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Shadow-Aware Nonlinear Spectral Unmixing for
Hyperspectral Imagery

Guichen Zhang , Paul Scheunders , Senior Member, IEEE, Daniele Cerra , Member, IEEE, and Rupert Müller

Abstract—In hyperspectral imagery, differences in ground sur-
face structures cause a large variation in the optical scattering
in sunlit and (partly) shadowed pixels. The complexity of the
scene demands a general spectral mixture model that can adapt
to the different scenarios of the ground surface. In this article, we
propose a physics-based spectral mixture model, i.e., the extended
shadow multilinear mixing (ESMLM) model that accounts for
typical ground scenarios in the presence of shadows and nonlin-
ear optical effects, by considering multiple illumination sources.
Specifically, the diffuse solar illumination alters as the wavelength
changes, requiring a wavelength-dependent modeling of shadows.
Moreover, we allow different types of nonlinear interactions for
different illumination conditions. The proposed model is described
in a graph-based representation, which sums up all possible ra-
diation paths initiated by the illumination sources. Physical as-
sumptions are made to simplify the proposed model, resulting in
material abundances and four physically interpretable parameters.
Additionally, shadow-removed images can be reconstructed. The
proposed model is compared with other state-of-the-art models
using one synthetic dataset and two real datasets. Experimental
results show that the ESMLM model performs robustly in various
illumination conditions. In addition, the physically interpretable
parameters contain valuable information on the scene structures
and assist in performing shadow removal that outperforms other
state-of-the-art works.

Index Terms—Hyperspectral imagery, HySpex, nonlinear effect,
nonlinear spectral unmixing, shadow-aware, spectral mixing
models.

I. INTRODUCTION

HYPERSPECTRAL cameras, also referred to as imaging
spectrometers, record the spectral information of ground

materials across many contiguous and narrow spectral channels
and have become a valuable data source in remote sensing
[1]–[3]. Each pixel in a spaceborne or airborne hyperspectral
image captures the signal backscattered from a mixture of
ground objects and atmospheric features [4]. In order to remove
atmospheric features, atmospheric correction methods convert
the signal to ground material reflectance [5]–[7]. As a pixel typi-
cally contains more than one material, the spectrum of a pixel at
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reflectance level is given as a mixture of the spectral signatures of
the materials (i.e., endmembers) contained in a single-resolution
cell. Spectral unmixing reveals the endmembers and their corre-
sponding contributions (i.e., abundances) [8]–[10]. Developing
a good mixture model is one of the uttermost important prior
conditions for a successful spectral unmixing process.

Methods based on radiative transfer [11], [12] model the
optical interactions of the entire imaging chain and can build an
accurate mixture model. However, they often require detailed
geometric and radiometric auxiliary data. Additionally, due to
their complexity, inversing these models is nontrivial [9]. Thus,
in the past decades, many researchers have derived simplified
physics-based mixture models following various assumptions.
The most common model, the linear mixing model (LMM) [13],
follows the straightforward assumption that the incoming so-
lar illumination interacts with a pixel only once before being
scattered back to the sensor. The spectral mixture is then given
by the sum of the material spectra, weighted by their spatial
proportion within the pixel. This simple model assumes an ideal
scene structure, with a flat ground surface and spatially separable
ground materials [9], [10]. Two constraints on the abundances
are often applied along with the LMM [8]. As abundances are
areal proportion values per pixel, they are constrained to positive
values (ANC, abundance nonnegativity constraint). Assuming
that the endmember library includes all possible materials in
a scene, the sum of abundance values per pixel equals one
(ASC, abundance sum-to-one constraint). Some later works
relax the ASC constraint, allowing some materials in a pixel
not to be present in the endmember library [8]. In addition, other
constraints on the abundances have been also applied along with
the LMM, such as sparsity [14]–[16] and spatial constraints
[17], [18].

The linear mixture model depends on strict physical assump-
tions that are often not fulfilled in reality. In many situations,
nonlinear optical interactions are nonnegligible [9], [10], [19].
Nonlinear mixtures can occur at both microscopic and macro-
scopic levels [10] and, depending on the size of the particles
under investigation, different categories of models exist. At
the microscopic level, intimate mixtures occur, in which the
optical interactions with grains or particles are typically smaller
than the path length followed by the photons [10]. The most
popular model is the Hapke model [20] that derives the measured
reflectance as a function of optical and physical parameters of
the medium. Intimate mixtures are not the focus of this article.
In the macroscopic scenario, nonlinear optical interactions can
occur because of height differences between ground objects [9],
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[10]. In order to allow incoming light to interact more than
once before being scattered back to the sensor, some nonlinear
models use higher-order terms through the termwise product
of spectra. Most methods only consider bilinear terms up to
the second order. The parameters and constraints corresponding
to the bilinear terms can follow different assumptions, leading
to different nonlinear mixture models, such as the Nascimento
model [21], the Fan model [22], the postnonlinear mixing model
(PPNM) [23], and the generalized bilinear model (GBM) [24].
Meganem et al. [25] proposed a linear–quadratic model based
on radiative transfer theory. This model has a similar form as
the GBM [24], but it is entirely derived from physical equations
with clear interpretations of the parameters.

Apart from bilinear models, some works have attempted to
consider all orders of interactions using harmonic functions [26]
and polynomial functions [27]. Recently, a multilinear mixing
(MLM) model [28] has been proposed, based on the stochastic
process of optical interactions with clear physical assumptions.
This model traces the path that a single light ray follows
and extends the optical interactions to infinite order, following
physical assumptions. Besides abundances, this model includes
one additional parameter P , which is the probability of a light
ray undergoing further optical interactions after each previous
interaction with ground materials. It is worth noting that this
model follows the rule of conservation of energy: when P > 0,
the reconstructed pixel does not increase its value with respect
to the LMM result for the same endmembers and abundances.
However, when a pixel receives additional illumination from
its neighborhood, the observed spectrum can be larger than
the reconstructed result by the LMM. This phenomenon can
be achieved numerically by setting P < 0, with P losing its
physical meaning.

Later, the MLM model has been extended to tackle shadow
effects (the SMLM model) by including another parameter Q,
representing the pixelwise fractional value of cast shadow [29].
The way of treating shadow in this work is equivalent to adding
a “zero-reflectance” spectrum to the endmember library, which
has been recognized as a straightforward manner to deal with
shadows in spectral mixture models [30], [31]. This method
assumes shadow to be an endmember and regards the shadow
problem as a wavelength-independent scaling effect. Despite
being able to model shadowed pixels with comparatively low re-
construction errors, this technique lacks physical interpretation,
as the shadow endmember is not the spectrum of any ground
material.

When treating shadow as a scaling effect, the spectral angle
between sunlit and shadowed ground materials remains zero.
Therefore, some methods apply spectral angle matching to
pair sunlit and shadowed pixels containing the same material
[32]–[35]. However, shadow not only scales a spectrum but also
causes wavelength-dependent distortions [36]. Some works have
paid attention to the spectral distortions caused by shadow. In
an early work, a constant illumination is assumed and shadow
is treated as a nonlinear effect [21]. The authors studied a
specific situation, where trees block the direct solar illumination
on a region covered by grass. Assuming that shadowed areas
receive secondary illumination, the proposed method models

the shadowed spectrum by the termwise product of the tree and
grass spectra. Another group of methods allows the illumination
conditions to vary over a scene. As shadowed pixels receive no or
only a part of direct solar illumination, diffuse solar illumination
is a prominent illumination source for shadowed pixels [37].
Yamazaki et al. [36] performed a field experiment to study the
spectral characteristics of shadowed regions and showed that
the shadow effect is strongly wavelength-dependent. Several
more generic methods describe the shadow effects by introduc-
ing multiple illumination sources and applying the concept of
spectral unmixing. Inspired by radiative transfer theory [37],
Uezato et al. [38] developed a spectral unmixing method using
hyperspectral data at a radiance level, coupled with a digital sur-
face model. Zhang et al. [39] have presented a spectral mixture
model based on reflectance data and have derived abundance
values along with topographical information. Although it was
shown that embedding multiple illumination sources in a model
improves unmixing performances in (partly) shadowed pixels,
nonlinearity has been modeled similarly for all pixels, regardless
of the illumination conditions [39]. However, the nonlinearity in
shadowed areas can behave quite differently from sunlit areas,
due to the light attenuation caused by occluding objects.

In this article, we present a novel nonlinear mixture model,
which is an extension of the SMLM model [29] and that over-
comes the mentioned problems in the following aspects.

1) We consider two illumination sources, i.e., 1) direct and
2) diffuse solar illuminations. Following physical assump-
tions, we allow variable illumination conditions over the
scene, where sunlit regions receive direct as well as diffuse
solar illuminations, whereas shadowed regions receive
diffuse solar illumination and possibly reflected direct
solar illumination. Specifically, one pixel can be composed
of shadowed areas along with fully sunlit areas and can,
therefore, be treated as a partly shadowed pixel, resulting
in a better representation of shadow boundaries.

2) Our proposed model allows two different types of nonlin-
ear interactions. Besides the nonlinear optical interactions
caused by the direct incoming light from both illumination
sources, a pixel can receive secondary reflections from
its neighboring pixels. In this way, the proposed model
can produce reconstructed pixels with spectral values
larger than those obtained through LMM, without losing
the physical meaning of the parameter P , while energy
conservation still holds.

3) We describe our model using a graphical representation
with multiple illumination sources. The mixture result is
computed as the sum of all light contributions, weighted
by their probabilities. In addition to the abundances val-
ues, our model generates four pixelwise physically in-
terpretable parameters: Q (spatial fraction of shadow in
a pixel), F (sky view factor, which denotes the fraction
of the sky hemisphere that is visible from the ground
surface [40]), P (the probability of higher-order inter-
actions of the incoming light ray), and K (a strength
factor of neighbor interactions, denoting the fraction of
the scattered light from the neighborhood that is received
by the pixel).
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TABLE I
NOTATIONS

The remainder of this article is organized as follows. In
Section II, we describe the impact of shadow on the observed
reflectance, based on radiative transfer and atmospheric correc-
tion. Section III introduces the physics-based mixture models
from the literature, whereas Section IV describes our proposed
mixture model. Section V introduces the experimental setup,
including three datasets for the evaluation of the spectral mix-
ing models, quantitative measures for the comparison of the
methods, the unmixing procedure, and the experimental design.
Section VI demonstrates the experimental results quantitatively
using a synthetic dataset, and Section VII and VIII present
both quantitative and qualitative results using real datasets.
Finally, we conclude our work and give future prospects in
Section IX.

II. IMPACT OF SHADOW ON REFLECTANCE

A. Notations

Table I presents the notations used in this paper.

B. Impact of Shadow on Reflectance

A single-element detector of a spectrometer receives the
backscattered solar radiation of a ground pixel, determined by
the instantaneous field of view (IFOV) from different radiation
paths. The backscattered radiation contains two contributions: 1)

the radiation, scattered by the atmosphere to the single-element
detector without interacting with the ground surface (path ra-
diance); 2) the radiation interacting with the ground surface
and scattered back to the single detecting element (reflected
radiation). Following the theory of radiation propagation [7],
[37], the incoming solar radiation reaching the ground surface
mainly consists of two portions. The most significant portion is
the “direct solar irradiance (direct sunlight),” i.e., the direct solar
illumination propagating through the atmosphere and reaching
the ground surface. The remaining portion is the “diffuse solar
irradiance (skylight),” i.e., the solar radiation dispersed in the
atmosphere before reaching the ground surface. The contribution
of skylight as an illumination source is significantly smaller
with respect to direct sunlight, but it is nonnegligible in some
situations, such as overcast sky and shadowed areas [37].

Let us assume that the ground targets are located on a flat
terrain and behave as a Lambertian surface. Then, at each
wavelength λ, the at-sensor radiance L(λ) for a ground pixel
with reflectance r(λ) can be written as

L(λ) = Lp(λ) +
δτdir(λ)El(λ)r(λ)

π

+
τdiff(λ)Es(λ)r(λ)

π
(1)

where Lp(λ) is the path radiance, El(λ) the direct solar irradi-
ance, andEs(λ) the diffuse solar irradiance on the ground target.
The transmittances of the direct and diffuse solar radiation are
τdir(λ) and τdiff(λ), respectively, while δ is a binary value indi-
cating if the ground surface receives any direct solar irradiance.
In traditional atmospheric correction algorithms, δ is set to 1,
as the ground surface is usually assumed to be horizontal and
unobstructed, i.e., it “sees” the entire hemisphere above. Thus,
given the at-sensor radianceL, atmospheric correction is applied
and r̂(λ) is derived by inverting (1)

r̂(λ) =
π(L(λ)− Lp(λ))

τdir(λ)El(λ) + τdiff(λ)Es(λ)
= r(λ). (2)

However, a pixel may not or only partly receive direct sunlight,
due to occlusion by ground objects. The at-sensor radiance
L′(λ) of a fully shadowed pixel, containing one material with
reflectance r(λ), is given by (1) with δ = 0

L′(λ) = Lp(λ) +
τdiff(λ)Es(λ)r(λ)

π
. (3)

When standard atmospheric correction (2) is applied on such
a pixel, then the reflectance r̂s(λ) is computed as

r̂s(λ) =
π(L′(λ)− Lp(λ))

τdir(λ)El(λ) + τdiff(λ)Es(λ)

=
τdiff(λ)Es(λ)r(λ)

τdir(λ)El(λ) + τdiff(λ)Es(λ)
(4)

in which (3) is substituted.
As reflectance represents an intrinsic property of a material

and should not change according to illumination conditions, we
expect that r̂s(λ) = r̂(λ) = r(λ). However, during atmospheric
correction, the direct solar irradiance is incorrectly assumed to be
an illumination source in shadowed regions. As a consequence,
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the computed reflectance values in these areas are much smaller
than their correct values, and a wavelength-dependent deviation
exists between r̂s(λ) and r(λ).

If no occlusion occurs on a ground pixel, the diffuse radiation
comes from all directions of the sky dome. Otherwise, the diffuse
irradiance decreases by the sky view factorF ∈ [0, 1], represent-
ing the fraction of sky that a ground pixel can “see.” Following
previous works, we model the decrease of the diffuse-to-direct
solar irradiance as the wavelength goes up through a power
function, which describes stronger atmospheric scattering at
short wavelengths [37], [39], [41], [42]

τdiff(λ)Es(λ)

τdir(λ)El(λ)
= F

(
k1λ

−k2 + k3
)

(5)

with k1, k2, k3 > 0.
Combining (4) and (5), we derived an expression for the

reflectance of a ground material in fully shadowed regions with
respect to the reflectance of the same material exposed to direct
sunlight as

r̂s(λ) =
F
(
k1λ

−k2 + k3
)

1 + F (k1λ−k2 + k3)
r̂(λ). (6)

The derived relationship between the reflectances of the same
material in different illumination conditions is only valid in the
following simplified scenario. First, each ground pixel contains
only one material. Second, illumination interacts only once with
a ground pixel before being scattered back to the sensor. Third,
a ground pixel can only be either fully sunlit or fully shadowed.
In reality, a ground pixel can be composed of multiple materials,
and illumination sources can interact multiple times with ground
materials. In addition, pixels may only be partly shadowed.
To include these situations, a shadow-aware nonlinear spectral
mixture model is required.

III. MIXTURE MODELS AND THEIR GRAPH REPRESENTATIONS

The mixture models describe the optical interactions to a
certain degree of complexity in the imaging chain [9], [10].
Following the work in [28] and [29], we present state-of-the-art
spectral mixture models, based on a ray-based approximation of
light and a graph-based representation of the optical interactions.
We notate an observed pixel as a d-dimensional vector x and p
endmember spectra as p d-dimensional vectors {ei}

p
i=1, where

d denotes the number of spectral bands.
The entire process of the incoming light from the illumina-

tion sources undergoing optical interactions, and each sensitive
element of the spectrometer recording the backscattered light
from the corresponding ground pixel can be described as a
discrete-time stochastic process [29]. A light path is defined
by the random variable {Xn}n≥0 with ∀n Xn ∈ S, and the
discrete set S contains all possible interactions that a light ray
can undergo before reaching the observer. In passive optical
imaging, the light path always starts from the illumination source
X0 = s0. States in which the light ray interacts with a ground
material are indicated as {Xi = si}Li=1. Since we consider only
the scattered light eventually received by the observer, a light
path ends with the observer state XL+1 = o. L ∈ [1,∞] is the

path length, indicating the number of optical interactions that a
light ray underwent before being scattered back to the observer.

The probability of observing a certain path of lengthL is given
by

P (path) = P (X0 = s0, X1 = s1, . . . , XL = sL, XL+1 = o).
(7)

It is assumed that this stochastic process follows the Markov
property:

P (Xn+1|X0, · · ·Xn) = P (Xn+1|Xn). (8)

At each state, the optical properties of the light ray will be
altered. This alteration describes a relative change in the spec-
trum of the light ray, according to the reflectance of the object
associated with that state. If T (si) is the operator that acts
on the light ray in state si, the total effect of path = {X0 =
s0, X1 = s1, . . . , XL = sL, XL+1 = o} on a light ray is given
by
∏L

i=0 T (si). The operator T (si) is associated with the state
si.

1) For states {Xi = si}Li=1 representing ground materials,
T (si) = ei.

2) For the state {XL+1 = o} presenting the observer,T (o) =
1.

3) For the state {X0 = s0} representing the illumination
source(s), T (s0) is a constant vector and corresponds to
the illumination source.

Thus, an observed pixelx is described as the weighted average
over all possible paths

x =

∞∑
L=1

(∑
s0∈S

∑
s1∈S

· · ·
∑
sL∈S

)
P (path)

L∏
k=0

T (sk). (9)

Table II shows a summary of light paths, their corresponding
probabilities, and spectral contributions for different mixing
models. In the next sections, we will describe in more detail
these models and their graph representations.

A. Linear Mixing Model

The linear mixing model (LMM) assumes that the incoming
light interacts only once with a set of endmembers before
being scattered back to the sensor (L = 1). The probability
of an incoming light ray from the illumination source s that
interacts with the ground surface with endmember el, (l =
1, . . . , p) and is scattered back to the observer o is proportional
to the abundance al, (l = 1, . . . , p). Thus: P (path) = P (X0 =

s0, X1 = s1, X2 = o) = al, and
∏L

k=0 T (sk) = T (s0)T (s1),
with T (s0) = 1 and T (s1) = el. According to (9), the LMM
is written as

x =
∑
s0∈S

∑
s1∈S

alT (s0)T (s1) =

p∑
i=1

aiei (10)

where
∑p

i=1 ai = 1 and ∀i: ai ≥ 0.

B. Bilinear Mixing Models

In bilinear models, a light ray from the illumination source can
either interact with an endmember once before being scattered
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TABLE II
PROBABILITIES OF LIGHT PATHS AND THEIR SPECTRAL CONTRIBUTIONS IN DIFFERENT MIXING MODELS

back the sensor, i.e., L = 1, or it can have multiple interactions
with endmembers up to the second order, i.e., L = 2. Thus, we
have two possible light paths, with probabilities: P (path) =
P (X0 = s0, X1 = s1, X2 = o) = al and P (path) = P (X0 =
s0, X1 = s1, X2 = s2, X3 = o) = γm,naman. Different bilin-
ear models can be derived by constraining the free parameter
γm,n (see Table II). Then

x =
∑
s0∈S

∑
s1∈S

alT (s0)T (s1)

+
∑
s0∈S

∑
s1∈S

∑
s2∈S

γm,namanT (s0)T (s1)T (s2)

=

p∑
i=1

aiei +
∑
i

∑
j

γi,jaiajei � ej. (11)

C. MLM Model

Recently, Heylen and Scheunders[28] extended bilinear mix-
ing models to the MLM model that regards all orders of optical
interactions. Similar to the case of linear and bilinear models,
this assumes that a light ray incoming from the illumination
source will interact with at least one material. Besides, the MLM
model introduces a new parameterP : After each interaction with
a material, the light ray will have a probability P of undergoing
further interactions and a probability (1− P ) of escaping the
scene and reaching the observer. Following these assumptions,
a light ray from the illumination source can interact with ground
objects up to an infinite amount of times before being scattered
back to the sensor, i.e., L ∈ [1,∞]. Given a light path: path =
{X0 = s0, X1 = s1, X2 = s2, . . . , XL = sL, XL+1 = o}, its
probability is given by P (path) = (1− P )PL−1ai1ai2 · · · aiL .
The spectral contribution of this path is

∏L
k=0 eik with eik

representing the endmember of the material that the ray interacts
with the kth time and aik its abundance.

Thus

x =
∞∑

L=1

(
p∑

i1=1

· · ·
p∑

iL=1

)
(1− P )PL−1

L∏
k=1

(aikeik)

= (1− P )

p∑
i=1

aiei + (1− P )P

p∑
i=1

p∑
j=1

aiajei � ej + · · ·

=
(1− P )

∑p
i=1 aiei

1− P
∑p

i=1 aiei
. (12)

D. Shadow LMM Model

The shadow LMM (SLMM) extends the endmember library
with a “zero-reflectance” spectrum. Numerically, this technique
is equivalent to including a parameter Q ∈ [0, 1], which rep-
resents the spatial fraction of shadow in a pixel [28]. Values
of Q = 0 and Q = 1 indicate a fully sunlit and fully shadowed
pixel, respectively, whileQ ∈ (0, 1) describes a partly shadowed
pixel. This model can estimate abundances under the shadow by
setting Q = 0 during pixel reconstruction. Similar to the LMM,
the light path of the SLMM is P (s0, el, o) = (1−Q)al with
the spectral contribution of el. Thus

x =
∑
s0∈S

∑
s1∈S

(1−Q)alT (s0)T (s1) =

p∑
i=1

(1−Q)aiei (13)

where
∑p

i=1 ai = 1 and ∀i: ai ≥ 0.

E. Shadow MLM Model

The shadow MLM (SMLM) model [29] extends the MLM
model from [28] in order to deal with shadows. It is assumed
that shadowed regions do not receive direct sunlight but only
multiple reflections of direct sunlight. The SMLM model uses
the parameter Q to represent the shadow fraction within a pixel.
Thus, the light paths and probabilities of the SMLM model are
the same as those of the MLM model except for the first order,
which is rescaled with (1−Q), hereby subtracting the shadow
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fraction from the direct sunlight term in a spectrum. Thus

x =
1∑

L=1

(
p∑

i1=1

· · ·
p∑

iL=1

)
(1−Q)(1− P )

L∏
k=1

(aikeik)

+

∞∑
L=2

(
p∑

i2=1

· · ·
p∑

iL=1

)
(1− P )PL−1

L∏
k=2

(aikeik)

= (1−Q)(1− P )

p∑
i=1

aiei

+ (1− P )P

p∑
i=1

p∑
j=1

aiajei � ej + · · ·

=
(1− P )

∑p
i=1 aiei

1− P
∑p

i=1 aiei
−Q(1− P )

p∑
i=1

aiei (14)

F. Mixture Model With Multiple Light Sources

The work in [39] allows different illumination conditions
in sunlit and shadowed regions and regards the shadow effect
in a wavelength-dependent manner. In this work, sunlit areas
receive the entire solar radiation, i.e., direct as well as diffuse
solar radiation, whereas the shadowed regions only receive
diffuse radiation. Hence, in the graph representation, two
illumination sources, each with its own state, are considered:
global radiation s0glob and diffuse radiation s0diff . Specifically,
s0glob is equivalent to s0, where only one illumination source
is considered. The model accounts for the light paths from the
global radiation up to the second order, leading to two possible
light paths: P

(
pathglob

)
= P (X0 = s0glob , X1 = s1, X2 =

o) = (1−Q)al for L = 1 and P
(
pathglob

)
= P (X0 =

s0glob , X1 = s1, X2 = s2, X3 = o) = aman for L = 2. The

spectral contribution of two light paths is T (s0glob)
∏L

k=1 ek,
with L = 1 and L = 2, respectively. Moreover, the model
assumes that diffuse solar radiation interacts not more
than once with ground materials, resulting in the light path
P (pathdiff) = P (X0 = s0diff , X1 = s1, X2 = o) = Qal, where
L = 1 and Q is the spatial fraction of shadow in a pixel. The
spectral contribution is

∏L
k=0 T (s0diff)

∏L
k=1 el, where L = 1.

Since the light paths at the second order (L = 2) is equivalent
to the Fan model, we refer to this model as the Fansky model in
this article. From (5) follows that T (s0diff) =

τ diff�Es

τ dir�El+τ diff�Es
.

Then, the mixture model can be written as the contribution of
all possible light paths, initiated from two illumination sources

x =

2∑
L=1

⎛
⎝ ∑

s0glob∈S
· · ·
∑
sL∈S

⎞
⎠P

(
pathglob

)
T
(
s0glob

) L∏
k=1

T (sk)

+
1∑

L=1

⎛
⎝ ∑

s0diff∈S
· · ·
∑
sL∈S

⎞
⎠P (pathdiff)T (s0diff)

L∏
k=1

T (sk)

= (1−Q)

p∑
i=1

aiei +

p∑
i=1

p∑
j=i

aiajei � ej +Q

p∑
i=1

aie
′
i

(15)

where e′i =
τ diff�Es

τ dir�El+τ diff�Es
with El and Es are the vector

forms of El(λ) and Es(λ), respectively.

IV. PROPOSED METHOD

We propose an extended SMLM (ESMLM) model by al-
lowing multiple illumination sources, i.e., direct and diffuse
solar radiation. Moreover, apart from the optical interactions
occurring in a ground pixel determined by its IFOV, a pixel can
also receive additional illumination from its neighboring pixels
through secondary reflections. Fig. 1 depicts the occurring op-
tical interactions for five different scenarios that are considered
in this model. As the path radiance is assumed to be removed
by atmospheric correction [7], the model describes three types
of light paths, corresponding to three illumination sources: 1)
global solar illumination s0glob , diffuse solar illumination s0diff ,
and neighboring illumination s0N . The light paths together
with their probabilities and spectral contributions for the three
illumination sources in the proposed model are presented in
Table III, followed by the physical assumptions and a detailed
explanation for each illumination source in the remaining part
of this section. In brief, the mixture model is computed as the
sum of the contributions from all illumination sources in (16)
and (17) and contains the following four physically explainable
parameters.

1) P : The probability that a light ray undergoes additional
interactions with endmembers.

2) Q: The spatial fraction of shadow.
3) F : The sky view factor.
4) K: A strength factor of neighbor interactions, denoting

the fraction of the scattered light from the neighborhood
that is received by the pixel

x =

2∑
L=1

⎛
⎝ ∑

s0glob∈S
· · ·
∑
sL∈S

⎞
⎠P

(
pathglob

)
T
(
s0glob

) L∏
k=1

T (sk)

+

1∑
L=1

⎛
⎝ ∑

s0N ∈S
· · ·
∑
sL∈S

⎞
⎠P (pathN )T (s0N )

L∏
k=1

T (sk)

+
1∑

L=1

⎛
⎝ ∑

s0diff∈S
· · ·
∑
sL∈S

⎞
⎠P (pathdiff)T (s0diff)

L∏
k=1

T (sk)

= (1−Q)(1− P )

p∑
i=1

aiei + P

p∑
i=1

p∑
j=1

aiajei � ej

+ (1−Q)(1− P )K

p∑
i=1

aiei � eN +QT (s0diff)

p∑
i=1

aiei.

(16)

In sunlit regions, the global solar illumination s0glob is the
main illumination source, and the proposed model retains most
of the assumptions for s0glob made by the SMLM model. One
difference is that we constrain the parameter P within [0,1], in
order to preserve its physical interpretation. Moreover, with the
aim of keeping all types of nonlinear interactions up to the same
order, the proposed model limits nonlinear interactions of an
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Fig. 1. Solar radiation paths when a pixel is (a) exposed to direct sunlight; (b) fully shadowed; (c) receiving secondary illumination from neighbors; (d) partly
shadowed with sunlit and shadowed regions spatially separated in a pixel; (e) partly shadowed with sunlit and shadowed regions not spatially separable in a pixel.

TABLE III
PROBABILITIES OF LIGHT PATHS AND THEIR SPECTRAL CONTRIBUTIONS IN THE PROPOSED MODEL

incoming light ray up to the second order. In the specific, the
following assumptions for s0glob are made.

1) An incoming light ray from the global illumination source
will interact with at least one material in a pixel. After
each interaction with a material, the ray will have proba-
bilities P and (1− P ) of undergoing further interactions
within the current pixel or escaping the current pixel,
respectively.

2) As the shadowed part of a pixel does not have a direct
line of sight to the sun, the probability that the reflected
light escapes a partly shadowed pixel after the first in-
teraction is rescaled with (1−Q), with Q ∈ [0, 1] the
fractional value of the shadow in the pixel. Thus, after
the first interaction with a material, the light ray will
have a probability (1−Q)(1− P ) of escaping the current
pixel. On the other hand, the shadowed part of a pixel can
receive reflected light from s0glob , thus the probability of
a secondary reflection remains P without rescaling with
(1−Q).

These assumptions for the global illumination source lead to
two possible light paths: P

(
pathglob

)
= P (X0 = s0glob , X1 =

s1, X2 = o) = (1−Q)(1− P )al, (l = 1, . . . , p) for L = 1
and P

(
pathglob

)
= P (X0 = s0glob , X1 = s1, X2 = s2, X2 =

o) = Paman, (m,n = 1, . . . , p) for L = 2. The spectral
contribution of these two light paths is T (s0,glob)

∏L
k=1 ek,

with L = 1 and L = 2, respectively.

In addition to receiving global illumination, the target pixel re-
ceives secondary reflections from its neighborhood. The neigh-
bor illumination source s0N follows the following assumptions.

1) By keeping all types of nonlinear effects up to the second
order, only neighboring regions having a direct view of
the sun can contribute to the target pixel. Thus, the neigh-
boring effect corresponds to the reflected light of a pixel
after receiving the global illumination s0glob .

2) Following the Lambertian law, by escaping the pixel, the
scattered light ray from s0glob is reflected in all directions,
including toward the sensor and neighboring pixels, with
equal probability of (1−Q)(1− P ).

3) By assuming a homogeneous local neighborhood, the
probability that a pixel scatters light to its neighboring
pixels is equal to the probability that the neighboring pixels
scatter light to the pixel, and is given by (1−Q)(1− P ).

4) We define an additional parameter K ∈ [0, 1], i.e., a
strength factor of neighbor interactions, denoting the frac-
tion of the scattered light from the neighborhood that is
received by the pixel.

Thus, the probability of the light paths, corresponding to
the neighbor illumination source are: P (pathN ) = P (X0 =
s0N , X1 = s1, X2 = o) = (1−Q)(1− P )al, (l = 1, . . . , p)

for L = 1. The spectral contribution is T (s0N )
∏L

k=1 ek where
T (s0N ) = eN . The neighborhood is defined by a radius R.
The neighborhood spectrum eN (i, j) of target pixel x(i, j) is
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computed as the average spectrum of its neighboring pixels,
weighted by their inverse distance to the target

eN (i, j) =

∑R
s=−R

∑R
t=−R x(i+ s, j + t)W (s, t)∑R

s=−R

∑R
t=−R W (s, t)

(17)

whereW (s, t) = δ
D((i,j),(i+s,j+t)) andD denotes the Euclidean

distance between two pixels in the spatial domain. Since only
neighboring regions having a direct view of the sun can con-
tribute to the target pixel, we exclude (partly) shadowed pixels
when computing eN , by using the δ symbol, where δ = 1 in full
sunlit pixels with Q < 0.1, and δ = 0 otherwise.

Last but not least, the diffuse solar illumination s0diff plays an
important role in shadowed regions. The diffuse solar illumina-
tion is the scattered light by the atmosphere in all directions.
Since we aim to keep all types of nonlinear interactions up
to the same order, i.e., the second order, we regard only the
linear interactions for s0diff . In the proposed model, the following
assumptions hold for s0diff .

A light ray from the diffuse solar illumination source will interact
with at least one material. After the first interaction, the light
ray will escape the pixel with a fraction of Q and reach the
observer.

Hence, the light path corresponding to the diffuse solar illu-
mination source isP (Pathdiff) = P (X0 = s0diff , X1 = s1, X2 =
o) = Qal, (l = 1, . . . , p) with the spectral contribution for
L = 1. The spectral contribution is T (s0diff)

∏L
k=1 ei where

T (s0diff) =
τ diff�Es

τ dir�El+τ diff�Es
.

V. EXPERIMENTAL SETUP

This section introduces three datasets to evaluate the spectral
mixing methods quantitatively or qualitatively by considering
the shadow and nonlinear effects. One difficulty for the quan-
titative evaluation of the shadow-aware unmixing methods is
that the ground truth of abundances and shadow fractions is not
available and very difficult to acquire in the case of shadows.
Thus, we first validate our method on a simulated dataset with
known abundances and parameters for a quantitative evaluation
of the performance of the mixture models. Furthermore, we
compare the unmixing methods on a real image with simulated
shadowed pixels. Finally, we show experimental results on real
airborne hyperspectral imagery without ground truth data, both
quantitatively and qualitatively.

A. Datasets

1) Synthetic Dataset: Considering that a validation dataset
with (partly) shadows is not available and very difficult to ac-
quire, we validate our method on a simulated dataset to evaluate
the mean reconstruction error RE and mean abundance error
AE quantitatively. We randomly select 10 endmembers from
the United States Geological Survey (USGS) spectral library
of minerals,1 where each material comprises 224 spectral bands
ranging from 383 nm to 2508 nm. Abundances are then randomly
generated following the Dirichlet distribution that automatically

1[Online]. Available: https://speclab.cr.usgs.gov/spectral-lib.html

TABLE IV
GROUND TRUTH OF ABUNDANCES IN THE HYSU DATASET

enforces the ANC and ASC constraints. Then, hyperspectral data
are generated following each of the considered mixing models,
i.e., LMM, Fan, SLMM, SMLM, Fansky and the proposed
ESMLM. Parameters P are randomly generated based on the
half-normal distribution with δ = 0.3. Values larger than one
are set to zero, following the work in [28]. Other parameters in-
cludingQ ∈ [0, 1],F ∈ [0, 1],K ∈ [0, 1], γ ∈ [0, 1], b ∈ [−1, 1]
are generated following the uniform distribution. k1, k2, k3 are
chosen the same as the ones used for the real hyperspectral
imagery in Section V-C. Furthermore, we add white noise with
signal-to-noise ratios SNR = [50, 100] to the simulated dataset
to assess the noise impact on different unmixing methods.

2) Real Dataset: DLR HyperSpectral Unmixing Benchmark
Dataset: The image was acquired over Oberphaffenhofen,
Bavaria, Germany with a HySpex pushbroom camera, resulting
in a ground sampling distance of 0.7 m. The image comprises
135 spectral bands ranging from 417.4 nm to 902.8 nm. This
dataset [43] contains ground targets with five materials (bitumen,
red-painted metal sheets, blue fabric, red fabric, and green
fabric) and the background material (grass), thus a total of six
endmembers are known from the dataset. In our experiment, we
use targets with side lengths of 3 m, and the target area can be
translated in a number of pixels in the image and is going to
be used as the ground truth for the abundances (see Table IV).
Fig. 2 shows the hyperspectral image as true-color composite
and the endmembers.

In order to validate shadow-aware models quantitatively, we
simulate shadows partially covering the shadow-free image in
Fig. 2(a). First, we manually draw a shadowed region in the
center of the image to shade a part of all targets, resulting in a
binary shadow mask. Then, we apply a Gaussian filter with size
3 ∗ 3 to the shadow mask and generate a soft shadow mask Q
[see Fig. 2(d)]. After that, given a pixel yi in the real image,
we simulate the shadow-included image in Fig. 2(c) using (18).
Ts0,diff is computed with F = 1 based on the field knowledge,
and parameters k1, k2, k3 are set as in Section V-C

xi = (1−Qi)yi +QiTs0diff
yi. (18)

It is worth noticing that (18) implicitly embeds nonlinear effects
contained in pixel yi, so we do not add additional nonlinear
effects in this image. However, since the study area is located
in the middle of a field with flat terrain, and we quantitatively
validate solely the abundances of the ground targets made of
synthetic materials, the nonlinear effect plays a minor role (see
Table VIII and Fig. 5).

3) Real Dataset: Airborne Hyperspectral Imagery: A real
airborne hyperspectral image [see Fig. 3(a)] is selected from
a scene acquired over Oberpfaffenhofen, Bavaria, Germany

https://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 2. DLR HySU dataset with simulated shadowed pixels. (a) Hyperspectral
image as a true color composite including five ground targets with side lengths
of 3 m. (b) Endmember library containing five ground materials (bitumen,
red-painted metal sheets, blue fabric, red fabric, and green fabric) and grass.
(c) Hyperspectral image with simulated shadowed pixels. (d) Soft shadow map.

Fig. 3. Hyperspectral dataset. (a) Hyperspectral image as a true color com-
posite acquired by the HySpex sensor in the study area of Oberpfaffenhofen,
Bavaria, Germany. (b) Endmember library, manually selected from (a). (c) and
(d) True color composites of subsets selected from image (a).

between 8:42 and 8:56 A.M. (Central European Summer Time)
on June 4, 2018 with a HySpex VNIR sensor [44], flying at an
altitude of 1615 m above ground level, resulting in a ground
sampling distance of 0.7 m. The image comprises 160 spectral
bands ranging from 416 to 988.4 nm and has been atmospheri-
cally corrected using ATCOR [6]. After removing water vapor
bands, a total of 101 bands have been kept for further processing.
A spectral library of endmembers is generated by manually
selecting pure pixels of relevant materials in fully sunlit pixels of
the image [see Fig. 3(b)]. We select endmembers manually, as
the endmembers should be extracted from fully sunlit pixels.

TABLE V
RUNNING TIME OF COMPARED MODELS IN THE TWO SUBSETS

In other words, to be able to use an automatic endmember
extraction method, one would have to find a shadow detection
method that can distinguish fully sunlit pixels from other pixels
with ideally 100% accuracy, which is not easy to achieve in
reality. For validation and comparison of the proposed model,
we selected two subsets from the entire image [see Fig. 3(c) and
(d)], which are dominated by shadow effects and cover three
different shadow types, described in Fig. 1(b),(d), and (e).

B. Quantitative Measures

For validation and comparison, a number of quantitative
measures have been applied. Denote xi and x̂i as the observed
and reconstructed spectrum, respectively, of pixel i, where
xi = [xi,λ1

, xi,λ2
, . . . , xi,λd

] and x̂i = [x̂i,λ1
, x̂i,λ2

, . . . , x̂i,λd
].

The mean reconstruction error RE is written as

RE =
1

N

N∑
i=1

√√√√ d∑
j=1

(
xi,λj

− x̂i,λj

)2
. (19)

In order to evaluate the spectral behavior of the reconstruction
errors, we calculate the spectral reconstruction error SRE as a
function of wavelength λ, averaged over N pixels

SRE(λ) =
1

N

N∑
i=1

|xi,λ − x̂i,λ|. (20)

In addition, the mean abundance error (AE) is computed as

AE =
1

pN

N∑
i=1

p∑
j=1

|ai,j − âi,j |. (21)

C. Unmixing Procedure

In this article, we compare the proposed model (ESMLM)
with the following state-of-the-art mixture models: LMM [13],
Fan [22], SLMM [28], SMLM [29], and Fansky [39].

All algorithms were developed in MATLAB and run on an
Intel Core i7-8650 U CPU, 1.90-GHz machine with 4 Cores and
8 Logical Processors. We use the MATLAB function FMINCON
to perform the nonlinear optimization. The processing time
depends on the number of input pixels and endmembers. Table V
shows the running time of the compared models in the two
subsets of the real airborne hyperspectral imagery. The function
and constraint tolerance are set to 10−10 and 10−8, respectively.
The initial values of the abundances are set to 1

p and the initial
values of the unknown parametersF ,Q,P ,K are set to [1,1,0,0].

For the methods considering skylight, i.e., the Fansky and
ESMLM model, 10 pairs of pixels have been selected in the
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Fig. 4. Selection of 10 pairs of sunlit and shadowed pixels. (a)Example of the
pixel selection for computing parameters k1, k2, and k3. (b) Ratios computed
from 10 pairs of pixels.

scene to compute the parameters k1, k2, and k3 by using (6).
Specifically, we select fully sunlit and shadowed pixels of the
same pure material on the high-resolution hyperspectral image,
assuming that two pixels near a shadow boundary are composed
of the same material. Besides, we avoid vegetation materials
during the pixel selection to avoid nonlinear effects. Fig. 4(a)
shows an example of selecting one pair of pixels. Fig. 4(b)
presents the ratios computed by 10 pairs of fully sunlit and fully
shadowed pixels. Assuming that the atmospheric conditions are
constant in the entire region, these parameters are assumed to be
constant and were set as k1 = 1.296; k2 = 6.068; k3 = 0.442.

D. Experimental Design

Experimental results are shown in the following sections.
In Section VI, we perform a quantitative analysis of the RE
and AE on the synthetic dataset simulated by the USGS spec-
tral library. In Section VII, we evaluate the unmixing results
on the DLR HyperSpectral Unmixing (HySU) dataset [43].
Specifically, the five ground targets are used to validate abun-
dance errors. Section VIII evaluates the spectral mixing models
on the real hyperspectral imagery without ground truth data,
quantitatively and qualitatively. In Section VIII-A, we perform
a quantitative analysis of the spatial and spectral reconstruc-
tion errors. Moreover, we generate shadow-removed images in
Section VIII-B. This can be achieved by “lightening up” the
shadow fraction in a mixture model, if applicable. Some of the
unmixing methods output physically interpretable parameters,
which provide valuable information about the observed sur-
face. We discuss qualitative results of output parameters and
abundances in Sections VIII-C and VIII-D. In Section VIII-E,
we conduct an ablation study of the proposed model and ana-
lyze the impact of each parameter on the experimental results.
Section VIII-F discusses the impact of endmember extraction
methods on the unmixing results. Finally, we demonstrate our
proposed model on the entire test image in Section VIII-G.

VI. SYNTHETIC DATASET

Tables VI and VII present the mean reconstruction error
(RE) and mean abundance error (AE) of mixture models at
different noise level following (19) and (21), respectively. The
columns represent the spectral mixture models according to
which mixtures are generated, and the rows correspond to the

TABLE VI
MEAN RECONSTRUCTION ERROR (RE) FOR THE SYNTHETIC DATASET

TABLE VII
MEAN ABUNDANCE ERROR AE FOR THE SYNTHETIC DATASET

methods that were used to unmix the data. The last column
conveys the mean performance of each unmixing method for all
types of generated mixtures. For each type of mixture, the first
and second best unmixing methods have been highlighted in red
and green colors, respectively. For all mixtures generated by the
different models, the proposed unmixing method obtained the
best or second-best RE and AE among all comparing methods
and achieved the best results on average. Results indicate that
the ESMLM model can tackle different kinds of mixtures.

VII. REAL DATASET: HYSU

Fig. 5 presents the obtained RE in fully sunlit pixels,
(partly) shadowed pixels, and the entire image, respectively, and
Table VIII compares the AE of the ground targets made of
synthetic materials.

In fully sunlit pixels, reconstruction errors of linear and non-
linear models are similar, indicating that the nonlinear effect
plays a minor role in the study scene. On the other hand, RE
largely varies in (partly) shadowed pixels. When the shadow
effect is taken into account, RE significantly decreases in (partly)
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Fig. 5. Mean reconstruction error RE of fully sunlit pixels (in blue), (partly)
shadowed pixels (in orange), and the entire image (in yellow) in HySU dataset.
Fully sunlit and (partly) shadowed pixels are identified asQ ≤ 0.1 andQ > 0.1,
respectively.

TABLE VIII
ABUNDANCE ERROR IN NUMBER OF PIXELS IN THE HYSU DATASET

shadowed pixels and the lowest reconstruction errors are ob-
tained when considering the skylight.

Using the ground truth data from Table IV, the total num-
ber of pixels for each material is representative for the total
corresponding abundance in the image. Thus, we represent the
abundance estimation error by the absolute difference in number
of pixels between ground truth and estimated values over the
five targets (see Table VIII). In addition, we present the total
(absolute and in percentage) estimation error by summing up the
errors of all endmembers. Besides, we compare abundance maps
qualitatively for all materials in Fig. 6, where the first column
shows the reference abundance maps for easier comparison.
Specifically, the reference abundance maps are estimated using
the shadow-free image through nonnegative least squares.

In sunlit regions, the LMM and the Fan model estimate
correct abundances, but show high abundance estimation errors
compared to other methods in (partly) shadowed pixels. Among
all materials, the largest abundance error appears in bitumen,
which has a relatively small reflectance and is, therefore, easily
confused with shadows. Besides, more confusion between simi-
lar materials can be observed. An example appears in shadowed
pixels of grass, where the LMM and Fan models confuse those
regions with green fabric.

Compared with the LMM and the Fan model, the SLMM and
SMLM model perform slightly better. In partly shadowed pixels,
the SLMM and the SMLM model detect part of the correct
materials. However, some shadowed pixels of red fabric, which

have been estimated as bitumen by the LMM and Fan model,
are confused with red metal sheets.

The Fansky and ESMLM models outperform SLMM and
SMLM for the abundance estimation of all ground targets,
indicating that the wavelength-dependent skylight information
cannot be well represented using a scaling parameter. Most
shadowed pixels have been detected as the correct material,
resulting in largely decreased abundance estimation errors. The
Fansky model confuses between materials with similar spectra,
such as green fabric and grass, as well as red fabric and red metal
sheets. In addition, it confuses blue materials with bitumen.
Compared to other models, the ESMLM model achieves the
best performance and can detect most ground targets with a
total abundance estimation error of 5.233 pixels (corresponding
to 5.68%). Specifically, the ESMLM model can better identify
similar materials in shadowed pixels thanks to the advantageous
and flexible modeling of nonlinear effects.

VIII. REAL DATASET: AIRBORNE HYPERSPECTRAL IMAGERY

A. Reconstruction Errors

The mean reconstruction errors RE (19) of each of the two
subsets for all compared methods is depicted in Fig. 7. Separate
results are shown for fully sunlit, (partly) shadowed pixels, and
the entire image, respectively. (Partly) shadowed pixels are iden-
tified using Q > 0.1, whereas fully sunlit pixels are identified
usingQ ≤ 0.1, whereQ values are computed using the proposed
model. Results suggest that reconstruction errors highly depend
on if and how the models consider the illumination conditions
and the nonlinearity. In (partly) shadowed pixels, the reconstruc-
tion errors largely decrease when using shadow-aware mixture
models, i.e., the SLMM, SMLM, Fansky, and ESMLM models.
Among all shadow-aware models, the Fansky and ESMLM
models consider the skylight information and thus outperform
other models. Compared to the Fansky model, ESMLM obtained
the smallest reconstruction errors in (partly) shadowed pixels,
especially when areas are shaded by vegetation, such as in subset
2. Since both models consider skylight information, this implies
that the ESMLM model treats the nonlinearity better than the
Fansky model in (partly) shadowed pixels. In sunlit regions, the
reconstruction errors appear larger in subset 2, where the ground
surface is covered mostly by vegetation. The Fan and Fansky
models attained slightly lower errors than the linear models
but yielded higher errors than the ESMLM model regarding the
neighborhood interactions. Overall, the ESMLM model attained
the best pixel reconstruction and, in this respect, it produced a
better representation of the ground mixtures.

Fig. 8 shows spectral reconstruction errors SRE(λ) (20),
which denote how well a spectral mixing model represent input
pixels as a function of wavelength. When a mixing model obtains
a good spectral representation, we expect the SRE values to be
constant and small for all wavelengths. Instead, if SRE largely
varies as a function of λ, the spectral unmixing method is not
capable of dealing with specific wavelength-dependent effects.
As both subsets contain large shadowed regions, the LMM and
Fan models obtained the largest errors over the entire wavelength
range. The SLMM and SMLM models obtained higher errors in
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Fig. 6. Abundance maps from the HySU dataset. Top to bottom: Bitumen, red metal sheets, blue fabric, red fabric, green fabric, and grass. Left to right: Reference,
LMM, Fan model, SLMM, SMLM model, Fansky model, and ESMLM model. The reference abundance maps are computed using the shadow-free image through
nonnegative least squares.

Fig. 7. Mean reconstruction error (RE) of fully sunlit pixels (in blue), (partly)
shadowed pixels (in orange), and the entire image (in yellow), for subset 1 in
(a) and subset 2 in (b). Fully sunlit and (partly) shadowed pixels are identified
as Q ≤ 0.1 and Q > 0.1, respectively, where Q values are computed using the
ESMLM model.

the lower spectral range of 400–500 nm, because these assume
the shadow effects to be wavelength-independent, and ignore
the skylight that has the highest impact at shorter wavelengths.
In subset 2, the spectral reconstruction errors appear larger at
longer wavelengths, and the spectral behavior of the errors shows

Fig. 8. Spectral reconstruction errors (SRE) as a function of wavelength for
subset 1 in (a) and subset 2 in (b).

vegetation characteristics. Compared to the Fansky model, the
ESMLM model shows less vegetation characteristics, indicating
that it provides a better spectral reconstruction performance for
vegetation.
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Fig. 9. Shadow-removed reconstructed images (true color composites) of subset 1 (first row) and subset 2 (second row).

B. Shadow-Removed Pixel Reconstruction

For spectral mixture models containing the shadow-related
parameter Q, it is possible to perform shadow removal through
pixel reconstruction. The idea is to “lighten up” the shadow
fraction in a pixel, by replacing the illumination source for shad-
owed regions with the one for sunlit regions. In other words, the
restoration process simulates that shadowed regions are exposed
to direct solar illumination. Since SLMM and SMLM models do
not contain the diffuse illumination source for shadowed regions,
shadow removal can be performed by setting Q = 0 in the mix-
ture models. For the Fansky and ESMLM models, we generate
the restoration results by replacing T (s0diff) with T (s0glob) in the
mixture models. Fig. 9 shows the input and shadow-removed
images for visual comparison. Since the shadow removal is
performed by replacing the illumination sources in the mixture
models, the shadow fraction Q has been naturally embedded in
the restoration process, yielding physical-interpretable transi-
tions at shadow boundaries in the shadow-removed images. As
the values of Q are fractional in the range [0,1], a more realistic
representation of shadows is provided.

Due to the lack of ground truth of the actual spectral re-
flectance and thus the actual pixel composition under the shad-
ows, the shadow-removed images can only be qualitatively
compared. For a more quantitative evaluation of the performance
of shadow removal, we additionally designed an alternative test,
by assuming that the region around a shadow boundary should
contain similar materials (see Fig. 10). In each subset we selected
seven regions, each consisting of sunlit pixels (located at the
yellow markers) and (partly) shadowed pixels (located at the
cyan markers) around a shadow boundary [see Fig. 10(a) and
(e)]. Spectra in sunlit pixels are selected from the input image,
whereas spectra in (partly) shadowed pixels are selected from
the restored image. In each region, the spectra of sunlit and
(partly) shadowed pixels are individually averaged, resulting
in seven pairs of spectra, each consisting of a sunlit and a
shadowed spectrum around a shadow boundary. The bandwise
absolute differences between the sunlit and shadowed spectra
are averaged over all seven pairs and plotted as the spectral error
in Fig. 10(b) and (f). In addition, in subset 1, we individually

Fig. 10. Spectral comparison between shadowed pixels in shadow-removed
images and their corresponding sunlit pixels belonging to the same material in
local neighborhoods. Subset 1: (a) Locations of selected pairs of pixels, sunlit
pixels are marked in yellow, and (partly) shadowed pixels are marked in cyan.
(b) Spectral error (all regions). (c) Spectral error in regions shadowed by man-
made objects. (d) Spectral error in regions shadowed by vegetation. Subset 2:
(e) Location of selected pairs of pixels, sunlit pixels are marked in yellow and
(partly) shadowed pixels are marked in cyan. (f) Spectral error over all regions
(all regions are shadowed by vegetation).

consider shadows caused by man-made objects, completely
blocking direct sunlight, and shadows caused by vegetation that
can partly block direct sunlight [see Fig. 10(c) and (d)].

The visual comparison of Fig. 9 can be interpreted, depending
on the skylight information being taken into account or not.
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When excluding the skylight information (i.e., SLMM and
SMLM models), results show less noise in shadowed restored
regions. However, texture and spectral information can be lost
in shadow areas, leading to a nonnatural restoration result, and
incorrect spectral information of the pixel composition under
the shadow. In addition, the SMLM model has not removed all
shadows, due to an inaccurate estimation of its parameters (see
Section VIII-C).

In contrast, the models that account for skylight show in-
creased noise levels (see Fig. 9) but on average perform better
in restoring the spectral information in shadowed pixels (see
Fig. 10). The Fansky model behaves inconsistently in different
types of shadows. Specifically, it performs worse than SLMM
in the regions shadowed by vegetation [see Fig. 10(d) and
(f)], probably due to its specific modeling of the nonlinearities.
The proposed ESMLM model performs consistently better for
different types of shadows, indicating the importance of the
nonlinear modeling in shadow-aware mixture models.

C. Model Parameters

Some of the compared spectral mixture models generate
physically interpretable pixelwise parameters providing valu-
able information. Fig. 11 shows the output parameter maps. All
compared mixture models, except LMM and FAN, output Q,
representing the fraction of shadows at subpixel level. Depend-
ing on the way the shadow effect is modeled, two categories
of Q maps can be differentiated. The SLMM and the SMLM
models treat shadow as a simple scaling effect without including
skylight information. Despite Q being the spatial fraction of
shadow in a pixel, it serves two functionalities here. One is to
reduce the observed reflectance by scaling out the shadowed part
Q of a pixel. The other is to use the remaining fractional value
1−Q to “lighten up” the shadowed regions. From the figure, on
can clearly observe that the Q values from SLMM and SMLM
are consistently underestimated in shadowed pixels, because
even in heavily shadowed regions, the reflectance, although
very small, is not equal to zero. Compared to the SLMM, the
SMLM model can underestimate Q in (partly) shadowed pixels
by overestimating the P values, such as in vegetation shadows
in subset 2 and on the boundaries of the shadowed regions by
the building in subset 1. The inaccurate estimation of Q greatly
decreases the performance for shadow removal (see Fig. 9). In
contrast, the ESMLM and Fansky models use the skylight to
“lighten up” the shadowed areas, yielding a better estimation for
Q. Compared to the Fansky model, the ESMLM model generates
better Q maps, thanks to its superior nonlinear modeling. In
subset 2, the ESMLM model estimates higher values ofQ in fully
shadowed pixels and can detect partial shadows in the bottom
right area.

Beside shadows, the nonlinear behavior of the mixture models
is also an important aspect. Fig. 11 shows the two parameters
relevant to the nonlinearity, i.e.,P andK, which describe within-
and between-pixel optical interactions at the second order, re-
spectively. The P parameter in the ESMLM model follows the
definition from the work in [29]. Although P can be negative
in the SMLM model, we constrain P ∈ [0, 1] in this article in

Fig. 11. Output parameter maps, from top to bottom: F (sky view factor), Q
(spatial fraction of shadows),P (probability that a light ray undergoes additional
interactions with endmembers), K (a strength factor of neighbor interactions,
denoting the fraction of the scattered light from the neighborhood that is received
by the pixel). Compared models, from left to right: Fansky, SLMM, SMLM, and
ESMLM. (a) Subset 1. (b) Subset 2.

order to keep its physical interpretation. The P maps of SMLM
and ESMLM follow similar patterns, with increasing values in
vegetated regions. In SMLM, P can have high values in (partly)
shadowed pixels where Q is close to zero. This artifact can
be observed on shadow boundaries of the building in subset 1,
and tree-shadowed regions in both subsets. The ESMLM model
shows a better estimation of both P and Q, due to the inclusion
of skylight information.

The ESMLM model outputs high values of K, dominantly
in (partly) sunlit vegetated areas, where pixels are expected to
receive reflections from their neighborhood. Those regions show
significantly lower reconstruction errors in the ESMLM model
than in other models, indicating the advantage of modeling the
neighbor interactions in the ESMLM model.
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Fig. 12. Abundance maps of the real hyperspectral imagery without ground truth for subset 1. First row: Abundances of impervious materials; second row:
Abundances of vegetation.

Fig. 13. Abundance maps of the real hyperspectral imagery without ground truth for subset 2. First row: Abundances of impervious materials; second row:
Abundances of vegetation.

Finally, models accounting for skylight (ESMLM and Fansky)
additionally output the topographic related parameter F , indi-
cating the sky fraction that a ground pixel can “see.” It is worth
noting that F is only valid in (partly) shadowed pixels, as F is
only involved in the skylight terms of the ESMLM and Fansky
models. In this article, we set F = 0 in regions where Q ≤ 0.1.
Compared to the Fansky model, the ESMLM model is superior
in estimating values ofF in regions shadowed by vegetation. An
example is shown in the upper-left corner of subset 2, where the
Fansky model obtained zero F , and thus merely reconstructs
shadows by scaling sunlit pixels. Instead, the ESMLM model
can balance the values of F by contributions of P . In regions
where Fansky produces F = 0, the reconstruction errors of the
ESMLM model are consistently lower by a value of 0.03 on
average.

D. Abundances

Besides parameters, the proposed method outputs abundances
that present the material components at subpixel level. Since we
do not have ground truth data for this real dataset, we evaluate
abundances qualitatively in this section. Figs. 12 and 13 show
the abundance maps for all comparing models in two subsets.
For each subset, we present two aggregate abundance maps of

impervious surfaces and vegetation, by grouping materials with
similar spectra.

Abundances in fully sunlit pixels are comparable among all
models while abundance maps show noticeably different pat-
terns in (partly) shadowed pixels, depending on if and how the
shadow and nonlinear effects are considered. In the LMM and
Fan model, vegetation and impervious surface in the (partly)
shadowed pixels are detected indiscriminately as impervious
material. The reason is that the endmember library contains some
impervious materials with low reflectances that are more similar
to shadow spectra. Nevertheless, the LMM and Fan model show
large RE values in (partly) shadowed pixels, indicating their
unsatisfactory spectral representation in shadowed areas.

Results largely improve when considering shadow as a scaling
effect, as is done by the SLMM and SMLM model. In the
shadowed vegetation areas, SLMM and SMLM perform sig-
nificantly better. Nevertheless, a small amount of impervious
surface remains in shadowed vegetation areas because it is used
to compensate for the inaccuracy of the shadow modeling.

The Fansky and ESMLM models, that consider the skylight
information, improve the performance in shadowed vegetation
regions while introducing more noise. Compared to the Fansky
model, the ESMLM model presents better results on vegetation
shadows, thanks to the advantageous modeling of the nonlinear
effects.
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Fig. 14. Mean reconstruction error (RE) in the ablation study for subset 1 in
(a) and subset 2 in (b). Blue: Fully sunlit pixels; Orange: (Partly) shadowed
pixels; Yellow: The entire image. Fully sunlit and (partly) shadowed pixels are
identified as Q ≤ 0.1 and Q > 0.1, respectively, where Q values are computed
using the full model.

Fig. 15. Spectral reconstruction error (SRE) as a function of wavelength in
the ablation study for subset 1 in (a) and subset 2 in (b).

Some open questions remain for the deeply shadowed pixels
caused by vegetation. For example, abundances in the shadowed
impervious regions are not as large as expected in subset 2. One
reason can be that the incoming light from the global illumina-
tion first interacts with trees before reaching the road, mixing
vegetation features in the backscattered signal in those regions.
On the other hand, the LMM and Fan model estimate those
regions as pure impervious materials, but it does not mean that
they perform better, because they mainly confuse the shadowed
pixels with impervious materials in the entire region.

E. Ablation Study

This section shows the results of an ablation study of the
ESMLM model and analyzes the impact of the parameters P ,
Q, K by setting them to zero one at a time. Similar to the above
experiments, we analyze the results in terms of reconstruction
errors (see Figs. 14 and 15), shadow-removed reconstruction
(see Figs. 16 and 17), and output parameter maps (see Fig. 18).
We discuss the effect of each parameter in the following sections.

1) Role of Q: Q is the key parameter for modeling shadows.
When Q = 0, the skylight-related terms become zero. Shadow
removal cannot take place (see Fig. 16), and mean spectral errors
would become undesirably large in Fig. 17. As the shadow-
related terms are removed, RE largely increases in shadowed
regions in subset 1. In addition, SRE goes up for all wavelengths,
and a significant increase is observed in the spectral range of
400–550 nm. This change is caused by the lack of skylight terms,
which largely impacts on shorter wavelengths. In subset 2, RE
does not considerably increase in (partly) shadowed pixels [see
Fig. 14(b)], whereas SRE increases at shorter wavelengths in the

spectral range of 400–500 nm [see Fig. 15(b)]. The reason is that
P replaces the role of Q to compensate for the reconstruction
loss. In Fig. 18, it can be observed that the contribution of P in-
creases. Despite a better reconstruction, this leads to an incorrect
estimation of the parameters. This indicates that reconstruction
errors cannot be the only measure to evaluate the performance
of mixture models.

2) Role of P : P is relevant for the within-pixel nonlinear
behavior. Removing P does not affect reconstruction errors (see
Figs. 14 and 15), because Q and K compensate for the recon-
struction loss. However, removing P impacts the estimation of
other parameters [see Fig. 18(b)]. WhenP = 0, the neighbor ef-
fect term (1−Q)(1− P )K

∑p
i=1 aiei · eN becomes the only

second-order reflection term in the model. Thus, the ablated
model will estimate inaccurate values for Q, K, and F in
vegetation shadows, where P is expected to have contributed.
In addition, P plays an important role in removing shadow.
When reconstructing the shadow-removed images, the sunlit re-
gions should remain unchanged. However, we observed that the
spectral distance using the l2-norm between input and restored
images in sunlit regions increased consistently by a value of
0.025 on average in sunlit regions when P = 0, compared to the
full model.

3) Role of K: K is related to the between-pixel optical in-
teractions that occur mainly in vegetated regions. When K = 0,
the reconstruction errors largely increase in (partly) sunlit pixels
(see Fig. 14). In addition, SRE increases at longer wavelengths,
which is caused by not accounting for the multiple interactions
of vegetation in the local neighborhood (see Fig. 15). At shorter
wavelengths, SRE only slightly increases because the ablated
model contains the key parameter Q for modeling shadows.
The performance of shadow removal decreases when K = 0:
Shadow-removed images lose textural information (see Fig. 16),
and the mean spectral errors increase in subset 2, where vegeta-
tion dominates [see Fig. 17(f)].

F. Comparison Between Manual and Automatic Endmember
Extraction Methods

In this section, we analyze the impact of endmember ex-
traction methods on the result of the two subsets of the real
hyperspectral image and compare the unmixing results using
manually extracted endmembers with those using automatically
extracted endmembers. Considering the shadow issue, we de-
signed a simple but effective method to select fully sunlit pixels
before automatic endmember extraction. First, we carefully set
an empirical threshold (set to 0.08 in this article) and then select
pixels with mean reflectance larger than 0.08 as candidate sunlit
pixels. However, candidate sunlit pixels may include partly
sunlit pixels located at shadow boundaries. Thus, we addition-
ally apply a Canny edge detector [45] to remove all boundary
pixels from sunlit pixels candidates. In addition, considering
endmember variability, we apply the method in [46] to extract
endmember bundles based on vertex component analysis [47].
Finally, we merge endmembers with similar reflectances and
show the selected endmembers in Fig. 19(c).

We apply the automatically extracted endmembers to the
two subsets of the real airborne hyperspectral imagery without
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Fig. 16. Shadow-removed reconstructed images (true color composites) in the ablation study for subset 1 (first row) and subset 2 (second row).

Fig. 17. Ablation study: Spectral comparison between shadowed pixels in
shadow-removed images and their corresponding neighboring sunlit pixels,
containing the same material. Subset 1: Locations of selected pairs of pixels
in (a), spectral errors in all regions in (b), in regions shadowed by man-made
objects in (c), and in regions shadowed by vegetation in (d). Subset 2: Location
of selected pairs of pixels in (e), spectral errors in all regions (all regions are
shadowed by vegetation) in (f). The ablated model with Q = 0 is not in the
comparison, because it would exclude the shadow effect, causing undesirably
large spectral errors.

ground truth. First, we compare the RE for subsets 1 and 2 in
Fig. 19(f) and (g), respectively. Results depict that RE in (partly)
shadowed pixels is comparable between automatic and man-
ual endmember extraction methods. This is expected because
(partly) shadowed pixels are excluded from the endmember
extraction. In sunlit pixels, reconstruction errors decrease for
all unmixing methods while their relative relationship remains,
indicating that a better endmember library can be extracted using

Fig. 18. Parameter maps in the ablation study. From top to bottom: F (the
sky view factor), Q (the spatial fraction of shadow), P (the probability that a
light ray undergoes additional interactions with endmembers), K (a strength
factor of neighbor interactions, denoting the fraction of the scattered light
from the neighborhood that is received by the pixel). From left to right: The
ESMLM model, the ablated ESMLM models, with P = 0, K = 0, and Q = 0,
respectively. (a) Subset 1. (b) Subset 2.
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Fig. 19. Comparison between manual and automatic endmember extraction methods. Automatically extracted endmembers in (c), RE computed by unmixing
methods with automatically extracted endmembers for subset 1 in (f) and subset 2 in (g), where blue, orange, and yellow colors represent fully sunlit pixels, (partly)
shadowed pixels, and the entire image, respectively. Fully sunlit and (partly) shadowed pixels are identified as Q ≤ 0.1 and Q > 0.1, respectively, where Q values
are computed using the ESMLM model. Histogram of the absolute difference between manually and automatically extracted endmembers of parameter F in
(a), Q in (b), P in (d), and K in (e).

Fig. 20. Results on the entire test image. True composites of (a) original image and (b) shadow-removed image; parameter outputs F , Q, P , and K, are depicted
in (c), (d), (e), and (f), respectively.

automatic endmember extraction. Moreover, we compare the
output parameters (F , Q, P , and K) by the histogram of the
parameter differences between the manually and automatically
endmembers in Fig. 19(a), (b), (d), and (e). The differences
between parameters estimated by two endmember libraries re-
main small, implying that results are not very sensitive to the
endmember extraction method. We can conclude that manually
extracted endmembers can be applied in our work.

G. Experimental Results and Discussion: The Entire Test
Image

Finally, we applied the proposed model to the entire test im-
age, resulting in mean reconstruction errors (RE) of 0.04 in fully
sunlit pixels, 0.03 in (partly) shadowed pixels, and 0.03 in the

entire image. The low variation of RE values between different
categories of pixels indicates that the ESMLM model provides a
robust pixel representation over various illumination conditions
and local structures. In addition, the output parameters of the
entire image [see Fig. 20(b) and (e)] follow similar patterns
as in the subset images. By interpreting the parameters, one
can easily detect the different illumination conditions and local
structures illustrated in Fig. 1. Specifically, (partly) shadowed
pixels contain high Q values while K mainly contributes in
(partly) sunlit vegetated regions and becomes typically higher
when vegetation has larger height variations, such as trees. Com-
pared to K, P mainly plays a role in (partly) shadowed pixels
occluded by vegetation. Besides indicating the local structures,
output parameters also play an important role in reconstructing
the shadow-removed image shown in Fig. 20(a).
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IX. CONCLUSION

In this article, we proposed an ESMLM model for hyper-
spectral images based on radiative transfer theory, addressing
shadow and nonlinear effects. The proposed model follows
a graphical framework of mixture models, and sums up all
possible radiation paths initiated by the illumination sources.
Three illumination sources are considered: 1) direct, 2) diffuse,
and 3) neighboring illuminations. The proposed model considers
different shadow variants, i.e., fully shadowed pixels, partly
shadowed, and spatially separable pixels, and partly shadowed
but spatially inseparable pixels. Additionally, two types of non-
linear interactions for different illumination conditions have
been modeled. Physical assumptions have been made to simplify
the ESMLM model, leading to four physically interpretable
parameters: P (the probability that a light ray undergoes ad-
ditional interactions with endmembers), Q (the spatial fraction
of shadow), F (the sky view factor), and K (a strength factor
of neighbor interactions, denoting the fraction of the scattered
light from the neighborhood that is received by the pixel). Given
these physically interpretable parameters as output, the proposed
model characterizes the local structures of the ground surface
and allows us to reconstruct a shadow-removed image by simply
“lighten up” the shadow-related terms.

We compared the proposed model with state-of-the-art mix-
ture models on both synthetic dataset and real images with qual-
itative and quantitative measures. We first analyzed reconstruc-
tion and abundance errors on simulated data with and without ad-
ditional noise. After that, we simulated (partly) shadowed pixels
in a real hyperspectral imagery with known abundance ground
truth, and evaluated the performance of different mixture mod-
els. Furthermore, we analyzed the unmixing models in airborne
hyperspectral images with real shadowed pixels. Specifically,
we discussed the reconstruction errors in spatial and spectral
domains, and we compared shadow-removed images and model
output parameters. Experimental results demonstrate that the
proposed model performs consistently better in different ground
scenarios with various illumination conditions. Moreover, we
conducted an ablation study of the ESMLM model, in which we
studied the role and significance of each parameter separately.
Experimental results demonstrate that the full model performs
better than the ablated models.

Several open problems remain. First, when including the sky-
light information, the shadow-removed images contain higher
levels of noise, caused either by the low signal-to-noise ra-
tio or by strong nonlinear effects that take place in (partly)
shadowed pixels. In addition, spectral errors of the proposed
model, even though lower than in other models, remain large in
some shadowed regions. Future work concerns including spatial
information in the mixture model to promote spatial correlations
among pixels.
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