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Abstract
In this note, we address the estimation of the noise level in magnitude magnetic
resonance (MR) images in the absence of background data. Most of the
methods proposed earlier exploit the Rayleigh distributed background region
in MR images to estimate the noise level. These methods, however, cannot be
used for images where no background information is available. In this note, we
propose two different approaches for noise level estimation in the absence of
the image background. The first method is based on the local estimation of the
noise variance using maximum likelihood estimation and the second method is
based on the local estimation of the skewness of the magnitude data distribution.
Experimental results on synthetic and real MR image datasets show that the
proposed estimators accurately estimate the noise level in a magnitude MR
image, even without background data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Estimation of the noise variance from magnetic resonance images (MRI) is often of key
importance as an input parameter for image post-processing tasks. The estimated noise
variance gives a measure of the quality of the MR data. Moreover, the noise variance is often
a crucial parameter in image processing algorithms such as noise reduction, segmentation,
parameter estimation or clustering (Nowak 1999, Basu et al 2006, Koay et al 2009). Many
methods have been proposed in the literature for the estimation of the noise level from MRI
(Brummer et al 1993, Nowak 1999, Sijbers and den Dekker 2004, Sijbers et al 2007, Aja-
Fernández et al 2008). A survey of these methods is given in Aja-Fernández et al (2009).
Most of the methods proposed earlier estimate the noise level from the background area of
the magnitude MR image, which is known to be Rayleigh distributed (Sijbers et al 2007,
Aja-Fernández et al 2008). Unfortunately, these methods cannot be used for images where
no background information is available. For MR images other than the brain, like cardiac
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or lung images, background data may not be available, for example in the case that the field
of view (FOV) is small, such that noise assumptions based on the Rayleigh distribution fail
(Aja-Fernández et al 2009). Also, the new scanning techniques and software eliminate most
of the noisy background, which in fact affect the methods based on the Rayleigh model that
need a certain amount of background pixels to perform proper estimation (Aja-Fernández
et al 2010). Recently, in the work of Aja-Fernández et al (2008), a method was proposed to
estimate the noise in MR images without the background region. Their method was based on
the assumption that the variance of the Rician distribution approaches a Gaussian distribution
at high SNR. However, at low SNR, the Rician distribution is not approximated well by a
Gaussian distribution, causing a bias in the estimated noise level.

In this note, we propose two different approaches to address the aforementioned issues
related to the Rician noise estimation. The first method is based on maximum likelihood
(ML) estimation of the local variance for each pixel of the image using a local neighborhood.
The noise variance can then be computed from the mode of distribution of the estimated local
variance. The ML method simultaneously estimates the underlying true signal and noise
variance from the Rician distributed data if the underlying signal is constant (Sijbers et al
1998). It will be shown that this method is highly accurate in estimating the noise level,
but has a rather high computational complexity. Therefore, a computationally more efficient
method is also proposed. This method is based on the local skewness. A correction factor
for the variance estimated with the Gaussian assumption is introduced based on the estimated
skewness for the actual computation of the Rician noise variance.

2. Noise distribution in MRI

The raw, complex MR data acquired in the Fourier domain is characterized by a zero mean
Gaussian probability density function (PDF). After the inverse Fourier transform, the noise
distribution in the real and imaginary components will still be Gaussian due to the linearity
and the orthogonality of the Fourier transform. However, due to the subsequent transform to
a magnitude image, the noise distribution will be no longer Gaussian but Rician distributed.
If A is the original signal amplitude, then the PDF of the reconstructed magnitude image M
will be (Sijbers and den Dekker 2004)

pM(M|A, σ) = M

σ 2
e− M2+A2

2σ2 I0

(
AM

σ 2

)
ε(M), (1)

where I0(·) denotes the zeroth-order modified Bessel function of the first kind, ε(·) the
Heaviside step function and σ 2 denotes the variance of the Gaussian noise in the complex MR
data. The νth raw moment of the Rice PDF can be analytically expressed as a function of the
confluent hypergeometric function of the first kind, denoted by 1F1:

E[Mν] = (2σ 2)ν/2�
(
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where � represents the Gamma function.
When the underlying signal intensity A equals zero, the Rice PDF simplifies to a Rayleigh

distribution (Henkelman 1985):

pM(M|σ) = M

σ 2
e(− M2

2σ2 )
ε(M). (3)

The moments of this distribution depend only on σ and can be written as

E[Mν] = (2σ 2)ν/2�
(
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2

)
. (4)
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If MB is a non-signal background area in the MRI, then σ can be directly estimated from the
moments of the Rayleigh distribution with or without explicit segmentation of the background.
If an explicit segmentation algorithm is applied to extract the background, then the noise
standard deviation can be estimated as

σ̂n =
√

2

π
M̄B, (5)

where M̄B is the mean of the segmented background. It is also possible to estimate the noise
standard deviation without an explicit segmentation by using the local statistics (Aja-Fernández
et al 2008):

σ̂n =
√

2

π
mode ({M̄i,j }), (6)

where M̄i,j corresponds to the local mean computed for each pixel at (i, j).
At high SNR, the Rician PDF approaches a Gaussian PDF with a mean A and variance

σ 2:

pM(M|σ) = 1√
2πσ 2

e− (M−A)2

2σ2 ε(M) (7)

and the moments will be

E[Mν] = σ 2(ν−1)

[
dν−1

dAν−1

(
A e

A2

2σ2

)]
e− A2

2σ2 , (8)

i.e. at high SNR, the noise variance can be estimated by simply computing the variance of a
homogeneous area in the image. This approach is normally followed in the literature for the
estimation of the noise in the absence of the background area. A homogeneous area in an image
can be selected without manual intervention using the method suggested in Aja-Fernández
et al (2008). The noise can be estimated from such a homogeneous area by

σ̂ 2
n = mode

({
σ 2

Mi,j

})
, (9)

where σ 2
n is the variance of the estimated noise and σ 2

Mi,j
corresponds to the local variance

computed around each pixel at (i, j). However, at low SNR, equation (9) will lead to an under-
estimation of the noise level. In section 3, we discuss how to measure the noise variance from
an MR image without the need for high SNR regions or a background region.

3. Noise estimation using local maximum likelihood estimation

Let m = (m1, . . . , mN) be the N Rician distributed magnitude data points for which the
underlying, noiseless intensity value is A. Then the joint PDF pm can be written as (Sijbers
and den Dekker 2004)

pm =
N∏

n=1

Mn

σ 2
e− M2

n+A2

2σ2 I0

(
AMn

σ 2

)
, (10)

where {Mn} are the magnitude variables corresponding to the magnitude observations {mn}.
The ML estimate of A and σ 2 can then be constructed by substituting the available
observations {mn} in equation (10) and maximizing the resulting likelihood function L(A, σ 2)

or equivalently log L(A, σ 2), with respect to A and σ 2:

ln L =
N∑

n=1
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σ 2

)
−
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n=1

m2
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2σ 2
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N∑
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(
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)
. (11)
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The ML estimate is then found from the global maximum of ln L w.r.t. A and σ 2 (Sijbers and
den Dekker 2004):{

ÂML, σ̂ 2
ML

} = arg{max
A,σ 2

(ln L)}. (12)

The above procedure assumes the underlying signal to be constant within the local
neighborhood from which the signal and noise variance is estimated. If this assumption
is valid for most of the local pixel neighborhoods, a robust estimator of the noise variance is
given by the mode of all ML estimated local noise levels:

σ̂ 2
m = mode

({
σ̂ 2

MLi,j

})
, (13)

where σ̂ 2
m is the estimated noise variance and σ̂ 2

MLi,j
is the ML estimate of the noise variance

at each pixel (i, j). In fact, most of the MR images are piecewise constant with a reasonably
small number of classes (e.g. MR image of brain) (Zhang et al 2001). Since the noise is
estimated from the available piecewise constant regions in the image, this method neither
depends on the image background nor on the SNR of the image.

4. Noise estimation using measurement of local skewness

Even though the method based on local ML estimation is accurate, a drawback is its
time complexity. In this section, we propose a method based on the local computation
of the skewness of the magnitude data distribution to estimate the noise variance. From
equations (2), (4) and (8), it can be inferred that the moments of the Rician distribution are
always in between the moments of Rayleigh and Gaussian distributions. The relationship
between σ 2 and the variance of a Rician distribution σ 2

M at low and high SNR can be written
as

σ 2 = σ 2
M

(
2 − π

2

)−1
(14)

and

σ 2 = σ 2
M, (15)

respectively. In general, σ 2 in terms of σ 2
M can be written as

σ 2 = σ 2
M × ϕ, (16)

where ϕ is a correction factor in the range [1; (2 − π/2)−1], i.e. when the Rician distribution
approaches a Rayleigh distribution (at low SNR), the correction factor tends to (2 − π/2)−1

and when the Rician distribution approaches a Gaussian (at high SNR), the correction factor
tends to 1.

The proximity of the Rician distribution toward Rayleigh or Gaussian can be measured
using its skewness, which is defined by

γ = 2E[M]3 − 3E[M]E[M2] + E[M3]

(−E[M]2 + E[M2])
3
2

, (17)

which can be analytically computed using equation (2). The skewness of a Rician distribution
is a monotonically decreasing function of the SNR, defined as A/σ with values ranging from
0.631 (for SNR = 0) to 0 (for SNR = ∞). If we fix A, the skewness depends only on the noise
variance σ 2 of the underlying Gaussian distribution. On the other hand, the variance of the
Rician distributed data, σ 2

M, is given by

σ 2
M = E[M2] − E[M]2. (18)
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Figure 1. Relation between the skewness and variance correction factor for Rician distributed
data.

If A is fixed, σ 2
M also solely depends on σ 2. To obtain the true value of σ 2, σ 2

M needs to be
multiplied by a correction factor:

ϕ = σ 2

σ 2
M

. (19)

Hence, the correction factor ϕ at various SNR can be computed by exploiting the skewness of
the Rician distribution. Figure 1 shows the relationship between the correction factor ϕ and
the skewness γ of a Rician distribution.

A lookup table can be created to represent the relationship between ϕ and γ for a Rician
distribution from low to high SNR (A/σ) (i.e. from Rayleigh to Gaussian) by varying the value
of A from zero to a high value and by keeping σ constant. The corresponding values for ϕ and
γ can then be computed by substituting the value of A and σ in equations (17)–(19). Now,
for every γ , a corresponding value for ϕ can be found from the lookup table. A polynomial
model that computes an approximation of the lookup table is given in the appendix.

Now, to compute the noise variance in an MR image, the sample skewness and sample
variance are computed for each pixel (i, j) within a neighborhood 	. The correction factor
for each pixel can then be found from the lookup table and the noise variance for each pixel
is estimated using equation (16). Following a similar reasoning as in the previous section,
the noise variance can now be estimated as the mode of all local estimates of noise variance
around each pixel, which can be written as

σ̂ 2
S = mode

({
σ̂ 2

L i,j

})
, (20)

where σ̂ 2
S is the estimate of the noise variance in the image and σ̂ 2

L i,j
is the estimated noise

variance for a neighborhood around pixel (i, j).

5. Experimental results

Experiments were conducted on both real and synthetic MR images with and without the
background region. The window size used in our experiments for local estimates was 9 × 9.
For simulations we used the standard MR image phantom of the brain obtained from the
Brainweb database (Cocosco et al 1997) and a cardiac MR image both with intensity values in
the range 0–255. The cardiac image, in contrast to the brain image, contained no background
areas. Both images were artificially corrupted with Rician noise with the noise level σ as
50. Figure 2 shows the distribution of the local estimates of σ computed using ML and
skewness-based methods for both the brain and the cardiac images. It can be observed from
the distributions that their mode is almost equal to the true standard deviation of the noise.
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Figure 2. Noisy MR images of the brain (a) and heart (c), both corrupted with Rician noise with
σ = 50. On the right, the distribution of local estimates of σ computed using both ML (solid
red line) and skewness-based methods (dashed blue line) are shown for both the brain (b) and the
cardiac (d) images.

This experiment demonstrates the independence of the proposed estimators to the image
background.

Now, to show the reliability of the proposed methods on both low and high SNR, we
conducted the experiments on the cardiac MR image after corrupting the image with Rician
noise with σ ranging from 10 to 100. Results of this experiment are shown in figure 3. The
mean of 100 experiments divided by the actual value of σ is depicted. The value closer to
1 is the best estimate. The results are compared with the estimator given in equation (9).
Since, at high SNR the Rician PDF approaches a Gaussian PDF, the estimation based on
equation (9) will be closer to the true σ . However, as SNR drops, as expected, it can be seen
from the figure that the Gaussian assumption introduces a bias. It can also be observed from the
graph that the proposed estimators are significantly less biased especially for low values of the
SNR. Even though both the proposed estimators are independent of the image background or
SNR, the proposed estimator based on the local ML estimation of σ is closer to the true σ than
the one based on the skewness. However, the time complexity of the skewness-based method
is less than that of the ML-based method. The estimation method based on the skewness is
almost ten times faster than the ML-based method.

For the experiments on real data we used the MR image of a cherry tomato (with a
mean intensity of around 10 000). A set of MR images was reconstructed by averaging 1
to 12 images. Averaging was done in the complex k-space. The resulting noise variance



Noise measurement from magnitude MRI using estimates of variance and skewness N447

10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

σ

E
st

im
at

ed
 σ

 / 
A

ct
ua

l σ

Eq. (9)
Eq. (13)
Eq. (20)

Figure 3. The estimated σ /actual σ for various values of σ ranging from 10 to 100. This experiment
was done on the cardiac MR image. The red and blue lines correspond to the proposed methods
using ML and skewness, respectively, and the green line corresponds to the estimator given in
equation (9). The shaded area shows the standard deviation for 100 experiments.
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Figure 4. Estimated σ as a function of the number of averages n used during the acquisition. MR
image of a cherry tomato was used for this experiment.

as a function of the number of averages over n images was then estimated. The theoretical
reduction of the noise standard deviation as a function of the number of images n over which
the average was taken is known to be 1/

√
n. Since the experimental setup for all acquisitions

was identical except for averaging, the estimated noise standard deviation σ̂ multiplied by
√

n

is expected to be constant as a function of n. It can be seen from figure 4 that the proposed
method exhibits this property.

6. Conclusion

Two different approaches based on the local estimates of the variance and skewness were
proposed to address the estimation of the noise from MR images when the Rayleigh background
data or high SNR image regions are not available. The estimation of σ based on local
ML is slightly more accurate than the method based on the skewness. However, the time
complexity of the ML-based method is significantly greater than that of the skewness-based
method. Experimental results on synthetic and real MR images show the reliability of the
proposed methods. Even though the proposed methods are based on the noise characteristics
of magnitude image data acquired with single coil MRI, they can, under certain conditions,
be extended for multiple coil imaging methods like SENSE.
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Table A1. Values of the coefficients in equation (A.1).

Coefficient Value

p0 1
p1 2.89
p2 −7.29 × 10
p3 1.16 × 103

p4 −9.84 × 103

p5 4.78 × 104

p6 −1.38 × 105

p7 2.31 × 105

p8 −2.09 × 105

p9 7.86 × 104
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Appendix. Expression for the lookup table

The lookup table mentioned in section 4 can be approximated by the following polynomial
equation:

ϕ(γ ) =
9∑

i=0

piγ
i, (A.1)

where ϕ is the correction factor and γ is the skewness. The values for the coefficients (with
95% confidence interval) are given in table A1.
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