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Abstract—The discrete algebraic reconstruction
technique (DART) is a tomographic method to recon-
struct images from X-ray projections in which prior
knowledge of the object materials’ attenuation val-
ues is exploited. In monochromatic X-ray CT (e.g.,
synchrotron), DART has been shown to lead to high
quality reconstructions, even with a low number of
projections. However, most X-ray sources are polychro-
matic, leading to beam hardening effects, which signi-
ficantly degrade the performance of DART. To reduce
beam hardening artefacts, we developed an algorithm,
pPDART, that exploits sparsity in the attenuation val-
ues using DART and simultaneously accounts for the
polychromaticity of the X-ray source. The results show
that pDART leads to a vastly improved segmentation
on simulated polychromatic data.

Inder Terms—Computed tomography, discrete
tomography, DART, polychromaticity, beam hardening

I. INTRODUCTION

OMPUTED tomography is a widely used technique

for non-invasive imaging of a sample. Classical recon-
struction techniques, e.g. Filtered Backprojection, assume
a linear acquisition model and a large number of projec-
tions taken from a full angular view. When these require-
ments are not met, artefacts arise in the reconstruction.

One of the main sources of reconstruction artefacts is
undersampling. When only few projections are available,
the system of equations that needs to be solved for the
reconstruction becomes severely underdetermined. By in-
cluding prior knowledge about the sample, one can reduce
this underdetermination, effectively decreasing the space
of possible solutions. One of the ways this can be achieved
is Discrete Tomography (DT), in which the grey levels in
the image corresponding to the attenuation values of the
object materials are assumed to be known a priori. This
reduces the reconstruction from a continuous problem to
a discrete problem. The Discrete Algebraic Reconstruction
Technique or DART algorithm is one of the possible DT
algorithms and has proven to be effective if the sample
consists of few materials [1].

The DART algorithm relies on the same linearized
acquisition model as most classical techniques; it assumes
that the log-corrected normalized projection is the sum of
attenuation values along a ray. This is an adequate model
for a monoenergetic source, but not for a polyenergetic
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one. Due to this model mismatch, the reconstructed im-
age will show beam hardening artefacts as the effective
energy of the spectrum shifts upwards [2]. Beam hardening
artefacts and the inability to clearly select a correct grey
level for each material, lead to inaccurate reconstructions
when DART is used in combination with polychromatic
projections. One of the current methods for reducing beam
hardening artefacts consists of placing metal filters in front
of the source, to pre-harden the beam. However, the pre-
hardened spectrum is still polychromatic and the filtering
decreases the number of photons available for imaging.

We propose to combine the DART framework, with
the polychromatic Simultaneous Algebraic Reconstruction
Technique (pSART) introduced in [3], as the underlying
reconstruction method. The pSART algorithm has pre-
viously successfully been combined with a Total Vari-
ation approach in [4]. This technique reconstructs a single
grey level image, corresponding to a simulated monochro-
matic reconstruction, while using a polychromatic forward
model.

In this paper, a short overview of DART and pSART
is given, to clarify the models and algorithms that were
used. Next, we explain the combined pDART algorithm
and where it differs from the normal DART scheme.
Finally, different discrete reconstructions from simulated
polychromatic data are compared to demonstrate the
improvements of the proposed method.

II. METHOD
A. Discrete reconstruction: DART

The DART algorithm is an efficient reconstruction
method for discrete tomography. A complete discussion of
DART can be found in [1]. We briefly recall the different
steps in the DART algorithm:

1) Initial reconstruction: An algebraic reconstruc-
tion method (ARM) is performed to obtain an initial
reconstruction V.

2) Segmentation: Segment Vj based on the a pri-
ori knowledge of the grey levels and corresponding
threshold values.

3) Masking: Choose a set of fixed and free pixels. The
free pixels encompass all boundary pixels ! and a
small percentage of randomly chosen pixels.

4) Reconstruction: Perform a number of iterations of
the ARM, on the set of free pixels only. The fixed

1A pixel is called a boundary pizel if it has a neighbouring pixel
with a different grey value.



pixels are kept at their segmented value. This gives
us a reconstruction V.
5) Smoothing: Apply smoothing to weaken the harsh
fluctuations that can occur due to the segmentation.
6) Iteration: Set V) = V and repeat steps 2-5 until a
stopping criterion is met.

B. Polychromatic SART (pSART)

The pSART algorithm [3] is based on the same iterative
scheme as SART [5]. In matrix form, the k" update step
can be expressed as:

vt — v _cATR (Proj(V(k)) - s) Y

with A the system matrix of the acquisition geometry,
C and R diagonal matrices with the inverse sums of the
columns and rows of A, respectively, Proj the forward
projection operator, and s the sinogram. In the case of
SART, Proj(V) = AV. In pSART, however, a polychro-
matic forward projection is used instead.

The polychromatic projection Pr,, along the ray L,? is
modelled as:

= [ioes (- [ .o da)de @)

with g the function giving the attenuation coefficient of
the object at a point = and an energy level € and I the
X-ray source spectrum [2]. This model can be discretized
over N, total energy levels and N,, different materials to
achieve the following form:

Ne N
Pr =3 w(e)exp (— S zr,mum@). (3)
e=1 m=1

Here w(e) is the weight for each energy level, I, ,, the
distance that ray L, travels through material m, and
tm (€) the attenuation coefficient of material m at energy
€. By log-correcting and normalizing the projection [f’LT
from Eq. (3) we have:

P
Proj(V), = —log <Z(£V=1L’:U(e)> . (4)

The extra prior information needed for the pSART
algorithm involves the spectrum: N, and w(-) and the
different materials in the sample: p,,(-) and N,,. Note that
this knowledge about materials is also a prerequisite of the
DART algorithm.

For the forward projection of V(’f)7 the line-lengths lﬁky)n
need to be calculated as follows. First, a reference energy
€ref is chosen, which provides reference attenuation values
tm = fim (€rer). In each step, the reconstruction represents
the monoenergetic attenuation map at energy level ;.5 [3].
Next, for each pixel v in the current reconstruction V),
with value t, € [u;, pit1], the fractions in the following
decomposition are calculated:

Nm+1 - tv um +
Hm+1 — Bm

b = tm (5)

ty = Hm+1-
Hm+1 — Hm

21, is the ray from the source to the rth pixel on the detector.

These percentages are grouped, per material, in a mask
MT(,f ). This essentially models each pixel v as the mixture
of two materials. The lf«kr)n are now found as the values in
the product AM,Sf).

C. Polychromatic DART (pDART)

We propose a new algorithm based on the principles
of DART and pSART that combines the benefits of both
methods. As pSART returns a single grey value image,
it is suited for combination with DART. However, due
to the non-linearity of the polychromatic model and the
assumptions made in the pSART model, changes to the
masking step of DART and the material selection of
PSART are needed.

Choosing pSART as the underlying reconstruction
method implies that a weight vector and a matrix contain-
ing the energy dependent attenuation values and reference
values have to be specified. This prior knowledge allows us
to make a natural choice for the grey levels: the pSART
algorithm already uses the reference values to decide which
materials each pixel consists of and to reconstruct a single
image which represents a monochromatic reconstruction
at the reference energy level [3]. For this reason, the grey
levels for segmentation are chosen to be the same as the
reference attenuation values.

In the original DART approach, the forward projection
of the fixed voxels is subtracted from the sinogram [1].
However,

S — PI‘Oj(meed) (6)

as the new sinogram data to the pSART algorithm will
not be equal to a reconstruction of the reduced system
of equations. As a result, running the DART algorithm
with the conventional settings will give rise to divergent
behaviour. Because of the fundamental non-linearity of the
polychromatic problem, the reconstruction on the reduced
set of pixels cannot be performed in an analogue way
to the monochromatic version. Instead, the line lengths
through each material are calculated once in every DART
iteration. The material locations are known, since the
image is segmented. These same fixed numbers will be
added to the calculated line lengths in each iteration of
pSART. This way the pixel values are effectively fixed in
the pSART iterations. However, the fixed values can no
longer be grouped together in an updated sinogram.

To pass more information about the segmented inter-
faces to the pSART algorithm, a different interpolation
is performed for boundary pixels. Instead of interpolating
between the two closest reference values, interpolation is
performed between the maximal and minimal attenuating
material found within the neighbourhood of the boundary
pixel.

For the implementation of the pDART algorithm, we
implemented pSART in Matlab and used the DART
framework from the ASTRA toolbox [6].
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Figure 1: Phantom (a) and employed spectrum (b).

III. EXPERIMENTS

To validate the proposed algorithm, simulation experi-
ments were set up with an image quality phantom shown
in Fig.1la. This phantom consists of three simulated ma-
terials on a vacuum background: water, cortical bone and
titanium. The attenuation values at different energy levels
were used from [7]. Different parallel beam polychromatic
sinograms of the phantom were created, based on the
weights and energy levels of a realistic spectrum, shown in
Fig.1b. Sinograms were created with a variable number of
angles, ranging from 2 to 500, equally spaced in the inter-
val [0, 7). The forward model defined in Eq. (4) was used
for the polychromatic projections. To limit inverse crime,
the phantom was defined on a higher resolution grid than
the reconstruction. To study the performance under noisy
conditions, Poisson noise was added to the projections
with 50 angles, based on different source intensities Iy,
ranging from 5000 to 100000 photons per detector pixel.

From the simulated polychromatic sinograms, images
were reconstructed with the following methods: FBP seg-
mented with Otsu’s method, pSART segmented, SART
segmented, DART with manually optimized grey levels®
and pDART. The segmentations of SART and pSART
were performed with the same global threshold as DART
and pDART, respectively.

All pDART reconstructions were performed with 1%
random free pixels, 100 initial and 20 inner iterations
of pSART. The same settings were used for DART. The
percentage of free pixels was chosen as advised in [1]. When
testing the influence of the variable number of angles, the
error was measured after 300 (p)SART iterations, which
corresponds to 10 (p)DART iterations.

For the mnoisy reconstructions we performed less
(p)SART iterations per iteration of (p)DART: only 50
initial and 4 inner iterations, to prevent overfitting to
noise. In this case, the error was measured after 210
(p)SART iterations. Due to the lower amount of initial
and inner iterations, this corresponds to 40 (p)DART
iterations. For the polychromatic reconstruction methods,
the spectrum shown in Fig. 1b was rebinned to 18 bins.

30ut of the different available attenuation values, at the different
energy levels, the one with the lowest reconstruction error was chosen.
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Figure 2: Plot of TINMP vs. (p)SART-iterations on 150
angles.

The reference energy level was set at 120keV, as higher
energy levels lead to faster convergence [3].

All parameters (e.g. percentage of free pixels, number
of inner iterations and reference energy level) were either
chosen empirically or in accordance with the literature.

All reconstructions and projections were generated using
the ASTRA toolbox [6].

IV. RESULTS

To quantify the performance of pDART against seg-
mented FBP, DART, segmented SART and segmented
pSART, we computed the relative number of mismatched
pizels or TNMP [1]. The effects of undersampling and beam
hardening were very strong for FBP, so we have omitted
FBP from all plots to improve visibility.

In Fig.2, the rNMP of the different methods is shown in
function of the number of (p)SART iterations, for 150 pro-
jection angles between 0 and w. The rNMP for (p)SART
was calculated at every iteration, whereas the rNMP for
(p)DART was calculated at every DART iteration, i.e.
every 20 (p)SART iterations. From Fig.2, one can observe
that pDART converges more quickly than pSART. The
original DART algorithm is outperformed by the other
methods, except for FBP.

Next, the effect of varying amounts of projection angles
on the TfNMP was studied. These results are shown in
Fig.3. Again, pDART outperforms the other methods in
terms of mismatched pixels, reaching a lower stable INMP
and reaching this convergence point at a lower number of
projections. This suggests that pDART benefits from both
the beam hardening correction property of pSART and the
imposed discreteness.

Lastly, the robustness to noise of the new method was
studied. In Fig.4, the TNMP is plotted as a function of
the beam intensity (represented by the photon count per
detector element in the absence of attenuation). These
simulations were performed for 50 projection angles.

Even in the presence of noise, pDART performs the best
out of the different studied methods. However, comparing
Fig. 4 with Fig. 3 shows that the influence of noise on our
proposed method is still substantial.
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Figure 3: Plot of TNMP vs. number of angles, equally
spaced in [0, ).
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Figure 4: Plot of rNMP vs. different Poisson noise levels
at 50 projection angles.

Finally, a comparison of the different reconstruction
methods in the case of 50 noiseless projections can be
found in Fig. 5. From this figure it can be observed that the
two polychromatic methods show the least reconstruction
artefacts, with the other methods showing beam hardening
artefacts and streaks due to the low amount of projection
angles. Both pSART and pDART have some mismatched
black pixels in the interior, but the effect is less pro-
nounced in the pDART reconstruction. Furthermore, it
can be observed that pDART is the only algorithm, in our
comparison, that accurately reconstructs the bar phantom
in the center.

V. CONCLUSION

Many objects consist of a limited number of materials.
This prior knowledge can be exploited in the reconstruc-
tion of images from X-ray projection data using discrete
tomography. Current discrete tomography methods (such
as DART), however, do not account for polychromaticity
of X-ray sources, leading to various reconstruction arte-
facts. In this paper, pDART was proposed, a discrete
tomography method that exploits sparseness in atten-
uation values, while taking a polychromatic projection
model into account. Simulation experiments revealed that
pDART results in substantially improved image recon-
struction quality compared to DART or segmented ver-

(f) pSART seg.

() PDART

Figure 5: Comparison of the different reconstruction tech-
niques with 50 projection angles.

sions of FBP, SART or pSART for polychromatic X-ray
data.
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