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Abstract: In this work, we studied the potential of the visible, near-infrared, and shortwave infrared
wavelength regions for monitoring oil spill incidents using optical reflectance. First, a simple physical
model was designed for accurate oil thickness and volume estimation using optical reflectance. The
developed method was made invariant to changes in acquisition and illumination conditions. In
the next step, an algorithm based on an artificial neural network was designed to detect spilled oil.
The training samples that are required to optimize the parameters of the network were generated
by utilizing the proposed physical model. To validate the method, experiments were conducted in
laboratory and outdoor scenarios for detection and thickness/volume estimation on four different
oil types. In particular, we developed hyperspectral datasets of oil samples with varying thickness
between 500 µm and 5000 µm acquired using two different sensors, an Agrispec spectrometer and an
Imec snapscan shortwave infrared hyperspectral camera, in strictly controlled experimental settings.
To demonstrate the potential of the proposed method in outdoor environments using solely the
visible wavelength region, we monitored the evolution of artificially spilled oil in an outdoor scene
with an RGB camera mounted on a drone.

Keywords: hyperspectral; oil spill; multi-sensor dataset; RGB dataset

1. Introduction

Spilled oil has a significant impact on the environment, economy, and quality of life
for inhabitants living near the spill location [1]. In marine environments, oil spills can occur
due to ship discharge, leakage of oil pipelines, and unexpected disasters [2–4]. In order to
respond to spilled oil properly, the oil has to be detected, and the thickness or volume of
the oil spill has to be accurately estimated. A vast amount of literature exists on oil spill
detection in oceans or coastal areas, based on remote sensing, usually with manned aircraft
or satellites [5–8]. In [9], several remote sensing technologies and sensors currently being
used to detect spilled oil [9] were reviewed. Passive microwave radiometers and laser
flurosensors were shown to be effective in detecting oil spills and estimating the thickness
of spilled oil at sea [9].

The potential of optical remote sensing for oil spill monitoring has been studied.
In [10], the spectral reflectance of five common oil types (crude oil, fuel oil, diesel oil,
gasoline, and palm oil) was analyzed to test the potential of the optical remote sensing of
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reflected sunlight in the visible, near-infrared, and shortwave infrared (VIS-NIR-SWIR)
wavelength regions to detect different oil types involved in the spill. In [11], four supervised
machine learning algorithms (random forest, support vector machine, deep neural network,
and deep neural network with differential pooling) were utilized to identify different
types of spilled oil. In [12], an algorithm was proposed to select an optimal three-band
spectral index for classifying oil types. In [13], two different supervised machine learning
algorithms (dense artificial neural networks and convolutional neural networks) were
designed to predict the thickness of heavy fuel oil in hyperspectral images. In [14], the
potential and limitations of optical remote sensing in detecting spilled oil were critically
reviewed. Most of the common oil types have absorption features in the SWIR (1000 nm
to 2500 nm) wavelength region around 1200 nm, 1400 nm, 1700 nm, and 2300 nm due to
molecular combinations of C-H ([15]), CH2, CH3, or OH [16]. In the VIS (400 nm to 700 nm)
and NIR (700 nm to 1000 nm) wavelength regions, most oil types do not have spectral
signatures [9,14].

When oil is spilled, oil and water are left in a two-layer mixture or weathered to form
emulsions. Oil spilled on the water surface initially spreads into a very thin layer [17].
Due to the high absorption power of water in the SWIR wavelength region, the spectral
reflectance of the oil on top of the water is negligibly small. Unlike oil on top of water,
emulsions reflect incident light diffusely. The reflected light contains features of CH [1,14],
which are useful to quantitatively estimate the oil thickness/volume or concentration. In
the remote sensing community, spectral reflectance of thick emulsions has been extensively
studied in the SWIR wavelength region to generate maps of oil-to-water ratios [18,19], to
estimate the concentration of oil [20], and to estimate the thickness of oil [19,21–23]. Because
weathering and emulsification are dynamic processes [17], the major challenge is to track
the changes in the physical and chemical properties of the oil during the estimation.

Ports are polluted by oil spills on a regular basis. For example, in 2019, 50 clean-up
interventions were registered at Port of Antwerp-Bruges in Belgium. The average costs
are between EUR 1 and 1.2 million yearly. Only about 40% of these costs are reimbursed
by the offender. Solutions are required to accurately and quickly detect oil incidents in
port areas. The literature on oil spill detection in a port environment is very scarce. Most
available technologies are not directly applicable in a port environment. The specific case
of the port environment adds complexity, which must be taken into account when selecting
appropriate technology and algorithms:

• The port environment is much more cluttered. The presence of algae, sediments,
debris, and infrastructure like vessels and docks leads to shadows, waves, etc. This
complicates the interpretation of the images and can lead to false positives.

• The thickness and size of the oil spill are considerably smaller than in coastal or marine
environments.

• The turbidity of water must be high enough to act as a diffusely reflecting surface.
Unlike in the marine environment, turbidity is generally low in port environments.

• In port environments, oil spills are more likely to be shaped as oil on top of the water
than as emulsions, since spills should be detected as fast as possible (within a few
minutes) and the formation of emulsions takes time (from a few hours to a few days).

The current method of oil spill identification in ports is based on coincidence. When
port authority officers visually notice an oil spill, a cleaning company is contacted. Early
detection and determination of the oil incident (location, size, type of product, etc.) result
in a much faster response to a calamity (hence a lower clean-up cost) and significantly
improve intervention results. Remote sensing technology has not yet been applied in an
operational setting in Belgium. The required technology, however, is there, in the form
of compact hyperspectral cameras in the VIS-NIR (VNIR) and SWIR regions that can be
mounted on drone platforms.

The contributions and novelties of this study are summarized as follows:

1. We propose a simple physical model to accurately estimate the thickness of oil samples.
The estimated thickness can then further be used to estimate the total volume of an oil
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spill together with the oil spill boundary estimates. The developed method is invariant
to changes in sensor type and illumination conditions. Based on this physical model,
we propose a method to detect spilled oil. For this, artificial spectra of oil samples
with varying thickness are generated based on the model, and on these samples, a
supervised machine learning algorithm is trained to detect spilled oil.

2. To validate the proposed approach, we performed laboratory experiments on a com-
prehensive hyperspectral dataset of oil samples (diesel oil, lubrication oil, fuel oil,
and hydraulic oil) with varying thickness between 500 µm and 5000 µm using a
spectroradiometer. The same experiments were repeated (different samples) using a
hyperspectral camera in the SWIR region.

3. To simulate realistic oil spill situations in port environments, we performed an exten-
sive experiment in outdoor settings.

The remainder of this article is organized as follows: In Section 2, the proposed
physical model is elaborated. In Section 3, we describe the laboratory datasets and experi-
mental results. In Section 4, we describe the dataset acquired in outdoor settings and the
experimental results. Section 5 is devoted to a discussion, followed by a conclusion in
Section 6.

2. Methodology

Transparent oil samples are non-diffusely reflecting materials and require a reflective
background in order to measure their total reflectance. Let us denote the intensity of
incident light on the surface of a sample by I(λ) and the intensity of reflected light by J(λ).
The spectral reflectance is then given by R(λ) = J/I. We further denote the thickness of the
oil by X. An infinitesimal layer dx now absorbs an adx portion of the light passing through
it, with a(λ) being the absorption coefficient of the oil under consideration at wavelength
λ. When the incident light is reflected back after interacting with the background surface,
the same layer further absorbs an adx portion of the light. The following two differential
equations describe these two phenomena:

di = a(λ)idx

dj = −a(λ)jdx
(1)

where i and j are the intensity values of incident light and reflected light, respectively, at an
arbitrary depth x. One obtains

dj/j− di/i = dlogj− dlogi = dlog(j/i) = −2a(λ)dx (2)

Integrating both sides of Equation (2) gives∫ X

0
dlog(j/i) = −2a(λ)

∫ X

0
dx

log(j/i) |X0 = −2a(λ)X

log(J/I)− log(J′/I) = −2a(λ)X

log(R(λ))− log(R′(λ)) = −2a(λ)X

R(λ) = R′(λ)exp(−2a(λ)X)

(3)

where R′(λ) is the reflectance of the background surface. When assuming that the oil sample
is non-scattering, the same equation can be derived from the Kubelka–Munk theory [24].

Estimating the thickness (X) of an oil sample from its spectral reflectance (R =
[R(λ1), · · · , R(λd)]

T) then boils down to inverting Equation (3), i.e., minimizing
‖R− R′ � exp(−2aX)‖2, s.t. X ≥ 0. Here, d denotes the number of spectral bands, and �
is the elementwise multiplication of two vectors. For that, the spectral reflectance of the
background surface (R′) and the absorption coefficients (a) of the oil sample are required.
The above derivation explicitly assumes that both the incident angle and the reflection
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angle are zero. When they deviate from zero, the following equation has to be minimized:∥∥∥R− R′ � exp(−(sec(θinc) + sec(θre f ))aX)
∥∥∥2

, s.t. X ≥ 0, where θinc and θinc denote the
incident and reflection angles, respectively.

The absorption coefficients of an oil sample can be accurately measured with a spec-
trophotometer. Because each sensor (e.g., spectroradiometer or hyperspectral camera) has
its own spectral response properties, the absorption coefficients measured by the spec-
trophotometer have to be corrected for sensor-specific effects by utilizing the spectral
response function of the applied sensor.

In real-life scenarios, the measured spectral reflectance might be impaired by changes
in acquisition conditions, such as illumination conditions, and distance and orientation with
respect to the sensor. These effects mostly cause a random scaling effect in the measured
reflectance spectra. In order to deal with this effect, each measured spectral reflectance
value has to be projected onto the unit hypersphere (e.g., R = R/‖R‖ and R′ = R′/‖R′‖).

Although the proposed method is designed to estimate the thickness of oil samples,
it can also be utilized to detect spilled oil. For that, Equation (3) is used to simulate the
reflectance spectra of oil samples with varying thickness. Training samples can then be
generated through the augmentation of this simulated dataset with the spectral reflectance
of the background water. A machine learning algorithm then learns a mapping between
the input dataset and binary class labels (oil vs. no oil). In this work, we use a fully
connected feed-forward neural network. This network has three layers: the input layer, a
hidden layer with five nodes, and the output layer with two nodes. The hyperbolic tangent
function

(
tanh(a) = exp(a)−exp(−a)

exp(a)+exp(−a)

)
is used as an activation function for the hidden layer,

and the softmax activation function
(

f (ai) =
exp(ai)

∑2
k=1 exp(ai)

)
, for the output layer. To train

the network, we utilize the Levenberg–Marquardt backpropagation algorithm [25]. The
training dataset is further split into a training subset and a validation subset. The cross-
entropy loss is used to optimize the parameters of the network. The training subset is
used to estimate the parameters of the network, while the validation subset is utilized to
minimize the generalization error.

3. Laboratory Experiments

In this work, we investigated four different oil types (see Figure 1): diesel oil, lubrica-
tion oil (Smeerolie), fuel oil (Stookolie), and hydraulic oil. When an oil spill occurs in a port
environment, typically, one of these four oil types is detected, unlike a marine environment
where crude oil is typically spilled. Diesel oil is a mixture of saturated hydrocarbons
and aromatic hydrocarbons. Lubrication oil is a mixture of petroleum hydrocarbon and
lubricating additives. Fuel oil is a mixture of aliphatic and aromatic hydrocarbons, and
hydraulic oil is a mixture of mineral oil and esters.

(a) (b)

Figure 1. Cont.
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(c) (d)

Figure 1. The RGB images of four different oil types that were considered in this work. (a) Diesel oil;
(b) lubrication oil; (c) fuel oil; (d) hydraulic oil.

3.1. Measuring the Oil Absorption Spectra

In order to obtain the absorption spectra of all four oil types, the transmission spectra
of samples of approximately 2 mL were measured utilizing a spectrophotometer (200 nm to
2500 nm) (Cary 5000 UV-Vis-NIR Spectrophotometer, 5301 Stevens Creek Blvd, Santa Clara,
CA, USA. The absorption spectra of these oil types were obtained from the transmission
spectra (T) using the following formula: a = − log(T)/X, where X = 2 mL. In Figure 2,
we show the absorption spectra (400 nm to 2200 nm) of the four oil types. These oil types
have almost the same absorption coefficient values in the SWIR wavelength region and
have spectral features around 1200 nm, 1400, and 1724 nm. These features indicate the
presence of carbon–hydrogen (1200 nm and 1700 nm) and oxygen–hydrogen (1400 nm)
bonds [1]. Since they visually appear differently colored, their absorption spectra differ
significantly in the visible wavelength region (400 nm to 700 nm). Given the fact that
there are three absorption peaks in the SWIR wavelength region, while there is only one
absorption peak in the visible wavelength region, the error in the estimated thickness of
the oil samples using the SWIR range is expected to be lower than that obtained using the
visible wavelength region.
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Figure 2. The absorption spectra of the four different oil types.

3.2. Oil Sample Preparation

For each oil type, 10 different samples were prepared with varying thickness between
500 µm and 5000 µm. These samples were placed inside white round sample holders with
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an inner diameter of 20 mm, varying height between 0.5 and 5 mm, and edge thickness of
approximately 3 mm. Although a dark sample holder as a background to spilled oil would
be more suitable for simulating real-life scenarios, its high absorption capacity only allows
thinner oil samples to be processed. To obtain reliable ground-truth thickness, the sample
holders were completely filled. The sample mass was measured with a balance (Sartorius)
with a resolution of 0.1 mg. To convert mass into volume, the density of each oil type
was estimated by measuring the mass of a sample that occupied a volume of 100 mL. The
thickness of the sample was then determined by dividing the volume of the sample by the
area of the sample holder (π × inner diameter2/4). The spectral reflectance of the samples
was acquired using the ASD spectroradiometer, which has 2151 bands ranging from 350 nm
to 2500 nm with a step size of 1 nm. We used an ASD Muglight as the illumination source in
order to obtain spectra with a good signal-to-noise ratio. The illumination and acquisition
angles were kept constant and were 350 and 120 for this sensor.

Since the completely filled sample holders experienced some loss during multiple
transfers to and from the balance and sensor, sample preparation was repeated for mea-
surement with a snapscan hyperspectral SWIR camera (manufactured by Imec, Leuven,
Belgium). The dataset was acquired using the IMEC hyperspectral camera, which has
113 bands ranging from 1100 nm to 1670 nm. Four halogen lamps with diffusers were used
for hemispherical–directional illumination to simulate uniform, real-world solar illumi-
nation. The acquisition angle was kept constant and was 00 for this sensor. The distance
between the sample and the camera was approximately 40 cm. Although the original frame
size of the raw images was 100 × 100 pixels, we manually clipped 40 × 40 pixels from the
center of the images to remove the edge of the sample holders. Since no spatial variation
among the spectra was observed, the mean spectrum of the clipped image was considered
for further analysis.

Figure 3 shows the spectra of the oil samples (approximately 5 mm thick) acquired
with both the spectroradiometer and the hyperspectral camera. Although the absorption
features of oil are visible in the spectra acquired with both sensors, the reflectance values
are not exactly the same. This variability was caused by variations in illumination and
acquisition angles and sensor differences.
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Figure 3. The spectral reflectance of 5 mm thick samples of four different oil types and a highly
reflective sample holder acquired with the spectroradiometer (full line) and the hyperspectral
camera (dashed line).

3.3. Experimental Results

The proposed thickness estimation method was validated on the datasets acquired
with the spectroradiometer and the IMEC hyperspectral camera. A quantitative comparison
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was conducted using the normalized absolute difference (NAD) between the estimated (X̂)
and the ground-truth thickness (X) values:

NAD =
|X− X̂|

X
× 100 (4)

3.3.1. Estimating the Thickness of Oil with Hyperspectral Datasets

In the first experiment, the developed methodology was applied to the dataset ac-
quired with the IMEC hyperspectral camera, i.e., the mean spectrum of the clipped image.
For each oil type, the spectral response function of the hyperspectral camera, the spectral
reflectance of the sample holder, and the absorption spectrum of the oil were utilized for
inverting Equation (3). The results are shown in Figure 4.
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Figure 4. The NAD error as a function of thickness in the proposed method applied to the dataset
acquired using the IMEC hyperspectral camera.

In the second experiment, the developed methodology was validated on the dataset
acquired with the spectroradiometer. The method was applied separately for the VNIR
(400–700 nm) and the SWIR (1118–1654 nm, to match the spectral range of the camera)
regions. The results are shown in Figure 5.
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Figure 5. The NAD error as a function of the thickness in the proposed method applied to the dataset
acquired using the spectroradiometer. (a) SWIR; (b) VNIR.

The outcomes of the experiments can be summarized as follows:

• The developed methodology was able to estimate the thickness of almost all oil
samples from the datasets acquired in the SWIR wavelength region.
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• For samples with thickness greater than 2000 µm, the error was 10% or less in the SWIR
wavelength region. This demonstrates the potential of the proposed methodology.

• For samples with thickness lower than 2000 µm, the error was larger. This can be
partially attributed to the uncertainty in the ground truth itself. While moving the
samples during the measurement from the sensor location to the balance, small losses
of oil regularly occurred. This introduced errors in the ground-truth thickness of the
oil, especially for the thinner samples (thickness < 500 µm).

• As expected, the estimated thickness in the visible wavelength region was less accurate,
especially for diesel oil. The best estimation in the visible wavelength region was that
for hydraulic oil. This is due to the fact that it strongly absorbs incident light in the
visible range (see Figure 2).

3.3.2. Simulating the Spectral Reflectance of the oil Samples in the Visible
Wavelength Region

In the next experiment, we investigated the suitability of a multi-band camera in the
visible range to estimate the thickness of oil samples. Because the oil samples that we
investigated in this work do not have absorption features in the NIR wavelength region (see
Figure 2), we only focused on the VIS wavelength region. For that, we chose two different
multi-band cameras (MicaSense Dual Camera, 1300 N Northlake Way Suite 100, Seattle,
WA, USA). Both cameras (Camera 1 and Camera 2) have three bands in the VIS wavelength
region. We utilized the spectral response function of these cameras (see Figure 6) in order
to convert the spectroradiometer dataset into three-band datasets.
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Figure 6. The spectral response of two multi-band cameras in the visible wavelength region.
(a) Camera 1; (b) Camera 2.

In Figure 7, we show the estimated thickness of the oil samples from these three-band
datasets. As expected, the results are comparable to the ones from the VNIR spectropho-
tometer dataset (see Figure 5). This can be explained by the fact that in the visible wave-
length region, the absorption features of the oil types studied in this work are broad (see
Figure 2). These results show the potential of using standard RGB cameras for oil spill
detection and thickness measurements.
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Figure 7. The NAD error as a function of the thickness in the proposed method applied to the
three-band multi-spectral datasets. (a) Simulated Camera 1. (b) Simulated Camera 2.

3.4. Oil–Water Emulsions

When spilled in the marine environment, oil forms emulsions due to turbulence from
wind or human activities [1]. Emulsions are highly viscous and have distinct physical
properties [1]. To analyze the spectral reflectance of oil–water emulsions, we produced
emulsions by mixing oil with water. We fixed the ratio of oil to water to be 60:40. Each oil
sample was placed in a transparent glass bottle, and a homogeneous emulsion mixture
was produced by rotating the bottle for approximately 20 min. In Figure 8, we show RGB
images of diesel oil and hydraulic oil, and their respective emulsions.

(a) (b)

Figure 8. The RGB images of oil types and their respective emulsions. (a) Diesel oil; (b) hydraulic oil.

We placed these emulsions on top of tap water, and their spectral reflectance was
acquired by utilizing a Specim FX17e hyperspectral camera, which has 224 bands rang-
ing from 935 nm to 1702 nm. Although the original frame size of the raw images was
335× 640 pixels, we manually clipped 40 × 40 pixels from the center of the emulsion. Since
no spatial variation among the spectra was observed, the mean spectrum of the clipped
image was considered for further analysis. In Figure 9, we show the spectral reflectance
of the emulsions acquired with the Specim FX17e hyperspectral camera. As expected, the
absorption features of the oil samples were visible in all emulsions. The reflectance of an
emulsion is much higher than the reflectance of oil on top of water. In Section 4 (Figure 10),
we study the spectral reflectance of oil on top of water under outdoor conditions. Since
emulsions are unlikely to form in port environments, further investigation of emulsions is
beyond the scope of this work.
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Figure 9. The spectral reflectance of four different emulsions on top of water acquired with a Specim
FX17e hyperspectral camera.
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Figure 10. The spectral reflectance of four different oil types on top of the water was acquired with
an ASD spectroradiometer.

4. Outdoor Experiment

To simulate realistic oil spill situations, we performed an experiment in outdoor
settings on the 28 April 2022 around noon. The altitude of the sun was approximately
480 from the horizon. At that time, the sky was open with some minor cirrus clouds at
high altitudes. For this experiment, approximately 250 mL of oil from each oil type was
spilled in a container filled with water. The size of the water container was 2 m × 2.7 m,
and the depth of the water was 10 cm. The spilled oil mostly received direct sunlight. To
minimize the light coming from the neighborhood building, the container was shielded
with black plastic.

An ASD spectroradiometer was employed to acquire the spectral reflectance of the
oil on top of the water. Figure 10 shows the reflectance of the four oil types. As expected,
the spectral reflectance values were flat in the SWIR region due to the high absorption
power of water (disregarding the atmospheric water absorption bands). However, in the
visible range, the reflectance was approximately 3%. This allows for the use of RGB data
for oil detection and volume estimation. Moreover, we have shown with the laboratory
experiments in the previous section that it is possible to estimate thickness in the visible
range (Figure 7).

We monitored the evolution of oil artificially spilled on water using an RGB camera
mounted on a drone (see Figure 11). The altitude of the camera above the water container
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was approximately 15 m. Hydraulic oil, lubrication oil, fuel oil, and diesel oil were spilled
on the top left, top right, bottom left, and bottom right quadrants of the water container,
respectively.

Figure 11. RGB images of oil spilled on top of 10 cm thick water. These images were acquired using
an RGB camera (DJI) mounted on a drone.

4.1. Detecting Oil in RGB Dataset

In order to respond to spilled oil properly, the oil has to be detected. For this, we
applied the proposed oil detection approach (see Section 2). We simulated 60,000 reflectance
spectra of these four oil types in the VIS wavelength region (15,000 for each oil type). This
simulated dataset was augmented with the background spectral reflectance (RGB image)
of the water container (approximately 20,000 spectra). Then, we applied a fully connected
feed-forward neural network to generate a binary classification map (i.e., oil vs. no oil).
From the 80,000 spectra, approximately 56,000 spectra were used for training, while the
remaining 16,000 spectra were used for validation. This learned model was further applied
to the RGB dataset acquired using the DJI camera (see Figure 11). In Figure 12b, we
show the oil spill detection map obtained for image (frame) number 60 (see Figure 12a).
We also prepared a video of the oil spill detection map. This video is available at https:
//github.com/VisionlabHyperspectral/Oil_spill/tree/main/Outdoor_experiment. As can
be observed in Figure 12b, the proposed method accurately determined the spilled oil, and
the boundary of the spilled oil is clearly visible in the oil spill detection map. Because the
shiny (specular) backgrounds were not part of the training samples, the method classified
them as spilled oil. These false positives can adversely affect the estimated volume of
spilled oil, and an intelligent post-processing method is required to remove them. This is
outside the scope of this work.

(a) (b) (c)

Figure 12. The obtained maps from image (frame) number 60. (a) RGB image; (b) oil spill detection
map; (c) oil thickness map.

https://github.com/VisionlabHyperspectral/Oil_spill/tree/main/Outdoor_experiment
https://github.com/VisionlabHyperspectral/Oil_spill/tree/main/Outdoor_experiment
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4.2. Estimating the Total Volume of Oil in RGB Dataset

To estimate the thickness of spilled oil, the proposed method requires prior information
regarding the oil type and its absorption spectrum. The measured absorption spectra of
these oil types in the laboratory settings were applied (see Figure 2). We resampled these
spectra by utilizing the spectral response function of the applied sensor to match the
number of bands and the spectral response of the RGB camera. In the next step, we
manually cropped a region of interest for each oil type to accurately estimate its thickness.
The mean spectrum of the water container was used as a background spectrum. Because the
ground-truth thickness was not known, and only the total volume of the spill was known,
we estimated the total volume of each oil type for a quantitative comparison. For that, the
area covered by each pixel (approximately 2.2 mm× 2.2 mm) on the ground was multiplied
by its estimated thickness. In Figure 13, we show the estimated volumes of the spilled oil as
a function of the frame number. As can be observed, for all oil types, there was a positive
bias in the estimated volume, i.e., the method initially estimated a positive oil volume
when there was actually no oil yet in the scene (see the red line starting from image frame
number 1). For diesel oil and fuel oil, the estimated volume was unreliable. This is due to
the fact that these oil samples spread over a large area, resulting in an extremely thin layer
of oil. Although the proposed method underestimated the volume of lubrication oil, the
estimated volume was overall consistent in the image frames. This underestimation may
result from thickness that is much lower than 2000 µm, the minimum required thickness
for accurate estimation in the visible wavelength region. The volume of hydraulic oil was
estimated reasonably well, demonstrating the potential of the proposed method to estimate
oil thickness in outdoor scenarios.
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Figure 13. The estimated volumes of spilled oil. (a) Diesel oil; (b) lubrication oil; (c) fuel oil;
(d) hydraulic oil. The positive bias in the estimated volume is shown by the red line (and its label)
starting from frame number 1, while the average estimated volume is indicated by the second red
line (and its label).



Remote Sens. 2023, 15, 4950 13 of 15

In Figure 12c, we show the estimated thickness maps obtained for image frame number
60 (Figure 12a), in which the spill was complete. Although the estimated thickness varied
between 0 µm and 2500 µm, for better visualization, all pixels with thickness greater than
1500 µm are displayed as having thickness of 1500 µm. As can be observed, both hydraulic
and lubrication oil spills were concentrated in a small region of the scene, resulting in better
thickness estimation. The underestimation of the thickness of lubrication oil is due to the
fact that its thickness is lower than 2000 µm, the minimum required thickness for accurate
estimation (see Figure 7).

5. Discussion

Based on the literature and our own measurements and analyses, the following main
conclusions are drawn:

• The thickness of oil samples can be accurately (NAD < 10%) estimated in the SWIR
wavelength region only when the background surface is highly reflective. In real-life
scenarios, oil is spilled on top of water. Because of the strong absorption power of
water in the SWIR wavelength region, the intensity measured with a hyperspectral
sensor is extremely low (see Figure 10) and does not allow the oil to be detected or the
thickness of the oil to be estimated.

• The absorption features of oil can be observed in emulsions prepared by homoge-
neously mixing oil with water (see Figure 9). In port environments, the probability of
emulsion formation due to the mixing of spilled oil and water has yet to be investi-
gated. An interesting future research direction is the development of a methodology
that can accurately estimate the thickness of oil from emulsions.

• The oil samples that were studied in this work have specific absorption features in
the visible wavelength region. Although this is beneficial, due to the low absorption
coefficient values of lubrication oil and fuel oil, we require at least 2000 µm thick oil
samples to accurately (NAD < 20%) estimate their thickness. Since hydraulic oil has
higher absorption coefficient values in the visible wavelength regions, thinner samples
of this oil can be processed. As can be observed in Figures 5 and 7, the thickness of
diesel oil cannot be accurately estimated in the visible wavelength region. Existing
state-of-the-art methods utilize the specular properties of reflected light to infer the
thickness of spilled oil. The major challenge for those methods is to differentiate
between terrain spreading on water and oil. The proposed method, on the other hand,
utilizes diffusely reflected light of the entire sample (oil + background) to estimate the
thickness of spilled oil. The disadvantage of the proposed method is that it cannot
accurately estimate the thickness of extremely thin oil samples.

• In outdoor scenarios, the acquired data may be impaired by inconsistent illumination
conditions. Due to the normalization of the spectra and calibration with the spectral
response functions of the sensors, the proposed methodology tackles this and can
accurately estimate the volume of artificially spilled hydraulic oil (see Figure 13d) in
outdoor scenarios. Although the estimated volume of lubrication oil was consistent
for several RGB images (see Figure 13b), the developed methodology underestimated
the total spilled volume. It seems that the thickness of this spilled oil type is lower
than 2000 µm, the minimum required thickness to accurately estimate it.

• The proposed method requires the spectral reflectance of the background and infor-
mation regarding the incident angle (θinc) and the acquisition angle (θre f ). The spectral
reflectance of the background can be generated by manually or automatically cropping
a region in the scene where no oil spill occurs. On the other hand, θinc and θre f are
obtained from the solar incident angle and the sensor’s position and orientation.

• Recently, several algorithms have been developed for oil-type identification using
the reflectance spectrum. In [12], an algorithm was proposed to optimize three-band
spectral indices for differentiating oil types. Although these types of algorithms are
suitable for diffusely reflecting samples, our oil samples are non-diffusely reflecting
materials, and their absorption spectra and the spectral reflectance of the background
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define the overall shape of the measured reflected light. From Figure 2, it is clear
that all oil types have exactly the same absorption spectra in the shortwave infrared
wavelength region, limiting the oil-species identification model to accurately differen-
tiating them. However, in the visible wavelength region, the methodology proposed
in [12] might be of help to differentiate different oil types according to their spectral
reflectance. This will be the focus of our future work.

• Another interesting future research direction is to investigate the potential of the
ultraviolet wavelength region to estimate the thickness of thinner oil samples.

The proposed method was developed in MATLAB and run on an Intel Core i9-12900KF
CPU, 3.19 GHz machine with 16 cores. To estimate the thickness of spilled oil using the
spectral reflectance, the proposed method required less than 40 milliseconds per spectrum.
In order to train a fully connected feed-forward neural network, it took approximately 9 s,
while the testing of the model was performed within 1 microsecond per spectrum.

6. Conclusions

In this paper, we propose a model to accurately simulate the spectral reflectance of oil
lying on top of a reflective background and, based on this, to detect oil and estimate oil
thickness in a port environment. Moreover, the proposed method is made independent
of the changes in acquisition and illumination conditions. The proposed method was
validated on datasets generated both in laboratory and outdoor settings and in cross-sensor
situations. The proposed method not only accurately estimated the thickness of oil samples
in laboratory settings but also accurately estimated the volume of thicker oil samples in
outdoor scenarios from RGB images. The method was also found to be suitable to detect
spilled oil. In future work, we will extend this method to accurately estimate the thickness
of oil based on emulsions.

Author Contributions: Conceptualization, B.K., N.M., R.M., S.V. and P.S.; methodology, B.K. and P.S.;
software: B.K.; validation, B.K. and N.M.; writing—original draft preparation, B.K.; writing—review
and editing, N.M., R.M., E.K., S.S. (Seppe Sels), F.W., S.S. (Svetlana Samsonova), S.V. and P.S. All
authors have read and agreed to the published version of the manuscript.

Funding: The research presented in this paper was funded by Research Foundation Flanders (project
G031921N); Belgian Science Policy, Stereo IV program (project SR/00/400); and VLAIO, De Blauwe
Cluster (project HBC.2021.0676).

Data Availability Statement: The datasets and the algorithm can be downloaded from the following
link: https://github.com/VisionlabHyperspectral/Oil_spill.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State

of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens.
Environ. 2012, 124, 185–209. [CrossRef]

2. Board, T.R.; Council, N.R. Oil in the Sea III: Inputs, Fates, and Effects; The National Academies Press: Washington, DC, USA, 2003.
3. Wettle, M.; Daniel, P.J.; Logan, G.A.; Thankappan, M. Assessing the effect of hydrocarbon oil type and thickness on a remote

sensing signal: A sensitivity study based on the optical properties of two different oil types and the HYMAP and Quickbird
sensors. Remote Sens. Environ. 2009, 113, 2000–2010. [CrossRef]

4. Solberg, A.H.S. Remote Sensing of Ocean Oil-Spill Pollution. Proc. IEEE 2012, 100, 2931–2945. [CrossRef]
5. Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [CrossRef] [PubMed]
6. Viallefont-Robinet, F.; Angelliaume, S.; Roupioz, L.; Mainvis, A.; Caillault, K.; Dartigalongue, T.; Foucher, P.Y.; Miegebielle, V.;

Dubucq, D. Health security and environment capability of slick detection, characterization, and quantification in the offshore
domain thanks to radar or optical imagery. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and
Large Water Regions, Strasbourg, France, 9–10 September 2019; Volume 11150, p. 111500I.

7. Mihoub, Z.; Hassini, A. Remote sensing of marine oil spills using Sea-viewing Wide Field-of-View Sensor images. Boll. Geofis.
Teor. Appl. 2019, 60, 123–136. [CrossRef]

https://github.com/VisionlabHyperspectral/Oil_spill
http://doi.org/10.1016/j.rse.2012.03.024
http://dx.doi.org/10.1016/j.rse.2009.05.010
http://dx.doi.org/10.1109/JPROC.2012.2196250
http://dx.doi.org/10.3390/s18010091
http://www.ncbi.nlm.nih.gov/pubmed/29301212
http://dx.doi.org/10.4430/bgta0270


Remote Sens. 2023, 15, 4950 15 of 15

8. Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, Features, and Machine
Learning for Oil Spill Detection and Monitoring: A Review. Remote Sens. 2020, 12, 3338. [CrossRef]

9. Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [CrossRef] [PubMed]
10. Yang, J.; Wan, J.; Ma, Y.; Zhang, J.; Hu, Y. Characterization analysis and identification of common marine oil spill types using

hyperspectral remote sensing. Int. J. Remote Sens. 2020, 41, 7163–7185. [CrossRef]
11. Li, Y.; Yu, Q.; Xie, M.; Zhang, Z.; Ma, Z.; Cao, K. Identifying Oil Spill Types Based on Remotely Sensed Reflectance Spectra and

Multiple Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9071–9078. [CrossRef]
12. Xie, M.; Dong, S.; Gou, T.; Li, Y.; Han, B. Evaluation and optimization of the three-band spectral indices for oil type identification

using reflection spectrum. J. Quant. Spectrosc. Radiat. Transf. 2023, 304, 108609. [CrossRef]
13. Kieu, H.T.; Law, A.W.K. Determination of surface film thickness of heavy fuel oil using hyperspectral imaging and deep neural

networks. Int. J. Remote Sens. 2022, 43, 997–1014. [CrossRef]
14. Hu, C.; Lu, Y.; Sun, S.; Liu, Y. Optical Remote Sensing of Oil Spills in the Ocean: What Is Really Possible? J. Remote Sens. 2021,

2021, 9141902. [CrossRef]
15. Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A. Reflectance spectroscopy of organic compounds: 1. Alkanes. J. Geophys.

Res. Planets 2009, 114, E3. [CrossRef]
16. Lammoglia, T.; de Souza Filho, C.R. Spectroscopic characterization of oils yielded from Brazilian offshore basins: Potential

applications of remote sensing. Remote Sens. Environ. 2011, 115, 2525–2535. [CrossRef]
17. Owens, E.H.; Taylor, E.; Parker, H.A. 1-Spill site characterization in environmental forensic investigations. In Standard Handbook

Oil Spill Environmental Forensics, 2nd ed.; Stout, S.A., Wang, Z., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 1–24.
18. Swayze, G.A.; Furlong, E.T.; Livo, K.E. Mapping Pollution Plumes in Areas Impacted by Hurricane Katrina with Imaging

Spectroscopy. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 10–14 December 2007; Volume 2007,
p. H31L-07.

19. Clark, R.N.; Swayze, G.A.; Leifer, I.; Livo, K.E.; Kokaly, R.F.; Hoefen, T.; Lundeen, S.; Eastwood, M.; Green, R.O.; Pearson, N.; et al.
A Method for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy; Technical Report; USGS: Reston, VA, USA, 2010.

20. Lu, Y.; Shi, J.; Wen, Y.; Hu, C.; Zhou, Y.; Sun, S.; Zhang, M.; Mao, Z.; Liu, Y. Optical interpretation of oil emulsions in the
ocean—Part I: Laboratory measurements and proof-of-concept with AVIRIS observations. Remote Sens. Environ. 2019, 230, 111183.
[CrossRef]

21. D Carolis, G.; Adamo, M.; Pasquariello, G. On the Estimation of Thickness of Marine Oil Slicks From Sun-Glittered, Near-Infrared
MERIS and MODIS Imagery: The Lebanon Oil Spill Case Study. IEEE Trans. Geosci. Remote Sens. 2014, 52, 559–573. [CrossRef]

22. Sicot, G.; Lennon, M.; Miegebielle, V.; Dubucq, D. Estimation of the thickness and emulsion rate of oil spilled at sea using
hyperspectral remote sensing imagery in the swir domain. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-3/W3,
445–450. [CrossRef]

23. Niu, Y.; Shen, Y.; Chen, Q.; Liu, X. Applicability of spectral indices on thickness identification of oil slick. In Proceedings of the
International Symposium on Optoelectronic Technology and Application 2016, Beijing, China, 9–11 May 2016; Volume 10156,
p. 101561Q; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series.

24. Von Kubelka, P. Ein Beitrag zur Optik der Farbanstriche. Z. Tech. Phys. 1931, 12, 593–601.
25. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/rs12203338
http://dx.doi.org/10.1016/j.marpolbul.2014.03.059
http://www.ncbi.nlm.nih.gov/pubmed/24759508
http://dx.doi.org/10.1080/01431161.2020.1754496
http://dx.doi.org/10.1109/JSTARS.2021.3109951
http://dx.doi.org/10.1016/j.jqsrt.2023.108609
http://dx.doi.org/10.1080/01431161.2022.2028200
http://dx.doi.org/10.34133/2021/9141902
http://dx.doi.org/10.1029/2008JE003150
http://dx.doi.org/10.1016/j.rse.2011.04.038
http://dx.doi.org/10.1016/j.rse.2019.05.002
http://dx.doi.org/10.1109/TGRS.2013.2242476
http://dx.doi.org/10.5194/isprsarchives-XL-3-W3-445-2015
http://dx.doi.org/10.1137/0111030

	Introduction
	Methodology
	Laboratory Experiments
	Measuring the Oil Absorption Spectra
	Oil Sample Preparation
	Experimental Results
	Estimating the Thickness of Oil with Hyperspectral Datasets
	Simulating the Spectral Reflectance of the oil Samples in the Visible Wavelength Region

	Oil–Water Emulsions

	Outdoor Experiment
	Detecting Oil in RGB Dataset
	Estimating the Total Volume of Oil in RGB Dataset

	Discussion
	Conclusions
	References

