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Fig. 1. CT reconstructions of a slice of cheese using conventional and inline scanning geometries. Due to the angular imaging constraints, the low number
of available projections and the existence of truncated data, the reconstruction results in the inline geometry using conventional reconstruction algorithms
(SIRT) are not acceptable. Those results can be improved by adding prior knowledge related to the expected density of the material (DART), and also
prior knowledge related to the expected shape of the object, i.e, considering only the values within a specific Expected Object Domain (EOD) during the
reconstruction.

Abstract—This paper presents a software-based technique able
to incorporate a high level of prior knowledge related to a
specific object in the Computed Tomography (CT) image re-
construction process. The scanning setup evaluated in this work,
which comprises a static X-ray source and a detector, allows a
higher object throughput compared to conventional CT systems.
However, this inline scanning geometry imposes a number of
imaging constraints, which lead to smearing artefacts in the
reconstructed image if conventional reconstruction techniques are
used. The proposed technique can reduce those reconstruction
artefacts by using distinct types of prior knowledge related to
the scanned object. More precisely, the expected material density
is considered by applying the Discrete Algebraic Reconstruction
Technique (DART). Furthermore, the expected object shape is
exploited as well by considering only the reconstruction region
which lies within a specific Expect Object Domain (EOD).

Keywords-Inline scanning geometry; Discrete Tomography;
Computed Tomography.

I. INTRODUCTION

X-rays are widely used to analyse the internal structure
of opaque objects. X-ray images, also referred to as radio-

graphs, allow the nondestructive visualization of the internal
content of the object. Conventional X-ray radiography has
been extensively used in inspection and quality assurance of
objects [1], [2], [3]. However, one of the major disadvantages
of traditional X-ray radiography is that it cannot provide
quantitative 3D information about the object to be scanned.
Indeed, by analyzing only a single X-ray radiograph, it is
impossible to obtain depth information.

On the other hand, Computed Tomography (CT), in which
multiple projections are acquired from the target object and
then mathematically combined, is more suited for this purpose.
Unfortunately, conventional CT systems, where the X-ray
source rotates around the target object, as shown in Fig. 2,
are very expensive and present a low object throughput.

The scanning setup evaluated in this work comprises a static
wide cone X-ray source and a large detector for imaging ob-
jects passing by on a conveyor belt, as exposed in Fig. 3. In this
scenario, the constraints associated with the imaging angular
range and the number of available projections, besides the



Fig. 2. Overview of the conventional cone beam X-ray scanning geometry:
the X-ray source and the detector rotate around the scanned object.

Fig. 3. Overview of the inline scanning geometry: a static wide cone X-ray
source and a large detector for imaging objects passing on a conveyor belt.

existence of truncated data, would lead to significant smearing
artefacts if conventional reconstruction techniques are used.
Therefore, a recently proposed reconstruction method, the
Discrete Algebraic Reconstruction Technique (DART), is used
[4]. DART has successfully been applied in X-ray tomography
[5], [6], electron tomography [7] and also X-ray diffraction
tomography [8]. It incorporates specific prior knowledge re-
lated to the expected density of the scanned material and it
has shown to reconstruct high quality images, reducing the
occurrence of smearing artefacts, even from a limited amount
of data.

Furthermore, prior knowledge related to the object shape,
which is often known in advance at a production line, is also
considered in order to improve the reconstruction results. This
way, the projection residuals are redistributed over a restricted
domain.

This paper is organized as follows: section II presents the
related works; section III introduces the essential background
to follow this work; section IV presents the Discrete Algebraic
Reconstruction Technique (DART); section V describes the
inline scanning geometry evaluated; section VI describes the
experiments conducted; section VII shows the obtained results;
finally, section VIII concludes the paper.

II. RELATED WORKS

CT techniques have been proposed to reach the through-
put comparable to that of the traditional X-ray radiography
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Fig. 4. Energy detected by the cell pi is the sum of pixels vj weighted by
their contribution to the ray path.

systems [9]. However, they are usually based on hardware
improvements which tends to increase the cost of the system.

Brasse et al. [9] presented a micro-CT system, where pro-
jections were acquired during translation and rotation stages
of an X-ray source and detector. In fact, the system motion
involved the rotation of a source/detector around an animal
and the positioning of the subject inside the scanner field of
view.

Oeckl et al. [10] presented a fusion of a reconstruction
method and image processing to compose a progressive re-
construction that allows an inspection within 25 seconds. The
proposed method was evaluated using simulated fan beam
projections, without any reference for the applied scanning
geometry.

In our work, we propose a software-based technique able
to improve the image reconstruction results by using prior
knowledge on the expected material density and the object
shape when only a low amount of projection data is available.
The proposed method is suitable for use with the inline
scanning setup which is scalable for a high throughput.

III. MATHEMATICAL BACKGROUND

If we represent the reconstructed image on a grid, we may
consider v = (vj) ∈ Rn as a discrete object function repre-
sented on a grid of n pixels and the vector p = (pi) ∈ Rm
containing all the projection data. Then, the amount of energy
captured by a detector cell pi can be considered as the sum
of all pixels vj weighted by their contribution to the ray path
(see Fig. 4):

pi =

n∑
j=1

wijvj (1)



where wij is the contribution of the j − th pixel to the i− th
detector cell.

The relation between the object reconstruction v and its
projection p can then be written as:

p = Wv (2)

In Algebraic Reconstruction Methods (ARMs), the recon-
struction problem is considered as the solving of the system
of linear equations in (2). It is done by iteratively reducing
the error χ2 = ‖Wv − p‖2 along successive iterations.

A. Simultaneous Iterative Reconstruction Technique (SIRT)

Denoting the reconstructed object after the k− th iteration
as v(k), and assuming the typical initialization v(0) = 0, each
SIRT iteration consists of three steps [11]:

1) Compute the forward projection of the current solution:

p(k) = Wv(k) (3)

2) Compute the residual sinogram:

r(k) = p− p(k) (4)

3) Update the reconstruction image v(k) by adding a
weighted backprojection of the residual sinogram:

v(k+1) = v(k) +CWTRr(k) (5)

where R ∈ Rm×m is a diagonal matrix with rii =
1/∑

j wij
. Likewise, C ∈ Rn×n is a diagonal matrix

with cjj = 1/∑
i wij

. SIRT reconstruction process ends
when a given convergence criterion is met.

IV. DISCRETE ALGEBRAIC RECONSTRUCTION
TECHNIQUE (DART)

DART is an algebraic reconstruction method based on
the interleaving of continuous update steps and discretization
steps, which incorporates prior knowledge relative to the
expected density of the scanned material. The flow chart of
Fig. 5 shows the sequence of stages which compose the DART
algorithm. Each DART stage is explained in the following:

• Compute an initial SIRT reconstruction: DART starts
with an initial reconstruction of the acquired data p
obtained with a continuous iterative reconstruction algo-
rithm.

• Segment the reconstruction: the reconstruction is
segmented according to the set of grey values
(ρ1, ρ2, . . . , ρι) that is expected for the image. Since the
grey values of the reconstructed image are associated
with the attenuation values of the target object in each
region, this incorporated prior knowledge is related to the
expected density of the materials of which the object is
composed. In this stage, ι− 1 thresholds (τi) are applied
to the image, defined as:

τi =
ρi + ρi+1

2
(6)
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Fig. 5. Flow chart of DART algorithm.

• Identify non-fixed pixels U: Let U (k) ⊂ {1, 2, . . . , n}
be the set of pixels to be updated in the k − th iteration
of DART. Since experimental results showed that SIRT
leads to errors near the edges of the reconstructed image,
all boundary pixels of the current segmented image are
thus added to U (k). For this purpose, every pixel whose
value is different from at least one of its neighbouring
pixels is considered a boundary pixel. Moreover, each
non-boundary pixel is added to U (k) with a certain
probability 0 ≤ r ≤ 1. In this way, the accuracy
of DART reconstruction is increased in case of small
holes or features which were missed during the initial
reconstruction.
If the prior knowledge related to the object shape is being
considered, the pixels from U (k) which lies outside the
Expected Object Domain (EOD) are dismissed.

• Identify fixed pixels F: The complementary pixels set
F (k) = {1, 2, . . . , n} \ U (k) contains all the pixels that
will be removed from the reconstruction problem for the
next SIRT iteration.

• Apply new SIRT iterations to the pixels in U while
keeping the pixels in F fixed: Expanding (2), one can
write:

p =
(
w1 · · · wn

)
·

v1...
vn

 (7)

where wj denotes the j−th column of the matrix W. By
removing the j−th fixed pixel from v, the reconstruction
equation is updated to (8). Then, SIRT iterations are
applied for this new linear system which has the same
number of equations and a lower number of variables.
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Fig. 6. Reference frame of the inline scanning geometry evaluated. The
whole system is composed by a wide cone X-ray source (a), a conveyor belt
(b) and a large detector (c).

TABLE I
DESCRIPTION OF THE MEASURES IN THE INLINE SCANNING GEOMETRY.

Measure Description
D distance from the object to the X-ray source
B distance from the object to the detector
2a size of the square which circumscribe the object
2L detector length
2α fanbeam opening angle

p−wjvj =
(
w1 · · · wj−1 wj+1 · · · wn

)
·



v1
...

vj−1

vj+1

...
vn


(8)

• Stop criterion met: The consecutive iterations of DART
can be stopped according to the convergence of the total
projection error or based on a fixed number of iterations.

• Smooth the reconstruction: Reducing the number of
variables by selecting a subset of non-fixed pixels U (k)

may lead to more noise sensitive SIRT reconstructions.
Therefore, a Gaussian smoothing filter is applied to the
boundary pixels after applying the SIRT.

V. INLINE SCANNING GEOMETRY

The experiments took place in a vectorial space centred in
the scanned object, as showed in Fig. 6. The measurements
D, B, a, L and α are defined in Table I.

The three main constraints associated with the data acquisi-
tion under this inline geometry, which bring a great challenge
to the image reconstruction process, are exposed as follows:

• Limited angular range: due to physical limitations, the
X-ray cone angle is limited to 100◦. Thus, the object is
scanned from a very limited angular views.

• Limited number of projections: due to the short expo-
sure time of the radiation on the object, only a limited
number of projections are acquired.

• Truncated projections: some projection information is
lost behind the detector borders. The object is only com-
pletely imaged by the X-ray fanbeam when the distance
between the object and the X-ray source is no longer
than a distance K. From the Fig. 6, the value of K can
be calculated as follows:

tanβ =
D − a
K + a

=
D +B + a

L
(9)

K =
(D − a)

(D +B + a)
· L− a (10)

Thus, besides the very limited angular views available,
the object is only fully scanned by the system when the
horizontal distance to the X-ray source is smaller than
K.

VI. EXPERIMENTS

We used the ASTRA Tomography Toolbox [13] to evaluate
the inline scanning geometry described in Fig. 6. Furthermore,
we used different image phantoms in order to simulate scanned
objects made of homogeneous materials. Fig. 7 shows cross-
section slices of engine parts which were previously used in
[14] (a) and in [10] (b).

(a) (b)
Fig. 7. Phantoms (512× 512 pixels size) used in the experiments acquired
from two parts of engines (a) [14] and (b) [10].

Fig. 8 (a) shows a phantom generated from an image of a
cross-section slice of cheese (b). It is a real challenge to obtain
the reconstruction accuracy necessary to study the hole size
distribution in this phantom having in mind the constraints
imposed by the inline scanning geometry.

(a) (b)
Fig. 8. Phantom (512× 512 pixels size) of a cross-section slice of cheese
(a) generated from a real image (b).



VII. RESULTS

Fig. 9, 10, and 11 show the reconstruction results obtained
in simulation experiments using the phantoms shown in Fig. 7
(a), (b) and Fig. 8 (a), respectively, using a fanbeam opening
angle (2α) of 100◦.

DART algorithm was configured to run 100 SIRT iterations
to built an initial reconstruction, and then each new DART
iteration comprised 10 SIRT iterations. This way, after running
510 SIRT iterations, for example, the DART algorithm per-
formed 41 iterations. The images along a same line on Fig. 9,
10, and 11 show the obtained reconstructions after 110, 1100
and 6100 SIRT iterations, respectively. In a column, the results
of distinct reconstruction techniques are exposed. The S-SIRT
method is a conventional SIRT reconstruction followed by an
image segmentation using the Otsu’s method [15].

Prior knowledge on the object shape was exploited in the
experiments by restricting the available reconstruction area to
the voxels belonging to the EOD (highlighted in red lines).

Fig. 12, 13 and 14 show the decrease of the number of
misclassified pixels in the reconstructions of phantoms shown
in Fig. 7 (a), (b) and Fig. 8 (a), respectively, as a function of
the number of the algorithm iterations.

VIII. CONCLUSION

The obtained results show a significant improvement in the
reconstruction quality when prior knowledge related to the
scanned object is considered. More specifically, when prior
knowledge on the expected density of the material is combined
with the expected shape of the object. The presented software
based technique is able to overcome the low amount of
acquired data in the inline X-ray geometry due the constraints
imposed by the limited angular imaging range.
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Fig. 12. The number of misclassified pixels for the reconstructions of the
phantom shown in Fig. 7 (a) as a function of the number of iterations for the
evaluated algorithms in the inline X-ray geometry.
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Fig. 13. The number of misclassified pixels for the reconstructions of the
phantom shown in Fig. 7 (b) as a function of the number of iterations for the
evaluated algorithms in the inline X-ray geometry.
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Fig. 14. The number of misclassified pixels for the reconstructions of the
phantom shown in Fig. 8 (a) as a function of the number of iterations for the
evaluated algorithms in the inline X-ray geometry.
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