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Segmentation is an important step to obtain quantitative information from tomographic data sets. How-
ever, it is usually not possible to obtain an accurate segmentation based on a single, global threshold.
Instead, local thresholding schemes can be applied that use a varying threshold. Selecting the best local
thresholds is not a straightforward task, as local image features often do not provide sufficient informa-
tion for choosing a proper threshold.
Recently, the concept of projection distance was proposed by the authors as a new criterion for evaluating
the quality of a tomogram segmentation [K.J. Batenburg, J. Sijbers, Automatic threshold selection for
tomogram segmentation by reprojection of the reconstructed image, in: Computer Analysis of Images
and Patterns, in: Lecture Notes in Computer Science, vol. 4673, Springer, Berlin/Heidelberg, 2007, pp.
563–570.]. In this paper, we describe how projection distance minimization (PDM) can be used to select
local thresholds, based on the available projection data from which the tomogram was initially computed.
The results of several experiments are presented in which our local thresholding approach is compared
with alternative thresholding methods. These results demonstrate that the local thresholding approach
yields segmentations that are significantly more accurate compared to previously published methods, in
particular when the initial reconstruction contains artifacts.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Tomography is a powerful technique for three-dimensional imag-
ing of physical objects, without the need to take the object apart.
Projection images of the object are acquired along a range of angles,
while rotating around the object [1]. An image of the object (a to-
mogram) is then reconstructed from the series of projection images.
Besides its well-known applications in medical imaging, tomography
is also an important tool in materials science, microbiology and in
industrial applications. In this paper, we focus on tomography of ob-
jects that consist of a single material (or tissue, in the medical case).
An example of such an object can be seen in Fig. 1, which shows a
reconstructed slice of a mouse femur, where the trabecular bone has
a rather complex morphology. Such images are commonly used in
biomedical bone research [2–5]. Even though the bone density is not
perfectly constant, it can still be approximated by a constant den-
sity fairly well. An example of an industrial application is the recon-
struction of raw diamonds from X-ray projections [6]. If the diamond
does not contain any impurities, it consists of a single material of
constant density. In materials science, electron tomography is used
to study the morphology of homogeneous nanoparticles [7,8].
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Tomographic reconstructions, which are generally gray-scale im-
ages, are often segmented as to extract quantitative information,
such as the shape or volume of image objects. Such segmentations
are usually performed by global or local thresholding [2–5,7,8]. How-
ever, the process of threshold selection is often somewhat arbitrary.
A variety of classical algorithms exist for selecting “optimal” thresh-
olds with respect to various optimality measures [9]. Global thresh-
olds are typically selected from the histogram of the image [10–13].

To our knowledge, all previously proposed thresholding methods
only use the tomographic reconstruction to select the threshold,
while discarding the information contained in the projection data.
A reconstructed image, however, generally suffers from various re-
construction artifacts. In materials sciences, for example, where the
projection images are acquired using an electron microscope, it is
usually not possible to sample the full range of projection angles,
which leads to so-called missing wedge artifacts in the reconstruc-
tion. Also, if the projection of the object falls outside the detector,
the reconstruction will suffer from truncation artifacts. To reduce
the impact of these artefacts in the selection of the thresholds,
Batenburg and Sijbers proposed a new approach for global threshold
selection that makes use of the available tomographic projection
data [1,14]. By reprojecting the segmented volume, the norm of the
difference between the projections of the current segmentation and
the measured projection data, called the projection distance, can be
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Fig. 1. Reconstructed slice of a mouse femur.

computed. This yields a quantitative measure of the quality of the
segmentation. By minimizing the difference between the computed
and measured projections (projection distance minimization, or PDM),
an optimal threshold can be computed. It was demonstrated in [1],
that PDM leads to a significant improvement in segmentation accu-
racy, compared to histogram-based methods.

However, the capabilities of global threshold selection methods
are limited by the maximum accuracy that can be obtained using
global thresholding. If the tomogram exhibits variations in the in-
tensity of certain image features, global thresholding can never lead
to an accurate segmentation. For example, thick structures typically
tend to be brighter than very thin structures in a tomogram, even if
both structures consist of the same material in the original object. To
account for local image variations, local thresholding methods were
proposed. Abutaleb developed a local thresholding method based on
the joint (two-dimensional) entropy of a pixel neighborhood [15,16].
White and Rohrer developed a nonlinear, local thresholding method
in which the gray value of the pixel is compared with the average
of the gray values in a small neighborhood [17]. Similarly, the local
thresholding method of Niblack adapts the local threshold according
to the local mean and standard deviation over a sliding window [18].
Eikvil et al. developed a thresholding method in which a large win-
dow, with a small window positioned at its center, is moved across
the image, and each pixel inside the small window is labeled on the
basis of the clustering of the pixels inside the large window [19].
Blayvas et al. proposed an adaptive binarization method where the
threshold is determined by interpolation of the image gray levels at
points where the image gradient is high [20].

These adaptive thresholdingmethods that use a varying threshold
for different regions of the image lead to better results than global
thresholding in some cases. However, they suffer from the same
drawback as global thresholding algorithms in the sense that no
objective criterion for the segmentation quality is available if only the
information from the reconstructed image is used for segmentation.
Moreover, in cases where reconstruction artifacts are not negligible,
most adaptive thresholdingmethods perform evenworse than global
thresholding methods since adaptive thresholding techniques are
more vulnerable to local variations originating from these artifacts.

In this paper, we propose an extension of the projection-based
threshold selection method from [1], that uses a locally varying
threshold field, instead of a single global threshold. The same opti-
mization criterion, PDM, is now used to find an “optimal” thresh-
old field. The threshold field is represented on a square grid that
is coarser than the pixel grid of the tomogram. The thresholds for
pixels that do not coincide with grid points in the coarse grid are
computed by bilinear interpolation. Computing the threshold field
for which the projection distance is minimal appears to be compu-
tationally hard. We describe how a minimum of the projection dis-
tance can be computed efficiently for the case that the threshold is

Fig. 2. Basic setting of transmission tomography.

only allowed to vary for a single grid point in the coarse grid, while
keeping the threshold values fixed for the remaining grid points. By
iterating this procedure several times for all coarse grid points, a lo-
cal minimum of the projection distance is reached. To avoid early
convergence to a local minimum that is far away from the global
minimum, a stochastic algorithm is proposed which is capable of
escaping from local minima before finally converging.

This paper is structured as follows. In Section 2, the local thresh-
olding problem for tomograms is introduced and our local thresh-
olding approach based on PDM is described. Simulation experiments
have been performed, comparing the result of local thresholding
based on PDM with alternative local thresholding methods and with
global thresholding based on PDM [1]. A description of these exper-
iments and their results is given in Section 3. Section 4 concludes
the paper.

2. Method

In what follows, we will assume that a reconstruction, containing
noise and possible reconstruction artifacts, from an originally binary
image is to be segmented. For simplicity reasons, we will restrict
ourselves to two-dimensional tomograms. All concepts can be gen-
eralized to a three-dimensional setting in a straightforward manner.

2.1. Tomography setting

The gray value image that we want to segment is a tomographic
reconstruction of some unknown homogenous object, which can be
represented by a function f : R2 → {0, 1}. We assume that the sup-
port of f (i.e., the set {(x, y) ∈ R2 : f (x, y)�0}) is included in a circle
of radius R. Projections are measured along lines l�,t = {(x, y) ∈ R2 :
x cos� + y sin� = t} where � represents the angle between the line
and the y-axis and t represents the coordinate along the projection
axis; see Fig. 2.

The projection function P� : R → R of f for projection angle � is
defined as

P�,f (t) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)�(x cos� + y sin� − t) dxdy. (1)

with �(·) denoting the Dirac delta function. The function P�,f (t) is
called the Radon transform of f . Usually, the line projections P�,f (t)
cannot be measured as continuous functions. Instead, the line pro-
jections are measured in a discrete set of t-values as well in a discrete
set of projection angles �.
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Suppose now that a tomogram v is reconstructed from the dis-
crete set of projections. Usually, v is represented on a rectangular
grid of width w and height h. Put n = wh. In what follows, we will
assume that v is represented by a vector v ∈ Rn, where the entries
of v correspond to the pixels of the tomogram.

2.2. Projection distance minimization

As mentioned above, the gray value image v ∈ Rn that we want
to segment is a tomographic reconstruction of some physical object,
of which projections were acquired using a tomographic scanner.
Projections are measured as sets of detector values for various an-
gles, rotating around the object. Let m denote the total number of
measured detector values (for all angles) and let p ∈ Rm denote the
measured data. The physical projection process in tomography can
be modeled as a linear operator W that maps the image v (repre-
senting the object) to the vector p of measured data:

Wv = p. (2)

For parallel projection data, the operator W is a discretized
version of the Radon transform. We represent W by an m × n
matrix.

For all experiments in Section 3, we used a matrix W for which
each row corresponds to a two-dimensional strip through the object,
bounded by the left and right side of a detector cell. The entry wij
equals the intersection area between the projected strip i and image
pixel j.

From this point on, we assume that an image v has been com-
puted that approximately satisfies Eq. (2). This image now has to be
segmented using a locally varying threshold.

In this paper, we focus on the segmentation of objects that consist
of a single material, so there are only two segmentation classes, for
the object and the background. We assume that the material is ho-
mogenous, i.e., a perfect reconstruction of the original object should
contain only two gray levels. However, most common tomographic
reconstruction algorithms yield an image that consists of a range of
gray levels, instead of a binary image, even if the object in the scan-
ner is perfectly homogeneous. This becomes particularly noticeable
if a reconstruction is computed from relatively few projections or
if certain parts of the projection data are missing (e.g., truncated
projections, where the object is larger than the field of view of the
scanner). In such cases, the reconstruction problem is severely un-
derdetermined, and many gray level images can have the same pro-
jections. Typically, continuous reconstruction algorithms do not use
the prior knowledge about the discrete gray levels, but rather com-
pute an image that contains many gray levels.

Even if prior knowledge about the two gray levels is not used in
the reconstruction algorithm, this knowledge can still be exploited
by the segmentation algorithm used after reconstruction. Our seg-
mentation approach assigns a single real-valued gray value to both
segmentation classes. The projections of the segmented image are
then computed and compared to the measured projection data. The
difference between the computed and measured projections pro-
vides a measure for the quality of the segmentation.

Although we assume that the original object consists of a single
material, we do not assume prior knowledge of the actual gray levels
of the background and the interior. These gray levels are treated as
variables in the segmentation problem. We denote the gray level
for the background and the interior of the object by �1 and �2,
respectively. Put q= (�1 �2)

T.
We first define a segmentation problemwhere the local threshold

can vary independently for each of the image pixels. The set oflocal
thresholds for all pixels is represented by a vector s ∈ Rn. We will
refer to this vector as the threshold field.

For any q ∈ R2, � ∈ R, define the threshold function rq,� : R →
{�1,�2} by

rq,t(v) =
{
�1 (v��),
�2 (v> �),

(3)

We also define the threshold function rq,s of an entire image v ∈ Rn,
which yields a vector containing the thresholded pixel values:

rq,s(v) = (rq,�1 (v1) . . . rq,�n (vn))
T. (4)

For gray levels q ∈ R2 and a threshold field s ∈ Rn, let us define
the projection difference d(q, s) by

d(q, s) = ‖Wrq,s(v) − p‖2. (5)

The projection difference is used as the optimization criterion for
finding the optimal threshold parameters. From this point, we will
refer to this concept as PDM.

Problem 1. Let W ∈ Rm×n be a given projection matrix, let v ∈ Rn be
a gray level image and let p ∈ Rm be a vector of measured projection
data. Find s ∈ Rn and q ∈ R2, such that d(q, s) is minimal.

In Problem 1, the threshold for each pixel is allowed to vary
independently. This means that the resulting segmentation class for
each pixel i (either background or interior) is independent of the gray
value vi, as the threshold �i can always be chosen either smaller or
larger than vi. In fact, this threshold selection problem is equivalent
to a reconstruction problem from discrete tomography, where the
main objective is to reconstruct a binary image from its projections
[21,22]. Although solving this discrete tomography problem can lead
to very accurate segmentation results, even if few projections are
used, the problem is computationally very hard (see, e.g., [23]). In
cases where it is relatively easy to acquire more projection images,
continuous tomography followed by thresholding (either local or
global) is often preferable.

At the other end of the granularity spectrum is the case where
all entries of s must have the same value, i.e., global thresholding.
This approach was already proposed in [1]. For binary images, it was
demonstrated that only the global threshold � has to be optimized,
as the optimal gray values �1 and �2 can be computed directly once
the threshold � has been set.

2.3. Projection-based local thresholding

In this paper, we focus on a segmentation problem that can be
considered as an “intermediate” problem, between discrete tomog-
raphy and global thresholding based on PDM. Instead of allowing the
threshold field s to vary independently for each pixel, the value of the
threshold is specified on a coarse grid, which is superimposed on the
pixel grid of the image v. The threshold value for each pixel of vi is
then computed by bilinear interpolation from the set threshold val-
ues. In this way, the local thresholds will vary only gradually, while
the threshold field can still vary significantly throughout the image.
The choice for bilinear interpolation is mainly motivated by com-
putational convenience. More sophisticated interpolation schemes
(i.e., bicubic interpolation) may lead to better results. However, such
schemes typically yield more variables in the resulting optimization
problem.

Fig. 3 illustrates how the coarse grid is superimposed onto the
finer pixel grid of the image v. Note that only a small portion of the
image is depicted. As an example, suppose that the thresholds are
given for the four points indicated in the figure (with corresponding
threshold values �1, . . . , �4. Let the (x, y)-coordinates of these four
points be given by (0, 0), (1, 0), (1, 1) and (0, 1), respectively. We
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Fig. 3. A coarse grid is superimposed on the finer pixel grid of the reconstructed
image.

refer to the four squares between (0, 0) and its surrounding coarse
grid points as the quadrants surrounding (0, 0). For any pixel p with
center (xp, yp) in the topright quadrant, the threshold �p is defined
by bilinear interpolation:

�p = (1 − xp)(1 − yp)�1 + xp(1 − yp)�2 + (1 − xp)yp�4 + xpyp�3. (6)

Let k be the total number of grid points on the coarse interpolation
grid. We refer to the vector of thresholds for these points by s′ ∈ Rk.
The mapping I : Rk → Rn assigns the corresponding interpolated
threshold to each pixel in the fine grid:

s= I(s′) (7)

Using these definitions, we can now formulate the central problem
of this paper:

Problem 2. Let W ∈ Rm×n be a given projection matrix, let v ∈ Rn be
a gray scale image and let p ∈ Rm be a vector of measured projection
data. Find s′ ∈ Rk and q ∈ R2, such that d(q, I(s′)) is minimal.

Wewill now describe how a constrained version of Problem 2 can
be solved efficiently, where only one of the entries of s′ is allowed to
vary, while the remaining entries are kept fixed. Again, consider the
example from Fig. 3. Suppose that all thresholds on the coarse grid
are kept fixed, except for �1. The only pixels for which the thresh-
olds are affected by a change of �1 are those in the four quadrants
surrounding �1, as shown in the figure.

Consider a pixel p with gray level vp and center (xp, yp) in the
topright quadrant. Then, taking Eq. (6) into account, the inequality
vp��p is equivalent to

g(p)��p, (8)

with

g(p) := vp − xp(1 − yp)�2 − (1 − xp)yp�4 − xpyp�3
(1 − xp)(1 − yp)

. (9)

The g(p) term will be called the relative gray level of p with respect to
�1. This term is different for each of the quadrants surrounding the
coarse grid point. Note that g(p) indicates the value of �1 at which
the segmentation class of p will change, while keeping the other
thresholds in the coarse grid fixed. Therefore, the task of finding
a solution of Problem 2 in case only �1 is allowed to vary, can be
considered as a variant of the global thresholding problem from [1].
In this global thresholding problem, only pixels in the four quadrants
surrounding the coarse grid point have to be considered (as the
remaining pixels are unaffected by a change of this threshold) and
the relative gray level of each surrounding pixel is used instead of
the gray levels from v.

In [1], an efficient algorithm was presented for finding the op-
timal global threshold with respect to the PDM criterion. The basic

idea is as follows. First, the pixels are sorted by their gray level. Start-
ing from the lowest possible threshold, the threshold is gradually
increased, while moving pixels from one segmentation class to the
other. Each time a pixel is moved, both the optimal gray levels and
the corresponding projection distance can be computed efficiently,
by performing a small update operation, thereby avoiding a compu-
tationally expensive recomputation. For the sake of completeness,
we will briefly revisit the approach from [1].

We first describe how the optimal gray levels can be computed
for a given segmentation. Let s′ ∈ Rk be the current local threshold
field. For j= 1, . . . ,n, let s(j) ∈ {1, 2} denote the segmentation class of
pixel j. Define A = (ait) ∈ Rm×2 by

ait =
∑

j:s(j)=t

wij. (10)

Then, the mean squared distance between the projected segmenta-
tion Aq and the measured projection p, that is d(q, I(s′))2=‖Aq−p‖2,
is minimized with respect to q. Classically, the solution of this least
squares sense minimization problem is found by solving

Q̄q= c̄ (11)

for q, with Q̄ = ATA and c̄ = ATp (see e.g., [24, Chapter 5]).
To compute the optimal value of a coarse threshold �′

i, the pixels
in the four quadrants surrounding grid point i are first sorted by
their relative gray level w.r.t. �′

i. The threshold �′
i is then gradually

changed, while at each change one or more pixels move from one
threshold class to the other class.

Let ai denote the ith row vector of A. Put ci = piai and Qi = aiaTi .
Suppose that we have computed c̄ and Q̄ for the current segmen-
tation. We now change the segmentation class s(j) of pixel j. The
only rows of A that are affected by this transition are the rows i for
which wij �0. This means that the new vector c̄′ and matrix Q̄ ′ can
be computed by the following updates:

c̄′ = c̄ +
∑

i:wij �0

(c′
i − ci) (12)

and

Q̄ ′ = Q̄ +
∑

i:wij �0

(Q ′
i − Qi). (13)

This update step is independent of the algorithm that is used to
compute the segmentation, so it can be used in our new local thresh-
old method without much modification. Fig. 4 shows the basic steps
for solving the variant of Problem 2 where only one of the entries of
s′ is allowed to vary. Using the fast update operation, the time com-
plexity of minimizing the projection distance for a single threshold
in the coarse grid is reduced to the complexity of computing the for-
ward projection for the four quadrants in all projection directions
just once [1].

Computing a global minimum of d(q, I(s′)) as stated in Problem
2 appears to be computationally very hard. In fact, if the coarse grid
is taken to have the same resolution as the pixel grid of the recon-
structed image, solving Problem 2 is equivalent to solving a variant
of the discrete tomography problem. For certain weight matrices W ,
this problem is known to be NP-hard [23].

In [25], the authors proposed a simple iterative algorithm that
is guaranteed to converge to a local minimum of the projection
distance. In each iteration, a random grid point on the coarse grid
is selected. The optimal threshold for this grid point is computed,
while keeping the thresholds in all other coarse grid points fixed.
The algorithm terminates if no further improvement in the pro-
jection distance is obtained after a certain number of iterations.
This algorithm was compared to global thresholding based on PDM
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Fig. 4. Basic steps for finding the optimal threshold in a given coarse grid point i,
while keeping the thresholds in all remaining coarse grid points fixed.

[1] and the local segmentation algorithm of Niblack [18]. It was
shown that the local thresholding based on PDM yields more ac-
curate segmentations than the two alternative methods. A disad-
vantage of the algorithm proposed in [1] is that the resulting seg-
mentation depends quite heavily on the random order in which the
coarse grid points are visited. Without the possibility to continue
after reaching a local minimum of the projection distance measure,
it may happen that the algorithm gets stuck in a local minimum
prematurely, far from the global minimum. To alleviate this prob-
lem, we now propose a stochastic algorithm which has the ability
to leave local minima during the optimization procedure. The algo-
rithm is somewhat similar to simulated annealing: when a thresh-
old in the coarse grid is visited, the optimal value for thatthreshold
is determined. Instead of setting the threshold to that value, a ran-
dom value sampled uniformly from the interval [−r, r] with r>0 is
added to this optimal value. As the iteration counter increases, the
parameter r is made progressively smaller, until it, finally, reaches
0. From that point on, the algorithm behaves exactly the same as
the original algorithm from [1]. Fig. 5 shows the algorithmic steps of
our stochastic local thresholding method. For all experiments in Sec-
tion 3, we used U = 35 and C = 768 as algorithm parameters, which
were determined by trial experiments. In experiments we observed
that the stochastic algorithm yields segmentations that are signifi-
cantly more accurate compared to the non-stochastic version. In ad-
dition, the stochastic algorithm appears to be robust with respect
to changes in the random seed, as will be demonstrated in the next
section.

3. Results

Simulation experiments have been performed, starting from four
phantom images of size 512 × 512: a vascular structure (referred
to as 'vessel image'), a femur image, a foam image, and a rice im-

Fig. 5. Basic steps of the threshold selection algorithm; U and C refer to integer
constants.

age, which are shown in Fig. 6(a)–(d), respectively. For each ex-
periment, simulated parallel beam projections were computed us-
ing equally spaced projection angles. Based on the projection data,
three types of reconstructions were computed using the SART algo-
rithm [26]: a full range reconstruction with 90 projections, an angle
step of 2◦, and 512 detector elements; a missing wedge reconstruc-
tion with 91 projections, an angle step of 1◦, and 512 detector ele-
ments, and a truncation reconstruction with 90 projections, an angle
step of 2 degrees, and 450 detector elements. The resulting SART re-
constructions for the femur and rice phantom image are shown in
Fig. 7.

In a first phase, the results of our proposed local PDM thresh-
olding approach were compared with global thresholding. For the
global segmentation, we used the PDM algorithm from [1], which
computes a global minimum of the projection distance and which
was proved to yield significantly better results than conventional
global thresholding techniques. The global PDM results are shown
in the second column of Fig. 10. Furthermore, the SART reconstruc-
tions were segmented using the best possible global threshold that
minimizes the number of different pixels between the segmented
image and the original phantom image. This, of course, is only pos-
sible with simulation experiments in which the original image is
available.

Next, the SART reconstructions were segmented using previously
proposed local thresholding methods. A commonly applied adaptive
thresholding method was proposed by Niblack [18]; a method that
is commonly used as a reference for performance evaluation of local
thresholding methods. The Niblack method adapts the local thresh-
old according to the local mean and standard deviation of a slid-
ing window. The method depends on two parameters: the width of
the sliding window and the threshold weight of the standard devia-
tion. In practice, these Niblack parameters cannot be optimized be-
cause of the lack of “ground truth”. In our simulation experiments,
in which the “ground truth” was available, we selected the window
width and the weight parameter such that the difference between
the Niblack segmentation result and the original was minimal. Fur-
thermore, we applied to the SART reconstructions the Minimax local
thresholding method, which was recently proposed by Ray and Saha
[27]. The method is fully automatic and is based on the minimization
of variational energy. Surprisingly, the local thresholding methods
performed significantly worse than the global thresholding meth-
ods with respect to the pixel error (the number of different pixels
between the original image and the segmented result). The reason
for this is that local thresholding methods that are solely based on
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Vessel Femur Foam Rice

Fig. 6. Phantom images used in our simulation experiments: (a) vessel, (b) femur, (c) foam, and (d) rice image.

Original

Full range

Full range Missing wedge Truncated

Original Missing wedge Truncated

Fig. 7. For the femur (row 1) and the rice image (row 2), the original image (column 1), the full projection range reconstruction (column 2), the missing wedge reconstruction
(column 3), and the reconstruction from truncated projections (column 4) are shown.

SART Niblack Minimax Global PDM

Fig. 8. Result of local thresholding using the Niblack (b) and Minimax (c) method applied to the SART reconstruction in (a). For comparison, also the result of global PDM
thresholding (d) is shown.

the reconstruction tend to adapt to the reconstruction artefacts in
the image, which causes the pixel error to increase. As an example,
the Niblack and Minimax thresholding result of the vessel recon-
struction are shown in Fig. 8, along with the thresholding result of
the global PDM method. It is clear that for this example, the global
thresholding outperforms the local thresholding methods. Similar
observations were made for all other simulation experiments (visual
as well as quantitative evaluation). Hence, global thresholding seems
to outperform local thresholding for tomographic reconstructions of
binary images. Therefore, in the remainder of this section, we will
only show the results of global thresholding and our proposed local
PDM method.

Finally, the SART reconstructions shown in the first column of
Fig. 10 were segmented using the local PDM thresholding scheme

as proposed in this paper. The threshold fields generated by the
local PDM method were formed by bilinear interpolation from the
threshold values s′ on the coarse grid.

For all local PDM threshold experiments, a spacing of 16 pixels
between consecutive coarse grid points was used to compute the
threshold field. The optimal grid spacing can vary depending on im-
age features, number of projections, etc. The spacing of 16 pixels
resulted in good reconstruction results over the entire range of ex-
periments. Fig. 9 shows the result of applying our local thresholding
approach for the rice phantom (missing wedge case), using a spac-
ing of 4, 16, and 64 pixels, respectively. It can be observed that if the
spacing is too small, a form of overfitting occurs, while a large spac-
ing does not allow enough freedom in the threshold field to reduce
the missing wedge artifacts.
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4 pixels spacing 16 pixels spacing 64 pixels spacing

Fig. 9. Results of local PDM for the rice phantom (missing wedge case) for three different spacings of the coarse grid points.

Table 1
Comparison of the global PDM method, the best global error and the local PDM
method for the femur, foam, vessel, and rice phantom images.

Global PDM error Best global error Local PDM error

Femur
Missing wedge 23.666 19.341 18.210 ± 240
Truncated 3.220 3.175 2.212 ± 6
Full range 2.764 2.737 2.039 ± 4

Foam
Missing wedge 12.113 11.089 9.491 ± 35
Truncated 3.428 3.366 2.284 ± 11
Full range 2.084 2.047 1.407 ± 4

Vessel
Missing wedge 12.799 12.694 11.950 ± 200
Truncated 2.794 2.652 1.716 ± 5
Full range 1.521 1.502 949 ± 6

Rice
Missing wedge 19.433 17.736 9.970 ± 220
Truncated 856 854 396 ± 7
Full range 482 476 247 ± 4

For each phantom image, a reconstruction with a missing wedge, with truncation,
and with the full angular range was thresholded, after which the number of different
pixels with respect to the original image was computed.

Table 1 shows the pixel error for the global PDM method, for the
method in which the best global threshold was set, and for the lo-
cal PDM method. The pixel error was computed by comparing the
number of different pixels between the thresholded image and the
original phantom. On a Pentium IV PC running at 3GHz, the running
time of each test was around 30 s, consisting of 5 s for computing the
optimal global threshold and 25 s for computing the local threshold
field. From Table 1, it is clear that the proposed local PDM threshold-
ing method outperforms the global (and hence also existing local)
thresholding methods in terms of the total pixel error.

The thresholding results are also visually shown in Fig. 10. For
each phantom image, the SART reconstructions (column 1), the re-
sults from the global PDM thresholding method (column 2) and the
results from the local PDM thresholding method (column 3) are
shown. For the latter method, also the resulting thresholding field is
shown (column 4). Note that the deviation from the threshold field
mean is a measure for the difference between the global and local
PDM thresholding result.

Fig. 11 shows the convergence of our local PDM algorithm for
the rice phantom, for the missing wedge and truncated datasets. In
each graph, both the projection distance and the pixel error w.r.t. the
phantom are plotted. Note that the iteration count along the hori-
zontal axis refers to the number of local updates performed, for a
single threshold in the coarse grid. The graphs show that the pro-
jection distance and the phantom error are infairly good correspon-

dence, which makes the projection distance a suitable criterion for
determining the quality of a segmentation.

For practical usefulness of our approach, it is important that the
method also works if the scanned object does not correspond per-
fectly with the binary model. For example, the bone in Fig. 1 is not
perfectly homogeneous. We performed simulation experiments for
the rice phantom, where i.i.d. additive Gaussian noise was applied to
each pixel of the phantom before computing the projection data. The
resulting sinogram was then reconstructed using SART and subse-
quently segmented. Fig. 12 shows the resulting phantoms for three
different noise levels, where the noise level (i.e., the standard devi-
ation of the Gaussian distribution) is indicated as a fraction of the
maximum gray level in the phantom. Fig. 12 shows the number of
misclassified pixels in the segmentation for our local PDM approach
and for the best possible global threshold, as a function of the noise
level. For noise levels up to 15%, our local threshold algorithm yields
more accurate segmentations than global thresholding. For higher
noise levels, it appears that some form of overfitting occurs in the
local threshold approach, so that using a single global threshold be-
comes preferable.

4. Conclusion

Local gray value thresholding is a common segmentation proce-
dure. However, finding the optimal gray level thresholds is far from
trivial. Many procedures have been proposed to select the thresh-
olds based on various image features. Unfortunately, these meth-
ods suffer from the lack of a clear objective threshold selection
criterion.

In our paper, we have presented an innovative approach, called
local PDM (projection distance minimization), to find the optimal
local threshold gray levels by exploiting the available projection data.
Reprojection of the segmented image and subsequent comparison
with the measured projection data, yields an objective criterion for
the quality of a segmentation. Our approach aims at minimizing the
projection distance.

The experimental results show that the proposed local PDM
method results in a small difference between the original object
and the reconstruction. Simulation experiments were performed
for four phantom images, simulating three cases: a full range of
projections, a limited range of projections (missing wedge) and
truncated projection data. In all test cases, PDM clearly leads to
significantly better segmentation results than global threshold-
ing based on PDM and much better results than alternative local
threshold methods that only make use of information in the re-
constructed image itself, while not using the available projection
data.



2304 K.J. Batenburg, J. Sijbers / Pattern Recognition 42 (2009) 2297 -- 2305

SART Global PDM Local PDM Thresh field

SART Global PDM LocalPDM Thresh field

SART Global PDM Local PDM Thresh field

Fig. 10. For the vessel (row 1, all projections), foam (row 2, truncated projections) and rice (row 3, missing wedge) phantom image, the SART reconstruction (column 1),
the result of the PDM global thresholding (column 2), the result of the PDM local thresholding (column 3), and the PDM threshold field (column 4) are shown.

Fig. 11. Convergence graphs for our local thresholding algorithm for the rice phantom, for the missing wedge and truncated datasets. The plots show both the projection
distance and the pixel error w.r.t. the original phantom, as a function of the iteration number.

Fig. 12. Left: the rice phantom with noise on the original image (column 1) and the corresponding SART reconstruction (column 2) for a noise level 0.1 (row 1) and 0.2
(row 2). Right: the thresholding error for the best global error and the local PDM method.
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