
1

Hyperspectral Image Restoration Using Adaptive
Anisotropy Total Variation and Nuclear Norms

Ting Hu, Wei Li, Senior Member, IEEE, Na Liu, Ran Tao, Senior Member, IEEE,
Feng Zhang, Member, IEEE, Paul Scheunders, Senior Member, IEEE

Abstract—Random Gaussian noise and striping artifacts are
common phenomena in hyperspectral images (HSI). In this paper,
an effective restoration method is proposed to simultaneously
remove Gaussian noise and stripes by merging a denoising
and a destriping submodel. A denoising submodel performs a
multi-band denoising, i.e. Gaussian noise removal, considering
Gaussian noise variations between different bands, to restore the
striped HSI from the corrupted image, in which the striped HSI
is constrained by a weighted nuclear norm. For the destriping
submodel, we propose an adaptive anisotropy total variation
method to adaptively smoothen the striped HSI, and we apply, for
the first time, the truncated nuclear norm to constrain the rank
of the stripes to 1. After merging the above two submodels, an
ultimate image restoration model is obtained for both denoising
and destriping. To solve the obtained optimization problem, the
alternating direction method of multipliers (ADMM) is carefully
schemed to perform an alternative and mutually constrained exe-
cution of denoising and destriping. Experiments on both synthetic
and real data demonstrate the effectiveness and superiority of the
proposed approach.

Index Terms—Hyperspectral image, denoising and destrip-
ing, weighted nuclear norm, truncated nuclear norm, adaptive
anisotropy total variation.

I. INTRODUCTION

HYPERSPECTRAL images (HSI) are widely applied in
remote sensing applications, such as agriculture, forestry

and environmental science, because of their high spectral
resolution, which allows to uniquely characterize many ma-
terials by their spectral response. However, when acquired
by pushbroom sensors, HSI are easily polluted by Gaussian
noise and striping artifacts. This does not only degrade the
visual quality of HSI, but also impacts the performance of
high-level tasks [1], such as classification [2], recognition [3],
and detection [4]. Gaussian noise is usually caused by high
temperature and poor lighting, while along-track stripes are
the result of response non-uniformity and calibration errors in
pushbroom detectors [5].

Recently, many denoising and destriping algorithms have
been reported. The existing image denoising schemes are
generally grouped in two categories [6]: learning-based and
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optimization-based approaches. Learning-based approaches
remove noise by a mapping learned from pairs of clean
and contaminated images [7]–[9]. However, lack of proper
clean/contaminated image pairs makes these approaches un-
suitable for real HSI denoising. Optimization-based ap-
proaches merge proper regularization terms into the ill-posed
denoising inverse problem. Specifically, the observed image is
expressed as:

Y = X + G, (1)

where Y, X, G ∈ RM×N×B are the third-order tensors with
M rows, N columns and B bands, denoting the observed, pol-
luted image, the clean image, and Gaussian noise, respectively.
By maximum a posteriori (MAP) estimation, the following
denoising model is obtained:

min
X

{1

2
‖Y− X‖2F + λJ (X)

}
, (2)

where 1
2 ||Y−X||2F is the data fidelity term, λ is a regularization

parameter, and J (X) is a regularization term, posing a priori
constraint on the clean image, such as nonlocal self-similarity
[10], [11], smoothness [12], or sparsity constraints [13].

Destriping methods can be classified into three categories:
statistical, filtering-based, and optimization-based methods.
Statistical methods [14], [15] are generally applied to single-
band image destriping. Because of some statistical assump-
tions of stripes, their practicability is limited [16]. Methods
that perform destriping by filtering [17]–[19], assume spatial
periodicity of the stripes, but are known to produce blurring
and staircase effects [20]. In the past decade, optimization-
based destriping methods have grown. A striped image can be
modeled as,

Y = X + S, (3)

where S ∈ RM×N×B is the image containing only the stripes.
Optimization-based destriping methods [21]–[23], similar as
in Eq. (2) were investigated. The regularization terms J (X),
applied in [21]–[23] were respectively the Huber-Markov
variation, the unidirectional total variation (TV), and the
anisotropic TV, all of which exploited the gradient smoothness
of the clean image. In [24], an improved destriping model
was proposed by co-constraining the inherent characteristics
of images and stripes:

min
X, S

{1

2
||Y− X− S||2F + λ1J1(X) + λ2J2(S)

}
, (4)

where λ1 and λ2 are the regularization parameters. J1(X)
and J2(S) represent the anisotropy TV constraint on the clean
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image and the nuclear norm on the stripes image, respectively.
To the best of our knowledge, the existing variation-based
destriping methods globally minimize the variation of an HSI,
so that the unstriped parts of the image suffer from loss in
texture information.

Although many effective denoising or destriping algorithms
have been published, they generally do not work well on
images corrupted by Gaussian noise and stripes simultane-
ously. The number of studies on the removal of mixed noise
is limited. One obvious way is to perform denoising and
destriping consecutively, but removing the one may damage
the inherent statistical characteristics of the other [25], [26].

For an HSI, polluted by Gaussian noise and stripes, the
degradation model can be modified as:

Y = X + S + G. (5)

In [27], an effective model for the mixed noise removal was
proposed, based on an optimization problem, similar as in
Eq. (4), where J1(X) and J2(S) expressed the low-rank
regularization of the clean image and the control of the upper
cardinality bound of the stripes image, respectively. Some
methods applied two regularization terms to the clean image:

min
X, S

{1

2
‖Y−X−S‖2F +λ11J11(X)+λ12J12(X)+λ2J2(S)

}
.

(6)
In [26], J11(X) and J12(X) were the smoothness and sparsity
constraints on the clean image. However, learning the sparsity
priors directly from the noisy images was time-consuming and
highly affected by the noise [13]. An upgraded version of
the method in [27] was proposed by [28], in which J11(X),
J12(X) and J2(S) were the band-by-band TV and the nuclear
norm of the clean image, and an L1 sparsity prior on the stripes
image, respectively. On top of exploiting the low-rankness and
smoothness of the clean image to form J11(X) and J12(X),
respectively, and using the same J2(S) as [28], Xiong et
al. [29] performed a nuclear norm constraint on the coding
matrices from the clean image to achieve a better removal of
the mixed noise. Whether the prior for stripes is obtained by a
low-rank regularization through the nuclear norm or a sparsity
constraint by the L1 norm, both require manual tuning of the
regularization parameters, which is a time-consuming effort.

Chen et al. [30] proposed an outstanding image low-
rank restoration technique, by modeling the noise with non-
independent identically distributed mixtures of Gaussians.
However, no specific effort was done to model stripes. In
addition, in the case of dense stripes, there is a potential risk
of remaining stripes with the methods from [27]–[30], because
all three methods constrain the clean images by the low-rank
property, which also exists in stripes.

In summary, the state-of-the-art image restoration tech-
niques are revealed with three main drawbacks: a loss of tex-
tural information in unstriped image regions when performing
global variation on the clean image, the requirement of manual
tuning of the regularization parameters when using the nuclear
or l1 norms to constrain the stripes image, and the potential
risk of residual stripes when applying the low-rank constraint
to clean image.

In this paper, we want to overcome these drawbacks, by
proposing a new restoration model that merges a denoising
and a destriping submodel. Specifically, we will impose a low-
rank constraint on the striped image to remove Gaussian noise.
Obviously, both the HSI and stripes image are highly spectrally
redundant, thus, so does the striped HSI. When a cubic patch
is extracted from a striped HSI, and vectorized, as in [27], it
becomes a low-rank matrix. Thus, a low-rank regularization
can effectively express the along-spectrum redundancy of the
striped HSI.

One low-rank matrix approximation method, the low-rank
matrix decomposition, has been successfully applied for HSI
restoration [27], [28], [30], [31], but it is basically a nonconvex
optimization problem [32]. Another, newer approximation ap-
proach for low-rank matrix approximations is the well-known
nuclear norm minimization (NNM) [33], [34], which received
considerable attention because it is easy to solve and performs
very well.

However, NNM minimizes all singular values equally, while
the larger singular values usually contain more important
information [32]. Hence, a more flexible weighted NNM,
with the ability to better preserve the larger singular values,
was proposed and applied for state-of-the-art denoising in
grayscale images [32]. Subsequently, a multi-channel version,
accounting for noise variation between different channels
(MC-WNNM) was proposed for color images denoising [10].
Both [32] and [10] constrain the low-rank matrices, obtained
by a non-local search for similar patches in the image, hereby
exploiting the non-local self-similarity of the clean image.

For HSI restoration, the weighted nuclear norm has been
applied to regularize the along-spectrum redundancy of the
clean HSI [35]–[37], which is conducive to saving memory
and time compared to constraining the non-local self-similarity
of the HSI. Inspired by this, we adopt the weighted nuclear
norm to constrain the high redundancy of the striped HSI.
Then, a multi-band denoising submodel, in which Gaussian
noise variations between different bands are considered, is
established by imposing a low-rank constraint, based on a
weighted nuclear norm, on the striped HSI.

Secondly, a new destriping submodel is proposed to restore
the clean HSI from the striped image, preserving texture
information in unstriped regions while ensuring smoothness
in striped regions. For this, an adaptive anisotropic TV is
proposed. Since theoretically, each stripe can be expressed as
a linear combination of all other stripes, stripes have rank
1. For this, we propose to apply the truncated nuclear norm
[38], that better controls the rank of a matrix, without having
to manually tune a parameter. Both the adaptive anisotropic
TV and the truncated nuclear norm regularization terms are
combined.

Since the striped HSI is a shared component of the two
submodels, a restoration model is naturally formed by adding
up the denoising and destriping submodels. Different from
[27]–[30], the proposed HSI restoration method performs the
low-rank constraint on the striped rather than on the clean HSI,
to avoid possible residual stripes. In addition, denoising and
destriping can be executed alternately by solving the proposed
restoration model with the alternating direction method of
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multipliers (ADMM).
Overall, the contributions of this work are:

1) Given the along-spectrum redundancy in both stripes and
HSI, the weighted nuclear norm is applied to regularize
the striped image. A multi-band denoising submodel,
using this weighted nuclear norm regularization (MB-
WNN) is established to restore the striped image from the
noisy and striped one, where Gaussian noise variations
between bands are considered. Obviously, MB-WNN is
also suitable to recover an HSI, corrupted by Gaussian
noise only.

2) In order to preserve the edge information of the unstriped
regions while imposing smoothness in the striped regions,
an adaptive anisotropy TV is designed to regularize the
clean image. Moreover, for the first time, the truncated
nuclear norm is introduced to regularize stripes, without
any manual tuning parameters, hereby exploiting the rank
1 of stripes. Then, a new destriping submodel, combining
the adaptive anisotropy TV and the truncated nuclear
norm (AATN) is established.

3) By carefully designing the striped HSI as a bridge be-
tween the two submodels, they are naturally merged to
establish an HSI restoration model based on the adaptive
anisotropy TV and the two nuclear norms (AANNs).
The proposed AANNs is skillfully solved under the
ADMM framework to alternatingly perform denoising
and destriping.

The paper is arranged as follows. In Sec. II, we explain
the proposed denoising and destriping submodels, along with
the merged restoration method and the model optimization.
Experimental results and discussion are presented in Sec. III,
while the summary is given in Sec. IV.

II. PROPOSED IMAGE RESTORATION METHOD (AANNS)

The restoration of an HSI requires the removal of both Gaus-
sian noise and stripes. However, the successive application of
denoising and destriping may lead to bad results, since the
removal of one may affect the statistics of the other. Thus, it
is important to link both processes appropriately. When the
process of HSI denoising only removes Gaussian noise, and
perfectly restores the striped HSI, the destriping task is not
affected by the denoising. Hence, the goal is to use the striped
HSI as a linked bridge between the two tasks of denoising and
destriping.

First, Eq. (5) is split into the following two image models:

Y = Xs + G, (7)

Xs = X + S, (8)

where Xs represents the striped HSI. Then, in the denoising
submodel, Xs is restored from Y, and in the destriping
submodel, X is recovered from Xs. As the shared component
of the two submodels, Xs closely links the denoising and
destriping tasks. The final HSI restoration model for both
denoising and destriping is naturally formed by merging the
two submodels. Under the ADMM framework, denoising and
destriping are performed alternately, as shown in Fig. 1.

Compared to the consecutive application of denoising and
destriping, such alternate processing can help the trade-off
between denoising and destriping to achieve better restoration
performance.
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Fig. 1. Flowchart of the proposed AANNs for hyperspectral image
restoration. WNN, AATV, and TNN correspond to the weighted
nuclear norm, the adaptive anisotropy TV, and the truncated nuclear
norm, respectively.

A. Denoising Submodel (MB-WNN)

A multi-band denoising submodel is developed to recover
the striped HSI, that exploits the high redundancy of the striped
HSI. Under the MAP theory, the estimation of Xs can be
expressed as:

X̂s = arg max
Xs

{
ln p(Xs|Y) + ln p(Xs)

}
. (9)

As it is known that the noise can vary between bands [10],
[30], the different bands of the HSI are assumed to contain
Gaussian noise that is with different standard deviations. Thus,
the probability density p(Xs|Y) characterized by the statistics
of the noise is given by:

p(Xs|Y) = H exp
{
− 1

2
||W · (Y− Xs)||2F

}
, (10)

with:

H =

B∏
b=1

(2πσ2
nb)
−MNB

2 , (11)

Wb = σ−1nb I, b = 1, · · · ,B, (12)

where the symbol “·” expresses the element-by-element mul-
tiplication, σnb is the standard deviation of Gaussian noise in
band b of the HSI, Wb is band b of the weight tensor W, and
I ∈ RM×N, of which each element is 1.

Since there is no explicit expression for the probability of
the unknown striped image, it is necessary to find a proper
prior constraint to substitute p(Xs). As described in Sec. I,
the highly along-spectrum redundancy in both the HSI and
stripes image can cause the striped HSI to be of low rank.
Thus, we enforce a low-rank constraint on the striped HSI via
the weighted nuclear norm. Specifically, a cubic patch of size
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h×h×B is first extracted from the striped HSI, and each band
is stretched to a column vector. The weighted nuclear norm
acts on the matrix formed by jointing these column vectors
along the horizontal direction. To traverse the entire image,
cubic patches are extracted at each step length floor(h/2),
from left to right and from top to bottom, where floor(h/2)
returns the integer, not higher than (h/2).

We then have:

p(Xs) ∝ exp(−
S∑
s=1

||Rs(Xs)||ω,∗), (13)

where S is the total number of the extracted cubic patches,
Rs(Xs) represents the matrix formed by the s-th cubic patch,
||Rs(Xs)||ω,∗ =

∑
i ωiσi[Rs(Xs)] is the weighted nuclear

norm of Rs(Xs), and σi[Rs(Xs)] are the singular values of
Rs(Xs).

Plugging Eqs. (10) and (13) into Eq. (9), the following
optimization problem is obtained:

min
Xs

{1

2
||W · (Y− Xs)||2F +

S∑
s=1

||Rs(Xs)||ω,∗
}
, (14)

where 1
2 ||W · (Y − Xs)||2F is the multi-band weighted data

fidelity term, and
S∑
s=1
||Rs(Xs)||ω,∗ is the weighted nuclear

norm regularization term. In [32], it is shown that the solution
of this problem is obtained by soft thresholding of the singular
values: max(σi[Rs(Xs)]− ωi, 0). The weights are chosen as:
ωi = c/(σi[Rs(Xs)] + ε) with ε = 10−16 to avoid dividing
by zero, and c > 0 is a constant. Because ωi are inversely
proportional to σi, the weighted nuclear norm constraints the
larger singular values more weakly, and the smaller ones more
strongly.

Although this method MB-WNN is established to recover
the striped HSI, it is also suitable for HSI denoising. To
demonstrate the method, a noisy image (Fig. 2(b)) is simulated
by adding Gaussian noise of standard variation 0.05 to a clean
image (Fig. 2(a)). In addition, a striped image (Fig. 3(a)) is
produced by adding stripes of intensity 0.2 and density 0.2
to the clean image, and a noisy striped image (Fig. 3(b))
is generated by adding Gaussian noise of standard variation
0.025 to the striped image. As the denoising results show, the
proposed MB-WNN outperforms MC-WNNM. The restored
results have a clean appearance and look more similar to the
original image (Fig. 2(d) versus 2(c) and Fig. 3(d) versus 3(c)).
The running time of MC-WNNM and MB-WNN are 7340.67s
and 108.62s, respectively, so MB-WNN is far more time
efficient than MC-WNNM.

B. Destriping Submodel (AATN)

In order to remedy the loss of texture information in
unstriped regions, caused by the global TV methods [21]–
[24], [28], [29], and avoid the manual tuning parameter when
constraining stripes [24], [26]–[29], a new destriping submodel
is proposed.

Here, an adaptive anisotropy TV is proposed to adaptively
perform TV regularization, limited to striped regions, so that

(a) (b)

(c) (d)

Fig. 2. (a) Original image. (b) Image corrupted by Gaussian noise.
Restored images by (c) MC-WNNM and (d) the proposed MB-WNN.

(a) (b)

(c) (d)

Fig. 3. (a) Striped image. (b) Noisy striped image. Restored striped
image by (c) MC-WNNM and (d) the proposed MB-WNN.
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texture information is preserved in unstriped regions. The
key idea to design the adaptive anisotropy TV is that its
regularization parameters are controlled by the gradients of
the stripes, in such a way that no TV constraint is applied to
regions without stripe gradients. Since along-track (vertical)
stripes have no vertical gradient [23], the adaptive variation
regularization is only applied in the spectral and horizontal
directions. Theoretically, stripes are linearly dependent on each
other, such that the rank of the stripes image should be 1.
Hence, the truncated nuclear norm, a mathematical tool to
accurately constrain the rank of a matrix [38], is utilized to
constrain the rank of the stripes image to 1. Such truncated
nuclear norm regularization for stripes avoids a manual tuning
parameter. Combining the adaptive anisotropy TV and the
truncated nuclear norm regularization, the following optimiza-
tion problem is obtained:

min
X,S

{1

2
||Xs− X− S||2F + ||X||AATV +

B∑
b=1

||Sb||r
}
, (15)

with

||X||AATV = ||Λ1 · 5xX||1 + ||Λ2 · 5zX||1, (16){
Λ1 = min(| 5x S|, µx)

Λ2 = min(| 5z S|, µz)
, (17)

{
5xX = Dx ∗ X

5zX = Dz ∗ X
,

{
5xS = Dx ∗ S

5zS = Dz ∗ S
, (18)

where ||X||AATV expresses the adaptive anisotropy TV con-
straint on the clean image, Λ1 and Λ2 are the regularization
parameter tensors, controlled by the spatial horizontal and
spectral gradients of stripes to adaptively control the TV
minimization; the symbols 5x and 5z represent the gradient
operators along the horizontal and spectral directions, respec-
tively; the minimum threshold function min(θ, φ), returning
the smallest value of θ and φ avoids possible oversmoothing,
caused by overlarge regularization parameters, µx and µz
are the thresholds to limit the TV regularization along the
horizontal and spectral directions, respectively; ∗ denotes the
circular convolution operation, Dx = [1,−1] is the mask to
obtain the horizontal gradient, and Dz = [1,−1] is the mask

to obtain the along-spectrum gradient, ||Sb||r =
K∑
n=r

σn(Sb) is

the truncated nuclear norm of Sb, Sb is band b of the stripes
image, K is the number of nonzero singular values of Sb, and
r is set to 2, for constraining the rank of the stripes image to
1.

Fig.4 illustrates the proposed approach. A striped HSI
(Fig. 4(b)) that is synthesized in the same way as Fig. 3(a)
is processed by the proposed AATN, and the obtained results
are presented in Figs. 4(c) and 4(e), revealing a successful
separation of the image and stripes. Figs. 4(d) and 4(f) show
the horizontal gradients of the true and estimated stripes im-
ages, respectively. The region denoted in orange is an unstriped
region, and is lesser regularized by the adaptive anisotropy TV
than the striped regions. This benefits the preservation of the
textural information in the unstriped image regions.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Illustration of AATN. (a) Original image X. (b) Striped image
Xs. (c) Estimated destriped image X̂. (d) Horizontal gradient of true
stripes image | 5x S|. (e) Estimated stripes image Ŝ. (f) Horizontal
gradient of estimated stripes image Λ̂1. The pop outs in (d) and (f)
plot row 200.

C. Total Restoration Model (AANNs)

Since the striped HSI Xs appears in Eq. (14) as well as in
Eq. (15), the above two submodels can be directly added up
to form the following optimization problem:

min
Xs,X,S

{1

2
||W · (Y− Xs)||2F +

S∑
s=1

||Rs(Xs)||ω,∗

+
1

2
||Xs− X− S||2F + ||X||AATV +

B∑
b=1

||Sb||r
}
.

(19)

Different from the state of the art restoration models, this
model contains two data fidelity terms, namely, 1

2 ||W · (Y −
Xs)||2F and 1

2 ||Xs − X − S||2F , which helps to preserve more
image information. Obviously, the estimation of Xs performs
denoising, and the restoration of X performs destriping. As
presented in Fig. 1, under the ADMM framework, the denois-
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ing and destriping processes are executed alternately rather
than successively. Besides the ability of simultaneously elimi-
nating Gaussian and striping noise, AANNs is easily reduced
to two single-function models: MB-WNN for denoising and
AATN for destriping.

Similar to Fig. 3(b), a noisy and striped HSI Y is produced.
After processing the synthesized image Y with the proposed
AANNs, the obtained estimations X̂ and X̂s are shown in
Figs. 5(c) and 5(d), respectively. Fig. 5(d) shows that the
proposed AANNs successfully performs both denoising and
destriping.

D. Model Optimization

There is no analytical solution for AATV-NNs, but it can
be split up into several, simple subproblems with closed-form
solutions under the ADMM framework that is a well-known
optimization framework with convergence guarantees. First,
by introducing three auxiliary variables T, R1, and R2, the
proposed restoration model (19) is rewritten as:

min
Xs,X,S,T,R1,R2

{1

2
||W · (Y− Xs)||2F +

S∑
s=1

||Rs(T)||ω,∗

+
1

2
||Xs− X− S||2F + ||Λ1 · R1||1 + ||Λ2 · R2||1+

B∑
b=1

||Sb||r
}

s.t. T = Xs,R1 = 5xX, R2 = 5zX.

(20)

The augmented Lagrangian form of Eq. (20) is given by:

L(Xs,X,S,T,Rj ,A,Cj) =
1

2
||W · (Y− Xs)||2F

+

S∑
s=1

||Rs(T)||ω,∗ +
1

2
||Xs− X− S||2F

+ ||Λ1 · R1||1 + ||Λ2 · R2||1 +

B∑
b=1

||Sb||r

+ 〈A,T− Xs〉F +
α

2
||T− Xs||2F

+ 〈C1,R1 −5xX〉F +
β

2
||R1 −5xX||2F

+ 〈C2,R2 −5zX〉F +
β

2
||R2 −5zX||2F ,

(21)

where j = 1, 2, A and Cj are the augmented Lagrangian
multipliers, and α > 0 and β > 0 are the Lagrangian
parameters. Next, the solution for each variable at iteration
k is denoted by adding superscript k in the upper right corner
of the variable symbol; for example, Xk is the solution of X at
k-th iteration. Before solving the AANNs model, Xs0, X0, and
T0 are initialized to Y, while S0, R0

j , A0 and C0
j are initialized

to zero. Let the partial derivatives of L with respect to each
function variable be zero, it follows that Eq. (19) is solved
through alternately solving the following subproblems.

(a) (b)

(c) (d)

Fig. 5. Illustration of the proposed restoration method. (a) Original
image X. (b) Noisy and striped image Y. (c) Estimated striped image
X̂s. (d) Estimated image X̂.

1) Xs subproblem: While fixing the other evaluated vari-
ables, Xs is obtained by solving:

Xsk+1 = arg min
Xs

{
1

2
||W · (Y− Xs)||2F+

1

2

∥∥∥Xs− Xk − Sk
∥∥∥2
F

+
α

2

∥∥∥∥∥Tk − Xs +
Ak

α

∥∥∥∥∥
2

F

}
.

(22)

This is a standard least squares optimization problem, with a
closed-form solution [10]:

Xsk+1 =

[
W ·W · Y + Xk + Sk + α

(
Tk +

Ak

α

)]
/

(W ·W + α+ 1),

(23)

where the symbol “/” expresses the element-by-element divi-
sion.

2) T subproblem: Let the partial derivative of L with
respect to T be zero and the other variables be fixed. Then,
the T subproblem is obtained:

Tk+1 = arg min
T

{
α

2

∥∥∥∥∥T− Xsk +
Ak

α

∥∥∥∥∥
2

F

+

S∑
s=1

||Rs(T)||ω,∗

}
.

(24)

Following Theorem 1 in [32]:

Rs
(

Tk+1
)

= UΣ̂VT, (25)
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where Rs
(

Xsk − Ak

α

)
= UΣVT, VT denotes the transpose

of V, and Σ̂ is the solution of the following convex problem
[10]:

min
σ̂i

{
L∑
i=1

[
(σ̂i − σi)2 +

2ωi
α
σ̂i

]}
s.t. σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂L ≥ 0,

(26)

where σi and σ̂i are the i-th diagonal elements of Σ and Σ̂,
respectively, and L denotes the number of non-zero singular
values. According to [10], the solution of Eq. (26) is:

σ̂i =

{
0, c2 < 0

c1+
√
c2

2 , c2 ≥ 0
(27)

where c1 = σi − ε, c2 = (σi − ε)2 − 8c
α , and c is empirically

set to
√

2B [10], [32]. Tk+1 is then generated by aggregating
the S estimated matrices Rs

(
Tk+1

)
.

3) X subproblem: The X subproblem, extracted from the
augmented Lagrangian function L is a least squares problem:

Xk+1 = arg min
X

{
1

2

∥∥∥Xsk − X− Sk
∥∥∥2
F

+

β

2

∥∥∥∥∥Rk1 −5xX +
Ck1
β

∥∥∥∥∥
2

F

+
β

2

∥∥∥∥∥Rk2 −5zX +
Ck2
β

∥∥∥∥∥
2

F

}
,

(28)

which can be solved by the fast Fourier transform (FFT) [23]:

Xk+1 = F−1
(

Pk
/

Qk
)
, (29)

with
Pk = F

(
Xsk − Sk

)
+ β

[
F∗(Dx) · F

(
Rk

1 +
Ck

1

α

)
+F∗(Dz) · F

(
Rk

2 +
Ck

2

α

)]
Qk = 1 + β[F(Dx) · F∗(Dx) + F(Dz) · F∗(Dz)]

,

(30)
where F denotes the FFT, F−1 denotes the inverse FFT, and
F∗ performs the conjugate operation after FFT.

4) S subproblem: The stripes component S is updated by
solving:

Sk+1 = arg min
S

{1

2

∥∥∥Xsk − Xk − S
∥∥∥2
F

+

B∑
b=1

||Sb||r
}
. (31)

Let Ts = Xsk−Xk. Then, SVD is performed on each band of
Ts, i.e., Tsb = UsΣsVsT. According to Theorem 3.1 in [38],
Sb is updated by

Sk+1
b = UsΣ̂sVsT (32)

with

σ̂si =

{
σsi, 1 ≤ i < r

0, r ≤ i ≤ K
, (33)

where σ̂si and σsi denote the i-th singular values in Σ̂s and
Σs, respectively.

5) Rj subproblem: Based on the obtained Xk, Sk, and Ckj ,
the Rj subproblem is expressed as:

Rk+1
1 = arg min

R1

{
β

2

∥∥∥∥∥R1 −5xXk +
Ck1
β

∥∥∥∥∥
2

F

+
∥∥∥Λk

1 · R1

∥∥∥
1

}
,

(34)

Rk+1
2 = arg min

R2

{
β

2

∥∥∥∥∥R2 −5zXk +
Ck2
β

∥∥∥∥∥
2

F

+
∥∥∥Λk

2 · R2

∥∥∥∥∥
1

}
,

(35)

where Λk
1 and Λk

2 are calculated by plugging Sk into Eq. (15).
The solution of Eq. (34) is obtained by the soft-threshold
operator [39]:

Rk+1
1 = Soft

(
5x Xk − Ck

1

β
,
Λk

1

β

)
(36)

where Soft(θ, φ) = sign(θ) ·max(|θ| − φ, 0). Similarly:

Rk+1
2 = Soft

(
5z Xk − Ck

2

β
,
Λk

2

β

)
(37)

6) Multipliers subproblem: The augmented Lagrangian
multipliers A and Cj are easily updated by:

Ak+1 = Ak + α
(

Tk+1 − Xsk+1
)

Ck+1
1 = Ck1 + β

(
Rk+1

1 −5xXk+1
)

Ck+1
2 = Ck2 + β

(
Rk+1

2 −5zXk+1
) (38)

The procedure to solve the proposed AANNs is summa-
rized in Alg. 1. The outerloop is stoppped when the number
of iterations exceeds the preset threshold. The innerloop is
stopped when the convergence condition ||X

k+1−Xk||2F
||Xk||2F

≤ tol

is satisfied, or when the number of iterations exceeds the preset
threshold. From Alg. 1, it is easy to infer the procedures of
solving the submodels MB-WNN and AATN.

III. EXPERIMENTS AND DISCUSSION

To validate the proposed methodology, in this section,
experiments on both synthetic and real data are performed.
The advantages of the weighted nuclear norm for denoising
have been revealed before in [10], [32]. Thus, we will focus
on the evaluation of the performance of the proposed AATN
destriping submodel and the complete AANNs restoration
model.

We will compare the proposed approach with a number of
state of the art destriping and restoration methods from the
literatures:
• The wavelet Fourier adaptive filter (WFAF) [19]. WFAF

is a classical band-by-band destriping method, that re-
moves stripes by an adaptive filter in the Fourier domain
to the subbands obtained by a 2-D wavelet transform.
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Algorithm 1 HSI reconstruction with AANNs

Input: Noisy and striped HSI Y, weighted matrix W, t1, t2
1: Initialization Xs0, X0, T0 = Y; S0, A0, C0

1, C0
2 = 0

2: for k1 = 1 : t1 do
3: Update Xsk1 with Eq. (23)
4: Update Tk1 by solving

minT

{
α
2

∥∥∥T−Xsk1 + Ak1−1

α

∥∥∥2
F

+
∑S
s=1 ||Rs(T)||ω,∗

}
5: Update Ak1 as Ak1 = Ak1−1 + α(Tk1 − Xsk1)
6: for k2 = 1 : t2 do
7: Update Xk2 as Xk2 = Pk2−1/Qk2−1

8: Update Sk2 in a band-by-band way, specifically,
Sk2b = UsΣ̂sVs

9: Update Rk21 and Rk21 singly as
Rk21 = Soft

(
5x Xk2−1 − Ck2−1

1 /β, |Λk2−1
1 |/β

)
,

Rk22 = Soft
(
5z Xk2−1 − Ck2−1

2 /β, |Λk2−1
2 |/β

)
10: Update Ck21 and Ck21 individually as

Ck21 = Ck2−11 + β
(
Rk21 −5xXk2

)
,

Ck22 = Ck2−12 + β
(
Rk22 −5zXk2

)
11: if (The convergence condition is satisfied) then
12: break
13: end if
14: end for
15: end for
16: return Xsk1 , Xk2 , and Sk2 to X̂s, X̂, and Ŝ in turn
Output: Results X̂s, X̂, and Ŝ

• Anisotropic spatial-spectral TV (ASSTV) [23]. ASSTV
performs destriping by minimizing the spatial-spectral
TV of images.

• Low-rank multi-spectral image decomposition (LRMID)
[24]. LRMID eliminates stripes by incorporating the
spatial-spectral TV of the clean HSI and the nuclear
norm of the stripes image into an image decomposition
framework.

• Low-rank matrix recovery (LRMR) [27]. LRMR removes
mixed noise, by employing the rank constraint on the
clean image and the cardinality constraint on the stripes
image.

• Total variation-regularized low-rank (LRTV) [28]. LRTV
removes mixed noise, by minimizing the spectral TV of
the HSI and the sparsity of the stripes image, along with
performing a low-rank matrix decomposition of the HSI.

• L0 gradient regularized low-rank tensor factorization
(LRTFL0) [29]. LRTFL0 removes mixed noise, by per-
forming a low-rank block term decomposition and an L0

gradient constraint on the clean image, a nuclear norm
constraint on the coding matrices of the clean image, and
L1 sparse regularization on the stripes image.

• Low-rank matrix factorization, combined with a non-
independent identically distributed mixtures of Gaus-
sians noise (NMoG-LRMF) [30]. NMoG-LRMF removes
mixed noise, by imposing a low-rank matrix factoriza-
tion on the clean image and modeling noise as non-
independent identically distributed mixtures of Gaussians.

In a first set of experiments, the destriping performance of

the proposed AATN submodel on synthetic striped data (i.e.
real hyperspectral images on which stripes are synthetically
added) is compared to WFAF and the state-of-the-art destrip-
ing algorithms ASSTV and LRMID. Since the restoration
methods LRMR, LRTV, LRTFL0, and NMoG-LRMF have
been claimed to be effective destriping methods, they are also
applied in the comparison.

The second set of experiments performs restoration of
synthetic noisy and striped images (i.e. real hyperspectral
images on which Gaussian noise and stripes are synthetically
added). To assess the effect of the simultaneous application
of the denoising and destriping submodels, we compare the
proposed model AANNs with the denoising submodel MB-
WNN, the destriping submodel AATN, and the successive
application of both submodels (i.e. the application of the
destriping submodel AATN after the denoising submodel MB-
WNN). We will refer to the latter as W-AATN. Moreover, we
will compare the restoration performance to the state-of-the-art
restoration techniques LRMR, LRTV, LRTFL0, and NMoG-
LRMF.

TABLE I
DETAILS OF THE COMPARED METHODS

Method Applied mathematical techniques Ability

WFAF 1. 2-D wavelet transform for each band;
2. Fourier filtering for wavelet subbands. Destriping

ASSTV 1. Spatial-spectral TV for clean image. Destriping

LRMID 1. Spatial-spectral TV for lean image;
2. Nuclear norm for stripes. Destriping

LRMR 1. Rank constraint on clean image;
2. Cardinality constraint on stripes.

Destriping
and

denoising

LRTV
1. Spectral TV on clean image;
2. Low-rank constraint on clean image;
3. Sparsity constraint on stripes.

Destriping
and

denoising

LRTFL0

1. Block term decomposition for clean ima-
-ge;
2. Nuclear norm for coding matrices;
3. L0 gradient constraint on clean image;
4. Sparsity constraint on stripes.

Destriping
and

denoising

NoMG
-LRMF

1. Low-rank matrix factorization for clean
image;
2. Mixtures of Gaussian model for noise.

Destriping
and

denoising

MB-WNN 1. Weighted nuclear norm for restored ima-
-ge. Denoising

AATN 1. Adaptive anisotropy TV for clean image;
2. Truncated nuclear norm for stripes. Destriping

W-AATN
1. Weighted nuclear norm for striped image;
2. Adaptive anisotropy TV for clean image;
3. Truncated nuclear norm for stripes.

Denoising
and then
destriping

AANNs
1. Weighted nuclear norm for striped image;
2. Adaptive anisotropy TV for clean image;
3. Truncated nuclear norm for stripes.

Destriping
and

denoising

The final experiment processes a real, contaminated HSI,
to evaluate the practical value of the proposed method when
compared to the state-of-the-art methods. To clearly present
the differences of the compared methods, they are summarized
in Table I.
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A. Experimental Setup
1) Experimental Data: To qualitatively and quantitatively

evaluate the proposed methods, two hyperspectral datasets, are
carefully selected to synthesize the striped and noisy images.

1. Botswana image 1, of size 1476 × 256 × 242, was
captured by the NASA EO-1 satellite over the Okavango Delta,
Botswana. This data contains swamps and drier woodlands
and is relatively smooth. After removing uncalibrated and
water absorption bands ([10-55, 82-97, 102-119, 134-164,
187-220]), 145 bands are remaining. An arbitrary subimage
of size 256×256×145 is cropped from the Botswana image.

2. University of Pavia image, acquired by the ROSIS sensor
over Pavia university in nothern Italy is of size 610×340 with
103 spectral bands. The first ten invalid bands are discarded.
As an urban dataset, it provides abundant shape structure and
texture information. A subimage of size 256× 256× 93 was
cropped for the experiments.

Both data sets are linearly normalized to [0, 1], as in [27].
Just like in [23], [24], the striped data is synthesized in a band-
by-band manner. Specifically, a value η is added to each pixel
in round(γN)/2 columns, randomly selected from each image
band. Similarly, a value −η is added to another randomly
selected round(γN/2) columns, where round(φ) returns the
integer result of the rounding of φ. η and γ denote the
intensity and density of the stripes, respectively. In addition,
on each band of the striped images, Gaussian noise with a
specific standard deviation σn is added. The restored images
are stretched to the original scale.

To validate the practical use of the proposed restoration
approach, an image of size 499 × 500 × 75, captured by the
Tiangong-I spectroradiometer 2 [40] is used. The Tiangong-
I image contains real noise arising from the actual imaging
sensor. An image block of size 256×256×40 is cut from the
original image, in which 35 water absorption bands (i.e., 1-2,
13, 20-23, 31, 33, 36-43, 45, 48, 53, 61-75) are discarded.

2) Performance Metrics: To quantitatively assess the recon-
struction performance, four quantitative metrics are calculated:

PSNR =
1

B

B∑
b=1

10 log
655352 ×MN

M∑
i=1

N∑
j=1

[
X̂b(i, j)− Xb(i, j)

]
SSIM =

1

B

B∑
b=1

(2µX̂b
µXb

+ C1)(2σX̂bXb
+ C2)

(µ2
X̂b

+ µ2
Xb

+ C1)(σX̂b
+ σXb

+ C2)

SAM =
1

MN

M∑
i=1

N∑
j=1

arccos

B∑
b=1

Xb(i, j)X̂b(i, j)√
B∑
b=1

X2
b(i, j)

B∑
b=1

X̂
2

b(i, j)

SID =
1

MN

M∑
i=1

N∑
j=1

[
B∑
b=1

pb(i, j) log
pb(i, j)
qb(i, j)

+

B∑
b=1

qb(i, j) log
qb(i, j)
pb(i, j)

]
1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote

Sensing Scenes
2http://en.cmse.gov.cn/

with 
pb(i, j) = Xb(i,j)

B∑
b=1

Xb(i,j)

qb(i, j) = X̂b(i,j)
B∑

b=1

X̂b(i,j)

where X̂b and Xb express band b of the clean and restored
images, respectively, µX̂b

and µXb
are the means of X̂b and

Xb, respectively, σXb
and σX̂b

are the variances of X̂b and Xb,
respectively, σX̂bXb

is the covariance between X̂b and Xb, and
C1 and C2 are constants to maintain stability.

The peak signal-to-noise ratio (PSNR) and structural sim-
ilarity (SSIM) measure the spatial restoration performance.
The higher the values of PSNR and SSIM, the better the
reconstruction. The spectral angle mapper (SAM) and spectral
information divergence (SID) evaluate the spectral fidelity. The
lower SAM and SID, the lower the spectral distortion.
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Fig. 6. Parameter tuning for AANNs using PSNR on two synthetic
data sets (η = 0.2, γ = 0.2, and σn = 0.05)). (a) Tuning α when
β = 0.1. (b) Tuning β when α = 1000.

3) Parameter Settings: During all the experiments, the con-
vergence threshold tol is set to 10−4. α and β are empirically
tuned by the experimental results (see the examples in Fig. 6
for more details), while µx and µz are tuned following [24].
Specifically, for AATN, the Lagrangian parameter β is set
to 0.1, the maximum number of iteration t2 is set to 50,
and the threshold parameters are tuned depending on the
degree of striping with tuning ranges µx ∈ [0.001, 0.03] and
µz ∈ [0.001, 0.005], respectively. The parameters, involved
in AANNs are set as follows: t1 = 5, t2 = 6, h = 10,
α = 1000, β = 0.1, µx and µz are tuned within the ranges
above. For the compared algorithms, the parameters are tuned,
following [19], [23], [24], [27]–[30]. For a real HSI that
contains both Gaussian noise and stripes, the method [41]
is carefully chosen to estimate the Gaussian noise level σnb
of each band. The method [41] calculates the noise variance
based on the relationship between the image eigenvalues and
the noise level, and relies on the low-rank property of the clean
image. The introduction of stripes causes little effect on this
property. Thus, the existence of stripes hardly degrades the
accuracy of the chosen estimation method.

Using the above parameter settings, PSNR and SAM are
calculated during the iteration process to demonstrate the
convergence of Alg. 1. As shown in Fig. 7, the PSNR and
SAM of both data sets gradually converge to stable values.
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Fig. 7. PSNR and SAM in function of the number of iterations on two
synthetic data sets (η = 0.2, γ = 0.2, and σn = 0.05) to demonstrate
the convergence of Alg. 1. (a) PSNR and (b) SAM.

B. Experiments on Synthetically Corrupted HSI

1) Experiments on Striped data: The destriping perfor-
mance metrics of the different methods for the restoration
of images, corrupted by stripes of different intensities and
densities are listed in Tables II and III. Since real HSI can
be corrupted by dense stripes, the destriping results on images
with dense stripes (η = 0.4, γ = 0.6) are shown in Figs. 8
and 9 for a visual evaluation of the destriping performance of
the various algorithms.

When comparing the proposed destriping submodel AATN
with the destriping methods WFAF, ASSTV, LRMID, one
can conclude that WFAF shows the poorest results. ASSTV
shows a better destriping performance, but is no match for
LRMID, that entails a constraint on stripes. The proposed
AATN outperforms the latter three methods. This demonstrates
the effectiveness of the strategies of smoothing the striped
regions while preserving the unstriped regions, along with the
use of the truncated nuclear norm constraint on the stripes.

When comparing the proposed destriping submodel AATN
with the restoration methods LRMR, LRTV, LRTFL0, and
NoMG-LRMF, the following can be concluded. LRMR shows
the worst destriping performance. LRTFL0 that imposes three
constraints on the clean image and a single constraint on
stripes, performs better than LRMR but worse than the
proposed AATN (especially for serious striping). The worse
destriping performance of LRTFL0 could be the result of its
imbalanced regularization between the clean image and stripes,
possibly causing the over-loss of image information and the
maintaining of stripes (see Figs. 8(h) and 9(h)). LRTV and
NMoG-LRMF however outperform AATN on the Botswana
data with sparser stripes (specifically, γ = 0.2, 0.4), whereas
for the University of Pavia data, it is the other way around.
In general, the destriping performance of LRMR, LRTV, and
NMoG-LRMF seems to be highly dependent on the texture
complexity of the images and on the spatial density of the
stripes. As can be seen from the results (Tables II and III,
Figs. 8(e)-8(i) and 9(e)-9(i)), their destriping performance
seriously deteriorates with the density of stripes, and is
much lower on the University of Pavia image than on the
smoother Botswana image. Since these three methods have
in common that they impose the low-rank constraint on the
clean HSI, a possible cause is that dense stripes may possess
stronger low-rank properties than the clean image. In case

of complex textures, even sparse stripes may have stronger
low-rank properties than the clean images. The destriping
performance of AATN slowly declines with increasing stripe
intensity and density, yet remains stable irrespective of the
image smoothness. We can conclude that the proposed AATN
is an effective destriping method and competitive to the state-
of-the-art techniques, in particular for dense stripes and for
highly textured images.

2) Experiments on Noisy and Striped Data: In this ex-
periment, different levels of stripes and Gaussian noise are
added to the Botswana and University of Pavia images, to
validate the restoration capability of the proposed AANNs.
Gaussian noise is added, either with standard deviations (σn =
0.025, 0.05, 0.1), equally on all bands, or with standard devia-
tions that vary between bands, in the range (σn ∈ (0, 0.1]).
Sparse (η = 0.2, γ = 0.2) as well as dense (η = 0.4,
γ = 0.6) stripes are added. The proposed restoration method
is compared to the denoising submodel (MB-WNN), the
destriping submodel (AATN), the successive application of
the denoising and destriping submodels (W-AATN) and the
restoration methods LRMR, LRTV, LRTFL0, and NMoG-
LRMF. The corresponding results are presented in Tables IV-V
and Figs. 10-11.

From the results, the following conclusions can be drawn:
• The application of both denoising and destriping (W-

AATN and AANNs) outperforms the application of only
the denoising submodel (MB-WNN) and the application
of only the destriping submodel (AATN). In general,
the proposed joint denoising and destriping strategy
outperforms the successive application of the denoising
and destriping submodels. This is due to the alternating
iteration procedure, balancing the denoising and destrip-
ing processes in the proposed method AANNs, while
the destriping process in the W-AATN method may be
affected by the denoising step.

• Because of its imbalance in constraining the clean image
and stripes, LRTFL0 performs worse than the proposed
AANNs in the removal of stripes. This can be ob-
served in Fig. 10(e) versus Fig. 10(j). Similar as in
the destriping experiment, the restoration performance of
LRMR, LRTV, and NMoG-LRMF largely reduces with
an increase in the image texture complexity and/or in the
density of stripes, as a consequence of applying the low-
rank constraint directly on the clean image. In addition,
LRMR and LRTV perform poor on the destriping, as is
clearly visible in Figs. 10(c)-10(d) and 11(c)-11(d).

• From the values of PSNR, SAM, and SID in Tables IV
and V, NMoG-LRMF seems to outperform the proposed
method. However, its SSIM values are always lower.
SSIM describes the image distortion by comparing lumi-
nance (mean), contrast (standard deviation), and structure
[42]. As can be observed, Fig. 10(f) is brighter than the
original image Fig. 10(a), which explains that the lower
values of SSIM is the result of loss of luminance and
contrast information.

• The proposed AANNs imposes the low-rank constraint
on the striped image rather than on the clean image,
and applies the adaptive smoothness regularization on
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TABLE II
PERFORMANCE METRICS ON THE BOTSWANA IMAGE FOR DIFFERENT LEVELS OF STRIPES

Metrics Method
η = 0.2 η = 0.4 η = 0.6 η = 0.8
γ γ γ γ

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

PSNR

Degraded 46.22 43.21 41.42 40.18 40.20 37.19 35.40 34.16 36.68 33.67 31.87 30.63 34.18 31.17 29.38 28.14
WFAF 56.26 54.22 53.68 52.71 53.14 50.75 49.49 48.79 51.15 48.40 47.02 45.77 49.17 46.90 44.41 44.01
ASSTV 56.46 55.62 54.51 54.10 54.16 53.16 52.11 51.11 52.13 50.97 49.97 48.54 50.37 49.09 47.64 47.08
LRMID 57.70 56.47 55.79 54.56 55.92 54.38 53.35 53.08 53.56 52.53 51.80 50.68 52.49 51.41 50.64 49.27
LRMR 54.60 52.90 51.61 50.85 50.82 48.73 47.23 46.29 48.15 45.52 44.16 42.83 47.07 43.81 41.69 40.52
LRTV 62.45 58.84 55.07 51.43 62.01 58.40 52.16 49.05 61.86 58.17 51.74 47.40 61.25 57.76 50.94 47.39

LRTFL0 58.06 59.68 54.81 51.35 58.66 57.54 53.54 48.22 59.00 57.40 51.52 46.25 56.09 56.00 52.92 45.35
NMoG-LRMF 66.16 58.87 54.70 54.50 65.74 60.07 54.11 53.25 65.47 60.04 54.02 51.65 65.43 59.94 53.96 50.17

AATN 58.07 57.37 56.13 55.52 56.14 54.26 53.60 52.57 54.42 52.66 51.80 50.78 53.14 51.83 50.66 49.57

SSIM

Degraded 0.9606 0.9247 0.8901 0.8597 0.8713 0.7723 0.6882 0.6238 0.7720 0.6177 0.5097 0.4310 0.6821 0.4940 0.3761 0.297
WFAF 0.9951 0.9930 0.9920 0.9901 0.9900 0.9833 0.9776 0.9743 0.9816 0.9714 0.9610 0.9492 0.9687 0.9527 0.9396 0.9265
ASSTV 0.9928 0.9922 0.9904 0.9897 0.9884 0.9872 0.9844 0.9768 0.9819 0.9793 0.9738 0.9572 0.9709 0.9652 0.9461 0.9482
LRMID 0.9964 0.9951 0.9924 0.9900 0.9937 0.9922 0.9881 0.9871 0.9902 0.9860 0.9841 0.9792 0.9862 0.9828 0.9800 0.9719
LRMR 0.9929 0.9893 0.9859 0.9834 0.9832 0.9739 0.9632 0.9556 0.9700 0.9468 0.9289 0.9058 0.9631 0.9260 0.8798 0.8435
LRTV 0.9984 0.9961 0.9911 0.9803 0.9986 0.9956 0.9826 0.9620 0.9985 0.9909 0.9798 0.9444 0.9986 0.9892 0.9763 0.9361

LRTFL0 0.9969 0.9981 0.9930 0.9718 0.9973 0.9969 0.9821 0.9328 0.9979 0.9967 0.9758 0.8924 0.9956 0.9956 0.9680 0.8698
NMoG-LRMF 0.9996 0.9859 0.9876 0.9873 0.9996 0.9852 0.9773 0.9836 0.9996 0.9851 0.9740 0.9766 0.9996 0.9851 0.9732 0.9663

AATN 0.9965 0.9953 0.9931 0.9926 0.9940 0.9918 0.9901 0.9877 0.9908 0.9870 0.9848 0.9819 0.9884 0.9844 0.9808 0.9762

SAM

Degraded 0.2310 0.3225 0.3883 0.4406 0.4333 0.5791 0.6737 0.7436 0.5996 0.7665 0.8678 0.9365 0.7321 0.9043 0.9997 1.0647
WFAF 0.0625 0.0740 0.0849 0.0902 0.0904 0.1245 0.1401 0.1578 0.1390 0.1711 0.1941 0.2198 0.1615 0.2110 0.2443 0.2853
ASSTV 0.0936 0.0984 0.1092 0.1154 0.1207 0.1382 0.1493 0.2630 0.1616 0.1772 0.2089 0.2781 0.2133 0.2484 0.3288 0.3050
LRMID 0.0760 0.0908 0.1154 0.1333 0.1039 0.1248 0.1363 0.1435 0.1367 0.1451 0.1531 0.1755 0.1463 0.1617 0.1728 0.2084
LRMR 0.0959 0.1181 0.1370 0.1491 0.1476 0.1864 0.2095 0.2366 0.1906 0.2594 0.3018 0.3529 0.2002 0.2919 0.4170 0.4978
LRTV 0.0330 0.0502 0.0780 0.1250 0.0275 0.0546 0.1368 0.2168 0.0286 0.1187 0.1623 0.2787 0.0285 0.1291 0.1722 0.3249

LRTFL0 0.0568 0.0461 0.0769 0.1810 0.0552 0.0527 0.1463 0.2883 0.0476 0.0526 0.1458 0.4099 0.0674 0.0616 0.2361 0.4823
NMoG-LRMF 0.0247 0.1382 0.1478 0.1479 0.0216 0.1387 0.1485 0.1480 0.0254 0.1390 0.1486 0.1491 0.0251 0.1436 0.1495 0.1580

AATN 0.0665 0.0743 0.0881 0.0909 0.0820 0.1049 0.1069 0.1234 0.1024 0.1257 0.1449 0.1659 0.1213 0.1402 0.1611 0.1767

SID

Degraded 49.91 98.01 149.64 198.55 151.79 303.84 460.69 614.32 239.26 484.27 732.82 974.50 228.80 455.44 690.30 916.24
WFAF 18.60 19.56 24.09 26.06 25.52 34.57 40.01 46.47 39.01 49.77 62.50 74.31 52.17 70.72 95.92 110.70
ASSTV 19.63 21.03 25.43 25.05 26.89 28.79 33.79 43.35 35.03 41.36 52.42 75.65 50.60 63.03 97.65 93.90
LRMID 10.89 12.99 22.02 27.79 20.13 22.58 32.36 32.37 25.62 35.14 39.82 47.52 35.38 40.90 46.56 59.75
LRMR 16.92 21.95 28.27 32.42 32.06 43.69 55.69 65.33 48.11 76.41 104.84 145.14 53.51 100.60 193.83 269.25
LRTV 2.53 6.07 17.01 33.18 3.89 6.73 33.39 67.25 4.99 15.69 41.33 100.34 6.74 16.37 46.14 110.58

LRTFL0 6.96 6.27 11.98 38.43 7.51 7.99 31.15 93.21 4.94 10.32 37.18 169.27 13.70 15.33 50.08 188.09
NMoG-LRMF 3.16 28.70 25.24 26.02 4.04 32.50 42.64 29.56 1.58 36.97 49.68 51.65 1.99 39.44 52.64 54.69

AATN 17.18 19.77 22.80 24.91 22.55 26.31 29.03 32.61 27.24 33.09 38.49 43.65 31.14 37.38 43.80 50.98

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8. Band 10 of the Botswana image. (a) Original clean image. (b) Striped image (η = 0.4 and γ = 0.6). Destriped images generated by
(c) WFAF, (d) ASSTV, (e) LRMID, (f) LRMR, (g) LRTV, (h) LRTFL0, (i) NMoG-LRMF, and (j) AATN.
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TABLE III
PERFORMANCE METRICS ON THE UNIVERSITY OF PAVIA IMAGE FOR DIFFERENT LEVELS OF STRIPES

Metrics Method
η = 0.2 η = 0.4 η = 0.6 η = 0.8
γ γ γ γ

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

PSNR

Degraded 39.31 36.30 34.51 33.26 33.29 30.28 28.49 27.24 29.76 26.75 24.96 23.72 27.27 24.25 22.47 21.22
WFAF 52.14 50.32 48.70 47.37 47.32 44.85 43.68 42.75 45.64 41.83 40.24 39.37 42.94 40.22 37.67 36.71
ASSTV 57.48 54.78 52.96 52.23 53.31 51.85 50.73 49.14 51.17 50.13 48.83 47.83 50.48 48.09 47.09 46.17
LRMID 59.23 57.67 56.71 54.28 54.69 53.59 52.01 51.33 52.73 51.79 49.27 48.88 52.63 49.85 48.21 47.78
LRMR 47.50 45.53 44.32 43.36 43.91 40.91 39.48 38.29 42.60 40.07 37.52 35.02 41.75 37.51 34.07 33.23
LRTV 53.93 50.64 46.27 43.18 53.30 49.25 44.22 39.17 53.17 49.12 43.19 38.28 53.20 48.80 43.28 37.24

LRTFL0 56.22 54.44 54.10 42.08 56.20 50.83 52.07 38.56 56.90 50.71 45.99 37.09 54.52 51.66 46.12 35.14
NMoG-LRMF 60.27 57.54 48.67 47.00 60.18 52.07 44.92 43.55 57.41 50.42 41.76 39.95 55.71 50.27 39.16 37.53

AATN 60.29 58.06 56.42 56.54 55.60 54.43 53.41 53.21 54.21 53.45 51.10 49.39 53.30 51.31 49.28 48.72

SSIM

Degraded 0.8853 0.7856 0.6990 0.6274 0.6835 0.4760 0.3417 0.2526 0.5227 0.2863 0.1634 0.1034 0.4169 0.1817 0.0849 0.0490
WFAF 0.9904 0.9849 0.9802 0.9717 0.9696 0.9411 0.9323 0.9108 0.9507 0.9006 0.8766 0.8497 0.9214 0.8691 0.8144 0.7719
ASSTV 0.9974 0.9953 0.9929 0.9916 0.9934 0.9904 0.9882 0.9828 0.9893 0.9854 0.9817 0.9757 0.9863 0.9780 0.9711 0.9627
LRMID 0.9981 0.9974 0.9969 0.9944 0.9950 0.9933 0.9908 0.9889 0.9922 0.9891 0.9827 0.9795 0.9910 0.9850 0.9756 0.9725
LRMR 0.9794 0.9683 0.9586 0.9489 0.9543 0.9093 0.8734 0.8287 0.9388 0.8878 0.8262 0.6464 0.9264 0.7988 0.5802 0.5118
LRTV 0.9956 0.9911 0.9779 0.9481 0.9948 0.9852 0.9617 0.8782 0.9943 0.9789 0.9494 0.8575 0.9939 0.9807 0.9396 0.8094

LRTFL0 0.9962 0.9952 0.9951 0.9277 0.9963 0.9876 0.9920 0.8451 0.9967 0.9866 0.9650 0.8080 0.9935 0.9899 0.9642 0.7253
NMoG-LRMF 0.9985 0.9979 0.9852 0.9817 0.9984 0.9942 0.9662 0.9531 0.9980 0.9923 0.9308 0.8984 0.9970 0.9915 0.8810 0.8290

AATN 0.9987 0.9978 0.9970 0.9966 0.9957 0.9940 0.9928 0.9927 0.9933 0.9924 0.9886 0.9809 0.9916 0.9891 0.9805 0.9782

SAM

Degraded 0.4725 0.6149 0.7074 0.7754 0.7632 0.9300 1.0213 1.0834 0.9469 1.1001 1.1771 1.2277 1.0699 1.2038 1.2660 1.3090
WFAF 0.1227 0.1470 0.1709 0.1988 0.2121 0.2745 0.3022 0.3382 0.2604 0.3554 0.4011 0.4558 0.3388 0.4266 0.8144 0.5666
ASSTV 0.0665 0.0910 0.1108 0.1243 0.1042 0.1135 0.1306 0.1664 0.1271 0.1493 0.1602 0.1827 0.1394 0.1813 0.2022 0.2293
LRMID 0.0563 0.0649 0.0703 0.0994 0.0903 0.0973 0.1156 0.1331 0.1083 0.1266 0.1584 0.1656 0.1114 0.1491 0.1822 0.1969
LRMR 0.1755 0.2208 0.2552 0.2862 0.2634 0.3811 0.4505 0.5328 0.3046 0.4074 0.5209 0.844 0.3373 0.5712 0.9550 1.0747
LRTV 0.0568 0.0789 0.1193 0.1980 0.0615 0.1383 0.1804 0.3835 0.0686 0.1847 0.2346 0.4295 0.0757 0.1712 0.2764 0.5307

LRTFL0 0.0760 0.0833 0.0788 0.3082 0.0790 0.1364 0.0888 0.4232 0.0756 0.1396 0.1858 0.5023 0.1007 0.1156 0.1935 0.6385
NMoG-LRMF 0.0519 0.0577 0.1366 0.1567 0.0523 0.0810 0.2027 0.2467 0.0508 0.0826 0.3044 0.3836 0.0523 0.0839 0.4483 0.5510

AATN 0.0476 0.0625 0.0696 0.0729 0.0839 0.0935 0.1014 0.1101 0.1007 0.1086 0.1279 0.1602 0.1135 0.1311 0.1632 0.1769

SID

Degraded 125.96 250.88 378.88 505.41 196.87 393.03 592.06 784.73 310.83 621.43 935.79 1246.54 491.46 991.23 1497.05 1995.22
WFAF 14.11 21.54 29.26 38.75 39.74 69.53 83.83 99.71 60.12 117.54 144.75 166.37 99.71 146.45 200.73 231.31
ASSTV 4.16 7.42 11.06 13.01 10.13 14.19 17.42 24.87 15.85 21.23 26.19 33.10 20.13 32.04 40.27 48.17
LRMID 3.09 4.14 5.04 8.59 7.80 10.19 13.44 16.06 11.74 15.55 24.12 27.16 13.46 22.18 32.96 35.12
LRMR 29.62 46.08 60.78 76.12 66.27 140.14 204.61 281.51 89.71 164.84 242.77 583.04 108.31 318.93 626.11 686.67
LRTV 5.52 10.60 30.33 74.14 5.96 16.22 51.23 188.59 6.68 18.53 68.43 225.19 6.66 18.45 70.84 259.98

LRTFL0 6.24 8.08 7.87 103.82 6.18 19.29 12.97 178.52 5.62 20.33 39.43 241.88 11.15 15.63 40.01 339.13
NMoG-LRMF 2.85 3.58 23.78 30.25 2.84 8.90 52.41 43.55 3.33 11.60 106.28 161.61 4.77 12.72 194.24 276.03

AATN 2.47 3.74 5.31 5.57 6.58 8.98 10.57 11.05 10.10 11.22 16.34 25.03 12.66 16.75 26.64 28.84

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9. Band 63 of the University of Pavia image. (a) Original clean image. (b) Striped image (η = 0.4 and γ = 0.6). Destriped images
generated by (c) WFAF, (d) ASSTV, (e) LRMID, (f) LRMR, (g) LRTV, (h) LRTFL0, (i) NMoG-LRMF, and (j) AATN.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10. Band 13 of the Botswana image. (a) Original clean image. (b) Image corrupted with stripes (η = 0.2 and γ = 0.2) and Gaussian
noise (σn = 0.05). Restored images, generated by (c) LRMR, (d) LRTV, (e) LRTFL0, (f) NMoG-LRMF, (g) MB-WNN, (h) AATN, (i)
W-AATN, and (j) AANNs.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11. Band 58 of the University of Pavia image. (a) Original clean image. (b) Image corrupted with stripes (η = 0.2 and γ = 0.2)
and Gaussian noise (σn = 0.05). Restored images, generated by (c) LRMR, (d) LRTV, (e) LRTFL0, (f) NMoG-LRMF, (g) MB-WNN, (h)
AATN, (i) W-AATN, and (j) AANNs.
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TABLE IV
PERFORMANCE METRICS ON THE BOTSWANA IMAGE FOR DIFFERENT LEVELS OF STRIPES AND RANDOM NOISE

Metrics Method
σn = 0.025 σn = 0.05 σn = 0.1 σn ∈ (0, 0.1]

η, γ η, γ η, γ η, γ
0.2, 0.2 0.4, 0.6 0.2, 0.2 0.4, 0.6 0.2, 0.2 0.4, 0.6 0.2, 0.2 0.4, 0.6

PSNR

Degraded 45.89 35.37 45.03 35.29 42.69 34.97 44.87 35.26
LRMR 54.48 47.26 54.45 46.70 54.16 46.51 54.65 46.54
LRTV 58.13 51.81 56.31 50.73 54.35 49.36 57.14 51.41

LRTFL0 58.48 52.97 56.69 52.73 56.66 50.78 56.45 52.70
NMoG-LRMF 62.93 53.70 61.69 53.40 59.13 53.29 62.87 53.57

MB-WNN 46.39 35.40 46.18 35.40 45.67 35.39 46.20 35.40
AATN 54.68 52.72 51.30 49.34 46.48 46.80 51.48 50.74

W-AATN 57.47 52.95 53.38 52.15 51.48 49.33 52.83 51.47
AANNs 57.14 52.20 55.87 51.55 54.00 50.39 55.40 51.91

SSIM

Degraded 0.9577 0.6871 0.9494 0.6836 0.9183 0.6701 0.9458 0.6821
LRMR 0.9930 0.9634 0.9925 0.9602 0.9919 0.9591 0.9931 0.9596
LRTV 0.9916 0.9814 0.9892 0.9766 0.9836 0.9695 0.9906 0.9794

LRTFL0 0.9971 0.9797 0.9954 0.9769 0.9945 0.9646 0.9958 0.9765
NMoG-LRMF 0.9414 0.7268 0.9161 0.7055 0.8549 0.6964 0.9399 0.7169

MB-WNN 0.9625 0.6882 0.9607 0.6882 0.9547 0.6882 0.9606 0.6883
AATN 0.9934 0.9819 0.9855 0.9789 0.9601 0.9592 0.9818 0.9804

W-AATN 0.9952 0.9856 0.9916 0.9846 0.9847 0.9732 0.9875 0.9817
AANNs 0.9954 0.9873 0.9944 0.9860 0.9912 0.9811 0.9934 0.9850

SAM

Degraded 0.2396 0.6752 0.2636 0.6796 0.3391 0.6966 0.2743 0.6821
LRMR 0.0911 0.2097 0.0969 0.2025 0.0939 0.2030 0.0902 0.2033
LRTV 0.1102 0.1411 0.1249 0.1716 0.1527 0.1936 0.1131 0.2484

LRTFL0 0.0555 0.1568 0.0670 0.1687 0.0691 0.2067 0.0646 0.1715
NMoG-LRMF 0.0431 0.1480 0.0476 0.1479 0.0605 0.1479 0.0445 0.1535

MB-WNN 0.2238 0.6739 0.2297 0.6737 0.2479 0.6740 0.2304 0.6736
AATN 0.0930 0.1184 0.1357 0.1468 0.2332 0.2432 0.1587 0.1612

W-AATN 0.0715 0.1255 0.1000 0.1314 0.1411 0.2177 0.1266 0.1462
AANNs 0.0725 0.1225 0.0819 0.1344 0.0990 0.1508 0.0890 0.1326

SID

Degraded 54.02 462.04 65.69 465.64 107.14 477.51 70.06 465.76
LRMR 13.86 55.30 17.69 66.96 16.12 69.07 14.84 69.47
LRTV 10.33 35.19 13.68 41.14 21.00 50.75 12.14 36.83

LRTFL0 3.81 33.62 6.51 34.84 9.41 48.90 13.31 35.35
NMoG-LRMF 4.04 28.90 4.90 28.83 6.97 29.19 4.34 28.94

MB-WNN 47.69 460.99 50.46 461.11 58.63 461.07 50.37 460.92
AATN 22.33 32.28 35.55 47.16 66.85 68.96 38.24 41.89

W-AATN 19.51 35.66 27.00 37.63 33.82 52.53 31.94 40.97
AANNs 18.69 32.87 20.08 35.14 23.49 37.88 20.71 36.22

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 12. Band 15 of the Tiangong-I image. (a) Original image. Restored images, generated by (b) WFAF, (c) ASSTV, (d) LRMID, (e) LRMR,
(f) LRTV, (g) LRTFL0, (h) NMoG-LRMF, (i) AATN, and (j) AANNs.
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TABLE V
PERFORMANCE METRICS ON THE UNIVERSITY OF PAVIA IMAGE FOR DIFFERENT LEVELS OF STRIPES AND RANDOM NOISE

Metrics Method
σn = 0.025 σn = 0.05 σn = 0.1 σn ∈ (0, 0.1]

η, γ η, γ η, γ η, γ
0.2, 0.2 0.4, 0.6 0.2, 0.2 0.4, 0.6 0.2, 0.2 0.4, 0.6 0.2, 0.2 0.4, 0.6

PSNR

Degraded 38.98 28.46 38.12 28.37 35.77 28.06 37.62 28.30
LRMR 47.57 37.74 47.39 37.90 46.78 37.85 47.21 37.83
LRTV 51.10 42.68 49.24 41.99 47.23 40.89 49.38 42.84

LRTFL0 56.19 47.40 54.44 44.10 49.51 40.82 54.25 43.75
NMoG-LRMF 57.87 44.47 54.89 44.48 50.56 44.24 57.45 44.39

MB-WNN 39.31 28.49 39.28 28.49 38.38 28.44 39.12 28.48
AATN 51.27 47.76 46.39 46.74 41.02 42.77 45.31 45.46

W-AATN 54.59 50.37 52.76 50.14 48.56 47.67 52.35 49.50
AANNs 54.51 50.68 52.56 50.18 49.32 47.52 51.26 49.45

SSIM

Degraded 0.8776 0.3420 0.8551 0.3356 0.7760 0.3189 0.8369 0.3319
LRMR 0.9796 0.8063 0.9788 0.8124 0.9759 0.8098 0.9780 0.8090
LRTV 0.9900 0.9376 0.9861 0.9268 0.9781 0.9054 0.9850 0.9437

LRTFL0 0.9968 0.9794 0.9948 0.9540 0.9877 0.9069 0.9956 0.9499
NMoG-LRMF 0.9178 0.5507 0.8498 0.5499 0.7356 0.5340 0.9065 0.5448

MB-WNN 0.8854 0.3415 0.8847 0.3417 0.8625 0.3392 0.8807 0.3414
AATN 0.9919 0.9808 0.9759 0.9762 0.9226 0.9447 0.9625 0.9670

W-AATN 0.9959 0.9872 0.9940 0.9867 0.9848 0.9787 0.9933 0.9857
AANNs 0.9959 0.9886 0.9927 0.9872 0.9865 0.9790 0.9905 0.9855

SAM

Degraded 0.4867 1.0227 0.5252 1.0267 0.6388 1.0418 0.5563 1.0302
LRMR 0.1749 0.4368 0.1773 0.4304 0.1861 0.4340 0.1801 0.4335
LRTV 0.1194 0.2649 0.1363 0.2916 0.1594 0.3329 0.1380 0.2277

LRTFL0 0.0755 0.1460 0.0927 0.2273 0.1337 0.3495 0.0851 0.2398
NMoG-LRMF 0.0689 0.2138 0.0847 0.2123 0.1250 0.2172 0.0654 0.2142

MB-WNN 0.4727 1.0220 0.4733 1.0222 0.5119 1.0250 0.4806 1.0223
AATN 0.1352 0.1624 0.2301 0.2029 0.3985 0.3238 0.2845 0.2384

W-AATN 0.0873 0.1378 0.1089 0.1423 0.1767 0.1944 0.1149 0.1491
AANNs 0.0880 0.1301 0.1197 0.1401 0.1483 0.1788 0.1371 0.1510

SID

Degraded 140.76 597.70 173.50 610.03 264.30 642.05 192.57 617.85
LRMR 29.39 321.07 30.50 305.97 34.98 309.86 32.00 311.98
LRTV 13.82 84.76 20.16 100.75 31.65 133.01 21.74 77.32

LRTFL0 5.90 31.84 10.07 63.05 22.92 128.33 8.33 68.18
NMoG-LRMF 4.61 58.54 7.75 58.22 17.85 61.19 4.48 59.58

MB-WNN 128.90 593.87 133.86 595.63 170.65 607.41 139.63 597.03
AATN 15.49 29.34 42.39 38.36 117.84 86.20 60.41 51.51

W-AATN 7.55 19.06 11.10 20.01 27.12 33.23 12.25 21.94
AANNs 7.66 17.33 12.80 19.56 21.65 31.37 16.56 22.29

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 13. Residual images of band 15 of the Tiangong-I image, produced by (a) WFAF, (b) ASSTV, (c) LRMID, (d) LRMR, (e) LRTV, (f)
LRTFL0, (g) NMoG-LRMF, (h) AATN, and (i) AANNs.
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Fig. 14. Mean horizontal profiles of band 15 of the Tiangong-I image. (a) Original image. Restored images, generated by (b) WFAF, (c)
ASSTV, (d) LRMID, (e) LRMR, (f) LRTV, (g) LRTFL0, (h) NMoG-LRMF, (i) AATN, and (j) AANNs. The horizontal axis denotes the
image column number (1-256), while the vertical axis represents the normalized pixel value (0-1).

the clean image. From Tables IV-V, it can be observed
that AANNs produces stable results, irrespective of the
density of stripes, and for both the smooth and the more
textured image. Comprehensively, the proposed AANNs
outperforms the other image restoration algorithms.

C. Experiments on Real HSI

Due to the lack of the ground truth information, results
of the experiments on the Tiangong-I image are visually
evaluated. Fig. 12 shows the restored images, Fig. 13 shows
the residual images, and Fig. 14 shows the mean horizontal
profiles.

Similar conclusions as from the experiments on the syn-
thetic data can be drawn.
• From Figs. 12(b)-12(d) and 14(b)-14(d), it can be con-

cluded that the destriping methods WFAF, ASSTV and
LRMID remove most stripes. The enlarged regions, in
orange reveal however some remaining stripes. The resid-
ual image in Fig. 13(a) is much darker in the middle,
revealing a staircase effect caused by WFAF. In the
residual images of ASSTV and LRMID (Figs. 13(b)
and 13(c)), one can observe quite some image edge
information, indicating that these methods oversmooth
the image.

• As can be seen from Figs. 12(e)-12(h), LRMR, LRTV,
LRTFL0, and NMoG-LRMF perform poorly on destrip-
ing. This can also be observed in the horizontal profiles
of their results, which are as rippled as the original
profile. Moreover, Figs. 13(d)-13(g) reveal that signifi-
cant amounts of image information is removed by these
methods.

• Although it is hard to find any remaining stripes on
the restored image by the proposed restoration method
(Fig. 12(j)), the residual image in Fig. 13(i) shows some
lost texture information and the profile in Fig. 14(j)
appears distorted. One possible cause is the limited

amount of Gaussian noise in the Tiangong-I data. The
denoising submodel of the proposed method may cause
the observed image information loss. The results of the
destriping submodel AATN are clearly better. No stripes
can be visually observed in Fig. 12(i), hardly any edge
information can be found in Fig. 13(h), and Fig. 14(i)
shows a smooth horizontal profile with a basic trend that
is similar to the original profile.

D. Computational Complexity and Time Performance

The computational complexity of each compared method is
summarized in Tabel VI, where the fast addition/subtraction
operations are not taken into account. t1, t2, and t3 denote
the maximum iterations involved in the compared methods. r′

expresses the upper bound of the rank constraint, and rg is the
number of Gaussian models used in NoMG-LRMF. Among the
compared destriping methods, the higher the complexity, the
better the algorithm performs. For example, the complexity
within one iteration is the lowest for the worst performing
method WFAF. As for the restoration methods, it is not
obvious to discuss their complexities within one iteration
because they contain several unknown variables. Here, a
rough conclusion can be drawn from the highest order of the
complexity. Namely, LRMR and LRTFL0 are the least and
most complex, respectively, while LRTV, NoMG-LRMF, W-
AATN and AANNs have similar computational complexity.

To further discuss the complexities of the considered meth-
ods, their average execution times, spent on both synthetic
and real data are listed in Table VII. All experiments were
executed using MATLAB R2014a on a personal computer
with Windows 7, with a 64-bit operating system, Intel (R)
Core (TM) i7-6700 CPU 3.40 GHz processor, and 16 GB
memory. The simulation of our proposed methods was entirely
performed with the pseudocode of the corresponding solving
procedure; no technique for acceleration was used. The blanks
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TABLE VI
COMPUTATIONAL COMPLEXITIES OF DIFFERENT METHODS

Method Computational complexity
WFAF O(t1 · 4MNB log2MN)
ASSTV O[t1(6MNB + 4MNB log2MNB)]
LRMID O[t1(4MNB + 3MNB log2MNB +M2NB)]

LRMR O[t1(M − h+ 1)(N − h+ 1)(3Bh2r′+
B2r′ + h2r′ + r′3)]

LRTV O[t1(M2N2B + t2 · 6MNB)]

LRTFL0

O{t1[t2[(MNB + r′2)r′ min(M,N)+
r′3 + (M +N)Br′3[min(M,N)]2 +MNr′2]

+t3MNB]}

NoMG-LRMF O{t1[5MNBrgr′ + 4MNrgr′2+
2(MN +B)r′3]}

MB-WNN O{t1[4MNB + (M − h+ 1)(N − h+ 1)B2h]}
AATN O[t1(4MNB + 3MNB log2MNB +M2NB)]

W-AATN O{t1[4MNB + (M − h+ 1)(N − h+ 1)B2h]+
t2(4MNB + 3MNB log2MNB +M2NB)}

AANNs O{t1[4MNB + (M − h+ 1)(N − h+ 1)B2h+
t2(4MNB + 3MNB log2MNB +M2NB)]}

in the table denote the unnecessary experiments that were not
performed.

Except for the fast WFAF and the slow LRTFL0, all
methods have execution times in the same order of magnitude.
The proposed destriping submodel AATN performs on aver-
age. Compared to the restoration techniques LRMR, LRTV,
LRTFL0, NMoG-LRMF, and W-AATN, the proposed AANNs
is among the fastest. This outstanding time performance can
be attributed to the alternating denoising and destriping, that
supplement each other in the iteration procedure.

IV. CONCLUSION

In this paper, an HSI restoration method was proposed, that
performed denoising and destriping simultaneously. The HSI
restoration process was broken down into two, closely related
and mutually promoting subtasks: denoising and destriping.
Then, the denoising and destriping submodels were proposed.
More specifically, the denoising submodel imposed a spectral
redundancy constraint on the striped image through a weighted
nuclear norm. The destriping submodel contained an adaptive
TV regularization that adaptively smoothed the striped image
and a truncated nuclear norm regularization to constrain the
rank of stripes. Since the striped HSI was the linking bridge
between both submodels, a natural combination of both sub-
models provided the final restoration model. The proposed
restoration method was solved under the ADMM framework,
alternating denoising and destriping iteratively. Experiments
on synthetic and real noisy and striped imagery confirmed
the effectiveness and superiority of the proposed restoration
approach when compared to the relevant state of the art HSI
restoration methods.
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