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Abstract. In four-dimensional computed tomography (4DCT), 3D images of moving or deforming samples
are reconstructed from a set of 2D projection images. Recent techniques for iterative motion-
compensated reconstruction either necessitate a reference acquisition or alternate image reconstruc-
tion and motion estimation steps. In these methods, the motion estimation step involves the estima-
tion of either complete deformation vector fields (DVFs) or a limited set of parameters corresponding
to the affine motion, including rigid motion or scaling. The majority of these approaches rely on
nested iterations, incurring significant computational expenses. Notably, despite the direct benefits
of an analytical formulation and a substantial reduction in computational complexity, there has been
no exploration into parameterizing DVFs for general affine motion in CT imaging. In this work, we
propose the Motion-compensated Iterative Reconstruction Technique (MIRT)- an efficient iterative
reconstruction scheme that combines image reconstruction and affine motion estimation in a single
update step, based on the analytical gradients of the motion towards both the reconstruction and the
affine motion parameters. When most of the state-of-the-art 4DCT methods have not attempted to
be tested on real data, results from simulation and real experiments show that our method outper-
forms the state-of-the-art CT reconstruction with affine motion correction methods in computational
feasibility and projection distance. In particular, this allows accurate reconstruction for a proper mi-
croscale diamond in the appearance of motion from the practically acquired projection radiographs,
which leads to a novel application of 4DCT.
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1. Introduction. Four-dimensional computed tomography (4DCT) is a crucial aspect of
the broader field of CT imaging that captures 3D objects in motion or the changes of the
microstructure, or in a more general term, in the evolution of their shape over time. 4DCT
reconstruction techniques restore 4D images that can be regarded as changing 3D volumes
over time. The reconstruction is based on one or multiple 360◦ sets of 2D projection images,
and applications of 4DCT are widely found in medicine along with materials science, with an
expectation of improving the resolution in both spatial and temporal domains [22].

However, object motion during the 4DCT scan introduces motion artefacts in the recon-
structed images, if the motion is not taken into account in the reconstruction. These artefacts
complicate diagnosis and treatment. Motion-compensating reconstruction techniques have
been proposed to eliminate these artifacts and allow accurate reconstruction of the scanned
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3D volume [12].
4D tomographic reconstruction methods in the past fifteen years can be categorized into

two different groups. The first group of methods imposes restrictions on the spatial and/or
temporal domain without parameterizing the motion. Typical examples are total variation
regularization (TVR)[21], which encourages sparsity in the spatial domain. Some of the oth-
ers are spatial-temporal total variation regularization (STTVR)[27], 4D reconstruction using
spatial and temporal regularization (4D ROOSTER)[14] and time domain decomposition [18],
which additionally aims to encourage sparsity in the temporal domain. Furthermore, in some
cases it can be observed that there are local parts in the scanned object that remain static
during the entire acquisition. Hence, the region-based simultaneous iterative reconstruction
technique (rSIRT)[24] is designed to reconstruct the object and locate the local static regions.
Another version makes use of spatial-temporal patch-based regularization [11]. As these meth-
ods do not estimate motions, it is challenging to quantify the change of the object during the
CT scan no matter what the change is local or global. The other group of methods aim to esti-
mate the motion, most published recently, and is split into two subgroups. The first subgroup
consists of methods that estimate general-affine motion parameters directly from projection
data (e.g., [26]), whereas the methods in the second subgroup alternate image reconstruction
and motion estimation of full deformation vector fields (DVFs) or a limited set of affine mo-
tion parameters (e.g., [3, 4, 13, 28, 29]). However, these methods are either not validated on
real data or are validated but the optimization strategies rely on the optimizers that require
parameter tuning and nested iterations, which increases the computational complexity and
reduce the potential acceleration of these algorithms. Furthermore, it is worth noticing that
all the methods lack proper study in joint image reconstruction and general affine motion
estimation with analytical gradients of the motion towards both the reconstruction and the
general affine motion parameters. Although several continuous time-step motion models of
simulated objects and discrete-time motion models with a real object are considered as in
our previous studies [17, 16, 15], these motion models have not been yet applied to real ob-
jects with possibly compatible motion models. Furthermore, quantitative comparisons with
state-of-the-art dynamic CT reconstruction methods are currently missing.

Consequently, in this paper, we present an efficient iterative reconstruction and motion
correction technique for 4DCT based on the exact gradients of the motion, which can in-
corporate any parameterizable DVF including general affine motion. Motion models can be
deduced either from the characterization of the material of which the object is made, or
from the reconstruction without motion correction of the object. Furthermore, we rely on
an objective function that depends on both the object volume and the parameterized DVFs,
whose gradients towards all these variables are analytically described. This allows simulta-
neous reconstruction and general affine motion estimation using gradient-based optimization
strategies. On the other hand, we extend our findings to real data, followed by quantitative
comparisons of the results obtained by our method with the results obtained by the state-
of-the-art reconstruction and affine motion estimation methods. In particular, our method
allows micro-scale structures of a real diamond whose movement is disruptive for the analysis
when using conventional 3DCT reconstruction techniques, which leads to a novel application
in 4DCT.

The structure of the rest of the paper is organized as follows: in section 2, we introduce
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a mathematical formulation for the 4DCT forward model, in which the CT system operator
is inspired by [25, 29] and can be decomposed as the multiplication of the CT projector
and the affine motion operator. This is then followed by our underlying algorithm that
allows accurate reconstruction and affine motion parameter estimation simultaneously, by
considering the corresponding iterative schemes. More specifically, this is a gradient method
whose derivatives are given analytically. In section 3, we describe simulated and real projection
datasets relevant to the considered motion models, which are used in the validation process
in section 4, wherein the comparison with several state-of-the-art methods is given. Another
crucial contribution is mentioned in this section is the validation of our method on a real
diamond scan, regarded as the very first study in 4DCT that supports diamond inspection.
In section 5, we give an overall discussion on the method, followed by a conclusion of the
study in section 6. Finally, section 7 provides a future outlook.

2. Proposed method. This section is to provide a mathematical formulation for the affine
motions used in dynamic CT processes that study parameterizable DVFs, which allows accu-
rate reconstruction and estimation of the corresponding affine motion parameters. Moreover,
a numerical standard is introduced to quantitatively compare the reconstruction and motion
estimation results with the results from the state-of-the-art reconstruction and affine motion
estimation methods.

2.1. Forward model. A 4D image can be represented as a sequence of n ≥ 2 3D images,
x1, ...,xn, each representing the object at a given point in time. Its acquisition can be observed
as a collection of subscans, wherein the object is assumed to be static during each subscan.
Here, a subscan refers to one or more consecutively acquired projections. This procedure can
be mathematically modeled as n systems of linear equations:

(2.1) Wixi = bi, for i = 1, ..., n,

where Wi and bi are the CT projector and the acquired projection data that corresponds to
the ith subscan, respectively. These may be represented as the following system:

(2.2)


W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wn



x1

x2
...
xn

 =


b1
b2
...
bn

 .

Assume that the unknown image xi of the ith subscan is a transformed version of the
unknown static object volume x under a motion model M , which depends on the parameter
pi, i.e.,

(2.3) xi = M (pi)x.

Here, M (pi) is a linear operator that models the motion as an affine transformation, and
the object x is assumed to be static in the first projection(s).
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2.2. Analytic derivation of general affine motion operator towards affine motion pa-
rameters. By convention, the parameter pi is the flattened vector that consists of nine ele-
ments of the affine matrix Ai ∈ R3×3 and three elements of the translation ti ∈ R3 of the
following affine transformation:

(2.4) xi(u) = x(Aiu+ ti).

The change of the coordinate u of the original image x in the warped image xi is then a
differentiable map towards pi, which is generalized as the following:

(2.5) û = Aiu+ c−Aic+ ti,

where c ∈ R3 is the center of the system of coordinates. Hence, if the motion operator M
uses differentiable interpolations (e.g., linear, quadratic or cubic) for the missing coordinates
in the warped image, this approach provides an analytic derivative ∇M(pi)x for the warped
image M(pi)x towards the affine motion parameter pi aside an adjoint operator M (pi)

T [20].

2.3. Dynamic CT model. By decomposing the full stack of transformed images by the
relation (2.3) and substituting the result into (2.2), it follows that:

(2.6)


W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wn



M (p1)
M (p2)

...
M (pn)

x =


b1
b2
...
bn

 ,

or more concisely:

(2.7) WM(p)x = b,

where

(2.8) W =


W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wn

 ,p =


p1

p2
...
pn

 ,M(p) =


M(p1)
M(p2)

...
M(pn)

 , and b =


b1
b2
...
bn

 .

2.4. Optimization strategies. In order to solve the non-linear system (2.7) in least-square
sense, a modified version of the gradient method in [25, 29] that considers a joint estimation of
the motion parameters p along with the image x, is used to solve the following minimization
problem:

(2.9) [x̂, p̂] = argminx,pf (x,p) ,

where

(2.10) f (x,p) =
1

2
∥WM(p)x− b∥22 .
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The gradient of this objective function is analytically given by ∇f =
[
[∇xf ]

T , [∇pf ]
T
]T

,

with

(2.11) ∇xf (x,p) = M (p)T W Tr,

and

(2.12) ∇pf(x,p) = [∇M (p)x]T W Tr,

where r = WM (p)x− b is the residue of the dynamic CT system.
The implementation of the motion operator M (p), its adjoint M (p)T and its derivative

∇M (p) are all done beforehand by the ImWIP [19]- an open-source warping toolbox that
contains matrix-free and GPU-accelerated implementations of cubic image warping, its adjoint
and its analytical derivatives. The projector W and its adjoint W T are provided by the
ASTRA Toolbox [23].

In theory, an ordinary update step using a gradient method would require a single step
size γk to be chosen for the update of both the image and the motion parameters:

(2.13)
(
xk+1,pk+1

)
=

(
xk,pk

)
− γk∇f

(
xk,pk

)
.

However, to accommodate for the fact that the motion parameters play a fundamentally
different role in the system, and that they influence the objective function with different
sensitivities, the update of the gradient method is split in their corresponding parts with an
independent stepsize for each part:

(2.14) xk+1 = xk − γkx∇xf
(
xk,pk

)
,

and

(2.15) pk+1 = pk − γkp∇pf
(
xk,pk

)
.

If more than one motion model is considered, the scheme (2.15) is split up even further.
Specifically, let us consider an affine motion that describes either rigid motions (rotations θ,
translations t) or non-rigid motions (scalings s, etc), then

θk+1 = θk − γkθ∇θf
(
xk,θk, tk, sk, . . .

)
,(2.16)

tk+1 = tk − γkt∇tf
(
xk,θk, tk, sk, . . .

)
,(2.17)

sk+1 = sk − γks∇sf
(
xk,θk, tk, sk, . . .

)
, and so on.(2.18)

If the size of the object volumes and the number of subscans are not too large, the stepsizes
γkx and γkp in the first iterations can be chosen by a backtracking line search until the Armijo
condition [1] is fulfilled, and the line search can be executed on typical computers [16]. On
the other hand, the line search strategies become impractical for higher scale volumes, but
empirically these stepsizes can be chosen by a smaller proportion of the normalized values
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1/∥∇□f∥2 by suitable proportional coefficients c0
□
, i.e., γ0

□
= c0

□
/∥∇□f∥2. After which, the

Barzilai-Borwein formula [2] is used in the following iterations, which exploits the information
of the entire scan and provides an accelerated convergence speed compared with the line search
strategies [9] for the schemes (2.14) and (2.15):

(2.19) µk
□
=

⟨∇□f
(
xk,pk

)
−∇□f

(
xk−1,pk−1

)
,□

k − □
k−1⟩

∥∇□f (xk,pk)−∇□f (xk−1,pk−1)∥2
, where □ = x or p.

Because of the large scale of the 3D object volume sizes, it is challenging to directly
implement the formulas (2.11) and (2.12). Nonetheless, the objective function (2.10) can be
rewritten as follows in the sparsity property of the projection operator W :

f (x,p) =
1

2
∥WM(p)x− b∥22(2.20)

=
1

2

∥∥∥∥∥∥∥∥∥


W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wn



M(p1)
M(p2)

...
M(pn)

x−


b1
b2
...
bn


∥∥∥∥∥∥∥∥∥
2

2

(2.21)

=
1

2

∥∥∥∥∥∥∥∥∥


W1M(p1)x− b1
W2M(p2)x− b2

...
WnM(pn)x− bn


∥∥∥∥∥∥∥∥∥
2

2

(2.22)

=
1

2

n∑
i=1

∥WiM (pi)x− bi∥22 .(2.23)

The partial derivative towards the reconstruction (2.11) is then given by:

(2.24) ∇xf (x,p) =
n∑

i=1

M (pi)
T W T

i [WiM (pi)x− bi] .

Similarly, the partial derivative towards each parameter based on the general form as given
by the equation (2.12), is given as follows:

(2.25) ∇pif(x,p) = [∇M (pi)x]
T W T

i [WiM (pi)x− bi] ,

which is an invariant to the motion parameters corresponding to the other subscans.
It is important to note that the objective function f is non-convex towards the motion

parameters p. Moreover, the objective function does not always decrease due to the instability
of the Barzilai-Borwein method. To the best of our knowledge, up to now, there has not been a
mathematical proof of the convergence of the iterative schemes (2.14) and (2.15). Nonetheless,
the convergence has been empirically verified in [17, 16, 15].

We will call the reconstruction without motion correction to be the reconstruction obtained
by executing the scheme (2.14) when the motion operator is not taken into account. This
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is a useful initial guess for MIRT with respect to the optimization and on the other hand
particularly the solution to the following minimization problem:

(2.26) x0 = argminx ∥Wx− b∥22 ,

which can be solved by any least-square solver (e.g., LSQR, BFGS, or GM-BB (gradient
method with the stepsizes computed by the Barzilai-Borwein formula)).

The following metric is used to evaluate the quality of the 4DCT techniques:

Definition 2.1. Let b̂i and bi be the re-projection with estimated motion parameters before-
hand and the projection data in the real acquisition, respectively. The projection distance is
the quantity defined by

(2.27) PD =
∥∥∥b̂i − bi

∥∥∥
2
.

In particular, for MIRT the PD is given as:

(2.28) PD = ∥WiM (p̂i) x̂− bi∥2 ,

where x̂ and p̂i are the simultaneous reconstruction and the motion parameters corresponding
to the ith projection, respectively.

3. Datasets. In this section, we describe several datasets used for testing our method.
Synthetic datasets were simulated by the ASTRA Toolbox [23] and the ImWIP [19], and real
datasets were acquired by the TESCAN UniTOM XL systems at either the UAntwerpen Cen-
ter for 4D Quantitative X-ray Imaging and Analysis1 or the KU Leuven XCT Core Facility2.
The projection geometry in all real scans is cone beam. The flat field correction and log
normalization were all done by the FlexRayTools [6].

3.1. Real sponge dataset. The dataset consists of projections acquired from two consec-
utive stop-and-shoot full angular-range cone-beam scans with chosen projection angles in the
first and second scans are [0, π) and [π, 2π), respectively. The voxel size was set to be 92.46
(µm). The projection setting parameters SOD = 462 (mm) and SDD = 750 (mm), and the
pixel size of the detector was set to be 0.15 (mm).

In particular, the sponge was static in the first full scan, and vertically compressed in the
second full scan with the scaling factor in 3D is ŝ = (sx, sy, sz) = (0.97, 0.93, 1.21), which is
estimated by solving the following problem:

(3.1) ŝ = argmins ∥M(s)x1 − x2∥22 ,

where x1 and x2 are the reconstruction of the sponge from the projection data acquired in
the first and the second full scans, respectively. Here, the reconstruction x1 can be used as a
ground truth object for validating any 4DCT reconstruction on this dataset.

1https://www.uantwerpen.be/en/research-facilities/center-for-4d-quantitative-x-ray/
2https://xct.kuleuven.be/

https://www.uantwerpen.be/en/research-facilities/center-for-4d-quantitative-x-ray/
https://xct.kuleuven.be/
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3.2. Real bone scaffold dataset. The dataset was created by extracting projection data
from a continuous acquisition in-situ compression experiment with dynamic loading a bone
scaffold, acquired in 6 continuous full angular scans. More specifically, the extraction was
performed by merging data from 6 adjacent cone-beam geometries of projection angles. The
obtained voxel size after 2 × 2 binning of the detector of the size 1896 × 1920 (pixel) is 37
µm. By taking 720 projections over a 360◦ rotation, a temporal resolution of 29 seconds is
achieved. The projection setting parameters SOD = 70 (mm) and SDD = 850 (mm), and
the pixel size of the detector was set to be 0.45 (mm).

3.3. Real diamond dataset. The real projection dataset is used for validating the re-
construction with rigid motion compensation. The cone-beam acquisition consists of a full
equilateral angular range of 2879 projections of the size 1896 × 1920 (pixel) of a real round
diamond (Figure 8), whose diameter is measured geometrically from the projection data and
the projection geometry to be 12.376 mm (around 7.3 carats). The voxel size was achieved
to be 8 µm. The projection setting parameters SOD = 40 (mm) and SDD = 750 (mm), and
the pixel size of the detector was set to be 0.15 (mm).

3.4. Simulated diamond phantom. A homogeneous diamond phantom of the size 320×
320× 320 (voxel) was obtained by voxelizing an approximate surface mesh of the reconstruc-
tion without motion correction of the diamond from the real projection dataset described in
subsection 3.3. The surface mesh was created using the Volume to Mesh modifier in Blender
[5], followed by a remeshing operation. A visualization of the binary diamond phantom is
presented in Figure 6.

4. Experiments. In this section, we test our proposed method on the datasets described
in section 3. MIRT and the Cryo-EM reconstruction method [29] were tested on the same
computer with the following hardware configuration: Intel® Core™ i7, RAM 64 GB, GPU
GeForce RTX 2080 SUPER working on Linux OS. [26] was tested on a computer with similar
hardware configuration but with a GPU GeForce RTX 1070 and Windows OS. Afterwards, we
compare the results obtained by our method with the results obtained by the relevant affine-
motion estimation methods [26, 29]. Because only affine motion parameters corresponding to
the deformations perpendicular to the projection direction are accurately estimated, we do
not compare estimated motion parameters with the ground truth parameters in the simulation
experiments.

4.1. Scaling motion estimation. Our proposed method is tested on several datasets ac-
quired by capturing objects in scaling, including the real sponge and the real bone scaffold
datasets described in subsection 3.1 andsubsection 3.2, respectively.

4.1.1. Experiment on simulated projection dataset. We consider a 3D natural breathing
motion model that consists of 5 cycles, as an extension of the 2D case presented in [16]. The
object is the 3D Shepp-Logan phantom of the size 128 × 128 × 128 (voxel) provided by the
TomoPy [8], and the true scaling factor si at the ith time point is given by:

(4.1) si = 1− 0.2 sin

(
5× 2π × i

128

)
.
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Figure 1: scaling parameter estimation result of the simulation experiment on the 3D
Shepp-Logan phantom (horizontal axis: ith subscan).

The projection geometry is cone beam. The projection setting parameters SOD = 500 (voxel)
and ODD = 150 (voxel). The distance between the centers of two horizontally and vertically
adjacent detector pixels was set to be 1 (mm), and the detector size was set to be 192× 192
(pixel). Gaussian noise with a standard deviation of 1% of the peak gray value of the projection
data was added to the sinogram. The estimated scaling parameters are given in Figure 1, and
the reconstruction results are given in Figure 2.

4.1.2. Experiment on the sponge’s real projection dataset. To validate the scaling
estimation so that a consistent quantitative comparison with [26] can be made, 16 angular-
ranged projections of the sponge acquired in the first full real scan and a projection acquired
in the second full real scan, were used to be the data of the first and second subscans of the
dynamic scan. The object volume size was set to be 474 × 480 × 480 (voxel) and the results
on the projection difference were cropped to the object area for better visualization. The
stopping criterium of [26] was used according to the default setting of the method’s authors.
To achieve convergence in this case, 10 iterations of MIRT were needed. Results on the
projection distance, shown in Figure 3 indicates that MIRT outperforms [26].

4.1.3. Experiment on the bone scaffold’s real projection dataset. The projections were
cropped to the smaller size of 250× 250 (pixel) that sufficiently covered the projections of the
object area. The object volume size was set to be 250×250×250 (voxel). The reconstruction
from the projection data of the first full angular scan was set as reference object presented in
Figure 5 for visual comparison. To validate MIRT, we ran 300 iterations and the computation
speed recorded was around 6 (sec./iter.). The proportional coefficients for the intial stepsizes
of the reconstruction and scaling estimation schemes are c0x = 1 and c0s = 0.1, respectively.
The reconstruction results are shown in Figure 5.

4.2. Rigid motion estimation. Our proposed method is tested on the acquisition of solid
objects, including simulated projection data of the homogeneous diamond phantom and real
projection data of the real diamond described in subsection 3.4 and subsection 3.3, respectively.

4.2.1. On the homogeneous diamond phantom: simulation experiment 1. This sub-
section provides a consistent experiment setup so that our method can be compared with [26].
The object volume was slightly cropped to be of the size 300×310×320 (voxel). 8 projections
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(a) ground truth (b) GM-BB (c) MIRT

Figure 2: central cross-sections of the reconstruction results on the 3D Shepp-Logan
phantom.

were used in the reference scan for the method [26], followed by a projection chosen in the
main scan in which the object was translated in three dimensions with the corresponding dis-
placement [−5, 7, 10] (voxel), and was rotated with the corresponding angles [0.02,−0.05, 0.1]
(rad). Gaussian noise with a standard deviation of 1% of the peak gray value of the pro-
jection data was added to the sinogram. MIRT quickly converged after 10 iterations with a
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(a) without scaling correction:
PD = 28.84.

(b) with general affine correction [26]:
PD = 25.63.

(c) with scaling-restricted correction [26]:
PD = 25.33.

(d) with MIRT: PD = 9.68.

Figure 3: projection differences and projection distances (PD) results on the sponge’s real
projection data.

Figure 4: SSIM values of successive projections of the bone scaffold’s real projection data
tested in the experiment.
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(a) ground truth (b) GM-BB (c) MIRT

Figure 5: central cross-sections of the reconstruction results on the bone scaffold’s real
projection data.

running speed less than 4 sec./iter. An example of the projection differences is presented in
the Figure 7, in which MIRT outperforms [26] in projection distance.

4.2.2. On the homogeneous diamond phantom: simulation experiment 2. This sub-
section provides a consistent experiment setup so that our method can be compared with
[29]. Considering a continuous motion estimation on the homogeneous diamond volume size
320 × 320 × 320 (voxel) that was acquired in a full-angular scan that contained 10 equilat-
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Figure 6: central cross-sections of the 3D homogeneous diamond phantom.

(a) with [26]: PD = 3107.95. (b) with MIRT: PD = 944.77.

Figure 7: projection distances on the first projection of the homogeneous diamond phantom.

eral projection angles, each GD step update implemented by [29] took more than 10 minutes
and the same time for 200 iterations of the ADMM optimizer executed in the same method,
when each iteration of MIRT with the parallel beam geometry (consistently with the Cryo-EM
reconstruction technique [29]) took around 35 seconds by running on the same computer.

4.2.3. Experiment on the real diamond dataset. The binning number was set to four to
downscale the projections to the size 472× 480 (pixel), which is large enough for the motion
artefacts being visually visible in the reconstruction without motion correction. The object
volume size is set to be 472 × 480 × 480 (voxel). It can be seen from the visualization of
the difference between the first and the last projections in Figure 9 that the diamond was
in motion during the scan. To estimate this movement by using MIRT, 90 iterations were
used with the proportional coefficients for the initial stepsizes of the reconstruction, rotation
and translation estimation schemes are c0x = 1, c0θ = 0.001 and c0t = 0.1, respectively. The
computation speed was recorded to be around 60 (sec./iter.). On the other hand, [29] cannot



14 ANH-TUAN NGUYEN ET AL.

Figure 8: the real diamond in front of the X-ray source of the CT scanner.

Figure 9: difference of the projections at the initial projection angle and the last projection
angle of the real diamond.

handle the given object volume size due to memory limitations.
The reconstruction with compensation of rigid motion artefacts of the real diamond are

shown in Figure 10, in which the misalignment in the reconstruction without motion correction
are corrected in the reconstruction results obtained by MIRT.

5. Discussion. The results on both simulation and real experiments clearly show an im-
provement of our method in comparison with GD-BB, which does not take into account the
motion estimation. On the other hand, our method is validated on several real datasets when
most of the state-of-the-art methods [3, 4, 26, 13, 28, 29] have not attempted yet. Further-
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(a) GD-BB (b) MIRT

Figure 10: central cross-sections of the reconstruction results on the real diamond dataset.
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more, the methods [26, 13] are tested on real datasets, but nested iterations complicate the
computation. In particular, our method outperforms the two relevant CT reconstruction and
affine motion correction techniques [26, 29] in computational feasibility and [26] in projection
distance.

Every methods have pros and cons, and our method is not an exceptional case. Despite
the success of the validation on both simulated and real data, a mathematical proof for the
convergence of iterative schemes (2.14) and (2.15) is currently still missing due to the non-
convexity of the proposed objective function towards the affine motion parameters. On the
other hand, we ran as many iterations as possible and kept an eye until the convergence
is achieved instead of setting a specific stopping criterion, which will be studied in future
research.

6. Conclusion. We have presented a mathematical method for 4DCT that allows accurate
reconstruction and affine motion correction. As for the shown results, our approach emphasizes
practical applicability in areas where current state-of-the-art methods fall short. Specifically,
our method surpasses existing 4DCT reconstruction and affine motion correction techniques
in terms of computational feasibility and residual errors. The findings are consistent among
experiments on both synthetic and real datasets, and highlight a new application for 4DCT
for higher resolving 3DCT reconstructions, as the state-of-the-art would allow. Another of
our main contributions is that this outputs an accurate reconstruction with the rigid motion
artefacts compensated for a real diamond in which MIRT clearly gives better reconstructions
in case of motion, which directly results in a novel application of 4DCT.

7. Future work. In this study, we parameterized the rotation by using not only the
conventional Euler angles but also the Cayley transforms of these that eliminate the un-
commutativity of the rotations along the three axes. Although these traditional approaches
have been very efficient, there does exists an inconvenience relevant to the computational
cost. In the future, we aim to overcome this disadvantage by developing for the affine motion
operators a parameterization using the Lie algebras whose computation efficiency was math-
ematically proved [10], and designing a parallelization strategy for estimating the motion at
each projection. Moreover, the problem of how to choose suitable subscans will be further
studied (an insight of the strategy is shortly introduced at the appendix below).

Data availability. Data can be made available upon request.

Appendix: determination of feasible subscans. Although the method has been empiri-
cally validated on both simulated and real projection datasets, the choice for the best subscans
still remains an open question. This section does not give an exact solution to the problem
but provides an insight in choosing such subscans so that the method works with an improved
performance.

The trivial fact is that the choice of feasible subscans strongly depend on the data. In
theory, one needs to determine at which projection there is more motion than the previous [7].
More specifically, if the subscans are of an equal size, the method performs well in estimating
monotone motions. However, if the motion is more complicated (e.g., natural breathing),
continuous motion estimation must be considered.

Because the object is assumed to be static in each subscan, there should be no significant
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differences between the metric values of the pairs of two successive projections within. For
instance, it can be seen from the Figure 4 that there are five points dropped in the SSIM
values, which results in six subscans that are chosen for validating the scaling estimation on
the bone scaffold’s real projection dataset.

In order to study the problem in a general case, let us consider a dynamic full scan consists
of N + 1 projections y1,y2, . . . ,yN+1.

Definition 7.1 (feasible subscan). A subscan is said to be feasible if there is not a significant
change of the object through the projections within it. In other words, the pairs of two adjacent
projections within it are relatively approximated in any specific metric.

The problem feasible subscan partition of projections can be mathematically formulated
using the SSIM metric as the following:

Problem 1 (feasible subscan partition). Let s = [s1, s2, . . . , sN ]T ∈ [0, 1]N be a vector that
collects the SSIM values of all pairs of two adjacent projections. More specifically,

(7.1) si = SSIM (yi,yi+1) ,∀i = 1, N.

One needs to partition the finite set S = {1, 2, 3, . . . , N} into n mutually exclusive subsets
S1,S2, . . . and Sn, in which each contains consecutive integers so that the projections corre-
sponding to the same subset of indices are similar under SSIM standard. Mathematically
speaking, for any integer k such that 1 ≤ k ≤ n, the following inequality holds for a given
specific value ϵ:

(7.2) |si − sj | < ϵ, ∀i, j ∈ Sk.

On the other hand, in order to reduce the complexity of the computation (2.20), the optimal
value of the number of feasible subscans must be minimized. As a result, it yields the following
statistical integer programming problem:

(7.3) [n̂, σ̂1, . . . , σ̂n̂] = argmin
n,σ1,...,σn

g (n, σ1, . . . , σn) ,

with

(7.4) g (n, σ1, . . . , σn) = n+ λ

n∑
k=1

σ2
k,

where σ2
k = V ar ({sl|l ∈ Sk}) ∈ [0, 1], and λ > 0 is the trade-off coefficient between the integer

term and the statistical term.

Theorem 7.2. Solution(s) to the problem “feasible subscan partition” exist only when the
trade-off coefficient λ > 1.

Proof. Let us consider the contradictory assumption λ ≤ 1. Assume that the projections
are partitioned into n̂ ≥ 2 feasible subscans. Evidently, the variance of the SSIM values
satisfies 0 ≲ σ̂2

i ≤ 1 ∀i = 1, n̂ due to the boundedness of the chosen metric. As a result, if
n̂ ≥ 2 then it yields:

(7.5) g (n̂, σ̂1, . . . , σ̂n) = n̂+ λ
n∑

k=1

σ̂2
k ≥ 2 ≥ 1 + λσ̂2,
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which is the value of the objective function if and only if there is the subscan identical to the
full scan, i.e., n̂ ≡ 1 and σ̂2 ≡ V ar ({si|i ∈ S}). This contradiction demonstrates the negation
of the contradictory assumption.
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