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Purpose: To introduce a novel imaging and parameter estimation framework
for accurate multi-shot diffusion MRI.
Theory and Methods: We propose a new framework called ADEPT (Accu-
rate Diffusion Echo-Planar imaging with multi-contrast shoTs) that enables fast
diffusion MRI by allowing diffusion contrast settings to change between shots
in a multi-shot EPI acquisition (i.e., intra-scan modulation). The framework
estimates diffusion parameter maps directly from the acquired intra-scan mod-
ulated k-space data, while simultaneously accounting for shot-to-shot phase
inconsistencies. The performance of the estimation framework is evaluated
using Monte Carlo simulation studies and in-vivo experiments and compared
to that of reference methods that rely on parallel imaging for shot-to-shot phase
correction.
Results: Simulation and real-data experiments show that ADEPT yields more
accurate and more precise estimates of the diffusion metrics in multi-shot EPI
data in comparison with the reference methods.
Conclusion: ADEPT allows fast multi-shot EPI diffusion MRI without signifi-
cantly degrading the accuracy and precision of the estimated diffusion maps.
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1 INTRODUCTION

Single-shot Echo-Planar imaging (ss-EPI) is the most com-
monly used imaging technique for fast in vivo diffusion
MRI (dMRI). However, its low effective bandwidth in
the phase encoding direction makes ss-EPI vulnerable
to susceptibility artifacts, resulting in geometric distor-
tions, signal dropout, and limited spatial resolution.1-4 To
reduce such artifacts, it has been alternatively proposed

to segment the k-space readout in multiple EPI shots,
introducing multi-shot EPI (ms-EPI).5 The read-out dura-
tion of each shot in ms-EPI can be much shorter than in
ss-EPI, as only a fraction of the whole k-space, is traversed.
Therefore, ms-EPI is less affected by geometrical distor-
tions and generally displays a higher effective resolution
compared to ss-EPI.6 However, ms-EPI also comes with
disadvantages. First, it suffers from a longer acquisition
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time, which scales with the number of shots. Second,
nondiffusive coherent bulk motion during the acquisi-
tion of each diffusion-weighted (DW) shot may introduce
phase shifts in the voxel signal. Indeed, rigid motion (i.e.,
global translation and rotation) results in linearly varying
phase maps,7 while nonrigid motion, such as brain pul-
satile motion, may lead to nonlinear phase variations.8 In
ms-EPI, this phase map changes for each DW shot, which,
if not corrected for during image reconstruction from dif-
ferent shots, causes ghosting artifacts in the reconstructed
images.9

Various methods have been proposed to correct for
phase-related artifacts in multi-shot dMRI. A common
approach is to acquire, for each shot of a ms-EPI acqui-
sition, an additional navigator echo that fully samples
the central section of the k-space. This navigator echo is
acquired immediately before or after the original imaging
echo with the same diffusion weighting, thereby assum-
ing that the spins experience the same phase errors in
both scans. The navigator scan can then be used to correct
the motion-induced phase errors prior to image recon-
struction.10 Alternatively, to avoid the acquisition of addi-
tional navigator data, the phase map can be estimated
retrospectively from the data in a preprocessing step,
for example through self-navigated acquisition schemes
such as PROPELLER,11,12 EPIK,13,14 or interleaved spi-
ral.15 In such schemes, a low-resolution phase map is
estimated for each shot from a densely sampled region in
the k-space, which is then used to reconstruct artifact-free
images. Finally, phase maps corresponding to each seg-
ment of the k-space can also be estimated without the
need for a densely sampled, central part by using par-
allel imaging (PI) for example, SENSE16 or GRAPPA.17

Thereby, for each shot of under-sampled k-space data,
a complex-valued image is reconstructed, after which
the corresponding phase maps are incorporated in the
reconstruction of the multi-shot magnitude image to cor-
rect for the shot-to-shot phase variations. For example,
the multiplexed sensitivity encoding (MUSE) technique18

uses SENSE-reconstructed phase maps (after smoothing)
to reconstruct artifact corrected magnitude images from
multi-shot data. Extensions of MUSE include macro-
scopic motion effects (AMUSE,19) and three-dimensional
multi-band imaging (3D-MS-MUSE,20). Similar methods
relying on GRAPPA instead of SENSE have also been
proposed.9,21

Apart from shot-to-shot phase variations, traditional
ms-EPI dMRI suffers from error propagation caused by a
two-step approach in diffusion parameter estimation. In
this two-step approach, multiple (phase corrected) DW
images are reconstructed from k-space data, after which
diffusion parameter maps are estimated by voxel-wise fit-
ting a diffusion model to the reconstructed images. Since

this two-step approach lacks a feedback mechanism that
connects the image reconstruction step with the final
estimation of the parameter maps, image reconstruction
errors may propagate into the parameter estimation step,
introducing a bias. In non-EPI acquisition schemes, dif-
fusion parameter maps have been estimated directly from
k-space data, using so-called model-based reconstruction
methods that avoid the intermediate image reconstruction
step.22-24 In ms-EPI dMRI, model-based reconstruction has
also been applied, albeit with a preprocessing step to cor-
rect for shot-to-shot phase variations. In this approach,
a set of (complex-valued) DW images is reconstructed,
for example using PI reconstruction, from which only
the phase maps are retained. Next, the diffusion param-
eter maps are directly estimated from the k-space data
while fixing the image phase maps corresponding with
the individual shots to their estimates obtained in the
preprocessing step.25,26 However, for an increasing num-
ber of shots segmenting the k-space, PI reconstruction
becomes a highly under-sampled problem, which makes
its solution increasingly sensitive to noise. An alternative
approach, which is advocated in this paper, is to esti-
mate the shot-by-shot phase maps simultaneously with the
diffusion maps of interest.

In this paper, we propose Accurate Diffusion EPI
with multi-contrast shoTs (ADEPT). ADEPT is a dif-
fusion parameter estimation framework that combines
model-based reconstruction with an innovative image
acquisition strategy, called intra-scan modulation.
Intra-scan modulation involves the fully flexible variation
of contrast settings across k-space segments. While con-
ventional multi-shot dMRI reconstructs individual images
from shots encoded with the same diffusion contrast,
prior to estimating the diffusion parameters by voxel-wise
fitting a diffusion model to the reconstructed images,
ADEPT estimates the diffusion parameter maps directly
from k-space data composed of shots with each a unique
diffusion weighting. Moreover, ADEPT accounts for phase
mismatches between the different shots by estimating the
phase maps of the individual shots jointly with the diffu-
sion parameters in an iterative procedure, instead of fixing
them to values estimated in a preprocessing step.25,26

Through ADEPT, the flexibility of intra-scan modula-
tion in combination with model-based reconstruction is
exploited to substantially improve diffusion parameter
map estimation accuracy compared to that of conventional
estimation methods. Using Monte Carlo simulations and
in vivo animal studies, ADEPT is evaluated in terms of
accuracy and precision and its performance is compared
with more conventional multi-shot diffusion estimation
frameworks which rely on a preprocessing PI step for the
estimation of the phase maps. Initial findings of this work
were presented in References 27,28.
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2 THEORY

This section describes the signal model of intra-scan
modulated multi-shot diffusion data and introduces the
ADEPT framework for joint diffusion and phase parameter
estimation.

2.1 Diffusion signal model

In what follows, intra-scan modulated, multi-coil,
multi-shot imaging is considered, where each shot cor-
responds to a different diffusion weighting. Then, the
measured k-space diffusion data qn,c ∈ Cnk×1 of the cth
coil (c ∈ {1, … ,nc}) and nth shot (n ∈ {1, … ,ns}), with
nk the number of k-space samples per shot, nc the num-
ber of coil channels and ns the total number of shots, is
given by:

qn,c = AnℱCcun + e, (1)

with un = {un𝑗}
nv
𝑗=1 ∈ Cnv×1 the underlying noise-free, fully

sampled, DW image, defined on the grid points r =
{rx𝑗 , ry𝑗}

nv
𝑗=1 ∈ Rnv×2, and nv the number of voxels in

the image, An ∈ {0, 1}nk×nv selecting the k-space points
acquired in the nth shot, ℱ ∈ Cnv×nv the Discrete Fourier
Transform operator and Cc ∈ Cnv×nv a diagonal matrix rep-
resenting the coil sensitivity map of the cth coil. Further-
more, e ∈ Cnk×1 is an additive noise contribution, modeled
as a zero-mean complex-valued Gaussian random variable.

In this work, the diffusion tensor imaging (DTI) model
is adopted where diffusion in each voxel is described
by a symmetric 3 × 3 diffusion tensor that is fully char-
acterized by six independent parameters. Let D

𝑗
∈ R6×1

denote the vector of diffusion tensor parameters of the
𝑗th voxel, whereas D = {D

𝑗
}nv
𝑗=1 ∈ Rnv×6 denotes the full

diffusion tensor map to be inferred. Furthermore, let
s0 = {s0𝑗}

nv
𝑗=1 ∈ Cnv×1 denote the complex-valued, non-DW

image, which includes a time-invariant phase component
caused by scan imperfections, such as B0 and B1 field
inhomogeneities, chemical shifts, or susceptibility differ-
ences29 which can produce a nonlinear phase map and
let S0 = {S0𝑗}

nv
𝑗=1 ∈ Rnv×1 denote the non-DW magnitude

image defined as S0 ∶= |s0|, with |⋅| the pointwise mod-
ulus operator. Assuming rigid coherent small-scale bulk
motion during the application of the diffusion sensitiz-
ing gradients, with each shot, a linear phase map 𝝓n =
{𝜙n𝑗}

nv
𝑗=1 ∈ Rnv×1 is added to the time-invariant phase map,

which varies from shot to shot:7,30

𝜙n𝑗 = 𝜃n0 + 𝜃n1rx𝑗 + 𝜃n2ry𝑗 , (2)

with 𝜃n0 and (𝜃n1, 𝜃n2) the offset and slope param-
eters of the motion-induced phase map, respectively.

Finally, let the vector 𝜽n = {𝜃np}2
p=0 ∈ R3×1 denote the

motion-induced phase map parameters of the nth shot,
and let 𝜽 = {𝜽n}

ns
n=1 ∈ R3ns×1 denotes the motion-induced

phase map parameters of all shots. Based on these model-
ing assumptions, the signal intensity of the DW image of
each shot can be modeled in each voxel as:

un𝑗 = s0𝑗e−bT
n D

𝑗 ei𝜙n𝑗
, (3)

with bn = [bng2
nx, 2bngnxgny, 2bngnxgnz, bng2

ny, 2bngnygnz,

bng2
nz]T ∈ R6×1 the vector containing the independent

components of the 3 × 3 symmetric diffusion weighting
b-matrix of the nth shot, bn the diffusion weighting factor,
and gn = [gnx, gny, gnz]T the diffusion gradient direction.
In what follows, the DW image un will be expressed as
un(D, s0,𝝓n) or un(D, s0,𝜽n) to indicate its functional
dependence on s0, D, and 𝝓n or 𝜽n, as described by
Equations (2) and (3).

2.2 ADEPT joint parameter estimation
framework

ADEPT involves the joint estimation of the
complex-valued non-DW image s0, the diffusion param-
eters D, and the linear phase parameters 𝜽 from
the multi-shot multi-contrast k-space data, using the
least-squares estimator given by:

̃D, s̃0, ̃𝜽 = arg min
D,s0,𝜽

(
∑

n,c
||qn,c − AnℱCcun(D, s0,𝜽n)||22

)

,

(4)
The least-squares estimator (4) corresponds with a
large-scale nonlinear optimization problem which can
be solved using the cyclic Block Coordinate Descent
method.31 This method allows to split the main problem
(4) into two less complex subproblems that are solved
alternately in an iterative scheme. In the first subproblem,
the cost function is minimized with respect to D and s0:

̃D
t+1

, s̃t+1
0

= arg min
D,s0

(
∑

n,c
||qn,c − AnℱCcun(D, s0, ̃𝜽

t
n)||22

)

,

(4A)

whereas in the second subproblem, the cost function is
minimized with respect to 𝜽:

̃𝜽
t+1
= arg min

𝜽

(
∑

n,c
||qn,c − AnℱCcun(̃D

t+1
, s̃t+1

0 ,𝜽n)||22

)

,

(4B)

with t the iteration number.
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SHAFIEIZARGAR et al. 399

Since the optimization problems (4A) and (4B) are
non-convex, proper initialization of the cyclic Block Coor-
dinate Descent algorithm is vital to find the global mini-
mum. The optimization is started at D = ̃D

t
, s0 = s̃t

0 and
𝜽 = ̃𝜽

t
, respectively, with ̃D

0
= Dini, s̃0

0 = s0,ini and ̃𝜽
0
=

𝜽ini the initial values of the parameters, which are deter-
mined in a multistep approach. First, complex-valued,
DW images (vn = {vn}

nv
𝑗=1 ∈ Cnv×1) are reconstructed sep-

arately for each shot, using the SENSE algorithm.32

Next, the diffusion parameters and the non-DW mag-
nitude signal in each voxel are estimated from the
SENSE-reconstructed magnitude images by solving the
following least-squares problem:

̂D
𝑗
,
̂S0𝑗 = arg min

D
𝑗

,S0𝑗

(
∑

n
||Vn𝑗 − S0𝑗e−bT

n D
𝑗 ||22

)

, (5)

with Vn ∶= |vn| and Vn = {Vn𝑗}
nv
𝑗=1 ∈ Rnv×1 the magnitude

of the SENSE-reconstructed images vn. The least-squares
estimates are then used as initial values in the cyclic Block
Coordinate Descent approach (Dini, |s0,ini|). Furthermore,
the phase of s0,ini is set equal to zero, whereas the initial
values of phase parameters for each shot 𝜽n,ini are obtained
by fitting the model described by Equation (2) to the phase
maps of the individually SENSE-reconstructed images in
the least-squares sense:

̂𝜽n = arg min
𝜽n

(
∑

𝑗

||∠vn𝑗 − r′T
𝑗

𝜽n||
2
2

)

, (6)

with ∠vn𝑗 the phase of the complex-valued,
SENSE-reconstructed images in each voxel and
r′
𝑗

= [1, rx𝑗 , ry𝑗]T ∈ R3×1.

3 METHODS

This section describes how ADEPT is evaluated as an
estimator of diffusion parameters from multi-shot data
compared to the reference methods.

3.1 Reference methods

The reference methods, to which ADEPT was compared,
all rely on PI to estimate the diffusion parameters from
intra-scan modulated multi-shot data.

PI-2step follows a conventional two-step parameter
estimation approach. First, an image is reconstructed
from each shot of the intrascan modulated k-q-space
data using the SENSE algorithm. This results in ns

reconstructed DW images in total. Next, the diffusion
parameters D and the non-DW magnitude signal S0
are estimated voxel-wise from the
SENSE-reconstructed magnitude images solving the
optimization problem defined by (5).

PI-MB follows a model-based (MB) approach in which
the diffusion parameters D and the non-DW image s0
are estimated directly from the intra-scan modulated
k-q-space data by solving the following optimization
problem:

̃D, s̃0 = arg min
D,s0

(
∑

n,c
||qn,c − AnℱCcun(D, s0,𝝓n)||22

)

,

(7)
where the phase of s0 is fixed to zero and the phase
maps 𝝓n = {𝜙n𝑗}

nv
𝑗=1 corresponding with the

individual shots are fixed to their
SENSE-reconstructed values, which are obtained in a
preprocessing step. This method exploits the ideas
behind MUSE18 and model-based diffusion tensor
estimation in ms-EPI.25

PI-lin-MB incorporates the linear phase model
described by Equation (2). Following a model-based
approach, the diffusion parameters D and the
complex-valued non-DW image s0 are estimated by
solving the following optimization problem:

̃D, s̃0 = arg min
D,s0

(
∑

n,c
||qn,c − AnℱCcun(D, s0,𝜽n)||22

)

,

(8)
where the phase parameters 𝜽n corresponding with
the individual shots are fixed to values estimated in a
preprocessing step. In this step, for each shot, the
parameters 𝜽n are estimated by fitting the linear
phase model (2) to the phase map of the
corresponding SENSE-reconstructed image in the
least-squares sense. Note that the thus obtained
estimates of the phase parameters correspond with
𝜽ini, as previously introduced.

The introduction of these reference methods allows
to evaluate how the different key properties of ADEPT
(i.e., model-based reconstruction, incorporation of a lin-
ear phase model, joint estimation of phase parameters)
contribute to its performance.

3.2 Implementation

ADEPT and the reference methods were implemented in
MATLAB.33 Problems (4A), (4B), (7), and (8) were solved
using the trust-region Newton algorithm34 combined with
Powell’s dog leg method.35 The first- and second-order
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400 SHAFIEIZARGAR et al.

derivatives of the cost functions were computed using our
MATLAB implementation of automatic differentiation.
Problem (5) was solved using the trust-region-reflective
algorithm.36 The PI reconstructions used in initializing
ADEPT and in the reference methods were performed
using the BART toolbox.37 The coil sensitivity maps (Cc)
were estimated from the fully sampled non-DW k-space
constructed using the acquired non-DW shots using the
ESPIRiT technique.37,38

3.3 Experiments

To evaluate the parameter estimation performance of
ADEPT and the reference methods in terms of accuracy
and precision, Monte Carlo simulation experiments as
well as in vivo experiments were performed.

3.3.1 Simulation experiments

For the simulation experiments, multi-shot multi-coil
k-q-space data was generated according to the mod-
els described by Equations (1) and (3). As ground-truth
parameters, 96 × 96 diffusion tensor maps and a non-DW
image were used, which were estimated from a real dMRI
dataset.39 The phase map estimated from the non-DW
image of the in vivo dataset was used as the phase
of the ground-truth non-DW image s0 to simulate the
time-invariant phase effects. The simulated k-q-space data
consisted of 60 DW shots, each with a unique diffusion
encoding gradient direction (obtained using electrostatic
repulsion40) and a constant b-value of 1.15 ms∕𝜇m2, as
well as 16 non-DW shots. For each of the DW shots, a lin-
ear phase map was generated according to Equation (2)
to simulate motion-induced shot-to-shot phase variations.
The offset ground-truth phase parameter of each shot, 𝜃n0,
was drawn from a uniform distribution on the interval
[−𝜋, · · · , 𝜋] and the slope ground-truth phase parameters
of each shot, 𝜃n1 and 𝜃n2, were drawn from uniform dis-
tributions on the interval [−𝜋∕FOV, … , 𝜋∕FOV]. These
intervals were chosen such that the range of the gener-
ated phase values was similar to that observed in the real
data analyzed in this work. Furthermore, the number of
coils was set to nc = 8 and the coil sensitivity maps esti-
mated from a multi-coil scan41 were used to simulate the
diffusion k-space data.

To construct multi-contrast multi-shot data, first, fully
sampled k-q space data was generated, corresponding with
the 60 DW images and 16 non-DW images described
above. Next, these data were retrospectively subsam-
pled by applying binary masks (cfr An in Equation 1)
that define the specific k-space trajectories of the shots

of an interleaved multi-shot acquisition. Finally, the
multi-contrast multi-shot data was corrupted by additive,
complex-valued, zero-mean, Gaussian white noise. The
noise standard deviation was chosen to obtain the SNR val-
ues in the range [10, … , 30], where the SNR is defined in
image space as the ratio of the spatial average of the noise-
less, fully-sampled, non-DW magnitude image of one coil
channel and the standard deviation of the noise (in image
space). Considering an nv point Discrete Fourier Trans-
form, the noise variance in the k-space is derived from the
noise variance in the image space by multiplying the latter
by nv.42,43 For each SNR level, 30 realizations of noisy data
were generated for statistical analysis (nr = 30). To evalu-
ate the performance of ADEPT and the reference methods
for various multi-shot acquisition schemes, the following
two simulation experiments were performed:

Performance assessment for different
under-sampling rates In this experiment, each

method’s performance was evaluated as a function
of the under-sampling rate (R), where the latter is
defined as the number of shots required to fill one
fully sampled k-space. To this end, datasets with
different under-sampling rates were generated. Each
dataset consists of 60 DW shots with each a unique
diffusion contrast and 16 non-DW shots, where the
number of k-space data points per shot, and hence
the total number of data points in the dataset,
decreases proportionally with the under-sampling
rate. To create a dataset with an under-sampling rate
R, a set of R mutually exclusive binary sampling
masks was generated, where each mask defines a
unique sampling trajectory corresponding with one
shot in the k-space. Together, the R different masks
cover the full k-space. Additionally, each of the
masks was complemented with the central line of
the k-space, being the only part of the k-space
shared by all R masks. The masks were then applied
to retrospectively sub-sample the fully sampled
k-space data to create 60 DW shots with each a
unique diffusion contrast and 16 non-DW shots.
Following this procedure, datasets with
under-sampling rates 2, 4, 8, and 12 (i.e., 2-, 4-, 8-,
and 12-shot datasets) were generated, which were
subsequently corrupted by noise as described above.
Next, the diffusion parameters D and the non-DW
image s0 were estimated from each noisy realization
of the simulated datasets using ADEPT as well as
the reference methods, where only nonbackground
voxels were included in the parameter estimation.
These voxels were selected using a brain mask, which
was created by thresholding the non-DW image and
adding morphological operations to remove spurious
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SHAFIEIZARGAR et al. 401

F I G U R E 1 A graphical presentation of the k-space sampling trajectory of the individual shots in a 4-shot Echo-Planar imaging
acquisition used in simulation experiments. Each shot is acquired with a different diffusion contrast (represented by a different color). Solid
lines indicate the sampled points in the k-space, whereas dashed lines indicate the nonsampled points.

nonbrain voxels.44 Finally, the mean diffusivity
(MD) and fractional anisotropy (FA) metrics were
calculated from the estimated diffusion parameters.

Performance assessment for different sampling
patterns A simulation experiment was set up to

evaluate the effect of including no, one, or four
shared central k-space lines on the estimation
performance of ADEPT. The experiment was
performed for 4-shot and 8-shot data. The sampling
masks corresponding to the three sampling scenarios
used to create the 4-shot dataset are illustrated in
Figure 1. All datasets were corrupted with Gaussian
noise (SNR = 15). Next, ADEPT was used to estimate
the diffusion parameters D and non-DW image s0
from these datasets, where again only voxels within
the brain mask from the first experiment were
included in the parameter estimation. Finally, the

diffusion metrics MD and FA were calculated from
the estimated diffusion parameters.

3.3.2 In-vivo experiments
Dataset In vivo mouse brain DTI experiments were

performed on a 7T small animal scanner
(PharmaScan 70/16 US, Bruker BioSpin GmbH),
equipped with a linear four-channel array coil
designed for mice. The mice were anesthetized with
isoflurane in a mixture of oxygen and nitrogen. The
DTI data were collected from three mice using a DW
spin-echo ss-EPI pulse sequence with the following
imaging parameters: TE = 46.13 ms, TR = 3000 ms,
FOV = 18 × 20 mm2,
acquisition matrix = (108 × 90),
in-plane resolution = (0.17 × 0.22)mm2,
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402 SHAFIEIZARGAR et al.

slice thickness = 0.8 mm, b − value = 0.7 ms∕𝜇m2,
diffusion gradient duration 𝛿 = 2 ms, and diffusion
gradient separation time Δ = 8 ms. A total of 6 b0
images and 64 DW images, each with a unique
diffusion gradient direction, were acquired within a
total acquisition time of 3.5 min. The animal study
was approved by the Committee on Animal Care
and Use at the University of Antwerp, Belgium
(permit number 2014-04 [adapted 2019]). The raw
single-shot data was denoised using random matrix
theory to increase SNR.45,46

Experiments As in the first simulation experiment,
the performance of ADEPT and the reference
methods was evaluated as a function of the
under-sampling rate. To this end, the acquired fully
sampled single-shot in vivo datasets were
retrospectively subsampled using sets of sampling
masks introduced in section Simulation
Experiments to generate 2-, 3-, 4-, 5- and 6-shot
datasets. Each dataset consisted of 6 non-DW shots
and 64 DW-shots each with a unique diffusion
contrast. The sampling trajectory of all mutually
inclusive shots in one set was complemented with a
shared central line as illustrated in Figure 1B. The
diffusion parameters D and the non-DW image s0
were estimated from each in vivo multi-contrast
under-sampled dataset using ADEPT as well as the
reference methods (PI-2step, PI-MB, and PI-lin-MB).
The estimation was performed for the voxels with
substantial signal intensity defined by a selection
mask with visually selecting the brain region in the
non-DW image. Next, the metrics mean diffusivity
(MD) and fractional anisotropy (FA) were calculated
from the estimated diffusion parameters.

3.4 Evaluation metrics

To quantify the estimation performance in the simulation
experiments, the following metrics were used:47

• Estimation error of an estimated diffusion parameter
x̂ with respect to its underlying ground-truth value x,
calculated as x̂ − x.

• Bias, which quantifies the accuracy of an estimator, cal-
culated as (̄x̂ − x), with ̄x̂ the sample mean of the nr
estimates of the parameter x.

• Standard deviation (std), which quantifies the precision
of an estimator, calculated as (Σ(x̂ − ̄x̂)2∕(nr − 1))1∕2.

• Root mean square error (RMSE), which is a com-
bined measure of accuracy and precision, calculated as
(Σnr

i=1(x̂i − x)2∕nr)1∕2.

Additionally, the spatial average of bias, std, and RMSE
maps were calculated inside the brain region.

The estimation performance in the in vivo experiments
was quantified in terms of the regional RMSE (rRMSE),
which was calculated as (Σn′v

𝑗=1(x̂𝑗 − x
𝑗
)2∕n′v)1∕2, where x̂

𝑗
is

the estimated parameter in the 𝑗 th voxel, n′v is the number
of voxels within the brain region and x

𝑗
is the underly-

ing ground-truth value of the estimated parameter. The
ground truth parameters for the in vivo experiments were
obtained by solving problem (5) for magnitude images that
were reconstructed from the fully sampled ss-EPI dataset
using the SENSE algorithm.

4 RESULTS

4.1 Simulation study

The estimated MD and FA maps from the simulation
experiments, along with their corresponding RMSE val-
ues, are illustrated in Figures 2 and 3, respectively. The
corresponding difference maps are shown in section D of
Appendix S1. These figures show the results for ADEPT
along with those of the reference methods for 2-, 4-, 8-,
and 12-shot datasets for SNR = 15. It can be observed
that for the 2-shot data (top rows in Figures 2 and 3),
all methods estimate the diffusion parameters with a
comparably low RMSE. The RMSE increases with the
under-sampling rate, but not for all methods to the
same degree. It can be seen that for the 12-shot dataset
the results of PI-2step (Figures 2A and 3A) and PI-MB
(Figures 2B and 3B) are highly affected by noise and arti-
facts with nearly 10 times larger RMSE values compared
to the corresponding ones of the 2-shot dataset. In con-
trast, the parameter maps of PI-lin-MB (Figures 2C and
3C) and ADEPT (Figures 2D and 3D) are much less cor-
rupted by artifacts and have lower RMSE values. Indeed,
for the 12-shot dataset, the RMSE value of MD increases
with a factor of about 4 for PI-lin-MB and with a fac-
tor of about 3 for ADEPT compared to the 2-shot dataset.
Furthermore, it follows from Figures 2 and 3 that ADEPT
outperforms PI-lin-MB in terms of RMSE (for both FA
and MD), which suggests the added value of the joint
estimation of the phase maps along with the diffusion
parameters.

The superior performance of ADEPT becomes more
obvious when plotting the error distributions of the dif-
fusion parameters. Figure 4 shows these distributions for
ADEPT as well as the reference methods for 8-shot
datasets simulated with SNR= 15, where for each of the 30
noise realizations the estimation errors were averaged over
a region of interest in the white matter. It can be observed
that the widths of the error distributions corresponding to
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SHAFIEIZARGAR et al. 403

F I G U R E 2 Mean diffusivity (MD) maps estimated from
simulated multi-shot data with SNR = 15 using PI-2step (A), PI-MB
(B), PI-lin-MB (C), and ADEPT (D), along with the corresponding
RMSE (in 𝜇m2∕ms). From top to bottom row, MD maps estimated
from the 2-, 4-, 8-, and 12-shot datasets are shown.

ADEPT and PI-lin-MB are comparable and substantially
smaller than the widths of the error distributions corre-
sponding to PI-MB and PI-2step. This suggests that ADEPT
and PI-lin-MB have a superior precision. Furthermore, the
ADEPT error distributions are most symmetrical around
zero. This suggests that ADEPT outperforms all reference
methods in terms of accuracy. This can also be observed in
Figure 5, which demonstrates the performance of all meth-
ods as a function of the SNR. The figure shows the average
values of the bias, std, and RMSE over the entire brain
region for MD (top) and FA (bottom), estimated from the
simulated 8-shot dataset. It can be observed that ADEPT
estimates MD and FA with a lower bias (Figure 5A) and
lower RMSE (Figure 5C) compared to PI-lin-MB, whereas
both methods perform comparably in terms of preci-
sion, with ADEPT slightly outperforming PI-lin-MB for
SNR < 20.

F I G U R E 3 Fractional anisotropy (FA) maps estimated from
simulated multi-shot data with SNR = 15 using PI-2step (A), PI-MB
(B), PI-lin-MB (C), and ADEPT (D), along with the corresponding
RMSE. From top to bottom row, FA maps estimated from the 2-, 4-,
8-, and 12-shot datasets are shown.

In the second simulation experiment, the effect of
modifying the sampling pattern was investigated. Figure 6
shows the estimated MD (Figure 6A,C) and FA maps
(Figure 6B,D) using ADEPT, along with the correspond-
ing bias, std, and RMSE measures. The figure shows the
estimated maps using the conventional multi-shot sam-
pling pattern without shared lines, the sampling pattern
suggested in the ADEPT estimation framework with one
shared central line, and the pattern with four shared cen-
tral lines. Results are shown for 4-shot (top) and 8-shot
(bottom) datasets, which correspond with R = 4 and R = 8,
respectively. It can be observed from Figure 6 that for the
4-shot datasets, adding shared lines to the sampling pat-
terns hardly increases precision and accuracy, whereas for
the 8-shot dataset both bias and precision are substan-
tially increased by adding extra lines, where the difference
between adding zero or one line is most significant.
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404 SHAFIEIZARGAR et al.

F I G U R E 4 Distribution of the diffusion tensor imaging (DTI) parameter estimation errors (in 𝜇m2∕ms) for the voxels in the indicated
region of interest. The errors are shown for ADEPT and three reference methods in the 8-shot simulation experiment with SNR = 15.

F I G U R E 5 Spatial averages of the absolute bias (A), standard deviation (B), and RMSE (C) maps of mean diffusivity (MD) in 𝜇m2∕ms
(top) and fractional anisotropy (FA) (bottom), estimated from simulated 8-shot datasets with different signal-to-noise ratio values. The error
bars correspond to the standard error of the spatial average.

4.2 In vivo study

Figures 7 and 8 show the estimated MD and FA maps
for subject 1 in the in-vivo study, respectively, along with
their corresponding rRMSE values. The corresponding dif-
ference maps are shown in Section D of Appendix S1.
The results for PI-2step, PI-MB, PI-lin-MB, and ADEPT
are shown for retrospectively sub-sampled 2-, to 6-shot

in vivo datasets. Table 1 summarizes the results for all
three in vivo scanned subjects, reporting the rRMSE of
MD and FA estimation using ADEPT and the reference
methods. Similar to the simulation study, for all methods
an increasing trend can be found in the rRMSE values as
the under-sampling rate increases. Moreover, it is observed
that for datasets with R > 2, ADEPT outperforms all ref-
erence methods in terms of rRMSE for both FA and MD.
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SHAFIEIZARGAR et al. 405

F I G U R E 6 Estimated mean diffusivity (MD) (A,C) and fractional anisotropy (B,D) maps using ADEPT and the corresponding spatial
averages of bias, std, and RMSE (in 𝜇m2∕ms for MD) in the simulation experiments. Results are shown for the 4-shot dataset (top) and the
8-shot dataset (bottom).

The figures related to subjects 2 and 3 are provided in the
Section A of Appendix S1.

5 DISCUSSION

We introduced ADEPT as a framework that enables fast,
phase-corrected multi-shot dMRI by combining a flexi-
ble, intra-scan modulated data acquisition strategy with
model-based reconstruction. ADEPT efficiently exploits
redundancies in the DW multi-shot k-q space data by esti-
mating the diffusion parameter maps directly from the
acquired data. It was demonstrated in both simulation and
in vivo experiments that for high under-sampling rates
(R > 2), ADEPT outperforms reference methods that rely
on PI to correct for phase variations across shots in a pre-
processing step. In particular, for such under-sampling
rates, ADEPT and PI-lin-MB estimate diffusion param-
eter maps with a lower RMSE (cf. Figures 2,3, and 5)
and rRMSE (cf. Figure 7 and 8; Table 1) than PI-2step
and PI-MB. This superior performance of ADEPT and
PI-lin-MB, which becomes more pronounced with increas-
ing under-sampling rate, can be attributed to their capac-
ity to more accurately estimate the phase maps. More-
over, benefiting from the joint estimation of the phase

parameters along with the diffusion parameters, ADEPT
outperforms PI-lin-MB in terms of RMSE and rRMSE.
For R = 2, however, PI-2step and PI-MB show a similar
(in simulations) or even superior (in in-vivo experiment)
performance compared to ADEPT and PI-lin-MB. A pos-
sible explanation is that for an under-sampling rate as
low as 2, PI algorithms have been shown to reconstruct
the underlying complex-valued image quite accurately,48

which may explain why PI-2step and PI-MB can pro-
vide accurate phase-corrected diffusion parameter maps.
More specifically, in the in vivo experiments, PI-2step
and PI-MB can correct for possible small-scale nonrigid
motion, while PI-lin-MB and the current implementation
of ADEPT assume this motion to be rigid. However, for
increasing under-sampling rates, the image reconstruc-
tion performance of PI declines rapidly, which explains
the observed inferior performance of PI-2step and PI-MB
compared to ADEPT and PI-lin-MB for R > 2.

As can be seen from Figure 5, which shows the sim-
ulation experiments with varying levels of SNR, ADEPT
consistently performs better compared to the references
methods in terms of bias and RMSE, independent of
the SNR. For example, for a dataset with SNR = 15 and
R = 8 (cf. Figure 5), ADEPT outperforms the reference
methods PI-2step, PI-MB and PI-lin-MB in terms of the
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406 SHAFIEIZARGAR et al.

F I G U R E 7 Mean diffusivity (MD) maps estimated from the
in vivo dataset using PI-2step (A), PI-MB (B), PI-lin-MB (C), and
ADEPT (D), along with the corresponding rRMSE (in 𝜇m2∕ms).
From top to bottom row, MD maps estimated from the 2-, 3-, 4-, 5-,
and 6-shot datasets are shown.

RMSE of MD by a factor of about 7, 6, and 1.5, respec-
tively. Similar results were found for FA estimation, where
ADEPT outperforms PI-2step, PI-MB and PI-lin-MB in
terms of RMSE, by a factor of about 5, 4, and 1.5, respec-
tively. It can also be observed from Figure 5 that ADEPT
(as well as the reference methods) show a rather abrupt
decrease in performance for SNR = 10 compared to SNR
= 15. This decrease is caused by the degraded quality of
the SENSE-reconstructed images at low SNR and high
under-sampling rates. Since ADEPT is initialized with
parameter estimates obtained from SENSE-reconstructed
images, a poor SENSE reconstruction quality will directly
affect ADEPT’s performance. Indeed, for SNR = 10 and
under-sampling factor R = 8 or R = 12, additional results

F I G U R E 8 Fractional anisotropy (FA) maps estimated from
the in vivo dataset using PI-2step (A), PI-MB (B), PI-lin-MB (C), and
ADEPT (D), along with the corresponding rRMSE. From top to
bottom row, FA maps estimated from the 2-, 3-, 4-, 5-, and 6-shot
datasets are shown.

of this experiment reported in Section B of Appendix S1
show that for some shots the phase parameters of the lin-
ear phase model are estimated with a large error from
the SENSE-reconstructed images, resulting in poor initial
estimates for ADEPT. This suggests that ADEPT’s initial-
ization strategy at high under-sampling rates and low SNR
(R > 4 & SNR<15) can still be improved.

Finally, simulation experiments were performed to
evaluate the effect of complementing the sampling pattern
of each shot of ADEPT’s multi-shot multi-contrast acqui-
sition scheme with additional central k-space lines shared
by all shots. The results of these experiments (cf. Figure 6)
showed that for 4-shot data, the gain in accuracy and pre-
cision obtained by adding up to four central lines is only
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SHAFIEIZARGAR et al. 407

T A B L E 1 Mean diffusivity (MD) rRMSE (in 𝜇m2∕ms) and fractional anisotropy (FA) rRMSE values for the in vivo study for three
subjects (S1, S2, and S3)

MD FA

PI-2step PI-MB PI-lin-MB ADEPT PI-2step PI-MB PI-lin-MB ADEPT

S1

2-shot 0.026 0.047 0.055 0.058 2-shot 0.024 0.025 0.029 0.031

3-shot 0.20 0.23 0.11 0.10 3-shot 0.18 0.14 0.067 0.046

4-shot 0.29 0.49 0.13 0.12 4-shot 0.31 0.28 0.066 0.061

5-shot 0.31 0.63 0.19 0.17 5-shot 0.36 0.35 0.11 0.076

6-shot 0.31 1.20 0.64 0.22 6-shot 0.45 0.45 0.42 0.18

S2

2-shot 0.089 0.091 0.13 0.10 2-shot 0.022 0.026 0.049 0.044

3-shot 0.18 0.21 0.17 0.12 3-shot 0.16 0.14 0.10 0.069

4-shot 0.33 0.74 0.22 0.16 4-shot 0.30 0.31 0.18 0.11

5-shot 0.34 0.71 0.25 0.19 5-shot 0.34 0.35 0.24 0.12

6-shot 0.32 0.92 0.37 0.21 6-shot 0.38 0.46 0.41 0.23

S3

2-shot 0.023 0.031 0.037 0.044 2-shot 0.022 0.019 0.023 0.024

3-shot 0.16 0.20 0.070 0.062 3-shot 0.17 0.12 0.074 0.039

4-shot 0.27 0.51 0.12 0.11 4-shot 0.31 0.28 0.12 0.086

5-shot 0.28 0.45 0.14 0.11 5-shot 0.31 0.31 0.11 0.095

6-shot 0.28 0.63 0.15 0.13 6-shot 0.34 0.37 0.28 0.22

Colored cells indicate the lowest rRMSE values for each under-sampling rate.

marginal, whereas for 8-shot data, a significant gain in
terms of RMSE (up to a factor of 4 for FA and up to a factor
of 10 for MD) can be obtained by adding these central lines.
This observation may be explained by the fact that the non-
linear estimation problem considered becomes more and
more challenging with an increasing under-sampling rate,
up to the point where adding even the smallest piece of
information or data can have a huge impact.

It should be noted that ADEPT models the phase
map of each shot as the sum of a static component
(which is constant across the shots) and a dynamic com-
ponent (which varies across shots).29 The static compo-
nent accounts for the effect of B0 and B1 field inho-
mogeneities, chemical shift, etc. It corresponds with the
phase map of the nondiffusion weighted image, which
will generally be nonlinear. ADEPT estimates this (non-
linear) phase map along with the other parameters of
interest. Complementarily, the dynamic component of
the phase map represents the phase accrued due to
(small-scale) motion during the diffusion-encoding. In the
current version of ADEPT, the dynamic phase compo-
nent is modeled by a linear phase model for each shot,
which accounts for the effect of rigid motion. We showed
that even with such a possibly noncomprehensive addi-
tional phase model, the artifacts caused by the shot-to-shot
phase inconsistencies are substantially reduced, even
in real diffusion MRI experiments. Nevertheless, the
impact of nonlinear dynamic phase contributions on

ADEPT performance has been investigated in Section C of
Appendix S1. In particular, following a similar approach
as in Reference 49, dynamic phase components were gen-
erated that are described by a second-order spatial poly-
nomial with uniformly distributed coefficients. The results
show a low sensitivity of ADEPT to moderate nonlinear
phase contributions suggested by the literature49 with only
a marginal increase of RMSE compared to the linear case.

Furthermore, the current implementation of ADEPT
does not correct for geometrical distortions caused by
magnetic field inhomogeneities. The in vivo multi-shot
dataset used in this study was generated by retrospective
sub-sampling of ss-EPI data. Due to the long read-out dura-
tion of ss-EPI, the retrospectively subsampled multi-shot
data was affected by geometrical distortions to a larger
extent than what can be expected for prospectively
acquired multi-shot data. However, in a prospectively
acquired multi-shot dataset, these distortions are expected
to become less significant, as ms-EPI acquisition allows for
a shorter read-out time per shot. Moreover, in our exper-
iments, the effective value of TE (46.13 ms) was chosen
sufficiently small relative to T2 assuming that the differ-
ences in TE across the acquired k-space lines can be neg-
ligible and all lines experience a similar T2-weighting.1,4,50

Note that the shorter read-out time of ms-EPI compared to
ss-EPI allows the use of shorter echo times, which makes
ms-EPI less sensitive to artifacts related to T2-decay, as
well as phase accruals caused by off-resonant spins.4
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ADEPT can be extended in different directions. First,
to fully exploit the increased number of degrees of free-
dom offered by ADEPT in comparison with traditional
data acquisition schemes, the framework can be com-
plemented with statistical experiment design,47 which
allows finding the data acquisition settings that maximize
the precision of the estimated diffusion parameters for
a given acquisition time. Equivalently, guided by statisti-
cal experiment design, the additional degrees of freedom
of ADEPT may be exploited to achieve a target precision
using fewer shots (i.e., less acquisition time) than a con-
ventional multi-shot data acquisition scheme that doesn’t
include intra-scan modulation. Second, while in the cur-
rent work ADEPT has been evaluated for Cartesian sam-
pling trajectories and a DTI signal model, ADEPT can be
extended to include non-Cartesian acquisition schemes
such as rotating EPI12 and higher-order diffusion mod-
els such as diffusion kurtosis imaging.51 Third, ADEPT
can be expanded to simultaneous multi-slice imaging. To
this end, the proposed model-based framework should
be modified to allow for slice unfolding exploiting coil
sensitivity variations in three directions, using a similar
formulation as.20,52 Note that this framework should still
account for different phase variations for each individ-
ual shot, since motion effects may vary for different slice
locations.53 Fourth, the current implementation of ADEPT
does not address macroscopic inter-shot motion as it is
expected to be negligible in small anesthetized animal
studies. For human data, this macroscopic motion can be
of a higher level, which may result in voxel misregistra-
tion.19 To address this issue, ADEPT may be extended to
account for macroscopic intershot motion, which is con-
sidered future work. A potential strategy is to extend the
signal model with additional parameters that define the
motion between the shots and then estimate these motion
parameters along with the diffusion and phase param-
eters, following a similar approach as in Reference 54.
Finally, ADEPT’s initialization strategy can be improved
to make it more robust at both high under-sampling rates
and low SNR. A possible approach could be to denoise
the complex SENSE-reconstructed images prior to calcu-
lating the phase maps and fitting the linear phase model
to these phase maps. Alternatively, the currently used
unweighted least-squares estimator described by Equation
(6) could be replaced by a weighted-least-squares estima-
tor to account for the fact that the SENSE-reconstructed
phase maps have a nonstationary (i.e., spatially varying)
variance.55,56

While further research is needed to explore its full
potential, the current work has demonstrated that ADEPT
can become a highly competitive method for quantita-
tive dMRI. Using a ms-EPI acquisition scheme, ADEPT is
less sensitive to susceptibility artifacts than ss-EPI dMRI,

which contributes to a higher estimation accuracy. At
the same time, ADEPT’s intra-scan modulation strategy,
especially when complemented with optimal experiment
design, allows it to estimate accurate and precise diffu-
sion parameter maps from a limited number of shots,
being comparable to the number of images used in a con-
ventional single-shot approach. That is, ADEPT has the
potential to provide more accurate diffusion parameter
maps than ss-EPI approaches, while requiring a compa-
rable acquisition time, which is well below the acquisi-
tion time of conventional ms-EPI approaches that do not
include intra-scan modulation. This potential will be fur-
ther explored in future studies.

6 CONCLUSION

We presented ADEPT, a framework that allows accu-
rate and precise estimation of diffusion parameter maps
from under-sampled ms-EPI data. ADEPT combines a
novel image acquisition strategy with a model-based
reconstruction approach in which diffusion parameter
maps are estimated along with shot-to-shot phase vari-
ations. It was shown that ADEPT’s combined parame-
ter estimation strategy allows to strongly reduce artifacts
caused by shot-to-shot phase variations, especially at high
under-sampling rates. Moreover, simulation and in vivo
experiments showed a superior estimation performance
(in terms of accuracy and precision) of ADEPT compared
to conventional ms-EPI methods that rely on PI for phase
correction. Finally, ADEPT enables intra-scan diffusion
modulation by allowing individual shots of the multi-shot
acquisition to have a different diffusion weighting, thereby
substantially increasing opportunities for optimal experi-
ment design.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.
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