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The aim of this work is the development of a semiautomatic segmentation technique for efficient and 
accurate volume quantization of Magnetic Resonance (MR) data. The proposed technique uses a 3D variant 
of Vincent and Soilles immersion-based watershed algorithm that is applied to the gradient magnitude of 
the MR data and that produces small volume primitives. The known drawback of the watershed algorithm, 
oversegmentation, is strongly reduced by a priori application of a 3D adaptive anisotropic diffusion filter 
to the MR data. Furthermore, oversegmentation is a posteriori reduced by properly merging small volume 
primitives that have similar gray level distributions. The outcome of the preceding image processing steps 
is presented to the user for manual segmentation. Through selection of volume primitives, the user quickly 
segments the first slice, which contains the object of interest. Afterwards, the subsequent slices are automati- 
cally segmented by extrapolation. Segmentation results are contingently manually corrected. The proposed 
segmentation technique is tested on phantom objects, where segmentation errors less than 2% are observed. 
In addition, the technique is demonstrated on 3D MR data of the mouse head from which the cerebellum 
is extracted. Volumes of the mouse cerebellum and the mouse brains in toto are calculated. 0 1997 Elsevier 
Science Inc. 
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INTRODUCTION 

In many image processing tasks, segmentation is an 
important step toward the analysis phase. It allows 
quantification and visualization of the objects of inter- 
est. Recently, image segmentation methods were ex- 
tensively reviewed by Clarke et al.’ They concluded 
that segmentation of medical images is still a difficult 
task and fully automatic segmentation procedures are 
far from satisfying in many realistic situations. When 
the intensity or structure of the object differs signifi- 
cantly from the surroundings, segmentation is obvious. 
In all other situations manual tracing of the object 
boundaries by an expert seems to be the only “valid 
truth” but it’s undoubtedly a very time-consuming 
task. 

On MR data, fully automatic image segmentation 

techniques have been developed that can be subdivided 
in two major classes: gray scale single image segmen- 
tation and multispectral segmentation. Regarding the 
first class, the most intuitive approach is the threshold- 
based segmentation method where the threshold is cho- 
sen globally’.3 or locally.4 The method is restricted to 
relative simple structures and is hindered by variability 
of anatomical structures as well as image artefacts. 
Other approaches make use of edge detection for image 
segmentation. 5,6 These, however, suffer from over- or 
undersegmentation, induced by improper threshold se- 
lection.’ In addition, the edges found are usually not 
closed such that edge linking techniques are further 
required. Concerning the multispectral class, segmen- 
tation techniques using clustering techniques like k- 
means clustering, * adaptive hierarchical clustering, 9,‘o 
fuzzy k-means, ” etc., are applied.” Like all unsuper- 
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vised segmentation techniques, multispectral data anal- 
ysis is fully automatic and superior in reproducibility, 
but it can only be exploited when the MR characteris- 
tics of the object of interest differ significantly from 
those of the surrounding structures. 

On the other hand, results of supervised segmenta- 
tion are less reproducible but the segmentation process 
can be controlled by the operator. We choose for a 
semiautomatic single image segmentation procedure 
for 3D MR images in which user interaction is allowed 
to control the segmentation process and in which data 
is preprocessed as far as possible such that the posterior 
user-interaction time is strongly reduced. 

The first preprocessing step concerns reduction of 
random noise, as segmentation results are usually 
highly dependent on image noise. This is because noise 
tends to dislocate edges and hampers the detection of 
fine image detail. In this article we demonstrate the 
effect of random noise reduction. Apart from random 
noise, structured noise, for example, due to magnetic 
field inhomogeneities, may degrade the image as 
we11.13 However, this type of noise was not observed 
to significantly pollute our data and is further not dis- 
cussed in this article. However, it must allways be kept 
in mind that this type of noise may influence the vol- 
ume quantification results. 

Among the vast amounts of noise filtering schemes 
already available in the literature, the filter that best 
serves the posterior segmentation method is selected. 
The most common noise reduction technique is time 
averaging, with the major advantage that SNR is in- 
creased while the spatial resolution remains intact, pro- 
vided a stationary imaging process. While this ap- 
proach is quite time consuming and, hence, almost 
impossible in case of conventional 3D MR imaging, 
time averaging is usually replaced by spatial averaging. 
Wang and Lei I4 justified the heuristics that an MR 
image can be regarded as consisting out of many re- 
gions in which the signal is stationary, has a Gaussian 
probability density function and is ergodic in the mean 
and variance. The mean ergodic property justifies the 
use of spatial averaging within those regions to esti- 
mate the pixel expectation value. The main problem 
is to find these stationary regions. In conventional low- 
pass filtering, 15,16 these filters act in the Fourier space 
where all local spatial coherence is lost. As a conse- 
quence, although SNR increases significantly and is 
able to reduce Gibbs ringing artefacts, spatial resolu- 
tion is severely degraded.17 Recently, wavelet analy- 
sis is is designed to overcome this and is quite effective 
in noise reduction and edge enhancement. However, 
the reported findings also indicate that some local edge 
artefacts are introduced.” The problem of finding the 
proper area for spatial averaging is partly solved by 

the so-called sigma filters,“’ where spatial averaging 
is halted as soon as strong image gradients are de- 
tected.” A more elaborated approach can be found in 
the work of Perona et al.,” who developed an aniso- 
tropic diffusion scheme for image data where the diffu- 
sion and flow functions are guided by local gradient 
strengths in different directions. The properties of Pe- 
rona’s filter are: ( 1) efficient noise removal in homoge- 
neous regions, (2) preservation of object boundaries, 
and (3) edge sharpening. This filtering technique was 
successfully applied to 2D and 3D MR data by Gerig 
et a1.23 Although the performance of the noise filter is 
excellent, the underlying image model is a piecewise 
constant or slowly varying one. As a result, the edge 
sharpening causes a region with a constant grey-value 
slope to be broken up in constant plateaus. The edge 
sharpening property is not retained in the approach of 
Yang et a1.24 In his article he also proposed a more 
robust way of measuring the anisotropy of the local 
structure.25 

We adopted the last filter because it smooths out 
homogeneous regions while retaining the edge infor- 
mation in an anisotropic manner, which is indispens- 
able for accurate image segmentation. In the following 
section this filtering technique is reviewed and an ex- 
tension to 3D is presented. The anisotropic filter is 
applied to combat oversegmentation of the data. In 
Experiments and Discussion we will demonstrate the 
influence of this filter on the final segmentation results. 

The actual segmentation technique starts with a sub- 
division of the data in basic volume elements, called 
catchment basins by application of a watershed algo- 
rithm to the gradient magnitude of the original 3D data 
set. Among several existing algorithms, the immer- 
sion-based approach of Vincent and Soilles 26 was used 
because of its accuracy and speed of computation.27 
The technique is based on the assumption that image 
contours correspond to the crest lines of the gradient 
magnitude image that can be detected via watershed 
tracing. The output of the watershed algorithm is a 
partitioning of the input data in volume regions of 
which the interior does not contain any sharp gray 
value transitions. Without preprocessing of the data, 
the algorithm leads inevitably to an oversegmentation 
of the data because all the crest lines of the data set are 
detected. Therefore, the adaptive anisotropic filter, 24 
mentioned above, is a priori applied to the image data. 

Afterwards, oversegmentation is additionally re- 
duced by merging basic volume elements. A 2D merg- 
ing scheme was suggested by Maes et al.** who used 
the Minimum Description Length Principle29-3’ to deal 
with the oversegmented output of the watershed algo- 
rithm. Thereby, the description length, i.e., the number 
of bits to encode each region primitive, was calculated. 
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For the interior an entropy criterion was used while 
the boundary was encoded by chain coding. Regions 
are merged when the total description length gain is 
positive. However, problems arise because not all re- 
gions can uniquely be chain coded. Moreover, exten- 
sion to 3D using this criterion is not possible, as the 
boundary surface cannot uniquely be determined in the 
same way as was done in 2D. Also, for calculation of 
the entropy, the probability density function of the ba- 
sic volume element is required. Thereby, the unknown 
distribution is usually estimated by convolving the 
original histogram with a Gaussian Parzen window.j2 
However, because of the high number of basic volume 
elements, the convolution with each histogram would 
severely slow down the merging process. 

We propose an alternative merging scheme based 
on hypothesis testing that is not dimension restricted 
and computationally far less complex. Thereby, small 
volume primitives are merged with the most similar 
neighboring region. In this way, the number of basic 
volume elements is significantly reduced, such that 
user interaction time during the posterior semiauto- 
matic segmentation is strongly minimized. 

All preprocessing steps are fully automatic. The fi- 
nal extraction of the object of interest takes place in 
the last part. The first slice is manually segmented, 
after which all subsequent slices are automaticaly seg- 
mented. Each segmentation result is eventually manu- 
ally corrected by the user. 

The accuracy of the presented volume quantization 
method is in a first phase tested on phantom objects 
with known volumes. In addition, the segmentation 
technique is applied to 3D MR data of the mouse head. 
It has been reported that the vermis of the cerebellum 
is smaller in human fragile X patients than in controls.33 
(The fragile X syndrome is caused by mutations in the 
fragile X gene FMRl. It is the most common cause 
of developmental disability.) Similar observations were 
made on patients with autism from 2D Magnetic Reso- 
nance scans34 and on mice with the fragile X syndrome 
from 2D micrographs of histologic slices.35 The authors 
reported volume measurements obtained from invasive 
techniques (slicing of the fixated mouse head) where 
errors of more than 10% are common. 3D MR imaging 
and processing enable the study of physiological struc- 
tures without destroying the object. The 3D information 
present in the MR data can fully be exploited for image 
processing and analysis. In addition, the nondestructive 
character of MR imaging allows in vivo study of the 
object of interest and, hence, allows the study of time- 
dependent processes. As an application, the volume of 
both cerebellum and the total mouse brains is quantized 
from the segmentation output. Finally, 3D reconstruc- 
tions from the segmentation results are shown. 

ADAPTIVE ANISOTROPIC 
DIFFUSION FILTER 

In the following, we review the adaptive anisotropic 
diffusion filter and present an extension to 3D. Suppose 
f( i-) is a 3D image where F = (n, , x2, x3) is a three- 
dimensional position vector. The filtering process con- 
sists of convolving f(F) with a Gaussian kernel h (? ) 
of which the shape is pointwise adapted to the local 
structure within a neighborhood R. The resulting fil- 
tered function g(i) can be written as follows: 

where 

h(?-po)=exp -$ 
[ 

3 ((i - Fo)* iii)2 1 (2) 
t=l dV0) 

In Eq. (2), the vectors 6 are the eigenvectors of 
the 3 X 3 second moment matrix R of the Fourier 
spectrum ) F(U) 1 2. The coefficients of R can as well 
be calculated in the spatial domain: 

where i, j = 1, 2, 3. R is positive semidefinite and 
Hermitian, hence having only positive eigenvalues. 
The direction of the eigenvector ii 1, corresponding to 
the smallest eigenvalue, say X,, determines the main 
direction of the pattern in the neighborhood fl of the 
spatial domain. Alternatively, the three eigenvalues X1, 
X2, and X3, with X, I X2 5 h3, determine the relative 
orientation of the pattern in the respective directions. 

The shape of the kernel h [see Eq. (2)] is controlled 
by the standard deviations c,, c2, and u3, which are 
functions of the local gradient strength in the respective 
directions. From the eigenvalues anisotropy measures 
are derived that are used to design the standard devia- 
tions: 

X2 - ‘I and a A3 - x1 
a ~ 12= CXi 13= xxi (5) 
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The standard deviations should be large along the 
main direction(s) of the pattern such that data is only 
smoothed in homogeneous regions and along instead 
of across edge surfaces. 

In addition, corners should be preserved during fil- 
tering. A corner is identified as a situation where the 
pattern is relative isotropic (aI2 * 0; ai3 = 0) while 
the local gradient strength 1 Vf( i-) 1’ is large. There- 
fore, a spatial-dependent corner strength C is defined 
as: 

C(F) = (1 - a12 - %)lVf(V12 (6) 

From Eq. (5) and Eq. (6)) the standard deviations 
are designed as follows: 

al(i) = 
c 41 - 2a12) 

1 + C(i) 
02(F) = 

1 + C(i) 

03(F) = d 11-+&z-)a,,) (7) 

CJ stands for the standard deviation of the image noise. 
This parameter may be determined in several ways.36 
It can be measured by acquiring two images of the 
same object, subtracting one from the other and finding 
the standard deviation of the difference imagee3’ If only 
one image is available, the noise can alternatively be 
measured directly from a large, uniform signal region 
as the standard deviation of the voxel values in that 
region.38 The simplest way, however, is by estimating 
the noise from signal amplitude values of nonsignal 
regions, 38 because these are often easier to find than 
large homogeneous signal regions. The noise standard 
deviation is then given by 1.53 times the measured 
standard deviation of the background voxel values. The 
multiplication constant results from the fact that back- 
ground noise obeys a Rayleigh distribution.39.40 We 
employed the last method for noise estimation. 

After the filtering process the gradient magnitude 
image is calculated for the next phase in the segmenta- 
tion procedure. In order to save computation time one 
could argue that instead of filtering and afterwards 
edge detecting it would be more sensible to construct 
a robust edgedetector. This, however, is not true. The 
gain in SNR when filtering the original data is due to 
spatial averaging in all directions. On the other hand, 
only the response of an edge detector in the direction 
corresponding to a strong gradient increases the SNR. 
The response of the edge detector in the other direc- 
tions does not increase the SNR; it even may lower 
the SNR. 

The influence of the anisotropic diffusion filter on 

the segmentation results will be discussed in Experi- 
ments and Discussion. 

SEGMENTATION 

The actual semiautomatic segmentation procedure 
for 3D MR images consists out of three parts: (1) 
application of a 3D analogy of Vincent and Soille’s 
watershed algorithm, (2) reduction of the oversegmen- 
tation by selectively merging neighboring catchment 
basins, and (3 ) interactive segmentation. 

The first two steps are fully automatic. Some user 
interaction is required in the last part but the preceding 
ones will be shown to reduce this to a minimum. 

Immersion-Based Watershed Algorithm 
In the first part, the watersheds of the gradient mag- 

nitude of the MR data are calculated. By that, the 
gradient magnitude image is considered as a topo- 
graphic relief where the brightness value of each voxel 
corresponds to a physical elevation. An efficient and 
accurate watershed algorithm was developed by Vin- 
cent and Soille,26 who used an immersion-based ap- 
proach to calculate the watersheds. The operation of 
their technique can simply be described by figuring 
that holes are pierced in each local minimum of the 
topographic relief. In the sequel, the surface is slowly 
immersed into a ‘lake,’ by that filling all the catchment 
basins, starting from the basin that is associated to the 
global minimum. As soon as two catchment basins 
tend to merge, a dam is built. The procedure results 
in a partitioning of the image in many catchment basins 
of which the borders define the watersheds. 

Of all watershed transforms the immersion tech- 
nique was shown to be the most efficient one in terms 
of edge detection accuracy and processing time.27 For 
3D implementation of the algorithm, it is assumed that 
the crest surfaces of the gradient magnitude of the 4D 
topographic relief correspond to structure surfaces of 
the original 3D data. We implemented dynamic linked 
lists to reduce memory requirements. Also, a 26-con- 
netted neighborhood was used that allows the water 
to flow in all directions. A 6-connected neighborhood 
could have been used instead to save computation time, 
but this goes along with a stronger oversegmentation 
and loss of watershed detection accuracy. 

Merging of Volume Primitives 
There is a severe drawback to the calculation of 

watershed images that is oversegmentation. The rele- 
vant object contours are lost in a sea of irrelevant ones. 
This is partly caused by random noise, inherent to MR 
data, which gives rise to additional local minima such 
that many catchment basins are further subdivided. If, 
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however, an anisotropic diffusion filter (described in 
the Adaptive Anisotropic Diffusion Filter), is first ap- 
plied to the original data, this oversegmentation can 
already significantly be reduced. 

In a next step, the partitioning is additionally dimin- 
ished by properly merging catchment basins. This is 
done by iteratively merging neighboring regions that 
have similar gray level distributions. The merging cri- 
terion is inspired from hypothesis testing where it is 
assumed that the population means are equal. Basic 
volume elements are assumed to be characterized by 
a Gaussian distribution. For small sample size (n < 
30) a Student’s r-test is most suited. The applied statis- 
tic is then given by: 

where 0 = 

The variable t obeys a Student’s t-distribution with 
I21 + n2 - 2 degrees of freedom, n, and n2 denoting 
the number of pixels within the two populations. pl, 
p2 and S1, S2 are the estimated population means and 
standard deviations, respectively. Obviously, the 
smaller the t-value, the similar the distributions are. 

The merging process proceeds as follows. The 3D 
MR data set is characterized by an array of structures 
where each structure describes one single basic volume 
element. The data of a structure contains the following 
information: the number of voxels, the voxel coordi- 
nates, the estimated mean gray value and standard de- 
viation and an array containing the labels of the neigh- 
boring regions along with the corresponding value of 
the r statistic. The merging process starts by merging 
the smallest volume element with the most similar 
neighboring region; i.e., the region that gives the small- 
est t-value. During merging, all structure information 
of the two regions is combined and updated. Hereafter, 
the merging process is continued by again merging the 
smallest region with one of its neighbors. The process 
is stopped when half of the original number of regions 
is merged. From our experimental observations, further 
merging was found to degrade the posterior segmenta- 
tion results too much in the sense that regions on the 
border of the cerebellum (object to be segmented) 
started to merge with neighboring regions from the 
surroundings. This criterion to stop the merging pro- 
cess depends, however, on the complexity of the seg- 
mentation task. In general, the stronger the edges sur- 
rounding the object to be segmented, the more regions 
that may be merged. Reduction of the number of small 
regions significantly favors the posterior interactive 
segmentation task, as will be elucidated below. 

Interactive Segmentation 
In the third part the actual object segmentation takes 

place. Subsequent 2D slices from the 3D data set are 
presented to the user. Each slice is accompanied by 
the basic volume elements which intersect the corre- 
sponding slice of the merged data. These volume ele- 
ments are not visible to the user. The first slice is 
quickly segmented by manually activating the volume 
regions that belong to the object of interest through 
simple mouse clicking. This is done by drawing a con- 
tour around the region of interest, after which all inte- 
rior regions are activated. All subsequent slices are 
consequently segmented as follows: the ‘core’ area of 
the previous slice (slice A), i.e., the area constituted 
of all previously activated regions except those lying 
at the border, is projected onto the next slice (slice 
B). All volume elements of slice B that intersect with 
this core area are automatically activated. Only the 
volume elements at the border of the core area of slice 
B are evaluated for activation. Volume elements at the 
border are automatically activated if a ‘major part’ is 
still contained in the segmentation result of slice A. 
The term ‘major part’ depends on the local deformation 
from one slice to another. If no deformation is observed 
the ‘major part’ is more than 50%. This percentage is 
made dependent on the local size change (growing or 
shrinking) and can range from 0 to 100%. Remark that 
automatic volume selection in this way does not re- 
quire the object to be convex. The user contingently 
manually corrects the result of the automatic segmenta- 
tion. 

The adaptation from one slice to the next one is 
fully automatic when the local deformation is smaller 
than the average size of the basic volume elements. 
For this reason the merging process was designed to 
iteratively merge only the smallest regions. In this way, 
user interaction is minimal, mainly due to the efficient 
use of the 3D information. 

EXPERIMENTS AND DISCUSSION 

Materials 
All data were generated on an MR apparatus (SMIS, 

Surrey, UK) with a horizontal bore of 8 cm, a field 
strength of 7 Tesla, and a maximal gradient strength 
of 0.2 Tesla/m. In all experiments a birdcage RF coil 
with a diameter of 32 mm was used. For each experi- 
ment a 3D spin echo (SE) pulse sequence was used 
(TE = 56 ms; TR = 1500 ms) with FOV, = FOV, = 
20 mm and FOV, = 22 mm. The acquisition matrix 
was: 256 x 128 X 128, which was zero-filled to obtain 
an image matrix of 256 X 256 X 256. The spatial 
resolution was R, = RY = 78 pm and RZ = 86 pm. 
For image processing a matrix of 120 X 220 X 150 
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Table 1. Accuracy of phantom volume quantization 

Real object volumes 
(mm31 

Volume 1 x-slicing 
(mm31 

Volume 2 y-slicing 
(mm31 

Volume 3 z-slicing 
(mm31 

Segmentation 
error (%) 

156 163 159 160 1.7 
316 322 322 320 0.8 
459 469 468 469 0.5 
736 753 753 752 0.4 

was chosen as a region of interest. All image pro- characteristics than the cerebrum (both consist out of 
cessing was performed on an HP 720 workstation. gray and white matter). 

Phantom Object Data 
After careful gradient calibrations, the proposed 

segmentation technique for volume quantization was 
in a first phase checked on images obtained from wa- 
ter-filled phantom objects. Although segmentation in 
this case is obvious, this test was performed to reveal 
possible biases in the volume quantization. The object 
volumes were chosen in the range of mouse brain vol- 
ume: 156, 316,459, and 756 mm3. Each phantom vol- 
ume was quantized three times: the 3D data was pre- 
sented to the user by slicing in the x-, y-, and z-direc- 
tion. Table 1 shows the true volumes of the phantom 
objects along with the measured volumes. The mea- 
sured volumes reveal a systematic quantization error 
of about 2% while the intrinsic segmentation error is 
less than l%, which indicates that the limiting factor in 
the volume quantization accuracy is due to the limited 
accuracy of the gradient calibration. As segmentation 
of our phantom object data was a very simple problem, 
it is believed that the segmentation procedure itself 
was extremely accurate. Furthermore, segmentation re- 
sults of the phantom objects were statistically tested 
on their independence of slice direction. Thereby, AN- 
OVA (analysis of variance) was used. It was found 
that the null hypothesis of equal volume means (be- 
tween and within the slice directions) could not be 
rejected at a significance level of 0.05. 

30 difision jilter. The 3D raw MR data of the 
mouse head is first preprocessed with the anisotropic 
adaptive diffusion filter. Concerning the filtering 
neighborhood s2, the following remarks can be made. 
First of all, the filtering range in one direction should 
be proportional to the spatial resolution in that direc- 
tion. In our case, a cubic volume R was chosen as the 
raw data was zero filled to obtain a cubic data set. For 
optimal adaptation of the filtering kernel to the local 
structure, fl must be as small as possible (e.g., a 3 x 
3 x 3 window). However the smaller 0, the smaller 
the gain in SNR, which can be compensated by an 
iterative filtering scheme although this solution drasti- 
cally elongates the processing time. As a compromise, 
we used a 5 X 5 X 5 voxel window. 

Mouse Data 
To test the performance of the proposed segmenta- 

tion technique on real data, we faced the problem of 
segmenting the cerebellum of mouse brains from 3D 
MR data. The proposed technique is very well suited 
for the cerebellum segmentation problem, first because 
the cerebellum structure is nontrivial, i.e., purely histo- 
gram-based segmentation techniques are useless. In ad- 
dition, multispectral properties cannot be exploited to 
enhance the contrast between the cerebellum and the 
neighboring cerebrum, which would facilitate the pos- 
terior segmentation process. This is because the cere- 
bellum has no significantly different MR relaxation 

Figure 1 shows the effect of this operation. Figure 
la shows the midsagittal slice from the raw 3D MR 
data. Because of the large neighborhood, the filtering 
process results in a significant noise reduction as can 
be observed from the corresponding slice of the 3D 
output, shown in Fig. lb. Beside a visual enhancement, 
the diffusion filter has also an important influence on 
the output of the immersion-based watershed algo- 
rithm. This can visually be appreciated from Fig. 2 
where the watersheds of the same slice of respectively 
the original and the filtered data are shown. From Fig. 
2a, an oversegmentation can clearly be observed: the 
data is subdivided in about 74000 homogeneous vol- 
ume elements. By diffusion filtering, the number of 
basic volume elements in the 3D data set is reduced 
to less than one-third of the original number, as can 
be seen from Fig. 2b. 

Merging. The result of the merging process is shown 
in Fig. 3, where Fig. 3a is a zoomed area from Fig. 
2b. Although the number of volume elements was 
again halved because of the merging process, it might 
be hard to observe the differences between Fig. 3a and 
Fig. 3b. This is because only the smallest regions were 
considered for merging. However, the merging opera- 
tion significantly diminishes the posterior user interac- 
tion time. 
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Fig. 1. Result of 3D adaptive anisotropic diffusion filter. 

Fig. 3. Result of the merging process. 

Fig. 2. Watershed transforms of raw, filtered, and merged 
data. 

The effect on the size of the volume elements is 
demonstrated in Fig. 4. Figure 4a shows the histogram 
of the region sizes for the raw, filtered, and merged 
data. From this figure it is clear that many small regions 
are merged with neighboring ones. Figure 4b shows 
the cumulative volume histogram. Every curve finally 
converges to the total volume of the region of interest. 

Znteructive segmentation. The result from the full 
automatic preprocessing steps is presented to the user 
for manual segmentation. With a few mouse clicks on 
the first slice, the cerebellum is extracted from the rest 
of the brains. This is not done by activating each single 
region from the cerebellum separately but by selecting 
a region of interest in which all volume elements are 
automatically activated. Starting from this slice the 
segmentation process is proceeded, hereby fully ex- 
ploiting the 3D information of the previously seg- 
mented slice. In Fig. 5 the segmented result of the 
midsagittal slice is shown. For clarity, only the border 
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Fig. 4. Effect of filtering and merging on the size of the 
volume elements. 

of the segmented volumes in the slice is shown as a 
white border. 

Volume quantization. Numerical results of the seg- 
mentation process are summarized in Table 2. As a 
consequence of the diffusion filter, the number of man- 
ual interactions (mouse clicks) is significantly re- 
duced. Further iteratively merging volume primitives 
halves this number along with the interaction time. 
However, reduction of user interaction time goes along 

Fig. 5. Cerebellum extraction via volume element selection. 

with minor expense of segmentation accuracy. For this 
reason the merging process was not proceeded. Finally, 
3D reconstructions of the whole brain and the cerebel- 
lum from the segmented slices are displayed in Fig. 
6a and Fig. 6b. The 3D shading renderings were cre- 
ated using Interactive Data Language (IDL) software. 

Slicing of the total mouse brains in different direc- 
tions led to results, equal within 1%; the volume quan- 
tifications for the cerebellum were equal within 3%. 
The operator variability was about 3%. Although gra- 
dient calibration limitations must also be taken into 
account, these results are satisfying in comparison to 
the volume measurements obtained from invasive tech- 
niques (slicing of the fixated mouse head) where errors 
of more than 10% are common. This is mainly due to 
the fixation process, which leads to volume changes 
(shrinking or expansion). Similar errors are introduced 
when cutting the cerebellum from the rest of the brain 
and measuring the volume after immersion into a fluid. 
In addition, the proposed noninvasive segmentation 
techniques for volume quantization has this advan- 
tage over the invasive method that in vivo studies 
can be performed, which allows the study of volume 
dynamics. 

Segmentation performance. 3D adaptive anisotropic 
diffusion filtering with a 5 X 5 X 5 window took about 
14 min. Calculation of the 3D watershed image took 
less than 4 min. Merging volume primitives required 
9 min. Hence, all fully automatic preprocessing steps 
were completed within half an hour. Finally, the user 

Table 2. Segmentation results of mouse brain segmentation 

Number of volume Number of man. interac. Total brain volume Cerebellum volume 
Method elements per slice (mm31 (mm31 

Raw data 74053 17.1 559 ? 1 65.4 ? 1.4 

After diff.filtering 23203 5.4 560 ? 2 64.0 ? 1.9 

After merging 11601 2.6 559 k 2 63.7 ? 2.1 
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Fig. 6. 3D reconstructions of the segmented objects. 

interaction time to extract the cerebellum from the rest 
of the image took about 2.5 s per slice. The interactive 
segmentation for the cerebellum was completed within 
7 min. The total brain was segmented within 11 min. 
Although far more volume elements were involved in 
the segmentation of the total brain, segmentation was 
less complex as the contrast between the total brain 
and the surroundings was higher. In general, the speed 
of segmentation depends very much on the clearness 
of the object boundary, and in minor way, on the shape 
of the object. 

Concerning the performance of the proposed seg- 
mentation procedure, some general conclusions can be 
drawn. The method obviously works best when the 
object of interest is delineated by a strong contour in 
the data. Furthermore, the performance depends on the 
deformation from one slice to the other: automation 
increases when the local deformation is smaller than 
the average size of a basic volume element. If this is 
a problem, a possible solution might be zero filling of 
the raw data, thereby extrapolating between subsequent 
slices. Homogeneity within the object or convexity is 
not required. The influence of random noise on the 
segmentation performance can be combatted as de- 
scribed in this article. However, segmentation results 
will degrade when structured noise is present due to 
magnetic field inhomogeneities, object movement, etc. 

CONCLUSION 

In conclusion, we proposed a semiautomatic 3D 
segmentation technique grounded on the immersion- 
based watershed algorithm. We showed that prepro- 
cessing the data with a 3D adaptive anisotropic diffu- 

sion filter has a positive impact on the segmentation 
results. A posteriori merging of basic volume primi- 
tives additionally reduces the user interaction time. The 
proposed segmentation technique is successfully used 
to extract quantitative volume information from 3D 
images of in vitro mouse cerebella. It has proved to be 
superior in comparison with existing invasive methods. 
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