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Super-Resolution for Multislice Diffusion Tensor Imaging
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Paul M. Parizel,3 and Jan Sijbers2*

Diffusion weighted magnetic resonance images are often
acquired with single shot multislice imaging sequences,
because of their short scanning times and robustness to motion.
To minimize noise and acquisition time, images are generally
acquired with either anisotropic or isotropic low resolution
voxels, which impedes subsequent posterior image process-
ing and visualization. In this article, we propose a super-
resolution method for diffusion weighted imaging that combines
anisotropic multislice images to enhance the spatial resolu-
tion of diffusion tensor data. Each diffusion weighted image is
reconstructed from a set of arbitrarily oriented images with a
low through-plane resolution. The quality of the reconstructed
diffusion weighted images was evaluated by diffusion tensor
metrics and tractography. Experiments with simulated data, a
hardware DTI phantom, as well as in vivo human brain data were
conducted. Our results show a significant increase in spatial res-
olution of the diffusion tensor data while preserving high signal
to noise ratio. Magn Reson Med 000:000–000, 2012. © 2012
Wiley Periodicals, Inc.
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Diffusion tensor imaging (DTI) is a noninvasive, in vivo
imaging modality that measures the diffusion of water
molecules (1). During a DTI sequence, diffusion weighting
gradients are applied to attenuate the signal when diffu-
sion is present. As a result, the signal-to-noise ratio (SNR)
of diffusion weighted (DW) images is relatively low (2). Fur-
thermore, since DTI is sensitive to translational motion of
water molecules, a small amount of subject motion can lead
to phase shifts or signal loss. Because of their short measur-
ing times and robustness to motion, multislice single shot
echo planar imaging (3) or single shot fast spin echo (4,5)
sequences are preferred for acquiring diffusion tensor (DT)
data. Achieving high spatial resolution (HR) DW images
with isotropic voxels and a high SNR with these sequences
is a challenging task (6). Acquiring isotropic HR images
directly leads to images with low SNR, as the recorded
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signal energy scales linearly with the slice thickness. Low-
ering the resolution improves the SNR, but increases partial
volume effects, which hinders visual interpretation and
also impedes posterior fitting of the DT model (7).

As will be demonstrated in this article, the previously
mentioned problems can be overcome by image process-
ing/reconstruction methods that increase the spatial reso-
lution by combining information from a number of images,
termed super-resolution. For magnetic resonance images
(MRIs), several super-resolution methods have been pro-
posed. Peled and Yeshurun (8) and Carmi et al. (9) proposed
to improve the in-plane resolution by combining multi-
ple in-plane subpixel shifted MRIs. The validity of that
approach was questioned by Scheffler (10), who argued
that the shifted MR images are acquired at exactly the same
k-space data points. Indeed, the in-plane shift only results
in a linear phase shift, thus each shifted MRI contains the
same information, except for measurement noise. Further-
more, the blurring due to the finite part of k-space was
ignored and through-plane resolution was untouched. A
more promising in-plane super-resolution technique based
on modulating the magnetization has recently been pub-
lished by Ropele et al. (11). Greenspan et al. (12), and
Kornprobst et al. (13) improved the through-plane reso-
lution by shifting the slice directions of multiple multi-
slice acquisitions. The acquisition in the slice direction
is not band limited, and therefore, the method is not
limited to the original resolution. Reconstructions using
multiple orthogonal sets with a high in-plane resolution
and a lower through-plane resolution were performed by
Gholipour et al. (14) and Rousseau et al. (15). Their work
mainly focused on fetal brain images. The problem of fetal
motion was addressed by an interslice registration-based
reconstruction. Shilling et al. (16) described rotating non-
isotropic low resolution (LR) multislice MRIs around a
common frequency encoding axis to obtain a HR image.
The reconstruction problem was stated as a set of linear
equations from which a HR image was solved. The lin-
ear equations were resolved by iterative techniques also
used in computed tomography (e.g. algebraic reconstruc-
tion technique). This method was extended by Poot et
al. (17) to allow arbitrary slice orientations. In their work,
the linear equations were solved with the conjugated gra-
dient method and optimized affine transformations were
used to apply the coordinate transformations. Both tech-
niques substantially increased the performance of the
algorithm.

For DTI data, only a limited number of super-resolution
techniques were proposed. Jiang and Hsu (18) investigated
procedures to adequately reconstruct reduced encoded DW
images based on k-space sharing with a HR non-DW image.
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The reconstruction accuracy was improved by adding filter-
ing to select for desired frequency information and by using
baseline correction to maintain signal continuity between
the reduced encoded data and reference data. Except for the
criticized work by Peled and Yeshurun (8), to our knowl-
edge, none of the previously mentioned magnetic reso-
nance imaging superresolution methods were ever studied
on DTI data, although more conventional in-plane reso-
lution improvement techniques have been proposed, e.g.
Ref. 19.

In this work, the method by Poot et al. (17) is extended
to reconstruct an isotropic HR DTI image from a set of
anisotropic multislice DTI images. The impact on SNR,
acquisition time and artifacts of DW images will be inves-
tigated. Furthermore, the influence on DTI parameters like
fractional anisotropy (FA), the first eigenvector (FE), and
“whole brain” tractography is studied.

MATERIALS AND METHODS

Before explaining the super-resolution part of the method,
the diffusion tensor model will be reviewed first.

Diffusion Tensor Model

The diffusion tensor D is represented by a 3 × 3 symmet-
ric, positive definite tensor, which is characterized by six
unique components. Therefore, at least six DW images,
with non collinear diffusion weighting gradient directions,
are acquired to estimate D Let rm (nrm ×1) denote the mth ∈
{1, . . . , M ; M ≥ 6} DW image and xk , k ∈ {1, . . . , nrm } the
grid points of rm. Then, the noise free DW image intensity
in each voxel k is modeled by:

rm(k) = r0(k)e−gT
k D(k)gmbm , [1]

where gm and bm are the diffusion gradient direction
and diffusion weighting factor of the corresponding DW
image rm, respectively, and r0 represents the non-DW sig-
nal. All DT are estimated from the DW images with a
nonlinear maximum likelihood estimator, assuming Rician
distributed noise (20).

Super-Resolution Model

The proposed method reconstructs each of the M HR DW
images rm from N DW images with different slice direc-
tions, each with a low through-plane resolution. After
reconstructing all M HR DW images, a diffusion tensor
map [1] is estimated from these reconstructed HR DW
images. Note that the acquisition of the multislice MRIs can
be accelerated by any standard technique, such as parallel
imaging (21,22), as long as the slice excitation profile and
the in-plane point spread function exist and are known.

For the reconstruction method, the MR image acquisition
process is implicitly splitted in two steps. First a contin-
uous “image” with the desired contrast is created. This
“image” is equal for all LR images with a specific m. The
reconstruction process aims to reconstruct a HR sampled
version of this image. Subsequently, N LR images are sam-
pled from this image. This anisotropic sampling can be
represented by a linear operator operating on the images

represented by vectors constructed from concatenating the
intensities at all sampled locations. Thus, the acquisition
of the jth ∈ {1, . . . , N } slice direction image sjm (nsjm × 1) is
modeled as:

sjm = X jrm + ejm, [2]

where ejm (nsjm × 1) represents the measurement noise and
X j (nrm × nsjm ) the projection matrix described as:

X j (l, k) = ω(T j (xk ) − yl), [3]

where yl , l ∈ {1, . . . , nsjm } is the coordinate in the space of
the LR image sjm. The transformation T j transforms points
in the object space, xk , to the space of the jth LR image, yl .
These transformations typically consist of affine transfor-
mations, as both the grid of the HR reconstruction and the
grid of the LR images is regular in physical space. However,
more general transformations can be applied as well. The
point spread function of the acquisition is represented by
ω, which is defined by the MR image acquisition method. In
case of a multislice acquisition, the sampling functions in
read and phase direction are defined by a rectangular area
in k-space that is sampled, thus, ω represents a Dirichlet or
periodic sinc function. The through-plane sampling func-
tion is dependent on the slice selection profile, which is
excited using a windowed sinc or a Gaussian shaped RF
pulse. In this work, a windowed sinc RF pulse was used,
so the slice excitation profile was modeled by a smoothed
box function, as explained in Ref. 17.

If all N slice directions are combined, the acquisition
model of a specific DW image m is given by:

sm = Xrm + em, [4]

with

sm =



s1m
...

sNm


 , X =


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X1
...

XN


 , em =




e1m
...

eNm


 . [5]

Reconstruction of the Object

The HR image rm can be estimated by minimizing the mean
squared difference between sm and Xrm, which is a least
squares problem:

r̂ = argmin
r

‖Xr − s‖2
2. [6]

where the index m is removed to simplify notation. The
reconstruction process is performed for each m indepen-
dently.

Because of the high resolution of the grid of the recon-
structed object, this problem is badly conditioned or even
underdetermined. Hence, regularization is required, lead-
ing to the following regularized least squares problem:

r̂ = argmin
r

‖Xr − s‖2
2 + λR(r), [7]

where R(r) is a penalty function and λ a weighting factor.
The choice for a regularization term in linear systems is still
an active topic of research and also dependent on certain
prior knowledge about the object to be reconstructed.

The HR grid generally contains spatial frequencies that
are not sampled by any of the multislice images. Hence,
since there is no information about these high spatial
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frequencies, the regularization will be used to minimize
the energy of these high frequencies. To this end, a regular-
ization term is added that computes the squared laplacian
of the reconstructed object:

R(r) = (∆r)2 =
(

D2r
Dx2 + D2r

Dy2 + D2r
Dz2

)2

. [8]

The regularization is controlled by the weighting factor λ.
Increasing λ increases the bias in the solution, while reduc-
ing the variance. A good value for λ would be a value that
(approximately) minimizes the mean squared error (MSE).
To solve the regularized least squares problem [7] the con-
jugate gradient method (23) was found to be adequate,
because of its fast convergence properties.

As previously mentioned, the reconstruction problem is
not only ill-posed, the system matrix X is furthermore too
large to be explicitly stored. If the transformation T [3] is an
affine transform, the acquisition of the MRIs can be refor-
mulated as an affine transform of the object, followed by
the filter operations of the sampling functions described by
ω. The affine transformations are applied with a transfor-
mation method developed by Poot et al. (17). The method
decomposes the transformation into a set of shearlet trans-
formations, providing very high quality resampling with
relatively few computations.

Motion and Eddy Current Artefacts

Because of the long scan times required by DT experiments,
non-negligible subject motion might be present in the DW
data. Additionally, the slice direction data sets may con-
tain (minor) eddy current artifacts and geometrical distor-
tions due to B0 inhomogeneity which is caused by magnetic
susceptibility differences. These geometrical differences
depend on the phase encoding direction and are there-
fore slice direction dependent (see Fig. 1). Furthermore, the
alignment of the images using coefficients returned by the
scanner was found to be insufficient for accurate reconstruc-
tion. Therefore, the coefficients of affine transforms needed
to correct both the distortions and the incorrect alignment of
images were calculated by minimizing the sum of squared
residuals within a brain mask. Subsequently, the system
matrix X was corrected with these coefficients, followed

by the regularized least squares estimation. Note that the
coefficients to correct eddy currents and motion artifacts
are different for each LR DW image, while the corrections
for magnetic susceptibility artifacts and misalignment of
the scanner coefficients are the same for all LR DW images
within the same slice orientation.

Experiments

To evaluate the proposed super-resolution reconstruction
(SRR) method, simulation as well as phantom and in vivo
DTI experiments were carried out.

DTI Simulated Phantom

First, experiments were run on simulated DTI phantom
data. The phantom and the associated DW images were
generated using the Numerical Fiber Generator software
package (Brain Research Institute, Melbourne, Australia)
(24). To simulate arbitrarily oriented slice direction images,
HR DTI data was generated (7 b = 0 s/mm2 and 60 b =
1200 s/mm2 images) with an image matrix of 160 × 160 ×
160. Subsequently, affine transformations were applied
using eight optimally spread slice orientations, followed by
the sampling filters described in the methods section. This
resulted in eight differently rotated versions of the phantom
data with image matrices of 40×20×10. Optimal slice ori-
entations were chosen based on an algorithm described by
Jones et al. (25) for spreading out measurements in three-
dimensional (3D) gradient vector space. Next, all images
were corrupted with Rician noise. These eight simulated
datasets were eventually used as inputs in the proposed
SRR method to reconstruct one HR dataset with an image
matrix of 40×40×40. The number of iterations used in the
conjugate gradient method was set to 15, which proved to
be sufficient. Based on the MSE of the fractional anisotropy
when using a phantom, more iterations resulted in a gain
of less than 0,0001 per iteration.

The voxel volume of the simulated LR slices is eight
times the volume of voxel of the HR image, implying
that the theoretical scanning time of one slice oriented
dataset will be eight times lower than that of a direct HR
scan. Hence, the total scanning time of eight slice oriented
datasets corresponds to that of a single HR acquisition.
Note that, even though the scan time would be eight times

FIG. 1. Axial view of three (resampled) low resolution acquisitions (b = 0 s/mm2), acquired with different slice orientations. Some
slice direction dependent distortion is visible in the red circle. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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larger, due to the thinner slices, the SNR of a direct HR
acquisition would be a factor 4 lower than the SNR of the
LR images. To evaluate the method, several other datasets
were constructed, representing direction acquisitions: a HR
isotropic dataset (40 × 40 × 40), an isotropic LR dataset
(20 × 20 × 20) and an anisotropic LR dataset (40 × 40 × 10).
A noise free HR dataset (40 × 40 × 40) was generated to
compare all data sets and for visualization the LR data sets
were interpolated onto a 40 × 40 × 40 grid using cubic
spline interpolation. The power of the object signal scales
linearly with the slice thickness. To simulate this, the signal
of each dataset was multiplied by the ratio between its slice
thickness and the HR slice thickness and the magnitude of
the HR b = 0 s/mm2 images was 1. For the anisotropic
LR images and the isotropic LR image, the scaling factor
was 4 and 2, respectively. Next, the DT model was fitted to
the datasets, followed by calculating a direction encoded
color (DEC) (26) map and applying “whole brain” tractogra-
phy (27). From the whole brain tractography dataset, only
the trajectories that connected one of three pairs of begin
and end region of interests (ROI), which were known to be
connected a priori, were selected. The proposed method
reconstructs the DW images and then estimates the DT
model (DW reconstruction), for comparison, the DT was
estimated for each slice direction before reconstruction,
followed by reconstructing the six unique DT components
(DT reconstruction). To evaluate the robustness of the SRR
method against noise, the standard deviation (σ) of the
applied noise was varied and for each value, the SRR
dataset was compared with reference datasets with an equal
noise level. For visual comparison, a fixed noise level of
σ = 0.4 was used.

DTI Hardware Phantom

Next, the SRR method was evaluated on a custom-made
hardware DTI phantom (28). This phantom consisted of a
pair of crossing fibers, a pair of kissing fibers and set of
parallel fibers in a salted water-filled clear plastic spheri-
cal phantom with a diameter of 160 mm. DW data of the
phantom was acquired with a Trio Scanner (3T; Siemens
AG, Siemens Medical Solutions, Erlangen, Germany) with
a 32-channel head coil. For the reconstruction dataset, nine
datasets with different slice orientations were acquired, see
Appendix for a detailed description of these orientations.
As a reference, two HR sets were acquired in a single direc-
tion. The acquisitions all were multislice single-shot EPI
sequences without slice gap, no averaging, in-plane reso-
lution 1.33 × 1.33 mm2, acquisition matrix 128 × 128 with
95 phase encoding steps, 100% sampling, TE = 89 ms. The
FOV of all datasets was 170 × 170 × 166 mm3 and each
included 12 DW images (b = 1000 s/mm2) and 1 non-DW
image (b = 0 s/mm2).

• The LR images for the reconstruction were acquired
with slice thickness of 5.2 mm, TR = 4400 ms, pixel
bandwidth 1347 Hz, and contained 32 slices. The
total acquisition time for all nine slice orientations
together was 8.6, min. Each of the (DW) images was
reconstructed with the proposed method on a grid with
1.3 mm isotropic resolution.

• The HR datasets were acquired with slice thickness
of 1.3 mm, TR = 17300 ms, pixel bandwidth 1260 Hz,

and contained 128 slices. The first HR dataset (short
HR) consisted of three repetitions (36 DW and 3 b =
0 s/mm2 images) in an acquisition time of 11.2 min.
For the second reference scan (long HR), 10 repetitions
were acquired (120 DW and 10 b = 0 s/mm2 images),
with a total acquisition time of 37.5 min.

Next, for each dataset the DT was estimated, followed by
calculating a DEC map.

Human In Vivo Data

Finally, the reconstruction method was evaluated with
human in vivo data. For this, DW data of a healthy 27-year-
old male volunteer was acquired by the same Trio Scan-
ner with a 32-channel head coil. For the reconstruction
method, eight anisotropic LR DWI datasets were acquired
with settings equal to the direct anisotropic LR described
below. The difference in these eight datasets was the orien-
tation of the slices, on which the SRR method is based, see
Appendix. In hindsight, a smaller FOV would have been
sufficient for imaging the brain.

The total acquisition time was approximately 8.8 min.
The (DW)images were reconstructed by the proposed
method. To evaluate the method, several additional
datasets were acquired:

All datasets were acquired with a multislice single-
shot EPI sequence without slice gap, no averaging, and
included, unless noted otherwise, 12 DW images (b =
1000 s/mm2) and 1 non-DW image (b = 0 s/mm2).

• A direct isotropic HR dataset with 32 DW images and
voxel dimensions equal to 1.5 × 1.5 × 1.5 mm3, TR =
15, 100 ms, TE = 98 ms, a FOV of 255×255×135 mm3,
acquisition matrix 170 × 170 with 128 phase encoding
steps, 100% sampling, 90 slices, pixel bandwidth 1471
Hz, scanning time of 8.3 min. Note that the scanning
time is almost equal to the set of LR images, but the
FOV is substantially smaller.

• A direct isotropic LR dataset with voxel dimensions
equal to 2 × 2 × 2 mm3, a TR = 7800 ms, TE = 90 ms,
a FOV of 256 × 256 × 120 mm3, acquisition matrix
128 × 128 with 102 phase encoding steps, 100% sam-
pling, 60 slices, pixel bandwidth 1628 Hz, scanning
time 1.7 min.

• A direct anisotropic LR dataset with voxel dimensions
equal to 1.5×3×6 mm3, a TR = 5100 ms, TE = 92 ms,
a FOV of 230 × 230 × 240 mm3, acquisition matrix
152 × 76 with 76 phase encoding steps, 100% sam-
pling, 40 slices, pixel bandwidth 1645 Hz, scanning
time of 1.1 min.

Next, for each dataset the DT was estimated, followed by
calculating a DEC map and applying “whole brain” trac-
tography. From the whole brain tractography dataset, 1000
fibers running through a midsagittal ROI of the corpus
callosum were selected.

RESULTS

DTI Software Phantom

Figure 2 shows DEC maps constructed from the differ-
ent datasets in all three orthogonal directions. As can be
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FIG. 2. Three orthogonal views of the DEC
map of the simulated phantom, with direc-
tions: left – right (red), up – down (blue),
back – front (green). The noise level in all
noisy simulated images was σ = 0.4. (a)
Original (voxels: 1 × 1 × 1); (b) Isotropic HR
(voxels: 1 × 1 × 1, σ: 0.4); (c) Isotropic LR
(voxels: 2 × 2 × 2, σ: 0.4); (d) Anisotropic
LR (voxels: 1 × 1 × 4, σ: 0.4); (e) DW SRR
(voxels: 1×1×1, σ: 0.4). [Color figure can be
viewed in the online issue, which is available
at wileyonlinelibrary.com.]

seen, the isotropic HR dataset (Fig. 3b) suffers from a
low SNR, in contrast with the anisotropic (Fig. 2d) and
isotropic LR dataset (Fig. 2c). However, the isotropic LR
dataset clearly shows less detail due to partial volume
effects. The anisotropic LR dataset shows better resolution
in one direction, but fine structures are lost in the other
two directions. The SRR data (Fig. 2e), conversely, shows
an improvement in details while preserving high SNR. It
closely resembles the original data (Fig. 2a) except for some
minor smoothing effects, mainly due to the regularization
of the reconstruction.

Figure 3 shows three fiber tracts that were generated
from known ROIs and computed with a “whole brain”
tractography scheme. When using the isotropic HR data

(Fig. 3b), the tractography method finds substantially fewer
tracts than in the original data (Fig. 3a), due to the large
amount of noise. The isotropic (Fig. 3c) and anisotropic
LR data (Fig. 3d) tractography schemes manage to find
more fiber tracts; however, they fail in certain directions.
The tractography results from the SSR dataset, conversely,
closely resembles these from the original data.

The reconstruction using the DT components compared
with the reconstruction of the DW images gave simi-
lar results, as can be seen in Fig. 4. However, judging
from the borders of the object, the DEC map of the DT
SRR suffers from more outliers than the DW SRR, due
to small ringing artifacts at the borders, caused by the
reconstruction.
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FIG. 3. “Whole brain” tractography of the simulated phantom of three different fiber tracts, with directions: left – right (red), up – down (blue),
back – front (green). (a) Original (voxels: 1 × 1 × 1); (b) Isotropic HR (voxels: 1 × 1 × 1, σ: 0.4); (c) Isotropic LR (voxels: 2 × 2 × 2, σ: 0.4);
(d) Anisotropic LR (voxels: 1 × 1 × 4, σ: 0.4); (e) DW SRR (voxels: 1 × 1 × 1, σ: 0.4). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

To quantify the difference in reconstruction quality,
the MSE of the FA (FA-MSE), the median angular
error of the FE (FE-MAE) and the SNR of the diffu-
sion tensors were computed. The SNR (dB) was defined
as:

SNR(dB) = 10 log10

∑
k r2

0 (k)∑
k σ2(r0(k))

[9]

with σ2(r0(k)) the variance of r0(k) evaluated voxelwise
by performing multiple simulations with different noise
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FIG. 4. DEC map comparison between the (a) DW SRR and the (b)
DT SRR, with directions: left – right (red), up – down (blue), back
– front (green). The same images with σ = 0.4 were used for both
DEC maps. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

realizations. Figure 5 shows the FA-MSE, FE-MAE, and
SNR of the SRR and reference datasets, as a function of
the noise level. The SRR data shows only a slight increase
in FA-MSE (Fig. 5a) and FE-MAE (Fig. 5b) in comparison
with the HR data, when increasing the noise. At a very
small standard deviation of noise, the FA-MSE of the HR
data is slightly below that of the DW SRR data, which is
due to the small blurring effect of the SRR method. How-
ever, as can be observed from (Fig. 5c), the SNR of the
SRR image is always significantly larger than that of the
directly acquired HR image. The FA-MSE and FE-MAE of
the isotropic and anisotropic LR images is higher due to
two effects. First, for the isotropic LR data, the SNR is
lower than that of the reconstructed dataset. Second, the
resolution is lower, causing errors at small scale features
and edges. By obtaining better resolution with a good SNR,
this again demonstrates the benefits of the reconstruction
method. The DW SRR is slightly better than the DT SRR,
especially for the FE-MAE, due to an increased number of
outliers in the DT reconstruction.

DTI Hardware Phantom

Figures 6a–c show one slice of the DEC maps of the three
acquisitions. These DEC maps show that the accuracy and
resolution of the reconstructed images is comparable to that
of the HR acquisitions. However, the precision is improved,
which can be seen from the reduced noise-induced FA in
the homogenous water solution. Unfortunately, due to an
acquisition artifact of which the origin is still unclear, an
anomalous signal reduction was observed around the struc-
tures in images with diffusion weighting along the “green”
direction. This causes the green halo around the structures.
Figure 6d shows one element of the diffusion tensor (Dxz)
along the crossing fiber visible in the DEC map (crossing
around 0.5). As is clearly visible, the coefficient estimated
from the reconstruction accurately traces the coefficient
estimated from the long HR acquisition, without any sig-
nificant bias or smoothing, and is more precise than the
short HR-estimated coefficient. To investigate resolution in
more detail, Fig. 6e shows the energy in spatial frequencies
alonglinescontaininguniformwater.Asthispart isuniform,

ideally there should be no energy present after subtraction
of the mean. The three diagonal and the three unique off-
diagonal diffusion tensor elements are combined since the
water solution is isotropic. If the reconstruction would be
smoothedwithrespecttothedirectHRacquisitions,itwould
contain less energy at high spatial frequencies. As this figure
shows,theresolutionisessentiallyequalforthethreeimages.
However, thenoise level in theSRRdataset isapproximately
a factor 1.75 lower than that of the short HR data set and even
a factor 1.25 lower than the long HR dataset.

FIG. 5. The FA MSE (a), the FE MAE (b) and the DW SNR (c) of the
DW SRR, DT SRR, isotropic HR, isotropic LR, and the anisotropic LR
data as function of the standard deviations of noise applied to the
simulated phantom. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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FIG. 6. DTI hardware phantom images. (a–c) show the DEC map of the short HR, long HR, and SRR datasets, respectively. This view mainly
shows the isotropic water part, with two purple colored crossing fibers and some signal void regions (plastic) in which no reliable diffusion
tensor can be estimated. Figure (d) shows the coefficient of the diffusion tensor that changes most in the crossing along the fiber that runs
from bottom left to top right. Figure (e) shows the average spectrum of diffusion tensor elements in an isotropic water part, averaged over
more than 200 lines not intersecting any structure. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Human In Vivo Data

Figure 7 shows DEC maps of the in vivo data. The isotropic
HR data (Fig. 7a) shows fine structures but clearly suffers
from a low SNR. The isotropic (Fig. 7b) and anisotropic
LR data (Fig. 7c), conversely have a higher SNR but lack
sufficient spatial resolution. From the DEC map of the SRR
data (Fig. 7d), it can be observed that an image with a HR
is reconstructed while retaining a high SNR, although, cur-
rently, outside of the brain, more voxels with erroneous
high FA are present.

Figure 8 shows tractography results generated from the
different datasets with the corpus callosum used as a ROI.
The tractography of the isotropic HR data (Fig. 8a) clearly
misses tracts in all directions in comparison with the SRR
data (Fig. 8d), due to its low SNR. The anisotropic LR
data (Fig. 8c) also misses tracts, due to the partial volume
effects, especially in the slice direction. The tractography
of the isotropic LR data (Fig. 8b) shows a large number of
fiber tracts in all directions, but still misses many tracts in
comparison with those from the SRR data.

For each dataset, the SNR of the b = 0 s/mm2 image
was computed within the same 6 mm radius sphere located
in white matter in the parietal lobe. The SNR was com-
puted by dividing the mean signal intensity of the sphere
by the noise standard deviation, which was estimated
from the residue after fitting a 3D-second order polynomial
(10 coefficients). The rationale for estimating the noise level

within a homogeneous part of the image, is the inhomoge-
neous noise profile due to the multicoil setup. Residual
anatomic variability within the sphere will increase the
estimated noise level and thus limit the maximum achiev-
able SNR. The SNRHR = 10.9, SNRLR = 20.9, SNRAni =
31.8, and SNRSSR = 33.4, for the HR, LR, anisotropic,
and SSR dataset, respectively. This clearly demonstrates
a substantial increase in SNR of the reconstruction dataset,
compared to the HR dataset, and even when compared to
the LR dataset. The SNRSSR is comparable to SNRAni, one
of the LR datasets.

Computational Requirements

All algorithms were written in MATLAB and partially
in C++. The present implementation used an Intel
i7 3.48 GHz quad core and 12 GB of memory for the
reconstructions. The reconstruction of simulated DTI data
with 67 images in total took 422 s, which is 6.3 s per image.
The reconstruction of the human in vivo data with 13
images in total took 2230 s, which is 171 s per image. These
reconstruction times can still be decreased, e.g., through
GPU computing and parallel reconstruction.

DISCUSSION

DTI experiments should be optimized with respect to the
conflicting requirements of good spatial resolution, fast
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FIG. 7. Cubic interpolated DEC
map of the human in vivo data,
with directions: left – right (red),
superior – inferior (blue), anterior
– posterior (green). (a) Isotropic
HR (voxels: 1.5 × 1.5 × 1.5 mm3);
(b) Isotropic LR (voxels: 2 × 2 ×
2 mm3); (c) Anisotropic LR (voxels:
1.5×3×6 mm3); (d) DW SRR (vox-
els: 1.5 × 1.5 × 1.5 mm3); Left col-
umn: axial, center column: coro-
nal, right column: sagittal. The thin
yellow lines indicate the intersec-
tions of the views.

scan time, and good SNR. In this work, a novel method was
presented that achieves isotropic HR DTI data with a high
SNR, within feasible scanning times. The method enables
the reconstruction of HR images from a set of arbitrarily
oriented low through-plane resolution images. Applied to
DTI data, each DW image was reconstructed from multiple
arbitrarily oriented images with a low through-plane reso-
lution. The experiments demonstrated that HR DW images
can be reconstructed with a high SNR, which in turn results
in DT parameters with improved precision.

A crucial step in the proposed method is the spatial
alignment of the datasets. Incorrect registration leads to
blurring in the reconstruction and artifacts and image
distortions that are not corrected may deteriorate the recon-
structed DWI and affect the estimated diffusion tensors.
The reconstruction process can be improved by adding
more and/or better penalty functions to the reconstruc-
tion [e.g., based on total variation minimization (29)]. As

mentioned before, several artifacts were corrected using
affine transformations. Motion correction requires the rota-
tion component of the distortion to be incorporated in the
diffusion weighting gradient (30). Unfortunately, rotation
of the b-matrix is currently not supported by our method.
To incorporate this, the reconstruction model would have
to be extended with the DTI model, which would allow to
randomly mix diffusion and slice directions and not requir-
ing multiple slice directions per diffusion direction to
be reconstructed into one DW image. This is a topic of
further research. Furthermore, reconstructing the DT com-
ponents instead of the DW images would have been an
alternative for allowing b-matrix corrections. However, Fig.
4 shows that this causes outlier values at the borders.
This is probably due to the nonlinearity in the param-
eters of the DTI model. As the DW SRR does not have
such outliers, we suggest to use the DW SRR over the
DT SSR.
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FIG. 8. Whole brain tractography of the human in vivo data using the corpus callosum as a ROI, with directions: left – right (red), superior –
inferior (blue), anterior – posterior (green). (a) Isotropic HR (voxels: 1.5×1.5×1.5 mm3); (b) Isotropic LR (voxels: 2×2×2 mm3) (c) Anisotropic
LR (voxels: 1.5 × 1.5 × 6 mm3) (d) DW SRR (voxels: 1.5 × 1.5 × 1.5 mm3). [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

Artifacts could furthermore be reduced by using a more
robust scanning sequence, like the single shot echo pla-
nar imaging sequence, and with inhomogeneity correction
through field maps. The reconstruction can be improved
by choosing better slice angles and more slice direc-
tions. Scanning more slice directions, however, would also
increase the scanning time. In this work, the total scan-
ning time of all LR images was fixed to that of a direct HR
acquisition. To acquire the same quality with a direct HR
acquisition, multiple averages should be taken. In the in
vivo experiment, at least nine averages would have been
required to achieve the same SNR as the SRR data.

To conclude, a super-resolution method was proposed
for acquiring HR DTI data with an improved SNR compared
to direct HR acquisitions within the same scanning time.

Experiments with a hardware DTI phantom and in vivo
data further supported these conclusions and show the
potential of the presented method.

APPENDIX

Orientations of the slices

In this appendix, the orientations of the acquired LR images
of the hardware phantom and human volunteer acqui-
sitions are given. These orientations are read from the
“Image Orientation Patient” dicom tag of the acquired
dicom images, which denotes the unit vector along an
image row (left vector) and along an image column (right
vector). For the phantom dataset the orientations are:

Orient 1 Orient 2 Orient 3 Orient 4 Orient 5 Orient 6 Orient 7 Orient 8 Orient 9

1.0 0.0 1.0 0.0 1.0 0.0 0.7 0.0 0.7 0.0 1.0 0.0 0.7 0.0 0.7 0.0 0.0 0.0
0.0 1.0 0.0 0.7 0.0 0.7 0.0 1.0 0.0 1.0 0.0 0.0 −0.7 0.0 0.7 0.0 1.0 0.0
0.0 0.0 0.0 −0.7 0.0 0.7 −0.7 0.0 0.7 0.0 0.0 −1.0 0.0 −1.0 0.0 −1.0 0.0 −1.0

And for the human volunteer the orientations are:

Orient 1 Orient 2 Orient 3 Orient 4 Orient 5 Orient 6 Orient 7 Orient 8

1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 −0.18 −0.69 0.17 0.67 1.00 0.00 0.71 −0.02
0.00 1.00 −0.00 0.69 0.00 −0.68 1.00 0.00 0.98 −0.12 0.99 −0.11 0.00 0.00 0.70 0.02
0.00 0.00 0.00 −0.73 0.00 −0.73 0.00 −1.00 0.00 −0.72 0.00 −0.73 0.00 −1.00 0.00 −1.00
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FIG. A1. Schematic visualization of the parts of 3D k-space sam-
pled by the individual images in the multi-orientation low resolution
sets. (a) Phantom dataset; (b) Volunteer dataset. [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com.]

To fully appreciate these sampling schemes, the sampling
in k-space should be studied. If 3D acquisitions would have
been acquired, each image would sample inside a box in
k-space. Although multislice images were acquired, they
still approximately sample from within a box in 3D k-space.
However, due to the slice excitation profile, there is no
hard cutoff in the through plane direction. The reconstruc-
tion process can only reconstruct the parts of k-space that
were sampled. Figure A1 shows the boxes of both datasets.
Fig. A1 shows that most of the 3D-k-space was sampled
in the phantom dataset. Unfortunately, there were substan-
tial gaps between the boxes in the volunteer dataset. This
indicates that some spatial frequencies were not sufficiently
sampled to be accurately reconstructed. With 8 orientations,
such large gaps can however be avoided; i.e. slightly better
sets of slice orientations are still possible.
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