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Abstract—Because of its significant absorption power, espe-
cially in the shortwave infrared optical region, water dominates
the optical reflectance properties of water-bearing materials.
This allows us to study a material’s water-related features,
such as its moisture content from optical reflectance. In this
study, we proposed a framework to estimate soil moisture
content from PRISMA hyperspectral remote sensing data. The
proposed framework requires a dry endmember spectrum and an
endmember spectrum of high soil moisture along with ground-
truth moisture content, obtained from ground measurements. The
method takes into account the complex interaction of light with
soils, the large variation of environmental conditions, leading
to spectral variability and the soil-specific behavior of water.
The framework is extensively validated using ground-measured
soil moisture data from the International Soil Moisture Network
database. A total of 1418 PRISMA images corresponding to 151
ground stations were analyzed. From 518 retained images, a total
RMSE of 8.682 %, and R2 of 0.385 was obtained.

Index Terms—Hyperspectral, PRISMA, soil moisture content,
machine learning regression, remote sensing

I. INTRODUCTION

Soil moisture is an essential variable for the study of
the regional water cycle, agricultural irrigation management,
climate change and environmental monitoring [1]. As the
main source of water for agriculture and natural vegetation,
soil water plays a key role in crop production by serving
as a solvent for nutrients such as sodium, potassium, carbon,
nitrogen [2]. Soil moisture has a substantial impact on plants
and soil biota, which also affect the global nutrient cycles
and ecosystem services, such as crop productivity [3]. It also
plays a very important role in the exchange of mass and
energy between the Earth’s surface and the atmosphere [4],
[5], [6], [7], [8], [9]. In all these domains, timely and accurate
assessment of soil moisture content is critical [10], [11], [12].

The term ”soil moisture content” (SMC) refers to the
amount of water present on land surfaces in the pores of
the soil. Multiple factors, including soil type and nearby
vegetation, as well as meteorological conditions, influence the
amount of soil moisture [13]. In turn, a variety of soil and
plant dynamics are influenced by SMC [14].

Traditional methods, such as the thermo-gravimetric tech-
nique and the calcium-carbide approach require both field
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sampling and laboratory analysis [15]. Although these ap-
proaches have high accuracy, they also have disadvantages.
They are destructive, require complicated sampling procedures
and a large number of repeated experiments [16]. Commonly
used ground-based techniques (time-domain reflectometry, fre-
quency domain sensors, etc.) estimate volumetric SMC [17],
[18], [19]. Although these methods can be adapted to monitor
temporal variations of volumetric SMC locally (in a small
area), they cannot be applied to map the spatial distribution of
soil moisture on a large scale. Compared to these traditional
methods, remote sensing technologies make it possible to
monitor soil moisture near the surface on a large scale.

Microwave remote sensing allows continuous, large-scale
estimation of soil moisture, because moisture strongly affects
soil dielectric properties and longer wavelengths penetrate
relatively deeply into the ground [7], [8], [12]. Moreover,
surface vegetation has no influence on the longer wavelength
microwave radiation ([5]). Large-scale soil moisture data have
been collected by the Soil Moisture Active Passive (SMAP)
and Soil Moisture and Ocean Salinity (SMOS) satellite mis-
sions [19], from which soil moisture can be estimated on a
global scale [20]. Numerous algorithms have been developed
to estimate SMC from microwave radiation. However, the
resulting data products often exhibit limited spatial resolution
(10–20 km) [21], even when collected from airborne systems
([17]), making them less suitable for monitoring e.g., small
catchment areas ([19]). Moreover, information is needed about
the surface roughness and the dielectric constant of the soil.

Thermal infrared remote sensing uses wavelengths rang-
ing from approximately 3500 nm to 14,000 nm to estimate
SMC. The use of thermal remote sensing for estimating SMC
has been limited in the past due to high acquisition costs.
Currently, thermal images with high spatial and temporal
resolution are affordable due to advances in low-cost remote
sensing platforms such as unmanned aerial systems (UAVs),
which have contributed to understanding the variability of soil
conditions [22]. Often, the methods using thermal infrared
remote sensing images are empirical in nature and heavily
depend on local meteorological factors, such as wind speed,
air temperature, and humidity [23].

Water has a high absorption capacity in the shortwave
infrared (SWIR) (900-2500 nm) wavelength region. To exploit
this property of water, the reflectance in the 350–2500 nm
range has been used in optical remote sensing to estimate
SMC [9], [24]. Despite the limited penetration depth (a few
micrometers to a few millimeters) of the incident light in the
SWIR wavelength region, the reflected light acquired by a
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hyperspectral camera can be utilized to estimate the SMC of
the topmost layer of the soil at a high spatial resolution [23].
Unlike active microwave sensors, the main advantage of using
the optical part of electromagnetic spectrum is that solar radi-
ation acts as a natural illumination source. The optical remote
sensing techniques also have certain disadvantages: weather
conditions affect the images they produce and vegetation on
soil surfaces affects the accuracy at which SMC is estimated
[19].

In earlier work, the impact of soil moisture on reflectance
was mainly studied qualitatively. A decrease in reflectance
when artificially moistening soil, due to internal reflections of
the reflectance in the water film covering the soil particles, was
experimentally observed [25], [26], [27]. These observations
were made on unsaturated soils [8], [28]; specular reflection
can cause the reflectance of an oversaturated soil to increase.

Since then, different methods were developed to estimate
soil SMC from spectral reflectance [12], that can be grouped
into empirical methods and methods based on physical mod-
eling.

Empirical methods make use of spectral indices [12], [29],
[30], [31], statistical methods [32], [33], exponential functions
[8], [9], [34], wavelet analysis [35], and multivariate analysis
[36]. Most of these methods use a limited number of wave-
length bands to estimate SMC. It was concluded that SWIR
bands are better suited for estimating SMC, due to the strong
absorption bands of molecular water around 1400 nm and 1900
nm [7], [9].

Physical models describe the interaction of light with moist
soils. Most of the physical modeling techniques use the entire
VNIR and SWIR wavelength region (400-2500 nm) [37]. The
Bach model [38] and the MARMIT model [10] describe the
reflectance of a wet soil by using the soil reflectance of a dry
soil sample and a parameter L that denotes the active thickness
of the water layer. Inversion leads to an estimate of L. The
relationship between L and the SMC is then learned with
a supervised regression model using a training dataset with
known SMC. In [23], the Sadeghi model (SM) was derived
from the Kubelka–Munk theory. This model estimates SMC
of moist soil by using the spectral reflectance of a dry and
saturated soil sample.

These methods were mainly validated with data obtained
in a controlled laboratory environment. In field conditions,
the use of the entire wavelength range is required because
the strong absorption bands of molecular water around 1400
nm and 1900 nm are masked by atmospheric absorption.
Moreover, environmental conditions may vary a lot, and a large
variety of soil types is encountered. The existing methods are
not invariant to these variations. To address these challenges,
in recent work [39], we proposed a methodology (NRAL) that
is invariant to the changes in the acquisition and illumination
conditions and soil type. NRAL has been validated extensively
on laboratory data. Similar to SM, NRAL relies on the spectral
reflectance of a dry and maximally wet soil sample.

In this work, we will explore the potential of hyperspec-
tral remote sensing imaging for SMC estimation. Because
the developed NRAL approach entirely relies on the light-
absorption properties of water in the SWIR range, it is critical

to have access to a sufficient number of distinct wavelength
values in the range 1100-1900nm. This limits the possible
choices of remote sensing sensors. In preliminary work [40],
we have used Hyperion EO 1 hyperspectral images to estimate
SMC. Hyperion data have a number of disadvantages: they are
provided as level 1R data, requiring atmospheric correction
to transform to surface-level reflectance, and they contain a
lot of cloud cover. For this reason, in this work, PRISMA
hyperspectral data is applied. PRISMA images are of better
quality than Hyperion EO 1, with almost no cloud cover.

Validation is performed through a large number of SMC
measurements by ground stations from the International Soil
Moisture Network (ISMN) [41] and spectral reflectance data
was obtained from a large amount of spatially and tempo-
rally aligned PRISMA hyperspectral images. Preprocessing
involves the masking of vegetation pixels. The SMC estimation
is done based on the NRAL method. The remaining of this
manuscript is structured as follows: in the next section, we
elaborate on the preparation of the Prisma hyperspectral data
and the ground truth SMC data. In section III, the methodology
for the estimation of the SMC is described. In section IV,
the experiments and results are elaborated. Finally, section VI
concludes this manuscript.

II. DATA ACQUISITION AND PREPARATION

A. Soil Moisture Ground Stations
Soil moisture data were downloaded from the International

Soil Moisture Network (ISMN) [41]. The ISMN is a collabora-
tive effort to create and maintain a global in-situ soil moisture
database. This database is critical for evaluating and improving
global satellite products, as well as land surface, climate, and
hydrological models. Multiple national organizations globally
upload their in situ soil moisture measurements on the ISMN
portal for further research purposes. It is therefore the most
global source of ground-observed soil moisture data that can
be applied for our study. To date, ISMN groups 77 networks,
each with a different number of ground stations in different
locations. The number of stations per network varies from 1 to
460. Datasets from participating networks are harmonized in
both time (measurements translated to Coordinated Universal
Time (UTC)) and measurement units (stored in the database
as fractional volumetric soil moisture (m3/m3) [41].

Most stations use different types of HydraProbe sensors to
measure SMC. The HydraProbe sensor measures the soil’s
electrical properties to determine its water content. Because
water has a higher dielectric constant than dry soil, the amount
of water in the soil can be deduced from this. The ISMN
collects in situ soil moisture data using various data acquisition
procedures, such as sensor installation depths and installation
positions (vertical, horizontal), to monitor soil moisture at
a given depth or over a depth interval. Depending on the
monitoring station, depths range from the upper soil layer
(0–0.1 m) up to 2 m. Because hyperspectral remote sensing
images are applied, only measurements from the upper soil
layer will be relevant, and we only retain stations that provide
SMC data from the top 5 cm soil layer.

The frequency of soil moisture measurements varies from
network to network. Based on the frequency of data uploads,
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the networks can be classified as near real-time (almost daily),
regular (once a month), or irregular. Because the PRISMA
mission started in March 2019, we kept soil moisture mea-
surements from June 2019 to December 2023. To simplify
the process of finding corresponding hyperspectral images, we
kept only the stations that provide hourly SMC information,
regardless of whether they are real-time (daily for the entire
period), regular (including stations providing hourly data for
one day per month) or irregular updates. A total of 1,077
stations from 37 networks were retained.

B. PRISMA Hyperspectral Images
The ISMN measurements serve as reference SMC data to

validate the proposed approach for estimating SMC from hy-
perspectral remote sensing data. Real remote sensing spectral
reflectance data is obtained from the PRISMA hyperspectral
sensor. Launched on March 22, 2019, PRISMA is a medium-
resolution hyperspectral imaging satellite developed, owned
and operated by ASI (Agenzia Spaziale Italiana). The sensor
has a spatial resolution of 30 m. It is a pushbroom scanner
with a swath width of 30 km and a field of view of 1000 km
on either side. PRISMA records 239 distinct spectral channels
with a spectral interval from 400 to 2500 nm. It operates in 2
blocks: 66 bands in the VNIR and 173 bands in the SWIR.

In this study, L2D products were utilized. For this purpose,
geometric correction with Ground Control Points and a Digital
Terrain Model was added to the processing stages, resulting in
surface reflectance projected on a cartographic UTM system.

To correlate PRISMA images with the SMC measurements
from the reference ground station, the required Prisma images
need to be filtered based on the location and date of SMC mea-
surements by the ground stations of the selected 37 networks.
Moreover, images should be free of cloud cover. A QGIS
database was developed by matching the location of ground
stations with the polygon vector layer of all PRISMA images
available from the mission’s start until December 2023. This
layer also provides additional information about the images,
such as the date of acquisition, cloud cover, and coordinates
of the image’s four corners.

The images are first filtered by location and date. Ground
stations were linked to PRISMA images based on proximity.
All images that overlap with a ground station were selected.
It was then verified for each image whether a valid ground
station soil moisture measurement was available on the same
day and hour as the image acquisition date. If found, the
ground station SMC was selected at the same hour the satellite
passed overhead.

Then, cloud cover was checked and only images containing
less than 20% cloud cover were retained (more than 90% of
the PRISMA images have a cloud cover less than 20%).

A final filter is based on the number of images available for
each station. As will become clear from the next section, in
the proposed approach for estimating SMC from hyperspectral
data, moist soil is described as a binary mixture of an air-
dried and a maximally wet soil sample, with known spectral
reflectance (endmembers) and SMC. Because the endmember
SMC is obtained from the ground stations, only stations with 3
or more matching PRISMA images lead to usable datapoints.

After filtering, we identified 151 ground stations that met
these requirements. At each station, the number of matched
images ranged from 3 to 39. The spatial distribution of the
identified ground stations is shown in Fig. 1. Fig. 2 shows the
networks used and the number of ground stations they contain.
The three largest networks, SCAN, SNOTEL and USCRN
from which we select our stations, all update in real time and
provide hourly updates of SMC.

The final reference database is created, which contains the
image name, date and hour of acquisition, cloud cover, station,
network, and ground station soil moisture for that specific
hour. Then, the PRISMA images were downloaded. A total
of 1418 hyperspectral images with overlapping ground station
and SMC measurements were downloaded. Fig. 3 illustrates
the proposed acquisition methodology.

The VNIR and SWIR PRISMA L2D data cubes are stored
as (height,66, width) and (height,173, width), respectively,
where the image height and width varied between images.

C. Data Pre-processing
The SWIR data cube has 173 bands, but the first two are

bad bands and have been removed, leaving a total of 171
bands. The SWIR data cube was also accompanied by a SWIR
error matrix, showing errors in pixel radiance processing.
Bad pixels, showing an error value different from zero, were
masked.

Not all acquired images consist entirely of bare ground.
In particular, some images contain a significant amount of
vegetation, which can largely influence the estimated water
content in an image. To eliminate this effect, vegetation pixels
must be masked. To detect vegetation pixels, the Normalized
Difference Vegetation Index (NDVI) was applied. NDVI deter-
mines the difference between a near-infrared and a red band,
which is high for vegetation. Typically, bands around 660 nm
and 800 nm are selected, and a threshold of 0.9 for the NDVI
value is selected to determine vegetation pixels. The NDVI
was applied to all PRISMA VNIR data cubes and selected
vegetation pixels were masked.

Since the PRISMA satellite has a swath of 30 km, and
the images typically have a height and width of 1000 pixels
each or larger, the images cover a large area, and only the
region near the ground station can be considered. Furthermore,
to make the estimation more robust, we choose to average
the pixel spectra over an area near the ground station. On
all pre-processed images we use PRISMA’s Geolocation data
(latitude and longitude) to determine the distance between
each pixel and the actual ground station. Then all spectra
within a certain radius from the station are averaged. In the
experimental section, we describe the procedure to determine
the optimal radius over which the spectra should be averaged.
After averaging, one spectrum of 171 bands is obtained for
each image. A data file is created for each ground station, in
which the associated spectra are stored as columns. These files
are used for further processing.

III. SOIL MOISTURE CONTENT ESTIMATION
The spectral reflectance of the dry soil is highly dependent

on the grain size and its distribution. Addition of small
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Fig. 1. Location of Ground Stations selected from the International Soil Moisture Network (ISMN) (WGS 84 EPSG : 4326). Shapefile obtained from [42]
.

Fig. 2. Number of selected ground stations per network

amount of water on the dry soil can significantly impact the
overall reflectance of the mixture. The distribution of water
in the moist soil defines the reflectance of the mixture. The
distribution of water in the moist soil is partially embedded in
the spectral reflectance of the soil, when fully saturated, but
can vary significantly during drying because of the capillary
and adsorptive forces. It thus makes sense to relate the soil
moisture content of a wet sample relative to its dry and
saturated versions.

A. Sadeghi Model

One such method is provided by the Sadeghi model. The
Sadeghi Model is a physically based model for soil mois-

ture retrieval in the solar domain (350 - 2500 nm), based
on the Kubelka-Munk two-flux radiative transfer theory. In
the shortwave infrared bands, the theory indicates a linear
relationship between converted reflectance and soil water
content, providing an easy-to-use algorithm in these bands.
The accuracy of this model was evaluated and preliminary
verified using laboratory-measured spectral reflectance data
from various soils. Eq. 1 relates R, the soil reflectance, to
r, the ratio between the light absorption coefficient (m−1) and
the light scattering coefficient (m−1):

R = 1 + r −
√

r2 + 2 ∗ r (1)

Inverting the above equation yields:

r = ((1−R)2/2R) (2)

In [23], the following relation was derived:

θ

θs
=

r − rd
rs − rd

(3)

where θ and θs are the SMC of the moist and saturated soils,
respectively, and r, rd, and rs are the absorption ratios of the
wet, dry, and saturated soils, respectively.

The fundamental disadvantage of the SM is that it is limited
to a single (in theory any) wavelength. A wavelength of 2210
nm was suggested in [23]. This limitation prevents an accurate
estimation of the SMC. Furthermore, it does not allow to
correct for scaling effects due to environmental and acquisition
conditions, which makes this model unsuitable for application
in outdoor settings, let alone remote sensing.
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Fig. 3. Flowchart of the data acquisition and preparation

B. Normalized Relative Arc Lengths (NRAL)

In [39], a data-driven approach for soil moisture content
estimation was proposed, using the spectral reflectance of an
air-dried and a saturated soil sample. Moist soil is considered
as a binary mixture of the air-dried and saturated soil samples,
with known spectral reflectance (endmembers) and ground-
truth SMC. Because the data manifold generated by a number
of soil samples with varying SMC forms a (nonlinear) curve
in spectral space between the two endmembers, the position
of a moist soil sample on this curve, relative to the two
endmembers can be regarded as a proxy for its SMC. To
estimate the SMC by NRAL, the following 3 steps are taken:

1) Step 1: normalizing the spectra: To obtain the relative
position of a moist soil sample on the curve between the
two endmembers, its distance from the endmembers along
the curve (geodesic distance) is required. Because a curve
between two points can be approximated by a piecewise linear
curve, the entire length of the curve (i.e., the geodesic distance
between the two points) can be approximated by summing
the lengths of all straight lines (i.e., the Euclidean distances)
between intermediate points. The more intermediate points are
available, the better the approximation. However, to estimate
the SMC of a spectrum, typically only that spectrum and the
two endmembers are available, and thus the approximation
will be bad. In that case, the relative position can be obtained
simply by projecting all spectra onto the unit hypersphere,
i.e., by dividing each spectrum by its length (R → (R/∥R∥).
On the unit sphere, the arc length between any two spectra
is simply given by the angle between them and may be
determined by computing the arc cosine of their dot product.
So, no intermediate points are required. Another advantage of
the projection is that all spectra become invariant to scaling
effects, the most prominent effects caused by environmental
variations (e.g., illumination variations).

2) Step 2: projecting the spectra onto the arc between the
two endmembers: It is not guaranteed that after projection a
moist sample will lie on the arc linking the two endmembers
(see Fig. (4). In [39], the spherical law of cosines was applied
to obtain the following expression:

cos b1 =
sin(b1 + b2)√(

cos c′

cos c − cos(b1 + b2)
)2

+ sin2(b1 + b2)
(4)

Fig. 4. Red curve: arc connecting the dry endmember Rd and the saturated
endmember Rs; Blue curves: the arcs connecting the moist soil (y) with the
endmembers. c and c′ denote the arc lengths between y and the endmembers,
respectively. y′ denotes the projection of y on the arc, and b1 and b2 denote
the true arc lengths between y′ and the endmembers.

where b1 + b2 = arccos(RT
d Rs). Then, the vector containing

the relative arc lengths of the sample between the saturated
and the dry endmember is given by:

â =

 b2
b1+b2

b1
b1+b2

 (5)

3) Step 3: calibrating the relative arc length: A direct
relationship exists between the relative arc length and the
SMC. This relationship is expected to be the same for all soils
that can hold the same amount of water in their saturated state
form. This amount, however, can vary significantly between
soils. The relative arc length can be calibrated against the SMC
of the saturated soil, by multiplying the relative arc length
of the moist soil â with the SMC of the saturated soil (θs)
(θ̂ → â× θs). This way, a more general relationship between
the arc length and the SMC is obtained, which is similar for
different soils.
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Experiments on a large number of laboratory datasets have
shown that this normalized relative arclength is an accurate
approximation of the SMC and that the relationship between
the normalized relative arc length and the SMC is the same
for different soils (see [39], Fig. 7).

To be applicable for remote sensing data, the proposed
approach requires some modifications. First of all, it is highly
unlikely that situations will arise where the soil is fully
saturated. Step 3 of the procedure can be modified by cali-
brating the relative arc lengths against the SMC of the wettest
available soil spectrum. Each ground station has a number
of associated Prisma images. From each of these images,
an average spectrum is obtained. For each ground station,
the spectrum corresponding with the highest ground SMC
measurement of that station is chosen as the wet endmember.

Also for the dry endmember, some modifications are re-
quired. It cannot be guaranteed that a spectrum associated
with a ground station measurement of zero SMC corresponds
to a dry spectrum, and the smallest amount of water can alter
the spectrum dramatically. Therefore, the spectrum associated
with the smallest SMC of a station cannot be used as dry
endmember. The general relationship between the arc length
and the SMC is similar for different soils. This suggests that,
although the position of the wettest spectrum obtained from
different stations can vary a lot on this curve due to variability
in soil grain size (texture) and grain size distribution, dry
spectra obtained from different stations (if they would be
available) are expected to be concentrated on one extreme
of this curve. Therefore, we fix the dry endmember for all
stations, by selecting one spectrum from all spectra related to
zero SMC measurements of all ground stations.

The dry endmember is selected by visually inspecting and
comparing spectra to dry spectra of laboratory measurements.
Several dry spectra show similar behaviour and the particular
choice was observed to be not critical for the final results. In
this work, the dry endmember was chosen from station Jornada
Exp Range which is part of the SCAN network. The related
PRISMA image is selected on the date 2020/05/27, with a 0%
cloud cover. The ground station SMC for this date is 0%.

IV. EXPERIMENTS AND RESULTS
In this section, we perform several experiments to validate

the potential of the PRISMA hyperspectral remote sensing data
and the use of NRAL for estimating SMC. The measure to
indicate performance is the root mean squared error (RMSE),
i.e. the error between the estimated soil moisture content (θ̂)
and the ground station soil moisture content (θ):

RMSE =

√√√√ 1

n

n∑
i=1

(θi − θ̂i)2 × 100 (6)

where n is the number of spectra. Another applied measure is
the R2 measure, defined as:

R2 = 1−
∑n

i=1(θ̂i − θi)
2∑n

i=1(θ̂i− < θ >)2
(7)

where < θ > is the average ground station soil moisture
content.

A. Step by step illustration of NRAL on a single station

To illustrate the use of NRAL for SMC estimation, we
selected a number of spectra and their ground station SMC
from one particular station: ”Powder Mill”. Fig. 5(a). shows
the spectra. From the figure, it is clear that water dominates
the spectra in the entire SWIR wavelength region, offering
great potential to estimate water content, even though the
atmospheric water absorption bands have been removed.

The figure also shows that the ordering between the spectra
does not correspond to the ordering between their corre-
sponding ground station SMCs. This is due to scaling effects
arising from differences in environmental conditions between
the images. Step 1 of the NRAL procedure removes these
effects by normalizing the spectra (see Fig. 5(b)). The order of
the normalized spectra corresponds to the order of the ground
station SMC.

To compare the remote sensing situation to the laboratory
environment, in Fig. 6, we show measured and normalized
spectra and their corresponding ground truth water content of
a Goethite powder sample, measured in laboratory by a spec-
troradiometer. Although acquired in a controlled environment,
the general behaviour of the spectra is similar to the PRISMA
spectra.

Additionally, this first normalization step allows the deter-
mination of the relative position of the spectra between the
endmembers. In the first column of Table I, the cosine angles
between the spectra at the Powder Mill station and the dry
spectrum are given. The second step of NRAL projects the
spectra onto the arc between the dry and wet endmembers
to obtain the relative position of each spectrum (as shown
in the second column of the table). In the third step, these
relative positions are calibrated against the SMC of the wet
endmember, to obtain the estimated SMC and results are
shown in the third column. To compare, we also show the
estimated SMC by the Sadeghi Model, as shown in the fourth
column. The fifth column shows the ground station SMC.

B. Determination of the optimal spectral averaging radius

To determine the optimal radius from the station within
which the spectra are averaged, we chose the 8 stations with
the largest number of corresponding images (i.e., 230 PRISMA
images in total). We then chose different radii from the station
(radii of 1 km, 3 km and 5 km were chosen), and the spectra
were prepared following the steps outlined in Section II.
Vegetation pixels and bad pixels identified using the error
matrix were masked to avoid interference. The pixels within
the prescribed radii were then averaged to determine the final
spectra for each image. When averaging, a small number of
images was removed in case the area had insufficient soil
pixels.

Then, SMC was estimated. For the radii of 3 km and 5 km,
similar results were obtained with RMSE values of 7.1234 and
8.0131 respectively. For the 1 km radius, a RMSE of 8.1078
was obtained but several images had to be removed because
no soil pixels were available in a 1 km radius. The radius of
3 km was chosen as the optimal spectral averaging radius for
the entire data set.
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Fig. 5. PRISMA spectra for Powder Mill station

Fig. 6. Lab measured spectra of Goethite powder

Cosine angle (degree) Relative position Estimated SMC NRAL Estimated SMC Sadhegi Ground station SMC

0.000 0.000 0.000 0.000 0.000

8.426 0.326 0.096 -0.049 0.083

10.308 0.485 0.142 0.086 0.128

12.730 0.607 0.178 0.104 0.171

13.941 0.647 0.190 0.258 0.190

18.021 0.875 0.257 0.230 0.236

20.536 1.000 0.293 0.293 0.293
TABLE I

APPLICATION OF NRAL TO THE SPECTRA OF POWDER MILL STATION

C. Experiment on the entire data set

Initially, from 151 corresponding ground stations, 1418
PRISMA images with overlapping ground stations were down-
loaded. From these images, spectra were extracted as the
average of the pixels within a 3 km radius from the ground
station. Not all of the obtained spectra provide a reliable
SMC estimate. In particular, 4 groups of spectra are removed.
First, spectra corresponding to a zero ground station SMC
are removed, because their SMC estimation cannot be trusted.
Given the fixed dry endmember, their estimate will likely be
higher than zero. Second, when projected on the arc between

the endmembers, some spectra fall outside the endmember
range. NRAL projects these spectra onto either the dry or
wet endmember, which respectively overestimates or underes-
timates their SMC. These spectra are removed. Finally, the one
fixed dry endmember and the wet endmembers of each of the
151 stations are removed, because they produce by definition
a zero error. Ultimately, 518 spectra were retained. Table II,
shows in detail the selection of the spectra.

Fig. 7 shows the scatterplot between SMC from the ground
station and SMC estimated by NRAL, using the 518 selected
samples. A RMSE of 8.682, and R2 of 0.385 was obtained.
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Nr. of spectra

Initial nr. of spectra 1418

Spectra corresponding to zero ground station SMC 273

Spectra projected on dry endmember 79

Spectra projected on wet endmember 396

Endmembers (1 dry, 151 wet) 152

Final nr. of spectra 518
TABLE II

SELECTION OF SAMPLES

Fig. 7. Ground measured vs Estimated Soil moisture content

D. SMC maps

The goal of the previous experiment was to validate the
SMC estimation approach using ground station SMC mea-
surements. In this experiment, pixel-based SMC estimation
is applied to generate spatial SMC maps. As an example,
an image around the Station Harms Way is chosen, and the
region within a 3 km radius centered around the station is
mapped. Fig. 8 shows the RGB image of the chosen area. The
measured ground station SMC is 17.30, while the estimated
SMC based on the averaged spectrum is 19.10. Fig. 9 shows
the obtained SMC map without removing vegetation pixels by
NDVI and error pixels. The figure shows that SMC is higher
in vegetated areas and lower in barren areas. Fig. 9 displays a
saturated SMC value of 24.5 for a large region corresponding
to vegetation, which is the SMC of the wet endmember for
the Harms Way station. Figs. 10 shows the obtained SMC map
after removing vegetation and bad pixels. It can be observed
that a large amount of vegetation pixels has been masked.
However, still a significant amount of spectra fall outside the
endmember range. This shows that we were unable to remove
all of the vegetation, probably due to a large amount of mixed
vegetation-soil pixels.

V. DISCUSSION

The presented results should be put in perspective, and
the discrepancy between the remote sensing data estimates
and the ground station measurements can be attributed to a

Fig. 8. RGB image of the area selected to generate a soil moisture content
map

Fig. 9. SMC map generated without removing the error and vegetation pixels

number of factors, such as the quality of spectral reflectance
data, when acquired via remote sensing, the limited spatial
resolution, differences in environmental acquisition conditions,
atmospheric correction effects, the influence of vegetation, etc.

• First, the intrinsic limitation of spectral reflectance for soil
moisture estimation is that it only contains information
from a thin top layer of the soil, typically 100− 300µm.
Although only stations with a measured SMC of the top 5
cm soil layer are retained, there may be large discrepancy
with the estimated SMC. Also, the methodology is not
useful for applications where bulk information about soil
moisture is required.

• Reflectance is affected by atmospheric effects like gases
and aerosols. To mitigate these effects, the PRISMA
images that have been used have been processed at L2D
level. These are images that have been geometrically
and atmospherically corrected. Moreover, error pixels
are removed from the image, to produce more accurate
spectra.

• Cloud cover can lead to missing information in images.
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Fig. 10. SMC map after removing the error and vegetation pixels

For this reason, only PRISMA images were selected with
less than 20 % cloud cover. However, we observed that
the majority of the applied images have less than 1 %
cloud cover.

• Unlike laboratory experiments, where environmental and
acquisition conditions are controlled, in remote sensing
these conditions can vary significantly between different
acquisitions.The PRISMA images cover a wide range and
are acquired over a large time span, at different times
of the day and different seasons, leading to a broad
distribution of different solar elevations and azimuth
angles. These varying illumination conditions along with
topographic variations cause large spectral variability. As
most of these variations cause scaling of the spectra, these
effects are mitigated by the normalization step in the
proposed procedure.

• Due to the limited spatial resolution, pure soil pixels are
rare, and most pixels are mixtures of soil and vegeta-
tion. Because vegetation contains much more moisture
than soil, the chosen wet endmember spectrum may not
correspond well with the ground measured SMC, and
SMC is typically overestimated. This is observed in the
generated SMC map (Figs. 9 and 10). NDVI was used to
remove vegetation pixels as much as possible from the
image. The threshold of 0.9 for the NDVI value is chosen
such that pure vegetation pixels are removed. A lower
value would remove too many mixed soil-vegetation
pixels, leaving not enough soil pixels for the averaging
procedure. Many of the remaining pixels are mixed soil-
vegetation pixels. To limit the effect of mixed pixels,
the averaging procedure within a 3 km ratio around the
station is applied. From Table II, it is clear that even
then, the SMC is regularly overestimated, as a significant
amount of spectra are projected onto the wet endmember.

• Due to the limited spatial resolution, an image can be
expected to contain different soil types, each with its
own water-bearing properties. Even though this effect
can significantly affect the spectral reflectance, it can be
mitigated by calibrating all spectra corresponding to a

station against a distinct wet endmember of that station
(step 3 of the procedure). It has previously been shown
in laboratory experiments that this strategy led to SMC
estimations that are less sensitive to soil type.

• The fact that a significant amount of spectra are projected
onto the wet endmember emphasizes that the choice of
the wet endmember is crucial. The endmember spectrum
is chosen as the spectrum corresponding to the highest
SMC ground station measurement. Given the limited
spatial resolution and the averaging procedure, that spec-
trum may not correctly reflect the corresponding SMC
measurement, e.g., due to the influence of vegetation.

• As a consequence of all these effects, there may be
large deviations between the estimated SMC and the
ground station SMC. However, the results confirm the
correlation between remote sensing and ground station
measurements, with a global error of less than 10%.
Moreover, the data allow for a spatial mapping of the
SMC.

VI. CONCLUSION

In this work, we have explored the potential of hyperspectral
remote sensing for large-scale soil moisture content estimation.
PRISMA hyperspectral images were acquired near ground
stations of the International Soil Moisture Network. A pro-
cedure is then developed to estimate the soil moisture content
from the images and validate the results with the measured
soil moisture content from the ground stations. The results
demonstrate that soil moisture content can be estimated from
remote sensing reflectance in the SWIR range. The limited
spatial resolution requires special attention to vegetation and
mixed soil-vegetation pixels. The estimation approach requires
an endmember spectrum of high moisture content along with
its ground truth moisture content. Results indicate that the
quality of this endmember is crucial.
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