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A B S T R A C T

The study of physiological processes resulting from water-limited conditions in crops is essential for the selection
of drought-tolerant genotypes and the functional analysis of related genes. A promising, non-invasive technique
for plant trait analysis is close-range hyperspectral imaging (HSI), which has great potential for the early de-
tection of plant responses to water deficit stress. In this work, a data analysis method is described that, unlike
vegetation indices, the present method applies spectral similarity on selected bands with high discriminative
information, while requiring a careful treatment of uninformative illumination effects. The latter issue is solved
by a standard normal variate (SNV) normalization that removes linear effects and a supervised clustering ap-
proach to remove pixels that exhibit nonlinear multiple scattering effects. On the remaining pixels, the stress-
related dynamics is quantified by a spectral analysis procedure that involves a supervised band selection pro-
cedure and a spectral similarity measure against well-watered control plants. The proposed method was vali-
dated by a large-scale study of water-stress and recovery of maize plants in a high-throughput plant phenotyping
platform. The results showed that the analysis method allows for an early detection of drought stress responses
and of recovery effects shortly after re-watering.

1. Introduction

Imaging techniques have improved the precision and throughput of
plant phenotyping, and now become a new frontier in phenotypic trait
measurement. Current phenotyping platforms include a variety of
imaging modalities to obtain high-throughput, non-destructive pheno-
type data for quantitative assessment of structural and functional plant
traits. Plant trait assessment in high-throughput plant phenotyping
platforms (HTPP) has recently been studied using close-range hyper-
spectral imaging (HSI) as a promising non-invasive tool (Ge et al., 2016;
Mishra et al., 2017). In particular, HSI has been applied for the as-
sessment of plant responses to biotic and abiotic stress conditions, such
as fungal infection, water and nutrient deficits. During the stress de-
velopment, a number of physiological and biochemical responses
happen in plants, including modifications in the functioning of the
photosynthetic apparatus, plant organ, water content, leaf surface and
internal structure. These modifications alter the leaf optical properties
(Sun et al., 2018) that can be measured by HSI. Recent advances in this

field encourage studies on plant responses to drought stress, and on the
plant’s capability to adapt and recover from this stress. Such studies are
crucial for the further improvement of crop drought-tolerance in
breeding programs.

A common approach for plant trait estimation based on HSI is to
utilize vegetation indices (VIs), defined as ratios or linear combinations
of reflectances at a few single wavelengths. One advantage of VIs is that
they minimize the possible influence of scale factors, including slope
effects and variations in illumination conditions (Jay et al., 2017). VIs
usually focus on very specific biological traits and processes in plants
(Heiskanen et al., 2013; Katsoulas et al., 2016; Ihuoma and
Madramootoo, 2017), whereas the complex physiological effects of
drought stress alter the reflectance in many different wavelength re-
gions. Thus, VIs may discard significant information leading to a de-
crease in the discrimination accuracy (Römer et al., 2012).

Another widely used method for retrieving vegetation character-
istics from reflectance data is the inversion of radiative transfer models
(RTM). In RTM inversion, model parameters such as chlorophyll
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concentration, water content, dry matter, and canopy structures are
retrieved using look-up-tables and optimization techniques (Sun et al.,
2018). A common challenge of these methods is their ill-posedness
(Jacquemoud et al., 2009), as various combinations of vegetation
parameters may correspond to almost similar spectra. Moreover, this
method does not apply well to close-range settings because the physi-
cally-based leaf or canopy RTMs are difficult to adapt to the specific
close-range illumination problems (Jay et al., 2016).

Data-driven machine learning regression algorithms provide a third
way to retrieve plant biophysical variables from the reflectance spec-
trum (Verrelst et al., 2015; Rapaport et al., 2015). Regression analysis
reveals statistical correlations between the spectral variables and bio-
logical information. Typically, a flexible learning model is inferred from
a training dataset by optimizing the estimation error of the extracted
variables. As they implicitly derive the underlying model distribution
from a given dataset, these methods are very flexibel. However, they
cannot be applied if the required output variables for training the model
are not available.

In this work, an alternative data-driven method is proposed. To
eliminate scaling effects from leaf orientations and specific allignment
of the imaging system in close-range settings, a standard normal variate
(SNV) normalization is applied first. To filter out noninformative non-
linear variability induced by multiple scattering and shading in more
complex canopy structures, a supervised clustering procedure is pro-
posed and clusters of spectra associated to shadowed and partially oc-
cluded areas were discarded. To quantify the dynamics of the water-
deficit stress response of a plant, it was characterized by the average
SNV spectrum from the retained clusters. An Euclidean distance func-
tion was then applied to discriminate stressed from well-watered plants.
To optimize the discrimination, a supervised band selection procedure
was applied to extract a small subset of top-scoring variables with high
class separability. The proposed methodology was validated by a large
scale experiment in a HTPP that monitored maize plants during their
entire vegetative development period. Six different groups of test plants
were monitored: well-watered control plants, and five groups of plants
undergoing different water-deficit stress conditions, for which we
analyzed their response to the drought stress and their recovery after re-
watering.

2. Materials and methods

2.1. Data acquisition

A batch of maize plants was grown in PHENOVISION, the HTPP
infrastructure located at VIB, Ghent, Belgium. The plants were divided
into six groups udergoing different water irrigation strategy (Fig. 1). All
treatments started at the seedling level.

• Group WW (Fig. 1 (a)): the well-watered treatment. Seven plants
were irrigated with sufficient water to keep the soil water content at
the optimal level of 2.4 g H2O/g dry soil throughout the entire plant
developmental period.

• Group PD-RW1 (Fig. 1 (b)): the progressive drought with re-wa-
tering 7 days after the V5-stage treatment. Seven plants received a
WW treatment from the beginning (seedling) until they reached the
V5-stage (five leaves developed). At the V5-stage, the plants were
not irrigated for seven days (at that time they reach V6 or V7), after
which they were re-watered at V6-stage (six leaves developed) with
a low amount of water to maintain the soil water content at a deficit
level of 1.4 g H2O/g dry soil until the end of the developmental
period.

• Group PD-RW2 (Fig. 1 (c)): the progressive drought with re-wa-
tering 7 days after V5-stage and at V12-stage treatment. Seven
plants received the PD-RW1 treatment up to V12 vegetation stage
(twelve leaves developed). From V12-stage onward, the plants were
irrigated with the WW treatment until the end of the developmental

period.

• Group SD (Fig. 1 (d)): the severe drought treatment. Four plants
were irrigated with a deficit soil water content of 1.4 g H2O/g dry
soil throughout the developmental period.

• Group SD-RW1 (Fig. 1 (e)): the severe drought with re-watering at
the V7-stage. Six plants received the SD treatment from the begin-
ning until they reached the V7-stage (seven leaves developed). From
this stage onward, the plants were irrigated according to the WW
treatment until the end of the developmental period.

• Group SD-RW2 (Fig. 1 (f)): the severe drought with re-watering in
the V12-stage treatment. Seven plants received the SD treatment
from the beginning until they reached the V12-stage after which
they were irrigated according to the WW treatment until the end of
the developmental period.

From all plants involved, hyperspectral images were acquired daily
during 50 days from growth stage V2 (two leaves developed), about
2 weeks after the start of the water treatments. A line scan push-broom
VNIR-HS camera (ImSpector V10E, Spectral Imaging, Oulu, Finland)
was used to capture the hyperspectral images. The complete acquisition
process produced 350 hyperspectral images for each WW, PD-RW1, PD-
RW2 and SD-RW2 treatment, 300 images for the SD-RW1 and 200
images for the SD treatment, resulting in a total of 1900 images. The
acquired images had ×510 328 pixels and an average spectral sampling
of 3.1 nm which corresponds to 194 bands ranging between 400 and
1000 nm.

All images were radiometrically calibrated by subtracting a dark
frame and reflectance was calculated relative to a white reference.
Fig. 2 shows a collection of reflectance spectra from plant pixels. The
levels of Gaussian noise, present in the spectrum were quantified using
the Generalized Cross Validation (GCV) score (Garcia, 2010) (see
Table 1). Because of high noise levels below 500 nm and above 850 nm,
the images were limited to 111 spectral bands in the range 500–850 nm
for further data processing. The plant pixels were then segmented from
the background using the normalized difference vegetation index
(NDVI). Fig. 3 shows a segmented plant for several threshold values of
the NDVI. A threshold of 0.3 was chosen.

All plants were imaged in an indoor environment, inside a closed
cabin. The imaging cabin is illuminated with halogen lamps, homo-
geneously distributed in a 2-dimensional plane of the field of view of
the HS camera. Although the illumination is homogeneous, spectral
variability occurs due to physical effects of light reflection. In parti-
cular, the high spatial resolution of HSI in this close-range setting
makes the recorded signal very sensitive to the specific alignment of the
imaging system and the non-solid architecture of the plant. This sen-
sitivity increases further in whole-plant screening scenarios, where the
crops are susceptible to complex plant geometry. Assuming that the leaf
surface is Lambertian, the fraction of the leaf reflectance received by
the sensor is largely affected by the inclination of the leaf towards the
light source and the distance towards the sensor. These physical effects
can be explained by the lambert’s cosine law and the inverse square
law, which cause multiplicative and additive effects on the reflectance
spectra. This induces high uninformative variability in the recorded
signals which overlay the subtle effects of the biological traits. Since
these effects are linear, a linear pre-treatment technique, the Standard
Normal Variate (SNV) was applied (Asaari et al., 2018) to reduce these
nuisance variabilities.

2.2. Clustering

The SNV normalization method only accounts for linear scaling ef-
fects. In larger plants with a more complex canopy structure, partially
occluded leaves, shadowing and multiple reflections at the leaf edges
cause unwanted nonlinear variability. To remove this variability, a
clustering procedure to discard these regions is proposed.

Typically, unsupervised clustering such as the k-means clustering
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algorithm can be applied (Asaari et al., 2018; Behmann et al., 2014). In
the proposed experiments, tens of millions of spectra are involved. The
large-scale data streams in HTPP systems pose computational chal-
lenges as the system memory may become saturated. Therefore, in this
work, a different clustering strategy is proposed: a supervised method,
which combines the Support Vector Machine (SVM) classifier with the
k-means clustering algorithm (Li et al., 2004). Since it is a supervised

algorithm, it requires labeled instances for training the classifier. To
avoid time-consuming manual labeling, unsupervised labeling is per-
formed to create representative spectra for different groups of pixels.

In first instance, k-means clustering was performed on a small
subset of all the acquired images from the well-watered control plants
and the different stressed groups over the entire development period.
The number of clusters k was estimated by analyzing the dispersion of

Fig. 1. Six different irrigation strategies applied to maize plants, showing the level of soil water content over the entire vegetative developmental period at different
V-stages, indicating the number of developed plant leaves and the number of days to reach a particular V-stage. (a) well-watered treatment (WW), (b) progressive
drought with re-watering 7 days after V5-stage treatment (PD-RW1), (c) progressive drought with re-watering 7 days at a water deficit levels after V5-stage and in the
V12-stage treatment at a WW level (PD-RW2), (d) severe drought treatment (SD), (e) severe drought with re-watering in the V7-stage at a WW level (SD-RW1) and (f)
severe drought with re-watering in the V12-stage at a WW level (SD-RW2).

Fig. 2. Reflectance spectra of a collection of plant pixels, covering the spectrum region between 400 nm to 1000 nm. The spectra show high noise levels at wave-
length regions below 500 nm and above 850 nm. The noise levels were quantified using the GCV score (see Table 1).
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the within-groups sum of squares for different values of k (Sarstedt and
Mooi, 2014) and was set to 12 (Fig. 4). Then, the resulting cluster
centroids were arranged in ascending order, based on the Euclidean
norm. In the next step, the training sample size was limited to 100
spectra for each cluster, chosen relatively close to the cluster centroids.
This data reduction strategy was aimed at improving the computational
efficiency of SVM in both training and prediction phases (Tang et al.,
2018). Then, SVM with a radial basis function kernel (Chang and Lin,
2011) was used to train the classifier and all the unlabeled spectra from
the entire image collection were classified as belonging to one of the k
clusters.

Fig. 5 shows an example of an obtained cluster map, in which the
pixels are mapped using a false color representation in accordance with
their cluster number. Based on these cluster maps, less-informative
clusters were annotated and pixels from these clusters were discarded.
Finally, each plant was characterized by one SNV spectrum, obtained
by averaging the normalized spectra of all pixels belonging to the re-
tained clusters. The entire development period of each plant is then
represented as one spectral time-series.

2.3. Spectral similarity measure

To distinguish stress-related behaviour from control plant growth
dynamics, a spectral similarity measure (SSM) was applied between
stressed and well-waterd plants. The Euclidean distance measure was
applied to calculate the spectral distance between any two spectra q λ( )
and r λ( ):

∑= −
=

ED q r q λ r λ( , ) ( ( ) ( ))
λ

B

1
2

(1)

where B is the number of bands.

The similiarity measure allows to compare the dynamics of a plant
against a reference. In this work, the reference spectrum at each day
was defined as the average spectrum of all plants in the WW group of
that particular day. The obtained spectral time-series represents control
plant growth and functioning dynamics. The dynamics of a control
plant will be very similar to the reference time series (slightly positive
since a distance is always positive), while behaviour other than the
regular dynamics of the control plants will result in a significant dif-
ference with the reference time series.

To increase the disciminative power between stressed and control
plants, a supervised band selection procedure was applied. In this work,
Fisher’s statistics criterion (Grünauer and Vincze, 2015) was applied. It
selects a subset of top-scoring bands with high discriminative power
that optimise the class separability between two predefined classes (in
our case well-watered versus the five groups of stressed plants). The
band selection criterion was defined as:

̃ = ⎧
⎨⎩

⩾
ρ λ

ρ λ if F λ T
else

( )
( ), ( )

0, (2)

where ̃ρ λ( ) is the selected spectral band, T is a threshold value and
F λ( ) is the ratio of the between-class and the within-class variance. The
spectral similarity measure was then applied by only using the selected
bands.

Table 1
Gaussian noise estimation on different wavelength intervals of the spectra from
Fig. 2. The estimated variance of this noise is estimated based on the GCV score
(Garcia, 2010). Lower GCV scores correspond to lower noise levels.

Wavelength Region Estimated Noise Variance (GCV score)

400–1000 nm × −4.560 10 2

400–500 nm × −5.677 10 1

400–850 nm × −7.320 10 2

500–850 nm × −3.416 10 5

500–980 nm × −1.434 10 4

500–1000 nm × −3.890 10 4

850–1000 nm × −1.600 10 3

Fig. 3. Segmentation of plant pixels based on NDVI threshold. Full hyperspectral image (a), segmented hyperspectral images based on NDVI threshold of 0.1 (b), 0.2
(c), 0.3 (d), 0.4 (e) and 0.5 (f).

Fig. 4. Choosing the number of clusters by analyzing the dispersion in the
within-group sums of squares (wk). A break point in the curve occurs at =k 12.
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3. Results and discussion

In the first experiment, we validated the clustering strategy of
Section 2.2. To do so, we evaluated the performance of the proposed
technique against the original k-means clustering algorithm. For this, a
fraction (25%) of the spectral data was proportionally distributed to five
test data sets, to conduct five independent experiments. The ground
truth labels for this test data was obtained using the k-means clustering
algorithm. Then, for each of the five experiments, 100 spectra of each
cluster ( =k 12) were randomly chosen to train the SVM. The remaining
spectra acted as validation data, for which the obtained label was
compared against the ground truth obtained by k-means clustering.
Table 2 shows the SVM classification accuracy on this validation da-
taset. The overall agreement between the proposed and the k-means
clustering was above 96%, confirming that the use of the supervised
clustering approach was justified.

The proposed clustering algorithm was applied to label every pixel
in each individual plant and the resulting cluster map was further
analyzed to filter out less-informative spectra. Fig. 5 shows an example
of a cluster map of a single maize plant at developmental stage V13 (13

leaves developed). At this stage, the complex canopy structure may lead
to non-linear illumination effects, particularly due to multiple scat-
tering. These non-linearities cannot be corrected by the applied SNV
normalization as that method only reduces the linear effects (i.e. scaling
and offset due to leaf inclination and elevation variability). From visual
comparison of the cluster map with the RGB image, one can notice that
the lower clusters (1–3) are mostly associated with regions from which
the sensor receives a low level of illumination because they are more
distant from the light source or that contain shading and partially oc-
cluded leaves. Leaf edges belong to these lower clusters as well. The
spectra in these regions are expected to be influenced by multiple
scattering and were therefore discarded from further analysis.

The next experiment was an actual experiment with well-watered
control and water-deficit stress treatments to monitor the growth dy-
namics of the plants from the six different watering treatment groups,
and to analyse the response to drought and recovery after re-watering.
The proposed method from Section 2.3 was applied to obtain the
spectral distance of each plant from the reference spectra, during the
entire experiment (53 days). The well-watered group acts as a control
group. Fig. 6 shows the plots for the five different stressed groups, each
time compared to the plot of the WW control group. Each data point is
an average over all plants of the group; standard deviations are given as
well. Note that there were no measurements available on days 8, 32 and
33.

Fig. 6(a) shows the results of the group PD-RW1 versus the WW
control group. The drought stress was detected as early as the third day
of the drought induction (at T1, irrigation was completely stopped).
The difference with the control group gradually increased as the plants
were withheld from water. At T2, 7 days after T1, the plants were
watered again albeit to a lower soil water content than the well-watered
treatment, after which the difference started to decrease, indicating that
the plants were recovering. About 15 days after re-watering, the plants
seemed to have completely recovered. However, this situation did not
persist until the end of the developmental period, as after day 40, the
difference with the control started to grow again. Apparently, the plants
initially adapted to the lower soil water content, but at a later devel-
opment stage, they seemed to re-experience drought stress.

Fig. 6(b) shows the results of the group PD-RW2 versus the control
group. The water treatment of this group is identical to the one of PD-
RW1 up to day 37 (T3). As expected, the behaviour is very similar to the
behaviour of the PD-RW1 group. After that day, the plants were irri-
gated again with higher water levels equivalent to the WW treatment.
From day 40 on (3 days after starting the WW treatment), a significant
deviation from PD-RW1 group was observed, as the PD-RW2 group
seemed to have fully recovered from the drought stress.

Fig. 6(c) shows the results of the group SD versus the control group.
Since the irrigation for SD plants was limited from the start (i.e. two
weeks before day 1), the effect of drought stress was visible from the
first day of observation. From that day on, the difference with the
control group decreases monotonically until day 10, indicating that the
drought plants were adapting to the water stress environment. From the
literature, it is known that plants can adapt through various biological
mechanisms (Xu et al., 2010; Zegada-Lizarazu and Monti, 2013; Sun
et al., 2016). After this, the plants seemed to behave as WW control
plants until day 35, after which the plants start to re-experience drought
stress. This effect seemed to start earlier and to be more severe than for
the plants in the progressive drought treatment (PD-RW1), indicating a
very serious impairment in the plant development of the SD group.

For the remaining two groups, SD-RW1 and SD-RW2, the goal was
to evaluate to what extent plants have the capacity to recover from
severe drought stress when re-watering is performed. The SD-RW1
group was fully re-watered after severe drought induction, at an early
vegetative state (V7), while SD-RW2 was fully re-watered at a later
development stage (V12). Fig. 6(d) and (e) show the results of these
groups versus the control group. For the SD-RW1 group, the plant
health status stabilizes shortly after re-watering (at point T4) and

Fig. 5. RGB image and cluster map from a maize plant at the V13 growing
stage.

Table 2
Classification accuracy of the proposed supervised clustering approach in five
independent experiments. Ground truth labeling was obtained from the
k-means clustering algorithm. The processing time is based on the experiment
running on Matlab R2018a with 4.00 GHz Intel Core i7 CPU and 32.0 GB system
memory.

Data set Number of test
spectra

Match cluster between
SVM and k-means (%)

Processing time (s)

SVM k-means

1 ×2.0007 106 95.83 101.55 405.41
2 ×2.0929 106 96.23 105.94 439.98
3 ×2.3254 106 96.33 118.98 619.30
4 ×2.2473 106 96.32 113.82 616.38
5 ×2.1135 106 96.26 108.26 483.52

Overall
performance:

96.19 109.71 512.92
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remains undifferent from the control group until the end of the vege-
tative development stage. This indicates that these plants were able to
fully recover and regain their optimal growth and functioning pattern.
However, this was not achieved by the SD-RW2 group, that deviates
from the control group after the late re-watering period (T5). This in-
dicates that re-watering at a later development stage does not allow
plants to entirely recover from severe drought stress.

In the next experiment, the aim was to study the positive effect of
the cluster procedure on the results. For this, the same experiment on
the WW and the PD-RW1 groups was repeated but then without per-
forming the clustering. As a consequence, all pixels of the plants, in-
cluding the ones that were influenced by nonlinear effects, were in-
cluded in the experiment. All other procedures, i.e. SNV normalization
and band selection were performed as before.

Fig. 7 plots the evolution of the plants in the PD-RW1 group against
the WW control group. From this plot, it can be observed that in

general, the standard deviations were larger than in the original ex-
periment. This effect remained rather small at the early vegetation
stages, but became larger at the later vegetation stages, where the ca-
nopies were larger and more complex, leading to more serious effects of
multiple scattering and shading. Because of this, during the early ve-
getation stage, not performing the clustering had only a minor effect on
the discrimination between control and drought plants. The only dif-
ference that was observed was that the onset of the water stress was
detected only on the fourth day after the drought induction, one day
later than the case where clustering was applied. However, at later
vegetation stages, the high standard deviations hindered the distinction
between healthy and drought plants, such that the re-experience of
drought stress after 40 days remained entirely unnoticed.

Many past and recent studies have applied VIs to characterize the
biophysical and physiological plant status in response to drought stress
(Rumpf et al., 2010; Kim et al., 2011; Amatya et al., 2012; Sun et al.,

Fig. 6. Evolution of the spectral distance with respect to the control group throughout the drought stress experiment for the WW control group, the PD-RW1 group
(acute drought between T1 and T2), the PD-RW2 group (acute drought between T1 and T2 and re-watering to WW level at T3), the SD group and the SD-RW1 (re-
watering to WW level at T4), and SD-RW2 groups (re-watering to WW level at T5). Plants grew from the V2 until the V18-stage.
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2014; Behmann et al., 2014; Gago et al., 2015). The photochemical
reflectance index (PRI) and the normalized difference vegetation index
(NDVI) are the most commonly used VIs for crop water stress assess-
ment. Other reflectance indices like the red-edge normalized difference
vegetation index (RENDVI) and plant senescence reflectance index
(PSRI) have also been used with varying results. In Sun et al. (2014), a
significant correlation between PRI and water content was found, while
in Kim et al. (2011) it was shown that RENDVI and NDVI are two in-
dices that are highly correlated with plant water stress. In addition to
these indices, Behmann et al. (2014) reported PSRI as a relevant

indicator for detecting plant stress.
To test the relevance of the proposed spectral analysis method, a

comparison with the aforementioned VIs on the drought stress experi-
ments was performed. To calculate the VIs, no SNV normalization was
applied, because VI’s need to be obtained directly from reflectance
spectra, and because VI’s take scaling effects automatically into ac-
count. However, the same clustering treatment as in the proposed
method was applied to account for nonlinear illumination effects.

Fig. 8 shows the plots of PRI, PSRI, RENDVI, and NDVI of the PD-
RW1 versus the control group. In general, deviations from the control

Fig. 7. The obtained spectral distance when no cluster treatment was performed. The evolution plots show the comparison between plants in PD-RW1 group versus
control plants throughout the drought stress experiment.

Fig. 8. Evolution of spectra for the plants in PD-RW1 group versus plants in the WW group based on the calculation of vegetation indices (a) PRI (b) PSRI and (c)
RENDVI (d) NDVI.
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seem to appear at the same time intervals as in the proposed method
(between day 10 an day 30 and from day 40 on), but less clear. To
quantify this, a statistical significance test was conducted using analysis
of variance (ANOVA). Table 3 presents the p-values obtained from the
ANOVA test at 0.05 significance level for the proposed method and the
four VIs.

Among the four VIs tested, RENVI was the best index for the de-
tection of the water stress. Nevertheless, when compared to the pro-
posed method the result was far less significant. None of the VIs was
able to significantly determine the recovery at the later development
stage. Clearly, the limited amount of spectral information provided by
the VIs was not sufficient for a proper analysis of the drought stress and

recovery after re-watering. The proposed method is capable of re-
vealing these subtle differences by making optimal use of the most
discriminative spectra from the entire wavelength range.

In the proposed method, the discrimination between control and
drought-stressed plants was achieved solely by determining differences
in plant spectra. Such spectral characterization is referred to as non-
targeted, since it reveals no direct link between the spectral reflectance
and specific phenotypic traits. For a possible biological interpretation,
the information from the band selection strategy may provide useful
indicators to correlate the spectral variations to specific plant traits. In
Fig. 9, the F -score from the band selection procedure is shown. The
curve follows a systematic shape with several peaks of top-scoring

Table 3
The p-values of a one-way ANOVA at the 0.05 significance level for the proposed method and the four VIs. The obtained p-values are based on the comparison
between plants from the WW group and the SD-RW1 group.

Early vegetative stage Later vegetative stage

Day Proposed method PRI PSRI RENDVI NDVI Day Proposed method PRI PSRI RENDVI NDVI

1 0.7372 0.2236 0.4022 0.7630 0.3992 27 0.0005 0.3441 0.5796 0.6976 0.0645
2 0.9277 0.5799 0.5979 0.8586 0.3863 28 0.1679 0.8147 0.2396 0.3780 0.0023
3 0.2696 0.8332 0.3635 0.9205 0.9096 29 0.0625 0.0918 0.4345 0.9798 0.0080
4 0.8635 0.4295 0.8261 0.9744 0.5388 30 0.0766 0.2084 0.3618 0.8588 0.0592
5 0.5378 0.5926 0.4745 0.9652 0.3278 31 0.1401 0.3700 0.3038 0.5027 0.1399
6 0.4600 0.5100 0.3235 0.8707 0.3206 34 0.1100 0.0652 0.4076 0.6012 0.2394
7 0.2191 0.7718 0.2154 0.9692 0.0367 35 0.2523 0.9366 0.3583 0.2406 0.1635
9 0.1683 0.2129 0.6387 0.0416 0.0737 36 0.1718 0.4621 0.3819 0.4515 0.1000
10 0.2091 0.9063 0.6815 0.1186 0.2872 37 0.0486 0.5161 0.0197 0.2593 0.0392
11 0.0366 0.8479 0.0611 0.4353 0.8184 38 0.3959 0.3895 0.6715 0.2187 0.0117
12 0.0216 0.0392 0.9530 0.0776 0.8894 39 0.6940 0.7205 0.1211 0.9861 0.5397
13 0.0000 0.0619 0.1098 0.0228 0.4294 40 0.0968 0.6887 0.4539 0.3899 0.6709
14 0.0000 0.0510 0.0314 0.0211 0.0505 41 0.0161 0.0706 0.9326 0.2079 0.8077
15 0.0000 0.0937 0.1318 0.0056 0.0092 42 0.0378 0.8634 0.9499 0.1208 0.4192
16 0.0000 0.3341 0.0569 0.0034 0.0025 43 0.0466 0.7792 0.4542 0.4301 0.7397
17 0.0000 0.0112 0.0127 0.0006 0.0042 44 0.0236 0.0442 0.5086 0.4659 0.7123
18 0.0000 0.0667 0.0073 0.0005 0.3626 45 0.0452 0.4044 0.8618 0.2917 0.9515
19 0.0000 0.0252 0.0013 0.0015 0.7318 46 0.0076 0.4155 0.3545 0.2486 0.8008
20 0.0000 0.1660 0.0891 0.0015 0.9838 47 0.0258 0.4004 0.3391 0.4173 0.5864
21 0.0001 0.1221 0.0490 0.0028 0.7882 48 0.0560 0.8625 0.2016 0.6139 0.3713
22 0.0001 0.0889 0.1008 0.0130 0.5704 49 0.0101 0.8138 0.5188 0.3303 0.3720
23 0.0001 0.9523 0.0315 0.1362 0.1930 50 0.0214 0.0148 0.2856 0.8201 0.2923
24 0.0000 0.1845 0.0538 0.1999 0.2497 51 0.0383 0.5005 0.9895 0.9784 0.3237
25 0.0005 0.5216 0.1688 0.1383 0.1961 52 0.1411 0.7394 0.9408 0.6797 0.2370
26 0.0001 0.0725 0.9700 0.2241 0.2348 53 0.0730 0.2188 0.1773 0.3711 0.0913

Fig. 9. The F -value obtained from the band selection procedure. The threshold was set to 70% of the maximum F value.
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bands with high discriminative power, occurring in the 600–700 nm,
700–780 nm and 800–850 nm spectral regions. The position of these
peaks are quite relevant when compared with the wavelengths used in
the calculation RENDVI and NDVI, the best two indices proposed in a
study of plant responses to drought by Kim et al. (2011). This specific
pattern may be linked to the changes in the biological properties of the
plant during the stress and recovery period, such as the leaf biochemical
composition, the morphology of the leaf surface and the internal cell
structure (Linke et al., 2008). Changes in reflectance in the visible and
the red-edge regions are mainly related to the modification of photo-
synthetic pigments, while in the NIR, the reflectance is influenced by
light scattering of the internal properties of the cell structure that is
related to leaf thickness and plant dry matter(Peñuelas Filella, 1998).

The proposed method avoids the wavelength regions below 500 nm
and above 850 nm because of noise. However, in (Peñuelas et al., 1993;
Serrano et al., 2000), it is suggested that spectral reflectance beyond
850 nm is also useful for a direct assessment of plant stress. To test
whether the information from this spectral region can improve our
earlier results, we reapplied our methodology by considering the
spectral range up to 1000 nm. Fig. 10 shows the F -values calculated for
this wavelength range. Compared to Fig. 9, the systematic pattern re-
mained similar, indicating that the locations of the important in-
formation did not change. The value of F-score decreases beyond the
850 nm region. It can also be observed that around the water absorption
region at 900–950 nm a small peak occurs, smaller than the spectral
variations at 600–700 nm, 700–800 nm and 800–850. In order to in-
clude information from the bands beyond 850 nm, the threshold for the
F -value would need to be reduced, which is expected not to increase
the discrimination results. A possible explanation is that the biological
changes beyond the 850 nm wavelength region are overlaid by the
extreme levels of signal noise in this region.

4. Conclusions and future perceptive

In this study, it was demonstrated that HSI is a promising rapid and
nondestructive technique for the detection of drought stress responses
of individual plants over time. The proposed method is able to reveal
drought stress and recovery from drought stress from spectral re-
flectance by a data-driven method that combines clustering, band se-
lection, and a spectral similarity measure. In the experiments, the
analysis method was validated in a HTPP in a study of maize plants
udergoing different types of drought stress during their entire vegeta-
tive development. Experimental results showed that the method clearly
discriminated plants under water-deficit stress from healthy plants at an

early stage of stress development. The method also clearly revealed the
recovery of plants after a re-watering period. This demonstrates the
usefulness of HSI as a novel technology for high-throughput pheno-
typing studies that can boost the understanding of the genetics of
drought tolerance in breeding research. It is also to be noticed that the
presented method is general and not limited to drought stress, and
whenever there is an interest for monitoring plant process dynamics at
the plant scale, it can be applied to different types of systemic stress.

Further research and practical optimization are however required to
fully realize its potential for the phenotypic exploration of novel traits
based upon prevailing spectra in groups of genotypes, or differences in
spectra between genotypes. The compensation of illumination effects
can be further improved by adopting more descriptive illumination
models, such as dichromatic reflection models (Uto Kosugi, 2013) or
digital surface models (Friman et al., 2011). To attain a more accurate
estimation of geometry-related parameters, the integration of the 3D
scene (Behmann et al., 2016) and the use of machine learning algo-
rithms can be considered. An interesting approach is to render the 3D
plant model using multiple viewpoints with a full frame snapshot hy-
perspectral camera system that captures all bands simultaneously
(Aasen et al., 2015). With the release of high resolution snapshot hy-
perspectral cameras, such as the Specim IQ sensor (Behmann et al.,
2018), the generation of highly accurate 3D plant models becomes
possible. Another benefit of such 3D plant models is that the physio-
logical traits extracted from the spectral information can be fused with
morphological traits extracted from the 3D plant structural information.
This is the research direction for our future work.
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