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Abstract: Fusing a low spatial resolution hyperspectral image (HSI) with a high spatial resolution
multispectral image (MSI), aiming to produce a super-resolution hyperspectral image, has recently
attracted increasing research interest. In this paper, a novel approach based on coupled non-negative
tensor decomposition is proposed. The proposed method performs a tucker tensor factorization of a
low resolution hyperspectral image and a high resolution multispectral image under the constraint of
non-negative tensor decomposition (NTD). The conventional matrix factorization methods essentially
lose spatio-spectral structure information when stacking the 3D data structure of a hyperspectral
image into a matrix form. Moreover, the spectral, spatial, or their joint structural features have to be
imposed from the outside as a constraint to well pose the matrix factorization problem. The proposed
method has the advantage of preserving the spatio-spectral structure of hyperspectral images. In this
paper, the NTD is directly imposed on the coupled tensors of the HSI and MSI. Hence, the intrinsic
spatio-spectral structure of the HSI is represented without loss, and spatial and spectral information
can be interdependently exploited. Furthermore, multilinear interactions of different modes of
the HSIs can be exactly modeled with the core tensor of the Tucker tensor decomposition. The
proposed method is straightforward and easy to implement. Unlike other state-of-the-art approaches,
the complexity of the proposed approach is linear with the size of the HSI cube. Experiments on
two well-known datasets give promising results when compared with some recent methods from
the literature.

Keywords: high resolution multispectral image; image fusion; low resolution hyperspectral image;
multiplicative update rules; non-negative Tucker tensor decomposition

1. Introduction

Hyperspectral imagery utilizes a broad range of the electromagnetic spectrum to
obtain information of the imaged scene, allowing better identification of materials or
detection of processes. As each band of a HSI contains the spectral response to a narrow
interval of the electromagnetic spectrum, it is necessary to collect reflectance from a wider
area on the scene, decreasing the spatial resolution of HSIs. HSI acquisition instruments
have extensive limitations for capturing high-resolution images, and there is always a
tradeoff between spectral resolution and spatial resolution.

Hence, we always need spatial information provided from outside; using an aux-
iliary image consisting of panchromatic image, multispectral image or an RGB one is
a well-known approach. In recent years, there have been several attempts which fuse
a high resolution multispectral image (HRMSI) with a low resolution hyperspectral im-
age (LRHSI) [1–13] to produce a high spatio-spectral resolution HSI. Basically, all fusion
approaches can be grouped in the following categories: methods using a Bayesian frame-
work [6,11,14–18], matrix factorization based methods [4,5,12,19–21], tensor factorization
based methods [1,3,9,22–25] and deep learning based methods [26–28].
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Bayesian methods apply the observed LRHSI and HRMSI and some prior information
or regularization terms to build up the statistical model for estimating a super-resolution
HSI [29]. In [11], a Bayesian framework is introduced, based on a sparse representation
along with the alternating direction method of multipliers (ADMM) to solve the fusion
problem. In our previous work [15], smooth graph signal modeling is employed to regu-
larize in order to incorporate the spatio-spectral joint structural features of the HSI. The
method proposed in [6] uses spectral unmixing and sparse representations in a Bayesian
framework to increase the spatial resolution of the HSI. The most important deficiency
of the Bayesian framework is that regularization terms are required that should compre-
hensively represent spatial information of HSIs, which is partially lost by matricizing
the HSI.

As an alternative approach, matrix factorization approaches have been widely applied
to fuse LRHSI with HRMSI [4,5,12,19–21]. These methods describe the targeted high
resolution HSI (HRHSI) as a product of a matrix of basis vectors of spectral signatures,
learned from the high spectral resolution LRHSI, and a coefficient matrix, estimated from
auxiliary data, such as a HRMSI. The method proposed in [4] exploits non-local self-
similarity, based on a spatial and spectral sparse representation to estimate both basis
vectors and coefficient matrices. Ref. [5] employed a non-negative structured sparse
representation to estimate the spectral basis vectors, and a structured sparse representation
is utilized to determine the coefficient matrices. In [19,20], the spatial structure of HRHSI
is applied as regularization to estimate the super-resolution HSI. The method proposed
in [12] applied spectral unmixing to regularize the fusion problem. This method alternately
updates spectral basis vectors and coefficient matrices, subject to non- negativity and
sum-to-one constraints. As HSIs are essentially non-negative data, non-negative matrix
factorization (NMF) frameworks are quite compatible with the observed data. Therefore,
the approach proposed in [21] alternately factorizes the LRHSI and HRMSI under non-
negativity constraints, and multiplicative update rules (MUR) [30] are engaged to estimate
the two factorized matrices in each stage. Of note, in Bayesian frameworks and NMF-based
approaches, the 3D data structure is stacked into a matrix form, which causes a loss in
the neighborhood structures, smoothness, and continuity characteristics. To avoid this,
tensors or multiway arrays have been frequently used in hyperspectral data analysis for the
purposes of image classification [31–33], data compression [34,35], change detection [36,37],
target and anomaly detection [36,38], and denoising [39,40]. Additionally, exploiting
the capability of multilinear algebra on the multiway array representations allows more
flexibility in choosing constraints and describing data structures. Moreover, more general
features can be extracted from the data compared with the matrix-based approaches. More
recently, tensor-based representations have been widely used for HSI super-resolution [1,9,
22,24,41]. The representation of a HSI as a tensor of order three is a structural and natural
model without any loss of information. In most of these methods, a low rank tensor
representation is exploited to estimate the HRHSI. It offers the benefits of extreme noise
and memory usage reduction, and extraction of discriminative features [41]. Accordingly,
two well-known tensor decompositions, the Canonical Polyadic decomposition (CPD) and
the Tucker decomposition, are frequently used to estimate HRHSIs [9,22,24,25,31,42]. The
former decomposes a tensor into the sum of component rank-one tensors, while the later
factors three-dimensional data into the multiplication (mode-n products) of four fractions:
a core tensor and three dictionary matrices corresponding to each mode (see Figure 1).
In [22], a low rank tensor-train representation is incorporated for HSI super-resolution.
In [23], nonlocal sparse tensor factorization is proposed to model non-local self-similarity
of HSIs. In [24], a nonlocal coupled CPD framework is used to fuse hyperspectral and
multispectral images. A spatio-spectral sparsity prior constraint is imposed on the core
tensor in a coupled sparse tensor factorization method in [9]. In [38], a low-rank constraint
is applied to the core tensor in the Tucker representation to detect anomalies in HSI. It
effectively shows the superposition of a spectral background and the anomaly signatures.
A coupled CP decomposition based method is proposed in [43], which fused LRHSI and



Remote Sens. 2021, 13, 2930 3 of 20

HRMSI to produce a HRHSI in a tensor framework. Note that the CP-based rank of a
tensor is defined as the minimum of rank-one component tensors that are summed to
express that tensor, which is unknown and generally not easy to estimate. Meanwhile, in
the Tucker representation there is just one component tensor which is called the core tensor.
It can comprehensively express the relations between the various modes and multilinear
interactions among them.

Moreover, with the recent success of deep learning techniques in various image
processing tasks, an increasing research interest arose for deep learning-based image fusion.
In [27] a fusion method based on convolutional neural networks (CNN) was proposed, in
which the two CNN branches are devoted to spectral features of the LR-HSI and spatial
neighborhood features of the HR-MSI, respectively. In [28], an unsupervised deep approach
was proposed for a blind fusion of HRMSI and LRHSI, considering no prior assumptions on
spatial and spectral degradation functions. Instead, they are modeled with deep network
structures. The largest deficiency of the deep learning-based methods is their requirement
of huge amounts of training data, which is practically not available. Furthermore, deep
learning-based methods have limited generalization ability regarding the different sensor
characteristics such as spectral range and the observational models.

AS HSI is naturally non-negative data, it has a strong prior knowledge to apply to
the tensor factorization method, which is expected to further improve the performance
of the fusion. In this paper, we extend NMF to a tensor framework, applying a non-
negative tensor decomposition. Contrary to the conventional NMF-based methods, where
the spatial, spectral, or their joint structural features must be additionally imposed as
constraints, in this paper, the spatio-spectral joint structures of HSIs are preserved without
having to impose constraints. We optimally exploit the spectral properties of the LRHSI
and the spatial properties of the HRMSI, by directly applying a coupled (non-negative)
Tucker decomposition to both images. We will refer to the proposed method as coupled
non-negative Tucker decomposition (CNTD).
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Figure 1. Tensor factorization; (a) 3-dimensional tensor, (b) Tucker tensor decomposition.

Using the Tucker tensor representation, the proposed method comprehensively models
multilinear modes of the HSI, where the core tensor precisely expresses the relations
between the various modes. Therefore we proposed this tensor framework to benefit from
its ability to preserve spatio-spectral joint structures. Regarding the huge amount of data in
hyperspectral image processing and analysis, computation efficiency is a significant factor.
Thus, we propose an algorithm which is straightforward and easy to implement, with a
complexity, linear with the size of the hyperspectral data cube. The main contributions of
this paper are highlighted below.

• The application of non-negativity priors to the Tucker tensor decomposition of LRHSI
and HRMSI, to estimate spectral and spatial mode-dictionaries in a Tucker model,
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respectively. To the best of our knowledge, this is the first time that a non-negative
Tucker decomposition is used to represent hyperspectral images in a HSI fusion
framework.

• The preservation of spatio-spectral joint structures of HSIs without prior knowledge
requirements and much lower information losses than matrix frameworks.

• The construction of an algorithm with lower-order complexity than the state-of-the-art.

The remainder of this paper is organized as follows. Some preliminaries on tensors
are given in Section 2. Section 3 formulates the HSI-MSI fusion framework. The proposed
coupled non-negative tensor decomposition (CNTD) method for super-resolution HSI is
introduced in Section 4. The complexity of the proposed method is elaborated in Section 5.
Section 6 describes some experimental results on two well-known datasets, Pavia University
and Indian Pines. Finally, conclusions and future work are described in Section 7.

2. Preliminaries on Tensors

Let us denote a tensor of order N as X ∈ RI1×I2×...×IN , having N indices i1, i2, . . . , iN
and its members by xi1i2 ... iN where 1 ≤ in ≤ In. Tensor matricization unfolds a tensor
of order N into a matrix. The mode-n matricization of X reorders the elements of X to
form the matrix X(n) ∈ RIn×In+1 In+2 ...IN I1 I2 ...In−1 . Tensor matricization can be regarded as an
extension to matrix vectorization.

The mode-n product of tensor X ∈ RI1×I2×...×IN and matrix A ∈ RJn×In , is defined by
M = X ×n A ∈ RI1×I2×...×Jn×...×IN , and entries are calculated by:

mi1 ...in−1 Jnin+1 ...iN = ∑
in

xi1 ...in−1inin+1 ...iN ajnin (1)

The mode-n product X ×n A can also be denoted in matrix form as M(n) = AX(n). The
mode-n product has two important properties: (i) the order of multiple mode-n products
with different modes is arbitrary:

(X ×m A)×n B = (X ×n B)×m A (m 6= n) (2)

and for multiple mode-n products with the same modes, the order is relevant:

(X ×n A)×n B = X ×n (BA) (3)

The scalar product of two tensorsX ,Y indicated as< X ,Y > = ∑i1,i2,...,iN xi1,i2,...,iNyi1,i2,...,iN .
The Frobenius norm of a tensor X is indicated as ‖X ‖F =

√
< X ,X >.

The Tucker decomposition of X ∈ RI1×I2×...×IN is expressed as mode products of a
core tensor U ∈ RK1×K2×...×KN and N mode matrices V(n) ∈ RIn×Kn , which is expressed as:

X = U ×1 V(1) ×2 V(2) . . .×N V(N) (4)

which has an element-wise form given by:

xi1 ...iN = ∑
k1 ...kN

uk1 ...kN v(1)i1k1
v(2)i2k2

. . . v(N)
iN kN

(5)

The mode-n matricization form of X is expressed by Kronecker products (
⊗

) of the
mode-n matricization of the core tensor and mode matrices, as:

X(n) = V(n)U(n)[V
(n−1)⊗ . . .

⊗
V(2)⊗V(1)⊗V(N)⊗

. . .
⊗

V(n+2)⊗V(n+1) (6)
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where U(n) is the mode-n matricization of the core tensor U . The Kronecker product of two
matrices A ∈ RI×J and B ∈ RK×L is a matrix denoted by A

⊗
B ∈ RIK×JL, defined as:
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⊗
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Notation Description

X Tensor

X Matrix

x Tensor element

x Spectral vector of tensor

X Scaler

×n Mode-n product⊗
Kronecker product
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X(n) n mode matrix in Tucker decomposition

3. HSI-MSI Fusion Problem Formulation

In this paper, the HRHSI, LRHSI, and HRMSI are denoted as tensors of order three.
The target HRHSI is denoted by Z ∈ RW×H×S, where W, H and S are the width, height
and number of spectral bands, respectively. The LRHSI and HRMSI are denoted by
Yh ∈ Rw×h×S and Ym ∈ RW×H×s, respectively, with w� W, h� H and s� S. In this
paper, we aim at estimating a HRHSI in a fusion framework, based on the observations Yh
and Ym. In this section, we briefly describe the matrix factorization-based fusion scheme
and then detail the tensor decomposition-based scheme.

3.1. Matrix Factorization-Based Fusion Scheme

In the matrix factorization-based fusion scheme, each spectral signature of the HRHSI
is considered to be a linear mixture of a small number of basis vectors:

Z(3) = EA (9)

where, Z(3) ∈ RS×WH is the mode-three matricization of Z . E ∈ RS×k contains the
basis vectors in its columns and A ∈ Rk×WH is the coefficient matrix. Similarly Yh(3) ∈
RS×wh and Ym(3) ∈ Rs×WH are the mode-three matricization of Yh and Ym, respectively.
Conventionally, they can be considered as spectral and spatial down-sampled versions of
the target HRHSI. Thus:

Yh(3) = Z(3)M (10)
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where, M ∈ RWH×wh is the point spread function (PSF) matrix and the spatial down-
sampling in the hyperspectral sensor. It can be separated regarding width and height
modes [9]:

M = (P2
⊗

P1)
T

(11)

where P1 ∈ Rw×W and P2 ∈ Rh×H are spatial separable down-sampling operators of the
width and height spatial modes, respectively.

Similarly:
Ym(3) = P3Z(3) (12)

where P3 ∈ Rs×S is a matrix, modeling spectral down-sampling in the multispectral sensor.
Therefore, the spectral response functions (SRF) of the multispectral sensor is included
within its rows.

Commonly, in the HSI-MSI fusion problem formulation, the SRF and PSF are assumed
to be known [4,9,11,17,25]. the proposed approach in [19] is also used to approximate the
SRF and PSF from observed data. Following (10):

P3Yh(3) = P3Z(3)M (13)

which, according to (12), can also be written as:

P3Yh(3) = Ym(3)M (14)

In, an optimization framework, based on quadratic regularizing, is presented to
estimate P3 and M from the observed LRHSI and HRMSI:

min
P3,M
‖P3Yh(3) − Ym(3)M‖2 +α1Γ1(P3) +α2Γ2(M) (15)

where Γ1(·) and Γ2(·) are quadratic regularizers, α1 and α2 are the respective regularization
parameters. See [19] for more details.

3.2. Tensor Decomposition-Based Fusion Scheme

As HSIs are naturally 3D data, the tensor is a more efficient representation than a
matrix form, and we can benefit from its ability to exploit intrinsic structures of the HSI
and multilinear interactions between its different modes. Hence, in this paper, the target
HRHSI Z is formally expressed by:

Z = C ×1 W×2 H×3 S (16)

which is called the Tucker representation, where W ∈ RW×nw , H ∈ RH×nh and S ∈ RS×ns

are width, height and spectral dictionary matrices, respectively. nw, nh and ns are the
number dictionary atoms of each mode, and C ∈ Rnw×nh×ns is the core tensor that denotes
the interactions between several modes.

Mode-n (n = 1, 2, 3) matricizations of Z are given by:

Z(1) = WC(1)(S
⊗

H)T

Z(2) = HC(2)(S
⊗

W)T

Z(3) = SC(3)(H
⊗

W)T
(17)

Similarly, both LRHSI and HRMSI are represented by:

Yh = C ×1 Wh ×2 Hh ×3 S + Eh (18)

Ym = C ×1 W×2 H×3 Sm + Em (19)

where Wh ∈ Rw×nw , Hh ∈ Rh×nh and Sm ∈ Rs×ns are width, height, and spectral dictio-
nary matrices, respectively, and Eh ∈ Rw×h×S and Em ∈ RW×H×s denote Independent-
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Identically-Distributed (i.i.d.) noise of Yh and Ym, respectively. As the LRHSI and HRMSI
are the spatially and spectrally down-sampled form of the HRHSI, respectively, one has:

Wh = P1W (20)

Hh = P2H (21)

Sm = P3S (22)

4. Proposed CNTD Approach

The goal of a LRHSI and HRMSI fusion framework is to estimate a high spatio-spectral
target HSI. Since w � W, h � H and s � S, the super resolution problem is severely
ill-posed and prior information is needed to regularize the fusion problem. Orthogonality
and statistical independency of basis vectors in the Tucker representation, and sparsity,
smoothness, and non-negativity of HSIs are some constraints that help to find a unique
solution for the super-resolution problem of HSIs [44–46].

In this paper, we propose a new algorithm based on coupled non-negative Tucker
decomposition (CNTD). The proposed method performs Tucker tensor decomposition of
the LRHSI and HRMSI, subject to NTD. The original NMF method inherently loses spatio-
spectral joint structure information when unfolding the 3D data into matrix form. Therefore,
in this paper, we impose NTD to both tensors of the HSI and MSI directly. The CNTD
method effectively combines multiple data tensors, where the intrinsic spatio-spectral joint
structures of HSI can be represented without loss and interdependently exploited. The
proposed CNTD approach is depicted in Figure 2, illustrating the fusion of the spatial
information of HRMSI and the spectral information of LRHSI to produce the HRHSI.
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Considering (16), (18), and (19), the LRHSI and HRMSI fusion problem is formulated
by the following constrained least square optimization problems:

min
C,Wh,Hh,S

‖Yh − C ×1 Wh ×2 Hh ×3 S‖2
F

s.t. C, Wh, Hh, S ≥ 0
(23)

min
C,W, H, Sm

‖Ym − C ×1 W×2 H×3 Sm‖2
F

s.t. C, W, H, Sm ≥ 0
(24)

Hyperspectral and multispectral data fusion, based on NTD, is executed by the
estimation of the corresponding dictionaries and the core tensor. The non-negative Tucker
tensor decomposition is non-convex in its entirety, but it is convex in each of its factors.
We easily derive updated rules for each mode-dictionary matrix by matricizing the Tucker
model into its corresponding modes. Therefore, these can be considered as conventional
NMF for which we use a block coordinate descent scheme. Therefore, the cost functions
are optimized with respect to each factor while keeping the others fixed. Traditionally in
gradient descent, the learning rates are positive, but since the subtraction of terms in the
updated rules can lead to negative elements, Lee and Seung [30] proposed to use adaptive
learning rates to avoid subtraction and thus the production of negative elements. Like the
conventional NMF, the optimization algorithm is easy to implement and computationally
efficient. NTD attempts to decompose a non-negative data tensor into the multilinear
products of a non-negative core tensor and non-negative mode-dictionary matrices [47]. To
minimize the predefined optimization problems (23) and (24), the multiplicative update
rule (MUR) is applied, and can be directly achieved by NMF multiplicative rule, for which
the convergence to local optima under the non-negativity constraints has been proven
in [30,48].

4.1. Updating Mode-Dictionary Matrices

Updating algorithms for each mode-dictionary matrix can be easily derived by ma-
tricizing the Tucker model into its corresponding modes. Lee and Seung’s multiplicative
update rule has been a widely known approach owing to the simplicity of its implemen-
tation [30]. We use an extended MUR for the mode-dictionary matrices of Yh. The first
mode matricization of Yh is given by:

Yh(1) ≈ Wh︸ ︷︷ ︸
1st f raction o f the
conventional NMF

, α

C(1)

(
S
⊗

Hh

)T

︸ ︷︷ ︸
2nd f raction o f the
conventional NMF

, β

(25)

where Yh(1) and C(1) are the first mode matricization of LRHSI (Yh) and the core tensor
(C), respectively. Equation (25) can be rewritten as Yh(1) ≈ αβ, just like the conventional
NMF, for which the updating rules are given by [49]:

α← α~
Yh(1)β

T

αββT

β← β~
αTYh(1)
αTαβ

(26)

Equation (25) can be treated as the conventional NMF, where each fraction is updated
using MUR (26):
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Wh ←Wh ~
Yh(1)

[
C(1)(S

⊗
Hh)

T
]T

WhC(1)(S
⊗

Hh)
T
[
C(1)(S

⊗
Hh)

T
]T (27)

where the fraction line denotes the element-wise division.
Similarly, the second mode matricization of Yh is given by:

Yh(2) ≈ Hh︸ ︷︷ ︸
1st f raction o f the
conventional NMF

C(2)

(
S
⊗

Wh

)T

︸ ︷︷ ︸
2nd f raction o f the
conventional NMF

(28)

and the second mode-dictionary matrix is updated as:

Hh ← Hh ~
Yh(2)

[
C(2)(S

⊗
Wh)

T
]T

HhC(2)(S
⊗

Wh)
T
[
C(2)(S

⊗
Wh)

T
]T (29)

Finally, the third mode matricization of Yh is given by Yh(3) ≈ SC(3)(Hh
⊗

Wh)
T.

Therefore, the spectral mode-dictionary (S) is updated as:

S← S ~
Yh(3)

[
C(3)(Hh

⊗
Wh)

T
]T

SC(3)(Hh
⊗

Wh)
T
[
C(3)(Hh

⊗
Wh)

T
]T (30)

4.2. Updating Core Tensor

Applying (8) to (25):

vec
(

Yh(1)

)
= vec

(
WhC(1)(S

⊗
Hh)

T
)
=

(
S
⊗

Hh
⊗

Wh

)
︸ ︷︷ ︸
1st f raction o f the
conventional NMF

vec
(

C(1)

)
︸ ︷︷ ︸

2nd f raction o f the
conventional NMF

(31)

which can be treated as the conventional NMF as well. Incorporating MUR to calculate the
core tensor (C):

vec
(

C(1)

)
← vec

(
C(1)

)
~

(S
⊗

Hh
⊗

Wh)
Tvec(Yh(1))

(S
⊗

Hh
⊗

Wh)
T(S

⊗
Hh

⊗
Wh)vec

(
C(1)

) (32)

Applying (8) to the numerator of (32):

(S
⊗

Hh
⊗

Wh)
Tvec(Yh(1)) =

(
(S
⊗

Hh)
T ⊗Wh

T
)

vec(Yh(1))

= vec
(

Wh
TYh(1)

(
ST ⊗Hh

T
)T
)

= vec
(
(Yh ×1 Wh

T ×2 Hh
T ×3 ST)(1)

) (33)
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and its denominator is given by:

(S
⊗

Hh
⊗

Wh)
T(S

⊗
Hh

⊗
Wh)vec

(
C(1)

)
=
(
(S
⊗

Hh)
T ⊗Wh

T
)
((S

⊗
Hh)

⊗
Wh)vec

(
C(1)

)
=
[(

(S
⊗

Hh)
T(S

⊗
Hh)

)⊗(
Wh

TWh
)]

vec
(

C(1)

)
= vec

((
Wh

TWh
)
C(1)

(
STS

⊗
Hh

THh

))
= vec

((
C ×1 WT

h Wh ×2 HT
h Hh ×3 STS

)
(1)

)
(34)

As a result, the core tensor C is updated by:

C ← C ~
Yh ×1 WT

h ×2 HT
h ×3 ST

C ×1 WT
h Wh ×2 HT

h Hh ×3 STS
(35)

When performing MUR for Ym in a similar way, the following updating relations for
Ym are obtained:

W←W ~
Ym(1)

[
C(1)(Sm

⊗
H)T

]T

WC(1)(Sm
⊗

H)T
[
C(1)(Sm

⊗
H)T

]T (36)

H← H ~
Ym(2)

[
C(2)(Sm

⊗
W)T

]T

HC(2)(Sm
⊗

W)T
[
C(2)(Sm

⊗
W)T

]T (37)

Sm ← Sm ~
Ym(3)

[
C(3)(H

⊗
W)T

]T

SmC(3)(H
⊗

W)T
[
C(3)(H

⊗
W)T

]T (38)

C ← C ~
Ym ×1 WT ×2 HT ×3 Sm

T

C ×1 ×1WTW×2 HTH×3 SmTSm
(39)

As the LRHSI and HRMSI contain, respectively, spectral and spatial information of the
target image, the spectral mode-dictionary S is initialized using the former and the spatial
mode-dictionary matrices of the height H and width W are initialized using the latter. The
spectral mode-dictionary S is initialized using the simplex identification split augmented
Lagrangian (SISAL) algorithm [50], which efficiently identifies a minimum volume simplex
containing the LRHSI spectral vectors. The spatial mode-dictionary matrices W and H
are initialized from the mode-one and -two matricization of the HRMSI, respectively, via
dictionary update cycles of the KSVD method [51]. The core tensor C is initialized using
the ADMM framework presented in [9].

To fully exploit its spectral information, the proposed algorithm CNTD starts with
applying NTD to the LRHSI. Wh and Hh are initialized by (20) and (21), respectively, to
inherit the reliable spatial information from the HRMSI, while the other variables are fixed.
Then, Wh, Hh, S and C are alternately updated by (27), (29), (30), and (35), respectively,
until convergence of the objective function in (23).

The next step of the proposed algorithm is to apply NTD to the HRMSI. Sm is initialized
by (22), to exploit the spectral information of the LRHSI. In the optimization phase, W, H,
Sm and C are alternately updated using (36)–(39) while the other variables are fixed, until
convergence of the objective function in (24). The super-resolution HSI is calculated using
the estimated core tensor and mode-dictionary matrices. Algorithm 1 gives the pseudocode
of the proposed CNTD algorithm.



Remote Sens. 2021, 13, 2930 11 of 20

Algorithm 1: The proposed coupled non-negative tensor decomposition method.

Input: LRHSI (Yh), HRMSI (Ym).
Output: HRHSI (Z)
Estimate PSF (P1, P2), SRF (P3), using method from [19].
Initialize the core tensor (C) via ADMM [9], and mode-dictionaries (W, H, S) via DUC
KSVD [51].
NTD for Yh
Initialize Wh, Hh by (20), (21), respectively.
Update Wh, Hh, S and C alternately by (27), (29), (30) and (35), respectively until convergence of
NTD for Ym
Initialize Sm by (22)
Update W, H, Sm and C alternately by (36)–(39) until convergence of the objective function in (24).
Using the estimated W, H, S and C to calculate the HRHSI (Z) via Tucker tensor
decomposition (16).

5. Computational Complexity

In this section, we analyze the computational complexity of the proposed method.
According to Algorithm 1, the proposed method includes two sub-optimization problems,
which engage MURs to estimate the NTD of Yh and Ym. Each sub-optimization problem
mainly contains four updating steps. In each step, the heaviest parts are the multiplica-
tions of the core matrix with the output of the Kronecker products. For optimizing the
width dictionary, this term is given by C(1)(S

⊗
Hh)

T, which has a complexity order of

O(nwnhnsSh). For the height dictionary, the term C(2)(S
⊗

Wh)
T has a complexity order of

O(nwnsnhSw). For the spectral dictionary, the term C(3)(Hh
⊗

Wh)
T has a complexity or-

der of O(nwnsnhhw). Finally, the highest complexity order of the core tensor is O
(
nwn2

s n2
h
)
.

Similarly, the heaviest parts of the second sub-optimization step have complexity orders
O(nwnhnssH), O(nwnsnhsW), O(nwnsnh HW), and O

(
nwn2

s n2
h
)

for W, H, Sm, and C, respec-
tively. Given that, LR-HSI and HR-HSI are the spatial and spectral down-sampled versions
of HR-HSI, respectively, W, H and S are multiples of w, h and s, respectively. Therefore,
the overall computational complexity of the proposed algorithm can be expressed as:

O(nwnhnsHS) + O(nwnhnsWS) + O(nwnhnsWH) + O
(

nwn2
hn2

s

)
(40)

From (40), one can observe that the overall computational complexity is linear with
the size of the HSI cube (W, H, S). This is just the same as that of the conventional NMF
algorithm, owing to the fact that each update step of the proposed CNTD method can
be considered as an NMF problem. Of note, the complexity of the proposed method
outperforms the other state-of-the-art tensor factorization methods [4,9,23].

6. Experimental Observations and Results
6.1. Data Sets

The proposed method CNTD is performed on two well-known data sets, depicted in
Figure 3. The first data set is the Pavia University image [52], which is captured by the
Reflective-Optics-System-Imaging-Spectrometer (ROSIS) optical sensor upon the Pavia
University in Italy. The reference HRHSI is a 120× 120× 93 image with 1.3 m per pixel
spatial resolution. The wavelength domain from 430 to 860 mm is removed because of low
SNR and water vapor absorptions. The 30× 30× 93 LRHSI is produced by applying a
Gaussian spatial blurring filter on each band of the reference image, and down-sampling
with a factor of four in both width and height directions. The HRMSI of size 120× 120× 4
is produced by filtering the reference image with the IKONOS-like reflectance spectral
response function depicted in Figure 4. (see [19] for more details about SRF and PSF).

The Indian Pines image is the second test data set. It was acquired by the NASA
Aeronautics-and-Space-Administration-Airborne-Visible-Infrared-Imaging-Spectrometer
(AVIRIS) [53] over the Indian Pines scene situated in North-Western Indiana. The ref-
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erence image of size 120× 120× 224 has a wavelength domain from 400 nm to 2500 nm
and a 20 m per pixel spatial resolution. We reduced its number of bands to 185 after
removing the water absorption and noisy bands (1–4, 104–115, 150–170, 223 and 224). The
LRHSI of size 30× 30× 185 was constructed after down-sampling and application of the
same blurring filters as which were applied to the first data set. The LANDSAT 7-like
spectral response function, depicted in Figure 4, is engaged to produce a HRMSI of size
120× 120× 6. The reference, LRHSI and HRMSI of both data sets are depicted in Figure 3.
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6.2. Evaluation Criteria

The performance of the proposed method is evaluated using five different indices.
The first index, which is a measure of spectral distortion, is the spectral angle mapper
(SAM) in degrees. The angle between pixel spectral responses Ẑ j and Z j of the estimated
HRHSI (Ẑ) and the reference image (Z) are calculated, then averaged over all pixels. It is
expressed as:
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SAM
(
Z , Ẑ

)
=

1
WH

WH

∑
j=1

arccos

 ẐT
j Ẑ

‖Ẑ j‖2 ‖Z j‖2

 (41)

the ideal SAM value being zero.
The second index is the root mean squared error (RMSE) that evaluates the quality of

the estimated HRHSI (Ẑ), compared to the reference image (Z). It is defined as:

RMSE
(
Z , Ẑ

)
=

√
‖Z − Ẑ‖2

F
WHS

(42)

The third evaluation index is the relative dimensionless global error in synthesis
(ERGAS), which measures the spectral quality of the estimated HRHSI, and is defined as:

ERGAS = 100
WH
wh

√√√√ 1
S

S

∑
i=1

((
RMSE

(
Ẑi,:, Zi,:

))
µZi,:

)2

(43)

where Ẑi,: and Zi,: denote the ith band of Ẑ and Z , respectively. µZi,: is the mean of Zi,:. A
lower ERGAS value means a lower spectral distortion between the estimated HRHSI (Ẑ)
and the reference image (Z). In the case of perfect reconstruction, it is zero.

The degree of the distortion (DD) is the fourth index, defined as:

DD
(
Z , Ẑ

)
=

1
WHS

vec‖(Z)− vec
(
Ẑ
)
‖

1
(44)

where ‖·‖1 is `1 norm, and vec(Z) and vec
(
Ẑ
)

are the vectorization of tensors Z and Ẑ ,
respectively. The smaller the value of DD, the lower the spectral distortion.

The fifth index is the universal image quality index (UIQI) [54]. It is calculated by
averaging over 32× 32 windows. The UIQI between the ith band of Ẑ and Z is calculated
by:

UIQI
(
Zi, Ẑi

)
=

1
d

d

∑
j=1

σ
Zi

jẐ
i
j

σZi
j
σ

Ẑi
j

2µZi
j
µ

Ẑi
j

µZi
j
+ µ

Ẑi
j

2σZi
j
σ

Ẑi
j

σZi
j
+ σ

Ẑi
j

(45)

where d is the number of windows, Ẑi
j and Zi

j denote the jth window of the ith band of Ẑ
and Z , respectively, σ

Zi
jẐ

i
j

is the sample covariance between Zi
j and Ẑi

j, µZi
j

and σZi
j

are the

mean and standard deviations of Zi
j, respectively. The UIQI index between Ẑ and Z is the

average UIQI value of all bands, which is:

UIQI
(
Z , Ẑ

)
=

1
S

S

∑
i=1

UIQI
(
Zi,:, Ẑi,:

)
(46)

The ideal UIQI value is one.
All of the experiments were performed using MATLAB version R2016a, and have

been run by a computer with an Intel Core i5 central processing unit (CPU) at 3.4 GHz and
32 GB random access memory (RAM).

6.3. Evaluation of the Parameters

In order to evaluate the sensitivity of the proposed CNTD approach w. r. t. and
its essential parameters, i.e., the number of mode (width, height, and depth) dictionary
atoms nw, nh and ns, the proposed method has been performed for different numbers of
mode-dictionary atoms. Figure 5a–c shows the RMSE of the estimated Pavia University
and Indian Pines data sets as functions of the number of mode-dictionary atoms nw, nh
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and ns, respectively. As Figure 5a,b shows, the RMSE of both data sets strongly declines
when nw and nh increase from 5 to 200. After that, the RMSE does not improve any further.
Therefore, we chose to set the values of nw and nh to 167 for both data sets for all remaining
experiments. As can be seen from Figure 5c, the RMSE for Pavia University decreases
while ns increases from 5 to 40. For Indian Pines, the RMSE decreases as ns increases from
5 to 100, after which it does not decrease any further. Hence, we set ns to 30 for both
aforementioned data sets. That the proposed CNTD method requires larger width and
height mode-dictionaries compared to the spectral mode-dictionary is because generally
the HSIs spectral vectors belong to a much lower dimension subspace.
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6.4. Comparison with State of the Art Fusion Methods

The proposed fusion method is compared with state-of-the-art methods. In order
to see the impact of non-negative priors, the CNTD method is compared with tensor
decomposition methods CSFT [9] and NLSTF [23], which do not include non-negativity.
Additionally, the proposed CNTD approach is compared with the well-known matrix
framework CNMF [21], aiming to evaluate the ability of the proposed CNTD approach to
preserve the spatio-spectral structure. Furthermore, our Tucker based method is compared
with a CP tensor decomposition method, referred to as STEREO [43]. Finally, we have
compared with the two-branched CNN method of [28].

The experiments validate the superiority of the proposed CNTD method on three
aspects: the advantage of non-negative priors, the ability to preserve the spatio-spectral
structure, and the computational complexity. RMSE, SAM, DD, ERGAS and UIQI for all
approaches are shown in Tables 2 and 3 for the Pavia University and Indian Pines data
sets, respectively. To evaluate the computational complexity of the proposed method in
comparison with the matrix-based method and the other tensor frameworks, the computa-
tion times of CNMF, CSTF, NLSTF and the proposed CNTD are shown in Table 4. The best
values are depicted in bold.

It can be observed from Tables 2 and 3 that the proposed method outperforms the
other competing methods in terms of RMSE, DD, and UIQI indices, and shows promising
results for the other indices. The proposed method outperforms CNMF, CNN and STEREO
in almost all of the indices on both data sets. Of note, the efficiency of the CNN method
highly depends on the training sample rate, while a huge amount of hyperspectral training
data is practically unavailable. Furthermore, the proposed CNTD method outperforms the
CSFT for most indices on both data sets. It also has better values of RMSE, DD, and UIQI
than NLSTF.
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Table 2. Quantitative metrics of the different fusion methods on the Pavia University data set.

Method
Pavia University Data Set

RMSE SAM DD ERGAS UIQI

Ideal value 0.000 0.000 0.000 0.000 1.000

CNMF [21] 0.140 4.313 0.017 4.989 0.952

CSTF [9] 2.160 2.390 1.055 1.230 0.991

NLSTF [23] 1.452 0.964 0.846 0.520 0.993

CNN [27] 0.016 2.203 0.103 1.447 0.976

STEREO [43] 0.061 3.922 0.010 1.865 0.989

CNTD method 0.008 1.963 0.005 1.169 0.996

Table 3. Quantitative metrics of the different fusion methods on the Indian Pines data set.

Method
Indian Pines Data Set

RMSE SAM DD ERGAS UIQI

Ideal value 0.000 0.000 0.000 0.000 1.000

CNMF [21] 0.054 2.142 0.008 1.789 0.954

CSTF [9] 1.533 1.363 0.997 1.082 0.974

NLSTF [23] 0.899 0.768 0.484 0.755 0.984

CNN [27] 0.013 2.270 2.090 1.060 0.820

STEREO [43] 0.042 2.303 0.007 2.538 0.932

CNTD method 0.009 1.661 0.006 1.249 0.972

As can be observed from Table 4, the proposed method is much more computationally
efficient than the competing tensor-based approaches, and is comparable to the CNMF
method. This agrees with the detailed description of the computational complexity in
Section V. In contrast to the proposed method, for some of the state-of-the-art methods,
such as CSTF and NLTF, the complexity increases faster than that which is linear with the
size of the HSI cube.

Table 4. Computational time (s).

Method Pavia University Data Set Indian Pines Data Set

CNMF [21] 8.283 10.660

NLSTF [23] 14.017 16.503

CSTF [9] 90.191 92.660

CNTD method 6.301 9.508

In order to validate the performance with respect to preserving spatial structures,
in Figure 6, band 30 of the LRHSI and the estimated HRHSI with CNMF, CSTF, NLSTF,
CNN, STEREO and the proposed CNTD are compared with the reference HRHSI. It can
be observed that the proposed CNTD approach can correctly estimate most of the spatial
details of the HRHSI, though there are a few distortions in the fusion results. Additionally,
the error images of band 30, which reflect the differences between the estimated HRHSI
and the reference image of both data sets are shown in Figure 7. The error images of the
LRHSI, CNMF, CSTF, NLSTF, CNN, STEREO and the proposed CNTD are depicted. The
proposed approach estimates spatial details of the HRHSI with much lower error than the
competing methods. With CNMF and CNN, the edge structures of the HSI are lost, while
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CSTF, NLSTF and STEREO suffer from errors in homogeneous regions. The proposed
approach performs better in preserving the spatial structures of HSIs at both edges and
homogeneous regions.
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7. Conclusions

The main objective of this paper was to extend the matrix formulation of non-negative
matrix factorization to a tensor framework for the purpose of hyperspectral and multispec-
tral image fusion. We proposed a coupled non-negative tensor decomposition approach
that can be treated as a conventional NMF-based model. The proposed approach performs
a tucker tensor factorization of a LRHSI and a HRMSI under the constraint of non-negative
tensor decomposition. Unlike other state of the art methods, the complexity of the pro-
posed approach is linear with the size of the HSI cube. The proposed approach gives
competitive results with the state-of-the-art fusion approaches. As a future plan, we will
incorporate prior information, such as spectral self-similarity, sparsity, smoothness and
local consistence in the non-negative tensor decomposition, in order to find better unique
basis vectors for the Tucker representation. Furthermore, in this paper we assumed the SRF
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and PSF to be known and also two input images considered to be registered. Therefore, we
will try to overcome these limitations in our future work.
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