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ABSTRACT
A Maximum Likelihood estimation technique is proposed for optimal estimation of Magnetic Resonance (MR) T2
maps from a set of magnitude MR images. Thereby, full use is made of the actual probability density function
of the magnitude data, which is the Rician distribution. While equal in terms of precision, the proposed method
is demonstrated to be superior in terms of accuracy compared to conventional relaxation parameter estimation
techniques.
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1. INTRODUCTION
Estimation of relaxation parameter maps has been a subject of considerable interest from the early years of Mag-
netic Resonance (MR) imaging. Along with the spin-lattice relaxation parameter T1, the spin-spin-relaxation
parameter T2 gives useful information about the interaction with the local environment and plays a major role in
the establishment of image contrast.
Conventional relaxation parameter estimation techniques applied to magnitude MR images are constructed from
(weighted) least squares fitting procedures, which are only optimal in case of Gaussian distributed Magni-
tude MR data however are Rician distributed. Recently, a paper was published on the use of the Rice distribution
in the problem of estimating T2 maps from magnitude MR data.2 In that paper the problem on the data dis-
tribution was recognized but parameter estimation was still performed assuming Gaussian, additive noise. The
authors justified the use of least squares estimation by stating that the Rician distribution approaches a Gaussian
one at high signal-to-noise ratio (SNR). Although this is true, a bias is introduced in the estimation procedure
which becomes more pronounced with decreasing SNR.
In this work, a Maximum Likelihood (ML) estimation technique is proposed for optimal estimation of the spin-spin
relaxation times from a set of magnitude MR images. This choice can be justified because an ML estimator is
known to be consistent and asymptotically most precise.3 In the construction of the ML estimator, full use is made
of the Rician distribution. The validity of the proposed method is checked by simulation experiments. Finally, the
method is tested on experimental MR data.

2. METHOD
2.1. Magnitude data PDF
The real and imaginary components, {Rj } and {I } , respectively, of the complex MR data are generally known to
be corrupted by zero mean Gaussian noise.4 The noise standard deviation (SD), which will be denoted by o-, can
be estimated independently from homogeneous regions or from a double acquisition.5'6
Magnitude data {M2} are computed according to:

M=/+I,2 (1)

It is easy to show that the probability distribution (PD) of the magnitude data will be Rician,7 given by:

M I M2+f2(p,T2)\ ff(p,T2)M'\PM(Mtf(P,T2)) = —exp — 22 ) 2 ) (2)

Send correspondence to:
Jan Sijbers: Email: sijbers©ruca.ua.ac.be Tel: +32 (0)3 218 0 452 Fax: +32 (0)3 218 0 318
Arnold J. den Dekker: Email: ddekker©ruca.ua.ac.be Tel: +32 (0)3 218 0 452 Fax: +32 (0)3 218 0 318

384 Part of the SPIE Conference on Imaoe Processing. San Dieqo California • February 1998
SPIE Vol. 3338 • 0277-786X1981$lO.OO



where I is the 0th order modified Bessel function of the first kind. M denotes the pixel value of the magnitude
image. f(p, T2 ) is a function determined by the MR imaging sequence applied. In case the transversal magnetization
decay is mono-exponential and conventional spin-echo imaging is performed, the following model is known to be
accurate:

f(p,T2) = pexp (_) (3)

with p denoting the pseudo-proton density which is a function of the true proton density and the T1 parameter.
The shape of the Rice distribution is strongly dependent of the signal-to-noise ratio (SNR), where the SNR is
defined as the ratio f(p, T2)/a. Fig. 1 shows the Rician PDF for various values of the SNR. From that figure one
can observe that at high SNR, i.e. SNR > 3, the Rician PDF becomes quasi Gaussian. At low SNR the Rician PDF
starts to deviate from a Gaussian one and finally becomes a Rayleigh PDF at SNR =0. It is therefore expected
that whenever parameter estimation techniques that were originally developed for Gaussian distributed data are
applied to magnitude data, systematic errors will be introduced due to the asymmetry of the Rice PDF, especially
at low SNR.

2.2. Errors introduced in T2 estimation
In case of very high SNR the expectation of the relaxation behavior is given by Eq. (3) because at high SNR
the value f(p, T2) equals the expectation value of the (approximately Gaussian distributed) magnitude data. In
general however, the expectation value of the magnitude data is given by:

E [M] = e4c [(1 + f(2)2) (f(p,T2)2) + f(2)211 (f(p,T2)2)] (4)

The deviation from f(p, T2) becomes more pronounced with decreasing SNR. In Fig. (2) the expectation value
E[M] for T2 relaxation is shown for various levels of the SNR. The true time constant was T2 = 100 ms and 100
for the pseudo proton density p.

2.3 . Maximum Likelihood estimation
In this section the ML approach is clarified for the estimation of the unknown parameters set p and T2 from a set of
N independent magnitude data points {M1}. The proposed technique consists of maximizing for each pixel position
the joint probability density function (PDF), also referred to as the likelihood function, of N Rician distributed
data points with respect to {p, T2}. The likelihood function of N independent magnitude data points is given by:

L({M}Ip,T2) = p(M1Ip,T2) (5)

Eq2)
—exp (M? + f

(T2)))
M210

(fi(PT2)Mi)
(6)

Maximization of L is equivalent to maximizing log L as log is a monotonic increasing function:

log(L) = —N1og2 (M? + f(p, T2)2) + logio (f2)Mi) + logM (7)

For maximization of log L, only the terms which are a function of the unknown parameters to be estimated are
relevant:

log(L) [log '0 (fi
(PT2)Mi

) — fj(p,T2)2] (8)

Then the ML estimate for the parameter vector p and T2 is the global maximum of log(L):

{P T2} = arg max (log L) (9)ML p,T2 )

385



At high SNR, i.e., when the Rice distribution can be well approximated by a Gaussian PDF, the likelihood function
becomes:

L({M}Jp,T2) =()ex (_(Mi _(PT2))2)
()

In that case it is well known that maximization of log L with respect to the unknown parameters is equivalent to
minimizing the quadratic distance E given by:

E=[M-f1(p,T2)]2 (11)

This is also generally known as least squares (LS) fitting.

3. EXPERIMENTS AND DISCUSSION
To validate the proposed estimation method, experiments were set up using simulated as well as experimental MR
data. All data processing tasks were performed on a Hewlett Packard 720 workstation.

3.1. Simulation experiments
To show that a bias is introduced in the estimation whenever Gaussian instead of Rician distributed data are
assumed, a simulation experiment was set up. Thereby, real valued data, exponentially decaying according to Eq.
(3) , were corrupted with Gaussian distributed noise. Zero mean imaginary data were also polluted with Gaussian
noise with the same SD. Magnitude data were then computed according to Eq. (1). From 16 Rician distributed
data points, obtained in this way, p and T2 were estimated, once using the conventional least squares (LS) fitting
procedure and once using the proposed ML estimation technique. The estimation was repeated iO times for each
value of the SNR, which is defined as:

SNR =
cf(P:TTP (12)

with (f(p, T2)) the average signal value:

(f(p,T2)) = f1(p,T2) (13)

where f(p, T2) is given by Eq. (3).

Fig. 3a and 3b show the results for the estimation of p and T2, respectively. The true value for the pseudo
proton density was p = 100, and 100 ms for the T2 relaxation constant. Each time the average value was plotted
as a function of the SNR. For clarity, the 95% confidence intervals are omitted: the relative error was of the order
of 0.1% for both estimators. Both figures clearly demonstrate that the proposed ML technique is more accurate
compared to conventional LS estimation. In case of high SNR, opposed to the outcomes of the LS estimator, no
bias can be observed for the ML estimator. However, at low SNR (SNR < 5) the ML estimator can be seen to
become biased though the bias is still significantly smaller compared to that obtained by LS estimation.

The shape of the likelihood function is shown in Fig. 4. It was observed that the two-dimensionallog(L) function
has only one maximum, corresponding to the ML estimate of p and T2 . The general shape of the likelihood function
did not change for different values of the true p and T2 parameters, nor for various SNR. As a result, because of
the occurrence of only one maximum of the likelihood function, optimization becomes a very simple task: it can
be performed using standard optimization techniques with no risk of getting stuck into a local maximum. Each
ML estimate was obtained by maximization of the likelihood function using the downhill simplex method of Nelder
and Mead in two dimensions.8
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3.2. T2-map estimation
Next to the simulation experiment, tests were performed on experimental MR data. All data were generated on an
MR apparatus (SMIS, Surrey, England) with a horizontal bore of 8 cm, a field strength of 7 Tesla and a maximal
gradient strength of 0.1 Tesla/m. T2 maps of a mouse brain were constructed in the context of studying the
abnormalities in the ventricular system of hydrocephalic mice. The T2 parameter is very sensitive to changes in
water status as they occur in development and in response to pathology. Among others, T2 depends on the ratio
of the free-to-bound water in tissue. Changes in this ratio often occur in degeneration processes. E.g., T2 increase
due to the formation of vasogenic edema following an stroke event.
To acquire T2-weighted images a 2D spin echo pulse sequence was used (TR = 1500 ms) with FOVr FOV 20
mm and slice thickness 1 mm. The acquisition matrix 256 x 128 was zero filled to obtain a 256 x 256 image. From
6 magnitude images with echo times TE2 = 20, 30, 40, 50, 60 and 80 ms respectively the T2 decay constant and the
pseudo proton density was estimated for each pixel position. Two T2-maps were obtained, one using the proposed
ML estimation technique (shown in Fig. 5a) and one using LS estimation. Also the (intensity scaled) difference
image was computed. This is shown in Fig.5b.

Finally we remark that in this paper a mono-exponentially decaying model was fitted to MR magnitude data
points as to illustrate the consequences of not exploiting the proper data PDF. Naturally, as to make the imaging
model more realistic, the model can be made arbitrarily complex by taking into account additional parameters. In
that case a higher dimensional likelihood function needs to be maximized.

4. CONCLUSIONS
The use of the ML estimator is highly recommended as, compared to conventional estimators, the results are
in general superior with respect to accuracy. Finally, as the likelihood function was observed to yield only one
maximum, the computational requirements for the maximization are very low.
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Figure 1. The Rician PDF as a function of the SNR.
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Figure 2. Expectation values of magnitude MR signal for T2 relaxation as a function of the SNR. True values are
p = 100 and T2 = 100 ms.
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Figure 3. Simluation experiment: simultaneous p and T2 estimation as a function of the SNR. True values are
p= lOOand T2 = lOOms.
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