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Summary

Additive Manufacturing (AM), or 3D printing, has revolutionized industrial pro-

duction by enabling the creation of complex parts and products through the

successive layering of materials. This technique offers significant advantages in

prototyping and customization, streamlining the transition from digital models

to physical objects. However, challenges such as anisotropic properties, surface

finish issues, and internal defects necessitate robust quality control measures.

This thesis investigates advanced non-destructive testing methods, focusing

on X-ray inspection techniques, to enhance the reliability and quality of AM

components. Key contributions include:

� Automatic Simultaneous Multi-Mesh Registration and X-ray system spec-

tral estimation: Introduction of an automated technique for aligning X-ray

CT scans with their corresponding CAD models, facilitating precise de-

fect localization and comparison, which can incorporate estimation of the

poly-chromatic behaviour of the scanning system.

� Compensation for X-ray Scattering: The development of a novel software

method to mitigate X-ray scattering effects, thereby improving image clar-

ity and defect detection accuracy, suitable for radiographic and X-ray Com-

puted Tomography (X-CT) setups.

� 3D Deep Learning Models: Application of state-of-the-art deep learning

methods tailored for 3D defect detection in X-CT images, utilising vol-

umetric data in an efficient, 3D patch-wise approach to identify internal

flaws.

These approaches, addressing critical issues such as X-ray scattering and beam

hardening, aim to jointly improve the image quality and ease the 2D/3D compar-

ison of the manufactured object and its digital model. By cross-validating these

techniques on real-world data, through a series of experiments, this research

makes a step forward towards ensuring the structural integrity and defectiveness

of AM samples. The findings contribute to the broader adoption of X-rays inspec-

tion setups in AM industries where safety and reliability of samples are critical,

such as aerospace, medical devices, and automotive sectors, and where reduction

of operational costs is usually desired.
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Samenvatting

Additive Manufacturing (AM), of 3D-printen, heeft de industriële productie

gerevolutioneerd door de creatie van complexe onderdelen en producten mogelijk

te maken via opeenvolgende lagen materiaal. Deze techniek biedt aanzienli-

jke voordelen in prototyping en maatwerk, waardoor de overgang van digitale

modellen naar fysieke objecten wordt vereenvoudigd. Echter, uitdagingen zoals

anisotrope eigenschappen, problemen met de oppervlakteafwerking en interne

defecten vereisen robuuste kwaliteitscontrolemaatregelen.

Deze thesis onderzoekt geavanceerde niet-destructieve testmethoden, met de

focus op röntgeninspectietechnieken, om de betrouwbaarheid en kwaliteit van

AM-componenten te verbeteren. Belangrijke bijdragen omvatten:

� Automatische Gelijktijdige Multi-Mesh Registratie en Spectrale Schatting

van het Röntgensysteem: Introductie van een geautomatiseerde techniek

voor het uitlijnen van röntgen-CT-scans met hun overeenkomstige CAD-

modellen, wat precieze defectlokalisatie en vergelijking mogelijk maakt,

waarbij de schatting van het polychromatische gedrag van het scansysteem

kan worden opgenomen.

� Compensatie voor Röntgenverstrooiing: De ontwikkeling van een nieuwe

softwaremethode om röntgenverstrooiingseffecten te verminderen, waar-

door de beeldhelderheid en nauwkeurigheid van defectdetectie verbeteren,

geschikt voor radiografische en röntgen Computed Tomography (X-CT) op-

stellingen.

� 3D Deep Learning Modellen: Toepassing van state-of-the-art deep learn-

ing methoden, afgestemd op 3D-defectdetectie in X-CT-beelden, waarbij

volumetrische gegevens efficiënt worden gebruikt in een 3D patch-wise be-

nadering om interne fouten te identificeren.

Deze benaderingen, die kritieke kwesties zoals röntgenverstrooiing en verhard-

ing van de bundel aanpakken, zijn bedoeld om gezamenlijk de beeldkwaliteit te

verbeteren en de 2D/3D-vergelijking van het vervaardigde object en zijn digitaal

model te vergemakkelijken. Door deze technieken te cross-valideren op real-world

13
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data, via een reeks experimenten, levert dit onderzoek een stap vooruit in het

waarborgen van de structurele integriteit en de foutloosheid van AM-monsters.

De bevindingen dragen bij aan de bredere acceptatie van röntgeninspectieopstellingen

in AM-industrieën waar veiligheid en betrouwbaarheid van monsters cruciaal zijn,

zoals lucht- en ruimtevaart, medische apparaten en de automobielsector, en waar

verlaging van operationele kosten meestal gewenst is.
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Introduction

cro:AMAdditive Manufacturing (AM), commonly known as 3D printing, is a new

approach to industrial production that enables the creation of parts and prod-

ucts through the successive layering of materials [Gibson2015, Frazier2014].

This technique contrasts with traditional subtractive manufacturing, where ma-

terial is removed to achieve the desired shape [Bourell2009]. In AM, a digital

3D model designed using cro:CADComputer-Aided Design (CAD) software is di-

rectly translated into a physical object by adding material layer by layer, making

the process highly efficient and flexible [Wohlers2011].

Within the framework of Industry 4.0, AM is standing out due to its integra-

tion of smart technologies and digital processes in manufacturing [Huang2015].

The ability of AM to quickly prototype and create complex geometries without

needing extensive tooling or assembly lines demonstrates the versatility and cus-

tomization at the heart of Industry 4.0. The straightforward translation of CAD

designs into physical items streamlines development, greatly reduces lead times,

and promotes innovation and rapid response to market demands.

However, AM has its weaknesses. The layer-by-layer construction can result

in anisotropic properties, meaning the material properties may vary in different

directions [DebRoy2018]. Surface finish and dimensional accuracy can also be

inferior compared to traditional methods, potentially requiring additional post-

processing [Herzog2016]. The variability in material properties and the presence

of internal defects are critical concerns that necessitate thorough inspection and

quality control [Thijs2010], especially in industries such as aerospace, medical

devices, and automotive, where the unexpected failure of a part is highly unde-

sirable.

To ensure the reliability and integrity of AM parts, cro:NDTNon-destructive

testing (NDT) techniques are commonly employed. These methods allow for

the examination of materials and structures without causing damage. Key NDT

techniques used in the context of AM include visual inspection, ultrasonic testing,

thermography, and X-ray inspection [Leach2020].

15



16 Chapter 1. Introduction

X-ray inspection, through cro:DXRDigital X-ray radiography (DXR) and

cro:X-CTX-ray Computed Tomography (X-CT), is widely used in AM due to

its ability to reveal internal structures and defects with high resolution. DXR

produces a two-dimensional image, capturing variations in material density and

thickness. X-ray CT, on the other hand, provides three-dimensional images by

compiling multiple radiographic images taken from different angles. This tech-

nique allows for detailed analysis of internal features and detection of flaws such

as cracks, voids, and inclusions [Seifi2016].

Nevertheless, X-ray imaging is not without its challenges. Two common is-

sues that can hinder defect detection are X-ray scattering and beam hardening

[Thompson2020]. X-ray scattering occurs when X-rays deviate from their orig-

inal path as they pass through a material, leading to image blurring and reduced

contrast [Maire2013]. Beam hardening happens when lower energy X-rays are

absorbed more than higher energy ones, causing artifacts in the images that can

obscure or mimic defects [Smith2017]. Moreover, the lack of detailed informa-

tion about the X-ray source spectrum and the sensitivity of detectors further

complicates the application of poly-chromatic approaches to address beam hard-

ening.

To enhance defect detection in AM parts, comparing X-ray images with their

corresponding CAD models can be highly effective [Pavlov2017]. This can be

done by directly comparing the surface mesh obtained from X-ray CT scans

with the original CAD mesh [Tang2020]. Alternatively, virtual projections of

the CAD model can be created and compared with the actual X-ray images

[Cloetens2018]. These methods help in identifying deviations and locating de-

fects with greater accuracy [Masood2014].

Within this context, the thesis you are reading delves into the exploration

of novel ways for defect detection through automatic multi-mesh registration

and scanning system spectral behaviour estimation (Chapter 3), enhancement of

X-ray images through X-ray scattering compensation (Chapter 4), and employ-

ing the latest deep learning methods tailored efficient 3D segmentation through

a patch-wise approach (Chapter 5). By identifying internal flaws that could

compromise performance or safety, these techniques help maintain high-quality

standards and enhance overall confidence in AM-produced components, while

lowering technical and operational requirements.
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Foundation

This thesis explores X-CT image processing and inspection techniques for AM

samples. This foundational chapter introduces the AM process, discusses common

AM defects, outlines X-CT imaging principles, and delves into the application of

deep learning for semantic image segmentation.

2.1 The Additive Manufacturing Process

AM constructs objects by sequentially adding material layer by layer, contrasting

sharply with traditional subtractive manufacturing techniques that remove ma-

terial through cutting, drilling, or milling. The AM process begins with a digital

3D model created using Computer-Aided Design (CAD) software. This model

is then sliced into thin cross-sectional layers by the printer’s software, and the

printer constructs the object by adding material layer upon layer based on these

slices [Gibson2010].

Various methods of additive manufacturing are employed to achieve the layer-

ing process. Fused Deposition Modeling (FDM) uses a heated thermoplastic fila-

ment extruded through a nozzle to build each layer [Crump1992]. cro:SLAStereolithography

(SLA) utilizes a vat of liquid resin that is cured layer by layer using a UV laser

[Hull1986]. Selective Laser Sintering (SLS) employs a laser to sinter powdered

material, binding it together to form a solid structure [Deckard1990]. Direct

Metal Laser Sintering (DMLS) and cro:SLMSelective Laser Melting (SLM) use

high-power lasers to fuse metal powders [Kruth1998]. Since SLA and SLM are

utilized for the AM samples in this thesis, these processes are explained in further

detail.

SLA is one of the earliest and most widely used 3D printing technologies. It

employs a vat of liquid photopolymer resin, which is cured layer by layer using

a UV laser [Hull1986], as outlined in Fig. 2.1. The process begins with the

printer platform being submerged slightly below the surface of the liquid resin.

17



18 Chapter 2. Foundation

Cured objectLiquid resin

Laser Beam Laser Unit

Scanning mirror

Moving axis

Build platform

Figure 2.1: Schematic of the SLA process.

The UV laser traces the first layer of the design onto the surface, polymerizing

and solidifying the resin in the desired pattern. After each layer is completed,

the platform lowers slightly, and the next layer is traced and cured on top of the

previous one. This process is repeated until the entire object is formed, with

typical layer thicknesses ranging from 25 to 100 micrometers, allowing for high

precision and fine detail [Malek1995].

The advantages of SLA include high precision and smooth surface finishes,

making it ideal for applications requiring detailed features and fine tolerances.

However, the materials used in SLA, typically photopolymers, can be brittle and

may require post-processing steps such as washing to remove excess resin, addi-

tional UV curing to ensure full polymerization, and support removal to finalize

the part [Gibson2010]. Common defects in SLA include layer delamination,

resin pooling, and incomplete curing [Malek1995]. Layer delamination occurs

when cured layers fail to bond properly, often due to insufficient laser power

or rapid movement of the build platform. Resin pooling happens when excess

resin accumulates in certain areas, causing inconsistencies in layer thickness. In-

complete curing can result in soft or uncured spots within the printed object,

affecting its mechanical properties and durability. These defects can be identified

through visual inspection, mechanical testing, or advanced imaging techniques

like X-ray CT and mitigated by optimizing printing parameters and thorough
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Cured object

Laser Beam Laser Unit

Scanning mirror

Powder
Magazine

Powder
collector

Moving
axis

Powder
distributing

roller

Figure 2.2: Schematic of the SLM process.

post-processing [Williams2002].

SLM is a highly advanced additive manufacturing technique that uses a

high-power laser to fully melt and fuse metallic powders to create solid three-

dimensional objects [Kruth1998]. Unlike SLA, which uses liquid resins, SLM

works with a variety of metal powders, including stainless steel, titanium, alu-

minum, and cobalt-chrome alloys. The process begins by spreading a thin layer

of metal powder across the build platform, as outlined in Fig. 2.2. The laser then

selectively melts the powder according to the CAD data, fusing it to form a solid

layer. After each layer is completed, the build platform lowers, and a new layer

of powder is spread on top, repeating the process until the entire object is formed

[Frazier2014].

SLM is particularly valued for its ability to produce parts with complex ge-

ometries and high mechanical properties [Yap2015]. It is extensively used in

industries such as aerospace, automotive, and medical, where strong, lightweight,

and customized components are essential. Despite its advantages, SLM can be

expensive due to the cost of metal powders and the high energy consumption

of the lasers. Additionally, the process can induce residual stresses in the parts,

which may require heat treatment post-processing [Gibson2010].

Among undesired inner porosity arising from the SLM technique, cro:LoFLack-

of-fusion (LoF) and cro:KHKeyhole (KH) pores are known to have the highest

share in the total porosity. LoF pores arise when there is insufficient melting

and bonding between adjacent powder layers or tracks [Yap2015], as shown in

Fig. 2.3.a. This defect typically results from inadequate laser energy, excessive

scanning speed, or incorrect layer thickness. When the energy input is too low,
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Figure 2.3: Formation of (a) LoFs and (b) KH pores. From

Ref. [poudel2022feature], used under Creative Commons CC-BY license.

the powder particles do not fully melt, leading to incomplete fusion between lay-

ers. This creates irregular voids within the material, compromising structural

integrity and potentially leading to premature failure under load [King2014].

LoF pores are often irregular in shape and size and can be distributed through-

out the part, making them challenging to detect and characterize [King2014].

KH pores form during the SLM process when excessive laser energy creates deep,

narrow cavities in the melt pool [Yap2015], as shown in Fig. 2.3.b. This oc-

curs when the laser power is too high or the scanning speed is too slow, leading

to a keyhole-mode melting. In this mode, the laser penetrates deeply into the

powder bed, creating a vapor depression that can collapse, trapping gas and

forming elongated, keyhole-shaped pores [King2014]. These pores act as stress

concentrators, significantly reducing the material’s mechanical properties, such

as tensile strength and fatigue resistance [King2014].

The materials used in additive manufacturing are diverse, including poly-

mers, metals, ceramics, and composites. Common polymers such as PLA and

ABS are favored for their ease of use and versatility. Engineering-grade plastics

like nylon and polycarbonate serve more demanding applications [Gibson2010].

Metals like titanium, aluminum, and stainless steel are utilized in industries

such as aerospace and medical for their strength and durability. Ceramics are

printed for applications requiring high heat resistance or electrical insulation

[Gibson2010]. Composite materials, which combine polymers with fibers like

carbon or glass, provide enhanced mechanical properties for high-performance

applications [Gibson2010].

A significant challenge in additive manufacturing is the occurrence of defects.

These defects act as stress concentrators, reducing mechanical properties such

as tensile strength and fatigue resistance [King2014]. Accurate detection and
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characterization of these defects are crucial for ensuring the reliability of AM

components [Yap2015]. NDT methods are essential across various industries for

evaluating material properties without causing damage. These methods ensure

product integrity and reliability, detect defects, and prevent failures throughout a

product’s lifecycle. Surface methods like visual inspection or dye penetrant test-

ing are limited to surface-breaking flaws and cannot provide information about

subsurface conditions [Shull2002]. Internal NDTmethods, such as X-ray testing,

are crucial for identifying internal defects that are not visible from the surface.

2.2 X-ray imaging and Computed Tomography

X-rays imaging is a NDTmethod essential for evaluating material properties with-

out causing damage. X-rays penetrate materials to varying degrees, making them

particularly useful for identifying internal defects such as cracks, voids, and inclu-

sions. The generation of X-rays typically involves X-ray tubes, where high-energy

electrons are accelerated and directed toward a metal target, usually tungsten .

When these high-speed electrons collide with the target material, their sudden

deceleration causes the emission of X-rays. This process produces characteristic

X-rays, specific to the target material, and Bremsstrahlung (braking radiation),

a broad spectrum of X-rays generated by the deceleration of electrons.

Once generated, X-rays pass through the object being inspected and are ab-

sorbed by a detector. In industrial environment, photon-integrating detectors are

the most common choice for their contained cost. These detectors measure the

intensity of the transmitted X-rays and convert this information into an image.

Areas where X-rays are absorbed more strongly appear darker on the resulting

radiograph, indicating denser or thicker regions, while areas where X-rays pass

through more easily appear lighter, revealing internal structures. As an example,

a bevel gear is shown in Fig. 2.4, where it is noticeable to peripheral part of the

gear are less attenuating the X-rays than the central, bulkier part.

In Fig.2.4, careful observation reveals non-uniform grey values in rectangular

areas where the imaged objects are not absorbing X-rays. These irregular patterns

are caused by variations in the gain and electrical bias of the detector’s read-

out circuitry. To correct these inconsistencies, a log-correction must be applied,

utilizing both white-field and dark-field images from the X-ray scanning system,

as illustrated in Fig. 2.5.

The white-field image is captured without any object in the X-ray beam

path, representing the detector’s response to uniform X-ray exposure. Conversely,

the dark-field image is obtained with the X-ray source turned off, capturing the

detector’s inherent noise and biases. By applying a log-correction using these
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Figure 2.4: Few radiographs of a bevel gear.

(a) (b)

Figure 2.5: An example of (a) white-field image and (b) dark-field image.
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Figure 2.6: Main interaction mechanisms of X-rays with matter, which are asso-

ciated with image formation. From Ref. [seibert2005x] © SNMMI.

reference images, we can normalize the radiographs, thereby reducing the impact

of detector non-uniformities and enhancing image quality [Hsieh2003].

X-ray imaging quality can be significantly affected by various factors related

to the interaction mechanisms between X-rays and matter, such as scattering and

beam hardening. These phenomena are rooted in the fundamental interactions

of X-rays with the atoms in the material they penetrate, primarily involving the

photoelectric effect, Rayleigh scattering, and Compton scattering, as schemati-

cally shown in Fig. 2.6.

Scattering occurs through two primary mechanisms: Rayleigh scattering and

Compton scattering. Rayleigh scattering, also known as coherent scattering, in-

volves the deflection of X-rays without a change in their energy. This type of

scattering is more prevalent at lower X-ray energies and contributes to a reduc-

tion in image contrast and detail due to the scattered X-rays deviating from their

original paths [Seibert2005]. Compton scattering, or incoherent scattering, in-

volves the interaction of X-rays with loosely bound electrons in the material. This

interaction results in the X-rays being deflected and losing energy in the process

[Hsieh2003]. Compton scattering is more significant at higher X-ray energies

and, as for Rayleigh scattering, contributes to image degradation.

Beam hardening is primarily caused by the photoelectric effect, which is highly
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dependent on the energy of the X-rays and the atomic number of the mate-

rial. The photoelectric effect occurs when X-ray photons are absorbed by atoms,

causing the ejection of inner-shell electrons [Hsieh2003]. This effect is more

pronounced at lower X-ray energies and with materials of higher atomic num-

bers. As the X-ray beam passes through the material, the lower-energy X-rays

are absorbed more readily than the higher-energy ones, resulting in a progressive

increase in the average energy (or ”hardening”) of the X-ray beam. This prefer-

ential absorption of lower-energy photons leads to artifacts in the X-ray images,

such as false density variations or streaks, which can compromise the diagnostic

quality of the images.

X-CT builds on traditional X-ray methods by constructing a three-dimensional

representation of an object from multiple two-dimensional X-ray images taken at

different angles. The X-CT imaging process involves rotating the X-ray source

and detectors around the object, capturing numerous radiographs, and using com-

putational algorithms to reconstruct a detailed 3D image of its internal structure,

as in Fig. 2.7. X-CT can also be done in a discrete way, which incorporate prior

knowledge about the limited number of materials within the object to enhance

the reconstruction process [DART]. By recognising that many objects are com-

posed of a few distinct materials, discrete tomography methods can improve the

overall quality of the reconstructed images, as in Fig. 2.8. Both traditional and

discrete X-CT offers unparalleled insights into the internal features of objects.

X-CT is particularly advantageous for its high-resolution imaging capabilities,

which allow for the detection of small, subsurface defects that might be missed

by other NDT methods.

2.3 Deep Learning for semantic segmentation

DL has emerged as a powerful tool for image processing, particularly in the

domain of semantic segmentation, which involves partitioning images into mean-

ingful regions. Segmentation is crucial in X-CT imaging for isolating specific

structures or areas of interest within the reconstructed volume, such as detecting

defective zones in AM prints. DL models can be trained for segmentation using

various training paradigms, broadly categorized into supervised and unsupervised

methods, as illustrated in Fig. 2.9.

Supervised training relies on labeled datasets to train models, where regions

of interest are already identified and annotated. During this process, the model

learns to recognize similar patterns in new images, providing accurate segmenta-

tion based on the examples it has seen during training.

Unsupervised training does not rely on labeled data. Neural models in this ap-
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(a) (b) (c)

Figure 2.7: Three orthogonal cross-sections of a bevel gear after X-CT recon-

struction of the radiographs. The planes of the cross-sections are indicated by

the colored lines in each image: (a) referenced in green, (b) in blue, and (c) in

red. This reconstruction accounts for beam-hardening and X-ray scatter.

Figure 2.8: Cross-sections of a discrete X-CT reconstruction of the bevel gear

shown in Fig. 2.7. Compared to Fig. 2.7, it is noticeable the limited colormap

with just two colour values, black (air) and white (gear material).
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Figure 2.9: Two training paradigms for DL methods in defect segmentation.

Supervised networks use labeled data for direct inference of defects in X-CT

images. Unsupervised networks aim to generate a defect-free version of the input

image, with anomalies identified by differences between the input and output

images.

proach are designed to reproduce the input image as the output, learning the sta-

tistical characteristics of defect-free images. During inference, the networks can-

not reproduce defects, and the difference between input and output images high-

lights the defective zones. This method identifies patterns and structures without

prior knowledge, useful for datasets lacking labeled examples [bozorgtabar2020salad,

kim2022virtual]. Autoencoders, variational autoencoders (VAEs), and genera-

tive adversarial networks (GANs) are commonly used for unsupervised anomaly

detection, trained to reconstruct normal data with anomalies detected through

high reconstruction errors [baur2020autoencoders].

The quality of segmented images depends on the initial X-CT reconstruction,

scan resolution, and DL model robustness. Higher resolution scans provide more

detailed segmentation, while advanced DL models trained on diverse datasets

enhance performance by capturing finer details and reducing errors. Despite the

computational intensity and the need for large datasets, volumetric information

within the X-CT can be fruitfully used through 3D patch-based approaches, as

recently proposed, which drastically reduce the memory footprint of DL models

[perez2021torchio]. Compared to traditional machine learning methods, DL

approaches offer significant improvements in the accuracy and efficiency of im-

age segmentation and defect detection, making them invaluable nowadays in the

analysis of complex X-CT data.
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Multi-mesh registration from few

X-ray projections

One effective strategy for defect detection in AM is the comparison of measured

X-ray radiographs with simulated radiographs derived from digital CAD models.

This method necessitates accurate simulation of X-ray projections that reflect

the multi-chromatic nature of the scanning system and the scanned objects. Key

to this approach is the precise alignment or registration of the surface mesh,

contained within the CAD model, with the X-ray radiographs, a process com-

plicated by the need for detailed knowledge of the object’s properties and the

spectral information of the X-ray scanning system.

The challenge lies in the availability of these details. Typically, end-users lack

comprehensive information about the object’s X-ray attenuation coefficients of

the scanned objects and the spectral behavior of the scanning system. Address-

ing these gaps often involves complex estimations or the use of supplementary

systems, posing significant hurdles for practical implementation.

This chapter introduces an innovative methodology utilizing the CAD-ASTRA

toolbox [paramonov2024cad], which enables efficient X-ray mesh projection

and facilitates multi-object pose estimation with a minimal number of radio-

graphs. CAD-ASTRA’s capability to simulate projections from complex geome-

tries makes it particularly advantageous in industrial settings, where spatial con-

straints on X-ray source and detector placement are common.

Leveraging CAD-ASTRA, which differential implementation has been devel-

oped specifically for this task, combined with PyTorch [paszke2019pytorch]

for optimisation, this chapter focuses on registering multiple object meshes using

sparse X-ray projections. By employing a differentiable projector within CAD-

ASTRA, the process integrates seamlessly with gradient-based optimisers, allow-

ing for simultaneous determination of the 3D position, orientation, and spectral

characteristics the scanning system. This approach not only enhances the accu-

27
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racy of defect localization but also streamlines the inspection process, aligning

with the operational needs of modern manufacturing environments.

Through this methodology, the author aim to address the inherent challenges

in mesh registration for X-ray radiograph analysis, providing a robust basis for

an efficient framework for defect detection in AM components.

3.1 Related works

The pose estimation of objects within industrial settings traditionally relies on a

comprehensive set of projections, through X-CT reconstructions. This technique

allows for the inference of pose through the registration of CAD models with

point clouds [kim2021robust] or extracted meshes [sukowski2022automated,

iuso2021cad]. However, the feasibility and desirability of 3D X-CT images may

be limited in certain scenarios. In recent developments, efforts have been directed

towards achieving pose estimation based on a low number of X-ray projections.

A notable industrial approach utilizing deep learning was proposed by Presenti

et al. [presenti2023fast], demonstrating pose estimation efficacy with as few as

one projection. While such approaches exhibit promising performance in con-

trolled environments, challenges arise from the specialized training procedures

and the inherent black-box characteristics of many deep learning methods, imped-

ing widespread adoption. Another recent contribution explored pose estimation

from X-ray projections by employing a CAD model and matching 2D-3D im-

age features through mesh projections [tanmatching]. The proposed approach

shares similarities with this method, with the additional benefit of overcoming

challenges associated with complex geometries and overlapping meshes, where

image features might be hardly discernible. In this study, a multi-mesh registra-

tion from X-ray projections is presented, using a mesh projector implemented as

a differential program, elucidating the capabilities of the proposed method.

3.2 Methods

CAD-ASTRA utilizes watertight triangular surface meshes1 to represent homoge-

neous volumes as enclosed entities. These meshes incorporate information about

the source and detector positions and orientations to simulate X-ray acquisition,

considering object attenuation. The initial guess for mesh position and orien-

tation, represented by p, serves as a starting point, with source and detector

positions assumed from scan metadata.

1A watertight surface mesh is a closed surface mesh free from self-intersections and overlaps.
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Each mesh m ∈ RN×3 comprising N vertices undergoes transformation via

a roto-translation operator Aθk : RN×3 → RN×3. Here, the pose vector θ =

[α, β, γ, tx, ty, tz] defines the 3D mesh’s position and orientation, in terms of Euler

Z-Y-Z angles (α, β, γ, respectively) and translation along the x, y, and z axis

(tx, ty, tz), respectively.

The projection operator Projd maps mesh vertices to W projection images,

each image consisting of M pixels:

Projd : RN×3 → RM×W , (3.1)

with d representing metadata linked to the meshes.

Estimation of the pose pk, for the k-th of the K meshes composing the scene,

is achieved through linear programming, aiming to minimize the sum of squared

differences in the projection space between measured projections P ∈ RM×W

(adjusted for dark and bright fields) and projections simulated by Projd:

θ̃1, · · · , θ̃K = arg min
θ1,··· ,θK

∥∥∥∥∥P−
K∑
k=1

Projd [Aθk [mk]]

∥∥∥∥∥
2

2

. (3.2)

Any objective function, as the one denoted in 3.2, can be conceptually de-

composed as a concatenation of an error function g on the simulated projection

function Projd, depending on a roto-translation through the operator A by a pose

vector θk. This leads to a compact formulation as fd(x) = g(Projd(Aθk(x))). Op-

timising the linear programming problem 3.2 through analytical gradient methods

requires knowledge of all the Jacobians involved in the Jacobian of the composed

function fd. The analytical gradient is then defined as:

∇fd(m) = JacTT JacTProj∇g (Projd(m)) , (3.3)

where direct access to the Jacobian-vector product of JacProj is provided by CAD-

ASTRA, whilst the other Jacobian-vector products are computed through auto-

grad patterns [bradbury2018jax, paszke2019pytorch]. Optimising 3.2 with

analytical gradient-based methods, offers computational efficiency, particularly

in scenarios with detectors with high spatial-resolving capability.

As real X-ray projections in industrial scenarios are commonly employing a

poly-chromatic X-ray source, accurate polychromatic forward model is needed

to reduce the likelihood of undesired local minima in 3.2. Therefore, the Projd
operator is substituted by the poly-chromatic operator PolyProjd, where:

PolyProjd =

E∑
e=1

seDeδe exp(−
K∑
k=1

µe,klk) . (3.4)
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In the above formula, the X-ray attenuation of photons is based on the energy-

dependent intensity of photons se emitted by the X-ray source, the detector

response De and the energy δe contained in the energy bin e. The product

Ωe = seDeδe defines the weight of each energy bin e, contributing to the total

spectral behavior Ω = [Ω1, ...,ΩE ], with E denoting the number of energy bins.

For each mesh, the attenuation is measured by its spectral linear attenuation µe,k

and the path-length lk crossed by a geometrical ray pointing at a detector pixel.

If such a model is implemented in frameworks that leverage automatic differ-

entiation patterns, such as PyTorch, it is possible to optimise even the new linear

programming problem using 3.4 without expensive numerical approximations.

As the poly-chromatic characteristics of the X-ray source and detector, as well as

the spectral linear attenuation of each scanned material, may be unknown, these

parameters can be jointly optimized with a proper cost function. For experiments

with no prior knowledge on the exact scanning system spectral characteristics,

the linear programming problem in 3.2 is enriched with regularization on the

first derivative of the system spectral behavior, under the assumption of smooth

spectral behavior:

θ̃1, · · · , θ̃K = arg min
θ1,··· ,θK ,Ω

∥∥∥∥∥P−
K∑
k=1

PolyProjd [Aθk [mk]]

∥∥∥∥∥
2

2

+ ∥∇eΩ∥22 . (3.5)

Pose Refinement through Re-Iteration: To mitigate cases where local

minima occur due to symmetry in the object with respects to the vertical axis,

an additional step of re-iteration may be introduced (with results presented sep-

arately). After the initial registration, the algorithm systematically rotates the

objects around their symmetry axis and re-executes the registration procedure.

This process helps in overcoming challenges posed by symmetry, enhancing the

robustness of the pose estimation, especially in scenarios with highly symmetric

objects.

3.3 Experiments

In this section, the experiments conducted on three distinct scanned objects are

presented using one or more supporting scanning elements. The scanned objects

include an aluminum step-wedge, and two samples printed through AM, which are

a cro:SS316LStainless steel 316L (SS316L) cantilever and a SS316L cylinder-like

object. The supporting elements, constructed from cro:PA12Polyamide (PA12),

consist of cylinders with a height of 1 cm and diameters ranging from 3 to 5
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cm, as well as a hollow shaft with a 0.5 cm diameter. The FleXCT scanning sys-

tem [FlexCT] was utilised, with different source-to-object and source-to-detector

distances, kVp and pre-filtering settings for each scan.

The objective of these experiments was to showcase two different applica-

tions of the registration technique, one involving limited information about the

scanning system and the other utilizing limited projection information.

3.3.1 Registration with limited scanning system information

In this experiment, limited scanning system information refers to uncertainty

regarding the spectral behavior of the scanning system and the objects’ poses.

The registration process addresses a challenging scenario by iteratively estimating

the spectral behavior and poses through the solution of the linear programming

problem in 3.5. The initial pose of the objects and supporting elements is set as a

shifted and rotated configuration from a vertically aligned state. The registration

is performed using 100 projections acquired in a circular trajectory around the

object.

3.3.2 Pose estimation performance by reducing the number of
projections

In this experiment, the linear programming problem from 3.2 based solely on

projection error is employed. The initial pose of the scene’s objects is realisti-

cally estimated with the assumption that the objects and supporting elements

are vertically aligned. The registration is conducted by reducing the number of

projections from 100 to 10 (100, 50, 10), all acquired in a circular trajectory

around the isocentre.

3.3.3 Pose estimation performance by reducing the angular range

Similar to the preceding experiment, the linear programming problem presented

in 3.2 is employed, assuming that the objects are vertically aligned. In this ex-

periment, only two projections are utilized, chosen from a complete circular scan

around the isocenter. The angle between these two projections is systematically

decreased (90 degrees, 50 degrees, 10 degrees) to assess its influence on pose

estimation stability.

To ensure the accuracy and repeatability of this experiment, the mesh regis-

tration is iterated five times, initiating from different projections for each scene

and for each angular case. This repetition aids in investigating the consistency

and reliability of the obtained results.
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3.4 Results and discussions

In this section, the outcomes of the experiments described in section 3.3 are shown

through 3D rendering of the scene of the initial and final objects spatial config-

uration (through Mayavi libraries [d5725237]) and figures of the residual errors

(i.e. difference between projections and simulated projections). For the latter,

the projection-wise cro:RMSERoot mean squared error (RMSE) is computed and

shown to ease the comparisons. Animations showing the evolution of the residual

errors throughout the optimisation steps are available online as supporting media

(https://osf.io/da6p3/).

3.4.1 Registration with limited scanning system information

A scaled 3D rendering, showing both the initial and final poses of the objects from

Experiment 3.3.1, is presented in Figs. 3.1, 3.2, and 3.3. These figures include the

X-ray source and detector, forming a digital twin of the actual scanning setup.

To assess the accuracy of the registration results, attention is directed to the

residual images (Fig. 3.4). These images display the residuals for one of the 100

projections utilized in this experiment. During the registration procedure, the

position of each mesh in space is adjusted to minimize the residual. Discrepan-

cies that persist between the real and simulated projections may stem from object

deformations, especially noticeable in the case of CAD printed samples, uncer-

tainties in the actual chemical composition of samples, and additional physical

effects not simulated, such as X-ray scattering.

3.4.2 Pose estimation performance by reducing the number of
projections

The results of the registrations are depicted in Figs. 3.5, 3.6, and 3.7, showcasing

initial residual errors and final errors (a-c) for three scanning scenarios with 20,

10, and 5 projections. Timings for these registrations are presented in Table 3.1.

For the cantilever, reducing the number of projections does not seem to limit

the quality of the registration. However, for the cylinder scene, a mismatch in the

identification of teeth in the bottom part of the cylinder indicates convergence to

a minimum different from the one identified in the previous experiment (Fig. 3.4).

To address this, a few more iterations of the registration algorithm, incorporating

a starting rotational offset against the vertical axis, successfully mitigate issues

arising from the high symmetry of the cylinder. This refinement leads to more

accurate results, as depicted in Fig. 3.6 (d-f).
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Figure 3.1: Graphical rendering of the X-ray setup of one projection, showing the

initial (left) and final (right) pose of the cantilever and its supporting element.
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Figure 3.2: Graphical rendering of the X-ray setup of one projection, showing

the initial (left) and final (right) pose of the cylinder and its supporting element.
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Figure 3.3: Graphical rendering of the X-ray setup of one projection, showing the

initial (left) and final (right) pose of the stepwedge and its supporting elements.
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Figure 3.4: An X-ray projection residual showing the initial pose (top row) of the

cantilever (left), the cylinder (center) and stepwedge (right) with their supporting

element, and the final pose (bottom row) of the objects after the registration

procedure.
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Initial state 20 projections 10 projections 5 projections

Figure 3.5: A X-ray projection residual showing the initial pose of the cantilever

and its supporting element aligned along the vertical axis, and the final pose of

the objects after registration using 20 projections, 10 and 5.

Scene Cantilever Cylinder Stepwedge

# of projections 20 10 5 20 10 5 20 10 5

Time (s) 326 185 113 263 157 138 312 225 216

Table 3.1: Pose estimation timings for each scene, varying the number of projec-

tions.

In contrast, the registration of the stepwedge exhibits stable behavior, ex-

cept for the most challenging case with only 5 projections. In this instance, the

supporting straw-like object demonstrates a different pose convergence. This be-

havior is attributed to the near transparency of the thin plastic straw to the

majority of X-ray photons produced by a 230 kVp X-ray source. The attenu-

ation values are comparable to flat-field fluctuations observed during the scans,

contributing to the pose convergence variation.

To inspect the stability of the estimated pose as a function of the number

of projections, a further analysis is conducted by repeating this last scenario of

the stepwedge 5 times, starting from different sets of projections. The results are

summarised in Table 3.2, which shows the angle of rotation against the estimated

rotational axis in relation to the number of projections. The results consistently

indicate that lowering the number of projections increases the likelihood of ending

up in undesired minima for the estimated pose parameters.
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Initial state

a) 20 proj. b) 10 proj. c) 5 proj.

d) 20 proj. e) 10 proj. f) 5 proj.

Figure 3.6: A X-ray projection residual showing the initial pose of the cylinder

and its supporting element aligned along the vertical axis, and the final pose of the

objects after registration using 20 projections (a), 10 (b) and 5 (c). Systematic

rotation of the objects’ poses around their vertical axes allows for mitigating the

risk of local minima, resulting in more favorable registration outcomes with 20

projections (d), 10 (e), and 5 (f) compared to the configurations in (a-c).
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Initial state 20 projections 10 projections 5 projections

Figure 3.7: A X-ray projection residual showing the initial pose of the stepwedge

and its supporting elements aligned along the vertical axis, and the final pose of

the objects after registration using 20 projections, 10 and 5.

20 projections 10 projections 5 projections

Rot. angle (deg) 179.96 ± 0.01 179.94 ± 0.72 177.13 ± 1.28

Table 3.2: Pose estimation results for the scene with the stepwedge, presented

as the rotation angle of the stepwedge relative to an estimated rotation axis.

The results are provided as the average and standard error across 5 repetitions,

starting from different sets of projections.
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Scene Cantilever Cylinder Stepwedge

Time (s) 258.0 ± 4.6 382.7 ± 3.2 445.3 ± 6.5

Table 3.3: Pose estimation timings for each scene, by using 2 projections. Results

are given as average and standard error of the mean, across all the 5 repetitions.

3.4.3 Pose estimation performance by reducing the angular range

Similar to the preceding experiments, the results, presented as projection resid-

uals, are depicted in Figs. 3.8, 3.9, and 3.10. Timings for these registrations are

presented in Tab. 3.3. Given the significant limitation of projective information

in this scenario, results are showcased for both the conventional application of

the algorithm and a re-iteration of the registration procedure.

In the scanning scenarios involving the cylinder and stepwedge, the results

exhibit consistent behavior with the findings of previous experiments. However,

in the case of the cantilever, the more challenging registration scenario results

in an unrealistic positioning of the main object, noticeable for the case with a

angular distance of 50 deg. The difficulty arises from a more impervious solution

space, making it easier to fall into local minima, as demonstrated in the more

challenging case with 10◦ in Fig. 3.8.c. Again, re-iteration of the registration

algorithm leads to more accurate pose estimation, as graphically shown in the

bottom row of Fig. 3.8.

The accuracy and stability of the registration procedure, including the re-

iteration procedure, for all scenes in this experiment are extensively reported in

the supplementary material (pages 109 and 110), in terms of the average and

standard error of the estimated pose parameters for each object. In this analysis,

the registration runs 5 times with different pairs of angles. The results indi-

cate that the estimated position is relatively stable throughout the repetitions,

and the error of the pose parameters is relatively low. The maximum devia-

tions are recorded for the stepwedge, as its distance from the source (500mm)

is significantly higher than in the other two cases (cantilever 86.68mm, cylinder

43.33mm). The rotational angle shows a standard error of 1.76◦ across the repe-

titions, while its translation is determined with an error of 2.41mm. Exceptions

are observed for supporting elements, as they appear in their CAD model as

perfectly symmetrical around their vertical axis. As also the surface mesh of the

cantilever is perfectly symmetric to one of its intersecting planes, the rotation-

related parameters have higher error due to the ambiguity arising from of its

symmetry.



3.4. Results and discussions 41

Initial state

a) 90 deg b) 50 deg c) 10 deg

d) 90 deg e) 50 deg f) 10 deg

Figure 3.8: A X-ray projection residual showing the initial pose of the cantilever

and its supporting element aligned along the vertical axis (left side). The final

poses of the objects are presented after executing the registration procedure us-

ing 2 projections with angular ranges of 90 deg (a), 50 deg (b), and 10 deg (c).

Systematic rotation of the objects’ poses around their vertical axes allows for mit-

igating the risk of local minima, resulting in more favorable registration outcomes

with different angular ranges 90 deg (d), 50 deg (e), and 10 deg (f) compared to

the configurations in (a-c).



42 Chapter 3. Multi-mesh registration from few X-ray projections

Initial state

a) 90 deg b) 50 deg c) 10 deg

d) 90 deg e) 50 deg f) 10 deg

Figure 3.9: A X-ray projection residual showing the initial pose of the cylinder

and its supporting element aligned along the vertical axis (left side). The final

poses of the objects are presented after re-executing the registration procedure

using 2 projections with angular ranges of 90 deg (a), 50 deg (b), and 10 deg (c).

Systematic rotation of the objects’ poses around their vertical axes allows for

mitigating the risk of local minima, which resulted in different outcomes for the

angular ranges 90 deg (d), 50 deg (e) and 10 deg (f).
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Initial state

a) 90 deg b) 50 deg c) 10 deg

d) 90 deg e) 50 deg f) 10 deg

Figure 3.10: A X-ray projection residual showing the initial pose of the stepwedge

and its supporting elements aligned along the vertical axis (a). The final poses

of the objects are presented after re-executing the registration procedure using 2

projections with angular ranges of 90 deg (b), 50 deg (c), and 10 deg (d). System-

atic rotation of the objects’ poses around their vertical axes allows for mitigating

the risk of local minima, resulting in more favorable registration outcomes with

different angular ranges 90 deg (e), 50 deg (f), and 10 deg (g) compared to the

configurations in (b-d).
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3.5 Conclusion

In conclusion, this novel approach to 3D mesh registration in few-view indus-

trial X-ray imaging, utilizing an X-ray mesh projector with compatibility for

the ASTRA toolbox and auto-differentiation libraries like PyTorch, emerges as

a resource-efficient alternative. The method, utilising a X-ray mesh projector

implemented as differential program specifically for this task, has demonstrated

efficacy in achieving 3D multi-mesh registration in multiple X-ray scanning sce-

narios.

The experiments revealed the robustness of this approach in simultaneous

multiple object registration, even under poly-chromatic conditions with limited

knowledge about the scanning system’s spectral characteristics or sparsity in pro-

jection domain. When using 2 projections, the higest error on the rotational angle

was up to 1.76◦ and 2.41mm on the translation, for the case of the stepwedge

with source-to-object distance of 500mm. However, challenges surfaced, partic-

ularly when objects had a high degree of symmetry or in case projective model

inaccuracies were present. Addressing these challenges is crucial for enhancing

the applicability and accuracy of the proposed methodology.

Despite identified challenges, this method highlights resource efficiency, elim-

inating the need for resource-intensive X-CT reconstruction allowing registration

even in a fixed multi-head X-ray radiography scanning system. This study marks

a significant advancement, showcasing the practicality and efficiency of the pro-

posed methodology. As a future prospect, the method’s adaptability opens pos-

sibility to proceed in mesh deformation estimation from X-ray projections. This

potential extends the utility of the approach presented here, making it a valuable

candidate for enhancing industrial inspection workflows.
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Ensuring high-quality imaging is of paramount interest during the evaluation of

AM components. In X-ray imaging, however, image quality is often compromised

by artifacts such as X-ray scattering and beam hardening. These artifacts can

obscure defects or mimic their presence, leading to inaccurate assessments.

Among these issues, X-ray scatter presents a significant challenge. As X-rays

pass through an object, they can deviate from their original path. This scattering

effect is influenced by the material properties and geometry of the scanned ob-

ject, complicating the accurate detection and characterization of defects. Scatter

artifacts cause image blurring, reduced contrast, and streaking artifacts, partic-

ularly with high-absorbing objects. Effective scatter compensation methods are

essential to enhance image clarity and reliability.

To address this challenge, this chapter introduces cro:PACSProjection-driven

Adaptive CADs X-ray Scatter compensation (PACS), which leverages CAD mod-

els to simulate and correct for scatter effects, thus enhancing defect detection ca-

pabilities without the need for prior CT reconstructions or extensive deep learn-

ing models. PACS eliminates the need for deep learning training and geometry-

dependent scatter library calculations. Additionally, to expedite simulations,

acceleration strategies are described and utilised for downsizing the simulation

problem.

The effectiveness of PACS in improving the reliability and accuracy of X-ray

inspections for AM components is demonstrated across various scenarios, includ-

ing poly-chromatic radiography-based analysis, discrete poly-chromatic X-CT re-

construction (based on DART [six2019poly]), and conventional poly-chromatic

X-CT reconstructions. Its performance is compared against established scatter

compensation methods, highlighting PACS’s advantages in practical applications.

45
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4.1 Related Works

The quest for mitigating the effects of X-ray scattering has led to the develop-

ment of various hardware- and software-based solutions. Hardware approaches

include adjustments in detector positioning [sorenson1985scatter], the use of

bow-tie filters [liu2014dynamic], anti-scatter grids [vogtmeier2008two], and

beam-stop/beam-hole arrangements [schorner2011comparison]. While these

methods can effectively reduce scattered radiation, they often require specific

modifications to the scanning setup, limiting their applicability and flexibility.

In contrast, software-based methods provide versatile alternatives for scatter

compensation. Scatter-deconvolution techniques, for example, model the X-ray

source as an array of pencil beams, each contributing to the scattered radia-

tion [rew:firstPaperScatterKernel]. These methods estimate scatter-kernel

parameters based on the known composition of the object, allowing for the sub-

sequent deconvolution of scattered radiation in the projection domain. Various

enhancements to this approach have been proposed, including asymmetry consid-

erations [rew:scatter:asymmetrical-kernels], attenuation-dependent kernels

[rew:scatter:adaptive-kernels], accurate scatter models [bhatia2016separable],

and energy-dependent kernels [rew:scatter:energy-kernels].

Deep learning methods have also shown promise in scatter compensation, par-

ticularly through the use of U-Net models [rew:scatter:DL-unet1, rew:scatter:DL-unet2,

rew:scatter:DL-unet3, rew:scatter:DL-unet4]. Despite their potential, these

approaches often lack explainability and trustworthiness. Recent advancements

aim to address these issues by incorporating more transparent models. For in-

stance, Roser et al. utilize splines to model and suppress low-frequency scatter

components, with parameters controlled by a neural network [roser2020deep],

while Iskender et al. propose a neural model that simulates X-ray propagation

and scattering across perpendicular planes [rew:DL:physicsbased].

Heuristic techniques leveraging prior knowledge of specific X-CT applications,

such as object symmetries [rew:scatter:heuristic-breast] or approximating

scatter as blurred projections [rew:scatter:heuristic], offer targeted solutions

for specific artifact types. Analytical methods capable of modeling first-order

scattered radiation in homogeneous or composite objects [rew:scatter:analytical],

as well as simulation-based approaches using Monte Carlo or deterministic meth-

ods for voxelized volumes [maslowski2018acuros, rew:scatter:sim-few-proj2]

or surface meshes [xia2019scatter, iuso2021cad], provide further avenues for

scatter compensation.

All of the X-ray scatter compensation methods mentioned above require a

training procedure, such as those employing scatter-kernels or deep learning,
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impose constraints on the object’s shape, or assume the availability of a prior X-

CT reconstruction. The requirement for a computationally expensive and data-

demanding prior X-CT reconstruction can be circumvented by employing a mesh

projector (e.g., [paramonov2024cad]). The mesh projector efficiently estimates

the position and orientation of AM parts during scanning using only a few X-ray

projections, eliminating the need for a full X-CT reconstruction. This approach

enables the application of simulation-based scatter compensation techniques in

scenarios where obtaining an X-CT scan is not feasible, such as when only a few

projections are available. Moreover, the originally-designed surface meshes can

be deformed and adapted to the real printed sample, allowing for accurate X-ray

scatter compensation for both the printed part and any other objects present

in the scene, such as physical supports. Finally, the use of the mesh projector

avoids the necessity of aligning meshes with different digital origins, which often

result in differing sampling patterns between the CAD model and the surface

mesh extracted from the X-CT scan [lorensen1998marching].

4.2 Materials

Scans were acquired with the FleXCT X-ray scanning device, as detailed in [FlexCT].

The device was equipped with a 2880×2880 detector with pixels of size 150 µm.The

scanned object was an AM component, specifically a bevel gear, which was

fabricated using a Form 3+ Low Force Stereolithography (LFS)TM 3D printer

by Formlabs, utilizing Draft Resin (Formlabs). During the scan, the AM part

was supported by 3D-printed components constructed from Polyamide 12. The

source-to-detector distance was 800mm and the source-to-object distance was

320mm. A tube voltage of 150 kVp was applied and the beam was filtered with

1.5mm aluminum.

The complete scan comprised 3 000 projections, equiangularly distributed in

the range [0◦, 360◦]. However, in the industrial quality inspection of AM samples,

such a high number of projection images may not always be available. To ac-

commodate this, three datasets were created, each corresponding to a distinct in-

spection scenario. The first dataset was designed for projection-based inspection

and consisted of ten equiangularly sampled projections, and therefore labelled

’10P’. The second dataset included 100 equiangularly sampled projections and

was intended for X-CT inspection using discrete reconstruction of X-CT images,

and therefore labelled ’100P’. Lastly, the third dataset, designed for X-CT-based

inspection through conventional CT reconstruction, encompassed the entire set

of 3 000 projection images, and is thus referred to as ’3000P’. A discrete recon-

struction applied to 100P was obtained through the poly-chromatic version of
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DART [six2019poly] (poly-DART), while conventional X-CT image reconstruc-

tion was achieved using poly-chromatic projective error minimisation based on

Barzilai-Borwein optimisation [barzilai1988two], referred to as poly-BB. Both

poly-DART and poly-BB were built on a distributed version of the ASTRA tool-

box [palenstijn2016distributed].

4.3 Methods

The proposed scatter compensation pipeline relies on three essential operations:

1) estimating the object’s pose and shape from few X-ray projections (Section

4.3.1), 2) predicting scatter for each individual X-ray projection (Section 4.3.2),

and 3) compensating for scattered radiation in the actual X-ray projections (Sec-

tion 4.3.3).

4.3.1 Multi-object pose and shape estimation

Accurate scatter compensation in X-CT scans requires estimation of the pose

of the scanned objects and possible deviations from their nominal shape (e.g.,

due to the printing process). To achieve this, the nominal surface model of each

object from its CAD model is employed along with a mesh projector (CAD-

ASTRA [paramonov2024cad]) to iteratively estimate the object’s position and

orientation. This rigid pose estimation then serves as the starting point for

iterative estimation of the (possibly deformed) object shape.

Let K denote the number of objects, where each object k = 1, ...,K is repre-

sented by its surface mesh denoted as mk = (Vk,Nk). Here, Vk = {vik} ∈ RV×3

represents the V vertices of the mesh, and Nk = {njk} ∈ RN×3 the normals of its

N triangular faces. During pose estimation, the mesh vertices Vk undergo a roto-

translation described by a pose vector θk ∈ R6, consisting of three parameters

for translation and three for orientation. The iterative refinement begins with an

initial position and orientation assumption, where all objects are initially aligned

along the vertical axis passing through the center of rotation of the scan. Subse-

quently, the estimation process minimises the discrepancy between the measured

projections P ∈ RM and the simulated projections, where M is the product of

the number of projections and their number of pixels, leading to:

θ̃1, · · · , θ̃K = arg min
θ1,··· ,θK

∥∥∥∥∥P −
K∑
k=1

PolyProjd [Aθk [Vk]]

∥∥∥∥∥
2

2

. (4.1)

Here, the PolyProjd : RV×3 → RM operator simulates the poly-chromatic projec-



4.3. Methods 49

tions through the metadata d representing the vertices connectivity and material

optical properties, while Aθk : RV×3 → RV×3 represents a roto-translation oper-

ator that depends on the pose parameters θk.

Subsequently, registered meshes are employed for estimating the deformed

shape of the AM samples. This deformation is described as per-vertex shifts from

the nominal registered surface mesh of the CAD model. Similar to pose estima-

tion, this involves iterative refinement of a linear programming problem. Besides

a data consistency term, regularisation terms are introduced penalise significant

changes in mesh topology. This linear programming problem is formulated as:

Ṽ1, · · · , ṼK = arg min
θ1,··· ,θK

∥∥∥∥∥P −
K∑
k=1

PolyProjd

[
Aθ̃k

[Vk]
]∥∥∥∥∥

2

2

+
K∑
k=1

(
α ∥V ∗

k − Vk∥22 + β ∥N∗
k −Nk∥22

)
.

(4.2)

Here, for each k-th mesh, the distance between the vertices Vk and original ver-

tices V ∗
k is measured, where the difference V ∗

k − Vk symbolically represents the

difference v∗
ik−vik between each of the i vertices of the k-th mesh. An analogous

explanation applies to N∗
k −Nk and n∗

jk − njk. These regularisation terms are

governed by the parameters α and β during minimisation of the projection error

of (4.2). Both the linear programming problems (4.1) and (4.2) are solved using

the Adam optimiser.

4.3.2 X-ray interaction simulation

From the available simulation software [guillemaud2003sindbad, badal2009accelerating,

sarrut2021advanced, kawrakow2000accurate, ay2005development], as well

as specialised X-ray scatter simulation [maslowski2018acuros, elshemey2009monte],

the Monte Carlo (MC) photon transport simulator GATE [sarrut2021advanced]

(version 9.2, built on Geant4 version 11.1.2) was chosen due to its widespread

adoption and extensive validation in literature. Information about the scanning

system, such as scanning geometry and X-ray source operating parameters, was

obtained from the experimental scan data and used for the GATE simulations.

Additionally, the adapted surface meshes of all objects in the scan (as detailed in

Section 4.3.1), were incorporated into the simulation. The simulation was config-

ured to produce two outputs: the X-ray radiation detected by the detector, P̂ ,

and the portion of P̂ that underwent at least one either Compton or Rayleigh

scattering event within the object or its supporting elements. This portion is
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referred to as Ŝ. Since the FleXCT detector, along with the majority of indus-

trial X-CT systems, is energy-integrating, the simulated detector is designed to

compute the cumulative energy contribution of each incident photon. Each con-

tribution is multiplied by the detector’s sensitivity corresponding to the photon’s

energy.

In addition to P̂ and Ŝ, the white-field image Ŵ , which represents the unat-

tenuated X-ray radiation, is obtained through an identical simulation without

attenuating objects. To minimise the statistical MC fluctuations in the radiation

detected by each pixel of the simulated white-field image, the simulated white-

field image is fitted with an analytical function for point-wise radiative emission

over a finite square detector element. The derivation of this analytical function

for flat detectors is provided in A.4.

Accelerating MC simulations

X-ray physical interaction simulations conducted with GATE are known for their

high accuracy, but also for slow execution times. To address this issue, the

proposed approach focuses on two main strategies: parallelisation of simula-

tions and leveraging the physical behavior of X-ray scattering. For the paral-

lelisation of simulations, an MPI-based manager that is tailored for the GATE

simulations has been developed. This manager is responsible for partitioning

simulation tasks across CPU-clusters, running parallel instances across comput-

ing nodes, and merging the results. The MPI-manager is publicly accessible

on GitHub [mpiforgate], it is platform-independent in terms of workload man-

agement systems (e.g., PBS, SLURM), uses the ITK [mccormick2014itk] and

MPI [dalcin2021mpi4py] libraries, and is fully implemented in Python.

The knowledge on the scattering pattern of X-rays is harnessed to reduce

computational complexity by optimizing the number of simulated photons per

projection and the number of projections themselves. Previous research by Colijn

et al. [colijn2004accelerated] offered foundational insights into accelerating

simulations by exploiting the spatial smoothness of scatter signals. However,

self-absorption of scattered radiation by the object potentially leads to higher

scatter frequencies for complex object shapes. Building upon this foundation,

the simulation software is utilised for determining how many photons will give a

reliable measure of scattered radiation, to identify the minimal number of photons

needed to simulate each projection. This is done by monitoring the power of the

spatial scatter signal (see Fig. 4.1) for the first projection, for increasing number

of simulated photons. As the photon count at each pixel increases along with the

signal-to-noise ratio of the scatter signal, the bandwidth Ωm of the scatter signal
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Figure 4.1: Every minuscule region of the scanned object (brown) scatters X-ray

radiation with a specific density per steradian. This figure illustrates the contri-

bution of a scattering region of the object on the detector reading throughout

three subsequent X-ray projections. Spatial frequencies of the scattered radiation

are observed across the detector for a specific projection, while temporal frequen-

cies are observed across subsequent projections for a specific detector pixel.

(representing the highest frequency encompassing 95% of the total power within

[0,Ωm]) gradually converges to a stable value (as determined experimentally in

Section 4.4.1). The number of photons determined in this way was used for all

subsequent projections. As a consistent part of the scatter signal is contained in

Ωm, the rest of the spectrum can be cleaned from the MC noise with a low-pass

Butterworth filter, known for its maximally flat response in the passband Ωm.

By utilising the filter as a zero-phase filter, the filter order is chosen as the lowest

order necessary to achieve a maximum power suppression of 0.025 dB in the Ωm-

band, along with a minimum −30 dB power suppression of frequencies beyond

the stopband Ωs, which is 10% higher than Ωm. These numeric values that select

the filter order were found to be sufficient for the denoising task.

By exploiting the temporal smoothness of the scattered radiation on the de-

tector pixels (i.e., smoothness between subsequent projections, see Fig. 4.1),

the computational burden of simulating the entire X-ray projection stack is

reduced to the simulation of just a few projections. These few scatter esti-

mates, through Fourier interpolation, provide the X-ray scatter estimates cor-
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d

X-ray source

Detector

Object

Figure 4.2: The X-ray scatter footprint of a minuscule region of the scanned object

exhibits low spatial frequencies in conventional X-CT acquisition setups. This

makes two scattering regions indiscernible if they are close enough, despite the

linear absorption associated with these regions being resolved by the tomographic

reconstruction.
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responding to all other projections. This is a substantial difference from previous

works [maslowski2018acuros, xia2019scatter, bootsma2013spatial], where

scatter estimates were computed using linear interpolation, and the selection of

key projections was done manually. In principle, nearby scattering regions of

the scanned object at a distance d may not be clearly discernible from their

scatter footprint (Fig. 4.2). Consequently, during an X-CT reconstruction that

ignores the scattered radiation in the forward model (e.g. FDK, SART, SIRT),

the scatter-affected projections drive the reconstructed volume to be explanatory

of the (mainly low) spatial frequencies of the scatter signal, as well as the scatter

signal variation among projections. By sub-sampling these projections, the vari-

ation of the scatter signal among these projections can be constrained to have

the same impact on the reconstruction as for the spatial scatter signal. In case

of circular cone-beam computed tomography (CBCT), the constraint is imposed

through known relations [izen2012sampling], based on the data completeness

theorem for the central cross-section [wu2023cone], which establish a connec-

tion between spatial sampling and angular sampling for reconstructing a given

object. Let g(x, y) ∈ R indicate the linear attenuation of said object, contained

in a circle of radius r, such that g(x, y) = 0;∀(x, y),∈ R2, |
√

x2 + y2 ≥ r. As-

suming that the spectral band of g can be reasonably Ωg-limited (as is commonly

done for X-CT reconstructions [izen2012sampling, zhao2015generalized]),

it follows that a condition on the minimal number of samplings along each view

is necessary to recover the Ωg-limited g [izen2012sampling]:

∆y ≤ π

Ωg
. (4.3)

Here, ∆y represents the scaled spacing between pixels on the flat detector, mea-

sured relative to the object center (∆y = ∆s · RD , where R is the source-to-object

distance and D the source-to-detector distance), where ∆s denotes the spacing

between pixels. Moreover, to ensure that g can be fully recovered, the angular

spacing ∆β among views of the circular trajectory must also satisfy the inequality

([izen2012sampling]):

∆β ≤ π

rΩg

(
R+ r

R

)(
1− r2

R2

)
. (4.4)

Given that the spatial bandwidth Ωm of the scattered radiation is already es-

tablished, the object bandwidth Ωg that described the spatial scatter is linearly

determined and consequently constrains the angular sampling, as indicated by

(4.4). Finally, after determining the subset of X-ray projections to simulate using

this angular sampling, resampling in Fourier space provides the missing estimates

for scatter.
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Variance reduction techniques in MC simulations of X-ray photons are known

to improve the efficiency of the simulations. These methods strategically allocate

computational resources to areas where interactions are most important, reducing

statistical noise. As these techniques may introduce a bias in scatter estimates,

which is adversary to the scope of the study, they are not used here.

4.3.3 X-ray scatter compensation

After obtaining the estimate of scattered radiation, the next step is to com-

pensate for the scatter in the projections. It is important to note that the

measured and simulated projections depend on the number of photons physi-

cally generated and simulated, respectively. Additionally, the presence of dark

currents affecting the measured projections must be properly handled during

X-ray scatter compensation — a factor that was overlooked in previous stud-

ies [rew:scatter:sim-all-proj,maslowski2018acuros, rew:scatter:sim-few-proj2,

xia2019scatter]. To address these factors, the following corrections are applied.

First, the projections P are corrected using the white-field W and dark-field

D images to account for gain and dark currents. This results in

Pcorr =
P −D

W −D
. (4.5)

Similarly, the same correction is applied to the simulated projections, which do

not have dark currents, leading to P̂corr = P̂ /Ŵ and Ŝcorr = Ŝ/Ŵ . In the

absence of scatter, the dynamic range of Pcorr and P̂corr would be within to the

interval [0, 1]. However, the presence of scattered radiation causes some pixel

values to exceed 1. Since a portion of the absolute value of Pcorr and P̂corr is

attributed to scattered radiation, this scattered radiation is compensated in the

measured projections with Psc = Pcorr− Ŝcorr. Finally, the dynamic range of the

measured projections can be restored by reversing the white/dark-field correction

using P = Psc(W −D) +D and are ready for reconstruction.

4.4 Experiments

The three experiments presented in this section are conducted sequentially, with

the information gathered from experiments in Section 4.4.1 and 4.4.2 serving as a

foundation for the last one (Section 4.4.3). After determining the optimal number

of photons required for a reliable estimation and establishing the bandwidth of

the X-ray scattering signal to downsize the simulation task (Section 4.4.1), the

next step involves multi-mesh registration and adaptation based on a minimal
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set of X-ray projections (dataset 10P), as detailed in Section 4.4.2. This step

enables the subsequent simulation and compensation of X-ray scattering from

the scanned X-ray projections 4.4.3.

4.4.1 Spatial frequencies of X-ray scatter on the detector

In this experiment, the scattered radiation of the scanned sample is measured

through simulations that were run with different number of photons (109, 1010,

..., 1013), with the information provided in Section 4.2 and 4.3.2. The aim of

the experiment is two-fold: to find the number of photons to be used for a reli-

able estimation of the X-ray scattered radiation for the X-ray scan, and to find

the bandwidth of the X-ray scattered signal. The latter is used to determine

the angular downsampling of the X-ray scatter simulations. The analysis is con-

ducted in the frequency domain, where the bandwidth Ωm of the X-ray scattered

radiation is defined as the band in which 95% of the power is contained.

4.4.2 Multi-object pose and shape estimation

In this experiment, the aim is to infer the pose of the objects (the gear and

its supporting elements) from the scanned X-ray projections and to adapt any

surface mesh to the corresponding object, to compensate for deformation arising

from a non-ideal 3D printing process. The operation is conducted in two sub-

sequent phases. First, the pose of the object is estimated through minimisation

of the linear programming problem (4.1) while the poly-chromatic behaviour of

the source and detector are continuously estimated jointly with the object pose.

Then, while the spectral behaviour and the pose remain fixed, the linear pro-

gramming problem described with (4.2) is optimised by adjusting the vertices’

positions in order to account for the objects’ deformations. The optimisation of

both the linear programming problems is performed with the lowest number of

projections (dataset 10P).

4.4.3 X-ray scatter compensation

In this experiment, the surface meshes of all the components of the X-ray scene,

along with their chemical composition information, are used for the compensation

of the X-ray scattered radiation. The full compensation procedure is described

in section 4.3.3. This process was systematically applied to all datasets, and

the outcomes were analysed according to the inspection scenario — whether it

is projection-based inspection, X-CT inspection using discrete reconstruction, or

conventional X-CT inspection. Projection-based inspection, suitable for rapid
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assessments where tomographic information is unnecessary, relies on the sparse

set of projections from the 10P dataset. In contrast, X-CT inspection with dis-

crete reconstruction offers enhanced analysis and tomographic visualization of

internal features and defects compared to projection-based methods, leveraging

the denser 100 equiangularly sampled projections of the 100P dataset. Conven-

tional X-CT inspection, providing the highest level of tomographic detail and

resolution for precise reconstruction, is employed when thorough examination

and accurate measurement are imperative, despite the increased computational

and time demands. This method utilizes the extensive data from the 3000P

dataset. Specifically, for projection-based and conventional X-CT inspection in-

spections, the results are supplemented with an assessment of residual errors

using the mesh-projector (cfr. Section 4.4.2). In each case, the obtained results

were benchmarked against the performance of a recent flavour of scatter kernel

superposition method [bhatia2016separable] for scatter compensation.

4.5 Results and discussions

4.5.1 Spatial frequencies of X-ray scatter on the detector

Fig. 4.3 shows the results of simulation runs with increasing number of photons,

and all replicating the same geometrical setup of a scanned X-ray projection.

More in-depth insights can be obtained from Fig. 4.4, which shows the power

spectrum of the detector readout. As expected, the white noise related to the

MC-statistics diminishes its power by 10 dB for every order of magnitude of the

number of simulated photons. As a consequence, the 95% of the power of the

detected signal falls between a smaller bandwidth, as the number of photons

increase, which is in accordance with the literature affirming that scattered ra-

diation is mostly composed of low-frequencies. The 95% power bandwidth is

reported in Table 4.1 and shows that after a certain number of simulated pho-

tons (1011), the bandwidth of the signal does not vary anymore. This is the lowest

number of photons that is simulated during the simulation of each projection dur-

ing the scatter compensation phase. The related bandwidth has been used to set

up the low-pass filter, which led to Fig. 4.5a. For this bandwidth, the number of

projections to be simulated during the scatter compensation phase, as selected

according to Eq. (4.4), is 30, which resulted in almost 11 h of computation time

with 2048 cores (AMD Epyc 7452).
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109 photons 1011 photons 1013 photons

Figure 4.3: Rayleigh and Compton scatter for different numbers of simulated

photons, divided by the average value.

Figure 4.4: One-sided power spectrum, extracted from the vertical distribution

of frequencies of the 2-D Fourier space, for the scattered radiation shown in

Fig. 4.3. The white-noise, related to the MC-statistics, lowers its power with

higher number of photons, while the low-frequency scatter components become

noticeable.
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109 ph. 1010 ph. 1011 ph. 1012 ph. 1013 ph.

Ωm [rad/px] 3.138 9.942e-03 6.628e-03 6.628e-03 6.628e-03

Table 4.1: The 2D bandwidth of the scattered radiation, which contains 95% of

the total power, is reported here for different numbers of simulated photons.

(a) Filtered image (1011

photons)
(b) Percent-wise relative
error

Figure 4.5: (a) The X-ray projection after application of the Butterworth filter,

using 1011 photons, and (b) the relative difference between the filter and related

unfiltered image, showing that only the MC-white noise has been removed by the

filter.

4.5.2 Multi-object pose and shape estimation

The optimisation of the linear programming problem (4.1) refined the initial

pose of the objects within the scanned scene, which is noticeable in Fig. 4.6 from

residual images (i.e. difference between simulated projections and scanned pro-

jections) and measures of the Root Mean Squared residuals (RMSres). Starting

from the initial object pose configuration that resulted in high projection errors

(Fig. 4.6a), the optimization led to improved spatial positioning of the objects

(Fig. 4.6b), highlighting a significant reduction in projection-wise error. How-

ever, some regions in the post-registration image still exhibit high errors, which

can be attributed to actual 3D printing deformations.

By optimising the linear programming problem (4.2), the surface meshes of

the CAD model were adjusted to match the true shape of the 3D printed objects

(Fig. 4.6c). A visual representation of this deformation is provided in Fig. 4.7,

where the displacement of each vertex is measured as Euclidean distance, influ-

encing the heatmap colour representation in the figure.
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RMSres: 1.35 × 10−1

(a) Before registration

RMSres: 3.38 × 10−2

(b) After registration

RMSres: 2.06 × 10−2

(c) After mesh adaption

Figure 4.6: Residual images of the bevel gear and its supporting elements for

three different instants of the multi-mesh registration/adaption procedure. The

figure shows how an initial pose guess of the various elements can be adapted to

the actual scan, while accounting for deformations, in an automatic way.
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(a) A photo of the bevel gear
(b) Heatmap of superficial deformation

Figure 4.7: The adaption of the surface mesh of the CAD model to the actual

object is considered to arise from a faulty 3D printing process, A heatmap of the

Euclidean displacement of each surface mesh vertex provides a clearer visuali-

sation of the deformed shape compared to the projection-wise representation of

Fig. 4.6b and 4.6c.

4.5.3 X-ray scatter compensation

In Fig. 4.8, an analysis of the scatter compensation for the projection from the

dataset 10P in projection space is presented. Despite the visual similarity between

the chosen projection and its scatter-compensated versions, certain details are

more apparent in the residual images. These images depict the absolute residual

between the dark/white-field corrected X-ray projections and the poly-chromatic

projections of the meshes.

Examining the images in Fig. 4.8, the central part of the residual image

for a measured projection (Fig. 4.8b) reveals a whitish halo. This halo is less

pronounced in the scatter-compensated projection using the Scatter-Kernel Su-

perposition (SKS) method [bhatia2016separable], as noticeable in Fig. 4.8d,

and almost imperceptible in the scatter-compensated projections using PACS

(Fig. 4.8f). Additionally, all residual images (Fig. 4.8b, 4.8d and 4.8f) display the

general shape of the scanned sample, resulting from minor inaccuracies in mesh

estimation. Furthermore, two macroscopic defects can be observed. Close-ups

and line profiles of these macroscopic defects, provided in Fig. 4.9, indicate that

the scatter-affected projection has a non-zero value even outside the defective

zone. These values arise from the mismatch between the actual object surface

and its surface mesh. To quantitatively evaluate the performance of the scatter

compensation methods of the results shown in Figures 4.8 and 4.9, the RMSres is
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Unprocessed SKS PACS

RMSres (3.778 ± 0.046)×10−2 (2.094 ± 0.046)×10−2 (1.539 ± 0.044)×10−2

Table 4.2: Measure of the mean squared residual throughout all projections of

dataset 10P. The residual is interpreted as the difference between the projections

and the simulated poly-chromatic projections.

Unprocessed SKS PACS

# of pore-voxels 1816 1001 368

Sørensen–Dice coefficient 0.061 0.069 0.074

Table 4.3: Measure of the number of detected pores through the poly-DART re-

construction of the few projections of dataset 100P. The similarity of the detected

pores with those of the ground truth is measured with the Sørensen–Dice score.

computed along with its standard deviation and it is reported in Table 4.2. This

evaluation, encompassing all projections in dataset 10P, highlights that PACS

yields the least amount of residuals than the SKS method.

With the dataset 100P, a discrete X-CT reconstruction is performed. Em-

ploying this technique enables the creation of a (voxel-wise) multi-label volume,

offering a three-dimensional discrete representation, as depicted in Fig. 4.10. The

application of this technique highlights macroscopic defects more distinctly, as ob-

served in the images in Fig.4.11b, 4.11f and 4.11h. Furthermore, it allows for the

detection of pores within the X-CT. However, in practice, the presence of imag-

ing noise and scattered radiation may lead to the identification of spurious pixels

unrelated to real pores.

In Fig. 4.11, the 3D rendering visually displays the distribution of spurious

pores in the reconstructed volume. Notably, scatter-compensated projections

result in a reduced occurrence of these defects. The number of detected pores

and their similarity to the voxel-wise manually-labelled ground truth of pores

are quantified and presented in Table 4.3. This analysis suggests that scatter

compensation significantly contributes to a higher fidelity of pore representation,

with PACS outperforming SKS in terms of the Sørensen-Dice coefficient. The

reason for higher concentration of detected pores in the top part of the gear is

related to X-ray scattering artefacts, and it is explained by using the dataset

3000P, where more information can be extracted from X-ray projections.

Utilising the complete set of projections (dataset 3000P) allows for regular

X-CT reconstruction, ensuring faithful results. In Fig. 4.12, a cross-section anal-
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(a) X-ray projection (Unprocessed) (b) Residual image (Unprocessed)

(c) X-ray projection (SKS) (d) Residual image (SKS)

(e) X-ray projection (PACS) (f) Residual image (PACS)

Figure 4.8: X-ray projections are presented on the left for three cases: (a) without

scatter correction, (c) with scatter correction using SKS, and (e) with scatter

correction using PACS. Accompanying these, the residual images are depicted as

(b) uncorrected, (d) corrected with SKS, and (f) corrected with PACS. Two red

boxes highlight macroscopic defects for a detailed analysis in Fig. 4.9.
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(a) Close-up residual image (defect 1)

(c) Line profile (defect 1)

(b) Close-up residual image (defect 2)

(d) Line profile (defect 2)

Figure 4.9: Close-ups of two defects highlighted in the residual images of Fig. 4.8.

Line profiles through these close-ups reveal the varying behavior of residual gray

values across the defects, where it is desirable that high values are associated with

the defective area, while zero values are associated with the absence of defects.

(a) Poly-DART reconstruction (b) Two macroscopic 3D printing defects

Figure 4.10: From the limited data in the 100P dataset, the binary poly-DART

reconstruction (a) of the bevel gear holds meaningful information, as for the 3D

printing defects (b).
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(a) 3D view of pores (unprocessed)

(b) Gear defect (unprocessed) (c) Region with many detected pores
(unprocessed)
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(d) 3D view of pores (SKS)

(e) Gear defect (SKS) (f) Region with many detected pores
(SKS)



66
Chapter 4. PACS: Projection-driven with Adaptive CADs X-ray Scatter

Compensation

(g) 3D view of pores (PACS)

(h) Gear defect (PACS) (i) Region with many detected pores
(PACS)

Figure 4.11: Comparison of Poly-DART reconstructions: unprocessed X-ray pro-

jections (a-c), scatter-compensated with SKS (d-f), and scatter-compensated pro-

jections with PACS (g-i). The 3D visualization (a,d,g) highlights all detected

pores within the Poly-DART reconstruction, with a visibly higher number in the

top part of the bevel gear. The images (b,e,h) show a cross-section with the

correct reconstruction of a defective area, while the (c,f,i) images focus on the

variable number of pores detected by each Poly-DART reconstruction. The cor-

relation of the detected pores with the ground truth is shown in Table 4.3.
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Unprocessed SKS PACS

Gray value (2.654 ± 0.001)×10−2 (2.719 ± 0.001)×10−2 (2.768 ± 0.001)×10−2

SNR 87.2 92.6 96.9

Table 4.4: Measure of the average gray value level and SNR throughout the bevel-

gear region of the poly-BB reconstruction of dataset 3000P, for unprocessed X-ray

projections, SKS scatter-compensated projections and the scatter-compensated

projections with PACS.

Unprocessed SKS PACS

Average CNR 4.23 ± 0.37 4.45 ± 0.40 4.70 ± 0.40

Table 4.5: Measure of the average CNR of pores in the poly-BB reconstructions of

the uncorrected, SKS scatter-compensated and scatter-compensated projections

with PACS, for the dataset 3000P.

ysis of the poly-BB reconstruction is presented in a region previously identified

as challenging for poly-DART. The line plot in the figure illustrates that the

standard deviation and average gray values of poly-BB are smaller for scatter-

compensated images, providing an explanation for the spurious pores detected

with the 100P dataset. These values, evaluated across the volumetric gear re-

gion, are detailed in Table 4.4. A consequence of the higher signal-to-noise (SNR)

value is that the contrast of pores is enhanced. This is evaluated across all pores

and reported in Table 4.5, through their contrast-to-noise (CNR) ratio, which

confirmed the expectations.

Examining the residual values (Fig. 4.13) offers a deeper insight into the re-

sults observed in Figures 4.11 and 4.12. The presence of spurious pores (Fig. 4.11)

and the additional noise and non-constant trend of line profiles (Fig. 4.12), un-

expected for a homogeneous material, is attributed to X-ray scattering artefacts.

These artefacts gradually diminish with the application of scatter-compensation

techniques. The evaluation of average absolute residuals, confirming the visual

findings, is reported in Table 4.6.



68
Chapter 4. PACS: Projection-driven with Adaptive CADs X-ray Scatter

Compensation

(a) Unprocessed (b) SKS (c) PACS

(d) Line profile

Figure 4.12: A cross-section of the poly-BB reconstruction of (a) unprocessed

X-ray projections, (b) SKS scatter-compensated projections and (c) the scatter-

compensated projections with PACS of the complete 3000P dataset.

Unprocessed SKS PACS

RMSres (3.146 ± 0.034)×10−3 (2.909 ± 0.035)×10−3 (2.819 ± 0.035)×10−3

Table 4.6: Measure of the root mean squared residual throughout the dataset

3000P. The residual is interpreted as the difference between the poly-BB recon-

struction and the simulated poly-BB reconstruction in the space occupied by the

gear.
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RMSE: 2.61 × 10−3 RMSE: 2.45 × 10−3 RMSE: 2.37 × 10−3

(a) Unprocessed (b) SKS (c) PACS

Figure 4.13: A cross-section of the residual poly-BB reconstruction of unprocessed

X-ray projections (a), SKS scatter-compensated projections (b) and the scatter-

compensated projections with PACS (c) of the complete 3000P dataset. The Root

Mean Squared Error (RMSE) evaluated throughout the whole image is reported

on top of each figure.
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4.6 Conclusions

A new approach (PACS) was proposed to accurately compensate for X-ray scat-

ter in projection images. This method involves registering and adapting CAD

models of AM objects, followed by a Monte Carlo simulation of X-ray scatter in

the projections, and then compensating for it in the actual radiographs. Results

demonstrated that accurate registration of CAD models is possible using only few

projections, rendering simulation-based X-ray scatter compensation approaches

a viable option in scenarios where few projections are available or desirable.

The adaptability of such approach addresses common constraints encountered

in industrial scanning setups, including throughput, cost, and spatial limitations.

Replacing the CAD model with another object before scanning, in response to

changing industrial needs, incurs no additional overhead compared to alternative

methods. Furthermore, this method, inherently coupled with a mesh projector,

allows for the analysis of residual differences between real and simulated projec-

tions. This feature facilitates the identification of deformities or defects within

the scanned object.

Multiple experiments consistently demonstrate superior accuracy in X-ray

scattering artefact reduction of PACS compared to one of the latest SKS scatter

compensation methods. The absence of training procedures and the ability to

easily adapt to any scanned object make PACS the method of choice for scans in

the context of AM. As PACS relies on Monte Carlo simulations for X-ray scat-

ter compensation, strategies to reduce the computational load were investigated.

However, employing GATE as a simulation backend remains computationally in-

tensive, which can be further reduced using modern GPU solutions specialised in

X-ray scatter simulations, as presented in recent works [maslowski2018acuros].

A noteworthy future prospect arising from this work is the development of an

X-ray scatter estimation pipeline that would rely solely on the mesh projector.

Coupling the mesh projector with an analytical description of the 1st order scat-

ter [yao2009analytical], evaluated across the entire surface mesh, is expected to

yield significant improvements in speed. This is particularly true in cases where

the inspected object is small, or the detector is positioned sufficiently far from

the X-ray source.
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3D patch-based neural models

In this chapter, the analysis and segmentation of porosity and defects within AM

samples using deep learning techniques are the focus. Detecting anomalies from

X-CT data is a challenging task due to factors such as inhomogeneous density, low

contrast-to-noise ratio, and beam hardening artifacts, which can lead to incorrect

segmentation.

Data-driven DL approaches have shown superior performance over traditional

machine learning techniques in handling complex and varied definitions of anoma-

lies [wong2021automatic, bihani2022mudrocknet, kim2022achieving, sarkon2022state].

Anomalies can be detected using supervised or unsupervised methods. While su-

pervised methods require annotated datasets, unsupervised methods are more de-

sirable as they do not require annotated training data. This reduces the technical

overhead and mitigates the impact of noisy annotations on model performance.

However, unsupervised methods often face challenges such as high recall rates

and low precision compared to their supervised counterparts [yang2022visual].

Most studies on voxel-wise segmentation tasks using DL techniques focus on

analyzing stacks of 2D images [bouget2019semantic, ar2020segmentation,

fend2021reconstruction,wang2022deep,mehta2022federated,wang2022centernet].

For voxel-wise segmentation of pores in AM samples, a 2D approach is sub-

optimal since small pores usually span only a few voxels in three dimensions in

X-CT images and suffer from a low contrast-to-noise ratio. Additionally, pores

often exhibit anisotropy, increasing the risk of being overlooked by 2D pixel-wise

segmentation methods [maskery2016quantification]. Recognizing this short-

fall, Wong et al. introduced 3D pore detection models, initially using a UNet ar-

chitecture, which demonstrated promise but did not explore deep supervision, al-

ternative neural models, or training patterns extensively [wong2021automatic].

Deep supervision can yield more reliable results by encouraging hidden lay-

ers of the models to comply with the desired output [li2022comprehensive].

71
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However, training supervised models on datasets with reduced porosity may

severely affect detection performance due to class imbalance between pore and

non-pore voxels [bria2020addressing]. Additionally, supervised models are

highly sensitive to training labels. Unsupervised models, particularly those based

on cro:VAEVariational Autoencoder (VAE), often produce blurry representations

of input images due to learning a low-dimensional representation that may not

capture fine details [guo2020variational]. Therefore, the voxel-wise anomaly

score from these models can be enhanced with more complex anomaly scores or

dedicated post-processing [zimmerer2018context, baur2021autoencoders].

With this chapter, 2D supervised and unsupervised DL models are revis-

ited and extended to 3D for voxel-wise segmentation of pores in X-CT sam-

ples of varying alloys. Utilizing a 3D patch-based approach and integrating

data augmentation, this segmentation method aims to be independent of the

material and shape of AM samples, ensuring spatial consistency by operating

within the 3D image domain. Several deeply supervised models are trained, in-

cluding UNet++ [zhou2018unet++], UNet 3+ [huang2020unet], MSS-UNet

[ZHAO2020100357], and ACC-UNet [ibtehaz2023acc], with a traditional

UNet [ronneberger2015u] serving as a baseline for comparison. To address

class imbalance due to the low amount of defects, models are trained using the

cro:FTLFocal Tversky Loss (FTL) function, which penalizes anomalies more ef-

fectively [abraham2019novel]. Optimal parameters for the FTL function were

determined through parameter search.

A roster of unsupervised models, including VAE [kingma2013auto], ceVAE

[zimmerer2018context], gmVAE [dilokthanakul2016deep], vqVAE [van2017neural],

and RV-VAE [nicodemou2023rv], were additionally evaluated, comparing older

and novel architectures. To reduce misclassifications, the anomaly scores of these

models are post-processed due to their inability to represent object surfaces ad-

equately. Finally, the supervised models are retrained using the post-processed

output of an unsupervised model instead of potentially noisy annotations, effec-

tively making the training process unsupervised to evaluate the impact on model

performance. The best performing model is further tested to assess the decrease

in performance when lowering the number of X-ray projections and exposure.

Summarizing, the main contributions of the work presented in this chapter

are as follows:

� First cross-validated assessment of multiple 3D DL models for voxel-wise

pore segmentation in AM samples, comparing supervised and unsupervised

approaches using a patch-based method. The neural networks, initially de-

signed as 2D models, were tailored for the 3D context to harness volumetric
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Figure 5.1: Some samples used in this study. From left to right, a stainless steel

316L (CLM), a CoCr-DG1 (PLM), and a TiAl6V4 (CLM) sample.

information effectively.

� A post-processing algorithm is proposed and evaluated to address the issue

of blurry image representation in VAE models.

� The impact of using unsupervised model labels instead of heuristic algo-

rithm labels for training the DL models is evaluated.

5.1 Materials

Various DL models for voxel-wise segmentation of pores were trained using 3D

X-ray CT images of AM samples. To this end, AM samples were manufactured

through the selective laser melting process, in a continuous (CLM, [meiners1998shaped])

or pulsed laser melting (PLM, [abe2001manufacturing]) strategy. Five cylin-

drical samples of different materials were 3D printed (as shown in Fig. 5.1): one

with TiAl6V4, two with CoCr-DG1 alloy and two with SS316L. Printing the

test objects in multiple materials allowed to assess the effectiveness of voxel-wise

pore segmentation across different materials. In the CAD model used for the

3D printing, the cylinders had an eight of 20 mm and a diameter of 5 mm. In

addition to the cylindrical samples, a SS316L cube with an edge length of 9 mm

was also printed. The cube was specifically printed to provide an object with

different shape and poorer X-CT image quality, which is useful for evaluating

porosity in a challenging visual environment and to ensure that DL models are

not learning information regarding the shape of the object. These samples were

essential for this study as their X-CTs provided the digital dataset with which

the neural networks could be trained to classify the porosity. Porosity was in-

tentionally induced in all samples using controlled laser parameters, as described

in [booth2022encoding].
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Next, 3D images of the AM samples were generated by scanning them with

a micro-CT X-ray system [FlexCT] and reconstructed with the FDK algo-

rithm [feldkamp1984practical] with a 10 µm resolution. The imaging settings,

such as filament power, peak kV of the anode, exposure time, source filter, etc.,

were selected for each cylindrical sample to ensure comparable image quality.

However, the geometrical distances and the number of projections were kept con-

stant for all cylindrical samples, with a source-to-detector distance (SDD) of 650.0

mm, a source-to-object distance (SOD) of 43.33 mm, and 4283 projections. The

cubic sample was scanned with different SDD (950.0 mm) and SOD (63.33 mm)

and had a lower number of X-ray projections (2878) than the other scans. The

X-CT of the cubic sample was also affected by severe cone-beam artefacts and

poor beam-hardening compensation. The cubic sample was particularly challeng-

ing due to its different geometry and visual environment (as noticeable in Fig.

5.2), making it useful for evaluating porosity.

5.2 Methods

Several DL models were trained to segment porosity from X-CT scans of AM

samples at the voxel level. Voxel-wise annotations, necessary for both training

and performance evaluation, were provided using the method described in sec-

tion 5.2.1. These models employed either supervised or unsupervised approaches,

detailed in section 5.2.2.

For the training of supervised models, the class imbalance of labels was ad-

dressed using the FTL function, which will be discussed in section 5.2.4. The

class imbalance arose from the low amount of pores (positive instance of labels)

within the training dataset. After training, and only for the unsupervised mod-

els, the anomaly score is post-processed, as unsupervised models are known to

produce blurry representations of the input. The post-processing procedure is

explained in section 5.2.5.

5.2.1 Dataset annotation

To assign a label to each voxel of the X-CTs comprising the datasets, which

indicates whether it is a pore or not, a 3D processing algorithm was applied. The

high-level pseudo-code in Algorithm 1 outlines the pore identification process.

The algorithm for extracting pores from volumetric X-CT images begins by

creating a binary mask to distinguish low-value voxels using Otsu threshold-

ing (Otsuthr). Subsequently, a background mask is obtained through FloodFill

starting from a corner of the X-CT image, isolating low-attenuating values. The
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(a)

(b)

Figure 5.2: A slice of the X-CT of a cylindrical sample (left) and of the cubic

sample (right), with equal colour-map and scale. While all the X-CT of cylindrical

samples share similar image quality, the cube has stronger artefacts (which are

particularly visible at the extremities of the cube) and consequently less contrast.

The histograms (a) and (b) refer to the cylindrical sample and of the cubic volume,

respectively. The two peaks in each histogram are related to the background

(lower) and foreground (higher) colours. The quality of each sample is defined by

its distance between the peaks and the broadness of the bells, which are influenced

by artefacts and noise.
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Algorithm 1 Pore Extraction from X-CT Images

1: Input

2: CT Volumetric X-CT image

3: Output

4: poremask Volumetric binary mask representing pores

5:

6: Get low-value voxels through Otsuthr of CT

7: Get the background mask by FloodFilling the low-values from a corner of CT

8: Get the watertight object mask from binary inversion of the background mask

9: Get low-value voxels by Otsuthr of CT inside the object mask

10: porelist ← Collect connected low-value voxels inside the object

11:

12: for all pores in porelist do

13: if size of pore < minimal size then

14: remove pore from porelist
15: end if

16: end for

17: poremask ← Convert porelist to a volumetric mask

binary inversion of this background mask yields the watertight object mask, ef-

fectively separating the image into air and the watertight object. To identify

low-value voxels corresponding to pores, a second Otsu thresholding operation

is applied within the object. To address the potential misclassification of pores

due to imaging noise, pores-voxels are screened based on shape criteria. Initially,

pores in a 6-connected 3D neighbourhood are identified and listed. The bound-

ary box of each pore is then examined, and the pore is excluded from the list if

its boundary box is smaller than 2 in at least one dimension. This shape-based

filtering is implemented to improve the reliability of the pore identification pro-

cess [DUPLESSIS20181102, kim2017investigation]. The filtered porelist is

then converted into a volumetric binary mask (poremask), providing a voxel-wise

representation of pore locations. It’s important to note that any residual misclas-

sification arising from partial-volume effects and imaging artefacts contributes to

the overall noise of the labels.

Accurately and reliably labelling the X-CT scan of the cubic sample was a

challenging task due to its poor image quality, as discussed in section 5.1. Given

the limitations of automated voxel-wise annotation, manual labelling was the

only viable option to achieve the desired level of accuracy and dependability in

the labels.
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5.2.2 Deep learning models

The study used two types of models: VAE-based models (VAE [kingma2013auto],

ceVAE [zimmerer2018context], gmVAE [dilokthanakul2016deep], vqVAE [van2017neural]

and RV-VAE [nicodemou2023rv]) and UNet-based models (UNet [ronneberger2015u],

MSS-UNet [ZHAO2020100357], UNet++ [zhou2018unet++], UNet 3+ [huang2020unet]

and ACC-UNet [ibtehaz2023acc]). The VAE-based models were trained in an

unsupervised manner using unlabelled data, while the UNet-based models were

trained in a supervised manner. Starting from their original 2D implementation,

these networks were extended to accept 3D inputs of size 643 by substituting all

2D layers with their 3D counterparts.

Supervised models

UNet is a popular encoder-decoder architecture that has shown promising re-

sults in many semantic voxel-wise segmentation tasks. MSS-UNet, UNet++,

and UNet 3+ are extensions of the original UNet architecture. MSS-UNet incor-

porates multi-scale guidance in the decoding process during training, enabling it

to capture more fine-grained details and to have a more coherent processing of

information in the decoding stage. UNet++ includes a nested and dense skip-

connection structure to capture more multi-scale features, while UNet 3+ uses a

more powerful encoder with multi-resolution inputs. To ensure consistency, UNet

and MSS-UNet were built using the same encoding/decoding building blocks

as for UNet++ and UNet 3+ [huang2020unet]. This approach made it eas-

ier to compare the results of different architectures and understand how they

impact the final outcome in voxel-wise segmentation tasks. Vision Transform-

ers have recently addressed complexity challenges, making them a viable and

competitive solution for visual tasks, where a notable work is [liu2021swin].

Building on these advancements, the core concepts of Transformers have been

integrated into ResNet models, surpassing the performance of Swin Transform-

ers. Another notable development involves incorporating essential Transformer

ideas into a convolution-based neural model called ACC-UNet. This model has

shown promise in segmentation tasks, motivating its use in the current study.

MSS-UNet, UNet++, UNet 3+ and ACC-UNet are deeply supervised during

this study, which means they are trained with a loss function calculated on mul-

tiple inner layers to supervise the learning process effectively. In contrast, the

original UNet architecture is not deeply supervised.
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Unsupervised models

The VAE-based models were trained in an unsupervised manner to learn a com-

pressed and disentangled representation of the input data. During training, the

VAE models learned to reconstruct images from the compressed representations

that resemble the input images as closely as possible. The reconstruction er-

ror, which quantifies the discrepancy between the input and output of the un-

supervised models, was adopted as the anomaly score. Since the introduction

of the VAE model in 2014 by Kingma and Welling, it has been used in a vari-

ety of studies for voxel-wise anomaly detection (e.g. [chen2019unsupervised,

lin2020anomaly, chatterjee2021unsupervised]). The ceVAE model has sim-

ilar architecture as VAE but a more complex definition of the loss. During train-

ing, ceVAE uses ”masked” input data where certain patches within the image

are fixed to a specific value. The model uses an ad-hoc loss function to infer

the missing or distorted voxels within the masked zone, which helps the network

to capture the context of the image. This peculiarity of the model may have a

positive impact on the score, since it can prevent the network to learn to rep-

resent the pores within the training dataset. On the contrary, the gmVAE and

vqVAE models are more complex than the VAE architecture, enabling them to

catch features of the input 3D images that could not be interpreted by the coarser

architecture of VAE. The gmVAE model assumes that each input data point’s

latent representation is generated by one of several possible Gaussian distribu-

tions, each with a different mean and variance, and identifies which distribution

in the mixture is most likely to have generated the latent representation of each

input data point during training. The vqVAE model is based on the idea of

vector quantisation, where the continuous latent space is discretised into a set of

discrete codes. The model comprises an encoder network that maps the input

images to a discrete code book, followed by a decoder network that maps the dis-

crete codes to the reconstructed input images. The vqVAE model was adapted

to 3D inputs without additional alterations, except for an extra encoding/de-

coding stage that processes larger input patches of 643 instead of the default

323. The RV-VAE model eliminates stochastic sampling, directly incorporating

latent space information into decoder layers as continuous random variables. Ap-

plying the inherent mathematical prior during decoding leads to a more precise

representation, making it appealing for segmentation tasks. As a final sigmoid

activation function was used for all the neural models, the related RV-model for

this function is provided in the appendix A.3.
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5.2.3 Training

The deep learning framework was based on the Pytorch [paszke2019pytorch]

2.0.1, Pytorch-lightning [falcon2020pytorchlightning] 2.0.2 and the CUDA [cuda]

11.6 libraries and it is publicly available (https://github.com/snipdome/nn_

3D-anomaly-detection). The 3D patch extraction, aggregation and data aug-

mentation were based on the TorchIO libraries [perez2021torchio] version 0.18.84.

A unique main seed propagated throughout the libraries ensures that all the ex-

traction from random distributions were reproducible. Each of the models was

trained with the Adam optimiser (learning rate of 0.0001) and halted through

early stopping when the loss value did not decrease by more than 0.0001 for 40

consecutive epochs.

5.2.4 Focal Tversky Loss function

In this pore segmentation task, the number of voxels belonging to the foreground

class (pores) is much smaller than the number of voxels belonging to the back-

ground class, in the training dataset. This class imbalance results in a bias

towards the background class during training, which leads to poor voxel-wise

segmentation performance. In order to address the problem of class imbalance

in semantic segmentation tasks, the FTL was proposed as a modification to the

Tversky Loss [abraham2019novel], and is defined as follows:

FTL =

(
1− TP

TP + αFN + β FP

)γ

(5.1)

The FTL depends on the number of true negatives (TN), false negatives (FN), and

false positives (FP), where FN and FP are weighted by α and β, respectively. By

adjusting the values of these parameters, the FTL can be fine-tuned to emphasise

either precision or recall. In addition, the FTL also includes a parameter γ, which

controls the degree to which the FTL prioritises correcting misclassifications by

adjusting the weight given to the Tversky Loss function. If γ = 1, the FTL

reduces to the standard Tversky loss and, if is also true that α = β = 0.5, to

the Dice-Sørensen loss. If γ > 1, the FTL function will assign a higher weight

to the correction of misclassifications. This means that the loss function will be

more sensitive to false negatives and false positives, and the model will prioritise

the correction of misclassifications over the correct classification of the majority

class. As a result, the model will be better at identifying instances of the minority

class but may struggle to accurately classify instances of the majority class. The

degree to which the model’s sensitivity to misclassifications increases will depend

on the value of γ. In case of deep supervision, the FTL is calculated at each
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supervised stage and averaged with geometric progression weights (1, 1/2, 1/4,

etc.).

5.2.5 Post-processing

During the prediction or testing procedure, each of the models inferred patches

belonging to the X-CT scan and then aggregated them back together to obtain

an output volume with the same size as that of the input.

Only for the unsupervised models, the output was post-processed to amend

the scarce quality that these models have in representing the fine details of the

samples, as the surface. The surface of each of the samples has unique char-

acteristics, due to different printing processes and polishing procedures, which

can never be properly represented with an Autoencoder (AE). While AEs are

designed to learn a concise representation of the input, their ability to faithfully

reproduce high-fidelity images depends on factors such as the training dataset’s

size and diversity, the complexity of input data, and the model’s architecture and

hyperparameters. As this is a beneficial feature that makes the AEs potentially

unable to reproduce anomalies that may be present in the training dataset, it

comes with the cost of inaccuracies near the surface of the samples. To counter-

act this, a compensation mechanism that suppresses the anomaly score near the

sample surface is introduced. The computation of the new voxel-wise anomaly

score, denoted as Apores, involves subtracting the spatially blurred derivative D

of the inferred volume V̂ from the original anomaly score A. As previously men-

tioned, the neural models struggles to faithfully represent the surface of samples,

leading to pronounced derivatives of the inferred volume along the border. The

elements of D are determined by the sum of the absolute voxel-wise derivatives

in the x, y, and z directions of the predicted volume V̂ . These derivatives are

represented as dijk = ∥∂xv̂ijk∥ + ∥∂yv̂ijk∥ + ∥∂z v̂ijk∥, where v̂ijk corresponds to

the (i, j, k) voxel in V̂ .

The formulation for Apores is expressed as:

Apores = max(0, A− λ∗Gσ∗(D)) (5.2)

Values for the standard deviation σ∗ of the Gaussian smearing kernel G and

the scaling factor λ∗ are determined through an on-the-fly optimisation process

outlined in Formula 5.3. This optimisation process aims to minimise the disparity

between the anomaly score and the Gaussian-blurred absolute sum of derivatives,

utilising the mean of the L1-norm as a metric. Both λ and σ are considered to

be positive parameters in this context.

The optimisation problem is formally stated as:



5.3. Experiments 81

λ∗, σ∗ = argmin
λ,σ
∥A− λGσ(D)∥1 (5.3)

The results of the experiment 5.3.5 show the benefits of applying the proposed

technique.

5.3 Experiments

The X-CT images were organized into training, validation, and testing sets, as

explained in section 5.3.1. All models were trained using a common training

framework, detailed in section 5.3.2. For the evaluations presented in this section,

the labelled X-CT volumes were compared with the output of the DL models,

after the output 3D patches were aggregated.

More specifically, the patch-extraction pipeline extracted overlapping patches

from the input volume, each with half of their length overlapping with neigh-

boring patches. These patches were segmented by the neural networks and then

combined by computing an average value among the overlapping patches. This

approach ensured a comprehensive evaluation of the model’s performance on the

X-CT volumes.

5.3.1 Dataset

The X-CT images of several AM samples composed the digital dataset for train-

ing, validation, and testing of the DL models. In a 5-fold manner, the X-CT

images of the cylindrical samples were organised into 4 samples for the train-set

and 1 sample for the validation-set. Noise, image artefacts, and misclassified

voxel-wise labels (commonly referred to as ’noisy labels’) can negatively affect

training and lead to inaccurate predictions. To mitigate the influence of noisy

labels during training and to expand the training sets, data augmentation was

employed [song2022learning]. The data augmentation created novel spatial

configurations by flipping of patches in random directions and elastic distortion

while teaching the networks to be resilient against noise, specific attenuation of

samples, and artefacts such as cone-beam and beam-hardening. After data aug-

mentation was applied at every training epoch to each of the cylindrical samples,

which have around 800x800x2000 voxels, 3D patches of 64x64x64 voxels were

extracted and supplied to the neural networks.
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5.3.2 Training

The deep learning framework was based on the Pytorch [paszke2019pytorch]

2.0.1, Pytorch-lightning [falcon2020pytorchlightning] 2.0.2 and the CUDA [cuda]

11.6 libraries and it is publicly available (https://github.com/snipdome/nn_

3D-anomaly-detection). The 3D patch extraction, aggregation and data aug-

mentation were based on the TorchIO libraries [perez2021torchio] version 0.18.84.

A unique main seed propagated throughout the libraries ensures that all the ex-

traction from random distributions were reproducible. Each of the models was

trained with the Adam optimiser (learning rate of 0.0001) and halted through

early stopping when the loss value did not decrease by more than 0.0001 for 40

consecutive epochs.

5.3.3 Parameter search for the FTL function

As different values of the α, β, γ parameters sensibly affect the performance of

models trained with the FTL function [iuso2022evaluation], the optimal values

were identified with grid search approach. A 5-fold cross-validation strategy

evaluated the performance of the model with different parameter combinations,

while the γ parameter was kept at 0.5 (as in [iuso2022evaluation]). The grid

search space spanned the parameter-space uniformly from 0.1 to 0.9 for each

of the variables, for a total of 4 steps. For each combination of α and β, the

model was trained in a 5-fold cross-validation, resulting in a total of 16 different

combinations of α and β and a total of 80 model trainings. In addition to the α

and β parameters, another grid search identified the optimal γ parameter in the

FTL. A higher value of γ puts more emphasis on minimising false positives and

false negatives, which can be useful in tasks where the cost of misclassification is

high. So, even though the author of the FTL had suggested a value of 4/3 for

the γ parameter [abraham2019novel], the optimal γ parameter turned out to

vary for the current application of this work. The γ grid search had a total of 8

steps ranging from 1/3 to 2, for a total of 40 trainings.

5.3.4 Cross-validation of performance of the DL models

All the supervised and unsupervised models have been trained in a 5-fold cross-

validation, for a total of 50 trainings. In the case of supervised models, they

were trained with the optimal parameters found during the experiment 5.3.3.

After training, the performance has been evaluated, for each fold, on both the

validation-set and the challenging test-set.
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5.3.5 Cross-validation of performance of post-processed unsu-
pervised models

For this experiment, the unsupervised models are compared in cross-validation

before and after the application of a post-processing algorithm presented in sec-

tion 5.2.5. Since the post-processing happens after the aggregation of all the

patches composing a X-CT volume, it is possible to compare the models before

and after post-processing, without the need to re-train the models. Also in this

case, the performance has been evaluated, for each fold, on both the validation-set

and the challenging test-set.

5.3.6 Cross-validation of performance of supervised models re-
trained with unsupervised models

In this experiment, the anomaly score of the (best performing) unsupervised

model of experiment 5.3.5 was used as label for the training of supervised mod-

els, for each fold. Training in such a way would make the overall pipeline un-

supervised, which, apart from being a favourable feature for the user, it would

theoretically allow the UNet-family to reproduce the task of the unsupervised

model (and its post-processing algorithm). A total of 25 trainings has been per-

formed.

5.3.7 Model complexity

For this experiment, all the neural models have been compared with regards to

their memory footprint and computational cost. The networks were fed with

a one-element batch with size 1x64x64x64 and analysed during their complete

forward and backward operation.

5.3.8 Cross-validation of performance of the best performing model
in extreme visual scenarios

In this final experiment, the best performing model in the previous experiments

has been tested when the image quality of the challenging test-set has been wors-

ened by lowering X-ray exposure and number of projections. This test is designed

to show how the performance decreases in extreme visual scenarios. The number

of X-ray projections of the challenging test-set was reduced to 50% and 33.3%.

The simulation of lower exposure of X-ray projections is achieved by adding Pois-

son distributed noise. The exposure was lowered to 75%, 50% and 25% of the

original values, which corresponded in an increase in the imaging noise over the

X-ray projections.
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Dice-Sørensen score

α

0.9 0.74 ± 0.06 0.74 ± 0.04 0.75 ± 0.07 0.75 ± 0.07

0.63 0.78 ± 0.04 0.76 ± 0.06 0.76 ± 0.06 0.73 ± 0.07

0.37 0.75 ± 0.05 0.76 ± 0.07 0.74 ± 0.07 0.70 ± 0.05

0.1 0.76 ± 0.06 0.73 ± 0.07 0.72 ± 0.07 0.71 ± 0.06

0.1 0.37 0.63 0.9

β

Table 5.1: Average Dice-Sørensen score and standard error of the models evalu-

ated across the related validation dataset, depending on the α/β parameters of

the FTL.

5.4 Results and discussions

Section 5.4.1 presents the cross-validation results for selecting the optimal param-

eters of the FTL function. These parameters were used to train all the supervised

models employed in the voxel-wise segmentation task cross-validation, whose re-

sults are shown in sections 5.4.2 and 5.4.4. Section 5.4.4 compares the supervised

models trained with the FTL function using heuristic labels and labels generated

by the post-processed output of the best performing unsupervised model. The

best performing unsupervised model was established based on the performance

results presented in Section 5.4.3.

5.4.1 Parameter search for the FTL function

The initial parameter search for α and β has been conducted on all the folds of

the cross-validation, and the average results are shown in Table 5.1. As apparent

from the results, the optimal values for the α and β parameters are 0.633 and

0.1, respectively. Subsequently, with these optimal parameters, the optimal γ

parameter has been searched for each fold, and summary results are shown in

Fig. 5.2. In this case, there is good agreement among folds that γ = 1 ensures

the best performance. For the sake of completeness, the fold-wise results have

been included in the appendix for both parameter searches (A.2).
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Dice-Sørensen score

0.76 ±0.04 0.78 ±0.04 0.79 ±0.03 0.82 ±0.04 0.72 ±0.03 0.70 ±0.06 0.64 ±0.06 0.59 ±0.04

γ 0.33 0.5 0.67 1.0 1.33 1.5 1.67 2.0

Table 5.2: Average Dice-Sørensen score and standard error of the models evalu-

ated across the related validation dataset, depending on the γ parameters of the

FTL.

Model AP AUC

MSS-UNet△ 0.784 ± 0.050 0.975 ± 0.013

UNet△ 0.815 ± 0.025 0.982 ± 0.009

UNet++△ 0.750 ± 0.026 0.974 ± 0.009

UNet-3+△ 0.873 ± 0.036 0.992 ± 0.003

ACC-UNet△ 0.658 ± 0.078 0.955 ± 0.014

VAE♢ 0.711 ± 0.101 0.999 ± 0.001

ceVAE♢ 0.746 ± 0.094 0.999 ± 0.001

gmVAE♢ 0.607 ± 0.156 0.974 ± 0.014

vqVAE♢ 0.602 ± 0.129 0.990 ± 0.004

RV-VAE♢ 0.728 ± 0.082 0.999 ± 0.001

Table 5.3: Average ROC-AUC and AP scores (with confidence interval) of the

supervised (△) and unsupervised (♢) models evaluated on the validation dataset.

5.4.2 Cross-validation of performance of the DL models

The segmentation results of the cross-validation technique were evaluated using

two metrics: the cro:AUCArea under the curve (AUC) of the cro:ROCReceiver

operating characteristic (ROC) curve and the cro:APAverage precision (AP) of

the cro:PRPrecision-recall (PR) curve. While the AUC is a commonly used met-

ric, it can be misleading in the presence of class imbalance [hanczar2010small,

saito2015precision]. To address this issue, PR curves were used to evaluate the

performance of algorithms, as recommended by [saito2015precision]. There-

fore, both PR and ROC curves were used to evaluate the models.

The voxel-wise classification task of the models was evaluated for each fold,

whose summary ROC-AUC and AP values are shown in Fig. 5.3 for the valida-

tion dataset and the challenging test set. The cross-validated results related to

the validation dataset (represented with blue colour in Fig. 5.3) indicate that
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Figure 5.3: Point-plots of the average ROC-AUC and AP scores (with confidence

interval) of the models evaluated on the validation dataset and on the challenging

dataset. The quantitative values are shown in Table 5.3 and Table 5.4.
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Model AP AUC

MSS-UNet△ 0.572 ± 0.019 0.856 ± 0.017

UNet△ 0.581 ± 0.008 0.880 ± 0.014

UNet++△ 0.583 ± 0.021 0.848 ± 0.014

UNet-3+△ 0.541 ± 0.010 0.882 ± 0.008

ACC-UNet△ 0.418 ± 0.018 0.786 ± 0.016

VAE♢ 0.615 ± 0.038 0.990 ± 0.002

ceVAE♢ 0.635 ± 0.021 0.990 ± 0.001

gmVAE♢ 0.374 ± 0.092 0.838 ± 0.044

vqVAE♢ 0.313 ± 0.025 0.871 ± 0.009

RV-VAE♢ 0.634 ± 0.014 0.985 ± 0.001

Table 5.4: Average ROC-AUC and AP (with confidence interval) of the super-

vised (△) and unsupervised (♢) models evaluated on the challenging test-set.

supervised models have been generally better trained to be consistent with la-

bels than the unsupervised methods. The results on the challenging dataset with

high artefacts and manually labelled (represented with orange colour) show a

clear drop of the score for all the models, as expected for the considerations in

5.2.1. Moreover, it is noticeable that the score of some of the unsupervised mod-

els is even higher than that of the supervised ones for the challenging dataset.

Although these results may not seem consistent with the validation dataset, it

should be noted that in both cases the labels were generated in different ways:

either with a heuristic labelling algorithm or via manual annotation. Among

the supervised models, there is no significant difference in performance, which

suggests that deep supervision and the different architecture of the models is

not inducing a significant difference in performance. On the other hand, a no-

ticeable difference in scores is present between ceVAE and gmVAE/vqVAE on

the challenging dataset, which is significant for vqVAE with a confidence of 95%

(Welch’s t-test, p-value 1.98∗10−4 (AUC) and 1.05∗10−5 AP). The higher degree

of complexity of gmVAE and vqVAE is not favourable to the segmentation task

by the mean of the anomaly score. These models have been capable of learning

how to reproduce defects within the input samples, so the reconstruction error is

not as high in the proximity of defects as it is with simpler VAEs. On another

note, VAE and ceVAE are most robust with respect to the quality of the input

image, since the AP/AUC scores are almost unvaried between the validation and

the challenging test-set (AP/AUC differences lower than or approximately equal

to a decimal point), when opposed to the other models (AP/AUC differences
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Model AP AUC

VAE 0.964 ± 0.020 0.998 ± 0.001

ceVAE 0.964 ± 0.021 0.999 ± 0.001

gmVAE 0.516 ± 0.144 0.913 ± 0.033

vqVAE 0.512 ± 0.122 0.948 ± 0.019

RV-VAE 0.951 ± 0.020 0.998 ± 0.001

Table 5.5: Average ROC-AUC and AP (with confidence interval) of the unsu-

pervised models evaluated on the validation dataset, with post-processing of the

output. Solely the performance of unsupervised models is shown, since the post-

processing of the output is defined for them only.

Model AP AUC

VAE 0.824 ± 0.007 0.989 ± 0.002

ceVAE 0.830 ± 0.003 0.989 ± 0.001

gmVAE 0.234 ± 0.089 0.555 ± 0.099

vqVAE 0.138 ± 0.020 0.587 ± 0.028

RV-VAE 0.777 ± 0.004 0.981 ± 0.001

Table 5.6: Average ROC-AUC and AP (with confidence interval) of the unsu-

pervised models evaluated on the challenging test set, with post-processing of

the output. Solely the performance of unsupervised models is shown, since the

post-processing of the output is defined for them only.

exceeding a decimal point).

5.4.3 Cross-validation of performance of post-processed unsu-
pervised models

By applying post-processing to the output of the VAE models (Fig. 5.4), the con-

siderations of the previous section about supervised models become more evident.

When post-processing is applied to the output of the VAE and ceVAE models,

which have not learned to visually represent pores, their AP scores increase by

almost 2 decimal points on both datasets, while their AUC remains almost un-

changed. On the other hand, post-processing adversely affected the performance

of gmVAE and vqVAE, which is to be expected since the derivative of the output

of these models is non-negligible near the edge of the sample as well as near the

pores. This behaviour is noticeable in the ROC andPR classifier curves for the
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Figure 5.4: Point-plots of the average ROC-AUC and AP of the models (with

confidence interval) evaluated on the validation dataset and on the challenging

dataset, with and without post-processing. Solely the performance of unsuper-

vised models is shown, since the post-processing of the output is defined for them

only. The values in textual form are shown in Table 5.5 and Table 5.6.
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Figure 5.5: Graph of the ROC andPR curves of cross-validated performance for

all models. The graphs represent the median trend of the fold-wise performance

on the challenging dataset without (left) and with post-processing (right) of the

aggregated output.

Model AP AUC

MSS-UNet 0.651 ± 0.008 0.889 ± 0.005

UNet 0.639 ± 0.008 0.882 ± 0.004

UNet++ 0.751 ± 0.030 0.902 ± 0.015

UNet-3+ 0.627 ± 0.006 0.894 ± 0.006

ACC-UNet 0.586 ± 0.008 0.874 ± 0.004

Table 5.7: Average ROC-AUC and AP (with confidence interval) of the super-

vised models re-trained with the labels generated by ceVAE and evaluated on the

challenging dataset.

challenging case as shown in Fig. 5.5 (other ROC andPR graphs are shown in

the A.1). The greater complexity of gmVAE/vqVAE models enables them to

replicate defects within the samples, leading to a reduction in anomaly scores

and compromising performance. This effect intensifies with the application of

post-processing, as illustrated in Fig. 5.6, where a validation sample is inferred

by both ceVAE and gmVAE with and without post-processing of the anomaly

scores. These results highlight that a more complex architecture is not always

advantageous, particularly when anomalies exist within the training dataset. Ad-

ditionally, it can be observed from Fig. 5.3 and Fig. 5.4 that the scores of VAE

and ceVAE are still resilient against the poor image quality of the challenging

test-set, compared to the drastic drop in performance of the supervised networks.
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(a) A sample slice.

(b) ceVAE (c) ceVAE, post-processed

(d) gmVAE (e) gmVAE, post-processed

Figure 5.6: A slice took from a validation dataset (a) and its voxel-wise anomaly

score accordingly to ceVAE (b) and gmVAE (d). Post-processing the anomaly

scores (c, e) reveals a beneficial impact, particularly for models that unequivocally

classify pores as anomalies. The color-scale represents the intensity levels in the

anomaly score images.
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Figure 5.7: Graph of the ROC and PR curves of cross-validated performance

for all models. The graphs represent the median trend of the fold-wise per-

formance on the challenging dataset, with Otsu-based labels (left) and post-

processed ceVAE-generated labels (right).

5.4.4 Cross-validation of supervised models trained with labels
generated by an unsupervised model

By using ceVAE (the best performing model) to generate labels for the samples,

the supervised models could be trained from scratch to detect pores. The neces-

sary steps for the production of these labels by ceVAE were the post-processing

(with the algorithm described in section 5.2.1) and the suppression of smaller

pores. The results are shown in Fig. 5.8 and Fig. 5.7. Higher performance is

achieved by using the unsupervised labels, confirmed by both AUC and AP for

all the models. These results confirm the observations in section 5.4.2 that the

different architectures of the models are not significantly affecting the scores for

this voxel-wise segmentation task.

5.4.5 Model complexity

Table 5.8 presents key metrics related to the model complexity of each neural

model, including the number of parameters, peak memory usage, and Multiply-

Accumulate Operations (MACs). The number of parameters indicates the quan-

tity of floating-point numbers that need to be stored in video memory, reflecting

the minimal memory occupancy required to store the model. Conversely, the for-

ward/backward peak memory highlights the memory needed to process an input

with a batch size of 1. Lower memory requirements lead to larger permissible

batch sizes, consequently reducing training times. The MACs value encapsulates

information about the speed of the neural models to process a single 3D patch.

In the case of X-CT volumes sized at 800x800x2000, comprised of numerous over-

lapped patches by half of their patch-length, the forward operation during the

inference phase necessitates multiple repetitions to process the entire volume.
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Figure 5.8: Point-plots of the average ROC-AUC and AP (with confidence inter-

val) of the supervised models evaluated on the challenging dataset. The graphs

highlight the different performance when these models were supervised by the

Otsu-based method and with the labels provided by the unsupervised models.

The values in textual form are shown in Table 5.7
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Model # Parameters Forward/Backward Peak Memory MACs Total MACs

MSS-UNet 1.328 M 383.740 / 424.840 MB 14.270 G 69.678 T

UNet 1.325 M 353.924 / 390.925 MB 14.124 G 68.967 T

UNet++ 1.503 M 933.490 / 1005.831 MB 34.821 G 170.024 T

UNet-3+ 1.672 M 1571.642 / 1720.766 MB 84.881 G 414.460 T

ACC-UNet 5.062 M 6897.734 / 7269.893 MB 39.724 G 193.966 T

VAE 29.024 M 44.703 MB / 189.918 MB 3.698 G 18.058 T

ceVAE 140.650 M 33.765 MB / 778.901 MB 8.344 G 40.742 T

gmVAE 383.650 M 774.129 MB / 1842.710 MB 207.48 G 1013.096 T

vqVAE 2.511 M 17.688 MB / 32.701 MB 8.471 G 41.361 T

RV-VAE 29.024 M 223.288 MB / 230.196 MB 0.456 G 2.176 T

Table 5.8: Model complexity metrics for each neural model, including for-

ward/backward peak memory usage and MACs, are specified for batch-size 1.

Total MACs represent operations for processing an 800x800x2000 voxel volume,

with a 3D patch overlap of half the patch-length.

The cumulative MACs operations, represented as ”Total MACs” in the table,

quantify the overall computational workload.

It is noteworthy that the memory usage of the UNet-family generally ex-

ceeds that of the VAE-family in forward/backward passes, with the exceptions

of ceVAE and gmVAE. Specifically, the high memory requirements of ceVAE are

visible only during the training procedure, as it is related solely to the backward

pass. Nevertheless, ceVAE has shown good performance during the previous ex-

periments (Section 5.4.3 and 5.4.4). Conversely, the huge memory requirement

of gmVAE and MACs do not directly translate in outstanding performance for

the prior experiments.

5.4.6 Cross-validation of performance of the best performing model
in extreme visual scenarios

By reducing the number of X-ray projections of the challenging X-CT scan and

reducing the exposure of each X-ray projection, the quality of the reconstructed

X-CT scan decreased. The best performing model, which was shown to be the

post-processed ceVAE, was applied to these X-CT scans. An exemplary visual

representation of the voxel-wise segmentation is shown in Fig. 5.10, related to

the post-processed output of the ceVAE model, trained on the 1st fold. In this

figure, a small portion of a slice of the cube is shown, in which pores are visible

that were induced with off-nominal parameters of the melting laser during the

printing. The degradation of the segmentation performance is noticeable due to

the increasing number of voxels classified as pores (as shown in Fig. 5.9). Inter-
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Figure 5.9: Point-plots of the average ROC-AUC and AP (with confidence inter-

val) of the anomaly score of ceVAE evaluated on the challenging test-set when

the image quality is lowered by reducing the number of X-ray projections or ex-

posure.

estingly, while reducing the number of X-ray projections from 4283 (the dataset

used for training/validation) to 2878 (the original challenging test-set) did not

significantly affect the performance (Fig. 5.4), further reductions in the number

of projections had a significant impact on the performance scores (Fig. 5.9). An-

other point to note is the trend exhibited by the AP scores at low exposure levels

ranging from 50-25%. Specifically, reducing the number of projections from 50%

to 33.3% led to a slight increase in the AP scores. When data is highly noisy and

the number of projections is relatively low, adding some more X-ray projections

may not always lead to better image quality of the reconstructed X-CT scans.

This is because the additional (noisy) projections can also introduce more noise

into the reconstructed images. This can be observed from the fact that the trend

gradually disappears as the exposure level increases from 25% to 100%.

5.5 Conclusions

This study explores recent Deep Learning techniques for voxel-wise pore segmen-

tation in X-CT images of AM samples. Employing Tversky focal loss, deep super-

vision, and 3D patch-based training, various 2D neural models (UNet, UNet++,

UNet 3+, MSS-UNet, ACC-UNet, VAE, ceVAE, gmVAE, vqVAE, RV-VAE) were

adapted to 3D, with both supervised and unsupervised training strategies. Post-

processing of unsupervised models and training supervised models with unsuper-
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Figure 5.10: A portion of a X-CT slice is shown in each row and column by

modifying the number of X-ray projections and exposure of each X-ray projec-

tion. Each input slice is shown together with the label mask predicted by ceVAE

(trained on the 1st fold). The degradation of the segmentation performance is

noticeable from the raising number of voxels that are classified as pores (white

colour in the predicted mask).
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vised inferred labels are also investigated.

The comprehensive comparison of all neural models reveals that supervised

models (UNet-3+, AP 0.873 ± 0.036) outperform unsupervised models (ceVAE,

AP 0.746 ± 0.094), a trend not upheld when tested on a challenging X-CT test

set. In this scenario, ceVAE (AP 0.635 ± 0.021) outperforms supervised neu-

ral models (UNet++, AP 0.583 ± 0.021). The application of additional post-

processing, beneficial for VAE and ceVAE (AP 0.830 ± 0.003 on the challenging

test set), proves counterproductive for gmVAE and vqVAE due to the more com-

plex architecture of these models. This complexity lead the models to be able

to replicate defects within the training samples, thereby impairing the voxel-wise

anomaly score. Although using an ideal pore-free training dataset might improve

the scores of gmVAE and vqVAE models, it would hinder supervised models’ per-

formance due to the absence of pores. Overall, the resulting VAE/ceVAE models

exhibit resilience to lower image quality, unlike supervised models.

Training supervised models with labels derived from the best unsupervised

model (ceVAE) enhances their performance (UNet++, AP from 0.583 ± 0.021

to 0.751 ± 0.030 on the challenging testset) but does not surpass that of the

unsupervised model. The study confirms that unsupervised ceVAE, robustly

captures the statistical properties of 3D patches compared to the supervised

UNet family. This finding aligns with analogous results in anomaly detection

in MRI images [chatterjee2022strega], endorsing unsupervised learning as a

viable training paradigm for addressing anomaly segmentation in AM samples

without the need for labelled data.

Looking ahead, future endeavours may involve developing efficient models ca-

pable of detecting pores from X-CT scans at a faster rate, with fewer projections

or shorter scan times, in coherence with the future trends foreseen by Khosra-

vani&Reinicke [khosravani2020use], which will expand the experiment 5.3.8.

This would facilitate the use of X-CT in streamlined evaluations of entire sam-

ple batches. Furthermore, while the research presented here primarily focuses

on porosity analysis in the AM process, it opens avenues for broader anomaly

detection applications, including identifying impurities, microstructural inhomo-

geneities, or alloying element loss due to vaporisation.
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General conclusion & prospects

With the work presented in this thesis, the possible applications of X-ray devices

in the AM production pipeline have been extended and new paths for further

investigation have been opened.

Firstly, a novel automated registration method for comparing CAD models

with their physical realisations through a few X-ray radiographs has been de-

veloped. This method eases the automated rejection of defective AM parts by

analyzing projective residuals, which measure discrepancies between the actual

X-ray radiographs and their ideal, defect-free counterparts. The method relies on

the application of a mesh projector, implemented as a differential program specif-

ically for this task. The automated registration method has been proven effective

on real radiographs utilizing a poly-chromatic model and performing simultane-

ous registration of multiple meshes, based solely on scanning geometry and CAD

model information, achieved without prior training procedures or spectral infor-

mation regarding the scanning system. However, challenges such as high object

symmetry and projective model inaccuracies must be addressed to enhance the

method’s applicability and accuracy. As a future prospect, the method can be

investigated to include a joint estimation of the shape of the scanned object by

as few as two X-ray projections.

The thesis also introduces a novel approach to compensate for undesirable X-

ray scattering effects through a simulation-based method, leveraging the exact po-

sitioning of scanned objects and their supports, from just few X-ray radiographs.

This marks the first instance of using a simulation-based scatter compensation

method without prior X-CT scanning. The adaptability of this method, free from

training procedures, allows it to be easily integrated into new factory productions

with different designs and materials. While the current use of the GATE sim-

ulation back-end is computationally intensive, modern GPU solutions for X-ray

scatter simulations present a promising future direction for reducing this com-

putational load. Additionally, developing an X-ray scatter estimation pipeline
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relying solely on the mesh projector and an analytical description of first-order

scatter is expected to yield significantly improve processing speed.

Finally, the thesis explores the use of DL techniques for analyzing X-CT im-

ages, specifically for voxel-wise pore segmentation in AM samples using volumet-

ric information. By employing various 2D neural models adapted to 3D and using

supervised and unsupervised learning strategies, the research demonstrates the

effectiveness of a 3D patch-based approach for porosity analysis. Results indicate

that unsupervised models, particularly ceVAE, outperform supervised models in

challenging test scenarios. Future research may focus on accurately segment-

ing pores with fewer X-ray radiographs and extending these methods to broader

anomaly detection applications, such as identifying impurities, microstructural

inhomogeneities, or alloying element loss due to vaporization.

In summary, this thesis presents a suite of innovative methodologies that en-

hance the efficiency and applicability of X-ray imaging in industrial AM processes.

The advancements in automated multi-mesh registration, X-ray scatter compen-

sation, and deep learning-based porosity analysis represent significant strides for-

ward, setting the stage for continued research and development in these areas.
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Appendices & Supplementary

material

A.1 Classifier graphs for the voxel-wise segmentation

task

The ROC and PR graphs of the voxel-wise segmentation results that were not

shown in previous sections are reported here. In Fig. A.1, there are the perfor-

mance graphs of supervised and unsupervised models evaluated on the related

validation dataset. The graphs are aligned with the findings discussed in section

5.4.2 and 5.4.4. In Fig. A.2 are shown the performance of the unsupervised mod-

els only, since they show the segmentation scores of the post-processed output.

The scores were obtained from the fold-wise performance on the related valida-

tion dataset, where is noticeable an increase of performance for VAE/ceVAE and

a decrease for gmVAE/vqVAE if compared with Fig. A.1 (right), in accordance

with the findings in section 5.4.4.

Figure A.1: Graph of the ROC and PR curves of cross-validated performance for

all models. The graphs represent the median trend of the fold-wise performance

on related validation dataset.
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Figure A.2: Graph of the ROC and PR curves of cross-validated performance for

the unsupervised models. The graphs represent the median trend of the fold-wise

performance on the related validation dataset, when the output of the models is

post processed.

A.2 Cross-validation graphs for the FTL parameter

search per each fold

For each of the 5 folds of the cross-validation, there is a total of 16 trainings for

the α/β parameter, which are presented in Table A.1. For the γ parameter, there

is a total of 8 trainings per fold and the values of the Dice-Sørensen are shown in

Table A.2.
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Dice-Sørensen score - Fold 1

α

0.9 0.82 0.81 0.97 0.97

0.63 0.86 0.97 0.97 0.96

0.37 0.96 0.97 0.96 0.83

0.1 0.97 0.95 0.94 0.84

0.1 0.37 0.63 0.9

β

Dice-Sørensen score - Fold 2

α

0.9 0.76 0.63 0.61 0.60

0.63 0.69 0.61 0.60 0.59

0.37 0.64 0.60 0.58 0.57

0.1 0.63 0.54 0.53 0.57

0.1 0.37 0.63 0.9

β

Dice-Sørensen score - Fold 3

α

0.9 0.94 0.88 0.87 0.88

0.63 0.92 0.88 0.87 0.85

0.37 0.70 0.87 0.85 0.83

0.1 0.87 0.82 0.80 0.79

0.1 0.37 0.63 0.9

β

Dice-Sørensen score - Fold 4

α

0.9 0.62 0.71 0.68 0.69

0.63 0.66 0.72 0.74 0.69

0.37 0.70 0.75 0.69 0.72

0.1 0.74 0.78 0.78 0.79

0.1 0.37 0.63 0.9

β

Dice-Sørensen score - Fold 5

α

0.9 0.58 0.67 0.61 0.61

0.63 0.78 0.62 0.63 0.58

0.37 0.77 0.61 0.59 0.57

0.1 0.61 0.56 0.55 0.55

0.1 0.37 0.63 0.9

β

Table A.1: Fold-wise Dice-Sørensen score for the networks evaluated on the re-

lated validation dataset, depending on the α/β parameters of the FTL.
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Dice-Sørensen score

γ

2.0 0.50 0.60 0.71 0.52 0.64

1.67 0.45 0.75 0.82 0.58 0.62

1.5 0.49 0.75 0.86 0.61 0.80

1.33 0.67 0.74 0.84 0.64 0.74

1 0.68 0.81 0.91 0.80 0.87

0.67 0.72 0.81 0.90 0.70 0.84

0.5 0.86 0.69 0.92 0.66 0.78

0.33 0.75 0.66 0.90 0.70 0.80

1 2 3 4 5

Fold

Table A.2: Fold-wise Dice-Sørensen score for the networks evaluated on the re-

lated validation dataset, depending on the γ parameter of the FTL.
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A.3 Random Variable Module: Sigmoid Activation

Function

In this section, we extend the discussion on random variables applied after the

encoding layer of Autoencoder-based neural models, as presented in a previous

article [nicodemou2023rv]. We maintain the assumptions established in that

work, which include the absence of correlations between random variables. Fur-

thermore, we leverage the ability to represent arbitrary probability distributions

of real numbers through an expected value and a variance, a condition supported

by the validity of the central limit theorem resulting from the summation of

unrelated random variables.

Our focus here is to provide a means of obtaining the first two moments (ex-

pected value and variance) of a random variable Y resulting from the application

of the sigmoid function S to its input random variable X.

Let us begin by defining the sigmoid function:

S(x) =
1

1 + exp(−x)
, (A.1)

alongside its first and second derivatives with respect to x

Ṡ(x) = S(x)(1− S(x)) S̈(x) = S(x)(1− S(x))(1− 2S(x)) . (A.2)

These derivatives will prove useful in deriving the expected value and variance of

Y = S(X), where X is considered to be a random variable.

For the calculation of E[S(X)], we employ a Taylor expansion centred at

X0 = E[X]:

S(x) = S(E[X]) + (X − E[X])Ṡ(E[X]) +
1

2
(X − E[X])2S̈(E[X])2

+
1

3!
(X − E[X])3

...
S (E[X])3 + . . . .

(A.3)

From which we extract the expected value as

E[S(x)] = E[S(E[X]) + (X − E[X])Ṡ(E[X]) +
1

2
(X − E[X])2S̈(E[X])2

+
1

3!
(X − E[X])3

...
S (E[X])3 + . . .] .

(A.4)

Given the assumption that the distribution of the random variable X behaves

as a normal distribution, all odd central moments are expected to be null. This

leads to a simplified formula for the expected value of Y = S(X)

E[Y ] = S(E[X]) +
1

2
S̈(E[X])Var[X] +M4 , (A.5)
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where M4 collects all the moments after the third and can be neglected under

the assumption of smooth distribution. To calculate the expected variance of Y ,

we can utilise equations A.3 and A.5, so to obtain

Var[Y ] = E[Y 2]− E[Y ]2 = E[S2(E[X]) + 2(X − E[X])S(E[X])Ṡ(E[X])

+ (X − E[X])2(Ṡ2(E[X]) + S(E[X])S′′2(E[X]))

+ (X − E[X])3(Ṡ(E[X])S̈(E[X]) +
2

3!
S(E[X])

...
S (E[X])) +R4]

− S2(E[X])− 1

4
S̈2(E[X])Var2[X]− S(E[X])S̈(E[X])Var[X]− M̃4 ,

(A.6)

with M̃4 being analogous to M4 in A.5 and R4 collecting all the central differences

above the third exponent. By discarding all moments above the third, a compact

approximation for the variance of Y is given by

Var[Y ] ≈ Ṡ2(E[X])Var[X]− 1

4
S̈2(E[X])Var2[X] . (A.7)
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A.4 Theoretical white-field image for flat detectors
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This section provides a practical approxi-

mation for the amount of radiation cross-

ing a detector pixel in the case of isotropic

X-ray emission.

Assuming isotropic X-ray emission with

total emission denoted as J∗, the emis-

sion per steradian is a constant referred

to as J = J∗/4π. The radiation crossing

a detector pixel p is given by the integra-

tion of the emission J over the solid angle

dω related to the detector pixel area Ap:

Ip =

∫
Ap

Jdω , (A.8)

where Ip represents the radiation cross-

ing p. The infinitesimal dω is linked to

the infinitesimal area da through dω =

n·v̂ da/r2, with n being the detector pixel

normal and r̂ the versor of the line r con-

necting the detector pixel center and the X-ray source position. As the versor

r̂ = (x, y, z) has components 
x = sin θ cosϕ

y = sin θ sinϕ ,

z = cos θ

(A.9)

then it is possible to rewrite Equation A.8 as

Ip = J

∫
Ap

n · v̂
r2

da = J

∫
Ap

sin θ cosϕ

r2
da , (A.10)

and, expressing it in terms of the position of the detector pixel center P (Xp, Yp),

it becomes

Ip = J

∫
Ap

Rda

(R2 +X2
p + Y 2

p )
3
2

. (A.11)

Under the assumption that the detector distance R from the source is much

greater than Xp and Yp and of the pixel area A, then the denominator is nearly
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constant throughout the integration on the pixel area and it can be brought out-

side the integration. This allows us to conveniently approximate Equation A.11

with

Ip ≈
JAR

(R2 +X2
p + Y 2

p )
3
2

. (A.12)
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A.5 Supplementary material for Chapter 3

Scene Diff. Angle Transl. x Transl. y Transl. z Rot. Angle Rot. Axis x Rot. Axis y Rot. Axis z

cantilever 90 -1.09 ± 0.82 -1.30 ± 1.72 2.28 ± 0.07 64.01 ± 36.09 -0.00 ± 0.00 -0.04 ± 0.04 1.00 ± 0.00

cantilever 50 0.21 ± 0.39 0.59 ± 1.85 2.20 ± 0.01 -86.36 ± 45.97 -0.00 ± 0.00 -0.00 ± 0.00 1.00 ± 0.00

cantilever 10 -0.03 ± 0.36 -0.98 ± 1.59 2.28 ± 0.02 95.86 ± 45.96 -0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

cylinder 90 -0.02 ± 0.00 -0.01 ± 0.00 -0.99 ± 0.00 -103.76 ± 0.07 -0.01 ± 0.00 0.01 ± 0.00 1.00 ± 0.00

cylinder 50 -0.02 ± 0.00 -0.01 ± 0.00 -0.99 ± 0.00 -103.98 ± 0.04 -0.01 ± 0.00 0.01 ± 0.00 1.00 ± 0.00

cylinder 10 -0.03 ± 0.02 -0.01 ± 0.02 -0.99 ± 0.00 -104.05 ± 0.18 -0.01 ± 0.00 0.01 ± 0.00 1.00 ± 0.00

stepwedge 90 1.17 ± 1.07 2.78 ± 1.75 -1.22 ± 0.33 177.41 ± 1.41 0.43 ± 0.18 -0.82 ± 0.07 0.02 ± 0.01

stepwedge 50 2.01 ± 2.41 0.72 ± 0.68 -1.01 ± 0.25 178.08 ± 1.70 0.14 ± 0.35 -0.42 ± 0.28 0.02 ± 0.02

stepwedge 10 1.93 ± 1.94 1.27 ± 1.02 -0.99 ± 0.23 178.03 ± 1.76 -0.14 ± 0.35 -0.14 ± 0.35 0.02 ± 0.02

Table A.3: Mean and standard error of pose parameters for the main object across various scenes and projection

angles. Units are in mm and deg.
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Scene Diff. Angle Transl. x Transl. y Transl. z Rot. Angle Rot. Axis x Rot. Axis y Rot. Axis z

cantilever 90 1.14 ± 0.06 -0.51 ± 0.04 -17.99 ± 0.04 8.00 ± 15.19 0.09 ± 0.06 0.20 ± 0.15 0.91 ± 0.07

cantilever 50 1.15 ± 0.07 -0.51 ± 0.05 -18.03 ± 0.01 -1.25 ± 19.70 0.01 ± 0.01 -0.06 ± 0.06 0.99 ± 0.01

cantilever 10 1.06 ± 0.09 -0.41 ± 0.11 -17.89 ± 0.02 10.60 ± 24.04 0.01 ± 0.00 0.05 ± 0.04 1.00 ± 0.00

cylinder 90 1.03 ± 0.43 -0.28 ± 0.40 -12.68 ± 0.02 -90.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

cylinder 50 0.61 ± 0.68 -0.11 ± 0.68 -12.49 ± 0.05 -93.57 ± 3.22 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

cylinder 10 0.48 ± 1.25 0.04 ± 1.28 -12.13 ± 0.16 -82.81 ± 3.95 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

stepwedge 90 -6.00 ± 2.81 -1.25 ± 2.60 -66.91 ± 0.40 -5.43 ± 4.95 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.20

stepwedge 50 -4.10 ± 2.73 1.45 ± 0.27 -66.93 ± 0.62 -4.72 ± 20.89 0.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.24

stepwedge 10 -3.53 ± 1.88 0.61 ± 0.41 -67.07 ± 0.71 -18.15 ± 30.55 0.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.24

Table A.4: Mean and standard error of pose parameters for the upper support across various scenes and projection

angles. Units are in mm and deg.

Scene Diff. Angle Transl. x Transl. y Transl. z Rot. Angle Rot. Axis x Rot. Axis y Rot. Axis z

stepwedge 90 -0.05 ± 0.23 0.53 ± 0.29 -89.45 ± 0.23 -5.43 ± 4.95 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.20

stepwedge 50 -0.53 ± 0.16 0.46 ± 0.48 -89.63 ± 0.23 -4.72 ± 20.89 0.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.24

stepwedge 10 -0.88 ± 0.31 1.51 ± 0.32 -89.18 ± 0.67 -18.15 ± 30.55 0.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.24

Table A.5: Mean and standard error of pose parameters for the lower support across various scenes and projection

angles. Units are in mm and deg.
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Abbreviations

X-CT X-ray Computed Tomography

AM Additive Manufacturing

CAD Computer-Aided Design

DXR Digital X-ray radiography

SLA Stereolithography

SLM Selective Laser Melting

KH Keyhole

LoF Lack-of-fusion

DL Deep Learning

FTL Focal Tversky Loss

SS316L Stainless steel 316L
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PA12 Polyamide

AP Average precision

PR Precision-recall

ROC Receiver operating characteristic

AUC Area under the curve

RMSE Root mean squared error

NDT Non-destructive testing

VAE Variational Autoencoder

FTL Focal Tversky Loss

PACS Projection-driven Adaptive CADs X-ray Scatter compensation


