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a b s t r a c t

Image warping is a popular tool for modeling deformation and motion in digital images. Inversion
of such models requires two related operators: adjoint and differentiated image warping. Many
applications rely on these operators, often through ad hoc and approximate implementations, which
leads to a suboptimal quality and convergence speed, and hinders development of and comparison
across different applications.

In this work, we present an open-source image warping toolbox called ImWIP (Image Warping for
Inverse Problems) that overcomes these issues. It implements differentiable image warping operators,
together with their exact adjoints and derivatives (up to floating point errors). ImWIP is demonstrated
on examples from X-ray computed tomography and magnetic resonance imaging, and is shown to
improve both reconstruction quality and convergence speed compared to state-of-the-art warping
methods.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Image warping is a transformation that maps the positions in
digital image to new positions, thereby changing the geometric
roperties of the image rather than its pixel values [1–3]. The
hange in the position of pixels is dictated by a Deformation
ector Field (DVF), which is often a function of a few param-
ters, such as an affine or rigid transformation. Various image
rocessing packages provide image warping functionalities, but

∗ Corresponding author at: imec-Vision Lab, Department of Physics,
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E-mail address: jens.renders@uantwerpen.be (Jens Renders).

lack the necessary tools for inversion. These tools include the
adjoint action of image warping, to allow reconstruction of an
image from a model that includes an image warping operator,
and the derivative of image warping, to allow reconstruction of
the DVF using gradient based techniques.

Image warping operators are used to model motion in various
image reconstruction problems [4–9]. In these applications, ad-
joint image warping is used to solve for the unknown, unwarped
image. It can be approximated by applying a regular image warp
along a negative DVF, which is fast but inaccurate for large magni-
tude DVFs, or by a warp along an approximate inverse of the DVF,

which is more accurate but computationally more expensive.
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Applications where an inverse problem is solved for a DVF
nclude general optical flow [10–12] and other registration prob-
ems [13,14] including rigid/affine motion estimation [15,16]. In
his case, the derivative of the image warping operator towards
he DVF is needed, which is usually implemented using finite dif-
erence approximations, neglecting the resampling method used
uring image warping. There are also applications in which both
he image and the motion or distortion are unknown, and have to
e reconstructed simultaneously [17–21], using both adjoint and
ifferentiated image warping in the reconstruction.
To our knowledge, neither adjoint nor differentiated image

arping operators are implemented in current image process-
ng toolboxes. This leads to ad hoc implementations in each
pplication, which hinder the development of new algorithms
nd comparisons across different fields. Moreover, the current
mplementations are often based on approximations. Few papers
nvestigate how these approximations compare to the exact im-
lementation (up to floating point errors) of the corresponding
peration. In [22], it is shown that exact differentiated image
arping can significantly improve 2D optical flow algorithms, yet
o algorithm is provided and the work has not been extended to
D or other applications. In [23,24], 3D image warping is applied
n a deep learning framework, but is restricted to linear or nearest
eighbor interpolation, for which exact derivatives do not exist.
In this work, we present ImWIP (Image Warping for Inverse

roblems) [25], an open-source toolbox that provides parallelized,
atrix-free implementations of approximate and exact algo-

ithms for adjoint and differentiated image warping. ImWIP en-
bles the modular design of algorithms that solve for unknown
mages or DVFs in the context of motion/deformation in 2D
nd 3D. The toolbox is demonstrated on examples from X-ray
omputed tomography and magnetic resonance imaging.

. Software description

Image warping using multivariate splines (usually linear or
ubic) is a linear operator RN

→ RN in terms of the image x ∈ RN .
herefore, image warping can be represented as a matrix M ∈

RN×N , such that the warped image is given by Mx. The matrix
epresentation can be generated by ImWIP, which allows the
se of linear algebra to solve certain inverse problems. However,
or large 3D images, the matrix representation is inconvenient
o store even though it is sparse, as the number of non-zero
lements is up to 64 times the number of voxels in the warped
mages. Alternatively, its (adjoint) multiplication with a vector
an be computed efficiently by computing the coefficients on the
ly and in parallel. The coefficients of one row (column in the
djoint case) are equivalent to 64 polynomial evaluations that
xpress the dependency of the interpolated value on a 4 × 4 × 4
eighborhood.
By taking into account that the polynomials, and by extension

he matrix M = M(v), are a function of the DVF v, differentiated
mage warps can be computed as the matrix–vector multiplica-
ion of derivatives of M(v). With differentiated image warping,
e refer to the derivative of a warped image: d

dv [M(v)f ], where
f ∈ RN and v = (vx, vy, vz) ∈ RN×3. This derivative is a linear
operator from RN to RN×3. More details on the implementation
of these operations, as well as commonly used approximations,
can be found in Appendix.

2.1. Software architecture

The Python interface of ImWIP contains four submodules:

• imwip.functions: Low level access to image warping,
adjoint image warping and differentiated image warping in
a functional style. Each function is implemented as a GPU-
accelerated matrix–vector multiplication, where the matrix
coefficients are never stored, to reduce the memory cost.
The main functions are imwip.functions.warp() and
imwip.functions.affine_warp(). They provide similar
functionality as the warping functions in scikit-image [26],
Scipy [27] and OpenCV [28]:

– skimage.transform.warp()
– scipy.ndimage.map_coordinates()
– scipy.ndimage.affine_transform()
– cv2.remap()

with the important difference that ImWIP also implements
the corresponding adjoints and derivatives.

• imwip.operators: High level access to image warping,
adjoint image warping and differentiated image warping
through the use of the LinearOperator class of SciPy. This
allows expressions in terms of matrices, while internally
calling the functions from imwip.functions and avoiding
storing matrices and the associated memory cost.

• imwip.matrices: If explicit access to the matrix coeffi-
cients is required, the (sparse) matrices can be constructed
using this submodule. In most cases, it is more efficient to
use imwip.operators.

• imwip.solvers: A small collection of solvers, applicable to
many inverse problems involving image warping.

This Python interface provides access to two backends. In
these backends, image warping, adjoint image warping and dif-
ferentiated image warping are implemented using different tool-
chains:

• The C++ CUDA back-end: this is the fastest option and is
accessible from any language that has a C foreign func-
tion interface. On Linux Systems where the nvcc compiler
is available, this back-end will be automatically compiled
upon installation of the Python package, and will be used
as the default back-end. This backend only accepts NumPy
arrays, which will be automatically copied to the GPU for
computation, and then back to the CPU.

• the Numba back-end: this is a pure Python implementa-
tion that is JIT compiled for CUDA targets using Numba.
It makes ImWIP portable and easy to install, and provides
more readable code than the C++ back-end. On operating
systems other than Linux, or systems where nvcc is not
available, this back-end will be selected as default. This
backend accepts NumPy arrays, but also any array type that
supports the CUDA Array Interface of Numba. This includes
CuPy and PyTorch arrays, and avoids copies to and from the
host memory.

2.2. Software functionalities

ImWIP provides the necessary operators to solve a (possibly
non-linear) system of equations for unknown images and DVFs.
A general inverse problem that combines these functionalities is
given by

AM(v)x = b , (1)

where

1. x ∈ RN is a D dimensional image with N pixels,
2. v ∈ RN×D is a DVF,
3. M(v) : RN

→ RN is the image warping operator for DVF v,
2
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4. A : RN
→ RM is a linear operator that models the imaging

modality, with M measurements,
5. b ∈ RM is the measured data.

Such an inverse problem appears in many contexts, where the
object deforms or moves during imaging [4–9,19,20,29]. The in-
verse problem can be solved for the image x, for the DVF v, or for
both, by minimizing the following objective function with respect
to the desired variable:

Loss(x, v) =
1
2
∥AM(v)x − b∥2 . (2)

This loss function can be efficiently minimized with modern
gradient-based solvers such as [30,31], if the gradient with re-
spect to both variables can be computed. These gradients can be
expressed as

∇x Loss(x, v) = MT (v)AT
[AM(v)x − b] , (3)

∇v Loss(x, v) =

[
d
dv

M(v)x
]T

AT
[AM(v)x − b] . (4)

This example shows how the adjoint image warping operator MT

appears when solving for an unknown warped image, and how
differentiated image warping d

dv [M(v)x] appears when solving
for an unknown DVF that is used to warp an image. Using the
imwip.operatorsmodule, the loss function and its gradient can
be efficiently implemented by using the mathematical expres-
sions presented in Eq. (3) and Eq. (4). Next to this example, there
are many objective functions in other inverse problems, or other
optimization tasks such as deep learning, that contain warped
images. ImWIP facilitates the development of modular algorithms
for all of these tasks.

3. Illustrative examples

The documentation of ImWIP provides many examples, rang-
ing from simple educational examples to complex real world
applications. Here, we highlight two applications: one that shows
the advantage of exact differentiated image warping compared to
the commonly used finite difference approximation, and one that
demonstrates the combination of adjoint and differentiated image
warping.

3.1. Differentiated image warping: distortion correction in MRI

Context: Echo-planar imaging (EPI) is the fastest imaging
method in MRI, making it a popular choice for demanding MRI
applications such as diffusion and functional MRI. Unfortunately,
EPI is sensitive to inhomogeneities of the MRI scanner’s main
magnetic field, causing significant distortions along the phase
encoding direction. A popular approach to estimate these field
inhomogeneities and to correct the corresponding distortions
is to acquire a pair of EPI images with opposing phase-encode
directions, which leads to images with distortions along the
phase encoding direction of equal magnitude but in opposing
directions. The distortion can then be corrected from such a pair
by trying to find the field that when applied to both images in
the pair produces two corrected images that are as similar as
possible [13].

Acquisition: T2-weighted MRI images were acquired on a GE
Discovery MR750 3T MRI system equipped with an 8-channel
receiver head coil using a spin-echo EPI sequence (dataset 2
in [32]). Two b = 0 s/mm2 EPI images were acquired with oppos-
ing phase-encode directions (anterior–posterior and posterior–
anterior), specifically for the purpose of EPI distortion correction.
Other imaging parameters were: TR/TE: 9500/100 ms, voxel size:
2 × 2 × 2 mm3, matrix: 120 × 120, slices: 68, and NEX: 1.

Objective function and gradient: Given two 3D EPI images
f , g ∈ RN , the goal is to find a DVF v = (0, vy, 0) ∈ RN×3 such
that

diag(1 + ∇yvy)M(v)f = diag(1 − ∇yvy)M(−v)g , (5)

where ∇y is an image gradient in the y direction. The factors
diag(1 + ∇yvy) and diag(1 − ∇yvy) model the accumulation of
intensity where the image is compressed, and the dilution of
intensity where the image is spread out [13]. Eq. (5) can be solved
using a least-squares functional with a regularization term that
penalizes variation in the DVF:

LossEPI(vy) =
1
2
∥r∥2

+
a
2
∥∇vy∥

2 , (6)

where r is the residue:

r = diag(1 + ∇yvy)M(v)f − diag(1 − ∇yvy)M(−v)g . (7)

The regularization parameter a ∈ R was empirically chosen as
a = 106. The gradient of this loss function with respect to vy is:

∇ LossEPI(vy) =∇
T
y diag[M(v)f ]r

+ diag(1 + ∇yvy)
[

d
dvy

M(v)f
]T

r

+ ∇
T
y diag[M(−v)g]r

+ diag(1 − ∇yvy)
[

d
dvy

M(−v)g
]T

r

+ a∇T
y ∇yvy .

(8)

Results: In Fig. 1(a), a pair of EPI images, recorded with
anterior–posterior and posterior–anterior PE directions, are vi-
sualized in green and magenta, respectively. By overlaying the
images on top of each other, they add up to a grayscale image
in areas where they are equal, while areas with differences are
highlighted in green and magenta. After applying gradient de-
scent with the Barzilai–Borwein step size for 600 iterations with
approximate differentiated image warping, there were no visible
improvements in the resulting images when iterating further.
Using exact differentiated image warping, the same least-squares
fit was obtained in only 200 iterations, as can be observed on
the convergence plot in Fig. 3. The resulting images are shown
in Fig. 1(b). The absence of green and magenta regions indicates
that the distortions have been removed. Fig. 1(c) shows the
y component of the DVF that corrects the deformation. Intense
regions signify large distortions, which correspond to regions of
transition between tissues with different susceptibility, such as
the sinuses. In Fig. 2, the difference between the deformation
corrected images using approximate (a) and exact (b) differenti-
ated image warping is visualized. It can be observed that using
exact differentiated image warping led to a better fit, especially
around the sinuses.

3.2. Combining adjoint and differentiated image warping: Dynamic
computed tomography

Context: X-ray computed tomography is a non-destructive
technique for the 3D imaging of the interior of objects. Multi-
ple X-ray projections of the object are acquired, along different
angles. Reconstructing the image from these projections can be
formulated as an inverse problem. Standard CT reconstruction
techniques assume that the object is stationary during acquisi-
tion. To accommodate for possible motion or deformation during
the acquisition, the static model can be extended using image
warping operators [8,9,21,33].

Simulation: A dynamic CT scan was simulated using a 2D
phantom representing the central slice of a bone scaffold on a
3
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Fig. 1. EPI images before (a) and after (b) deformation correction using exact derivatives. The DVF describing the deformation in the y direction is shown in (c).

Fig. 2. Difference images after deformation correction, using approximate
derivatives (a) and exact derivatives (b). Darker colors correspond to larger
differences. A region with large differences is marked with a white rectangle.

Fig. 3. Convergence plot of the MRI experiment. Exact differentiated image
warping leads to a faster drop in residue, and a lower stagnation point.

512 × 512 pixel grid. A total of 105 parallel beam projections
were simulated, along angles uniformly distributed in the range
[0, 2π [ radians, on a virtual detector with 640 pixels. Scaling
motion was simulated by applying a constant scaling factor every
fifth projection, which results in 21 different scales across the

duration of the scan. Variants of this example, with other motion
parameters and images, can be found in [21]. A simplified variant
is available in the documentation of ImWIP.

Objective function and gradient: Let W stationary represent the
static CT operator mapping images to projection space according
to the specified CT geometry. This operator can be written as

W stationary =

⎡⎢⎢⎣
W 1
W 2
...

W n

⎤⎥⎥⎦ , (9)

where the blocks W 1, . . .W n, n = 21 correspond to the projec-
tion operators of the subscans. Following [8,33], the CT model can
be extended to include a motion model M(p), where p ∈ Rn are
the scaling parameters, as follows:

WM(p) =

⎡⎢⎢⎣
W 1 0 0 0
0 W 2 0 0

0 0
. . . 0

0 0 0 W n

⎤⎥⎥⎦
⎡⎢⎢⎣
M (p1)
M (p2)

...

M (pn)

⎤⎥⎥⎦ . (10)

The CT projection operators (W i)ni=1 are provided by the ASTRA
toolbox [34], and the affine image warping operators (M(pi))ni=1
are provided by ImWIP, all matrix-free. These matrix-free oper-
ators can be combined in block operators using PyLops [35]. The
inverse problem can now be formulated as

WM(p)x = b , (11)

where the unknowns are the motion parameters p and the un-
known image x ∈ R5122 . The vector b ∈ R105·640 is the con-
catenation of all 105 projections. The least-squares functional
corresponding to Eq. (11) is

LossCT(p, x) =
1
2
∥r∥2 , (12)

where r is the residue

r = WM(p)x − b . (13)

The gradient of this objective function is

∇ LossCT =
(
∇p LossTCT, ∇x LossTCT

)T
, (14)

where

∇p LossCT(p, x) =

[
d
dp

M(p)x
]T

W T r , (15)

∇x LossCT(p, x) = MT (p)W T r . (16)
4
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T
(

Fig. 4. Reconstructions of the bone scaffold, without and with motion correction.

his gradient features a combination of adjoint image warping
MT (p)) and differentiated image warping ( d

dpM(p)x).
Results: The static and dynamic models (with and without

known motion parameters) were inverted using 600 gradient
descent with the Barzilai–Borwein step size. Fig. 4(a) shows
the ground truth for this experiment. In Fig. 4(b), the recon-
struction based on the static CT model is shown, in which the
effect of the scaling motion is clearly visible in the form motion
artifacts. The dynamic reconstruction with unknown motion is
shown in Fig. 4(c), where it can be visually observed that the
motion was correctly estimated and compensated. The dynamic
reconstruction with known motion is shown in Fig. 4(d) as a
reference.

4. Impact

Applications of adjoint and differentiated image warping are
widely spread among different domains. ImWIP is purposefully
designed with a modular approach, focusing on motion and de-
formation modeling only, such that it can be combined with
domain specific packages such as (but not restricted to) the
ASTRA-Toolbox [34] for CT, or the Fast Fourier Transform for MRI
and PyTorch [36] for deep learning. For this reason, ImWIP will
facilitate the development of motion/deformation compensated
imaging techniques, and lead to more accurate results, across
different domains.

Currently, ImWIP has provided the basis for a study on ad-
joint image warping in 4D-CT [37], and for the ongoing devel-
opment of algorithms that combine image reconstruction and
motion estimation in dynamic CT [21,38]. ImWIP has also sup-
ported the development of novel MRI reconstruction method
that directly computes deformation between longitudinal MRI
scans [14]. Furthermore, it is being applied to extensions of a
motion compensated super-resolution technique [29], with the
goal of accelerating this method.

5. Conclusions

IMWIP, an open-source, GPU-accelerated image warping tool-
box, was presented and demonstrated on several applications.
The toolbox includes common approximate implementations of
adjoint and differentiated image warping, as well as novel algo-
rithms that compute these operators exactly and that are inde-
pendent of the choice of splines. The toolbox allows for modular
design of algorithms in which the implementation of adjoint
or differential image warping can be easily altered, for com-
parison. It was shown that, when estimating a DVF, the exact
differentiated image warping leads to substantial improvement
in convergence speed, compared to the implementation based on
finite differences.
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Appendix. Implementation details

The sparse matrix representation of the image warping oper-
ators of ImWIP are computed as in [37]. In the case of tricubic
image warping, this matrix M has 64 non-zero coefficients per
row, as each voxel of the warped image depends on 64 voxels
of the input image. The computation of these coefficients boils
down to the evaluation of 64 polynomials, denoted bi,j,k(x, y, z)
for (i, j, k) ∈ {−1, 0, 1, 2}3. As in [37], these polynomials are
found using SageMath and compiled into ImWIP.

Next to the construction of the sparse matrix representation,
the polynomials are also used for the matrix-free adjoint, dif-
ferentiated and regular image warping implementations, where
the matrix coefficients are computed on the fly. Regular image
warping is implemented as a row-wise matrix–vector multi-
plication (Algorithm 1). Adjoint image warping is implemented
as a column-wise matrix–vector multiplication with the same
polynomials (Algorithm 2) and differentiated image warping is
implemented as a row-wise matrix–vector multiplication with
differentiated polynomials (Algorithm 3, without loss of general-
ity differentiated to the first component of the vector field). The
memory footprint of these algorithms is dominated by the size
of the input and output images. All other allocations are local
variables with small footprint.

ImWIP also provides commonly used approximations to ad-
joint and differentiated image warping. Adjoint image warping
can be approximated using a regular image warp along an ap-
proximate inverse DVF. The effect of this approximation com-
pared to the exact implementation is investigated in [37] . Dif-
ferentiated image warping (without loss of generality to the first
5
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omponent of the DVF) can be approximated by applying an
mage gradient to the warped image:

d
dvx

(M(v)f ) ≈ diag(∇x (M(v)f )) . (A.1)

his approach appears in the implementation of many optical
low algorithms [11]. It is inexact, since it neglects the inter-
olation method used in the warp and uses an image gradient
perator that is based on finite differences (central differences in
mWIP).
Algorithm 1 Tricubic image warping

Input Image f , DVF v
Output Warped image g

1: f = 0
2: for each voxel position (p1, p2, p3) do in parallel
3: (q1, q2, q3) = (p1, p2, p3) + v(p1, p2, p3)
4: (i′, j′, k′) = (⌊q1⌋, ⌊q2⌋, ⌊q3⌋)
5: for (i, j, k) ∈ {−1, 0, 1, 2}3 do
6: g(p1, p2, p3) += bijk(i′ − q1, j′ − q2, k′

− q3)f (i′ + i, j′ +

j, k′
+ k)

7: end for
8: end for

Algorithm 2 Adjoint tricubic image warping
Input Image g , DVF v
Output Adjoint warped image f

1: f = 0
2: for each voxel position (p1, p2, p3) do in parallel
3: (q1, q2, q3) = (p1, p2, p3) + v(p1, p2, p3)
4: (i′, j′, k′) = (⌊q1⌋, ⌊q2⌋, ⌊q3⌋)
5: for (i, j, k) ∈ {−1, 0, 1, 2}3 do
6: f (i′ + i, j′ + j, k′

+ k) += bijk(i′ − q1, j′ − q2, k′
−

q3)g(p1, p2, p3)
7: end for
8: end for

Algorithm 3 Differentiated tricubic image warping
Input Image f , DVF v
Output Diagonal matrix d

dvx
(M(v)f ) = diag(d)

1: d = 0
2: for each voxel position (p1, p2, p3) do in parallel
3: (q1, q2, q3) = (p1, p2, p3) + v(p1, p2, p3)
4: (i′, j′, k′) = (⌊q1⌋, ⌊q2⌋, ⌊q3⌋)
5: for each (i, j, k) ∈ {−1, 0, 1, 2}3 do
6: d(p1, p2, p3) +=

7: ( d
dxbijk)(i

′
− q1, j′ − q2, k′

− q3)f (i′ + i, j′ + j, k′
+ k)

8: end for
9: end for
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