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ABSTRACT

Because of its significant absorption power, particularly in the
SWIR optical region (e.g., absorption features around 1400
and 1900 nm), water dominates the optical reflectance prop-
erties of water-bearing materials. This allows us to study a
material’s water-related features, such as its moisture content
from optical reflectance. In this study, we proposed a frame-
work to estimate soil moisture content from hyperspectral re-
mote sensing data. Validation is performed on Hyperion hy-
perspectral satellite imagery and ground-truth data from the
Soil Moisture Network database.

Index Terms— Hyperspectral, Hyperion EO-1, soil
moisture content, machine learning, remote sensing

1. INTRODUCTION

In studies of the regional water cycle, agricultural irrigation
management, climate change, and environmental monitor-
ing, soil moisture is an essential variable [1]. The term ”soil
moisture” refers to the water existing on land surfaces that is
present in the pores of the soil. Multiple factors, including
the type of soil and nearby vegetation, as well as meteoro-
logical conditions, affect the amount of soil moisture [2]. In
turn, a variety of soil and plant dynamics are impacted by
soil moisture levels [3]. Traditional methods, such as the
thermo-gravimetric technique and the calcium-carbide ap-
proach require both field sampling and laboratory analysis
[4]. Although these approaches have high accuracy, they also
have drawbacks, including complicated sampling procedures
and the need for a large number of repeated experiments [5].
Moreover, most of these techniques do not allow for moni-
toring of the spatial distribution of soil moisture on a wide
scale.

In comparison to these traditional methods, remote sens-
ing technology allows for monitoring large-scale near-surface
soil moisture. Currently, optical, thermal, and microwave
remote-sensing sensors are used to measure soil moisture con-
tent.

Microwave remote sensing allows for a continuous, large-
scale soil moisture estimation. Wide-scale soil moisture

data have been collected by the Soil Moisture Active Pas-
sive (SMAP) and Soil Moisture and Ocean Salinity (SMOS)
satellite missions [6], from which global-scale soil moisture
can be measured [7]. Although numerous algorithms have
been developed to estimate soil moisture content from mi-
crowave radiation, the resulting data products often exhibit
limited spatial resolution (10–20 km [8]), even when col-
lected from airborne systems ([9]), making them less suitable
for monitoring e.g., small catchment areas ([10]).

With thermal infrared remote sensing, wavelengths rang-
ing from approximately 3500 nm to 14,000 nm are used to
estimate the soil moisture content. The use of thermal remote
sensing for estimating soil moisture has been restricted in the
past due to high acquisition costs. Currently, high-spatial and
temporal-resolution thermal images are affordable thanks to
advancements in low-cost remote-sensing platforms such as
unmanned aerial systems (UAVs), which have contributed to
understanding the variability of soil conditions [11]. Often,
the methods that exploit thermal infrared remote sensing im-
ages are empirical in nature and depend upon local meteo-
rological factors, such as wind speed, air temperature, and
humidity [12].

Due to the high absorption power of water, soil moisture
has a significant impact on the reflection of soil surfaces in the
near-infrared (NIR) (700-1100 nm) and shortwave infrared
(SWIR) (1100-2500 nm) wavelength ranges. To exploit this
property of water, the reflectance in the 350–2500 nm range
has been utilized in optical remote sensing to estimate soil
moisture [12]. In contrast to active microwave sensors, the
primary benefit of using the optical part of electromagnetic
radiation is that solar radiation acts as a natural illumination
source [12]. In [13], it was experimentally demonstrated that
spectral reflectance acquired in the SWIR wavelength regions
is more suitable to accurately predict the soil moisture con-
tent. In [12], the Sadeghi model (SM) was derived from the
Kubelka–Munk theory. This model estimates the soil mois-
ture of moist soil by making use of the spectral reflectance of
dry and saturated soil. The major drawback of models such
as SM is that they are not invariant to the illumination and
viewing angles. To tackle this challenge, in recent work [14],
we have proposed a methodology (NRAL) that is invariant
to the changes in the acquisition and illumination conditions.



NRAL has been validated extensively on laboratory data. In
this work, we wanted to explore its use in remote sensing ap-
plications, by estimating soil moisture content from Hyperion
hyperspectral images.

2. DATASETS

2.1. Hyperspectral dataset

In this work, we analyzed hyperspectral images acquired by
the Hyperion sensor attached to the Earth Observing-1 (EO-
1) spacecraft. Hyperion acquires spectral reflectances of the
Earth’s surface in 242 unique spectral channels ranging from
357 to 2576 nm with a 10-nm bandwidth. The spatial resolu-
tion is approximately 30 m. We downloaded the hyperspec-
tral images from the USGS Earth Explorer, referred to as the
Level 1R data set. The following two steps have been per-
formed to convert raw digital numbers (DN) acquired by the
sensor to the surface reflectance: a) Radiometric calibration
and b) Atmospheric correction. As atmospheric effects can
distort the measured reflectance values, making it challeng-
ing to accurately interpret the surface properties, atmospheric
correction is crucial for obtaining accurate surface reflectance
measurements in remote sensing imagery [15]. In this work,
we applied QUick Atmospheric Correction (QUAC) [16] to
convert radiance into surface reflectance.

2.2. Soil moisture dataset

In order to validate estimated soil moisture content, ground-
measured soil moisture content is required. In this work,
we utilized the International Soil Moisture Network (ISMN)
database. ISMN is an international cooperation to establish
and maintain a global in-situ soil moisture database. ISMN
gathers in-situ soil moisture data sets, shared voluntarily
by different data organizations, and makes them accessi-
ble through a centralized web interface. ISMN comprises
multiple networks (77 networks as of August 2023), each
consisting of several stations. These networks range from
networks with a single station to networks with more than
400 stations, encompassing a variety of terrain types as well
as periods, and have variable levels of data update frequency.
All measurements of soil moisture submitted to the ISMN are
converted to volumetric soil moisture (m3/m3) [17].

2.3. Final dataset

Although extensive ground-measured soil moisture datasets
from ISMN are available, it remained challenging to obtain
the required hyperspectral remote-sensing imagery covering
the same spatial locations. Hyperion images were queried that
matched the date and geographical coordinates of the ground
truth stations from the ISMN networks. After filtering, we
identified 21 ground truth stations that met our requirements
(see Figure 1).

Fig. 1. Soil moisture ground truth stations. Blue stars denote
all stations, while red stars indicate the 21 stations that align
with Hyperion hyperspectral images, concentrated at 4 differ-
ent locations.

As the spatial resolution of the hyperspectral dataset is 30
meters, each pixel covers a significant area on the ground. In
this work, we assumed that each pixel corresponds to a spe-
cific station, whereas in reality, it encompasses a larger ge-
ographic extent. To minimize the uncertainty in the ground
truth moisture data, spectra for each station were produced by
averaging over a Region of Interest (ROI) of 3 × 3 pixels sur-
rounding the soil moisture station. For each station, between
4-11 time instances could be used. In total, 115 spectra were
obtained. For these spectra, the soil moisture content varies
between 0-88 %. Figure 2 illustrates the proposed methodol-
ogy.

3. RELEVANT METHODS

3.1. Sadeghi Model

The Sadeghi model (SM) [12], which is based on the Kubelka-
Munk two-flux theory, is a radiative transfer model that is de-
signed to relate the spectral reflectance of moist soil with its
water content. This model establishes a connection between
the reflectance of the moist soil, denoted as R with r, the ratio
between the light absorption coefficient (m−1) and the light
scattering coefficient (m−1) by the following equation:

R = 1 + r −
√
r2 + 2r (1)

Inverting the above equation yields:

r =
(1−R)2

2R
(2)

The soil moisture content is calculated in [12] as:

θ =
r − rd
rs − rd

× θs (3)



Fig. 2. Flowchart of the proposed method.

where θ and θs are the soil moisture contents of the moist and
saturated soils, respectively, and r, rd, and rs are the absorp-
tion/scattering ratios of the moist, dry, and saturated soils, re-
spectively. SM is applied on a single (in principle any) wave-
length. A wavelength of 2210 nm was suggested in [12].

3.2. Normalized Relative Arc Lengths (NRAL)

In [14], a robust supervised method was proposed to ac-
curately estimate the soil moisture content from spectral
reflectance. The method assumes that moist soil is a binary
mixture of air-dried and saturated soil samples. The method
further assumes that the data manifold produced by a number
of moist soil samples is a curve in spectral space between dry
(Rd) and saturated (Rs) soils (endmembers). Estimating the
moisture content of the moist soil sample then boils down to
determining the relative arc length between moist soil and the
two endmembers. To tackle spectral variability, the proposed
method projects each input spectra onto the unit sphere. The
arc length between any two spectra on the unit sphere is sim-
ply given by the angle between them and is given by the arc
cosine of their dot product. However, it is not assured that all
data points will lie on the arc connecting the two endmembers
after projection. To determine the true arc lengths, the law of

cosines was utilized. After some calculations, one obtains:

cos b1 =
sin(b1 + b2)√(

cos c′

cos c − cos(b1 + b2)
)2

+ sin2(b1 + b2)
(4)

where c and c′ denote the arc lengths between the moist soil
and the endmembers, while b1 and b2 denote the true arc
lengths between the moist soil and the endmembers, and b1+
b2 = arccos(RT

d Rs). The relative arc lengths were then com-
puted by:

â =

[
b2

b1+b2
b1

b1+b2

]
(5)

In the final step, the soil moisture content was estimated by
multiplying the relative arc length of the moist soil (â) by the
soil moisture content of the saturated soil (θs) (θ̂ → â× θs).

4. EXPERIMENTS AND RESULTS

In this work, NRAL is validated for its application in soil
moisture content estimation from remote sensing hyperspec-
tral imagery. In the experiments, we compare its performance
with the Sadhegi model (SM). Both methods require the spec-
tra of an air-dried soil and saturated soil sample and their
ground truth soil moisture content at each ground truth sta-
tion. While the SM is designed to work at any of the SWIR



wavelengths, we apply the reflectance value obtained at the
wavelength 2210 nm, as recommended in [12]. For NRAL
on the other hand, we utilized all spectral reflectance values
between 1100 and 1700 nm.

All quantitative comparisons are provided by the root
mean squared error (RMSE), i.e. the error between the es-
timated soil moisture content (θ̂) and the ground truth soil
moisture content (θ):

RMSE =

√√√√ 1

n

n∑
i=1

(
θ̂i − θi

)2

× 100 (6)

where n is the number of samples.

4.1. Experiment 1: Both dry and saturated samples are
obtained from the same station

As both dry and saturated (wettest) samples from the same
station are required, we checked all 21 stations and unfortu-
nately found that the moisture content of the driest sample at
most stations ranges from 4% to more than 41%. Only one
station contained a dry sample and was suitable. On this sta-
tion, only 6 spectra could be validated. In table 1, we show
the obtained RMSE between the ground truth moisture con-
tent and the estimated ones on this one station. As can be
observed, NRAL outperformed SM. The low error for both
methods is partially due to the fact that the moisture content
varies only between 0% and 2.89%.

Table 1. The results of different soil moisture estimation tech-
niques in terms of RMSE (%).

SM NRAL
Experiment 1 1.44 0.80
Experiment 2 5.9× 108 32.24

4.2. Experiment 2: Only a saturated sample is obtained
from each station

In [14], Fig. 7, it was demonstrated that the relationship
between the normalized relative arc length and the ground-
measured soil moisture content is the same for different soils.
This suggests that a data manifold generated by a number of
moist soil samples is a unique curve that connects the dry
and the saturated samples. Due to the high absorption power
of water in the SWIR optical region, the spectral reflectance
of the moist sample is dominated by water. This further sug-
gests that dry samples obtained from different stations (if they
would be available) are expected to be concentrated on one
extreme of this curve. In contrast, the position of the satu-
rated sample obtained from different stations can vary a lot
on this curve due to variability in soil grain size (texture) and
grain size distribution. To test this hypothesis and to expand

the usable dataset, we relaxed the requirements and used the
only dry sample in our dataset on all stations. The methods
then only require a saturated sample from each station.

We then predicted the moisture content of all 115 samples.
As expected, this relaxation deteriorates the performance of
both methods (see table 1). However, while SM leads to en-
tirely useless results, the results of NRAL still make sense.

In figure 3, a scatterplot shows the estimated moisture
content versus ground-measured moisture content. Because
of the unconstrained nature of the SM, the estimated moisture
content varied between -650% and 5815425700 %. For visu-
alization purposes, only estimations between 0% and 100%
are shown. For the SM, only 64 samples fulfilled this crite-
rion.

As can be observed, NRAL incorrectly estimated a soil
moisture content of 0% for a number of data points (points
on the y-axis). For these points, the method was not able
to spectrally differentiate between a dry and a moist sample.
A possible reason is that the ground truth soil moisture con-
tent was produced on bulk samples (approximately 5 cm thick
samples), while the spectral reflectance only contains infor-
mation from the top 100-200 µm thick layer of the soil. The
correspondence between the reflectance data and the actual
ground-truth soil moisture content is only correct when the
sample exhibits a high degree of homogeneity. Probably for
those samples, this is not the case.
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Fig. 3. Ground measured soil moisture content vs. estimated
soil moisture content of moist soils

5. CONCLUSION

In this work, we studied the potential of NRAL to estimate the
moisture content of soils from remote sensing hyperspectral
data. For that, a framework was designed to align Hyperion
hyperspectral images with ground truth soil moisture datasets.
The experimental results indicate that the moisture content of



moist soil can be accurately estimated from the remote sens-
ing hyperspectral image when dry and saturated samples of
the same spatial location are a priori available. When only sat-
urated samples are available, the results are still meaningful
compared to the Sadhegi model approach from the literature.
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