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Super-Resolution T1 Estimation: Quantitative High
Resolution T1 Mapping from A Set of Low Resolution
T1-Weighted Images With Different Slice Orientations

Gwendolyn Van Steenkiste,1* Dirk H. J. Poot,2,3 Ben Jeurissen,1 Arnold J. den Dekker,1,4

Floris Vanhevel,5 Paul M. Parizel,5 and Jan Sijbers1

Purpose: Quantitative T1 mapping is a magnetic resonance

imaging technique that estimates the spin-lattice relaxation
time of tissues. Even though T1 mapping has a broad range of

potential applications, it is not routinely used in clinical prac-
tice as accurate and precise high resolution T1 mapping
requires infeasibly long acquisition times.

Method: To improve the trade-off between the acquisition
time, signal-to-noise ratio and spatial resolution, we acquire a

set of low resolution T1-weighted images and directly estimate
a high resolution T1 map by means of super-resolution
reconstruction.

Results: Simulation and in vivo experiments show an
increased spatial resolution of the T1 map, while preserving a
high signal-to-noise ratio and short scan time. Moreover, the

proposed method outperforms conventional estimation in
terms of root-mean-square error.

Conclusion: Super resolution T1 estimation enables resolution
enhancement in T1 mapping with the use of standard (inver-
sion recovery) T1 acquisition sequences. Magn Reson Med
77:1818–1830, 2017. VC 2016 International Society for Mag-
netic Resonance in Medicine
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INTRODUCTION

The spin-lattice relaxation time, T1, is one of the funda-
mental tissue properties on which clinical magnetic reso-
nance imaging (MRI) contrast is based. As, at a fixed
field strength, T1 is an intrinsic biophysical property of
tissues (1,2), it is an important differentiating factor for

diseases such as multiple sclerosis (3), epilepsy (4) and

dementia (5), and for the characterization of tumors
(6–8). Furthermore, T1 is also used for contrast agent
uptake studies, as well as for the measurement of perfu-

sion (9,10) and blood volume (11). In a single clinical
T1-weighted image, the signal strength is not only char-
acterized by the tissue but also by the specific pulse

sequence parameters such as the inversion time or the
flip angle. As such, the intensity in a T1-weighted image

is not quantitative. The image provides only qualitative
information and diagnosis relies on visual interpretation.
To allow absolute quantification of T1, a set of T1-

weighted images with different contrast settings (i.e.,
sequence parameters) is required. From this set of
images, a T1 value can be estimated for each voxel.

Unlike conventional qualitative T1-weighted imaging,
quantitative T1 mapping allows objective comparison

across subjects, protocols, sites, and time (12).
The gold standard T1 sequence is the inversion recov-

ery (IR) spin echo (SE) sequence (13–16). In this
sequence, the longitudinal magnetization is inverted,

after which the magnetization is allowed to recover back
to its equilibrium state during an inversion time TI. The
recovery rate is characterized by the tissue-specific relax-

ation constant T1. A set of images, with a well-chosen
range of inversion times, can be used to quantitatively

estimate a T1 map. Unfortunately, the acquisition time of
the set of T1-weighted images needed for an accurate and
precise T1 map is not clinically feasible (16).

Most developments in T1 quantification sequences focus

on reducing the acquisition time of the T1-weighted images
either by improving the read-out method of the recovering
magnetization (17–22)or by using variable flip angles (VFA)

(23–26) to generate T1 contrast. In faster read-out methods,
such as fast/turbo spin echo (FSE/TSE) (21,22,27) or echo

planar imaging (EPI) (17,28), multiple k-space lines are
acquired after inversion of the longitudinal magnetization.
Unfortunately, the radio frequency (RF) pulses used in TSE

deposit a high energy, which limits the spatial resolution of
the images as specific absorption rate (SAR) limits are easily
exceeded (22). Furthermore, EPI images generally suffer

from spatial distortions due to off resonance effects.
Alternative T1 quantification schemes are the Look-

Locker (LL) method (18) and its variants (19,20), which

reduce the acquisition time by measuring multiple read-
outs after each inversion pulse. After inversion, the mag-
netization is progressively tipped into the transverse

plane using a series of small flip angles. Unfortunately,
the use of these small flip angles results in a lower
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signal-to-noise ratio (SNR) of the acquired images
(13,17). Moreover, repeatedly sampling the recovering
magnetization hastens its recovery (29). Consequently,
the measured longitudinal relaxation time will be shorter
than T1. As the measured relaxation time depends on
the flip angles, an accurate knowledge of these flip
angles is needed for an accurate T1 estimation. This
makes LL type sequences vulnerable to B1 field inhomo-
geneities (30,31).

A T1 map can also be estimated from spoiled gradient-
echo images acquired at two different flip angles
(23–26,32). These VFA methods are known for their abil-
ity to acquire high resolution T1 maps in a short acquisi-
tion time. However, to achieve sufficient accuracy and
precision, VFA measurements require a careful selection
of pulse sequence parameters as well as the knowledge
of the flip angles (33). The actual flip angles might differ
from their set values due to B1 field inhomogeneities,
making the T1 estimation prone to errors leading to a
loss of accuracy of the estimated T1 map (31,34,35). In
general, the choice of T1 quantification sequence is about
finding the right balance between precision, accuracy
and speed.

The acquisition time of IR SE and IR TSE can be short-
ened by acquiring fewer T1-weighted images. However,
this comes at the expense of decreasing the precision of
the T1 map, while precise T1 estimation is necessary as
the clinically observed differences in T1 values are typi-
cally only within a few percent. Alternatively, the acqui-
sition time can also be shortened by acquiring the T1-
weighted images at a lower spatial resolution. As a
bonus, increasing the slice thickness increases the SNR
of the T1-weighted images as the signal strength scales
linearly with the imaged volume. However, thicker slices
suffer from increased partial volume effects, making it
harder to distinguish small anatomical structures.

It has been shown that spatial super-resolution (SR)
reconstruction provides a better trade-off between acqui-
sition time, spatial resolution and SNR in structural and
diffusion MRI by reconstructing a high resolution image
from a set of anisotropic multislice images (36–46). The
reconstructed high resolution image benefits from the
high SNR of the low resolution images, which are
acquired with a high in-plane resolution and a low
through-plane resolution, that is, thick slices. The resolu-
tion is enhanced by acquiring different, complementary
resolution information about the object with each low
resolution image. This is ensured by acquiring the low
resolution images with a shift in the slice direction (39),
at three orthogonal slice orientations (36,37,44) or at
rotated slice orientations (41,42,46). In quantitative MRI,
SR reconstruction benefits from combining the parameter
model with the SR model. This has been shown in diffu-
sion MRI, where the diffusion model was combined with
the SR model (37,46), allowing the direct estimation of
the desired high resolution quantitative MRI parameters
from the low resolution images.

In this article, we propose a new SR method, called
super-resolution T1 (SR-T1), which combines T1 estima-
tion with super-resolution to reduce the acquisition time
of the T1-weighted images while providing a precise and
accurate high resolution T1 map. In our approach, a high

resolution T1 map is directly estimated from a set of ani-

sotropic low resolution multislice IR TSE images. Addi-

tionally, the proposed method incorporates a model-

based motion correction scheme. By means of experi-

ments performed on synthetic and clinical data, we

show that a precise and accurate high resolution T1 map

can be estimated out of a set of low resolution T1-

weighted images, of which the acquisition time is shorter

than that of a direct high resolution acquisition. An early

version of this framework was presented at the Annual

Meeting & Exhibition of the ISMRM in 2015 (47).

METHODS

In this section, the proposed SR-T1 estimation method

and its acquisition protocol as well as the experiments are

described. The SR-T1 model is based on a combination of

a T1-weighting model and an SR model. To derive this

model, we assume that the low resolution T1-weighted

images are acquired with a multislice IRSE sequence as

this is the gold standard quantitative T1 sequence and the

least vulnerable to B1 inhomogeneities (48).

Super-Resolution T1 Model

Let rm 2 RNr�1 (m ¼ 1; . . .;M , with M the number of

images) be a vector representing the Nr (unknown) inten-

sities rmðjÞ (with j the voxel index, j ¼ 1; . . .;Nr) of a

noiseless, high resolution T1-weighted MR image with

inversion time TIm, and sampled at the Nr 3D grid points

x 2 R3�Nr . Furthermore, let sm 2 RNs�1 be a vector of Ns

signal intensities smðlÞ (with l the voxel index,

l ¼ 1; . . .;Ns) of a noiseless low resolution T1-weighted

MR image at the same inversion time TIm and

sampled at the Ns 3D grid points y 2 R3�Ns . Finally, let

Am ¼ ðamðl; jÞÞ 2 RNs�Nr be a linear operator defining the

transformation of the high resolution image rm to the

low resolution image sm. Then, the signal magnitude in

voxel l of sm may be described as:

smðlÞ ¼
�����
XNr

j¼1

amðl; jÞrmðjÞ
�����; [1]

Introducing the homogeneous coordinates x0ðjÞ
¼ ðxTðjÞ1ÞT and y0ðlÞ ¼ ðyTðlÞ 1ÞT , the elements of the

projection matrix Am can be described as

amðl; jÞ ¼ v Um Mmx0ðjÞð Þ � y0ðlÞð Þ; [2]

with Um 2 R4�4 an (augmented) affine transformation

matrix that maps the points in the high resolution space,

ðxðjÞÞ, to the points in the low resolution space, ðyðlÞÞ;
Mm 2 R4�4 an (augmented) affine transformation matrix

describing motion, and x a point spread function (PSF).

The PSF x is defined by the MR image acquisition

method. For multislice acquisition methods that sample

a rectangular part of the k-space, x can be modeled as

the product of three 1D PSFs that are applied in the

three orthogonal directions aligned with the MR image

coordinate axes. The PSFs in the frequency and phase

encoding direction are defined by the rectangular part of

the k-space that is regularly sampled and can thus be
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modeled by Dirichlet, or periodic sinc, functions. The

through-plane PSF depends on the slice selection

method. Slice selection is often performed by applying

either a (windowed) sinc or a Gaussian shaped RF pulse,

so the sampling in the through-plane (i.e., slice) direc-

tion can be modeled by a (smoothed) box or a Gaussian

function, respectively (42). In this work, a windowed

sinc RF pulse was used, so the slice excitation profile

was modeled by a smoothed box function.
If the repetition time TR� T1, the (unknown) inten-

sities of the high resolution T1-weighted image rm can be

written in function of the spin-lattice relaxation time

T1ðjÞ, with T1 2 RNr�1, and a quantity rðjÞ, with

q 2 RNr�1, which is proportional to the proton density

(48):

rmðjÞ ¼ rðjÞ 1� 1� cos uð Þe�
TIm
T1ðjÞ

� �
; [3]

with h the inversion angle and TIm the inversion time at

which rm is acquired.
By combining Eqs. [1] and [3], the magnitude of the

low resolution T1-weighted image, sm, can be described

in terms of a high resolution T1 and q map:

smðl; T1;qÞ ¼
�����
XNr

j¼1

amðl; jÞrðjÞ 1� 1� cos uð Þe�
TIm
T1ðjÞ

� ������: [4]

The acquired low resolution images ~sm 2 RNs�1 are sub-

ject to noise. When a single coil MR acquisition system

is considered, the noisy voxel intensities ~smðlÞ can be

modeled as Rician distributed random variables (49,50).

For a multicoil acquisition, the data are governed by a

non-central chi distribution (49,51). When the SNR is

high enough (� 3), which is typically the case for the

low resolution voxels ~smðlÞ, both distributions are well

approximated by a Gaussian distribution (50–52). There-

fore, in this work we adopt the assumption of Gaussian

distributed noise.

Super-Resolution T1 Estimation

By combining all low resolution images, a high resolu-

tion q and T1 map can be estimated by minimizing the

squared difference between the acquired low resolution

T1-weighted images ~sm and the low resolution T1-

weighted images generated by the model (Eq. [4]):

T̂ 1; q̂ ¼ arg min
T1 ;q

XM
m¼1

XNs

l¼1

jj~smðlÞ � smðl; T1; qÞjj22

( )
; [5]

where the choice of the least squares criterion is moti-

vated by the Gaussian noise assumption. However, this

nonlinear least squares (NLS) problem is typically ill-

conditioned in the sense that its solution is very sensi-

tive to noise. To make the solution more stable and less

noisy, regularization terms that penalize large variations

in the estimated q and T1 map are included, leading to

the following regularized NLS estimator:

T̂ 1; q̂ ¼ arg min
T1;q

(XM
m¼1

XNs

l¼1

jj~smðlÞ � smðl; T1; qÞjj22

þl1jjDT1jj22 þ l2jjDqjj22

)
;

[6]

with D the 3D discrete Laplace operator, and k1 and k2

the corresponding weighting factors (41,46).

Implementation

In the in vivo experiments described in the Experiments

section, the transformation Um (Eq. [2]) was formed by

combining the transformation matrix provided by the

DICOM header information retrieved from the scanner

and a world to voxel transformation. The transformation

Um was combined with the transformation Mm into a

single affine transformation, which was applied effi-

ciently using a combination of shear transformations as

described by Poot et al. (42). The parameters constituting

the motion operator Mm were estimated by an iterative

model-based motion correction scheme (53,54). During

the first step of this iterative scheme, Mm was the iden-

tity matrix. First, each acquired low resolution image

was upsampled to the high resolution grid with the

adjoint operator A0m. Next, a T1 and q map were esti-

mated from these upsampled images by NLS fitting the

modulus of the model in Eq. [3] to the data with the

Levenberg-Marquardt algorithm. From these maps, low

resolution images were simulated using Eq. [4]. Finally,

these simulated images were rigidly aligned to the

acquired images based on mean squared differences min-

imization, which in turn updates Mm. All steps were

repeated until the relative decrease in the cost function

was smaller than 10�6. The motion operator Mm as well

as the T1 and q map that resulted from this procedure

were then used to initialize the SR-T1 estimation.
For both the in vivo and simulation experiments, the

regularization parameter k2 was chosen aiming at equal

contributions of l1jjDT1jj22 and l2jjDqjj22 to the penalty.

To do so, jjDT1jj22 and jjDqjj22 were calculated from the

initial estimates of the T1 and q map. The ratio between

those two values is then the ratio between k2 and k1. As

such, only one regularization weight, k1, remains, which

was chosen by experimenting with a range of values and

qualitatively (i.e., visually) determining the best result.

The values of k1 and k2 were then kept constant during

the reconstruction. The cost function was minimized

with a trust-region Newton method (55).
The algorithm was implemented using Matlab (MAT-

LAB2014a, The Mathworks Inc.m, Natick, USA) on a PC

with a hexa-core CPU @ 3.20 GHz with 64 GB of RAM.

The in vivo experiment described in the Experiments

section required around 19 GB RAM and the running

time was 4.58 hours.

Acquisition Protocol

In MRI, there is a consensus that resolution enhance-

ment is not achievable in the in-plane directions, as the

Fourier encoding scheme excludes aliasing in the fre-

quency and phase encoding directions (56). Therefore,

1820 Van Steenkiste et al.



the low resolution T1-weighted images are acquired with an

isotropic in-plane resolution and a slice thickness larger than

this in-plane resolution. In multislice acquisitions, increas-

ing the slice thickness improves the SNR of the acquired

images. Moreover, as less slices need to be acquired to cover

the region of interest (ROI), the acquisition time will be

reduced. Throughout this work, the anisotropy of the voxels

is quantified with an anisotropy factor a, defined as the ratio

between the slice thickness and the voxel size in the fre-

quency encoding and phase encoding direction.
To recover the high resolution information, the low

resolution images need to contain complementary infor-

mation about the object. Rotation in image space results

in a rotation in frequency domain. As such, acquiring

the low resolution images with different slice orienta-

tions ensures that each low resolution image covers a

different part of k-space. As argued by Plenge et al. (40),

this results in a more effective sampling of k-space than

by shifting the low resolution images by subpixel distan-

ces along the slice selection direction. In the latter case,

the narrow slice selection frequency band covers the

same part of the k-space for each low resolution image,

making the SR reconstruction rely heavily on recovering

the aliased high frequency in the slice encoding direc-

tion. While the proposed reconstruction method does

not imply restrictions on the acquisition setup and the

slice orientations, we chose to rotate the slice orienta-

tions around the phase encoding axis over sub-pixel

shifts in the slice encoding direction. By rotating the

slice orientation around the phase encoding axis, each

low resolution image has the same phase encoding direc-

tion. This assures that image artefacts, that might occur

in the phase encoding direction, such as blurring due to

a higher T2-weighing of the signal, will be the same for

each low resolution image, and thus will not introduce

misalignment between the low resolution images. The

number of slice orientations, n, was chosen as:

n ¼
hp

2
a
i
; [7]

with the operator ½�� denoting that n is rounded to the
closest natural number. By acquiring n images, rotated

FIG. 1. 3D view of the numerical phan-
tom and three orthogonal views of the

(a) ground truth (b) low resolution, (c)
initial estimate, (d) SR (l1 ¼ l2 ¼ 0), (e)

SR (l1 ¼ 1:0 � 10�3 and l2 ¼ 1:9 � 10�4)
T1 map (left) and q map (right). The
blue lines depict the borders of the

voxels.
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around the phase encoding axis in incremental steps of

180�/n, the k-space of the high resolution imaged object

will be filled with a minimal overlap and thus a minimal

number of slice orientations (40,46).

Experiments

The quality of the high resolution T1 and q maps esti-

mated with the proposed SR-T1 method was evaluated

with both synthetic and in vivo data sets. To improve

the numerical performance of the fitting algorithms, the

signal intensities of the simulated and in vivo data sets

were scaled so that the range of the estimated q map

equals that of the T1 map (57).

Numerical Simulations

The proposed SR-T1 estimator was first evaluated on a

simple numerical phantom (Fig. 1a). The 12� 12� 12

phantom consisted of distinct regions that are character-

ized by one out of two T1 values, corresponding to the

T1 of gray matter (1.607 s) and white matter (0.838 s)

(58). From this phantom, which served as ground truth,

two noiseless low resolution data sets, with size 12� 12

�3 were simulated. The first data set consisted of four-

teen T1-weighted images, each simulated with a unique

inversion time, TI 2 ½0:1; . . . ;3s� and all TI equidistant in

log space. An overview of the inversion times can be

found in Table 1. The second data set consisted of seven

subsets, each simulated with a different slice orientation

and each containing two T1-weighted images. Each of

the in total fourteen T1-weighted images had a unique

inversion time, which were equal to the ones used in the

first data set. From the first data set, a low resolution T1

map with size 12� 12� 3, was estimated using a voxel-

wise T1 estimation. From the second data set, a high

resolution T1 map with size 12� 12� 12, was estimated

twice using SR-T1: once without regularization

(l1 ¼ l2 ¼ 0 in Eq. [6]) to show that the parameters are

identifiable and once with regularization, l1 ¼ 1:0 � 10�3

and l2 ¼ 1:9 � 10�4 to assess the smoothing caused by the

regularization.

Whole Brain Simulations

Noiseless 434� 362� 362 T1 and q maps were generated
by combining an anatomical model of a normal human
brain (59) with T1 and q values measured in human
brain tissue at 3T (58,60). For the three main tissues the
used T1 values were: 0.838 s for white matter, 1.607 s for
gray matter and 4.3 s for cerebrospinal fluid (CSF). The q
map was normalized with the maximum value of q such
that rj 2 ½0; . . . ;1�. From these maps, 50 T1-weighted
images, with size 120� 120� 120, were simulated each
with a different TI, where the TIs were selected in the
interval ½0:1; . . . ;15�s, equidistantly spaced in the log
space. Next, from these T1-weighted images a 120� 120
�120 T1 and q map were estimated by voxel-wise NLS
fitting using the model in Eq. [3]. These maps served as
the ground truth maps from which two low resolution
T1-weighted data sets, with noise standard deviation
0.02 and size 120� 120� 30, were simulated using Eq.
[1]. The SNR, defined as the ratio of the spatial mean to
the standard deviation of the signal, was calculated in a
small homogeneous white matter region in a T1-weighted
image simulated with TI ¼ 100 ms and found to be equal
to 115. Both data sets were composed of 14 T1-weighted
images, each simulated with a unique inversion time,
equidistant in the log space. An overview of the inver-
sion times can be found in Table 1. In the first data set,
LR1, all low resolution T1-weighted images were simu-
lated with the same slice orientation. As such, this data
set corresponds to a conventional T1-weighted data set
with a low, anisotropic resolution. The second data set,
LR2, was simulated according to the proposed SR acqui-
sition setup. This data set consisted of seven subdata
sets, each containing two T1-weighted images. Each sub-
set was simulated with a different slice orientation by
rotating about the phase encoding axis in incremental
steps of 25:7

�
.

Both data sets were simulated 50 times, each time
with a different noise realization. From each LR1 data
set, a 120� 120� 120 T1 map was estimated by trans-
forming the low resolution T1-weighted images to the
120� 120� 120 high resolution grid with the adjoint
operator A0 prior to applying the conventional voxel-
wise T1 estimation method. From each LR2 data set, a
120� 120� 120 T1 map was estimated using the pro-
posed SR-T1 estimation method with l1 ¼ 50 and
l2 ¼ 1:32.

In Vivo Data

To evaluate the proposed SR-T1 method with human in
vivo data, several T1-weighted data sets of a healthy 28-
year old male volunteer were acquired with a Prismafit
(3T; Siemens AG, Siemens Medical Solution, Erlangen,
Germany) using a 32-channel head coil. To limit the
scan time per session, the data sets were acquired during
three different scan sessions. One data set was acquired
with VFA, the other data sets were acquired with an
interleaved multislice IR TSE, with turbo factor 10, with-
out slice gap and with 100% sampling. Each IR TSE data
set was acquired at fourteen different inversion times,
which were the same as those used in the simulation
experiments (Table 1). The slice thickness of the

Table 1
Overview of the Slice Orientations and Corresponding Inversion

Times TIm.

Orientation TIm (ms)

S 100

624
S >T 25.7� 370

2310

T >S�38.6� 220
1370

T >S�12.9� 130
811

T >S 13.0� 480

3000
T >S 38.6� 284

1780

S >T�25.7� 169
1050

T¼ transversal and S¼ sagittal
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anisotropic low resolution data set was chosen to have
whole brain coverage without exceeding SAR limits. A

detailed overview of the acquisition parameters of these

data sets can be found in Table 2. During the first scan

session the following data sets were acquired:

� LR1: 1� 1� 4 mm3 IR TSE data set. All fourteen T1-
weighted images were acquired with the same slice

orientation.
� LR2: 1� 1� 4 mm3 IR TSE data set consisting of

seven subsets, each including two T1-weighted

images. Each subset had a different slice orientation,

which was rotated around the phase encoding direc-
tion in incremental steps of 25:7

�
. The slice orienta-

tions are given in Table 1. Each of the in total 14

low resolution T1-weighted images was acquired at a

different inversion time (Table 1).
� VFA: 1� 1� 1 mm3 VFA data set consisting of two

T1-weighted images acquired with the flip angle set
to 4� and 21�.

During the second scan session the following data sets

were acquired:

� LR2a and LR2b: Two data sets were acquired with

the same acquisition setup as the one used for the
LR2 data set from the first scan session.

During the third scan session the following data set

was acquired:

� HR: 1� 1� 1 mm3 IR TSE T1-weighted data set. To

limit acquisition time and SAR deposit, only 40 sli-
ces were acquired in the sagittal direction.

From the LR1 data set, a T1 and q map were estimated

with the following conventional T1 estimation proce-

dure. First, the acquired images were corrected for

motion by rigid registration using mutual information.
Next, the corrected images were upsampled to a 1� 1

�1 mm3 grid with the adjoint operator A0. Finally, a 1

�1� 1 mm3 T1 and q map were estimated using a voxel-

wise NLS fit optimized with the Levenberg-Marquardt

algorithm. The same procedure, without the upsampling,
was used to estimate a 1� 1� 1 mm3 T1 and q map from

the HR data set. The proposed SR-T1 method

(l1 ¼ 1:0 � 10�3;l2 ¼ 0:6 � 10�3) was used to estimate 1

�1� 1 mm3 T1 and q maps from the data sets LR2, LR2a,
and LR2b. From the VFA data set, a 1� 1� 1 mm3 T1

map was calculated using a voxel-wise LS fit (25).
The T1 and q maps estimated from the different data

sets were compared qualitatively by visual inspection.

Furthermore, the spatial resolution of the different T1

maps was assessed by measuring the average width over

25 edge profiles. The edge width, defined as the width

(in high resolution voxels) from 10% to 90% of the edge

height, was measured by least squares fitting of the

sigmoid function (39):

f ðqÞ ¼ a1 þ
a2

1þ exp ð�a3ðq� a4ÞÞ
; [8]

where it is easy to show that the edge width is given by

4:4=a3. The SNR of the T1-weighted data sets was com-

puted in a uniform region in the corpus callosum of the

T1-weighted image acquired with TI ¼ 100 ms. For the

data set VFA, the SNR was computed in the image

acquired with flip angle set to 21�. Additionally, to

assess the precision of the T1 estimation, the standard

deviation of the estimated T1 maps was computed in a

uniform region in the corpus callosum.

RESULTS

Numerical Simulations

Figure 1 shows the ground truth phantom, three orthogo-

nal views of the ground truth T1 and q map (Fig. 1a) and

the T1 and q map for the different estimation methods.

In the low resolution, T1 and q map (Fig. 1b) the partial

volume effects are so large that in the middle slice the

structure of the phantom is not visible. In the initial esti-

mated T1 map (Fig. 1c), the structure of the phantom is

visible in the middle slices. However, the edges between

the different tissues are blurred. In the corresponding q
map, the structures are not visible. Using SR-T1 clearly

enhances the spatial resolution of the estimated T1 and q
map (Fig. 1d,e): they both approximate the ground truth

very well. In the reconstruction without regularization

(Fig. 1d), the edges between the two different tissues are

sharp. Although the use of regularization (Fig. 1e) does

result in a minor smoothness of the edges between the

tissues, it is clear that SR-T1 still outperforms the initial

estimation and the low resolution estimation.

Synthetic Whole Brain Simulations

In Figure 2, an orthogonal view of the T1 and q maps

estimated from the GT data, the LR1 data and the LR2

data are shown. The respective root-mean-square error

(RMSE) maps are shown in the second row. In Table 3

the RMSE, absolute bias and standard deviation averaged

over the white matter voxels (WM) and the gray matter

Table 2
Overview of the Relevant Acquisition Parameters of the Clinical Data Sets.

Data set

In-plane

resolution (mm2)

Slice

thickness (mm)

Acquisition

matrix Slices

Brain

coverage (%) n M TR (ms) TE (ms)

Scan

time (min )

LR1 1 � 1 4 256 � 256 40 100 1 14 5000 8.8 28

LR2 1 � 1 4 256 � 256 40 100 7 14 5000 8.8 28
LR2a 1 � 1 4 256 � 256 40 100 7 14 5000 8.8 28
LR2b 1 � 1 4 256 � 256 40 100 7 14 5000 8.8 28

VFA 1 � 1 1 256 � 256 144 100 1 – 10 2.0 7
HR 1 � 1 1 256 � 256 40 28 1 14 6000 11 30

n is the number of slice orientations and M the number of inversion times.
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voxels (GM) are given. The voxel-wise estimated T1 and
q maps (LR1 in Fig. 2) suffer from high partial volume
effects due to the low spatial resolution of the T1-
weighted images. The SR-T1 estimation enhances the
resolution of the T1-weighted images from data set LR2.
In the resulting T1 and q map (super resolution in Fig. 2),
fine structures are clearly visible, while in the voxel-wise
estimated T1 and q map the fine structures are blurred.
This is supported by the RMSE: overall the RMSE is

smaller for the T1 and q map estimated with SR-T1 than

for the voxel-wise estimated T1 and q map. Although the

standard deviation is higher for the SR-T1 estimation than

for the voxel-wise estimation, the bias is much lower.

In Vivo Data

In Table 4 the SNR of the acquired data sets is given. As

the low resolution data sets (LR1, LR2, LR2a, and LR2b)

FIG. 2. Transversal slice of the T1,
RMSE T1, q and RMSE q maps from

the conventional T1 estimation on LR1
and the SR-T1 estimation on LR2.
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are acquired with the same spatial resolution, their SNR

should be the same. Additionally, Table 4 also reports

the spatial mean, standard deviation and SNR (defined

as the ratio of the spatial mean to the standard deviation)

calculated in a uniform region of the corresponding esti-

mated T1 map. There is a small loss in precision for the

SR-T1 estimation method compared with the conven-

tional voxel-wise NLS estimation from T1-weighted

images with a low spatial resolution. Note, however, that

as the low resolution data had a different acquisition

time than the high resolution data, no direct comparison

can be made between the standard deviations and SNR

of the different T1 maps. However, taking into account

that the standard deviation is inversely proportional to

the square root of the scan time, and that only 28% of

the brain was covered within 30 minutes of scan time, it

is clear that the standard deviation of the estimated HR

T1 map would be almost four times as low as the one

given in Table 4 when the whole brain would have been

acquired within 30 minutes.
Figure 3 shows a transversal and coronal slice of the q

and T1 map estimated from the data set LR1 and from

the data set LR2. Due to the low spatial resolution of the

T1-weighted images, many partial volume effects occur

in the conventional voxel-wise estimated T1 (Fig. 3a) and

q (Fig. 3c) map from data set LR1, blurring fine struc-

tures. Estimating the T1 (Fig. 3b) and q (Fig. 3e) map

with SR-T1 enhances the spatial resolution of the T1 and

q map, reducing the partial volume effects. As a result,

the interfaces between the different tissue types are more

clear. This can be appreciated even more from the zooms

shown in Figure 3. A transversal zoom on the caudate

nucleus-head, the putamen and the globus pallidus is

shown. In the zoom on the T1 and q map estimated from

the data set LR1, the three different structures are hard

to distinguish from each other. In the T1 and q map esti-

mated with SR-T1 from the data set LR2, the interface

between the different tissue types is more clear, making

it easier to outline the different structures. The same can
be seen in the coronal zoom on the cerebellum. The

interface between white and gray matter is better defined

for the SR T1 map than for the LR1 T1 map. This is con-

firmed by the edge width measurement. The average

edge width for the data set LR1 is 5.3 voxels and for data

set LR2 2.1 voxels.
In Figure 4, a sagittal slice from the T1 map estimated

with SR-T1 from the data set LR2a (Fig. 4b) is compared

with one from the T1 map which was voxel-wise esti-

mated from the data set HR (Fig. 4a). In both slices, the
same level of fine structures can be observed. This is

supported by the edge width which is 2.1 voxels for the

data set HR. Moreover, visually, both T1 maps show a

similar range of T1 values. This is supported by the aver-

age T1 value in a homogeneous region in the corpus cal-

losum which is given in Table 4.
Figure 5 shows three orthogonal views of the T1 maps

estimated using SR-T1 from the data set LR2a (Fig. 5a)

and the data set LR2b (Fig. 5b). Visually, both T1 maps

exhibit the same level of details. In Figure 5, the average
and standard deviation of the T1 values within three

homogeneous regions (one in each tissue type), is

reported. It is clear that both T1 maps show a similar

range of T1 values in the different tissues.
Figure 6 shows three orthogonal slices of the T1 map

estimated from the VFA data set and of the T1 map esti-

mated with SR-T1 from the LR2 data set. Although the

VFA data set is acquired at an isotropic 1� 1� 1mm3

resolution, small structures cannot be distinguished

properly due to the noise and image artefacts.

DISCUSSION

Increasing the spatial resolution in quantitative T1 map-

ping is challenging because of the trade-off between the

spatial resolution, the acquisition time, and the SNR. To

improve this trade-off, we proposed a new SR acquisi-

tion and reconstruction method specific for quantitative

T1 mapping, SR-T1. The reconstruction method combines
SR reconstruction and T1 estimation into one integrated

approach, enabling the direct estimation of an isotropic

high resolution T1 map from a set of anisotropic low

Table 4

For Each Data Set (Column 1), the SNR of the Acquired T1-Weighted Data (Column 2), the Applied Estimation Method (Column 3), the
Spatial Average (Column 4) and Standard Deviation (Column 5) of T1 in a Uniform Region of the Corpus Callosum in the Corresponding
Estimated T1 Maps, Are Given

Data set SNR acquired data Estimation method Average T1 (ms) Std T1 (ms) SNR T1

LR1 15.75 voxel-wise NLS 476 23.86 19.95
LR2 15.75 SR-T1 475 32.10 14.80

LR2a 14.91 SR-T1 483 33.00 14.64
LR2b 15.01 SR-T1 477 34.33 13.90

VFA 24.98 voxel-wise NLS 1040 94.22 11.04
HR 5.30 voxel-wise NLS 487 35.94 13.55

Column 6 gives the SNR of the T1 maps, which is calculated by dividing the average T1 by the std of the T1 estimator. Note that only

the data sets starting with ’LR’ have the same acquisition time. As the acquisition times of the VFA and HR data set are different, the
standard deviations of these T1 maps cannot be compared directly.

Table 3
RMSE, Bias and Standard Deviation (std) of the T1 and q Estima-

tor Averaged Over the White Matter (WM) and Gray Matter (GM)
Voxels.

WM LR1 WM LR2 GM LR1 GM LR2

RMSE T̂ 1 (s) 0.119 0.040 0.203 0.097

Bias T̂ 1 (s) 0.119 0.036 0.203 0.092
Std T̂ 1 (s) 0.003 0.015 0.002 0.021

RMSE q̂ 0.010 0.008 0.029 0.014
Bias q̂ 0.009 0.005 0.028 0.012
Std q̂ 0.002 0.005 0.002 0.005
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resolution T1-weighted images. A direct acquisition of a
set of high resolution T1-weighted images needed for

whole brain T1 mapping is infeasible due to the SAR
limitations. By increasing the slice thickness and thus
decreasing the number of slices needed for whole brain
coverage, the energy deposited by the pulses decreases.

As such, by acquiring anisotropic low resolution T1-
weighted images, the SAR limit is not exceeded.

Using simple numerical simulations we have shown
that the specific acquisition scheme and iterative recon-
struction can recover high resolution information. These
results are confirmed by the whole brain simulation,
where the T1 maps estimated from two low resolution data
sets are compared with the ground truth T1 map. Both low
resolution data sets have the same acquisition time as they
have the same resolution and number of inversion time.

They differ only in the acquisition geometry as one of the
data sets is simulated with different slice orientations. The
results show that the SR-T1 method enhances the resolu-
tion and improves the RMSE of the T1 and q estimator,
compared with a conventional voxel-wise T1 estimation.
The simulation experiment also shows an increase in the
standard deviation when SR-T1 mapping is used over con-
ventional voxel-wise T1 estimation. By increasing the regu-
larization strength (k1, k2) the standard deviation will
decrease (increase of precision), however, this comes at
the cost of an increased bias and blurring of the fine struc-
tures. This same trend is observed in the in vivo experi-
ment. Both visual comparison with a conventional low
and high resolution data set as well as the computation of
the average edge width, show that SR-T1 improves the spa-
tial resolution of the acquired low resolution T1-weighted

FIG. 3. Transversal and coronal view
and zoom in of the T1 maps and q
maps estimated from (a, c) data set
LR1 and (b, d) data set LR2.
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images. The in vivo experiments also show that multiple
experiments with the same setup, result in similar T1

maps, showing that the proposed SR-T1 method provides
reproducible results.

In this article, we demonstrated that SR-T1 can
improve the resolution while maintaining the same

acquisition time and SNR of the acquired images. Alter-

natively, the proposed SR-T1 technique can also be

used to shorten the acquisition time or to improve the

SNR of the estimated T1 maps. Improving the acquisi-

tion time would enable quantitative T1 mapping in clin-
ical routine. As the anisotropic T1-weighted images are

acquired with less slices, their acquisition time will be

shorter. If the same number of inversion times is used
as for the isotropic T1-weighted images, the overall
acquisition time decreases. The isotropic resolution
information is then recovered by the iterative reconstruc-

tion. By improving the SNR of the acquired images, the
precision of the T1 estimator increases. Because of their

thick slices, the anisotropic low resolution T1-weighted

images have a higher SNR than isotropic high resolution

T1-weighted images. Furthermore, as the acquisition time

of the low resolution T1-weighted images is shorter, more

inversion times can be acquired within the same overall
acquisition time than when high resolution T1-weighted

images are used.

FIG. 5. Transversal, coronal and sagittal
slice of the SR-T1 T1 map estimated

from (a) data set LR2a and (b) data set
LR2b. Mean and standard deviation

values of T1 are calculated in the areas
marked by the differently colored
circles. The pink circle lies in the white

matter, the green circle in the CSF and
the blue circle in de caudate nucleus.

FIG. 4. Sagittal slice of (a) the HR T1 map and (b) the SR-T1 T1 map estimated from data set LR2b.
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For both the conventional NLS estimator and the pro-

posed SR-T1 estimator, the T1 values estimated from the

data acquired with the IR TSE sequence are lower than

those estimated from the VFA data and those found in

literature (58,61,62). Note, however, that the T1 values

reported in literature are quite diverse and depend on

the acquisition settings such as echo train length and the

number of acquired slices (58,63). Possible reasons for

the underestimation of T1 are magnetization transfer

effects, interslice cross-talk, inversion profile effects,

short TR, perfusion effects (22,31,63,64). However, the

factors leading to the different in vivo T1 relaxation

times still have to be thoroughly investigated. Our simu-

lations show that the SR-T1 estimator is accurate and

precise. Moreover, comparing a T1 map estimated with

SR-T1 with a T1 map estimated with a conventional tech-

nique (upsampling followed by voxelwise fitting), shows

that comparable T1 values are found. Thus the bias is

not caused by the proposed SR-T1 estimator but by the

incapability of the signal model to describe the signal

accurately. As suggested by Zhu et al. (22), this bias can

be significantly reduced by a correction scheme based on

linear regression which calculates the “true” T1 from the

underestimated T1, which, however, is outside the scope

of this work.
In the in vivo experiments, we chose to combine the

proposed SR-T1 with the widely available IR TSE

sequence. However, the proposed method can also be

combined with faster T1 sequences, such as IR TSE with

time-efficient slice ordering (22) or simultaneous multi-

slice techniques (65), which would shorten the acquisi-

tion time.

CONCLUSION

In this article, we proposed SR-T1, a new T1 estimation
method which combines SR reconstruction with T1

parameter estimation into one integrated estimation
method and produces a high resolution T1 map directly
from a set of low resolution T1-weighted images. Further-
more, a specific acquisition scheme for these low resolu-
tion T1-weighted images, using a stock sequence, was
provided. The proposed technique enables high resolu-
tion 1� 1� 1mm3 whole-brain IR T1 mapping, previ-
ously infeasible with IR due to SAR limitations. As the
technique is complementary with other acquisition
schemes, faster T1 sequences could be combined with
SR-T1, which would enable the use of quantitative high
resolution T1 mapping through SR-T1 in clinical routine.

ACKNOWLEDGMENT

The authors would like to thank Steven Baete for his val-
uable input on the acquisition settings.

REFERENCES

1. Bottomley PA, Hardy CJ, Argersinger RE, Allen-Moore G. A review of

1H nuclear magnetic resonance relaxation in pathology: are T1 and

T2 diagnostic? Med Phys 1987;14:1–37.

2. Oros-Peusquens AM, Laurila M, Shah NJ. Magnetic field dependence

of the distribution of NMR relaxation times in the living human

brain. Magn Reson Mater Phys 2008;21:131–147.

3. Truyen L, van Waesberghe JHTM, van Walderveen MAA, van Oosten
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