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Abstract

In combination with cognitive tasks entailing sequences of sensory and cognitive processes, event-related acquisition schemes allow using

functional MRI to examine not only the topography but also the temporal sequence of cortical activation across brain regions (time-resolved

fMRI). In this study, we compared two data-driven methods — fuzzy clustering method (FCM) and independent component analysis

(ICA) — in the context of time-resolved fMRI data collected during the performance of a newly devised visual imagery task. We analyzed a

multisubject fMRI data set using both methods and compared their results in terms of within- and between-subject consistency and spatial

and temporal correspondence of obtained maps and time courses. Both FCM and spatial ICA allowed discriminating the contribution of

distinct networks of brain regions to the main cognitive stages of the task (auditory perception, mental imagery and behavioural response),

with good agreement across methods. Whereas ICA worked optimally on the original time series, averaging with respect to the task onset

(and thus introducing some a priori information on the stimulation protocol) was found to be indispensable in the case of FCM. On averaged

time series, FCM led to a richer decomposition of the spatio-temporal patterns of activation and allowed a finer separation of the

neurocognitive processes subserving the mental imagery task.

This study confirms the efficacy of the two examined methods in the data-driven estimation of hemodynamic responses in time-resolved

fMRI studies and provides empirical guidelines to their use.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Since its introduction in 1992 [1], functional magnetic

resonance imaging (fMRI) is used widely to identify the

spatial layout of brain activation associated with sensory

stimulations, motor actions and cognitive tasks [2]. The

recent combination of event-related acquisition schemes and

methods for accurate estimation of the blood oxygenation

level dependent (BOLD) responses allows examining, in

some cases, not only the topography but also the temporal

sequence of cortical activation across brain regions [3,4].

The achievable temporal resolution is limited to a few
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hundred milliseconds by the sluggishness and variability of

the hemodynamic responses (HRs) [5]. This approach of

time-resolved fMRI is thus useful particularly in the study

of complex cognition, in combination with cognitive tasks

entailing sequences of cognitive processes and relatively

long neural processing times. A recent study, for example,

used time-resolved fMRI to address the issue of functional

differentiation between the various cortical regions subserv-

ing a complex task of visuo-spatial mental imagery [6].

In the analysis of time-resolved fMRI data, the accurate

estimation of task-related BOLD responses assumes a

particular relevance. Complex tasks normally involve the

activation of extended networks of brain regions with

widely different HRs. A region involved in the maintenance

in memory of one or more items, for example, may exhibit a

much more sustained neural (and hemodynamic) response

than a region that transiently responds to the switching
aging 25 (2007) 860–868
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between two conditions. Additionally, within each region, a

substantial degree of experimentally induced trial-by-trial

variability is to be expected. In such cases, the analysis of

HRs based on conventional model (or hypothesis) driven

methods (such as the general linear model [7]) may not be

optimal. Indeed, these methods assume a spatially invariant

parametric model of the HR function and this may result in a

different sensitivity in one or another region of the brain.

Furthermore, they do not account for the trial-by-trial

variability of the responses.

A complementary approach to estimate the spatio-

temporal pattern of brain activation is to use data-driven

methods, such as independent component analysis (ICA) [8]

and clustering techniques [9]. In both these approaches, a

new and potentially more informative representation of

the data is obtained by decomposing the original time series

into a set of spatio-temporal modes, without strong a priori

assumptions about the temporal profile of the effects

of interest.

As applied to fMRI time series analysis, ICA attempts to

separate blindly data into a set of non-Gaussian and

dspatiallyT statistically independent modes (independent

components or ICs, see below) [8]. The ability of spatial

ICA to distinguish between neurophysiologically interesting

sources and noise sources has been a matter of investigation

in several recent publications [10,11]. Spatial ICA has been

shown to outperform principal component analysis (PCA).

One difficulty, however, consists in the fact that ICA does

not provide any intrinsic order of the ICs. The experimenter

is thus confronted with the problem of selecting and

interpreting a subset of these components [12–14].

Clustering techniques separate time series into several

patterns according to the similarity among them. A well-

known member of this category is the fuzzy clustering

method (FCM) [15]. In the first FCM applications in

neuroimaging, clustering was performed directly on the

time series, using the Euclidean distance to quantify the

similarity among the acquired signals [15,16]. To overcome

problems related to noise, a distance measure was intro-

duced based on the correlation between the HRF and a

stimulus function, rather than the raw time series [17]. Other

studies compared FCM to alternative techniques in the field

of fMRI, like correlation [18] or PCA [19]. Several studies

dealt with other aspects, like the cluster validity problem

[20–22] or the influence of higher fields on FCM results

[23]. Clustering on features extracted from the fMRI time

series at each voxel was also investigated [24,25]. Typical

drawbacks of clustering approaches are the need of an a

priori definition of the number of clusters (cluster validity

problem) and the negative influence on the algorithm’s

results caused by the large amount of inactivated voxels (ill-

balanced data problem). As in ICA, a post hoc interpretation

of the resulting clusters is required.

As illustrated in Refs. [6,26], the new spatio-temporal

representation of the data obtained by either clustering or

spatial ICA has several appealing properties in the context
of time-resolved fMRI. Firstly, the description of the

sequence of spatial patterns of brain activation is obtained

blindly, thus reducing the problem of having an explicit

model of the HR. Secondly, each spatio-temporal mode

includes voxels with co-varying time courses of activity and

thus this representation is very helpful in highlighting the

simultaneous involvement of spatially remote brain regions

in the same stage of the task (functional connectivity). It is

thus of interest to examine similarity and differences

between the results obtained using these two different

data-driven approaches. A comparison of spatial ICA and

clustering has been recently described in Ref. [27].

However, this comparison was limited to a block-designed

experiment with a simple visual stimulation.

In the present study, we investigate and compare the

ability of FCM and ICA to estimate the spatio-temporal

patterns of brain activity in the context of time-resolved fMRI

measurements collected during the performance of a newly

devised mental imagery task. This complex task requires the

construction, maintenance and comparison to a visual target

of simple geometric figures, mentally created from auditory

instructions. We analyze a multisubject fMRI data set using

both methods and compare their results in terms of within-

and between-subject consistency and spatial and temporal

correspondence of obtained maps and time courses.
2. Methods

2.1. Fuzzy clustering

Fuzzy clustering attempts to partition a subset of

N voxels in C dclustersT of activation [28]. This is achieved

by comparing the voxel’s time courses xn (n=1. . .N) with
each other and assigning them to representative time

courses, called cluster centroids vc (c=1. . .C), derived

during this process. Fuzziness relates to the fact that a

voxel is generally not uniquely assigned to one cluster only

(hard clustering), but instead, the similarity of the voxel

time course to each cluster centroid is determined. This is

expressed by the dmembershipT ucn of voxel n to cluster c.

For each voxel, we have:

XC
c¼1

ucn ¼ 1 ð1Þ

Both centroids vc and memberships ucn are updated in an

iterative procedure, elaborated by Bezdek et al. [29] and

expressed by:

vc ¼

X
n¼1

N

u m
cn xn

XN
n¼1

u m
cn

ucn ¼
1

PC
k¼1

d xn;vcð Þ
d xn;vkð Þ

� � 2
m�2

ð2Þ

where d is a distance measure, determining the similarity

between the time course of a voxel and a cluster center, and

m is the fuzziness coefficient, determining the fuzziness of
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the procedure and used to dtune outT the noise in the data.

Theoretically, m lies between 1 (smallest fuzziness) and

infinity. Its ideal value, however, is problem dependent.

Several distance measures d can be defined: the Euclidean

distance dE and the Mahalanobis distance dM [30] are

mostly used and are defined as:

dE xn; vcð Þ ¼ txn � vct
2 ð3Þ

dM xn; vcð Þ ¼ xn � vcð ÞTR�1c xn � vcð Þ ð4Þ

where
P

c represents the covariance matrix of cluster c. The

Mahalanobis distance takes into account the actual (ellipti-

cal) shape of the cluster, i.e., instead of treating all voxels xn
equally when calculating the distance d to the cluster centre

vc, it weights the differences by the range of variability,

described by
P

c, in the direction of the voxel. The

Euclidean distance does not take into account the shape of

the cluster, i.e., it assumes a spherical shape, corresponding

to a covariance matrix
P

c with 1s on the main diagonal and

0s elsewhere.

The algorithm starts from an initial set of membership

values for the data set, expressed in matrix form as:

U 0ð Þ ¼ 1�
ffiffiffi
2
p

2

�
U þ

ffiffiffi
2
p

2
V

�
ð5Þ

with U=1/C and V a matrix of randomly chosen cluster

centres. Next, the new cluster centres and memberships are

computed using Eq. (2). The procedure terminates when

successive iterations do not further change significantly

memberships and cluster centres, as calculated by Eq. (2).

This procedure corresponds to the minimization of the

following objective function:

r2
w ¼

1

N

XN
n¼1

XC
c¼1

umcnd xn; vcð Þ ð6Þ

which computes the within-class variance over all clusters

jw
2. In practice, a user-defined threshold for change in jw

2

determines when convergence is reached.

The a priori determination of the fuzziness coefficient

and the number of clusters are research topics often en-

countered in the literature [20]. Although several heuristics

are introduced, the result is often problem dependent.

Preprocessing includes the transformation of each time

series into its z-score so as to avoid the clustering algorithm

to classify the voxels based on signal amplitude, instead

of signal shape. Finally, PCA is performed to reduce

data dimensionality.

2.2. Spatial ICA

Let X be the T�M matrix of the fMRI time series. Each

row contains an fMRI image (the spatial processes) of

M voxels (m=1. . .M) acquired at time t (t=1. . .T), with
T the number of scans. Let S be the N�M matrix whose
rows Sn (n=1. . .N) contain the independent images (NVT)
and A the T�N mixing matrix whose columns An contain

the time courses of the N independent images and is

assumed to be of full rank.

The problem of the ICA decomposition of fMRI time

series can be formulated as the estimation of both matrices

of the right side of the following equation:

X ¼ AS ð7Þ

under the constraint that the images Sn are (in the ideal

case) spatially independent. No a priori assumption is

made about the mixing matrix A, i.e., about the time

courses corresponding to the independent images. In this

model, all the spatial components, with the possible

exception of one, are assumed to be non-Gaussian.

Structured (non-Gaussian) artifacts in the data (e.g., head

movements, machine and physiological artifacts) are not

explicitly modelled, but instead are treated as independent

sources and are expected to be represented in one or

more of the components. The amount of statistical

dependence within a fixed number of spatial components

can be quantified by means of their mutual information.

Thus, the ICA decomposition of X can be defined as a

linear transformation:

S ¼ WX ð8Þ

where the matrix W (the dunmixingT matrix) is determined

such that the mutual information of the target components

Sn is minimized. Matrix A can be computed as the pseudo-

inverse of W. Note that this definition of ICA and Eq. (8)

imply that ICs are determined up to a permutation, a

multiplicative constant and to the sign.

We estimated S using cortex-based ICA (cb-ICA) [31] as

implemented in BrainVoyagerQX (Brain Innovation, Maas-

tricht, The Netherlands). Cb-ICA uses individual anatomical

constraints and a fixed-point ICA algorithm (FastICA) [32]

and allows an optimized analysis of cortical sources. After

sphering the matrix X and reduction of the temporal

dimension of the data set with PCA, the hierarchical

(deflation) mode of the FastICA algorithm was used and

the components were estimated one by one. After the

decomposition, voxel values of IC spatial maps were

z-transformed and colour coded according to the absolute

value and sign [8]. It should be noted that the z-scores do

not pertain to any significance statistic, because no

comparison is made to a null hypothesis.

2.3. fMRI data

Fuzzy clustering and spatial ICA were compared in the

context of an fMRI investigation of visuo-spatial mental

imagery. During the functional measurements (see below),

subjects were asked to create a mental representation of

simple two-dimensional geometric figures based on a

sequence of auditory instructions sequentially building up

each figure. After a jittered delay, subjects had to mentally

rotate the internally constructed image, in accordance with a
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visually presented target figure, rotated over an angle (408,
808 or 1208), and had to indicate with a button press

whether these were identical or mirror inversed. This task

involves a sequence of sensory, cognitive and motor

processes that can take up to several seconds and can thus

be studied using fMRI mental chronometry.

Three healthy, young subjects participated to the exper-

iment. For each subject, several successive fMRI data runs

were recorded in a single session: three for subject dLMT,
three for subject dABT and four for subject dCJT. During each
run, 18 trials were acquired, each trial lasting 30 s.

Functional scans consisted of 23 transversal slices acquired

on a 3-T Siemens Allegra (Siemens, Erlangen, Germany)

scanner using a single-shot gradient-echo echo-planar

imaging sequence (TE=30 ms, TR=1500 ms, matrix

size=64�64, voxel size=3.5�3.5�4 mm, 730 images).

During the same session each subject underwent a high-

resolution T1-weighted anatomical scan (MDEFT sequence,

voxel size=1�1�1 mm, 176 slices per slab, slice thick-

ness=1 mm, data matrix=224�256 mm, TR=7.92 s,

TE=2.4 ms).

2.4. Preprocessing

The fMRI time series were subject to a series of pre-

processing steps using BrainVoyagerQX (Brain Innovation,

Maastricht, The Netherlands):

(1) Slice scan time correction was performed by

resampling the time courses with sinc interpolation

such that all voxels in a given volume represent the

signal at the same point in time.

(2) Head movements were corrected automatically

minimizing the sum of squares of the voxel-wise

intensity differences between each volume and the

first volume of each run. Each volume was then

resampled in three-dimensional space according to

the optimal parameters using trilinear interpolation.

(3) Temporal high pass filtering was performed to

remove temporal drifts of a frequency below five

cycles per run.

(4) After co-registration to the anatomical images

collected in the same session, functional volumes

were projected into Talairach space [33].

(5) For each of the original 10 functional time series

(three subjects, three runs for subject dABT and

dLMT and four runs for subject dCJT), an averaged

data set was obtained considering an interval of 30 s

around the onset of each auditory instruction (2 s

prestimulus onset and 28 s poststimulus) cor-

responding to 20 time points. This was done to

increase the signal-to-noise ratio of consistently

task-related (CTR) processes. The effect of this

averaging was evaluated for both methods (FCM

and cb-ICA). In case of FCM, we found that

averaging over the trials was indispensable to have

a reasonable detection power of CTR processes. In
case of ICA, we found that averaging over the trials

deteriorates the results. Therefore, in this study, we

consider FCM of averaged data and ICA of the

original time series.

2.5. Fuzzy clustering and spatial ICA: selection of

parameters and visualization

Both FCM and sICA require setting of specific para-

meters (fuzziness coefficient, number of clusters, number of

ICs), which can have a substantial influence on the results of

the analyses and the comparisons between methods. Here

we determined these settings by a preliminary analysis and

inspection of one functional time series (subject dLMT,
Run 1). For this dataset, as for the other datasets (see Results

and Discussion), maps obtained by FCM and spatial ICA

were superimposed to three-dimensional anatomical images

and/or projected on an inflated and flattened representation

of the cortical sheet of the subject’s brain. This latter

representation allows displaying in one picture the spatial

topography of the clusters/ICs, thus providing a useful tool

for their interpretation.

To determine an appropriate value of the fuzziness

coefficient m, we applied FCM for a range of values of m

between 1 and 3. After visual assessment of the topography

and time course of the resulting clusters, 1.25 was chosen as

an acceptable value for the fuzziness coefficient, which is in

close agreement with literature [20]. The number of clusters

was fixed to 13 for all the extractions. We applied PCA to

the data sets under investigation and typically retained 13 of

the 20 total dimensions, capturing at least 90% of its

variance/covariance. Initialising to higher or lower number

of clusters yield to nonoptimal results. In case of lower

number of clusters, some dmeaningfulT clusters (see below)

were not found and in case of higher number of clusters they

were split into several clusters. In order to determine the

influence of the initialization step, during which member-

ship values and cluster centres are randomly chosen, we

repeated the FCM decomposition multiple times (a data set

was analysed 100 times) and results were compared across

multiple extractions. No significant difference in results

was observed, indicating the robustness of the method to

random initialization.

When using cb-ICA, a PCA-based reduction of dimen-

sions was performed prior to the ICA decomposition. Based

on data inspection the number of retained dimensions was

fixed to 30, accounting for more than 99% of the variance/

covariance of the data.

2.6. Fuzzy clustering and spatial sICA: selection of clusters/

components and comparison

To assess and compare the results of FCM and spatial

ICA, we focused on the clusters/components whose

representative time courses were clearly related to the

imagery task. Clusters/components were compared, quali-

tatively, by visual inspections of the maps and time courses

and, quantitatively, by calculating the spatial (temporal)
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cross-correlation coefficients between maps (time courses).

Furthermore, for both FCM and spatial ICA we analyzed

the consistency of the results across runs (within subjects)

and subjects.
3. Results and discussion

3.1. FCM and spatial ICA maps and time courses

Figs. 1 and 2 show a representative example of maps and

time courses obtained using FCM and spatial ICA. In Fig. 1,

IC (A) and cluster (B) maps are colour coded and projected

on a flattened reconstruction of the subject (LM, Run 1)

cortex. Overlay of cluster maps corresponds to membership

values in the range of 0.5 to 1. Hence, only those voxels

clearly assigned to a single cluster are shown. Overlay of IC

maps corresponds to normalized amplitudes greater than

1.8. Cluster centre time courses (solid line) and event-

related averaged IC time courses (dash-dot line) are

illustrated in Fig. 2.

Both FCM and spatial ICA decompositions allowed

highlighting the contribution of distinct networks of areas

to the sequential stages of the task, with good agreement

across methods. According to the sequential ordering of
Fig. 1. Projection of maps of activation regions on inflated and flattened represent

hemisphere) for ICA (A) and FCM (B): green=auditory; light blue=Imagery 1; dark b

indicates a larger membership or IC amplitude.
the representative time courses (see Fig. 2), a first cluster/IC

(light green) included regions of the transverse temporal

gyrus and of the superior temporal sulcus/gyrus bilaterally,

reflecting the activation of the auditory cortex at the

beginning of the trial. Interesting, in some FCM decom-

positions (see Table 1) this dauditoryT cluster was dissected
into two clusters, whose time courses and spatial topogra-

phy are compatible with a distinction between early auditory

regions and language-specific regions (dark green). Follow-

ing cluster(s)/IC(s) (light and dark blue) were representative

of brain activation during the performance of the visuo-

spatial mental imagery task. Two clusters and one/two ICs

(see Table 1) were found to include bilateral frontal and

posterior parietal regions which have been previously

involved in similar tasks of mental imagery [6]. Regions

of the occipito-temporal cortex were also included in these

maps. The time courses of these two clusters/ICs suggested

a sequential involvement of corresponding cortical networks

in early and late stages of the imagery task. Finally, one or

two cluster(s)/IC(s) (see Table 1) reflected the activity in

the occipital (red) and in the occipito-parietal and motor

regions (yellow), mostly dominated by response related to

the visual presentation of the target stimulus and consequent

motor response.
ation of the cortical sheet of the subject’s brain (dLMT, Run 1, left and right

lue=Imagery 2; red=visual; yellow=visual/motor. A lighter shade of a colour



Fig. 2. Time courses of corresponding processing stages found by FCM (solid line) and ICA (dash-dot line) for subject dLMT, Run 1.
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3.2. Comparison between methods

3.2.1. Within- and between-subject consistency

Table 1 illustrates ICs and clusters found by the two

methods in all the data sets analysed. In all cases, both ICA

and FCM were able to dissect the original time series into

ICs/clusters reflecting the three main cognitive processing

stages required to perform the task. The within- and

between-subject consistency of these results was very high.

In fact, FCM and ICA decompositions typically included an

dauditoryT (10/10 with both methods), an dimageryT (10/10
with both methods) and a dvisual/motorT IC/cluster (10/10
with ICA, 9/10 with FCM). In all cases, the spatial

(anatomical) and temporal layout of these ICs/clusters
closely resembled those described above for subject LM

and were consistent with previous and expected results.

Table 1 also shows that, especially in the case of analysis

with FCM, an even finer discrimination of neurocognitive

stages could be reliably achieved. In particular, FCM was

able to highlight in all the cases (10/10) a second cluster

with fronto-parietal spatial distribution (labelled as dImagery

2T), with a different and slightly delayed time course with

respect to Imagery 1. Similarly, FCM found additional

clusters presumably related to the early (auditory) and late

(target related) processing stages of the tasks, respectively in

5 and 10 cases. Note that ICA decompositions of the same

datasets not always produced ICs that corresponded to these

additional clusters. The high within- and between-subject



Table 1

Within- and between-subject consistency of components/clusters

Subject All (10 runs) AB (3 runs) CJ (4 runs) LM (3 runs)

Component/cluster ICA FCM ICA FCM ICA FCM ICA FCM

Auditory 1 10 10 3 3 4 4 3 3

Auditory 2 1 5 0 2 1 1 0 2

Imagery 1 10 10 3 3 4 4 3 3

Imagery 2 5 10 1 3 1 4 3 3

Visual 6 10 2 3 2 4 2 3

Visual/motor 10 9 3 3 4 3 3 3

Values in the cells indicate the number of runs in which a specific component/cluster was found.
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consistency together with their anatomical layout and

temporal profile suggests that this further separation is

neurophysiologically meaningful and it is not due to an

artificial splitting of a cluster.

3.2.2. Spatial and temporal correspondence between ICA

and FCM decompositions

To examine the spatial and temporal similarity between

ICs and clusters corresponding to the same cognitive stage

we calculated, for the three main components in each data
Fig. 3. Boxplot of between-methods (FCM and ICA) spatial (upper panel)

and temporal (lower panel) correlation coefficient. Each boxplot has lines at

the lower quartile, median and upper quartile values of computed

correlations. The whiskers show the extent of the rest of the data.
set, the spatial and temporal correlation coefficient of their

maps and time courses. The temporal correlation coefficient

was calculated between the time course of a cluster and the

averaged time course of the corresponding IC. The spatial

correlation coefficient was calculated without imposing any

threshold on cluster membership or IC amplitude of spatial

maps. Fig. 3 illustrates a summary of obtained results. Each

box plot has lines at the lower quartile, median and upper

quartile values of computed correlations. The whiskers

show the extent of the rest of the data. Statistical

significance threshold (Pb.05) for temporal correlation is

0.3783 (T=20) and for spatial correlation is 0.0095

(N~30.000). In all cases, obtained values of correlations

are above this threshold, denoting a good correspondence

between the maps or time courses obtained with ICA and

FCM. It is noticeable that correspondence between the maps

is highest in the case of the dauditoryT IC/cluster. In the case

of dimageryT and dvisual/motorT (i.e., dtargetT related) ICs/
clusters obtained median values of correlation are lower and

a larger variability is present. This is mainly due to the fact

that selected ICs include in some cases (five for dimageryT
and four for dvisual/motorT) spatial regions which are

separated into two distinct clusters in the FCM analysis.

The previous analysis of spatial correspondence between

ICs and clusters was performed with unthresholded maps.
Fig. 4. Influence of thresholds (cluster membership and IC amplitude) on

spatial overlap between maps. Example for subject dLMT, Run 1, spatial

correlation between thresholded maps of the auditory cluster/IC found by

FCM and ICA.
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Normally, however, interpretation of results is done on

thresholded maps. It is thus of interest to examine how the

correspondence between the peaks of ICA and FCM maps

changes if cluster membership and IC-amplitude thresholds

are varied. Fig. 4 shows a surface obtained by calculating

the spatial cross-correlation between ICA and FCM maps

after they have been thresholded at varying threshold values

(i.e., values in the maps below the threshold are set to 0). It

can be seen that the overlap of peaks is rather insensitive to

changes in the cluster membership threshold, but it can be

affected to a certain extent by changes in IC-amplitude

threshold. Importantly, there is a relatively large range of IC

amplitudes (1.5–3.5) within which there is an acceptable

and constant overlap between the peaks of the two maps.

Similar results were found for the other clusters.
4. Conclusions

In this study, we empirically compared two data-driven

methods — FCM and spatial ICA — in the context of time-

resolved fMRI measurements. Both FCM and spatial ICA

decompositions allowed highlighting the contribution of

distinct networks of brain regions to the sequential stages of

a visual imagery task (auditory perception, mental imagery

and behavioural response). We evaluated the maps and time

courses resulting from spatial ICA and FCM in terms of

their within- and between-subject consistency, which

resulted to be very high in both cases. Furthermore, the

calculation of spatial and temporal correlations of IC/cluster

maps and time courses showed a good agreement between

the results obtained with these two methods, suggesting that

the partitions of the time series obtained using spatial ICA

or FCM are comparable, even though they are based on

substantially different principles (spatial independence vs.

similarity of time courses).

The analysis of our data set also highlights a relevant

distinction between the two methods and of the underlying

principles. On the original (i.e., nonaveraged) time series,

interesting spatio-temporal patterns of activation were correct-

ly detected by spatial ICA but not by FCM. Conversely, when

time series were averaged with respect to task onset, analyses

with FCM but not spatial ICA benefited from the increase in

functional contrast-to-noise of a task-related process. On

averaged time series, FCM leads to a richer decomposition

of the spatio-temporal patterns of activation and allowed a

finer separation of the neurocognitive processes subserving the

mental imagery task. In particular, processes that were united

in ICA in a single component were separated into distinct and

presumably meaningful clusters by FCM. Note, however, that

averaging of the time series implies introducing a priori

information on the stimulation paradigm (but not on the shape

of the HR) and thus the subsequent analysis cannot be

considered dblindT. Also, averaging prevents examining the

variability of single-trial responses and processes which

are not task related (e.g., activity in the ddefault modeT
network). In sum, these results and considerations suggest
complementary characteristics of FCM and spatial ICA

decompositions, with an advantage of FCM in the analysis

of task-related responses and averaged time series and an

advantage of spatial ICA in the case of the variability of single

trial responses and non-task-related processes are relevant.
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