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Abstract: The increasing amount of information acquired by imaging sensors in Earth Sciences
results in the availability of a multitude of complementary data (e.g., spectral, spatial, elevation)
for monitoring of the Earth’s surface. Many studies were devoted to investigating the usage of
multi-sensor data sets in the performance of supervised learning-based approaches at various tasks
(i.e., classification and regression) while unsupervised learning-based approaches have received less
attention. In this paper, we propose a new approach to fuse multiple data sets from imaging sensors
using a multi-sensor sparse-based clustering algorithm (Multi-SSC). A technique for the extraction of
spatial features (i.e., morphological profiles (MPs) and invariant attribute profiles (IAPs)) is applied to
high spatial-resolution data to derive the spatial and contextual information. This information is then
fused with spectrally rich data such as multi- or hyperspectral data. In order to fuse multi-sensor data
sets a hierarchical sparse subspace clustering approach is employed. More specifically, a lasso-based
binary algorithm is used to fuse the spectral and spatial information prior to automatic clustering.
The proposed framework ensures that the generated clustering map is smooth and preserves the
spatial structures of the scene. In order to evaluate the generalization capability of the proposed
approach, we investigate its performance not only on diverse scenes but also on different sensors
and data types. The first two data sets are geological data sets, which consist of hyperspectral and
RGB data. The third data set is the well-known benchmark Trento data set, including hyperspectral
and LiDAR data. Experimental results indicate that this novel multi-sensor clustering algorithm
can provide an accurate clustering map compared to the state-of-the-art sparse subspace-based
clustering algorithms.

Keywords: multi-sensor data fusion; subspace-based clustering; sparse representation; hierarchical
representation; remote sensing

1. Introduction

The recent advances in imaging technology have resulted in the acquisition of high spectral-spatial
resolution imaging data [1]. Among the designed imaging sensors, hyperspectral cameras have become
the main source of fine spectral-resolution data in hundreds of narrow spectral bands [2]. The spectral
channels (bands) of hyperspectral imaging data (HSI) cover the electromagnetic spectrum ranging from
the visible to the near-infrared (VNIR, 0.4–1 µm) and shortwave infrared (SWIR, 1–2.5 µm). An HSI
can be employed to identify and discriminate different materials and biological targets [2]. The rich
spectral information derived from an HSI has been widely used in remote sensing applications such as
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land-cover- [3], urban- [4] and mineral-mapping [5,6], or the estimation of above ground biomass [7].
For instance, in the mineral exploration stage, information that is obtained by an HSI can be used as a
useful support for geologists to distinguish and track mineralogical features of interest [8].

The analysis of HSI data can be challenging due to (1) their high dimensionality and the often
limited availability of representative samples (also known as training samples ), which results in
the so-called curse of dimensionality [9] and (2) the highly mixed nature of pixels [10]. In order to
overcome these challenges, different machine learning algorithms have been developed and proposed
in the last decades [11]. Supervised learning algorithms have become popular for HSI analysis because
of their empirical success and adjustability to solve classification and regression problems [12,13].
However, these algorithms strongly rely on training samples, which still remain challenging to obtain.

This issue has been tackled by developing unsupervised algorithms (also known as clustering
algorithms) [14]. Clustering algorithms use unlabeled data to group the data into meaningful
clusters. Conventional clustering algorithms (e.g., K-means [15], Fuzzy C-means [16]) distribute
the data around several cluster centers, the so-called centroids. By using different distance measures,
data points are assigned to the cluster with the closest centroid [15]. These clustering algorithms are
iterative algorithms and strongly depend on the random initialization of the centroids [17]. Moreover,
conventional clustering algorithms are pixel-based, and do not include any spatial information.
Additionally, they are only applicable to single-sensor data.

In the past decades, HSIs have been extensively used to detect and characterize different materials,
as they provide rich spectral information. At the same time, RGB sensors can generate very detailed
high spatial resolution images, while light detection and ranging sensors (LiDAR) can yield geometrical
and elevation data [18,19]. All the above-mentioned multi-sensor data sets lead to complementary
information (i.e., spectral, spatial, elevation), and the fusion of these data sets has received much
attention. In many studies (to name a few [4,5,19–24]), the integration of spectral, spatial and elevation
information, extracted from multi-sensors has led to significant improvements in the performance
of supervised learning-based approaches. In [19], a low-rank subspace-based fusion technique
(SubFus) is proposed to incorporate contextual features from multi-sensor data for classification.
In [5], the authors proposed to fuse HSI and fine spatial-resolution RGB images using orthogonal
total variation component analysis (OTVCA) as a spectral-spatial feature extraction technique. In [21],
WorldView 2/3 and LiDAR images were integrated using a deep learning algorithm, the so-called
dense convolutional network to map individual tree species in urban areas. A comprehensive review
on the integration of multi-sensor and multi-temporal data sets is given in [4].

It has been demonstrated in different studies that high dimensional data can lie in a union of lower
dimensional subspaces [14,17,25–28]. In this way, data points can be grouped into meaningful clusters
using subspace information rather than using the complete high dimensional data, and thus reducing
the complexity and computational cost [17]. Among the subspace-based clustering algorithms, sparse
representation-based algorithms have received much attention in many fields (e.g., feature fusion [29]
and image segmentation [14,17,30,31]). The main motivation to use sparsity-based clustering is that
the sparse subspace-based clustering algorithm (SSC) was proven to be robust against noise [32].
In addition, the complexity of the optimization with sparse representations is lower than with other
representations such as low-rank representations. The sparse subspace clustering method (SSC) is a
well-known clustering algorithm, which benefits from the self-expressiveness property. This property
states that data points of an HSI can be written as a linear combination of other data points from
the same subspace [17]. To solve the SSC optimization problem, the alternative direction method of
multipliers (ADMM) is employed. Nevertheless, SSC has some drawbacks: (1) it uses the entire data
set for the clustering process, which makes it hard to handle large data sets (this is known as the
scalability issue), (2) it only uses spectral information and does not account for the spatial continuity
between the data points [14].

During the last decades, several studies have been conducted to cope with the scalability issue.
In [33], the authors proposed a landmark-based spectral clustering method (LSC) to handle large
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data sets. In LSC, spectral clustering is applied on a few representative points (also known as
landmark points), which are selected from the data by clustering or random sampling. In [34], a sparse
subspace clustering method by using orthogonal matching pursuit (SSC-OMP) was proposed. In [14],
an exemplar-based subspace clustering method (ESC) was proposed, which searches for a subset of
representative samples, the so-called exemplars that can describe the entire data. Moreover, such an
approach allows ESC to reduce the computational cost and to analyze larger data sets. However,
the random initialization in search for the exemplars of a data set, results in a less robust performance
of ESC. We recently proposed a hierarchical sparse subspace-based clustering (HESSC), as a fast and
robust HSI clustering algorithm [28]. In HESSC, the entire data set is explained in different levels of
detail using a hierarchical structure, using a lasso-based binary tree and a criterion to split nodes and
automatically determine the number of clusters. Nonetheless, all the introduced advanced sparse
subspace-based clustering algorithms merely utilize spectral information.

On the other hand, several methods were developed to incorporate spatial information in the
sparse subspace-based clustering procedure. In [35], a spatial subspace-based clustering algorithm
(SpatSC) was proposed to employ spatial constraints in favor of utilizing information derived from
neighboring pixels that have similar features in mineralogical and geological structures. In [26,36],
spatial information is exploited by applying a mean or median filter on the computed sparse coefficient
matrix in the upgrade phase of ADMM. The above-mentioned algorithms use the entire HSI for
clustering, and do not cope with the scalability issue. Additionally, all the mentioned spectral-spatial
clustering algorithms use information derived from single-sensor data.

In recent years, several morphological-based algorithms were developed that exploit spatial
information for image processing. In [37], for the first time, it was proposed to use morphological
profiles (MPs), using opening and closing by reconstruction operators with different structuring
elements (SEs) to segment high resolution satellite images. As a follow-up, in [38], extended MPs
(EMPs) were introduced as the MPs, which are extracted from the first principle components of
an HSI. MPs and EMPs are powerful tools to extract spatial information, but are suffering from
a few limitations: (1) the SEs have fixed shapes, (2) they are not suitable to map all the different
characteristics of spatial information. In [39], morphological attribute profiles (APs) were proposed
to extract structural information of very high resolution images. In APs, morphological attribute
filters (i.e., attribute thinning and thickening) are applied on connected components of a gray-scale
image to extract different spatial characteristics of a scene. Therefore, APs can be considered as a
generalization of MPs that are better able to capture region-based attributes. In order to handle HSIs
with APs, extended morphological APs (EMAPs) were proposed [40]. Additionally, in [41,42], different
feature extraction techniques (e.g., kernel PCA, multi-linear PCA, and the like) were investigated on
the performances of EMPs and EMAPs.

Nevertheless, APs may suffer from an under-segmentation problem, as it may group different
regions belonging to several objects. To overcome this problem, invariant attribute profiles (IAPs)
were proposed recently [43]. IAPs are built in two phases, the first phase is a spatial invariant
feature extraction, where isotropic filtering (by convolutional kernels) is employed to extract the
convolutional features of the HSI. This process is followed by a simple linear iterative clustering to
spatially aggregate the filtered features. In the second phase, continuous APs are obtained by modeling
the variant behaviors of pixels of the HSI. The aforementioned procedure is applied in a Fourier polar
coordinate system to avoid discretization artifacts and capture frequency features [44].

In this paper, we propose a spectral-spatial multi-sensor-based clustering algorithm. The proposed
algorithm extracts information from both HSI and fine spatial-resolution images. Spectral information
is extracted from the HSI, while spatial features (i.e., MPs and IAPs) contain the spatial and elevation
information from RGB and LiDAR data. In order to fuse and cluster the obtained information from the
different sensors, the concept of HESSC is adopted, in which a fusion between the spectral and spatial
features is accomplished at each hierarchical level of the binary tree structure.

The following items summarize the proposed contribution of this paper:
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1. We propose a novel multi-sensor sparse-based clustering algorithm that describes the data at
different levels of detail.

2. To the best of our knowledge, this is the first attempt to incorporate spatial information in the
form of morphological-based profiles extracted from multi-sensor data sets in a hierarchical
sparse-based clustering algorithm.

3. In the proposed algorithm, both spectral and spatial features equally contribute at each level of
the tree.

4. The proposed algorithm is able to cluster large-scale data sets.
5. The proposed algorithm can be adapted to different ancillary remote sensing data sets (e.g., RGB,

multi-spectral images, HSI, LiDAR, synthetic aperture radar).

2. Methodology

In this section, we provide a brief overview of the proposed methodology. The workflow of the
proposed algorithm is presented in Figure 1. As can be observed from the figure, spatial features are
extracted from high-spatial resolution images (i.e., RGB, LiDAR). The process is then followed by
establishing a hierarchical (tree) structure to describe the data at various levels of detail. In order to
build the tree structure and fuse the spectral and spatial features at the level of the nodes, a lasso-based
binary clustering was employed. Finally, if an end-node cannot be divided further, all data points
corresponding to this end-node are assigned to one cluster.

Sensor 2 (MS/LiDAR/RGB)

Spatial Feature  Extraction 

Lasso-based binary clustering
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Figure 1. The proposed multi-sensor sparse-based clustering algorithm for HSI analysis.
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2.1. Spatial Feature Extraction

We start to describe the spatial features that are obtained from the auxiliary high spatial-resolution
image. As the spatial features, we propose to employ MPs and IAPs, the concepts of which will be
described in detail in the following paragraphs.

2.1.1. Morphological Profiles

In [37], extracted MPs rely on two mathematical morphology operators (i.e., opening and closing).
These operators are applied on an image with a series of structuring elements (SEs), that can have
different shapes (e.g., disc, square, cube) with a user-defined size r′. With morphological opening,
an eroded image is dilated to capture the bright structures in a scene, while with morphological closing,
a dilated image is eroded to filter out the dark structures in the scene. Additionally, to preserve the
original image structure, a reconstruction filter is applied after the aforementioned morphological
operators [41].

Let us assume that X = [x1, x2, ..., xN ]
T ∈ Rb×N expresses a high spatial-resolution image, where b

is the number of spectral channels (e.g., 3 for an RGB image), and N represents the number of pixels in
the image. In addition, the location of each pixel in X is denoted by (x, y) in the Cartesian coordinates.
Let γSE(X) and δSE(X) denote the opening and closing by reconstruction operators on X with a set
of SEs, respectively. In this study, only disk-shaped SEs with variable size are used. MPs are then
computed as:

MPγ = {MPr′
γ (X) =γr′(X), ∀ r′ ∈ [0, n]}

MPδ = {MPr′
δ (X) =δr′(X), ∀ r′ ∈ [0, n]}

S.t. γ0(X) = δ0(X) = X

(1)

where r′ is the radius of a disk-shaped SE, and MPγ and MPδ are the extracted opening and closing MPs
by reconstruction [38]; n is a non-negative integer. For more information, we refer to [37,38]. MPs have
been widely applied to extract spatial information in remote sensing applications, although they cannot
provide all characteristics of the spatial information [11].

2.1.2. Invariant Attribute Profiles

In [43], invariant attribute profiles (IAPs) were defined as the concatenation of two different types
of invariant features, i.e., spatial invariant features (SIFs) and frequency invariant features (FIFs).

In order to extract the SIFs, initially, robust convolutional features FRCF are obtained by isotropic
filtering of X. For this, each band of the image is convolved with a convolutional kernel in order to
aggregate the local spatial information. Then, a simple linear iterative clustering (SLIC), a well-known
super-pixel segmentation approach, is applied on X [45]. Eventually, the extracted convolutional
features FRCF are spatially aggregated by the super-pixels. For each pixel i, the SIFs are defined as:

F i
SIFs =

1
Nq

Nq

∑
j=1
F j

RCF, j ∈ φi,q (2)

where φi,q is the pixel set of the q-th super-pixel, containing the i-th targeted pixel and a total of
Nq pixels.

To derive the frequency invariant features (FIFs), first a polarized Fourier transformation is applied
on X. In this way, rotation invariance is obtained by accessing the angular information. From this
transformation, three groups of rotation-invariant features are calculated: F 1

m(x, y) are magnitude
features corresponding to m different Fourier orders; F 2

m(x, y) are absolute rotation-invariant features,
obtained by removing the phase information; F 3

m(x, y) are relative rotation-invariant features,
that compensate for the loss of rich phase information. The FIFs are obtained by concatenating
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these rotation-invariant features and aggregating them into region-based features by using isotropic
convolutional filters.

Finally, IAPs are produced by stacking the SIFs and the FIFs: FIAPs = [FSIFs ∪ FFIFs].
More detailed information on the generation of the IAPs can be found in [43].

2.2. Sparse Subspace Clustering (SSC)

Let Y denote the input HSI with sizeD×N, whereD is the number of spectral bands. yi represents
the ith column vector of Y, where i ∈ {1, 2, ..., N} is the pixel index in the HSI, and yji is the element in
row j and column i and denotes band j of that pixel.

The main assumption in sparse subspace clustering methods is that each data point can be
described as a linear combination of a dictionary of data points from the same subspace and that all
pixels are drawn from a union of L linear subspaces {Sl}L

l=1 of dimension {dl}L
l=1 [17]. Therefore, Y =

Y = Y1 ∪ Y2 ∪ Y3 ∪ ... ∪ YL, where each Yl ∈ RD×Nl is a sub-matrix of Y, containing Nl pixels from
subspace Sl . Remark that the number of pixels of each subspace should be larger than the dimension of
the subspace (Nl > dl). In most subspace-based clustering algorithms, the number and the dimensions
of the subspaces need to be known a priori.

SSC addresses the aforementioned issue by employing the data itself as a dictionary. Accordingly,
the following sparse optimization problem is obtained:

arg min
C

||C||1 +
λ

2
||Y− YC||2F

S.t., diag(C) = 0,
(3)

where C = [c1, c2, ..., cN ] ∈ RN×N is the sparse coefficient matrix derived from Y. ||.||1 is the `1-norm:
||C||1 = ΣN

i=1(Σ
N
j=1|cji|), and ||C||F = ΣN

i=1(Σ
N
j=1|cji|2)

1
2 represents the Frobenius-norm [17]. λ is a

trade off parameter between the sparsity and fidelity terms. The constraint diag(C) = 0 is required to
avoid a point being represented as a linear combination of itself. The alternating direction method of
multipliers (ADMM) solver is employed to solve the sparse optimization problem of Equation (3) [46].
Consequently, the non-zero elements (cji) of C identify all data points j that are from the same subspace
as i. From C, a symmetrical similarity matrix W = |C|+ |C|T is obtained, to assure that all pixels from
the same subspace are connected to each other.

As the final step, to reduce the dimensionality of the problem, a spectral clustering algorithm [47] is
applied on W. For this, the normalized Laplacian matrix is computed: L := D−W, where D ∈ RN×N

is a diagonal matrix, with dii = ∑N
j=1 wij. Then, singular-value decomposition (SVD) is applied on

L, to obtain the eigenvectors V ∈ RN×A, corresponding to the A smallest non-zero eigenvalues of L.
Finally, clustering (we used K-means clustering) is applied on V to generate the clustering map [17,47].

The main advantage of SSC is that the clustering is applied on the similarity matrix of the sparse
coefficient matrix, rather than directly on the data. In this way, the subspace structure of the data is
accounted for, and makes the clustering more robust to the initialization compared to the conventional
clustering algorithms (e.g., K-means, FCM) [48].

Although SSC performs well to cluster HSIs, it also has shortcomings. SSC has a scalability issue,
in which it requires to use all data points to solve the optimization problem in Equation (3), which can
be computationally expensive in the case of large data sets. Another shortcoming of SSC is that the
algorithm only uses spectral information and does not take into account the spatial context of the HSI.

2.3. Hierarchical Sparse Subspace Clustering (HESSC)

Several sparse subspace-based clustering algorithms have been proposed in order to tackle the
scalability issue, [14,27,28,49]. In our earlier work [28], we proposed an automatic hierarchical sparse
subspace-based clustering (HESSC) algorithm to analyze HSIs. HESSC is able to describe an HSI at
different hierarchical levels in a robust and automatic manner by employing a binary tree structure.
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Starting from all data points in the HSI, at each level, nodes are split into two groups. Let us
denote Yli as the collection of all the data points in one of the parental nodes at level li. Then,
Yli = ∪2

r=1 Yr,li+1
, where Yr,li+1

denote the collection of all data points in each of the two child nodes
at level i + 1. The criterion to split the nodes is based on the generation of a binary matrix, obtained by
the following sparse optimization problem:

arg min
Cli

||Cli ||1 +
λ

2
||Yli − yjCli ||

2
F, (4)

where Cli is the computed sparse coefficients derived from Yli , and yj is the j-th column vector of Yli ,
where j is randomly selected. To solve the above optimization problem, the lasso version of the least
angle regression algorithm is used [50]. Subsequently, the computed Cli is normalized, and thresholded
(with a user-defined threshold) to generate a binary matrix (BM) (Figure 2). In order to assure the
robustness of HESSC, the aforementioned procedure is repeated 100 times, with randomly selected yj,
each time generating a binary matrix. Subsequently, the generated BMs are fed to an entropy-based
consensus clustering algorithm (ECC) [51] to produce the final binary matrix that eventually splits the
current node into two child nodes.

A stopping criterion is applied to decide whether a node should be further split. The stopping
criterion is either manual, when the required number of clusters is known prior and pre-defined by
the user, or automatic, based on a Singular Value Decomposition of the data [52]. When a node is not
split any further, its’ corresponding data points are labeled as one cluster.

Although HESSC is able to cluster an HSI in a robust and fast manner, only spectral information
is utilized. In this work, we will extend HESSC to include spatial information that is derived from
high spatial-resolution data from the same scene as the HSI.

Lasso-based binary algorithm

Lasso-optimization 
& 

Normalization
Thresholding criterion

Figure 2. The lasso-based binary algorithm employed in hierarchical sparse subspace clustering
algorithm (HESSC) in one iteration.

2.4. Multi-Sensor Spectral-Spatial Sparse-Based Clustering (Multi-SSC)

One way of fusing spectral and spatial information is to extract spatial features from an HSI,
and combining (e.g., concatenating) the extracted spatial features with the spectral channels [53].
However, such a single-sensor integration approach might not contain sufficient spatial and contextual
information. We therefore propose to explicitly incorporate the spatial information derived from high
spatial-resolution data sets (i.e., high spatial-resolution RGB and LiDAR images) [19].
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In the proposed Multi-SSC, a hierarchical tree approach, similar to the HESSC algorithm is
used. However, at each level of the binary tree, a parental node is split, based on binary matrices,
each of which is generated from either spectral or spatial information. To generate a BM from spectral
information, the sparse optimization problem of Equation (4) is solved and the obtained sparse
coefficient matrix is thresholded. To generate a BM from spatial information, the following sparse
optimization problem is defined:

arg min
Cli

||Cli ||1 +
λ

2
||FSFEli

−FSFEj Cr,li ||
2
F, (5)

where FSFEli
denotes the extracted spatial features (either MPs or IAPs) from all data points at the

specific parental node of level li. FSFEj is the j-th column vector of FSFEli
, which has been randomly

selected. The obtained sparse coefficient matrix is then thresholded to generate the BM.
To cope with uncertainties of the model [54] that may be introduced by the random selection

of both FSFEj and yj, we apply the ECC algorithm [51]. Additionally, to include both spectral and
spatial information in a balanced way, an equal number of BMs are generated from the optimizations
of Equations (4) and (5). Depending on the specific application, this ratio can be adapted. In this work,
we choose to apply each of the optimizations 50 times. The total of 100 BMs are then processed by
the ECC algorithm to produce the final binary matrix, which is used for the further division of the
current node. The stopping criterion is the same as applied in Section 2.3. The final clustering map is
generated by labeling the nodes of the tree, which are not further split.

3. Experiments

3.1. Data Acquisition and Description

In order to evaluate the generalization capability of the proposed method, we take into account
two important factors for the selection of data sets: (1) the investigated data sets cover different scene
types (i.e., geological and rural areas) and (2) different sensor combinations and types are investigated
(i.e., HSI, RGB, and LiDAR). For this reason, we chose the following data sets:

(1) Czech data : The first data set was acquired near the Litov tailing lake and its adjacent waste heap,
situated in the Sokolov district of the Czech Republic. Both HSI and RGB images were acquired.
The HSI was acquired by a hyperspectral frame-based camera (0.6 Mp Rikola Hyperspectral
Imager), which was deployed on a hexacopter unmanned aerial vehicle (UAV; Aibotix Aibot
X6v2) along with a pre-programmed stop-scan-motion flight plan to capture a complete set
of HSIs for the subsequent image mosaicking. The RGB image was captured by employing a
senseFly S.O.D.A. RGB camera, deployed on a fixed-wing UAV. The spatial resolution of the
captured RGB image is 1.5 cm. It is downsampled to the size of the HSI data (1066× 909 pixels),
which has a spatial resolution of 3.3 cm and is composed of 50 spectral bands ranging from
0.50–0.90 µm. Figure 3 illustrates the acquired RGB image of the Czech data set.

(2) Finland data: The second data set was captured over an outcrop of the Archean Siilinjärvi
glimmerite-carbonatite complex in Finland, which is currently mined for large phosphate-rich
apatite occurrences used in fertilizer production [55]. In the Finland data set, the same instruments
were employed to acquire the HSI and RGB data. The HSI and downsampled RGB images are
composed of 718× 1848 pixels. Figure 4 displays the acquired RGB image of the Finland data set.

(3) Trento data: The third data set was captured over a rural area in the south of the city of Trento,
Italy. It consists of LiDAR and HSI data that are composed of 600 by 166 pixels with a spatial
sampling of 1m. The HSI was acquired by the AISA Eagle sensor, and contains 63 spectral bands
ranging between 0.40 and 0.98 µm. The LiDAR data were captured by the Optech ALTM 3100EA
sensor. The color-composite image of the HSI from the Trento data is shown in Figure 5.
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For the fusion procedure, the co-registered high-spatial resolution RGB/LiDAR images have
already been downsampled to their corresponding HSIs. In the case of geological data sets,
the resampling was carried out by using the nearest-neighborhood method in Quantum GIS
(version 3.4, QGIS development team, Open Source Geospatial Foundation). The internal image
co-registration of hyperspectral scans was done by registering all bands on a distinct master band
per hypercube, using the MEPHySTo image processing toolbox [56], used for pre-processing of the
hypercubes. Georeferencing of all images was done on high-resolution drone-based RGB orthophotos,
created by structure-from-motion photogrammetry in Agisoft Photoscan (version 1.4, Agisoft LLC,
St. Petersburg, Russia). The UAV-based, GPS-tagged Orthophotos were acquired over the target area
and their positioning was refined by using ground control points. Further data acquisition details for
the Czech data set are referenced in [57], and for the Finland data set in [58].

5,
55
8,
96
5

5,
55
8,
99
0

323,755 323,780

Figure 3. RGB image from the Czech data in which the HSI and RGB images were captured over a
tailing area with an adjacent lake near Litov in Sokolov, Czech Republic.

7,
00
1,
73
3

7,
00
1,
76
3

537,200 537,275

Figure 4. RGB image from the Finland data in which the HSI and RGB images were captured at
Siilinjärvi in Finland.
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Figure 5. False color-composite image of the HSI from the Trento data using bands R:40, G:20, B:10.

3.2. Experimental Setup

Quantitative and qualitative analyses were conducted to evaluate the performance of our
proposed algorithm. The clustering results obtained by Multi-SSC with MPs and IAPs were compared
with the results of two conventional clustering algorithms K-means and FCM, along with the scalable
clustering algorithms, LSC [33], ESC [14], and HESSC [28]. Additionally, to allow a fair comparison,
the concatenation of the HSI and RGB/LiDAR images (e.g., the combination of HSI and RGB has D+ 3
features) is fed into all of the applied clustering algorithms to evaluate their performances. Moreover,
to assess the effect of extracted IAPs on the clustering performance, IAPs are stacked with the spectral
bands of the HSI and used as the input for the competitive clustering algorithms. For the remaining,
the following acronyms are used: ALsensor, where AL is the name of the applied clustering algorithm
and sensor refers to the applied data (HSI is only spectral data, HSI+RGB and HSI+LiDAR representing
the concatenation of spectral bands and RGB/LiDAR bands, HSI+IAPs denotes the concatenation of
spectral bands and IAPs).

All utilized parameters in ESC were set as the default parameters proposed by the developers [14].
In LSC, the K-means sampling strategy was used to produce the landmark points. In HESSC,
the threshold τ in the lasso-based binary was set to 0.5, the default by the developers [28]. For the
MPs, suitable radii r′ for the SEs were selected for the first and second data sets by visual
inspection. In the first data set, r′ = [1, 5, 10, 15, 20, 40, 60, 80, 100] were chosen. In the second data
set, r′ = [10, 20, 40, 60, 80, 100], and for the last data set, r′ = [10, 20, 40, 60] were used, as in [19].
Regarding the parameters used in extracting the IAPs, we followed the same setup as suggested by the
developers in [43], where the number of scaled convolutions and their radii were set to 3 and [2,4,6],
respectively. The Fourier orders to derive the frequency features were set to m = [0, 1, 2], and for all
data sets, we used the first three principal components to generate the IAPs.

All quantitative results are reported as an average of 10 runs. All the applied algorithms in this
study were implemented in MATLAB version 2019b on a computer with an Intel c© core-i9 7900X with
128 GB RAM.

3.3. Evaluation Metrics

Three commonly used evaluation metrics are employed: overall accuracy (OA), average accuracy
(AA), and kappa coefficient (κ). The ground truth data set is represented by G = [g1, g2, ..., gN ].
The clustering result can be presented as M = [m1, m2, ..., mN ], where mi = 1, ...,L, the index of the
class label, assigned to each pixel. To assess the clustering performance, mi needs to be matched
with gi. We thus employed m′i = bestMap(gi, mi) as a matching function, based on the Hungarian
algorithm, where m′i is the clustering map for which the best match between gi and mi is produced by
bestMap(.) [59]. Consequently, OA is defined as ΣN

i=1Γ(m′i, gi)/N, where Γ(m′i, gi) is 1 if gi = m′i and
0 otherwise.

In addition to the three aforementioned metrics, two generally applied clustering indices
are employed:
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(1) The adjusted rand index (ARI) is used as a similarity (or dissimilarity) measure between two
partitions and it is an adjusted version of the original rand index [60]. According to [60], ARI can be
formulated as:

∑ij (
nij
2 )−∑i (

ni+
2 )∑j (

n+j
2 )/(n

2)
1
2 [∑i (

ni+
2 ) + ∑j (

n+j
2 )]−∑i (

ni+
2 )∑j (

n+j
2 )/(n

2)
(6)

where, nij = |m′i ∩ gj|, ni+ and n+j are equal to ∑N
j=1 nij and ∑N

i=1 nij, respectively. The range of ARI is
usually between 0 and 1. An ARI closer to one means that M and G highly agree. However, it is also
possible that the ARI becomes negative, indicating that the agreement between M and G is even less
than what is expected from a random result.

(2) The normalized mutual information (NMI) is calculated based on the mutual information
between M and G. The mutual information is normalized to range NMI between 0 and 1 [61]. NMI can
be calculated as:

∑ij nij log
ninij

ni+n+j√
(∑i ni+ log ni+

n )(∑j n+j log
n+j
n )

(7)

Similar to ARI, the agreement between M and G is higher when NMI is closer to 1.

3.4. Results and Discussion

Results of all experiments are summarized in Tables 1–3, for the Czech, Finland and Trento
data, respectively.

3.4.1. The Czech Data Set

The Czech data set contains 8 classes: (1) Vegetation, (2) Acid mine drainage-stream, (3) Acid
mine drainage-solid, (4) Soil-slipped, (5) Clay-high, (6) Clay-flood zone, (7) Old-stream bed and
(8) Artificial objects.

Table 1 summarizes all clustering results. The proposed method outperforms all other clustering
approaches. The clustering performance of HESSCHSI is weak, when compared to K-meansHSI ,
FCMHSI , and LSCHSI , which may be due to the high similarity between the spectral signatures of the
different classes. The concatenation of extracted IAPs improves the accuracy of HESSCHSI+IAPs with
5% over HESSCHSI . Another 12% improvement is observed when fusing the spectral and IAPs in the
proposed approach Multi-SSC, when compared to concatenating them in HESSCHSI+IAPs. With respect
to the clustering results of individual classes, one can observe that class 2 and 8 are accurately mapped
using Multi-SSC (IAPs), while class 4 and 6 are better mapped using Multi-SSC (MPs). ESCHSI+RGB is
able to capture class 2 perfectly, while both versions of LSC perform very poor on class 2.

Figure 6 shows the obtained clustering maps (results with concatenated IAPs are not shown).
It can be observed that K-means, FCM, and LSC capture the general structure, yet, both their single
and multi-sensor versions generate heterogeneous clustering maps. The clustering maps obtained by
Multi-SSC with MPs and IAPs are more homogeneous.

In general, the clustering results on the Czech data show that incorporating spatial information
by stacking derived IAPs with the spectral bands of the HSI improves the single-sensor version of
the algorithms. However, fusion of the IAPs with the HSI by employing the proposed Multi-SSC
leads to the most accurate result. These results can be attributed to the structure of Multi-SSC. In the
proposed fusion strategy of Multi-SSC, both spectral and spatial features contribute equally. In the
competitive algorithms, i.e., K-means, FCM, LSC, and ESC, it is not possible to balance the contribution
of spectral and spatial features. In the Czech data, the obtained values of ARI and NMI show that in
K-means, FCM, and LSC, the mere concatenation of the IAPs, extracted from the HSI does not improve
results. In ESC, however, stacking the extracted IAPs with the HSI improves ARI and NMI by almost
0.31 and 0.21, respectively. This can be attributed to the ability of ESC to select exemplars that are
representative of the entire data set.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Vegetation Acid mine drainage-stream

Clay-high

Legend
Acid mine drainage-solid Soil-slipped

Clay-flood zone Old-streambed Artificial objects

(m)

Figure 6. The Czech data. (a) RGB image, (b) ground truth, and clustering maps obtained by
(c) K-meansHSI , (d) K-meansHSI+RGB, (e) FCMHSI , (f) FCMHSI+RGB, (g) LSCHSI , (h) LSCHSI+RGB,
(i) ESCHSI , (j) ESCHSI+RGB, (k) HESSCHSI , (l) Multi-SSC (MPs), (m) Multi-SSC (IAPs).

3.4.2. The Finland Data Set

The Finland data set contains eight classes: (1) Clay, (2) Glimmerite-Carbonatite, (3) Glimmerite,
(4) Dark-rocks (which is a mixture of soil and Glimmerite), (5) Dust, (6) Feldspar-vein, (7) Fenite and
(8) Water.

With respect to Table 2, Multi-SSC shows the highest accuracy, both with MPs and IAPs. HESSCHSI
performs better than the other considered spectral-based clustering algorithms. However, the proposed
algorithm (using IAPs) surpasses the original HESSCHSI by almost 17% in terms of OA. The inclusion of
a high spatial-resolution RGB image in the K-means algorithm improves the clustering accuracy by 10%.
Replacing RGB bands by IAPs does not further improve the results. With respect to clustering results for
individual classes, ESCHSI+IAPs outperforms the other approaches on class 2 (Glimmerite-Carbonatite).
However, overall, ESCHSI+IAPs has a poor performance compared to its competitors, which can be
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attributed to its dependence on initial conditions, i.e., the random selection of the first exemplars.
HESSCHSI+IAPs and ESCHSI capture class 3 (Glimmerite) better than the other applied algorithms.

Figure 7 presents the obtained clustering maps. Multi-SSC, both with MPs and IAPs generate
homogeneous regions and preserve the structures within the data set. In particular, for both geological
data sets, it is desirable to obtain homogeneous clusters corresponding to individual geological features
of interest. As it can be observed from Table 2, the concatenation of the extracted IAPs with the HSI
in K-means, FCM, LSC, and ESC considerably increases the calculated ARI and NMI. This proves
that the extracted IAPs are informative and increase the performance of the clustering algorithms.
Nevertheless, the fusion strategy of Multi-SSC plays an eminent role. The equal contribution of the
extracted IAPs and the HSI results in the highest ARI and NMI.

3.4.3. The Trento Data Set

In the Trento data set, there are six classes: (1) Apple trees, (2) Buildings, (3) Ground, (4) Wood,
(5) Vineyard and (6) Roads. As it is shown in Table 3, also in this dataset, Multi-SSC with IAPs
performs the best (OA = 71.90%) and Multi-SSC with MPs (OA = 65.12%) is the second best clustering
algorithm. The clustering maps are presented in Figure 8. Overall, Multi-SSC (IAPs) generates a
smooth clustering map compared to the other considered clustering algorithms. The clustering results
in Table 3 show that the proposed method with IAPs miss-clustered class 1 (Apple trees) as class 5
(Vineyard). While Multi-SSC with MPs was able to cluster class 1 correctly. Such miss-clustering
in Multi-SSC with IAPs can be attributed to the used parameters in the spatial extraction phase.
More specifically, the used radii in the scaled convolutions lead to over-smoothed clustering results,
as is shown in Figure 8m. This can be alleviated by modifying the radii of the scaled convolutions.
Such modifications may, however, result in a decrease of the overall accuracy.

3.4.4. Discussion

Experimental results on all three data sets confirmed that spectral-based clustering algorithms
using single-sensor data sets obtained less distinct clustering results for different classes of interest
(e.g., Wood, Vineyard). The obtained values of OA, AA, κ, ARI, NMI, and t (seconds) of the applied
clustering algorithms show that the inclusion of multi-sensor data sets in the clustering procedure leads
to an improvement of the final clustering results. Moreover, the incorporation of spatial information
using extracted spatial features IAPs versus MPs was investigated. It can be observed that the use
of IAPs significantly improves the clustering performance. The results prove that the extracted IAPs
consist of more informative spatial features compared to MPs, mainly due to the fact that they cover
spatial information extracted from both spatial and frequency domains.

Multi-SSC was designed to fuse the rich spectral, spatial, and contextual information derived
from multi-sensor data sets. The algorithm has the potential capability to be adjusted for processing
any type of data set. Multi-SSC benefits from a hierarchical structure, which makes the algorithm
able to describe multi-sensor data sets at different levels of detail. In addition, Multi-SSC employs the
sparse representation matrix to cluster data sets. Such information allows the algorithm to explore
and identify the relation between data points from the same subspace. Due to its effective structure,
Multi-SSC is able to handle large scale data sets by using limited number of data points. Multi-SSC
utilizes both spectral and spatial information in order to generate the final clustering map. As can be
seen in Tables 1–3, the best results are obtained with the proposed algorithm. Multi-SSC is, thus, able to
fuse and exploit spatial information in more accurate manner compared to simply concatenating two
data sets. In addition, Multi-SSC ensures a balanced use of the spectral and spatial information in its
clustering procedure.

Therefore, it can be summarized that Multi-SSC, both using MPs and IAPs, performs well to
capture the classes of interest in both rural and geological areas. Multi-SSC consistently performs better
with IAPs than with MPs. This can be attributed to the fixed shape of the SEs in MPs, which cannot
fully exploit the spatial characteristics of regions within a scene of an image. Additionally, due to the
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fixed parameters, IAPs can be automatically extracted, which makes them more efficient compared to
MPs for unsupervised learning purposes.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Clay Glimmerite-Carbonatite

Dust

Legend
Glimmerite Dark rocks

Feldspar-zone Fenite Water

(m)

Figure 7. The Finland data. (a) RGB image, (b) ground truth, and clustering maps obtained by
(c) K-meansHSI , (d) K-meansHSI+RGB, (e) FCMHSI , (f) FCMHSI+RGB, (g) LSCHSI , (h) LSCHSI+RGB,
(i) ESCHSI , (j) ESCHSI+RGB, (k) HESSCHSI , (l) Multi-SSC (MPs), (m) Multi-SSC (IAPs).
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Table 1. Quantitative assessment of the performances of the clustering algorithms applied to the Czech data. The clustering accuracy is reported using OA, AA, κ,
ARI, and NMI. In addition, the processing time is reported as well.

Class No. Ground
Truth Samples K-meansHSI K-meansHSI+RGB K-meansHSI+IAPs FCMHSI FCMHSI+RGB FCMHSI+IAPs LSCHSI LSCHSI+RGB LSCHSI+IAPs ESCHSI ESCHSI+RGB ESCHSI+IAPs HESSCHSI HESSCHSI+IAPs

Multi-SSC
(MPs)

Multi-SSC
(IAPs)

1 1018 50.49 87.92 91.06 36.05 84.87 44.40 100 93.42 80.35 100 99.71 98.04 63.06 89.00 55.50 97.05
2 901 98.67 93.01 88.67 97.34 10.54 66.89 0.00 0.11 99.00 99.00 99.67 53.50 66.26 26.53 77.36 99.67
3 1119 73.73 71.40 71.94 63.81 71.67 46.85 50.67 79.54 67.74 41.82 0.54 41.82 22.88 0.00 51.03 36.73
4 874 52.86 0.00 3.43 65.90 29.18 60.64 64.30 16.82 65.22 0.57 2.17 94.16 47.94 86.61 80.32 56.86
5 838 97.61 99.05 87.61 96.06 98.69 86.42 95.94 97.02 0.12 41.77 80.19 0.00 65.75 68.50 56.44 85.68
6 863 31.29 66.74 68.25 58.86 42.53 59.10 35.57 42.41 47.74 0.12 86.33 0.00 12.05 98.73 86.79 29.66
7 777 38.74 49.55 35.39 35.91 46.72 35.65 35.39 55.08 33.33 10.29 0.00 11.45 65.89 16.22 28.06 32.95
8 785 0.00 7.39 31.97 4.59 2.55 4.59 8.54 19.75 9.94 43.95 51.72 79.36 43.82 38.85 17.71 80.13

OA 56.85 61.06 61.37 58.00 50.08 56.70 50.17 52.28 55.68 43.05 52.42 45.45 47.74 52.13 57.34 64.85
AA 55.42 59.38 59.79 57.31 48.34 50.57 48.80 50.51 50.43 42.19 52.54 47.29 48.45 53.05 56.65 64.84

κ 0.50 0.55 0.58 0.51 0.42 0.48 0.42 0.45 0.45 0.34 0.45 0.48 0.40 0.46 0.51 0.59

ARI 0.50 0.47 0.49 0.41 0.42 0.36 0.37 0.45 0.33 0.22 0.36 0.53 0.31 0.35 0.53 0.54
NMI 0.63 0.62 0.63 0.54 0.56 0.51 0.53 0.58 0.51 0.41 0.55 0.62 0.50 0.52 0.64 0.66

t (seconds) 1.16 1.01 1.66 145.12 187.09 196.62 34.65 34.94 35.01 13,387.00 9859.00 11,130.00 3562.80 3557.20 3086.51 3114.80

Table 2. Quantitative assessment of the performances of the clustering algorithms applied to the Finland data. The clustering accuracy is reported using OA, AA, κ,
ARI, and NMI. In addition, the processing time is reported as well.

Class No. Ground
Truth Samples K-meansHSI K-meansHSI+RGB K-meansHSI+IAPs FCMHSI FCMHSI+RGB FCMHSI+IAPs LSCHSI LSCHSI+RGB LSCHSI+IAPs ESCHSI ESCHSI+RGB ESCHSI+IAPs HESSCHSI HESSCHSI+IAPs

Multi-SSC
(MPs)

Multi-SSC
(IAPs)

1 1062 53.58 54.43 71.28 48.96 49.81 66.20 68.17 50.85 31.17 77.78 95.67 13.75 54.90 75.33 56.97 100
2 791 0.00 25.92 20.86 0.00 0.00 0.00 3.92 1.64 9.99 1.39 1.90 41.09 22.12 4.23 8.34 2.28
3 1048 54.48 65.55 61.45 31.58 32.44 55.15 41.70 37.40 52.86 71.28 0.00 7.63 0.00 89.50 53.34 71.18
4 994 50.80 94.16 55.33 43.86 44.47 52.11 47.38 56.94 66.90 0.00 0.80 0.00 96.38 24.14 85.92 85.01
5 964 56.64 45.33 65.66 61.51 62.14 68.67 40.87 39.63 43.57 1.04 0.00 45.75 0.21 7.57 3.01 12.34
6 1061 88.22 69.18 87.75 86.90 86.71 88.03 0.00 89.44 94.25 0.19 30.73 26.86 42.79 82.75 83.69 71.25
7 1065 35.87 58.59 0.00 37.84 38.12 11.87 70.05 30.42 16.42 34.46 37.46 94.96 57.46 15.83 98.22 56.81
8 1011 0.00 10.29 68.83 37.29 38.67 57.28 85.66 29.28 37.93 100 100 19.15 88.82 33.71 49.11 91.10

OA 43.88 53.84 53.15 44.80 45.36 51.62 45.89 43.30 44.68 37.19 34.70 40.71 46.05 44.56 56.49 63.43
AA 42.45 52.93 53.90 43.49 44.05 49.91 44.72 41.95 44.14 35.77 33.32 31.15 45.34 41.63 54.82 61.25

κ 0.35 0.47 0.48 0.36 0.37 0.44 0.38 0.35 0.37 0.27 0.24 0.21 0.38 0.42 0.50 0.58

ARI 0.27 0.38 0.32 0.28 0.27 0.36 0.30 0.27 0.33 0.16 0.11 0.28 0.34 0.23 0.41 0.46
NMI 0.42 0.52 0.49 0.43 0.42 0.51 0.49 0.42 0.51 0.37 0.35 0.38 0.51 0.42 0.55 0.57

t (seconds) 27.81 54.56 55.45 318.40 339.15 338.18 52.05 57.71 71.11 100,890.00 100,210.00 110,700.00 12,085.00 70,492.00 90,436.00 98,752.00
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Table 3. Quantitative assessment of the performances of the clustering algorithms applied to the Trento data. The clustering accuracy is reported using OA, AA, κ,
ARI, and NMI. In addition, the processing time is reported as well.

Clusters No. Ground
Truth Samples K-meansHSI K-meansHSI+LiDAR K-meansHSI+IAPs FCMHSI FCMHSI+LiDAR FCMHSI+IAPs LSCHSI LSCHSI+LiDAR LSCHSI+IAPs ESCHSI ESCHSI+LiDAR ESCHSI+IAPs HESSCHSI HESSCHSI+IAPs

Multi-SSC
(MPs)

Multi-SSC
(IAPs)

1 4034 70.91 38.34 59.67 75.90 24.86 55.35 60.13 43.27 55.33 10.55 26.82 2.78 0.00 45.70 29.30 0.00
2 2903 89.25 98.97 0.55 84.46 99.44 0.65 0.00 35.59 2.17 10.08 99.22 64.17 80.26 81.46 36.33 68.55
3 479 0.00 15.64 30.90 59.46 59.67 32.36 10.77 16.16 24.84 42.78 4.13 63.67 21.71 25.65 9.60 26.72
4 9123 57.07 86.35 99.93 0.00 69.86 99.91 56.70 68.82 99.62 34.35 74.15 54.58 91.69 70.65 99.95 90.57
5 10,501 42.79 48.68 69.05 39.18 22.42 68.50 35.81 36.88 60.01 69.37 44.05 73.32 43.70 39.11 59.26 94.47
6 3174 31.23 15.72 52.96 53.09 7.63 53.02 94.72 90.65 70.01 83.81 46.84 50.50 55.45 34.00 82.89 44.83

OA 51.97 59.52 63.22 53.88 54.21 58.65 47.71 52.96 63.76 46.34 63.95 54.13 56.76 52.09 65.12 71.90
AA 48.54 50.61 52.18 51.18 44.77 51.63 43.02 49.23 52.00 41.82 49.20 51.50 48.80 49.43 52.89 54.19

κ 0.46 0.46 0.53 0.43 0.42 0.54 0.37 0.45 0.54 0.27 0.50 0.51 0.41 0.49 0.55 0.61

ARI 0.27 0.16 0.50 0.28 0.16 0.51 0.28 0.18 0.42 0.21 0.30 0.32 0.37 0.36 0.44 0.53
NMI 0.43 0.25 0.54 0.46 0.25 0.54 0.45 0.26 0.56 0.37 0.44 0.38 0.49 0.46 0.58 0.64

t (seconds) 2.55 2.73 3.01 21.69 20.42 11.60 3.86 2.48 2.96 763.52 118.92 764.79 478.94 576.11 407.49 518.63
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Figure 8. The Trento data. (a) HSI, (b) ground truth, and clustering maps obtained by (c) K-meansHSI ,
(d) K-meansHSI+LiDAR, (e) FCMHSI , (f) FCMHSI+LiDAR, (g) LSCHSI , (h) LSCHSI+LiDAR, (i) ESCHSI ,
(j) ESCHSI+LiDAR, (k) HESSCHSI , (l) Multi-SSC (MPs), (m) Multi-SSC (IAPs).

Processing times are reported in Tables 1–3. Overall, K-means and LSC perform fast, compared to
the other applied clustering algorithms. K-means is a distance-based algorithm that measures the
Euclidean distance between each data point and its corresponding centroid, which does not demand
high computational power. In LSC, landmark points are identified by adopting the K-means algorithm,
leading to similar processing times. Also, based on the reported ARIs and NMIs on different data
sets, K-means and LSC performed similarly. According to the reported processing time for all data
sets, Multi-SSC, both with MPs and IAPs takes more time than the other approaches K-means, FCM,
LSC, and HESSC. This can be attributed to (1) the spatial feature extraction step, which can be
time consuming when extracting the spatial information from larger data sets, and (2) the ECC
step, which generates the final binary clustering result from a binary matrix that is composed of
100 individual binary clustering results) [28,51]. Nonetheless, with respect to the calculated ARI
and NMI, the most accurate performance on all data sets is obtained by Multi-SSC with IAPs.
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This observation shows that our proposed algorithm is able to effectively fuse the spatial/contextual
and spectral information from multiple-sensor data sets. As another observation, among all the
applied clustering algorithms, ESC performs the slowest. This can be attributed to the high number of
exemplars selected by ESC. By increasing the number of exemplars, not only the processing step will
increase, but also the capability of ESC to handle large-scale data sets will drastically drop.

4. Conclusions

In this paper, we proposed Multi-SSC, a novel multi-sensor clustering algorithm that integrates
high spectral and spatial resolution images. In Multi-SSC, invariant attribute profiles (IAPs) were
extracted to incorporate the spatial information derived from a fine spatial-resolution image (RGB/
LiDAR). Then, the hierarchical sparse subspace clustering algorithm (HESSC) was adopted to fuse the
spectral information derived from an HSI with the extracted IAPs to produce the final clustering map.
The clustering performance of Multi-SSC was validated on three different data sets. Two data sets
were acquired over mining sites and used to identify the minerals of interest. The third data set is the
well-known Trento benchmark data set containing HSI and LiDAR data over a rural area. Multi-SSC
along with some conventional and state-of-the-art subspace clustering algorithms were applied on all
three data sets.

The experiments imply that in most cases, the concatenation of IAPs with spectral bands of an
HSI has the superiority to merely stacking the HSI bands with RGB and LiDAR bands. Furthermore,
it is also observed that, fusing the multi sensor data sets using Multi-SSC considerably increases the
clustering accuracies. The clustering maps obtained by Multi-SSC contain homogeneous areas and
preserve the structures present in the scene. The proposed multi-sensor algorithm evenly balances the
contribution of spectral and spatial information, and allows to adapt the ratio of employing spectral to
spatial information according to the applications at hand.
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