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Abstract— The problem of parameter estimation from Rician
distributed data (e.g., magnitude Magnetic Resonance images)
is addressed. The properties of conventional estimation methods
are discussed and compared to Maximum Likelihood estimation
which is known to yield optimal results asymptotically. In
contrast to previously proposed methods, Maximum Likelihood
estimation is demonstrated to be unbiased for high signal-to-noise
ratio (SNR) and to yield physical relevant results for low SNR.

Index Terms— Maximum Likelihood, Rician distribution, Pa-
rameter estimation, MR imaging

I. I NTRODUCTION

In Magnetic Resonance Imaging (MRI), the acquired
complex valued data are corrupted by noise that is typically
well described by a Gaussian probability density function
(PDF) [1]. In case the MR data are acquired on a uniform
Cartesian grid in K-space, after Fourier reconstruction,
the real and imaginary data are still polluted by Gaussian
noise. Although all information is contained in the real
and imaginary images, it is common practice to work with
magnitude and phase images instead as they have more
physical meaning (proton density, flow, etc.). However,
computation of a magnitude image is a nonlinear operation
in which the Gaussian PDF of the pixels is transformed into
a Rician PDF [2], [3]. In addition, Rician distributed data
do not solely occur in conventional magnitude reconstructed
images, they are also found in MR angiography imaging [4].

Knowledge of the data PDF is vital for image processing
techniques based on parameter estimation such as, e.g., image
restoration. These techniques usually assume the most general
type of data PDF, which is Gaussian. Whenever other PDF’s
come into play, e.g., in magnitude MR images, one still tends
to use parameter estimation techniques that are based on
Gaussian distributed data [5], [6], [7]. The justification for
this is that, when the signal-to-noise ratio (SNR) is high, the
actual data PDF is very similar to a Gaussian one.
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With magnitude MR images, the Rician data PDF deviates
significantly from a Gaussian PDF when the SNR is
low, leading to biased results. To reduce this bias,
parameter estimation methods were proposed which exploit
the knowledge of the Rician PDF [8], [9], [10], [11]
[8],[9],[10],[11]. However, although the proposed estimators
do reduce the bias, they are not able to remove it.

In this paper it is shown where the bias appears in the
conventional estimation. In addition, a Maximum Likelihood
(ML) estimator for Rician distributed data is constructed. The
performance of the conventional estimator is compared to that
of the ML estimator. The motivation for this is that, it is known
that, if there exists an unbiased estimator of which the variance
attains the lowest possible value, it is obtained by the ML
method.

II. T HE RICIAN DISTRIBUTION

If the real and imaginary data, with mean values respectively
AR andAI , are corrupted by Gaussian, zero mean, stationary
noise with standard deviationσ, it is easy to show that the
magnitude data will be Rician distributed [12], with PDF:
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I0 is the modified zeroth order Bessel function of the first
kind, Mi denotes theith data point of the magnitude image.
The unit step functionu is used to indicate that the expression
for the PDF ofMi is valid for non-negative values ofMi only.
Furthermore,A is given by:
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For further discussion, the moments of the Rician PDF are
required. Theµth moment of the Rician density function is
given by:

E [Mν ] =
∫ ∞

0

Mν+1

σ2
e−

M2+A2

2σ2 I0

(
AM

σ2

)
dM (3)



2

whereE[.] is the expectation operator. The previous equation
can be analytically expressed as a function of the confluent
hypergeometric function1F1:
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The even moments of the Rician distribution (i.e., whenν is
even) are simple polynomials. E.g:

E
[
M2
]

= A2 + 2σ2 (5)

E
[
M4
]

= A4 + 8σ2A2 + 8σ4 (6)

III. PARAMETER ESTIMATION

Given the Rician distribution and its moments, both the
conventional approach (section III-A) and the Maximum Like-
lihood approach (section III-B) to estimate a locally constant
signalA from magnitude data points{Mi}, are discussed.

A. Conventional approach

1) Conventional estimator:Commonly, Eq. (5) is ex-
ploited for estimation of the underlying signalA. Thereby,
E
[
M2
]

is estimated from a simple local spatial average
[9],[10],[13],[14]:

̂E[M2] = 〈M2〉 =
1
N

N∑
i=1

M2
i (7)

Note that this estimator is unbiased sinceE[〈M2〉] = E[M2].
Consequently, an unbiased estimator ofA2 is given by:

Â2
c = 〈M2〉 − 2σ2 (8)

Taking the square root of Eq. (8) gives the conventional
estimator ofA [9],[10],[13],[14]:

Âc =
√
〈M2〉 − 2σ2 (9)

2) Discussion: The parameter to be estimated is the sig-
nal A. Obviously, A is a priori known to be real valued
and non-negative. However, this a priori knowledge has not
been incorporated into the conventional estimation procedure.
Consequently, the conventional estimatorÂc, given in Eq. (9),
may reveal estimates that violate the a priori knowledge and
are therefore physically meaningless. This is the case when
Â2

c becomes negative. Therefore,̂Ac can not be considered
a useful estimator ofA if the probability thatÂ2

c is negative
differs from zero significantly. It can be shown that the PDF
of Â2

c is a noncentralχ2 distribution [4], given by:
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In Fig. 1,Pr[Â2
c < 0] is drawn as a function of the local SNR

for several values ofN , where the local SNR is defined as:

SNR =
A

σ
(11)

Fig. 1 Pr
[
Â2

c < 0
]

as a function of the SNR for various
N.

From the figure one can conclude that for low SNR̂Ac

cannot be a valid estimator ofA unless a large amount of
data points is used for the estimation. Therefore, in practice
Âc will only be a useful estimator if the local SNR is high.

However, even if the condition of high SNR is met, the use
of Âc as an estimator ofA should still not be recommended
since the results obtained are biased because of the square root
operation in Eq. (9). This becomes more clear whenE[Âc] is
expanded about the unbiased valueA, yielding:

E
[
Âc

]
≈ A

(
1− σ2

2NA2

)
(12)

Eq. (12) is valid for high SNR. The bias appears in the second
term of Eq. (12). Note that it decreases with increasing SNR
and increasing number of data pointsN .

B. Maximum Likelihood estimation

In this section the ML method is introduced into the problem
of the estimation of Rician distribution parameters. The ML
estimator exploits the a priori knowledge of the data statistics
in an optimal way. Concerning the accuracy and precision
of the ML estimator, it is known that, under very general
conditions, the ML estimator is consistent and asymptotically
most precise [15]. In addition, it is known that if the number
of data points increases, the distribution of the ML estimator
approaches the normal distribution with meanA and variance
equal to the so-called Minimum Variance Bound (MVB),
which is a lower bound on the variance of any unbiased
estimator [16]. Furthermore, it is known that if there exists
an unbiased estimator having the MVB as variance, it is the
ML estimator [15].

1) ML estimator: The joint PDF of a sample ofN inde-
pendent observations{Mi} is called the likelihood function
of the sample, and is written as:

L =
N∏

i=1

p (Mi|A) (13)

wherep(Mi|A) is given in Eq. (1). The ML estimator can be
constructed directly from the likelihood functionL. Once the
observations have been made and numbers can be substituted
for {Mi}, L is a function of the unknown parameterA only.
The ML estimator ofA is now defined as the estimator
maximizing L, or equivalently log L, as a function ofA.
Hence, using Eq. (1) it follows that:
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or only as a function ofA:
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SinceI0 is symmetric aboutA = 0, L as well aslog L are
also symmetric aboutA = 0. The ML estimate is the global
maximum oflog L:

ÂML = arg
{

max
A

(log L)
}

(16)

2) Discussion: It is not possible to find the maximum of
the log L function directly because the parameterA enters that
function in a nontrivial way. Therefore, finding the maximum
of the log L function will in general be an iterative numerical
process.
In order to get some insight into the properties of the ML
estimator, the structure of thelog L function is now studied.
This structure is established by the number and nature of the
stationary points of the function. Stationary points are defined
as points where the gradient vanishes:

∂

∂A
log L = 0 (17)

Substituting Eq. (15) into Eq. (17) along with some rearrange-
ments yields the condition for the stationary points

Â =
1
N

N∑
i=1

Mi

I1

(
ÂMi

σ2

)
I0

(
ÂMi

σ2

) (18)

It follows from Eq. (18) thatA = 0 is a stationary point of
log L, independent of the particular data set. The nature of a
stationary point is determined by the sign of the second order
derivative of the function in that point. From this derivative
it follows whether a stationary point is a minimum or a
maximum and whether or not it is degenerate. From Eq.
(15) the second order derivative of thelog L function can be
computed to yield:

∂2 log L
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(19)
It is then easy to verify thatA = 0 is a minimum oflog L
whenever:

1
N

N∑
i=1

M2
i > 2σ2 (20)

If this condition is met, thelog L function will have two further
stationary points, being maxima.

This can be seen by studying the possible structures of the
log L function using catastrophe theory. Catastrophe theory is
concerned with the structural change of a parametric function
under influence of its parameters [17]. It tells us that a
structural change of the function is always preceded by a
degeneracy of one of its stationary points. In order to analyze
such a structural change, the parametric function can be
replaced by a Taylor expansion in the essential variables about
the latter stationary point. The essential variables correspond
to the directions in which degeneracy may occur. According
to the catastrophe theory the global structure of a parametric
function with only one essential variable is completely set by
its Taylor expansion up to the degree of which the coefficient
cannot vanish under the influence of its parameters. The
function studied in this paper is thelog L function as a

function of A. Its parameters are the observations. Thus, the
structural change of thelog L function under the influence of
the observations has to be studied. The only essential variable
is the signal parameterA. The stationary point that may
become degenerate is the pointA = 0 (degeneracy occurs
whenever (19) becomes equal to zero). If thelog L function is
Taylor expanded about the stationary pointA = 0, we yield:

log(L) = a +
b

2!
A2 +

c

4!
A4 + O

(
A6
)

(21)

with
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N∑

i=1
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− N
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(22)
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N∑

i=1

M2
i

2σ4
− N

σ2
(23)

c = −3
8

N∑
i=1

M2
i

σ8
(24)

and O(.) is the order symbol of Landau. Notice that since
the log L function is symmetric aboutA = 0, the odd terms
are absent in Eq. (21). In order to investigate if the expansion
up to the quartic term in Eq. (21) is sufficient, it has to be
determined if the coefficients may change sign under influence
of the observations. It is clear from Eq. (23) that the coefficient
b may change sign. The coefficientc, however, will always
be negative, independent of the particular set of observations.
This means that the expansion (21) is sufficient to describe
the possible structures of thelog L function. Consequently, the
study of thelog L function as a function of the observations
can be replaced by a study of the following quartic Taylor
polynomial in the essential variableA:

b

2!
A2 +

c

4!
A4 (25)

where the terma has been omitted since it does not influence
the structure. The polynomial (25) is always stationary at
A = 0. This will be a minimum, a degenerate maximum or
a maximum whenb is positive, equal to zero, or negative,
respectively. It follows directly from (25) thatlog L has two
additional stationary points (being maxima) ifb is positive,
that is, if Eq. (20) is met. Notice that condition (20) is always
met for noise free data. However, in practice the data will be
corrupted by noise and for particular realizations of the noise,
condition (20) may not be met. ThenA = 0 will be a (possibly
degenerate) maximum. Moreover, if condition (20) is not met,
b in (25) is negative and thuslog L is convex, which means that
A = 0 will be the only, and therefore, the global maximum
of the log L function. This implies that under the influence of
noise the two maxima and one minimum have merged into one
single maximum atA = 0. This maximum then corresponds
to the ML estimate. Note that, since condition (20) is identical
to (and therefore can be replaced by) the condition̂A2

c > 0,
the probability that the ML estimate is found atA = 0 is
equal to the probability that̂A2

c ≤ 0. This probability can be
computed from the PDF given in Eq. (10).
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It follows from these considerations that, when the conven-
tional estimator becomes invalid, the ML estimator will still
yield physically relevant results.

IV. SIMULATION EXPERIMENTS

In order to compare the conventional estimatorÂc to the ML
estimatorÂML described above, an experiment was simulated
in which the underlying signal was estimated from 16 Rician
distributed data points (N = 16) as a function of the noise
standard deviationσ. The true value ofA was 100. The
ML estimate was obtained by maximization of the likelihood
function using Brent’s algorithm [18]. This is an efficient one-
dimensional optimization method based on parabolic inter-
polation which converges rapidly as the likelihood function
is well described by a parabola. The same experiment of
determiningÂc andÂML was repeated2.105 times after which
the averages〈Âc〉 and〈ÂML〉 were computed. The results are
shown in Fig. 2 along with the 95% confidence intervals.

Fig. 2 Comparison between the conventional and the ML
estimator forN = 16. Each point denotes the average of105

estimations. Also the 95% confidence interval is shown.
From that figure one can see that at high SNR (SNR > 3)

the ML estimator cannot be distinguished from an unbiased
estimator, whereas the conventional estimator is clearly
biased (Fig. 2a). As can also be observed, the experimental
estimationsÂc are in agreement with the expectation value
of Âc, predicted by Eq. (12).

At low SNR (SNR < 3) the use of Âc is no longer
justified because the probability that̂A2

c is negative becomes
too high. As to still compare the ML estimator with the
conventional one, we modified the conventional estimator in
these adverse cases to yield the same estimate as the ML
estimator:Âc = 0. From Fig. 2b one can observe that both
estimators become biased though the bias of the ML estimator
is significantly smaller compared to the modified conventional
estimator. The bias of the ML estimator has to do with the
increasing probability of a structural change of the likelihood
function. For low SNR, simulation experiments have shown
the occurrence of both structures oflog L, described above,
i.e., only one maximum or two maxima and one minimum.
Some log L functions obtained from simulation experiments
are shown in Fig. 3 for high and low SNR.

Fig. 3 Likelihood functions for high (a) and low (b) SNR
with N = 16. The different curves correspond to different
realizations of the same experiment.

Up to now, no other structures were observed. Remark that
the occurrence of only one maximum at positiveA-values
makes the computational requirements for the maximization
of the log L function very low.

In this paper the true value of the noise varianceσ2

was assumed to be known. In practice however,σ2 needs
to be estimated from the background or from homogeneous
signal regions [3]. Thereby, the accuracy of theσ2 estimate
is often influenced by systematic errors due to for example
ghosting artefacts. This problem can be tackled by acquiring
two realisations of the same image [19],[20]. However, if the
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noise variance estimate can not be prevented from degradation
by systematic errors,σ2 will automatically be over-estimated.
An erroneous noise estimate will in turn influence the signal
estimates discussed in this paper. Simulation experiments
however showed that even with a 10% over- or under-estimated
noise variance value ML estimation still yields significantly
better results compared to conventional estimation.

V. CONCLUSION

In this paper the problem of signal estimation from Rician
distributed data was discussed. It has been shown that the
conventional estimator may not be used at low SNR unless
a large amount of data points is used, which is often not
available in practice. Even at high SNR the use of this
estimator is still not recommended since it is biased.
As an alternative, the Maximum Likelihood estimator was
proposed because it outperforms the conventional one with
respect to accuracy. The ML estimator yields physically rel-
evant solutions for the whole range of SNR’s. Moreover, it
was shown that, unlike the conventional estimator, the ML
estimator cannot be distinguished from an unbiased estimator
at high SNR.

VI. N OTE ADDED IN PROOF

After completion of this manuscript, the authors discovered
the existence of a paper by Bonny et al. [21] in which,
independently, similar results on ML estimation of the signal
parameter from magnitude MR data have been presented.
However, the results of that paper show severe discrepancies
with those presented in the present work. These discrepancies
deserve further study.
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