

Solving the free water elimination estimation problem by incorporating T_2 relaxation properties

Quinten Collier¹, Jelle Veraart^{2,1}, Arnold J. den Dekker^{1,3}, Floris Vanhevel⁴, Paul M. Parizel⁴, and Jan Sijbers¹

¹imec-Vision Lab, University of Antwerp, Belgium; ²Center for Biomedical Imaging, New York University Langone Medical Center, USA; ³Delft Center for Systems and Control, Delft University of Technology, The Netherlands; ⁴Department of Radiology, Antwerp University Hospital, Belgium

INTRODUCTION

The free water elimination (FWE) diffusion model accounts for partial volume effects that occur when voxels in diffusion tensor imaging (DTI) volumes contain both a tissue and a free water compartment¹⁻². A downside of FWE is that the model fitting problem is ill-conditioned³⁻⁴. Advanced parameter estimation techniques that incorporate regularization usually succeed in stabilizing the model fit but, as a trade-off, impose model assumptions that are likely to bias the results^{1,5-6}. In this work, we exploit that the T₂ relaxation times of white matter and cerebrospinal fluid are very different. By accounting for the associated echo time (T_E) dependency of the signal decay, the model parameters can be estimated more precisely, accurately, and robustly.

FWE-T₂ MODEL

 S_0 = signal without diffusion weighting on $T_E = 0$; b_i , g_i = diffusion weighting strength and direction; D = diffusion tensor; d = diffusion of free water at body temperature (= 3 $\mu m^2/ms$)

Results

Figure 2: Single voxel Monte Carlo simulations assuming a

typical WM voxel with a free water compartment and SNR=50 on b = 0 and $T_E = 100$ ms signal. Comparison between: FWE-T₂ w/o T_2^{fw} est., FWE-T₂ with T_2^{fw} est., FWE, DTI and true value. Protocol: $5 \times b = 0$ ($T_E = 70$ ms), $30 \times b = 1$ ($T_E = 70$ ms) and $5/15/30 \times b = 0.5$ ($T_E = 120$ ms or 70ms for DTI and FWE).

Figure 4: Real data results of FWE-T₂ (w/o estimation of free water T₂ value) and DTI. A healthy volunteer was scanned on a 3T scanner with $1 \times b = 0$, $30 \times b = 0.5$ ($T_E = 120$ ms) and $30 \times b = 1$ ($T_E = 70$ ms). The data was denoised⁷ and subsequently corrected for Gibbs ringing⁸, eddy current distortions and motion⁹.

DISCUSSION AND CONCLUSION

In this work, we propose an extension to the FWE model that incorporates the T_E dependencies of both the tissue and free water compartments. We showed that in addition to a standard DTI acquisition protocol, ideally, only a sparsely sampled additional shell should be acquired with $b \approx 0.5 \text{ ms}/\mu\text{m}^2$ and $\text{TE} \approx 120 \text{ms}$ (fig. 1). Monte Carlo simulations indicate that the FWE- T_2 model with a prior estimated T_2^{fw} , is substantially better compared to FWE or FWE- T_2 with estimation of T_2^{fw} , in terms of both the precision and accuracy of f and MD estimation. Fixing the T_2 of CSF is justified because the increase in precision (fig. 2: red versus yellow) outweighs the potential drop in accuracy for the FWE- T_2 model parameters, where the errors will typically be smaller than 1% (fig. 3). Finally, clinical data shows that neglecting to account for free water partial volume effects, biases the estimation of diffusion properties of brain tissue close to CSF regions.

<u>Acknowledgement</u>: We thank prof. Fieremans² for acquiring the data used in this study.

<u>Contact</u>: quinten.collier@uantwerpen.be

<u>References</u>: [1] Pasternak et al. MRM 62, 717–30, 2009; [2] Pierpaoli et al. ISMRM 2004; [3] Bergmann et al. ISMRM 2016; [4] Collier et al. ISMRM 2015; [5] Vallée et al. ISMRM 2015; [6] Collier et al. ISMRM 2016; [7] Veraart et al. NeuroImage 142, 394-406, 2016; [8] Kellner et al. MRM 76, 1574-81, 2016; [9] Andersson et al. NeuroImage 20, 870-88, 2003