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1. Introduction

Wet foams play an important role in industrial processes such as
oil recovery, cosmetics, or food processing (e.g., bread, ice cream,
whipped cream, or beer).[1] Understanding a wet foam’s struc-
ture and dynamics is key to predicting its stability, material prop-
erties, and fluid dynamics. Growth of wet foam, however, is a
complex process, which is intrinsically 3D and time dependent.

Hence, in studying parameters like bubble
size distribution or growth rate, fast and
noninvasive imaging tools are required that
allow accurate 3D visualization of the foam
structure as a function of time.

X-ray microcomputed tomography (CT)
is the imaging technique of choice to
noninvasively study the interior of foam
structure. Most foam imaging workflows
based on X-ray micro-CT follow a two-step
approach. First, multiple CT scans per time
frame are acquired. Each scan, which often
consists of thousands of 2D projections of
the foam sample, is individually recon-
structed to a 3D image, using analytical
3D reconstruction methods such as filtered
back projection (FBP)[2–6] or algebraic recon-
struction methods.[7–9] Next, each 3D foam
image is individually processed (e.g., seg-
mented using a watershed algorithm) to
partition the volume into local regions corre-
sponding to the individual bubbles for
further analysis.[10] Such a foam imaging

approach, sometimes referred to as tomoscopy, is valuable provided
that 1) the dynamics of the material under study are slow compared
to the rotation speed of the X-ray gantry and 2) the X-ray flux is
sufficiently high. However, it will inevitably lead to blurred images
when the foam evolves too fast within the time frame of a single
scan, complicating downstream image processing tasks.

To compensate for motion blur, dynamic tomography recon-
struction methods have been developed, which aim to correct for
motion during scanning. Significant gain in reconstruction qual-
ity has, for example, been reported using reconstruction methods
that correct for rigid or affine body motion.[11,12] Other methods
have explored nonrigid motion correction, relying on a deforma-
tion vector field that is estimated along with the 3D image, for
example, using optical flow algorithms.[13] To mitigate under-
sampling artefacts, L1 regularization has been applied to spatial
and temporal derivatives.[14] Spatiotemporal properties of
dynamic features have also been explored for regularizing the
4D reconstruction.[15] It is worthwhile noting that, to the authors’
knowledge, all dynamic foam reconstruction methods repre-
sented the object under study on a voxel grid. Such a dynamic
foam imaging model suffers from two major problems. First,
for high spatial resolution imaging of the foam cells, a dense
voxel grid is needed, requiring a large number of acquired
projections per rotation to avoid undersampling artefacts, which
limits temporal resolution. Second, a voxel model inherently
leads to partial volume effects as foam cell surfaces do not coin-
cide with voxel boundaries. These partial volume effects
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X-ray imaging of wet foam dynamics with a high temporal resolution (e.g., 3D
videos with a 10 Hz frame rate) requires fast rotation of either the foam sample or
the X-ray gantry. This, however, strongly limits the number of X-ray projections
per rotation that can be acquired. As a result, conventional computed tomog-
raphy reconstruction methods generate 3D images with severe undersampling
artefacts, complicating subsequent foam analysis. Herein, BubSub, a novel
tomographic reconstruction approach that reconstructs a 4D (3D plus time)
dynamic image of wet foam bubbles from sparse-view X-ray projections by
leveraging prior knowledge about the evolving foam structure, is introduced.
BubSub adapts a collection of subdivision surfaces with spherical topology to
represent liquid–gas interfaces of foam bubbles. Estimation of bubble positions
and shapes at each time point is achieved by minimizing the projection distance
in relation to the measured projections. BubSub operates efficiently with minimal
memory usage, exhibits robustness against noise, and provides accurate
reconstructions, even when the available projections are limited, as evidenced by
various experiments using both simulated and real wet foam X-ray data.
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complicate segmentation and downstream foam analysis tasks.
To circumvent voxel grid related problems, few works explored
the idea of directly reconstructing mesh representations from
projection data.[16] Koo et al. fit surface meshes to (parallel beam)
electron projection data of nanoparticles.[17] While demonstrat-
ing the value mesh reconstruction over voxel-based reconstruc-
tions, it was only validated on two spherical or toroidal meshes.

In this article, we introduce BubSub: an innovative reconstruc-
tion approach designed to reconstruct individual foam bubbles
from projection data obtained in 4DCT scans, utilizingmesh pro-
jection of subdivision surfaces. Employing subdivision surfaces
ensures a small solution space characterized by smooth surfaces,
thereby removing the necessity for regularization terms within the
cost function. Each bubble’s liquid–gas interface is depicted as a
spherical subdivision surface, where the adaptation of control
points is optimized to minimize the projection distance using
operators for the mesh projection and its derivatives that are free
from constraints on the X-ray scanning geometry (Preliminary
results were presented at the 2021 International Conference on
3D Vision (3DV)[18]). Furthermore, through presegmentation in
the reconstruction process, the need for subsequent postprocess-
ing is circumvented. Notably, BubSub operates without relying on
a voxel reconstruction (thus reducing memory costs), demonstrat-
ing robustness against noise and consistently yielding accurate
outcomes even for a limited number of projections. Finally,
BubSub is extensively tested on simulated 4DCT wet foam experi-
ments as well as on both 3D and 4DCT real synchrotron scans.

2. Experiments and Results

To validate the performance of BubSub, simulation and real
experiments were set up. All BubSub reconstructions were ini-
tialized with constant radii and with two subdivision levels,
employing 7 control points for the 2D reconstructions and 42
control points for the 3D reconstructions.

2.1. Simulation Experiments

2.1.1. The Influence of the Number of Projections and the
Noise Level

The impact of varying numbers of projections and noise levels
(as a function of photon count), on BubSub’s performance
was investigated using 2D and 3D phantoms. These experiments
involved a comparative analysis between BubSub and two popu-
lar reconstruction methodologies, available from the open source
ASTRA toolbox:[19] 1) analytical reconstruction methods such
as FBP or Feldkamp–Davis–Kress (FDK) and 2) iterative methods,
in particular LSQR[20] and L1 total variation (TV1) minimization.[21]

In the first simulation experiment, a phantom derived from a
2D wet foam simulation[22] was utilized. This phantom is
depicted on a 2000� 2000 grid, spanning 1 cm in each dimen-
sion (Figure 2e). The black background pixels represent a liquid
with an attenuation coefficient of ≈1 cm�1, akin to water at
16 keV. The white foreground pixels represent gas bubbles with
an attenuation coefficient of 0 cm�1. Parallel-beam CT scans
were simulated with a varying number of projections from
10 to 300, equiangularly distributed in the range [0, π]. For each

experiment, also the noise level was varied by adding Poisson
noise corresponding to flat-field photon counts per pixel ranging
from 102 to 105. These simulations were executed using a voxel
projector from the ASTRA-toolbox with 2400 detector pixels.[19]

Next, 3D cone-beam simulation experiments were set up in
which a 3D sparse bubble configuration of size 2� 2� 1 cm, rep-
resenting an initial stage of foam formation, was simulated using
LBFoam.[23] This software, based on the lattice Boltzmann
method, generated a 3D surface mesh representing the foam
configuration, shown in Figure 4f. Similar to the 2D phantom,
the area within the phantom’s bounding box, excluding the bub-
bles, was assigned an attenuation coefficient akin to water at
16 keV (1 cm�1) while the interior of the bubbles was modeled
with nonattenuating gas. For the simulated cone-beam CT scans
of this foam, the number of projections was varied from 10 to
100, equiangularly distributed in the range [0, 2π]. Poisson noise
corresponding to flat-field photon counts per pixel ranging from
102 to 104 was introduced. The projections were computed uti-
lizing the mesh projector detailed in this article, using a detector
configuration with 256 rows and 512 columns. Voxel reconstruc-
tions were performed on a grid measuring 512� 512� 512,
covering a volume of 2� 2� 1 cm.

To quantify and facilitate comparison among diverse reconstruc-
tion types (grayscale images andmeshes), all reconstructions under-
went an initial conversion into binary images. These binary
representations were generated on the same grid as the grayscale
images obtained from LSQR and the analytic methods. For the TV1
reconstructions, the regularization parameter that minimizes the
reconstruction error was chosen. In the mesh-based reconstruc-
tions, each voxel within a bubble was rendered as white, while
the remaining voxels were rendered as black. For the grayscale
images, the conversion to binary images followed Otsu threshold-
ing, succeeded by a morphological opening operation aimed at
eliminating salt noise. The assessment of the resulting binary
images was conducted utilizing the Dice dissimilarity index (DDI),
which is the complement of the Dice index) to quantify the error.
Given two sets X and Y, this dissimilarity index is given by

DDI ¼ 1� 2jX∪Y j
jX j þ jY j (1)

The performance of each reconstruction method in terms of
the Dice dissimilarity for the 2D simulation experiment is shown
in Figure 1. It shows the mean Dice dissimilarity obtained from
10 individual runs for each method, both as a function of the
number of projections (Figure 1a) and the noise level
(Figure 1b). Notably, during variations in the number of projec-
tions, the noise level was fixed at 104 (photon count). Conversely,
when altering the noise level, the number of projections remained
fixed at 150. To facilitate visual comparisons, Figure 2a–e displays
the (binarized) reconstructions achieved with 100 projections and
104 photons. Furthermore, Figure 2f–j presents the difference
images between these reconstructions and the ground truth.
The generation of these difference images involved a pixelwise
logical XOR operation, signifying white pixels for areas of dis-
agreement between the reconstruction and the ground truth
and black pixels indicating agreement.

Figure 3a shows the mean Dice dissimilarity of 10 runs for the
3D simulation experiment, as a function of the number of
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projections, with a fixed noise level of 104 photons per pixel.
The number of projections ranges from 10 to 100. Figure 3b
shows the mean Dice dissimilarity of 10 runs as a function of
the noise level (photon count). For the visual comparison of
the methods, a slice of the (binarized) reconstructions with

25 projections 103 photons per pixel are shown in Figure 4.
BubSub computation times were measured on a HP Omen 16
laptop with an Intel Core i5 processor and an Nvidia RTX
3070 laptop GPU.With 25 projections and 20 triangles per bubble
in the control mesh, one BubSub iteration was run in 200ms.

(a) (b)

Figure 1. The Dice dissimilarity of different reconstructions versus a) the number of projections and b) the noise level for the 2D simulation experiment.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Top row: A visual comparison of the reconstructions of the 2D simulation experiment using 100 projections and a photon count of 104. Bottom
row: difference images (XOR) with the ground truth. a) FBP; b) LSQR; c) TV1; d) BubSub; e) ground truth; f ) FBP; g) LSQR; h) TV1; i) BuBSub; and
j) ground truth.

(a) (b)

Figure 3. Dice dissimilarity as a function of the a) number of projections and b) noise level for the 3D simulation experiment.
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This iteration time was observed to scale linearly with the number
of triangles per bubble.

2.1.2. Sensitivity Analysis

A sensitivity analysis of BubSub was performed to quantify the
impact of the bubble radius (assuming an initial guess with
constant radius), the number of Broyden–Fletcher–Goldfarb–
Shanno (BFGS) iterations, and the number of control points
per bubble, using the same 2D simulation setup as in
Section 2.1.1. Each parameter was varied independently, while
keeping the other parameters fixed at the following values: radius
of 27 pixels, 80 iterations, and 9 control points. The results are
shown in Figure 5.

The sensitivity analysis shows that BubSub performs well
under large ranges of selected parameters. Figure 5a shows that
as long as the initial bubble radius is chosen not too small
(>5 pixels radius), the performance of BubSub in terms of the
Dice dissimilarity is rather insensitive to the radius initialization
up to an initial radius of 40 pixels, after which the reconstruction
error slightly increases. Figure 5b shows that BubSub’s recon-
struction quality increases with increasing number of iterations,
but so does the computational cost. However, the plot also shows
that after 40 iterations, the quality does not substantially increase
anymore. In our experiments, we used 80 iterations to ensure full
convergence. Finally, Figure 5c shows that the number of control
points should be larger than 5. In our experiments, 9 control
points per bubble were used to balance computational cost
and reconstruction quality.

2.1.3. 4D Foam Phantom

During foam formation, the bubbles change from a sparse col-
lection of small bubbles to a dense collection of large bubbles.
These configurations have different effects on the reconstruc-
tions. A 4DCT simulation experiment was carried out to compare
BubSub against voxel-based reconstruction in each of these
stages. This experiment also demonstrates the use of neighbor-
ing subscans as initial guess.

The experiment is based on the dynamic foam phantom of
ref. [24], with dimensions 500� 500� 620 voxels with an isotro-
pic voxel size of 0.06mm. The expansion of this foam was cap-
tured in 60 subscans of 50 projections each, with an angular
range of 360° per subscan. Of these 50 projections, the 25 pro-
jections with even indices were used in the reconstruction, while
the other 25 were set aside for validation. Each subscan was sim-
ulated with the ASTRA-toolbox, using a cone beam geometry with
a source-object distance of 30 cm, an object detector of 1.5 cm, a
detector panel of 500� 600 pixels of 0.06mm, and a Poisson
noise level corresponding to a photon count of 104 photons
per pixel. The dynamic phantom was updated between each indi-
vidual projection to simulate continuous motion during the scan.

Each subscan was reconstructed from 25 projections, starting
from a remesh of the next subscan as initial guess (propagating
backwards through time), such that only the bubble centers in
last subscan needed to be estimated. The last subscan was ini-
tialized using spherical control meshes with 42 vertices, and each
initial guess was remeshed by splitting long edges and collapsing
short edges,[25] before starting the BubSub reconstruction with
80 iterations. For comparison, the same subscan was also

(a) (b)

(c) (d)

(e) (f)

Figure 4. Central slice of the reconstructions of the 3D simulation experiment using 25 projections. a) FDK; b) LSQR; c) TV1; d) BubSub; e) ground truth
(2D); and f ) ground truth (3D).
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reconstructed using a voxel-based method: 30 iterations of pro-
jected gradient descent using the Barzilai–Borwein step size[26]

and a non-negativity constraint.
Reconstructions of the 4DCT dataset were made using only

the 25 projections with even index. The odd-indexed projections
were left for crossvalidation in projection space. The projection
space provides a common space to compare mesh and voxel
(LSQR) reconstructions, and using unseen projections, overfitting
to noise, or streak artefacts are detected. Figure 6 shows the mean
squared error (MSE) in the projection space of the 4D reconstruc-
tions. A visualization of these reconstructions is shown in
Figure 7. The rows of Figure 7 show four evenly spaced time
points of the 4D reconstructions. The first two columns show
the voxel-based reconstruction, without and with Otsu

thresholding, respectively. The third column shows the BubSub
reconstruction and the last column shows the ground truth.

2.2. Real Data Experiments

2.2.1. Wet Foam Rheology Dataset

We applied BubSub to a synchrotron 4DCT scan from
TomoBank.[27,28] This scan captures images of a wet foam being
pushed through a funnel. The dataset comprises 180 monochro-
matic (16 keV) parallel-beam subscans. For our experiments, we
focused on subscan 3, which was chosen arbitrarily. Each sub-
scan encompasses 300 uniformly distributed projections cover-
ing a 180° range. The rotational speed during scanning was
840 °s�1 with an exposure time of 0.7ms. The detector had
dimensions of 1800� 2016 pixels, each sized at 3 μm. To elimi-
nate refraction effects in the projection data, Paganin’s method
was applied.[29] The stationary funnel containing the foam,
deemed nonessential, was removed from the projection data by
reprojecting a high-quality reconstruction of the funnel, with
the foam-occupied region set to 0. Additionally, downsampling
the projection data by a factor of 2 was performed to mitigate
memory costs. With respect tomemory usage: the dominating fac-
tor in BubSub is the size of the projection data, which is the num-
ber of detector pixels� number of projections� the size of a float
(=4 bytes). BubSub allocates this memory twice: once for the mea-
sured data and once for the forward projection of the mesh.

We conducted two BubSub reconstructions, utilizing 300 and
40 projections, respectively. The initial guess was formulated
using control meshes consisting of 42 vertices, all with equal
radii. These reconstructions were compared against 3D voxel

(a) (b)

(c)

Figure 5. The Dice dissimilarity of BubSub reconstructions versus a) the initial radius of the bubbles, b) the number of iterations, and c) the number of
control points per bubble in the 2D simulation experiment.

Figure 6. Projection space MSE of each subscan of the 4D simulation
experiment.
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reconstructions generated using the LSQRmethod with identical
number of projections (which we will refer to as “LSQR”). The
LSQR reconstructions underwent segmentation via the water-
shed method, later transformed into meshes using the marching
cubes algorithm. These resulting meshes were then compared to
the meshes generated by BubSub in Figure 8. The visual

comparisons for 300 projections are shown in the top row, while
the corresponding comparisons for 40 projections are displayed
in the bottom row. Each bubble within these reconstructions was
assigned a distinct color, simplifying comparison across the
reconstructions. Furthermore, a comparison within projection
space, specifically using 300 projections, is presented in

Figure 7. 4D reconstructions of the dynamic foam phantom. The columns show (in order) the voxel reconstructions with a non-negativity constraint, the
result of Otsu thresholding of the first column, the result of BubSub, and the ground truth.

(a) (b)

(c) (d)

Figure 8. Voxel renderings of the 3D LSQR reconstruction of the wet foam rheology dataset, compared to the BubSub reconstruction. The reconstruc-
tions using 300 projections are shown on the top row, the reconstructions using 40 projections are shown on the bottom row. a) LSQR, 300 projections;
b) BubSub, 300 projections; c) LSQR, 40 projections; d) BubSub, 40 projections.
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Figure 9. The sinograms of the BubSub reconstruction (a) and
the LSQR reconstruction (b) are depicted in the top row. The bot-
tom row exhibits the sinogram of the initial guess (c) and the
authentic sinogram (d) utilized by both reconstruction methods.

2.2.2. Aerated Chocolate Dataset

BubSub was applied to a 3D micro-CT scan acquired at the
SYRMEP beamline of the Elettra synchrotron (Trieste, Italy).
The sample is a piece of aerated milk chocolate that provides
a diverse range of bubble shapes and sizes.[30,31] The full dataset
consists of 900 projections with an angular range of 180°, of
which the 450 projections with odd index were set aside for vali-
dation, and subsets of the remaining 450 projections were used
for reconstructions.

The projections were acquired using a 13 keV monochro-
matic, parallel X-ray beam, and a 1601� 301 pixels detector array
with a pixel size of 14 μm. Paganin’s method[29] was used to
remove refraction effects from the projection data, and the exper-
iment was restricted to a region of interest of 300� 280� 350
voxels in the center of the sample.

The experiment consists of reconstructions of uniformly
sampled CT scans ranging from 3 to 200 projections, while main-
taining full angular range. Each reconstruction was initialized
using a spherical control mesh with 20 control points with
two subdivision levels, estimated using the procedure described
in mesh initialization, including the radius estimation. The opti-
mization was performed using 80 BFGS iterations. As a refer-
ence, the same data was reconstructed using a voxel-based
non-negative least-squares method (which we will refer to as
“NNLS”). This reconstruction was computed with 30 iterations
of projected gradient descent using the Barzilai–Borwein
step size.[26]

To quantify the reconstruction errors in this experiment with-
out ground truth, crossvalidation in projection space was used:
the reconstructions were made using subsets of the 450 projec-
tions with even index only, and the MSE of the reconstructions
was measured in projection space using the remaining 450 pro-
jections. Figure 10 shows this MSE as a function of the number
of projections. The 3D renderings of the reconstructions with
25 and with 200 projections are shown in Figure 11, where

the marching cubes algorithm was used to transform the
voxel-based reconstruction to a mesh for rendering.

3. Discussion

The potential of BubSub is vividly illustrated in Figure 8. Both the
LSQR and the BubSub method necessitate the input of bubble
center points, yet with only 40 projections, the watershed method
fails to discern the barriers between bubbles in the LSQRmethod
due to the low-quality reconstruction. However, BubSub success-
fully avoids merging neighboring bubbles. When utilizing all
300 projections, the watershed method accurately identifies each
bubble, but the edges of neighboring bubbles lack correspon-
dence with natural bubble shapes. In the projection space
(Figure 9), BubSub produces a refined version of the real sino-
gram, since it cannot fit to background noise, while the sinogram
of the LSQR reconstruction aligns closer to the real sinogram but
contains undesirable background noise.

As shown in Figure 7, the combination of voxel-based recon-
struction with thresholding is particularly successful when deal-
ing with small and sparsely scattered bubbles. However, as
bubbles enlarge and come into closer proximity, this method
struggles to distinguish between adjacent bubbles. Conversely,

Sinogram of BubSub reconstruction Sinogram of LSQR reconstruction

Sinogram of initial guess Real sinogram

(a) (b)

(c) (d)

Figure 9. A comparison of the a) BubSub reconstruction and b) LSQR reconstruction in projection space. The sinogram of the initial guess used by
c) BubSub, d) as well as the real sinogram used by both methods are shown on the second row.

Figure 10. Projection space MSE as a function of the number of projec-
tions for the aerated chocolate experiment.
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BubSub consistently yields high-quality reconstructions even
when bubbles are in close proximity, as illustrated quantitatively
in Figure 6.

While BubSub has shown the gain of using explicit bubble
models in computing tomographic images of wet foams, the pro-
posed BubSubmethodology could be beneficial in other domains
as well. For example, in the domain of biomedical imaging, long-
term imaging of soft tissues in solution may result in gas bubble
formation or cavitation, which dramatically compromises image
quality and integrity of the samples.[32] BubSub could be a strat-
egy to account for artifacts caused by such bubble formation.
Alternatively, in materials science, 3D deformation and strain
fields could be obtained from tracking internal bubbles (e,g.,
in characterizing drying kaolinite[33]). BubSub could be used
in such studies to accelerate imaging and/or aid in improved
bubble tracking.

In forthcoming research, our aim is to enhance BubSub on
multiple fronts. Improvements can be made to the source and
detector model, integrating elements such as finite source spots
and ray width. Implementing procedures to modify mesh topol-
ogy during reconstruction (enabling creation, removal, merging,
and splitting of bubbles) can relax the constraints on mesh ini-
tialization. Moreover, modeling the field of view’s boundary can
mitigate partial volume effects when bubbles are not entirely
within view. An automated estimation method, akin to
ref. [34], can assist in determining the stationary image back-
ground. Also, the substitution of subdivision surfaces with more

specific models of foam bubble surfaces holds promise in further
reducing modeling errors and minimizing the number of vari-
ables. Finally, the current BubSub reconstruction method
assumes a wet foammodel (i.e., gas bubbles dispersed in a liquid
medium) and does not include merging and splitting of bubbles.
This is left as future work.

4. Conclusion

We have presented BubSub, a novel tomographic reconstruction
algorithm that exploits the specific characteristics of wet foams
by directly reconstructing a collection of deformed spherical
subdivision surfaces from the measured X-ray projection data.
BubSub does not require postprocessing steps to segment the
individual bubbles or to convert to a surface mesh.
Experiments on both simulated and real datasets indicate that
the method outperforms other tomographic reconstruction
methods in terms of the number of required projections, and
robustness to noise, making it a promising method to increase
the temporal resolution of wet foam 4DCT scans.

5. Experimental Section

In this section, we introduced BubSub (Bubble mesh estimation based
on Subdivision surfaces). Starting from a conventional, low-resolution

(a) (b)

(c) (d)

Figure 11. The reconstructions of the aerated chocolate experiment, with 25 projections and 200 projections. For the voxel-based reconstructions, the
marching cubes algorithm was used to generate a mesh for rendering. a) LSQR, 25 projections; b) BubSub, 25 projections; c) LSQR, 200 projections;
d) BubSub, 200 projections.
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voxel-based image, bubbles were iteratively detected and replaced by mesh
representations.

Subdivision Surfaces: The surface meshes of the foam bubbles were
represented using subdivision surface. A subdivision surface comprises
a low-resolution mesh, termed the control mesh, from which a high-
resolution mesh was produced by iteratively subdividing the faces and
edges of the control mesh.[35] This process involves adjusting the vertices
by computing a weighted average of the control vertices. Most subdivision
methods exhibit properties where the recurrent subdivision yields a sur-
face that is twice continuously differentiable.[36] Consequently, subdivision
surfaces offer a practical means of approximating smooth surfaces
through a mesh structure, relying on relatively few variables: the vertex
coordinates of the control mesh. This characteristic renders them well
suited for representing the shapes of bubbles within wet foams, given their
inherently smooth surfaces.

Due to the linear dependence of new vertex positions on the control
vertices, the impact of subdivision on these vertices can be encapsulated
by a sparse matrix denoted as S, such that the vertex coordinates of the
subdivided surface are given by Sx, where x is the vector of vertex coor-
dinates of the control mesh. A sequence of n subdivisions can be efficiently
expressed as S= Sn⋯S2S1. We used the subdivision method of Loop,[36]

as this method was designed for triangular meshes, while other popular
methods[35,37] were aimed toward meshes with quadrangular faces.

BubSub: Given an array d representing CT projection data, the primary
objective of the BubSub method was to determine a control mesh with
vertex coordinates x, such that its (optionally repeated) subdivision, with
vertex coordinates Sx, had a simulated projection Proj(Sx) that closely
matched d (see ref. [18] for a detailed description of mesh projection
and for its Jacobian JacProj and ref. [38] for implementation details includ-
ing time/memory complexity). Mathematically, this translates to finding
the minimum of the following objective function

f ðxÞ ¼ 1
2
kProjðSxÞ � dk22 (2)

with piecewise gradient

∇f ðxÞ ¼ STJacTProjðSxÞðProjðSxÞ � dÞ (3)

Applying gradient descent to optimize this problem, in a neighborhood
of the solution in which the objective function is convex, is equivalent to
applying subgradient descent, because the piecewise derivative is always a
subderivative in the convex case. While convergence proofs for subgra-
dient descent exist under various assumptions,[39] its practical application
often demonstrates slow convergence. Hence, this was our preference for
employing the BFGS method,[40] which is a quasi-Newton optimization.
This approach provides significantly swifter convergence rates and,
despite lacking theoretical assurances of convergence for nondifferentia-
ble functions, empirically demonstrates effectiveness. The running time of
BubSub was dominated by the computation of the projection in the objec-
tive function evaluation and its Jacobian in the gradient evaluation.
One iteration of BFGS requires one gradient evaluation and typically
one function evaluation to check sufficient descent conditions.

Mesh Initialization: During the optimization procedure of BubSub, the
topology of the mesh remained the same. Hence, BubSub should be ini-
tialized with a mesh that already has the correct topology (i.e., one spheri-
cal mesh per bubble). Furthermore, because the objective function is
nonconvex, an initial guess that is close to the solution is recommended
to avoid potential local minima. In the case of four-dimensional computed
tomography (4DCT), these requirements were easily satisfied for subscans
of which one of the neighboring subscans was already reconstructed.
The reconstruction corresponding to that neighboring subscan can be
used as the initial guess, as it has the same topology and only differs
by a small deformation. If none of the neighboring subscans has been
reconstructed, an initial guess can be obtained as follows.

Bubble Center Estimation: First, the bubble center positions were
estimated using a low-resolution voxel reconstruction as follows: the cen-
ter positions were found by extracting the local maxima of the Euclidean

distance transform of the (binarized) reconstructed images. Next, a mesh
with vertex coordinates x ∈ ℝv�3 was generated with one sphere with con-
stant radius at each bubble center.

Bubble Radius Estimation: Optionally, the initial guess of the mesh can
be improved by estimating the radius of each bubble. This can be omitted
if the bubbles all have similar radii. The coordinate vector x can be seen as
a function x(r) of the vector r of all bubble radii, which is initially constant.
In BubSub, we proposed to minimize

gðrÞ ¼ 1
2
kProjðxðrÞÞ � dk22 (4)

with piecewise gradient

∇gðrÞ ¼ JacTx ðrÞJacTProjðxðrÞÞðProjðxðrÞÞ � dÞ (5)

This is a problem similar to the minimization of Equation (2), yet sim-
pler because of the reduced number of variables. The Jacobian Jacx(r) was
obtained with automatic differentiation.

The resulting mesh with vertex coordinate vector x can then be used as
the initial control mesh for the minimization of Equation (2).

Code Availability

The code used to generate all findings presented in this article is available
in https://doi.org/10.5281/zenodo.8120343. The execution of this code
requires the meshtomography package which is available on reasonable
request.
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