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A procedure is developed to quantify and improve the signal-to-noise ratio (SNR) of magnetic resonance 
images. The image SNR is quantified using the correlation function of two independent acquisitions of an 
image. To test the performance of the quantification, SNR measurement data are fitted to theoretically 
expected curves. The proposed correlation technique is also used to improve the SNR by estimating the 
amplitude of the signal spectrum. The technique is applied to a set of MR images, and its performance in 
terms of gain in SNR, contrast-to-noise ratio (CNR), and resolution loss is compared to that of classical 
noise filters. The SNR as well as the CNR is improved significantly with minor loss of resolution. Finally, 
it is shown that the correlation technique can be implemented in a highly efficient way in almost any 
acquisition procedure of a magnetic resonance imaging system. Copyright 0 1996 Elsevier Science Inc. 
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INTRODUCTION 

Many image acquisition procedures [magnetic reso- 
nance imaging (MRI) , positron emission tomography, 
single photon emission computer tomography (SPECT), 
etc.] suffer from image degradation by noise. For MRI 
the primary source of random noise is thermal noise, 
which forms a statistically independent random source 
entering the MR data in the time domain. Thermal 
noise is white and can be characterized by a Gaussian 
random field with zero mean and constant variance.’ 
Therefore, the noise is not correlated with the signal 
or with itself. Apart from thermal noise, structured 
noise usually degrades the image quality as well, owing 
to MR system characteristics, physiological pulsations, 
or object motion. Recently, Buonocore et al.2 devel- 
oped a data-processing algorithm based on least-mean- 
squared adaptive filtering to suppress structured noise 
in MR images; the algorithm, however, retains the con- 
tribution of random noise. In this article we assume 
the MR image to be corrupted only by random noise. 

Quantification of the signal-to-noise ratio (SNR) is 

important for several reasons. First, it provides a mea- 
sure for the image quality in terms of image details. 
Second, besides testing different system parameters 
such as main magnetic field homogeneity or DC offset 
between the real and imaginary signal components, the 
SNR can be used to check the performance of the MR 
system itself. Because the MR signal and, hence, the 
SNR strongly depend on the field homogeneity, the 
shape of the radiofrequency (RF) pulses, the stability 
of the RF amplifiers, etc., quantification of the SNR is 
a useful tool in the analysis of the MR system. For 
this purpose, usually the SNR is determined on images 
of a specially constructed phantom object at regular 
intervals. 

A common way to estimate the amount of noise in 
an image is by subtracting two acquisitions of the same 
object and calculating the standard deviation (SD) of 
the resulting image.3 Murphy et a1.4 elaborated on this 
technique further and used a parallel rod test object 
for SNR measurements from the signal and nonsignal 
blocks. Alternatively, the SNR can be measured di- 
rectly from the noise of a large uniform signal or from 
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nonsignal regions.5 Although this method may lead to 
useful estimates of the SNR, large homogeneous re- 
gions are often hard to find. Both techniques estimate 
the SNR from magnitude MR images, where the noise 
is Rayleigh distributed; such calculations must be done 
with care.6 In another approach, it has been suggested 
that a cross-correlation technique could be used to esti- 
mate the SNR of band-limited stochastic functions.7 
This technique has been exploited in the field of elec- 
tron microscopy.8,9 In this study, we introduce the cor- 
relation technique in MRI to quantify the SNR directly 
from the time domain data by cross-correlating two 
acquisitions of the same MR image. 

The problems of quantification and improvement 
are highly related to each other, since to quantify the 
SNR, one must be able to separate the noise from the 
signal. A well-known and widely used procedure to 
improve the counting statistics of MR imaging and, 
hence, of the SNR is time integration. By averaging 
over N consecutive images, the SNR improves with 
N112. The main advantage of this technique is the 
gain in SNR without any loss of spatial resolution, 
assuming a perfect geometrical registration of all the 
images. Nevertheless, to obtain high-quality images, 
uneconomically large acquisition times are sometimes 
required. Despite the progress of fast imaging tech- 
niques (echo planar imaging, fast low angle shot, and 
fast spin echo) there are situations in which multiple 
averaging is not acceptable, such as three-dimen- 
sional (3D) imaging or dynamic studies such as diffu- 
sion processes. Therefore, classical techniques such 
as spatial averaging and low-pass or median filters 
are usually applied to the noisy image to increase the 
SNR.i”~” 

Bonnet l2 showed that from two acquisitions of the 
same image, both corrupted with additive uncorrelated 
noise, the SNR can be improved significantly by corre- 
lating both acquisitions and estimating the amplitude 
of the signal spectrum. In this work we compare the 
performance of classical filters with that of the correla- 
tion filter. The correlation technique is very useful in 
the case of MR images, as these are acquired in the 
Fourier domain. Because of the correlation theorem, it 
is favorable in terms of processing time to perform a 
correlation of images in the Fourier domain, which 
makes the technique extremely suited for implementa- 
tion in a highly efficient way in many MR image acqui- 
sition procedures. 

The outline of this article is as follows. In the next 
section, the theory of the correlation technique is out- 
lined. In the third section, two experiments are de- 
scribed in which the accuracy and precision of the 
SNR quantification are tested. In addition the perfor- 
mance of the correlation filter in terms of gain in SNR, 

contrast-to-noise ratio (CNR) and loss of resolution 
are compared with corresponding classical filters. The 
image resolution and SNR are calculated on the total 
image, but a smaller region of interest (ROI) can also 
be taken. The results of the experiments are reported 
in the last section. Finally, a practical way of imple- 
menting the SNR in an MR image acquisition proce- 
dure is discussed. 

THEORY 

In this section, we outline the theory for quantifica- 
tion and improvement of the SNR. In the description 
of the methods, we assume the MR imaging process 
to be stationary (i.e., the statistical properties of two 
images, acquired at different times, are equal).13 Al- 
though the extension to higher dimensions is straight- 
forward, we will proceed now for the 2D case. 

We assume that an experimental MR image i con- 
sists of a signal s corrupted by additive, uncorrelated 
noise n with zero mean (<n> = 0). The signal s 
includes possible blurring caused by the system point 
spread function: 

0,~) = &Y> + n(x,y) (1) 

where (x,y) denotes the MR image point. As a defini- 
tion of the SNR, the ratio of the signal SD to the noise 
SD is chosen: 

(2) 

We prefer the SD of the signal in the numerator of Eq. 
(2) above the signal mean because this choice takes 
more account of the information content in the image. 
The SNR as defined above cannot be determined ex- 
actly from one experimental acquisition only. How- 
ever, it has been shown7 that in the case of uncorre- 
lated, additive noise, two consequent acquisitions i, 
and i2 

il(X,Y> = S(XY) + n1(x,y) 

1’2(&Y) = SC&Y> + nzhy) (3) 

can be used to quantify the SNR. The cross-correlation 
function (CCF) of the two images becomes: 

il@i2 = s@s + nl@s + s@n2 + nl@n2 (4) 

Since the noise is uncorrelated, one has 



Signal-to-noise in MRI acquisition 0 SIJBERS ETAL. 1159 

so that 

nl@s == @n2 = nl@n2 = 0 (5) 

il@i 2 = s@s (6) 

i.e., the CCF of the two images is equal to the autocor- 
relation function ( ACF) of the signal. This observation 
is used in the cross-correlation coefficient (CCC) 
which is defined as: 

i,(.lc,y)@i2(x,y) - <i,><i+ 
PkY) = - (7) 

QlC2 

where <i,>, <i2>., gl, and crz are, respectively, the 
mean and SD of the two MR images il and i2. The 
SNR can be computed from the maximum of the CCC. 
When the two acquisitions are perfectly registered (no 
shift of the sample has occurred), this maximum oc- 
curs in the center of the CCC: 

. 
<U,l2> - <1,><12> 

Pm = &py. (8) 
<i,>2][<i22> - <i2>‘] 

or, using Eq. (6): 

<s2> - <s>2 

pm=dw>- 
(9) 

<s>2 + <n:>2] 
x [<s”> - <s>2 + <n;>2] 

which finally results in the following simple expres- 
sion: 

2 
pm = --EL- 

u: + ai 
(10) 

From this the expression for the SNR simply becomes: 

(11) 

Notice that the subtraction of <i 1 > <i,> in the numer- 
ator along with the denominator make the SNR mea- 
surement insensitive for differences in scaling con- 
stants between the two MR images. Remark also that 
pm can be calculated completely in the Fourier domain. 
Indeed, using Parseval’s theorem, one obtains from 
Eq. (8): 

U,G) - ~,(0,0>~2(W) 

Pm = dm- z:(o,o)][(z;) - z;(o,o)] (12) 

Z and I* are, respectively, the complex raw MR data 
and their complex conjugate. The coordinate (0,O) rep- 
resents the center of the CCC. Equation (12) allows 
the SNR of the MR image to be calculated directly 
from the raw MR data. In this way, the SNR can be 
predicted before the Fourier transformation takes 
place. 

The property that the CCF of two acquisitions of 
the same MR image reduces to the ACF of the noise- 
less image can also be exploited to improve the SNR. 
The Fourier spectrum of the CCF leads to an estimate 
of the signal power spectrum 1 S(u,v) 1 2 with 

I Sfu,v~12 = 
~l(U,V>~~(4V) ; P(%V)Z2(4V) (13) 

where (u,v) denotes the raw data point. If the acquisi- 
tions I, and Z2 were not corrupted by noise, the power 
spectrum would be positive everywhere. However, ow- 
ing to the noise, some points in the estimated spectrum 
may become negative and are therefore forced to zero. 
This procedure is preferred above operations such as 
averaging or replacing negative pixel values by neigh- 
boring pixel values, because these create additional 
unwanted frequency information. From Eq. ( 13) an 
estimate for the complex signal spectrum is derived: 

(14) 

where Q is the phase of the averaged complex image 
(Z1+Z2)/2. As was pointed out by Bonnet, l2 another 
estimate of the signal spectrum is given by: 

I s(“Pv) I 2 ej*(u.v) 
sw(u,v) = 1 Z(u,v) ) (15) 

which is obtained by using a Wiener filter combined 
with the correlation procedure. This estimate leads to 
the best result in a least-squared sense. Hence, this 
filter is especially recommended for images corrupted 
by Gaussian noise. 

The method can be applied to the images provided 
perfect geometrical registration. If the acquisitions are 
not perfectly registered, the maximum of the CCF will 
generally decrease, which leads to an underestimation 
of the SNR. However, the CCF maximum will not be 
affected if the images differ from a uniform transla- 
tional shift, and hence, the SNR estimate is still valid. 
SNR improvement as described above may cause addi- 
tional blurring in the case of misregistration. Neverthe- 
less, uniform geometrical registration can easily be 
performed by examining the position of the CCF maxi- 



1160 Magnetic Resonance Imaging 0 Volume 14, Number 10, 1996 

mum. In this way, subpixel registration can even be 
achieved by, for instance, bilinear interpolation. 

MATERIALS AND METHODS 

MR images were obtained on either an Oxford Bio- 
spec imaging system with a horizontal bore of 26.5 cm, 
a magnetic field strength of 1.9 T, and a maximal gradient 
strength of 0.01 T/m; or on an SMIS MRI apparatus 
with a horizontal bore of 8 cm, a field strength of 7 T, 
and a maximal gradient strength of 0.2 T/m. Test images 
were acquired at room temperature from a phantom ob- 
ject, a water-filled rod using a birdcage RF coil. The in- 
plane spatial resolution was 60 pm in both directions, 
and slice thickness was 1 mm. 

The following experiments were set up to test the 
performance of the SNR quantification and the SNR 
improvement of the correlation technique. For imple- 
mentation of the outlined techniques, two routines 
were developed, one using Eqs. ( 11) and ( 12), which 
compute the SNR, and one using Eqs. (14) and (15) 
to improve the SNR. 

The validity of the quantification of the SNR is 
tested by averaging N identical MR acquisitions of 
the phantom object and checking the expected linear 
behavior of (SNR)’ with respect to N. A spin-echo 
(SE) pulse sequence was used with repetition time 
(TR) = 1 s and echo time (TE) = 24 ms. An image 
of the phantom was obtained after averaging N equal 
acquisitions. A second image was acquired with the 
same imaging parameters. From the two resulting im- 
ages, the SNR is calculated using Eqs. ( 11) and ( 12). 
This procedure is repeated for different values of N. 

Furthermore, the precision of the SNR quantifica- 
tion is tested. This is done by determining the spin- 
lattice relaxation time T1 of free water from two inde- 
pendent experiments: first from the power spectrum 
height as a function of the inversion time TI; and sec- 
ond, directly from the phantom image SNR, calculated 
with the cross-correlation method described above. In 
this way a possible bias in the SNR quantification can 
be detected. 

In the first experiment, the exponential saturation 
of the signal is measured using an inversion recovery 
pulse sequence. The amplitude of the free induction 
decay (FID) spectrum is plotted as a function of the 
inversion time (IT). Afterward, the T1 relaxation time 
is estimated by fitting the data to the function: 

SNR - N[H] ( 1 - 2e-T”T1) (16) 

where N[H] is the proton density of free water. 
In the second experiment, we calculated the SNR 

of 30 images of the same phantom which are taken 

with incrementally larger TI’s. A fast imaging se- 
quence (SNAPSHOT FLASH) is used for this experi- 
ment. To minimize the influence of the spin-spin re- 
laxation ( T2), the smallest possible echo time, TE = 
1.7 ms, was chosen. Because only the signal SD of the 
acquired images changes with TI, the SNR data are 
expected to follow Eq. (16). From these data, the T, 
parameter can again be estimated. In both experiments, 
the theoretical curve [see Eq. ( 16)] is fitted to the data 
using a two-parameter least-squares fit. 

The applicability of enhancing the SNR of MR im- 
ages of realistic objects is tested in the following exper- 
iment. Four independent acquisitions of the same MR 
image of a cucumber are acquired (TR = 1 s; TE = 
30 ms) with an in-plane resolution of 0.4 mm and slice 
thickness of 2 mm. The images are 2 x 2 correlated 
and the signal spectrum is estimated from the two final 
images using Eq. ( 13), after which the SNR is calcu- 
lated. The results are compared with the averaging 
procedure. Hereby, the four acquisitions are 2 X 2 
averaged, and on the two resulting images the SNR is 
again estimated using Eqs. ( 11) and ( 12). Moreover, 
we compared our filtered images with the median filter 
which is known to be an edge-preserving filter. The 
reason for choosing the median filter is that its perfor- 
mance is based only on the size of the mask (6con- 
netted, g-connected, etc.), whereas other edge-pre- 
serving filters (e.g., 0 filter) need additional prior in- 
formation such as the image SNR. 

In addition to the SNR measurements of the filtered 
image, the CNR for two distinct regions in the image 
is computed, because this parameter is more important 
to visualization. The CNR is defined as: 

CNR = 
a,> - -=a$=- 

(17) 

where <s,> and <s&= denote the mean signal of re- 
gions a and b, respectively. The noise SD can be de- 
rived from Eq. (6): 

2- il@il + i&i2 
fl” - 

2 - 
il@i2 1 (18) 

ma24 

The CNR is expected to increase with the same 
factor as the SNR, because the improvement is based 
on the decrease of the noise power with only minor 
signal modifications. To test this hypothesis, two ho- 
mogeneous regions, the seeds and the pulp, were se- 
lected from the cucumber image, after which the CNR 
was calculated for different filtered images, thereby 
using the same ROIs. 
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The loss of resolution, which is an expected side 
effect of improving the SNR with any noise filter, is 
measured by estimating the image resolution. This esti- 
mate is derived from two acquisitions of a noisy im- 
a&4,15 : it is given by the area at half-maximum of 
the CCF. The larger this area is, the larger is the separa- 
tion of object points that cannot be distinguished in the 
image. Because the improvement of the SNR results in 
a rather uniform degradation of the image resolution, 
the area at half maximum of the CCF is qualitatively 
a reliable measure for the loss of spatial resolution. 

To test the performance of the proposed techniques, 
we calculate the CCF areas of the MR images after 
application of the correlation technique. Here we use 
the CCF area of the original images as a reference 
resolution measure (0% loss of resolution). The finite 
size of this area is due to the correlations in the object. 
A 50% loss of resolution is obtained by applying a 2 
x 2 spatial average filter in which each pixel of the 
image is replaced by the average value of a 2 X 2 
neighborhood of that pixel. We compared the perfor- 
mance of the correlation techniques with the 2 X 2 
spatial average and the median filter. For each filtered 
image, the image SNR is measured with the cross- 
correlation method described above. 

RESULTS AND DISCUSSION 

As can be observed clearly from Fig. 1, the SNR 
improves linearly with the square root of the number 
of acquisitions, indicating an accurate quantification of 
the image SNR. Statistically the accuracy is propor- 
tional to the square root of the number of data points. 
From independent SNR measurements of 50 acquisi- 
tions of the same image, the relative error of the SNR 
value for a 256 X 256 image was found to be within 
2%. Here the relative error is defined as the SD of the 
SNR divided by the mean SNR. It is clear that the 

Fig. 1. The (SNR)’ as a function of N, the number of acqui- 
sitions. 
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Fig. 2. (a) Measurements of the FID’s amplitude as a func- 
tion of TI. (b) SNR measurements from T,-weighted images 
as a function of TI. 

outlined method to quantify the SNR will even, be 
much more precise for 3D images. 

Figure 2a shows the results for the T1 measurements 
of water from the amplitude of the FID. The data fitting 
to the theoretical curve of Eq. ( 16) reveal a T1 value 
of (2800 ? 110) ms. This value is confirmed from the 
SNR measurements of images which are taken with 
incrementally larger TI values. From Fig. 2b, in this 
case the exponentional saturation of the SNR is clearly 
observed. The data fitting reveal a T1 relaxation time 
of (2880 t 90) ms. The observation that the T, values 
obtained from two independent experiments are equal 
indicates that there is no bias in the quantification of 
the SNR. 

We have observed that with the correlation method, 
the SNR improves with almost a factor of 2. The SNR 
of the unprocessed images was 3.24. Figure 3a shows 
one of the four acquisitions of the original image. Fig- 
ure 3b is the average of the two acquisitions with an 
SNR of 4.57. The results after improvement using Eqs. 
(14) and (15) are displayed in Fig. 3c and 3d, respec- 
tively. The SNR is 5.57 and 6.03, respectively. With 
Eqs. (14) and ( 15), the upper limit of the gain in SNR 
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is determined by the Fourier phase, which is obtained 
from the average of the two input images. Hence, the 
phase image is necessarily polluted by noise. Until 
now we had not found a better way to reduce the noise 
contributions in the Fourier-phase image. 

As can be observed from the images in Fig. 3, the 
correlation method improves the SNR but simultane- 
ously decreases the image resolution. This blurring ef- 
fect occurs with all noise-reducing techniques. In this 
procedure, it is caused by forcing the negative values 
of the estimated signal power spectrum to zero. Note 
that the image-averaging procedure does not suffer 
from this blurring effect. 

In Table 1, the gain in SNR and CNR along with 
the estimated value for the loss of resolution are shown 
for a noisy image, the average of two acquisitions, and 
for images processed with a 4-connected median filter 
and the proposed correlation techniques. For compari- 
son we included the results for a 2 X 2 spatial averag- 
ing filter. The substantial gain in SNR of this filter 
goes along with an unacceptable loss of resolution. 
The loss of resolution due to this filter is used as a 
reference. Although no decrease of resolution is ob- 
served for the time-averaging procedure, this technique 
results in only a small gain of SNR. From this table, 
one can also observe that the results of the correlation 
techniques are superior compared with those of the 

Fig. 3. (a) One of the acquisitions of the original image; 
(b) average of two acquisitions; (c) improved image, using 
the correlation technique; (d) improved image, using tbe 
modified Wiener approach. 

Table 1. Comparison of the SNR, CNR, 
and loss of resolution 

Noisy image 
Averaged 
Median filter 
Correlated 
Wiener correlated 
Average filter (2 x 2) 

SNR 

3.24 
4.57 
5.78 
5.57 
6.03 
6.41 

Resolution 
CNR loss (%) 

2.93 0 
4.16 0 
5.26 40 
5.04 24 
5.55 26 
5.78 50 

median filter in terms of the loss of resolution. In addi- 
tion, the proposed correlation techniques have an ad- 
vantage over the median filter in that the processing 
time is minimal (i.e., it is implementable in a very 
efficient way in the Fourier domain, as was elaborated 
in the previous section). 

Finally, we suggest using the SNR quantification 
technique as an on-line evaluation of image quality in 
terms of random noise. The next strategy could be 
followed during an MRI procedure. Instead of directly 
averaging multiple acquisitions to increase the SNR, 
the acquisitions are stored in two equal sets on the disk 
and are averaged separately. Each time a new pair of 
acquisitions is obtained, the SNR of the two sets aver- 
aged so far is measured. At the end, the two sets are 
either averaged again or additionally improved, thus 
allowing minor loss in resolution. 

It must be stressed that both techniques, quantifica- 
tion and improvement, are independent of the way k- 
space was sampled during acquisition (independent of 
the pulse sequence, field of view, number of phase- 
encoding steps, etc.). As a consequence, the described 
techniques can be implemented in any pulse sequence. 

CONCLUSION 

In this article we showed that by cross-correlating 
two acquisitions of the same image, the quantification 
of the image SNR can be performed in a very accurate 
way. In addition, the correlation technique can also 
be used to improve the image SNR significantly with 
relative minor loss in resolution. Finally, both quanti- 
fication and improvement can be implemented in an 
efficient way in many MRI acquisition procedures. 
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