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I. Introduction

X -RAY computed tomography reconstructions fre-
quently suffer from ring-artefacts. Caused by the

non-uniformity of the detector, these artefacts appear as
light or dark rings in the reconstruction [1]. Currently,
variations in the response of detector elements is estimated
by the use of flat-fields, scans without an object in the
scanner. Any discrepancies between the flat-fields and the
measured data will lead to ring artefacts in the reconstruc-
tion, as the flat-fields are used to normalize each projection
[2].
Most methods for the reduction of ring artefacts are

either pre-processing methods where the non-uniformity is
reduced in the projection data [3] or post-processing meth-
ods where rings are removed from the reconstruction [4].
In contrast to the processing methods, both Aggrawal [2]
and Paleo [5] have suggested algorithms for estimating flat-
fields during reconstruction. In both papers a non-linear
minimization with a Total Variation prior is described.
We propose a joint linear system of equations which

results in both a reconstruction and a flat-field estimate.
Our proposed model is mathematically simpler and can
be solved by fast linear Krylov methods. Furthermore,
the proposed method uses no prior knowledge and can
therefore be incorporated in any existing workflow.

II. Method
The acquired projection data from a CT system can

be described using the Beer-Lambert law, which states
that the projection of an object with a spatial attenuation
function µ(x) under an angle θ and a signed distance s
from the origin, can be described as

ln(I(s, θ)) = ln(I0(s))−
∫
µ(x)δ(x · ξ − s) dx (1)

with I the measured intensity, I0 the incoming intensity
and ξ =

[
cos(θ) sin(θ)

]> [6]. The integral equation (1)
can be discretised as follows:

bm,k = zk −
∑

j

am
k,jyj (2)

where the index k denotes a specific ray from the source
to detector element k, the index m denotes the projection,
b = bm,k = ln(I(m, k)) ∈ RK , K the total number of
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detector elements, z = (zk) = ln(I0(k)) ∈ RK , y = (yn) ∈
RN a discretised version of µ, N the total number of voxels
of the reconstruction and Am ∈ RK×N the system matrix
for the m’th projection. We assume the detector response
to vary over the detector pixels

bm = Iz −Amy, (3)

with I ∈ RK×K a unit matrix. Further assuming that the
detector response is independent of the projection angle
leads to the following linear system for M total angles:

b = F

[
y
z

]
, F =

−A1 I
...

...
−AM I

 . (4)

The least squares solution to this linear system of equa-
tions can be found by solving the equivalent system

F>F

[
y
z

]
= F>b. (5)

We will solve this system with a fast Krylov subspace
method called Conjugate Gradients (CG).
The column space of the system matrix A is linearly

dependent on the flat-field operator. This can be easily
seen as for example the projection of a single voxel in
the rotation center is a straight line, as its projection is
independent of the angle, so it is indistinguishable from
a non-uniformity in detector response in the center of
the detector. We propose to reduce the dimension of the
solution space by first determining a rough estimate of
the support of the reconstruction. This can be done by
thresholding a preliminary reconstruction obtained after
a very low amount of CG iterations, typically less than
five. This gives us an estimate S of the support of the
object in the reconstruction domain. Using this support
results in solving the system

−Ay +Uz = b, A =

A1
...
AM

 ,U =

I...
I

 (6)

subject to ys = γ for s 6∈ S, with S the support of the
object and γ a fixed background value. The reconstruction
and flat-field estimation get better with better estimations
of the support. Fixing the voxels that do not belong to S is
equivalent to deleting the columns of the system matrix A
that correspond to these voxels. This reduces the amount
of flat-fields in the column space of A and consequently
improves the flat-field estimation.



(a) Simulated sino-
gram with flat-field.
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(b) Difference between ground truth
and estimated flat-field.

Figure 1: Sinogram (a) and error in estimation (b).

III. Experiments and results
To validate our proposed method, we first reconstructed

a simulated dataset with a randomly generated flat-field.
We added a random flat-field to the parallel beam sino-
gram of a phantom image, as shown in Fig. 1a. Next, we
reconstructed the central slice of an experimental dataset,
for which no flat-fields were acquired. The imaged object
for the experimental data was a plexiglass phantom with
three aluminium rods inserted and two small drilled holes.
The projection data was acquired using a SkyScan 1172
scanner on a 1000×1000 detector under 600 evenly spaced
projection angles.
In both cases, a conventional reconstruction is computed

with CG in 45 iterations, without estimating flat-fields.
Next, we used the described method to calculate both
the flat-field estimate and a reconstruction simultaneously.
Here, 3 CG reconstructions were performed to obtain
an estimate of the support, after which we used 45 CG
iterations for the joint reconstruction and estimation. All
forward and back projections using the system matrix were
performed using the ASTRA toolbox [7].
In Fig. 1b the error between the ground truth flat-

field and the estimated flat-field is plotted. This figure
suggests that the estimation works well on most parts
of the detector. In Fig. 2, we show the conventional and
joint reconstructions of the object as well as the support
used, for the simulated (left column) and real data (right
column). In both real and experimental data one can
observe a reduction of the ring artefacts, most noticeable
for the rings which travel outside of the support at some
point.

IV. Conclusion and future work
We presented a method that can simultaneously re-

construct an object and the flat-fields using linear solv-
ers. Simulation and real experiments showed a significant
reduction of ring artefacts in the reconstruction. The
support estimation is at this moment calculated from an
initial reconstruction, however, it would be interesting to
include an iteratively changing support.
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Figure 2: Reconstructions with CG (a,b) and joint method
(c,d), estimated support shown in (e,f).
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