. 5.9). An-
other point to note is the trend exhibited by the AP scores at low exposure levels
ranging from 50-25%. Specifically, reducing the number of projections from 50%
to 33.3% led to a slight increase in the AP scores. When data is highly noisy and
the number of projections is relatively low, adding some more X-ray projections
may not always lead to better image quality of the reconstructed X-CT scans.
This is because the additional (noisy) projections can also introduce more noise
into the reconstructed images. This can be observed from the fact that the trend
gradually disappears as the exposure level increases from 25% to 100%.

5.5 Conclusions

This study explores recent Deep Learning techniques for voxel-wise pore segmen-
tation in X-CT images of AM samples. Employing Tversky focal loss, deep super-
vision, and 3D patch-based training, various 2D neural models (UNet, UNet++,
UNet 3+, MSS-UNet, ACC-UNet, VAE, ceVAE, gmVAE, vqVAE, RV-VAE) were
adapted to 3D, with both supervised and unsupervised training strategies. Post-
processing of unsupervised models and training supervised models with unsuper-
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2878 projections (100%) 1439 projections (50%) 959 projections (33.3%)

0.13 mAs (25%) 0.26 mAs (50%) 0.39 mAs (75%) 0.52 mAs (100%)

Figure 5.10: A portion of a X-CT slice is shown in each row and column by
modifying the number of X-ray projections and exposure of each X-ray projec-
tion. Each input slice is shown together with the label mask predicted by ceVAE
(trained on the 1st fold). The degradation of the segmentation performance is
noticeable from the raising number of voxels that are classified as pores (white
colour in the predicted mask).
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vised inferred labels are also investigated.

The comprehensive comparison of all neural models reveals that supervised
models (UNet-3+, AP 0.873 & 0.036) outperform unsupervised models (ceVAE,
AP 0.746 + 0.094), a trend not upheld when tested on a challenging X-CT test
set. In this scenario, ceVAE (AP 0.635 4+ 0.021) outperforms supervised neu-
ral models (UNet++, AP 0.583 4+ 0.021). The application of additional post-
processing, beneficial for VAE and ceVAE (AP 0.830 £ 0.003 on the challenging
test set), proves counterproductive for gmVAE and vqVAE due to the more com-
plex architecture of these models. This complexity lead the models to be able
to replicate defects within the training samples, thereby impairing the voxel-wise
anomaly score. Although using an ideal pore-free training dataset might improve
the scores of gmVAE and vqVAE models, it would hinder supervised models’ per-
formance due to the absence of pores. Overall, the resulting VAE/ceVAE models
exhibit resilience to lower image quality, unlike supervised models.

Training supervised models with labels derived from the best unsupervised
model (ceVAE) enhances their performance (UNet++, AP from 0.583 + 0.021
to 0.751 £ 0.030 on the challenging testset) but does not surpass that of the
unsupervised model. The study confirms that unsupervised ceVAE, robustly
captures the statistical properties of 3D patches compared to the supervised
UNet family. This finding aligns with analogous results in anomaly detection
in MRI images [chatterjee2022strega|, endorsing unsupervised learning as a
viable training paradigm for addressing anomaly segmentation in AM samples
without the need for labelled data.

Looking ahead, future endeavours may involve developing efficient models ca-
pable of detecting pores from X-CT scans at a faster rate, with fewer projections
or shorter scan times, in coherence with the future trends foreseen by Khosra-
vani&Reinicke [khosravani2020use|, which will expand the experiment 5.3.8.
This would facilitate the use of X-CT in streamlined evaluations of entire sam-
ple batches. Furthermore, while the research presented here primarily focuses
on porosity analysis in the AM process, it opens avenues for broader anomaly
detection applications, including identifying impurities, microstructural inhomo-
geneities, or alloying element loss due to vaporisation.
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 Chapter )

General conclusion & prospects

With the work presented in this thesis, the possible applications of X-ray devices
in the AM production pipeline have been extended and new paths for further
investigation have been opened.

Firstly, a novel automated registration method for comparing CAD models
with their physical realisations through a few X-ray radiographs has been de-
veloped. This method eases the automated rejection of defective AM parts by
analyzing projective residuals, which measure discrepancies between the actual
X-ray radiographs and their ideal, defect-free counterparts. The method relies on
the application of a mesh projector, implemented as a differential program specif-
ically for this task. The automated registration method has been proven effective
on real radiographs utilizing a poly-chromatic model and performing simultane-
ous registration of multiple meshes, based solely on scanning geometry and CAD
model information, achieved without prior training procedures or spectral infor-
mation regarding the scanning system. However, challenges such as high object
symmetry and projective model inaccuracies must be addressed to enhance the
method’s applicability and accuracy. As a future prospect, the method can be
investigated to include a joint estimation of the shape of the scanned object by
as few as two X-ray projections.

The thesis also introduces a novel approach to compensate for undesirable X-
ray scattering effects through a simulation-based method, leveraging the exact po-
sitioning of scanned objects and their supports, from just few X-ray radiographs.
This marks the first instance of using a simulation-based scatter compensation
method without prior X-CT scanning. The adaptability of this method, free from
training procedures, allows it to be easily integrated into new factory productions
with different designs and materials. While the current use of the GATE sim-
ulation back-end is computationally intensive, modern GPU solutions for X-ray
scatter simulations present a promising future direction for reducing this com-
putational load. Additionally, developing an X-ray scatter estimation pipeline
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relying solely on the mesh projector and an analytical description of first-order
scatter is expected to yield significantly improve processing speed.

Finally, the thesis explores the use of DL techniques for analyzing X-CT im-
ages, specifically for voxel-wise pore segmentation in AM samples using volumet-
ric information. By employing various 2D neural models adapted to 3D and using
supervised and unsupervised learning strategies, the research demonstrates the
effectiveness of a 3D patch-based approach for porosity analysis. Results indicate
that unsupervised models, particularly ceVAE, outperform supervised models in
challenging test scenarios. Future research may focus on accurately segment-
ing pores with fewer X-ray radiographs and extending these methods to broader
anomaly detection applications, such as identifying impurities, microstructural
inhomogeneities, or alloying element loss due to vaporization.

In summary, this thesis presents a suite of innovative methodologies that en-
hance the efficiency and applicability of X-ray imaging in industrial AM processes.
The advancements in automated multi-mesh registration, X-ray scatter compen-
sation, and deep learning-based porosity analysis represent significant strides for-
ward, setting the stage for continued research and development in these areas.
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Appendices & Supplementary
material

A.1 Classifier graphs for the voxel-wise segmentation
task

The ROC and PR graphs of the voxel-wise segmentation results that were not
shown in previous sections are reported here. In Fig. A.1, there are the perfor-
mance graphs of supervised and unsupervised models evaluated on the related
validation dataset. The graphs are aligned with the findings discussed in section
5.4.2 and 5.4.4. In Fig. A.2 are shown the performance of the unsupervised mod-
els only, since they show the segmentation scores of the post-processed output.
The scores were obtained from the fold-wise performance on the related valida-
tion dataset, where is noticeable an increase of performance for VAE/ceVAE and
a decrease for gmVAE/vqVAE if compared with Fig. A.1 (right), in accordance
with the findings in section 5.4.4.
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Figure A.1: Graph of the ROC and PR curves of cross-validated performance for
all models. The graphs represent the median trend of the fold-wise performance
on related validation dataset.
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Figure A.2: Graph of the ROC and PR curves of cross-validated performance for
the unsupervised models. The graphs represent the median trend of the fold-wise
performance on the related validation dataset, when the output of the models is
post processed.

A.2 Cross-validation graphs for the FTL parameter
search per each fold

For each of the 5 folds of the cross-validation, there is a total of 16 trainings for
the /8 parameter, which are presented in Table A.1. For the v parameter, there
is a total of 8 trainings per fold and the values of the Dice-Sgrensen are shown in
Table A.2.



A.2. Cross-validation graphs for the FTL parameter search per each fold
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Dice-Sgrensen score - Fold 1
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Dice-Sgrensen score - Fold 5
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Dice-Sgrensen score - Fold 3
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Table A.1: Fold-wise Dice-Sgrensen score for the networks evaluated on the re-

lated validation dataset, depending on

the o/ parameters of the FTL.
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Dice-Sgrensen score

2.0 0.52
1.67 0.58
1.5 0.61
1.33 0.64
! 1 0.80
0.67 P 0.70
0.5 ).86 0.66
0.33 N 0.70
1 2 3 4
Fold

Table A.2: Fold-wise Dice-Sgrensen score for the networks evaluated on the re-
lated validation dataset, depending on the v parameter of the FTL.
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A.3 Random Variable Module: Sigmoid Activation
Function

In this section, we extend the discussion on random variables applied after the
encoding layer of Autoencoder-based neural models, as presented in a previous
article [nicodemou2023rv]. We maintain the assumptions established in that
work, which include the absence of correlations between random variables. Fur-
thermore, we leverage the ability to represent arbitrary probability distributions
of real numbers through an expected value and a variance, a condition supported
by the validity of the central limit theorem resulting from the summation of
unrelated random variables.

Our focus here is to provide a means of obtaining the first two moments (ex-
pected value and variance) of a random variable Y resulting from the application
of the sigmoid function S to its input random variable X.

Let us begin by defining the sigmoid function:

1

S(z) = T+op(—z) (A.1)
alongside its first and second derivatives with respect to x
S(x) = S(x)(1 - S(x))  S(x) = S(x)(1 - S(x))(1 - 25(x)). (A.2)

These derivatives will prove useful in deriving the expected value and variance of
Y = 5(X), where X is considered to be a random variable.

For the calculation of E[S(X)], we employ a Taylor expansion centred at
Xo = E[X]:

S(z) = S(B[X]) + (X — E[X])S(E[X]) + 5 (X — E[X])*S(E[X])*

1 (A.3)
+ 5 (X = E[X])? S (E[X])3 + ...
From which we extract the expected value as
E[S(z)] = E[S(E[X]) + (X — E[X])S(E[X]) + %(X — E[X])*S(E[X])® "
+ %(X —~E[X])?S(B[X])3 +..]

Given the assumption that the distribution of the random variable X behaves
as a normal distribution, all odd central moments are expected to be null. This
leads to a simplified formula for the expected value of Y = S(X)

E[Y] = S(EIX]) + 5 S(EIX])Var[X] + Mi | (A5)
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where M, collects all the moments after the third and can be neglected under

the assumption of smooth distribution. To calculate the expected variance of Y,
we can utilise equations A.3 and A.5, so to obtain

Var[Y] = E[Y?] — E[Y]? = E[S*(E[X]) 4+ 2(X — E[X])S(E[X])S(E[X])

+ (X~ E[X)($X(BIX]) + S(E[X))S™(E[X])
+ (X ~ BIX)P(SEXDSELX]) + 2 SELX) § (EX)) + R

(S EX)Var? [X] — SEX)SEX) VarlX] - A,

(A.6)

with My being analogous to My in A.5 and R4 collecting all the central differences

above the third exponent. By discarding all moments above the third, a compact
approximation for the variance of Y is given by

- S(E[X]) -

Var[Y] ~ S(E[X])Var[X] — ESQ(E[X])VarQ [X]. (A7)
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A.4 Theoretical white-field image for flat detectors

This section provides a practical approxi-
mation for the amount of radiation cross-
ing a detector pixel in the case of isotropic
X-ray emission.

Assuming isotropic X-ray emission with
total emission denoted as J*, the emis-
sion per steradian is a constant referred
to as J = J*/4w. The radiation crossing
a detector pixel p is given by the integra-
tion of the emission J over the solid angle
dw related to the detector pixel area A,:

I :/ Jdw (A.8)
Ap

where I, represents the radiation cross-
ing p. The infinitesimal dw is linked to
the infinitesimal area da through dw =

n-v da/r?, with n being the detector pixel

Detector

normal and 7 the versor of the line r con-
necting the detector pixel center and the X-ray source position. As the versor
7 = (z,y, z) has components

x = sinf cos ¢
y =sinfsing (A.9)
z = cosf

then it is possible to rewrite Equation A.8 as

Ipzj/ "';’da:J/ Sn0eoso g, (A.10)
A A

r r
P P

and, expressing it in terms of the position of the detector pixel center P(X),Y},),

I, = J/ fida (A.11)
A, (R2+ X24Y2)2

it becomes

Under the assumption that the detector distance R from the source is much
greater than X, and Y, and of the pixel area A, then the denominator is nearly
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constant throughout the integration on the pixel area and it can be brought out-
side the integration. This allows us to conveniently approximate Equation A.11
with
JAR
I, ~ - . (A.12)
(R? + X3+ )}




A.5 Supplementary material for Chapter 3

Scene Diff. Angle Transl. x Transl. y Transl. z Rot. Angle Rot. Axisx Rot. Axisy Rot. Axis z
cantilever 90 -1.09 £0.82 -1.30 4+ 1.72 2.28 £ 0.07 64.01 £ 36.09 -0.00 £ 0.00 -0.04 £ 0.04 1.00 £ 0.00
cantilever 50 0.214+039 0.59+ 185 220+ 0.01 -86.36 & 45.97 -0.00 £ 0.00 -0.00 & 0.00 1.00 + 0.00
cantilever 10 -0.03 £0.36 -0.98 +£1.59 2.28 +0.02 95.86 + 45.96 -0.00 + 0.00 0.00 & 0.00 1.00 &+ 0.00
cylinder 90 -0.02 £0.00 -0.01 £0.00 -0.99 + 0.00 -103.76 + 0.07 -0.01 £ 0.00 0.01 £+ 0.00 1.00 £ 0.00
cylinder 50 -0.02 £0.00 -0.014+0.00 -0.99+ 0.00 -103.98 +0.04 -0.01 £0.00 0.01 +£0.00 1.00 &£ 0.00
cylinder 10 -0.03 +0.02 -0.01 £ 0.02 -0.99 4+ 0.00 -104.05 + 0.18 -0.01 + 0.00 0.01 & 0.00  1.00 4 0.00
stepwedge 90 1.17 £ 1.07 278 £ 1.75 -1.224+0.33 17741 £+ 1.41 0.43 £ 0.18 -0.82 &£ 0.07 0.02 £ 0.01
stepwedge 50 2.01 £241 0.72+0.68 -1.01 £0.25 178.08 +£1.70 0.14 +0.35 -0.42 + 0.28 0.02 £ 0.02
stepwedge 10 1.93 +1.94 1.27 £1.02 -0.99 £ 0.23 178.03 +£1.76 -0.14 +0.35 -0.14 £0.35 0.02 = 0.02

Table A.3: Mean and standard error of pose parameters for the main object across various scenes and projection

angles. Units are in mm and deg.
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Scene Diff. Angle Transl. x Transl. y Transl. z Rot. Angle Rot. Axis x Rot. Axisy Rot. Axis z
cantilever 90 1.14 £0.06 -0.51 +£0.04 -17.99 4+ 0.04 8.00 + 15.19 0.09 £ 0.06 0.20 £0.15 0.91 £ 0.07
cantilever 50 1.15£0.07 -0.51 +0.05 -18.03 +£0.01 -1.25 £ 19.70 0.01 £ 0.01 -0.06 £ 0.06 0.99 £ 0.01
cantilever 10 1.06 +£0.09 -0.41 £0.11 -17.89 £0.02 10.60 4+ 24.04 0.01 = 0.00 0.05 £ 0.04 1.00 £ 0.00
cylinder 90 1.03 £0.43 -0.28 +0.40 -12.68 &+ 0.02 -90.00 %+ 0.00 0.00 & 0.00  0.00 £ 0.00  1.00 £ 0.00
cylinder 50 0.61 £0.68 -0.11 +0.68 -12.49 £0.05 -93.57 +3.22 0.00 £ 0.00 0.00 &£ 0.00 1.00 £+ 0.00
cylinder 10 048 +1.25 0.04 +1.28 -12.13 £ 0.16  -82.81 & 3.95 0.00 & 0.00  0.00 £ 0.00  1.00 £ 0.00
stepwedge 90 -6.00 +2.81 -1.254+2.60 -66.91 + 0.40 -5.43 £ 4.95 0.00 = 0.00  0.00 £ 0.00 0.20 £ 0.20
stepwedge 50 -4.10 £2.73 145+ 0.27 -66.93 + 0.62 -4.72 £ 20.89 0.00 & 0.00  0.00 £ 0.00 0.60 £ 0.24
stepwedge 10 -3.53 +1.88 0.61 £0.41 -67.07+0.71 -18.15+ 30.55 0.00 £0.00 0.00 + 0.00 0.60 + 0.24

Table A.4: Mean and standard error of pose parameters for the upper support across various scenes and projection

angles. Units are in mm and deg.

Scene Diff. Angle Transl. x Transl. y Transl. z Rot. Angle Rot. Axis x Rot. Axisy Rot. Axis z
stepwedge 90 -0.05+0.23 0.53 £0.29 -89.45 4 0.23  -5.43 + 4.95 0.00 £ 0.00 0.00 £ 0.00 0.20 £ 0.20
stepwedge 50 -0.53+0.16 0.46 +0.48 -89.63 +£0.23 -4.72+20.89 0.00+0.00 0.00+0.00 0.60 & 0.24
stepwedge 10 -0.88 £0.31 1.51+0.32 -89.18 £ 0.67 -18.15+ 30.55 0.00 £ 0.00 0.00 £ 0.00 0.60 £ 0.24

Table A.5: Mean and standard error of pose parameters for the lower support across various scenes and projection

angles. Units are in mm and deg.
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Abbreviations

X-CT X-ray Computed Tomography

AM Additive Manufacturing

CAD Computer-Aided Design

DXR Digital X-ray radiography

SLA Stereolithography

SLM Selective Laser Melting

KH Keyhole

LoF Lack-of-fusion

DL Deep Learning

FTL Focal Tversky Loss

SS316L Stainless steel 3161
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PA12 Polyamide

AP Average precision

PR Precision-recall

ROC Receiver operating characteristic

AUC Area under the curve

RMSE Root mean squared error

NDT Non-destructive testing

VAE Variational Autoencoder

FTL Focal Tversky Loss

PACS Projection-driven Adaptive CADs X-ray Scatter compensation



