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Abstract

Computational anatomy strategies for characterization of brain patterns associated
with Alzheimer’s disease

Alzheimer’s disease (AD) is one of the most complex systematic malfunctions of the ner-
vous system that are known. The clinical symptoms of this neurodegenerative disease
are alterations in cognition and behaviour that can lead to the onset of a dementia syn-
drome. Disease mechanisms that lead to neurodegeneration and cognitive impairment
in sporadic AD are not well understood yet, making it difficult to predict the clinical
progression of patients at the early stages of the AD continuum. Currently, no single
biomarker or exam is sufficient to diagnose AD and existing standard instruments are
not sensitive enough to detect subtle changes, predict the clinical course, and recognize
heterogeneous forms of AD. This thesis presents two computational anatomy strategies
aiming to identify and quantify neurodegeneration patterns associated with different
clinical stages along the AD continuum using two different modalities of magnetic res-
onance imaging. A third contribution consists of a data-driven strategy to develop a
set of domain-specific scores that result useful to estimate the risk of and predict the
progression from mild cognitive impairment to dementia. Evaluation of these strategies
withmachine-learning and statistical inferencemethods demonstrate the potential of the
proposed quantitative tools to help patients’ clinical management and monitoring and
could be used to improve the evaluation of potential disease-modifying interventions.

Keywords: Alzheimer’s Disease, Neuroimaging, Medical Image Processing, Magnetic
Resonance Imaging, Cognitive Impairment.
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Resumen

Estrategias de anatomía computacional para la caracterización de patrones cerebrales
asociados a la enfermedad de Alzheimer

La enfermedad de Alzheimer (EA) es una de las fallas sistemáticas del sistema nervioso
más complejas que se conocen. Los síntomas clínicos de esta enfermedad neurodegen-
erativa son alteraciones de la cognición y el comportamiento que pueden conducir a la
aparición de un síndromede demencia. Losmecanismos de la enfermedad que conducen
a la neurodegeneración y al deterioro cognitivo en la EA aún no se conocen bien, lo que
dificulta la predicción de la evolución clínica de los pacientes en las primeras fases de la
EA. Actualmente, ningún biomarcador o examen es suficiente para diagnosticar la EA
y los instrumentos estándar existentes no son lo suficientemente sensibles para detec-
tar cambios sutiles, predecir el curso clínico o reconocer presentaciones atípicas de EA.
Esta tesis presenta dos estrategias de anatomía computacional destinadas a identificar y
cuantificar los patrones de neurodegeneración asociados a diferentes etapas clínicas a lo
largo del continuo de la EA utilizando dos modalidades diferentes de imágenes de reso-
nancia magnética. Una tercera contribución consiste en una estrategia guiada por datos
para desarrollar un conjunto de puntajes específicas por dominio que resultan útiles para
estimar el riesgo y predecir la progresión del deterioro cognitivo leve a la demencia. La
evaluación de estas estrategias con métodos de aprendizaje automático y de inferencia
estadística demuestra el potencial de las herramientas cuantitativas propuestas para ayu-
dar al manejo y el seguimiento clínico de los pacientes y podría utilizarse para mejorar la
evaluación de posibles intervenciones que puedan modificar el curso de la enfermedad.

Palabras clave: Enfermedad de Alzheimer, Neuroimágenes, Procesamiento de imágenes
médicas, Imágenes de Resonancia Magnética, Deterioro Cognitivo.
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Samenvatting

Computationele anatomie strategieën voor karakterisering van hersenpatronen
geassocieerd met de ziekte van Alzheimer

De ziekte van Alzheimer (AD) is een van de meest complexe systemische storingen van
het zenuwstelsel die bekend zĳn. De klinische symptomen van deze neurodegeneratieve
ziekte zĳn veranderingen in cognitie en gedrag die kunnen leiden tot het ontstaan van een
dementiesyndroom. De ziektemechanismen die leiden tot neurodegeneratie en cogni-
tieve stoornissen bĳ sporadische AD zĳn nog niet goed begrepen, waardoor het moeilĳk
is om de klinische progressie van patiënten in de vroege stadia van het AD continuüm
te voorspellen. Momenteel is geen enkele biomarker of onderzoek voldoende om de
diagnose AD te stellen en de bestaande standaardinstrumenten zĳn niet gevoelig genoeg
om subtiele veranderingen te detecteren, het klinische verloop te voorspellen en hetero-
gene vormen van AD te herkennen. Dit proefschrift presenteert twee computationele
anatomiestrategieën die gericht zĳn op het identificeren en kwantificeren van neurode-
generatiepatronen geassocieerd met verschillende klinische stadia in het AD continuüm,
gebruikmakend van twee verschillende modaliteiten van magnetische resonantie beeld-
vorming. Een derde bĳdrage bestaat uit een data-gestuurde strategie om een reeks van
domeinspecifieke scores te ontwikkelen die bruikbaar zĳn om het risico in te schatten op
en de progressie te voorspellen van milde cognitieve stoornissen naar dementie. Evalu-
atie van deze strategieënmet machine-learning en statistische inferentie methoden tonen
het potentieel aan van de voorgestelde kwantitatieve instrumenten om het klinisch man-
agement en de monitoring van patiënten te helpen en zouden gebruikt kunnen worden
om de evaluatie van potentiële ziekte-modificerende interventies te verbeteren.

Sleutelwoorden: Ziekte van Alzheimer, Neurobeeldvorming, Medische Beeldverwerk-
ing, Magnetische Resonantie Beeldvorming, Cognitieve Stoornis.
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Introduction

1.1 Alzheimer’s disease dementia

Dementia is a syndrome characterized by the progressive deterioration of cognitive
function as a result of a brain disease. This syndrome can affect memory, thinking,
judgment and behavior up to the point people are unable to perform daily life activities
and require constant assistance for the rest of their life. The biggest known risk factor for a
person to develop dementia is ageing. A report combiningmultiple studies estimated the
incidence of dementia doubles with every 6.3 year increase in age [148]. The increased
life expectancy and aging of the general population have made of dementia a global
public health concern. According to global estimates, in 2016 there were 43.8 million
individuals living with dementia worldwide [135] and it is expected that by the year
2030 this number will reach 75 million [148]. In addition to the associated mortality,
most of the social and monetary impacts of dementia stem from disability, posing an
increasing burden on caregivers and healthcare systems.

The most common cause of dementia is Alzheimer’s disease (AD), a neurodegenerative
disorder with no effective disease-modifying treatment currently available [67, 125, 166].
This disease is pathologically defined by the presence of Amyloid-� plaques and neu-
rofibrillary tau deposits [171, 92] associated with neuronal and synaptic loss (Figure 1.1).
Although these processesmight lead to cognitive impairment and dementia, Alzheimer’s
pathology can be present in people who did not show symptoms during their lifetime
[50].

Excluding the genetic mutations that cause the early-onset hereditary AD and account
for less than 5% of AD cases, the etiology of late-onset AD is complex and poorly
understood [67]. Experts believe that Alzheimer’s develops as a result of multiple factors
such as genetic, lifestyle and environment. Besides ageing, other risk factors have been
identified, including vascular diseases (e.g. hypertension, obesity), genetic susceptibility,
and life-style factors such as diet, physical andmental activity, alcohol consumption, and
education level [171].

Traditionally, AD has been recognized in terms of its typical clinical manifestation, that
is the multi-domain amnestic dementia. This typical expression of AD is characterized
by the progressive deterioration of episodic memory and other cognitive domains such
as language, executive function, attention, and visuospatial abilities [210]. Examination

1
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(a) AD pathology (b) Healthy neuron

Figure 1.1: Illustration of AD pathology compared with healthy neural tissue. AD is
defined by the abnormal accumulation of two proteins that form extracellular Amyloid-�
plaques (in dark yellow), and intracellular tangles of tau (in blue). Image source: National
Institute on Aging, National Institutes of Health (NIA-NIH).

of the brain in autopsy-confirmed cases of AD has shown a characteristic pattern for the
location of AD degeneration: initially, it appears in the entorhinal cortex progressing
through the hippocampus and medial temporal structures (Shown in Figure 1.2), to
eventually affect association cortices [19, 132]. This neuropathological pathway correlates
with the clinical picture of typical AD which starts as an amnestic syndrome of the
hippocampal type accompanied by some impairment in executive functions or naming
abilities [48].

Although the typical AD is the most frequent, some atypical presentations of AD have
been recognized. These atypical forms vary from the amnestic syndrome presenting a
predominant executive function impairment [203], aphasia andvisuospatial dysfunctions
[50]. The existence of such atypical forms of AD has been confirmed with neuropatho-
logical examinations of brain tissue [132] and analyses of cortical atrophy patterns [46]
finding cases with spared hippocampal atrophy but posterior cortical atrophy.

All the known clinical signs and symptoms of AD are related to disturbances in cognition
and behavior. Depending on the presentation and stage of the disease, one or multiple
cognitive domains can be affected. Such symptoms are evaluated with the neuropsycho-
logical examination consisting of tests to assess the overall level of Cognitive Impairment
(CI), specific tests to detect alterations in particular domains like memory, and inter-
views with the patient and relatives to grade the severity of dementia-like symptoms.
The clinical onset of AD is determined by the clinical diagnosis of dementia (or major
neurocognitive disorders), requiring the cognitive deficits to interfere with the ability to
perform everyday activities [8]. However, cognitive impairment can be detected before
it compromises the daily functioning, i.e. in a pre-dementia stage of the disease.

Mild cognitive impairment

When individuals showsome cognitivedecline in one ormore cognitivedomains, but this
decline does not interfere with their activities or behavior, they are diagnosed with mild
cognitive impairment (MCI). This broad category includes patients with similar clinical
features but a variety of different causes including neurodegenerative disease such as
AD, psychiatric conditions like depression, or even side effects of certain medications
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(a) Hippocampus

(b) Medial Temporal Lobe (MTL)

Figure 1.2: Characteristic AD lesions have been found in the hippocampus and medial
temporal lobe. Atrophy of these brain areas has been recognized as a “topographical"
biomarker of AD.

can be responsible for the perceived cognitive impairment.

Traditionally, MCI has been classified into two sub-types: amnestic and non-amnestic
[143], depending on whether there is memory impairment or not. In non-amnestic
MCI, cognitive domains like language, visuospatial skills, or executive function show
some impairment that drives the distinction from normal ageing. Initially, amnestic
MCI was thought to represent a prodromal form of AD [143] but nowadays it is known
that multiple pathologies can cause amnestic MCI and not all AD cases show memory
dysfunction at pre-clinical stages.

Although the group of subjects with amnestic MCI has a homogeneous clinical pheno-
type, it is highly heterogeneous in terms of the underlying biology, compromise of other
cognitive domains, and specific domain decline trajectories [134, 54, 27]. This hetero-
geneity makes it difficult to predict clinical progression for MCI patients because they
can progress to dementia, remain stable or even revert to cognitively normal. That is also
the reason why identifying which individuals with MCI are more likely to develop AD
dementia is a research priority [177] and an active field of study [1].
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Clinical diagnosis of AD

Clinical diagnosis of Alzheimer has been guided by the NINCDS-ADRDA (National
Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s
Disease andRelatedDisordersAssociation) criteria published in 1984 [124], it stratifies the
confidence of the diagnosis in probable and definite depending on the level of certainty
that dementia syndrome is caused by Alzheimer’s pathology:

• Probable AD: based on the diagnosis of dementia with progressive impairment of
memory and other cognitive functions with no presence of other diseases that can
cause cognitive deficits.

• Definite AD: based on a diagnosis of probable AD while the patient was alive and
evidence of AD pathology from tissue examination post-mortem [89].

According to these criteria, the amnestic syndrome was a core feature for the clinical
diagnosis of probable AD, recognizing only the typical manifestation of AD. Update
proposals for diagnostic criteria acknowledge the atypical forms of AD by including
other clinical phenotypes different from memory impairment [50].

Diagnosis criteria give the general guidelines to diagnose AD in clinical settings but the
way the guidelines are implemented is highly variable across medical facilities. The
diagnosis of dementia mainly relies on clinical examination and neuropsychological
testing. However, the diagnostic guidelines do not specify which tests or population
standards should be applied, therefore each medical center chooses the tests and cut-offs
used to ascertain whether the patient’s results are normal or abnormal. For example,
a systematic analysis of the global burden of dementia found 230 different diagnostic
procedures across 237 studies in the dementia literature [135] and the main source of this
heterogeneity is the use of different tests and cut-off scores during cognitive screening.

Given the research advances to prove Alzheimer’s pathology with in vivo biomarkers,
there have been various proposals to include the use of biomarkers for AD diagnosis
in dementia [49, 50, 92] and pre-dementia stages of the disease [5, 51]. These recom-
mendations are specially useful in research settings where early detection of Alzheimer’s
pathology can be part of the inclusion criteria for clinical trials.

The use of biomarkers for the “early" detection of AD pathology without symptoms of
dementia in clinical practice is a matter of current debate [172, 76, 90]. Considering that
there are not disease-modifying treatments available and it is not certain if the patholog-
ical signs do inevitably lead to dementia syndrome, an early diagnosis of Alzheimer’s
could create a psychological burden in patients that may never develop dementia [172].

Biomarkers for AD

The definite diagnosis of AD is done by the assessment of characteristic structural le-
sions through the pathological examination of brain tissue. These characteristic lesions
are formed by abnormal accumulation of proteins, specifically: extracellular deposit of
amyloid-� and neurofibrillary tangles of the protein tau. The two proteins define two
groups of in vivo pathophysiological markers of Alzheimer’s pathology [48, 92]:
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• Markers of amyloidosis: low levels of amyloid-� peptide 42 (A�42) or A�42/A�02
ratio in cerebrospinal fluid (CSF), and high cortical binding values for positron
emission tomography (PET) with Pittsburgh compound B (PiB).

• Markers of tauopathy: high CSF total tau (t-tau) and phosphorylated tau (P-tau),
and PET with tau ligands.

These CSF and PET biomarkers have demonstrated to be correlatedwith the pathological
marks of AD: amyloid plaques and neurofibrillary tau deposits, however, they are largely
static and give little information about disease stage or progression [48].

Other biomarkers assess subsequent pathological brain changes related with AD pro-
gression such as synaptic and neuronal loss. These include Fluorodeoxyglucose (FDG)
- PET, which measures glucose uptake and it is sensitive to neuronal dysfunction, and
structural Magnetic Resonance Imaging (MRI) to detect atrophy in certain areas such
as the medial temporal lobe (MTL) and hippocampus. Although these “topographical"
biomarkers are less specific for AD, they do correlate with disease severity [48], and can
improve disease characterization [50] and prediction of cognitive decline inMCI patients
[92].

Biomarkers give evidence ofAlzheimer’s pathology andAD-relatedpathological changes
in any stage of the disease and MCI subjects with a combination of positive biomarkers
are more likely to progress to dementia than those with negative biomarkers [144, 171].
However, none of them alone is sufficient enough to diagnoseAD and the consistent find-
ing across studies is that the combination of different biomarkers significantly improves
the diagnostic accuracy and prediction of future cognitive decline [50, 92, 64].

Although the use of biomarkers is widely accepted and implemented in research settings,
there are important concerns that prevent their extended use in general clinical practice.
First, almost all of them are subject to methodologic variations [51], in particular, CSF
biomarkers are highly variable across laboratories and techniques [144, 67], which makes
it difficult to standardize cut-off points for abnormality. Secondly, validation of the
clinical usefulness of biomarkers is still incomplete becausemost of the studies have been
conducted in selected samples thatmight not be representative of real-world populations
[64, 23]. Lastly, CSF and PET biomarkers are invasive and expensive, therefore the access
to them is limited in different settings [5].

Biomarkers have opened up the possibility of detecting Alzheimer’s pathology before
any cognitive symptom, i.e. at the preclinical stage. It should be noted that recent studies
have shown that most individuals with positive biomarkers for AD are not symptomatic
[94] and might remain cognitively healthy during their lifetime [76]. Under biomarker-
based criteria these subjects would be diagnosed with the disease without certainty they
will actually develop the dementia syndrome. Although this group of individuals, the
ones with “preclinical AD" [92] or “at risk of AD" [50], might be useful in clinical trials to
test possible early interventions, a clinical diagnosis based only on biomarker positivity
would pose an unnecessary burden on them and their relatives [51, 172].
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Physiopathology: the underlying chain of events

Despite all the scientific efforts and advances during the last decades, there is little clarity
about the mechanisms that lead from the disease-defining proteinopathies to neurode-
generation and cognitive impairment [67, 203]. The underlying biological processes in
AD are not well understood and they are, probably, one of the most complex systematic
malfunctions of the nervous system that are known [86].

A large body of research, including disease-modifying trials, has been based on the
amyloid cascade hypothesis proposed almost 30 years ago [83]. According to this hy-
pothesis, the abnormal aggregation of the amyloid-� peptide is the initial cause of a linear
sequence of pathological changes in AD: formation of macroscopic plaques and tau de-
posits, neurodegeneration, and cognitive impairment. Cross-sectional studies suggest
that the entire process from amyloid-� accumulation to the onset of dementia can take
up to 20 years [194].

Aligned with the amyloid cascade hypothesis, a temporal model outlining the change of
biomarkers was postulated by Jack and colleagues [93]. According to this model, the first
biomarker to change is the CSF A�42 followed by amyloid PET and CSF tau, then FDG-
PET and structural MRI become abnormal indicating neuronal injury and atrophy, and
finally, the cognitive symptoms appear. Although this biomarker model recognizes that
the twoproteinopathiesmight be initiated independently, it does incorporate the idea that
amyloid-� changes can accelerate antecedent tauopathy [93]. The basic structure of this
model agrees with the amyloid cascade hypothesis in the assumption that pathological
changes occur in a linear sequence initiated by amyloid-� accumulation.

The amyloid cascade hypothesis is supported by the observation that the genetic muta-
tions associatedwith the hereditary formofADare also known to over-express amyloid-�
[104]. Although this hypothesis might explain the physiopathology in hereditary AD, it
is not sufficient to explain the development of sporadic AD, which is the most prevalent
form of the disease (> 95% of cases). Growing evidence from animal models, human
studies, and failed clinical trials for disease-modifying therapies suggests that the re-
lation between amyloid-� accumulation and Alzheimer’s dementia is not as direct as
stated in the amyloid cascade hypothesis [86, 104]. Studies based on post-mortem tissue
examination and in vivo biomarker analysis have shown that a considerable amount of
cognitively intact elder people have amyloid aggregation in their brains that could be
considered pathological [86, 94]. Additionally, the amount of amyloid-� plaques does
not correlate with neurodegeneration and cognitive decline [104]. With the available
evidence, there is no definite explanation yet for how the amyloid-� deposition could
lead to neurodegeneration and cognitive impairment [203].

Nowadays it is recognized that amyloid aggregation is not sufficient to cause AD and
that a complex interaction between multiple factors could be a better explanation than a
simple linear sequence model [86, 92]. The long list of evidence-based alternatives to the
amyloid cascade hypothesis favor other initial causes for AD (e.g., failure of autophagy,
mitochondrial function, cell cycle control, Ca2+ homeostasis) and consider multiple fac-
tors that may be responsible for neuronal damage and cognitive impairment such as
inflammation, glucose metabolism and DNA damage [86, 203, 110]. More research is
needed to disentangle and understand the biological mechanisms and pathological pro-
cesses involved in sporadic AD physiopathology [51], closing those gaps in knowledge
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are important to develop successful disease-modifying treatments [67] and make more
accurate predictions about progression at the early stages of the disease.

Neuroanatomical changes

The common characteristic among most of the possible disease models is the final path-
way in which neurodegeneration is the pathological feature most proximate to cognitive
decline [92]. Recent studies support the observation that neurodegeneration is not the
result of a linear cascade of events but the result of the interaction between multiple
mechanisms involving positive and negative feedback loops [203]. Accepted neurode-
generation biomarkers capture different scales of this process: FDG-PET and CSF total
tau are indicators of neuronal metabolism and damage [92, 48] while MRI biomarkers
give information about macro-structural atrophy of brain tissue. These MRI biomarkers
are the ones that become abnormal in the closest temporal proximity to the cognitive
impairment, however, macro-structural changes could be detected with structural MRI
up to ten years before the onset of clinical symptoms [196].

Early research with T1-weighted MRI established macro-structural landmarks of the
disease such as hippocampal and MTL atrophy [91, 170, 44], although these alterations
are not specific for AD [188, 61], they are nowadays accepted as topographical biomarkers
for disease staging and risk assessment [51, 92]. Longitudinal analyses of grey matter
loss [193, 174] have resulted in defined sequential patterns of cortical atrophy starting in
temporal and limbic cortices, particularly the entorhinal cortex, progressing with time
to frontal and occipital brain regions matching the trajectory of brain lesions observed
post-mortem, this pattern of atrophy is observed first in the left hemisphere and occurs
faster than in its right counterpart [193, 207]. In the advanced stages of the disease, there
is noticeable shrinkage in most neocortical areas accompanied by significant expansion
of the ventricles.

Atrophy of the hippocampus and MTL are characteristic of typical AD that manifests
predominately with memory impairment. Studies in relatively large samples of patients
have shown there is heterogeneity in cortical and subcortical greymatter atrophypatterns
and this heterogeneity is related to atypicalmanifestations or differences in compromised
cognitive domains [203, 209, 46, 55]. Researchwith structuralMRI [213, 160, 190] has con-
firmed the existence of atrophy patterns that are consistent with the three subtypes that
were defined pathologically [132]: typical AD, hippocampal-sparing AD, and limbic-
predominant AD. The observed heterogeneity supports the idea that there might be
different pathways that lead to neurodegeneration [203], thus restricting the anatomi-
cal markers to independent volumetric measures of very specific regions might be an
oversimplification that hampers the identification of patient subgroups.

Alzheimer’s has been considered a greymatter disease because the defining brain lesions,
intra-neuronal neurofibrillary tangles and extracellular senile plaques, occur mainly in
the grey matter. However, there is evidence that pathological changes also occur in
the white matter [24], including abnormal levels of A�42 observed in post-mortem tissue
examination [28], regional atrophy [167], presence of lesions [169], reduction of mi-
crostructural integrity [2, 9, 219, 74, 176, 128], and connectivity failures [100, 187]. White
matter micro and macro-structure can be examined in vivo using different modalities of
MRI. Studies with Diffusion Tensor Imaging (DTI) have revealed diffusion abnormalities
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in white matter regions such as the splenium of the corpus callosum, superior, middle
and inferior longitudinal fasciculi, corticospinal tracts, and limbic system tracts including
the fornix, cingulum bundle, and parahippocampal gyrus [2, 47]. Although some works
considered the white matter changes a consequence of neuronal degeneration in the
grey matter explained by Wallerian degeneration, there is growing evidence suggesting
that abnormalities in the white matter might occur independently and could be detected
before grey matter changes [28, 100]. These findings support the idea that other patho-
logical mechanisms like neuroinflammation and prion-like propagation might play an
important role in disease physiopathology [24, 100, 110].

Some MRI-based analyses have found that neuroanatomical changes in AD are related
to cognitive alterations. For instance, MTL atrophy is correlated with impairment in
memory and language [170, 81, 43, 190], and thickness of the parieto-occipital cortex is
associated with visuomotor speed [43], visuospatial and executive functioning [190]. Al-
though such correlations exist, and it is known that abrupt damage in certain brain areas
can affect specific cognitive functions, it would be inaccurate to attribute certain cognitive
skills to a single brain region. Nowadays it is recognized that complex brain functions
involve a variety of brain regions functionally connected, and that brain structures are
involved in awide variety of cognitive and functional processes. In this context, the initial
neurodegeneration in particular areas might not be enough to cause the characteristic
AD decline in specific cognitive functions, and that failures in the functional networks
could be the ones responsible for clinical symptoms [100].

Measuring disease outcomes

Clinical stages of the disease are defined by the severity of the symptoms, i.e., the level of
cognitive and functional impairment. Therefore, evolution of AD is assessed with neu-
ropsychological tests which evaluate the cognitive abilities and behavior of the patient.
Some of the most used scales to determine the severity of the disease are the Clinical
Dementia Rating (CDR) [130], and the Alzheimer’s Disease Assessment Scale - Cognition
(ADAS-Cog) [162]. The neuropsychological test battery used for diagnosis and monitor-
ing also includes screening tests tomeasure the overall cognition such as theMini–Mental
State Examination (MMSE) [60] and the Montreal Cognitive Assessment (MoCA) [133];
tests to assess the compromise of specific cognitive domains like the Rey auditory verbal
learning test (AVLT), the Logical Memory test [208], the Clock Drawing test [77], the
Category Fluency test [131], and the Trail Making test [158]; and tests to evaluate the
ability to perform everyday activities such as the Functional Assessment Questionnaire
(FAQ)[145]. It is important to point out that the neuropsychological tests are the first
clinical tests a patient is subject to when there are suspicions of cognitive decline or self-
reported memory concern. Therefore these tests are the entry point to other assessments
such as evaluation of neuroimages, biomarkers, risk factors, and longitudinal monitoring
of cognition and behavior.

Level of cognitive decline determines the disease severity and marks two of the disease
milestones: diagnosis of MCI and dementia onset. Monitoring the small cognitive
changes consistent with disease progression is a challenging task due to the existence
of a long clinically silent phase in AD [76], combined with a large variety of temporary
factors that could also alter cognitive performance in individuals with or without the
disease. This issue is particularly relevant in the design of clinical trial for disease-
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modifying interventions where outcome measures, or end points, are defined to assess
the effectiveness of the intervention. Indeed, one of the possible reasons for the long list
of failed disease-modifying trials could be the poor performance of outcomemeasures to
detect cognitive changes due to low sensitivity andhighmeasurement variance [125, 166].

Although there are no standardmeasures for clinical outcomes, anddifferent assessments
from the neuropsychological test battery have been used across clinical trials [67], one
of the most widely used measures is the ADAS-Cog [166]. This test evaluates multiple
cognitive areas and combines the results to give a single number that should indicate
the level of overall cognitive impairment. However, some studies have showed that the
ADAS-Cog has: low reliability for measuring cognitive change [80], high variance due to
measurement errors, ceiling effects of its sub-scores, and it is insensitive for patients in
mild stages [125, 106, 166].

Improved measures of disease outcomes should be:

• Robust and sensitive enough to detect cognitive changes at early stages [4].

• Include parts that would be sensitive for heterogeneous forms of AD [64].

• Useful to make predictions about patients’ progression and evaluate the risk of
developing dementia.

Problem

A lot of unknowns

In sporadic AD, the causes of the disease are largely unknown, the biological mecha-
nisms that lead from proteinopathies to cognitive impairment are unclear [203, 172], the
complexity and heterogeneity of those mechanisms are not well understood yet [67], and
the transition between what is considered healthy, or normal, ageing and AD is not well
defined [4]. There is also no certainty about whether someone with the AD pathological
signs will develop some cognitive impairment during their lifetime [172], neither about
whether a patient with MCI could go back to cognitively normal, will remain as MCI or
progress to dementia.

Although there are accepted biomarkers for diagnosis andmonitoring, not a single one is
sufficient to diagnose AD or predict disease progression [50, 92, 64]. Moreover, it remains
unclear what are thresholds, anatomical distributions, or combinations of abnormal
biomarkers that better predict the emergence and evolution of clinical symptoms [4].

What is needed

Existing instruments for patient evaluation and monitoring are not sensitive enough to
detect subtle changes, predict progression, and recognize heterogeneous forms of AD.
Although there have been several advances in this field, more research is needed to
develop and validate markers that help to identify disease patterns or profiles that could
predict the clinical course of the disease [177, 4].
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Better markers and strategies to identify and quantify the pathological brain changes
occurring with disease progression have the potential to impact the clinical management
of patients, the design of clinical trials for disease-modifying treatments, improve the
assessment of effectiveness for those interventions, and will open the doors to precision
medicine [190, 76].
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1.2 Computational anatomy in AD

Thanks to their noninvasive nature and increasing availability, MR imagemodalities have
been a tremendous source of information to study brain anatomy abnormalities related
with neurodegenerative diseases [14]. As )1-weighted MRI provides good contrast be-
tween tissues, it has been widely used to analyse and localize macrostructural changes
in AD such as volume loss or shrinkage of the cortex [65].

Regional volumetry

MR-based volumetry of the hippocampus and MTL are nowadays accepted as topo-
graphical biomarkers for AD. Measuring the volume of specific structures is completely
dependent on their segmentation. In particular for the hippocampus, itsmanual segmen-
tation is time consuming, requires extensive training and suffers of high inter-observer
variability [12]. For this reason some studies have proposed automatic or semi-automatic
segmentation methods [29, 26, 114], or indirect measures of hippocampal atrophy [12],
as alternatives to manual delineation of this structure [44]. Volume measures of larger
sets of regions can also give information to better characterize the disease, several studies
have used automated tools to estimate the volume and cortical thickness of anatomi-
cal regions of interest, and analyse which regions help better to discriminate between
patients and healthy controls [112, 39, 149, 84, 173, 182]. Most of these strategies rely
on pre-defined segmentation of an anatomical template that is then registered to each
brain image. Although this process could potentially affect the accuracy of the segmen-
tation, results have shown that volumetric and cortical measures obtained with these
approaches can be effectively used to distinguish between patients and healthy controls
using )1-weighted MRI acquired in realistic clinical settings [39, 173, 215].

Voxel-based morphometry

Voxel-basedmorphometry (VBM) [13] is one of themost common frameworks to perform
statistical inference with brain images. The VBM approach can be divided in three key
steps:

1. Spatial Normalisation: Registration of all images to a common reference space
defined by a template image.

2. Tissue segmentation: Spatially normalised images are segmented into greymatter
(GM), white matter (WM), and CSF. Tissue segmentation maps are often smoothed
with a Gaussian kernel to boost the signal-to-noise ratio and alleviate the effect of
registration misalignments during spatial normalisation.

3. Statistical analysis: Test statistic values are computed at each image voxel resulting
in a “statistical parametric map", and finally the corresponding ?-values for the
tested hypothesis are calculated. This last step needs to take into account that
multiple tests are being performed simultaneously (one test per voxel) and resulting
?-values need to be corrected accordingly to control for false positives.
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These steps of standard VBM are illustrated in Figure 1.3.

Figure 1.3: Steps involved in voxel-based morphometry (VBM), originally described by
Ashburner and Friston [13] to compare the local concentrations of grey matter (GM)
between groups of subjects. The VBM approach starts with the spatial normalisation of
brain images by registering all of them to a template image. Having the warping from
subject to template (,), spatially normalised GM map can be obtained by segmenting
normalised images or transforming the GM segmentations [107]. Then, GM maps are
filtered with a Gaussian kernel and finally these smoothed GM maps are the inputs for
voxel-wise statistical inference.

In AD research, VBM has been applied mainly to find GM differences between AD or
MCI patients and healthy controls [81, 126, 196]. Some studies have combined the VBM
approach with machine learning methods to automatically classify structural images
between AD, MCI and controls or predict progression from MCI to AD dementia. In
these approaches, the spatially normalised tissue segmentation maps have been used
directly as the inputs of a classifier [105, 32], or have served as an intermediate processing
step before dimensionality reduction and feature selection for classification [35, 204, 126,
117, 34, 129, 220, 17].

Other features extracted from structural MRI

Multiple image-based markers for AD diagnosis and monitoring have been proposed
and tested in the literature employing traditional image processing methods. In 1998,
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Freeborough and Fox published a study relying on texture analysis of )1-weighted MRI
[62] using texture features calculated from the grey level co-occurrence matrix (GLCM)
[82] of 2D image slices, this proposal showed promising classification performance when
distinguishing between AD patients and controls. Similar texture analysis in the corpus
callosum and thalamus also showed significant differences between patients diagnosed
with mild AD, amnestic MCI and normal ageing controls [36]. In the same direction, 3D
texture markers of the hippocampus have also showed good results classifying between
AD, MCI and controls [218, 185].

Shape analysis has been also proposed as a potential image-based marker for AD diag-
nosis and prognosis. Particularly for sub-cortical structures such as the hippocampus,
it was demonstrated that shape features outperform volumetric measures in AD vs con-
trols and MCI vs controls classification tasks [68] and that shape asymmetries are better
predictors of dementia onset than size asymmetries [207]. An additional group of pro-
posals includes those inspired by pattern recognition methods such as saliency analysis
to find scale-invariant descriptors [195, 165], and pattern matching techniques [147]. All
of these also reported competitive classification performance between AD and controls.

Automatic classification of structural MRI

Markers for disease diagnosis and prognosis extracted from structural MRI are often
evaluated by using them as inputs for one or more of the following binary classification
tasks: cognitively normal (CN) elderly subjects against MCI patients, CN against AD
dementia patients, and stableMCI patients against patients who progressed fromMCI to
AD dementia (sMCI/pMCI). A relatively recent review [157] summarised the reported
classification performance of different methods using )1-weighted MRI and other brain
imaging modalities. Table 1.1 present the reported accuracy in some of the previously
mentioned works.

Most of the time, direct comparison of classification performance between proposed
methods is not possible due to their design and methodological differences in terms of
sample size, group selection, inclusion criteria, pre-processing pipelines, cross-validation
schemes, and reported evaluation metrics [168]. A couple of studies have performed a
direct comparison of different methods by using the same dataset and pre-processing to
test pre-defined classification or prediction tasks [32, 21, 121]. For instance, Cuingnet et al.
[32] evaluated the classification performance of ten approaches using )1-weighted MRI
of 509 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For CN
vs AD classification, the best performance metrics (81% sensitivity and 95% specificity)
were achieved by using the voxels of the GM probabilistic segmentation map directly
as features for classification [105]. For CN vs MCI, the best classification results (73%
sensitivity and 85% specificity) were obtained by a method performing downsampling
of the GM probability map and selection of the voxel locations which better discriminate
between AD and CN to finally use that information for classification [204]. A more
recent challenge [21] compared several methods for multi-class classification in three
diagnostic groups (AD, MCI, and CN) with 354 previously unseen )1-weighted MRI, the
best performance (63% accuracy and 78.8% Area under the ROC-curve) was achieved by
a method combining five types of features: volume of seven bilaterally joined regions
(including the whole brain), cortical thickness of four lobes and the cingulate gyrus, and
hippocampal volume, shape and texture scores. [184].



“output” — 2022/6/8 — 7:17 — page 14 — #30

14 CHAPTER 1. INTRODUCTION

Authors
Classification accuracy

CN/AD CN/MCI sMCI/pMCI

Klöppel et al., 2008 [105] 81.1 % - -
Fan et al., 2008 [59] 94.3 % - -
McEvoy et al., 2009 [123] 89.0 % - -
Magnin et al., 2009 [117] 94.5 % - -
Rueda et al., 2014 [165] 86.1 % - % -
Beheshti and Demirel, 2016 [17] 89.7 % - -
Davatzikos et al., 2008 [35] - 90.0 % -
Misra et al., 2009 [126] - - 81.5 %
Desikan et al., 2009 [39] 95.0 % 95.0 % -
Gerardin et al., 2009 [68] 94.0 % 83.0 % -
Sorensen et al., 2016 [185] 91.2 % 76.4 % 74.2 %

Table 1.1: Reported accuracy for each binary classification of someworks in the literature
using structural MRI. Adapted from Rathore et al., 2017 [157].

Examining the tissue microstructural properties

Macrostructural atrophy caused by AD is accompanied, or preceded, by microstructural
changes of tissue integrity. Bymeasuring the diffusion of water molecules in different di-
rections, Diffusion-weighted (DW) MRI provides information about the microstructural
barriers of diffusion such as myelin sheaths, axonal and cell membranes. This imaging
modality has the unique potential to reveal the organization of tissue at a cellular-scale
in vivo and non-invasively [197].

Early studies investigatingdisease-relatedabnormalitieswithDW-MRIused the apparent
diffusion coefficient (���), a parameter of the free diffusion model where isotropic
Gaussian diffusion is assumed. In this simple model, the diffusion signal ( depends on
the applied diffusion weight (1-value):

((1) = ((0)4−1×���

��� = −1
1

ln
(
((1)
((0)

) (1.1)

The ��� summarizes at voxel level many microscopic processes that affect the diffusion
of water molecules [108], hence it captures the alterations resulting frommicrostructural
changes. In the case of AD, one particular study reported that higher ��� in the
hippocampus was related to a higher risk of progression from amnestic MCI to AD
dementia [101].
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The diffusion tensor (DT) model [16] is an extension of the ADCmodel that incorporates
the dependency of the diffusion signal on the directions D ∈ S2 of the magnetic field
gradient applied during image acquisition, being able to describe anisotropic diffusion:

((1, D) = ((0)4−1D)�D (1.2)

Where the diffusion tensor � is a 3 × 3 symmetric positive-definite matrix that has
associated three orthogonal eigenvectors and three positive eigenvalues �1 ,�2 and �3.
This diffusion tensor is often represented by a 3D ellipsoid as in Figure 1.4.

Figure 1.4: A diffusion tensor models the signal in each voxel of the Diffusion-weighted
MRI, this is commonly known as Diffusion Tensor Imaging (DTI).

The eigenvalues of the diffusion tensor are used to compute some measures such as
the fractional anisotropy (��), mean diffusivity ("�), axial diffusivity (��), and radial
diffusivity ('�):

�� =

√
(�1 − �2)2 + (�2 − �3)2 + (�3 − �1)2

2(�2
1 + �2

2 + �2
3)

"� =
�1 + �2 + �3

3
�� = �1

'� =
�2 + �3

2

(1.3)

Thesemetrics describe diffusion behavior allowing to infer someproperties of underlying
brain tissue as illustrated in Figure 1.5.

The vast majority of research investigating microstructural differences between AD pa-
tients and controls have used the diffusion tensor (DT) model and its derived metrics to
describe tissue diffusivity propertiesmostly in theWM[3, 47, 176, 219, 2, 189, 37, 109, 122],
but also in the GM [212, 113]. Consistent findings across tensor-based studies analyzing
WM show increased MD and reduced FA in the splenium, the cingulum bundle in-
cluding the parahippocampal gyrus, and the superior, middle and inferior longitudinal
fasciculus; meanwhile increased FA in crossing-fibre areas such as the corticospinal tract
has also been reported in AD patients compared with control subjects [176, 2, 47]. Fewer
studies have used DTmetrics to study differences in GM areas focusing in certain regions
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Figure 1.5: Brain maps of metrics derived from the DT model.

of interest, the common finding among them is increased MD in the hippocampus and
the posterior cingulate cortex [212, 113, 85].

The DT model was the first diffusion model to be widely adopted in clinical and neu-
roscience research due to its simplicity [38]. However, this simplicity comes with some
important limitations. For instance, it assumes the diffusion displacement probability
distribution has a Gaussian form (which is not necessarily true given the complexity
of diffusion barriers in the brain tissue), and it cannot represent crossing fibre configu-
rations (which are highly prevalent in WM [98]). Another important limitation comes
from what the diffusion tensor metrics are actually capturing given the limited spatial
resolution of DW-MRI, in a given voxel it is highly probable that the DT model is not
only representing the diffusion of one tissue type (WM or GM) but it is also accounting
for the partial volume effects (PVE) with surrounding CSF, therefore DT-derived metrics
could be capturing macrostructural atrophy effects rather than microstructural proper-
ties [139, 85]. Different extensions or alternatives have appeared to overcome DT model
limitations, with different acquisition requirements regarding the number of gradient
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orientations and 1-values that are needed to estimate model parameters.

For example, diffusion kurtosis imaging (DKI) quantifies the non-gaussianity of diffusion
in biologic tissues [97] by adding an excess kurtosis term to the model. Then, the signal
attenuation along a certain diffusion direction D is modelled as:

ln
(
((1, D)
((0)

)
= −1�D +

1
61

2�2
D 

2
D (1.4)

Where �D and  D are estimates for the diffusion coefficient and diffusional kurtosis in
the direction D. Estimation of these parameters requires fitting a quadratic function of
the 1-value, therefore data needs to be acquired with at least two non-zero 1-values,
being one of them relatively high (≥ 1500 s/mm2) to allow better appreciation of non-
gaussianity. This type of DW-MRI, acquired with multiple non-zero 1-values, is referred
as “multi-shell" given that the acquisition gradients lie in multiple spheres.

The constrained spherical deconvolution (CSD) method to model WM is related to the
notion of spheres in the space of acquisition gradients. Given a 1-value, the diffusion
signal can be represented as a function over the unit sphere using spherical harmonics
(SH) basis functions (see Figure 1.6).

(a) 1 = 700 s/mm2 (b) 1 = 1000 s/mm2 (c) 1 = 2800 s/mm2

Figure 1.6: Representation of the diffusion signal in spherical harmonics for three differ-
ent values of diffusion-weight (1-value).

Then, the diffusion signal observed at a constant 1-value is modelled as the spherical
convolution of a fibre orientationdistribution function (fODF)with a single fibre response
function [199], as illustrated in Figure 1.7.

The fODF can be “recovered" as the deconvolution of a single fibre response function
(that needs to be estimated) from the observed signal, while enforcing non-negativity
of the fODF lobes [198]. The fODF is a continuous function that could represent any
underlying fibre configuration, effectively overcoming the “crossing-fibre" problem [38],
an example of fODF map is shown in Figure 1.8.

These examples of more advanced models, DKI and CSD, have been recently used to in-
vestigate AD-related changes by comparing their corresponding diffusion-derived met-
rics between control subjects and AD patients. For instance, exploratory analysis sug-
gestedmean kurtosis could bemore sensitive than FAorMD todetect initial degeneration
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Figure 1.7: When DW-MRI is acquired with a constant non-zero 1-value, the observed
signal in a voxel can be modelled as the spherical convolution of a fibre orientation
distribution function (ODF) with a single fibre white matter response function.

Figure 1.8: The underlying white matter is modelled with continuous fibre orientation
distribution functions (fODF) represented in spherical harmonic basis.

of some WM structures such as the splenium of the corpus callosum and the corona ra-
diata [183]. Analysis of fibre-specific measures derived from fODF showed differences
of WM micro and macrostructure between AD patients and controls in specific fibre
tracts including the cingulum bundle, the splenium and genu of the corpus callosum,
the uncinate fasciculus, and arcuate fasciculus.
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1.3 This Thesis

Exploration and evaluation of new markers to identify and quantify changes related to
AD progression is a highly relevant research path that could, in the mid-term, improve
themanagement andmonitoring of patients, and help the evaluation of potential disease-
modifying treatments.

It is recognized that alterations in brain anatomy are the pathological features most
proximate to cognitive decline [92]; therefore, neuroanatomical markers and neuropsy-
chological information provide direct information about disease progression.

In this context, this thesis presents a set of data-driven strategies that identify andquantify
anatomical and cognitive pathological patterns associated with different clinical stages
along the AD continuum. These strategies constitute the three main contributions of this
thesis:

• In the first contribution, we propose a strategy that captures changes in brain
anatomy by comparing the content distribution in different anatomical regions us-
ing information from )1-weighted MRI. We demonstrate this quantitative strategy
is useful for the automated classification of brain images between patients at differ-
ent stages and controls. Furthermore, this characterization automatically finds out
a multidimensional pattern of AD progression which is directly related to anatom-
ical changes in specific areas. This contribution is presented in Chapter 2 and has
been published in a journal article:

– Diana L. Giraldo, Juan D. García-Arteaga, Simón Cárdenas-Robledo, Eduardo
Romero. Characterization of brain anatomical patterns by comparing region intensity
distributions: Applications to the description of Alzheimer’s disease. Brain and
Behavior. 2018; 8:e00942. https://doi.org/10.1002/brb3.942 [71]

• The second contribution presents a comprehensive neuroimaging approach for the
study of AD-related abnormalities in brain anatomy combining multiple interre-
lated measures of tissue integrity derived directly from Diffusion weighted MRI.
Differences ofWMproperties and tissue compositions betweenMCI, ADDpatients
and age-matched cognitively normal subjects are investigated, as well as the pos-
sible correlations of diffusion-derived measures with CSF biomarkers. This part
of the thesis work is presented in Chapter 3. Part of this work was presented at a
conference:

– Diana Giraldo, Hanne Struyfs, David A. Raffelt, Paul M. Parizel, Sebastiaan
Engelborghs, Eduardo Romero, Jan Sĳbers, Ben Jeurissen. Fixel-Based Analysis
of Alzheimer’s Disease Using Multi-Tissue Constrained Spherical Deconvolution
of Multi-Shell Diffusion MRI. International Society of Magnetic Resonance in
Medicine. Honolulu, USA. 2017. [70]

A manuscript has been submitted for publication to a journal.

• The third contribution presents a data-driven method to characterize the cognitive
state of MCI patients with a set of domain-specific scores obtained by learning to
combine and weight sub-scores from the neuropsychological test battery. Using
machine learning methods, we show the developed scores highlight subgroups

https://doi.org/10.1002/brb3.942
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of MCI patients who exhibit different risks of progression to AD dementia and
have better classification performance than standard outcomes when predicting
conversion fromMCI todementia up to 5 years after neuropsychological evaluation.
This contribution is presented in Chapter 4 and has been published in a journal
and a conference:

– Diana L. Giraldo, Jan Sĳbers, Eduardo Romero Quantification of cognitive im-
pairment to characterize heterogeneity of patients at risk of developing Alzheimer’s
disease dementia. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease
Monitoring. 2021; 13(1):e12237. https://doi.org/10.1002/dad2.12237 [73]

– Diana L. Giraldo, Jan Sĳbers, Eduardo Romero. Quantifying cognition and be-
havior in normal aging, mild cognitive impairment, and Alzheimer’s disease. Proc.
13th International Conference on Medical Information Processing and Anal-
ysis. San Andrés - Colombia, 2017. https://doi.org/10.1117/12.2287036
[72]

Finally, Chapter 5 presents some conclusions, discuss the potential impact of the contri-
butions and suggest some possible research directions for future work.

https://doi.org/10.1002/dad2.12237
https://doi.org/10.1117/12.2287036
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Comparing region intensity

distributions

2.1 Introduction

A large number of studies have proposed automatic methods to extract features and clas-
sify)1-weightedMRI between controls, MCI, andADpatients [32, 21, 157]. In a relatively
recent review, Rathore et al. [157] established three automatic classification categories
based on the feature extraction method from structural MRI: density maps-based, cor-
tical surface-based, and pre-defined region-based. As pointed out by the authors, most
investigations in the latter category use only hippocampus features since changes in this
region are well known. These studies do not consider differences in other brain regions
out of the MTL, ignoring subtle changes and possible complex patterns of the disease
compromising multiple regions. On the other hand, density maps-based methods in-
spired by VBM classify structural MRI using whole-brain information. However, their
adoption in clinical practice remains limited or almost not existing. One important reason
is that, in many cases, the high-dimensional features are not easily interpretable in terms
of spatial patterns of anatomical changes and cannot be related to the clinical picture, so
they appear as “black boxes" to clinicians.

Despite the promising classification results of machine learning methods, their contri-
bution to the characterization and understanding of the disease progression remains
limited. Another drawback of these automatic classification approaches is that, although
they do compare brains, their notion of distance has no meaning in terms of the disease
progression hampering their use for exploring the pathways of the AD continuum.

In this work, we introduce a strategy that allows the quantification of brain differences by
comparing the intensity distributions of several anatomical regions in the whole brain.
An underlying hypothesis of this approach is that the differences between AD patients
and controls are correlated to tissue constituents, a feature mirrored by the composition
of gray level intensities in )1-weighted MRI. The guiding principle incorporated in this
proposal is that patients do not follow a single unique direction when transitioning from
healthy ageing to AD. Instead, AD patients are assumed to drift away from a healthy
state inmultiple possible directions, i.e. control subjects form a relatively compact cluster
whereasADcases tend to separate towardspathological states inmore than onedirection.

21



“output” — 2022/6/8 — 7:17 — page 22 — #38

22 CHAPTER 2. COMPARING REGION INTENSITY DISTRIBUTIONS

2.2 Methods

The basis for themethod is the quantitativemeasurement of differences between subjects
in separate regions of the brain. The process can be roughly divided in two stages. First,
each anatomical region is described by comparing its intensity histograms between all
subjects in the sample. The second part consists on extracting regional features and
performing the classification of subjects between AD/MCI patients and controls using
ensemble classifiers (See Figure 2.1).

Figure 2.1: Overview of the proposed methodology. First, each one of the considered
regions is described using structural MRI from all participants, including cognitively
normal (CN) controls and MCI/AD dementia patients. In the second part, features
for automated classification consist of the distances to the CN medoid (chosen as the
reference point), and ensemble classifiers are trained with all regional features following
a random undersampling boosting strategy to account for class imbalance in the sample.

2.2.1 Region description

2.2.1.1 Coarse brain parcellation

The very first step is to parcellate each brain image into a set of anatomical regions. To
obtain a coarse parcellation, brain volumes were registered to the MNI152 structural
template with an affine transformation calculated using the FSL (FMRIB Software Li-
brary) linear registration tool Flirt [95, 96], and then the Harvard-Oxford brain atlas
(RRID:SCR_001476) was used to partition each registered brain into 96 cortical regions
(48 per hemisphere) and 17 subcortical regions. The linear registration approach results
in slightly displaced inter-subject anatomic regions, yet this is unlikely to affect the dis-
tribution of gray levels within these regions. Such claim may be supported by the fact
that overlap between partitioned brains is at least 97%.
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2.2.1.2 Region similarity across subjects

Ultimately the objective of our analysis is to be able to quantify the level of similarity or
dissimilarity between subjects. Furthermore, it is expected that this distance is related
to the diagnostic groups subjects belong to, i.e. two control subjects should have a
smaller distance between them than a control and an AD patient. In this work, the tissue
distribution of each anatomical region was described by its intensity histogram, and
differences of regional tissue distribution between subjects were quantified bymeasuring
the distances between histograms (Figure 2.2).

Figure 2.2: Region characterization starts with extracting equivalent anatomical regions
(left). Regional information is represented the median-centered histogram of intensities
(center). Histograms of the same region for different subjects are compared with the
Earth-Mover’s Distance (right).

All intensity histograms describing region anatomy had 64 bins, however, the bin cuts
were defined individually for each case taking into account the intensity range for the
whole brain image. To make histograms comparable and eliminate differences due to
image intensity range, all histograms were shifted so that the center of mass was aligned
to the central bin of the histogram. Then, histograms corresponding to the same region
for different subjects were compared with the Earth-Mover’s Distance (EMD) [164].

Earth-mover’s distance formulation

The EMD calculates the minimum cost of transforming one histogram into another by
solving a linear optimization problem in which certain units of the S = {(1 , . . . , (=}
histogram, have to be moved to fill the < bins of histogram C = {�1 , . . . , �<}

The movement of one unit from bin 8 ∈ S to bin 9 ∈ C has an associated cost ?8 9 . The
solution consists in a set of movements {G∗

8 9
}=,<
8,9=1 that form C and minimize the total

movement cost.
The optimization problem can be written in terms of the amount of “earth", in this case



“output” — 2022/6/8 — 7:17 — page 24 — #40

24 CHAPTER 2. COMPARING REGION INTENSITY DISTRIBUTIONS

units G8 9 , that is moved from bin 8 ∈ S to bin 9 ∈ C, as follows:

minimize
-

=∑
8=1

<∑
9=1

?8 9G8 9

subject to
<∑
9=1

G8 9 ≤ (8 , for 8 ∈ {1, . . . , =}

=∑
8=1

G8 9 ≥ � 9 , for 9 ∈ {1, . . . , <}

G8 9 ≥ 0, for 8 ∈ {1, . . . , =} and 9 ∈ {1, . . . , <}

(2.1)

In this case, the cost of moving one unit is set to the absolute distance between bins, i.e.,
?8 9 = |8 − 9 |. Given the solution {G∗

8 9
}=,<
8,9=1, the EMD between S and C is the normalized

total cost:

EMD(S , C) = 1∑
G∗
8 9

=∑
8=1

<∑
9=1
|8 − 9 |G∗8 9 (2.2)

When the compared histograms have the same integral, as in this work, the problem is
symmetric and the EMD is a metric equivalent to the Wasserstein’s distance. A minimal
example of the EMD between two histograms ? and @ is shown in Figure 2.3.

Figure 2.3: In this case the EMD between ? and @ is the cost of moving one unit from
one bin to the next divided by the total mass: 1/3. Note that, in this case, the distance
function is symmetric (EMD(?, @) = EMD(@, ?)).

2.2.2 Automated classification of brain images

For each one of the considered anatomical regions, the result of the previous step is a
matrix of pairwise distances between subjects in the data sample. Taking distance to a
reference point incorporates the guiding principle that patients drift away from a healthy
state, therefore we chose the medoid of the control group as such reference point (Figure
2.4). The medoid is the element of a set with the minimal mean distance to the other
elements in the set, i.e. for a given set � and a distance function � the medoid is defined
as:

medoid(�) = arg min
G∈�

∑
H∈�

�(G, H) (2.3)
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Figure 2.4: Given the pairwise distances between histograms of the same region across all
subjects in the sample (left), a reference point was chosen by selecting the “most central"
case within the control group (middle), distances to that reference point were taken as
the regional features for classification (right).

Distance to the medoid of controls captures how much region anatomy is drifting away
from a group representing healthy anatomy. Distance values for all regions characterize
the whole-brain anatomy for each subject and constitute the features for classification.
Two binary classification tasks were considered: AD patients vs controls and MCI vs
controls. For this purpose, ensemble classifierswere trainedwith anAdaptative Boosting
(ADABoost) [63] approach that iteratively updates theweights of variousweak classifiers,
giving more importance to samples misclassified in earlier rounds. Simple thresholds
of the features were used as weak classifiers. To alliviate the class imbalance in training
data, random undersampling of data was used during boosting, an strategy known as
RUSBoost [175]. Once ensemble classifiers were trained, each the relative importance of
each feature was computed as the weighted sum of mislabeled classes for each predictor.
The importance of the features for each classification task says howmuch a regions helps
to differentiate between groups and therefore is an indicator of the degree to which each
region is affected by the disease.

2.3 Evaluation

2.3.1 Data

The proposed strategywas evaluated using)1-weightedMRI from a subset of cases in the
Open Access Series of Imaging Studies (OASIS-1) database [120]. The sample consisted
of 136 cases between 60 and 80 years old, from which 66 were the control group (CN),
50 corresponded to MCI patients, and 20 were patients diagnosed with mild AD. The
description of each diagnostic groups in terms of age, gender and cognitive scores is
shown in Table 2.1.

Structural MRI in OASIS-1 database were acquired with 1.5 T Vision scanners (Siemens,
Erlangen, Germany), using magnetization prepared rapid gradient-echo (MP-RAGE)
sequences. Raw )1-weighted MR images have a voxel size of 1 × 1 × 1.25<<3, with a
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Group N Age Gender (F/M) CDR MMSE

CN 66 70.8 ± 5.6 48/18 0 29.1 ± 1.1
MCI 50 72.8 ± 5.0 28/22 0.5 26.0 ± 3.5
AD 20 74.3 ± 4.3 13/20 1 20.8 ± 3.7

Table 2.1: Description of diagnostic groups from OASIS including their scores for the
Clinical Dementia Rating (CDR) and Mini-mental state examination (MMSE).

resolution of 256 × 256 × 128. Images were spatially warped into the 1988 atlas space of
Talairach and Tournoux with a rigid transformation, averaged motion-corrected, skull-
stripped, and finally gain-field corrected [120]. Voxel size after pre-processing is 1 × 1 ×
1<<3 with image resolution of 176× 208× 176. For more detailed information about the
database see https://www.oasis-brains.org/.

Generalizationof thepresentedmethodwas testedwith adifferent set of)1-weightedMRI
fromtheMinimal IntervalResonance Imaging inAlzheimer’sDisease (MIRIAD)database
[118]. This sample was composed of 23 healthy controls and 46 subjects diagnosed with
probable Alzheimer’s disease. The distribution of age, gender and clinical scores of this
dataset is presented in Table 2.2.

Group N Age Gender (F/M) CDR MMSE

CN 23 69.7 ± 7.1 11/12 0 29.4 ± 0.8
AD 46 69.3 ± 7.2 27/19 1 ± 0.4 19.2 ± 4.0

Table 2.2: Description of diagnostic groups from MIRIAD database.

Images in MIRIAD were acquired with a 1.5 T Signa MRI scanner (GE Medical systems,
Milwaukee, WI), using a)1-weighted Inversion Recovery Prepared Fast Spoiled Gradient
Recalled (IR-FSPGR) sequence. Other imaging parameters were: matrix size of 256× 256
and 124 1.5<< coronal partitions. Pre-processing of these images included warping into
the Talairach and Tournoux atlas and skull-stripped using FSL tools [96].

2.3.2 Cross-validation

Two different cross-validation schemes were used to test the automated classification
between groups: the first evaluation was done only with data from OASIS following a
leave-one-out scheme, i.e. iteratively training with the whole set but one and then using
the resulting classifier to classify the case set aside. The second scheme aimed to evaluate
the generalizability of the proposed characterization by training the classifier with data
from OASIS database and testing it with data from MIRIAD database.

Classification performance was assessed via a receiver operating characteristic curve
(ROC) calculating its area under the curve (AUC) and equal error rate (EER). The instance

https://www.oasis-brains.org/
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of the curvewith thebest trade-offbetween false-positive rate and false-negativesnegative
was selected to report the sensitivity and specificity.

2.4 Results

2.4.1 Classification between patients and controls

The resulting ROC curves for classification experiments with OASIS data are shown in
Figure 2.5. When classifying between controls and AD cases, the EER is 0.1 and the AUC
is 0.92, as the EER indicates the best trade-off between false positives and false negatives,
the sensitivity and specificity of this classification is 0.9. Classification between controls
and MCI patients shows an EER of 0.3 and AUC of 0.74, implying a sensitivity and
specificity of 0.7.

Figure 2.5: Receiver operating characteristic curves for classification experiments within
OASIS database. Classification between controls andADpatients (blue line) gave anAUC
of 0.91 and EER of 0.1 (False positive rate = 0.1, True positive rate = 0.9). Classification
between controls and MCI (purple line) resulted in an AUC of 0.74 and EER of 0.3 (False
positive rate = 0.3, True positive rate = 0.7).

Classification across databases resulted in the ROC curve shown in Figure 2.6, with an
AUC of 0.92. According to the decision threshold with the best trade-off between errors,
a sensitivity of 85% could be achieved with 91% of specificity. These results show a good
overall performance with a high accuracy. The errors consist mostly of False Positives (7
cases) whereas the number of False Negatives remains relatively low (2 cases).

2.4.2 Region importance

For each classification task, anatomical regions were ranked according to the average of
importance across iterations of the leave-one-out validation scheme with OASIS data.
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Figure 2.6: Receiver operating characteristic curve for the classification between controls
and AD patiens of MIRIAD cases when the classifier was trained with OASIS cases. This
classification showed an AUC of 0.92 while the best trade-off between the two types of
errors is achieved with a False positive rate of 0.09 with a True positive rate of 0.85.

The ten most relevant regions to discern between controls, AD and MCI patients are
shown in Tables 2.3 and 2.4, respectively.

In the case of CN vs AD classification, the importance to distinguish between groups is
concentrated in a few regions (shown in Figure 2.7), the top 10 most relevant features
summed more than 66.5% of the importance. It is reasonably expected that only the
hippocampi (ranked first and third) account for 24% of the importance.

Figure 2.7: The ten most relevant regions for automated classification between controls
and AD patients. Names of the regions and their relevance are presented in Table 2.3.

Provided that anatomical changes in MCI are not expected as evident as they might be
in mild AD, differences are subtle and more regions need to be taken into account to
distinguish between MCI and controls. The top ten most relevant regions to classify
between these two groups account for less than 37% of the importance (shown in Figure
2.8). The observation that importance is more spread across regions hints that early
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Rank Region Importance (%)

1 Right Hippocampus 15.51
2 Right Planum Temporale 13.35
3 Left Hippocampus 8.40
4 Left Thalamus 7.16
5 Right Paracingulate Gyrus 4.83
6 Right Middle Temporal Gyrus, anterior division 4.38
7 Left Insular Cortex 4.17
8 Right Putamen 3.59
9 Left Frontal Orbital Cortex 2.71
10 Right Amygdala 2.39

Table 2.3: Top ten most relevant regions for the classification between controls and AD
patients.

structural changes might be more complex and not restricted to the already known
anatomical areas.

Figure 2.8: The ten most relevant regions for automated classification between controls
and MCI patients. Names of the regions and their relevance are presented in Table 2.4.

It is worth mentioning that the feature importance value says how much information
it adds to the other features, that is to say a region with little relevancy is in any case
informative, but this information might be redundant and shared by other regions. This
statement is illustrated by the distributions of the two hippocampi feature values in
Figure 2.9: although features for both regions show similar distributions and strong
inter-class separation, the right hippocampus is more relevant than the left one, which
shows almost half of the importance in Table 2.3. This difference appears during the
classifier training phase: the weak classifier, based on the left hippocampus, mostly
confirms the results of its right counterpart, i.e. since the same cases are discriminated
by both left and right weak classifiers, the former is considered redundant because it
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Region Importance (%)

Left Amygdala 6.35
Right Hippocampus 5.41
Left Hippocampus 4.78

Right Planum Temporale 3.56
Right Heschl’s Gyrus 3.24
Left Inferior Frontal Gyrus, pars triangularis 3.10

Right Middle Temporal Gyrus, anterior division 2.95
Right Amygdala 2.55
Left Paracingulate Gyrus 2.40
Left Parahippocampal Gyrus, anterior division 2.18

Table 2.4: Top ten most relevant regions for the classification between control subjects
and patients with mild cognitive impairment.

does not give much additional information and its weight is decreased in the ensemble
of classifiers. Because of this, regions showing prevalent differences between groups are
ranked higher, whereas those regions useful to classify particular cases are ranked lower.

When analyzing the distributions of the feature value for the most relevant regions and
their opposite hemisphere equivalences (shown in Figure 2.9), there are strong observable
differences between CN, which form relatively compact groups, and AD patients, which
tend to bemore scattered and diverge fromCN,while theMCI group falls between them.
This trend is particularly remarkable in the amygdala, hippocampus, planum temporale
and thalamus, where the CN and AD feature value distributions look well separated.

2.5 Discussion

This section presents a fully automated strategy that detects characteristic structural brain
patterns associated to the presence of the Alzheimer’s disease. The method derives a
regional descriptor that captures the changes in tissue constituencywhich is characteristic
of any neurodegenerative disease. This regional descriptor is based on the comparison of
intensity histograms between subjects, assuming gray levels in structural MRI correlate
with tissue composition, an assumption that is supported by the fact that image contrast
in )1-weighted MRI is the product of relaxation differences between tissue types.

The approach herein described has an advantage over other automated classification
methods since it is clinically interpretable by standing out actual patterns of the disease.
Machine learning based analyses have helped tomove from the classical local approaches
in pre-defined regions to the exploration of more complex descriptors using artificial vi-
sion techniques. Although such descriptors are useful to separate groups of individuals,
most of these features are not useful for finding out anatomo-physiological correlations
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Figure 2.9: Distributions of distances to regional reference, the CN medoid, for the most
relevant regions together with their contralateral equivalent.

that enhance the understanding of a particular disease.

The characterization presented here also captures disease progression patterns in multi-
ple directions determined by anatomical changes in different brain regions. This is illus-
trated by Figure 2.10 which shows the median distance (per group) to the CN medoid
for a group of brain regions.

This figure also suggests that equivalent regions in the two hemispheres could not show
the same progression rate and then the level of discrimination between subjects is better
when the left and right equivalent regions are taken separately, this claim was corrobo-
rated with additional classification experiments with the OASIS database in which left
and right regions were combined. As shown in Table 2.5, performance measures (AUC
and EER) are slightly worse when for both classification tasks.

CO vs. MCI CO vs. AD
AUC EER AUC EER

Separating hemispheres 0.74 0.30 0.92 0.10
Combining hemispheres 0.72 0.36 0.90 0.20

Table 2.5: Comparison of classification performance when information from the same
region in both hemispheres is combined
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Figure 2.10: Group median distance to CN medoid for a group of anatomical regions.
The directions of these polar graphics correspond to the 8 most relevant regions in the
classification task: 1. amygdala, 2. hippocampus, 3. planum temporale, 4. Heschl’s
gyrus, 5. inferior frontal gyrus, 6. thalamus, 7. paracingulate gyrus and 8. middle
temporal gyrus (anterior division).

The presented strategy did effectively discriminate between patients and controls. Two
previousworks performed an automated classification betweenCNandADusing exactly
the same data and validation scheme but different feature extraction approaches. In the
first one, the work by Toews et. al. [195], they propose a technique to learn local
scale-invariant anatomical features by evaluating saliency in image scale-spaces and
classify cases depending on the occurrence of such features. Following this feature-
based morphometry approach, they achieved an EER of 0.2 when classifying between
CN and AD. The second work we can directly compare with is the one by Rueda et.
al. [165] which presents a strategy that fuses different feature-scale saliency maps and
uses this information to feed the classifier, classification between CN and AD following
this strategy achieves an EER of 0.14. The classification results presented in this chapter
constitute an improvement over both works with an EER of 0.1 in the same experiment.

Besides outperforming previous works using the same data and validation scheme, the
classification between AD patients and controls achieved 90% sensitivity and specificity
while the best performing methods out of 10 compared in [32] reported up to 81%
sensitivity and 95% specificity (using a different database). Similar or slightly worse
classification results were reported for methods relying on voxel-based morphometry,
region volumetry or different feature extraction methods [35, 217, 211, 59, 117, 147, 105,
216]. It should be noted that beyond developing a fully automatic classification pipeline,
this strategyfinds out amultidimensional expression ofADprogression,which is directly
related to anatomical changes in specific brain regions. The quantitative measures of
anatomical changes proposed here can be used to describe and evaluate brain images in
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terms of this multidimensional pattern.

2.6 Products

Journal paper

• Diana L. Giraldo, Juan D. García-Arteaga, Simón Cárdenas-Robledo, Eduardo
Romero. Characterization of brain anatomical patterns by comparing region intensity
distributions: Applications to the description of Alzheimer’s disease. Brain and Behavior.
2018; 8:e00942. https://doi.org/10.1002/brb3.942 [71]

Indirect products: conference papers

• Diana L.Giraldo, JuanD.García-Arteaga, EduardoRomero. Finding regional models
of the Alzheimer disease by fusing information from neuropsychological tests and structural
MR images. Proc. SPIE Medical Imaging 2016. San Diego - USA, 2016. https:
//doi.org/10.1117/12.2217021

• Sebastian Maglioni, Diana L. Giraldo, Juan Duarte, Nelson Velasco, Eduardo
Romero. Description of brain volumetric changes in Alzheimer disease using region-
based morphometry. Proc. 14th International Symposium on Medical Information
Processing and Analysis. Mazatlan - Mexico, 2018. https://doi.org/10.1117/
12.2511533

• Santiago Silva, Diana L. Giraldo, Eduardo Romero. Sulci characterization to predict
progression from mild cognitive impairment to Alzheimer’s disease. Proc. 15th Interna-
tional Symposium on Medical Information Processing and Analysis. Medellín -
Colombia, 2019. https://doi.org/10.1117/12.2540437

https://doi.org/10.1002/brb3.942
https://doi.org/10.1117/12.2217021
https://doi.org/10.1117/12.2217021
https://doi.org/10.1117/12.2511533
https://doi.org/10.1117/12.2511533
https://doi.org/10.1117/12.2540437
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Investigating tissue-specific

abnormalities in AD with DW-MRI

3.1 Introduction

Several studies have investigated the effect of AD on brain anatomy using MRI, most of
them focused on grey matter (GM) degeneration and cortical atrophy patterns [44, 29,
105, 112, 39, 68, 147, 32, 21, 137, 33, 191, 215]. In contrast to structural MRI, diffusion-
weighted MRI (DW-MRI) allows revealing microstructural effects of AD, mostly in the
white matter (WM) where the diffusion of water is shaped by the architecture of axonal
membranes and myelin sheaths. Most diffusion studies in AD and MCI have used the
diffusion tensor model and its derived metrics, such as fractional anisotropy (FA) and
mean diffusivity (MD), to detect WM degeneration induced by the disease. Consistent
findings across tensor-based studies reveal a widespread increase of MD in the WM
and decrease of FA in certain WM areas including the splenium, the cingulum bundle,
the superior longitudinal fasciculus, the uncinate fasciculus, and the parahippocampal
gyrus [176, 47, 2, 122, 45]. Research in the early stages of AD has suggested that WM
microstructural degeneration is not always secondary to neuronal loss [24] and may be
an early pathological feature preceding detectable hippocampal atrophy [219, 87].

Some studies have also reported a naively counter-intuitive increase of FA in crossing
fibre areas such as the corticospinal tracts for AD patients compared to controls [47, 189].
The increase of FA can be explained by the partial loss or degeneration of specific fibre
populations in WM regions where multiple fibre bundles with different directions meet,
which are both highly prevalent in the human brain white matter [98] and cannot be
faithfully represented by the diffusion tensor model. More complexmodels are therefore
needed to infer fibre-specific information from diffusion MRI. Constrained spherical
deconvolution (CSD) was introduced to overcome that limitation by modelling the WM
in each voxel as a continuous fibre orientation distribution function (fODF) [198]. To
estimate these fODFs, traditionalCSDrequireshighangular resolutionDW-MRIacquired
with a constant non-zero diffusion weight (1-value), also referred to as a single-shell
acquisition. Fibre-specific measures derived using CSD on single-shell data have been
recently used to investigate WM differences between healthy controls and patients with
AD, finding degeneration along specific fibre pathways such as the splenium of the

35
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corpus callosum, the cingulum bundle in its posterior and parahippocampal aspects, the
uncinate fasciculus and the arcuate fasciculus [128].

Given the limited spatial resolution of DW-MRI, the observed diffusion signal in a voxel
might originate from multiple tissue types and/or the surrounding cerebrospinal fluid
(CSF). These partial volume effects (PVE) can affect any diffusion measure of microstruc-
tural integrity. For instance, when the PVE due to CSF contamination is corrected in the
GM, differences in MD between controls and AD patients are attenuated [85], suggest-
ing that previously reported diffusion abnormalities in GM areas [212] were likely due
to CSF contamination caused by macroscopic atrophy rather than a change in GM mi-
crostructural properties. The PVE also affects traditional “single-shell” CSD, where the
diffusion-weighted signal is modeled solely as WM content and thus spurious features
and biases in quantitative parameters are produced in the presence of GM or CSF [99].

The contribution of each tissue type to the signal can be quantified by exploiting their
distinct diffusion signal dependency on 1-value. As CSF signal decays much faster
than GM and WM signals, it is possible to distinguish between CSF signal and tissue
signal using only one non-zero 1-value in conjunction with the corresponding 1 = 0
data. Therefore, diffusion measures can be corrected for CSF contamination at interfaces
betweenWM/CSF andGM/CSF in studies using single-shell data [85, 128, 52]. However,
to also discriminate between WM and GM signal profiles, more than one non-zero 1-
value is needed. When DW-MRI is acquired with a multi-shell scheme, it is possible
to separate the observed signal in a voxel into the contributions from each tissue type.
Multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) [99] exploits
the different tissue signal dependencies on the 1-value to improve fODF estimation by
quantifying theportion of the signal attributed to eachmacroscopic tissue type (WM,GM,
and CSF). Therefore, in addition to effectively correcting for PVE in the WM modelling,
this approach provides diffusion-derived measures of tissue-like content within each
voxel.

In this work, AD-related abnormalities in brain tissuewere studied by performing a com-
prehensive analysis of tissue-specific measures derived from multi-shell diffusion MRI.
Using MSMT-CSD, the obtained multi-tissue model is composed of the PVE-corrected
fODF along with the total contributions of three tissue types, WM, GM, and CSF, also
called tissue-like fractions. Differences between control subjects, patients with MCI, and
dementia due to AD were investigated by comparing fibre integrity measures and tis-
sue composition between groups following two parallel approaches: fixel-based analysis
(FBA) [155] for theWM fODF, and voxel-based analysis (VBA) [13, 180] for the tissue frac-
tions. The comprehensive analysis we present here constitutes a holistic neuroimaging
approach for the study of the AD continuum combining multiple interrelated measures
of tissue integrity derived from DW-MRI.

3.2 Study data

Participants

Patients with MCI due to AD (= = 29) and AD dementia (ADD) (= = 23), as well
as cognitively healthy controls (= = 27) were included in the study (see Table 3.1). The
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diagnosis ofMCIdue toADandADDwasdone according to theNIA-AAresearch criteria
[5] while taking into account clinical data, neuropsychological examination, structural
MRI, and, in some cases, CSF biomarkers [183, 181]. Controls were selected from the
research database of the UAntwerp Reference Center for Biological Markers of Dementia
(BIODEM) [181]. They consisted of volunteers for biomarker research (= = 43), having
a normal neuropsychological examination and no evidence of central nervous system
pathology after extensive investigation [136]. The study was approved by the local ethics
committee and all subjects gave written informed consent.

Image acquisition and pre-processing

Data were acquired on a Siemens 3T MRI scanner with a (32)-channel head coil using
a multi-slice, single-shot EPI, spin-echo imaging sequence. Diffusion weightings of
1 = 0, 700, 1000 and 2800B/<<2 were applied in 10, 25, 40 and 75 directions, respectively.
Other imaging parameters were: voxel size of 2.5 × 2.5 × 2.5<<3, matrix size of 96 × 96,
and 40 axial slices. During the study, the gradient set of the MRI scanner was upgraded
from 40 to 80mT/m; following this upgrade, the sequence TR and TEwere changed from
6000/116<B to 5900/83<B, with all other parameters remaining fixed. The acquisition
time was approximately 16 min. A )1-weighted MR image was additionally acquired
with a voxel size of 1 × 1 × 1<<3.

Each DW-MRI dataset was pre-processed using a state-of-the-art pipeline. Data were
first denoised using random matrix theory, thereby increasing the signal-to-noise ratio
(SNR) without spatially smoothing the data [205]. Then, Gibbs-ringing artefacts were
suppressed [103], head motion and eddy current-induced distortions were corrected
[11, 10], and inhomogeneities of the B1 field were accounted for [202]. Finally, images
were up-sampled to 1.25× 1.25× 1.25<<3 to improve the accuracy of subsequent spatial
normalization [153, 53]. The )1-weighted image was used to compute the intracranial
volume (ICV) with SPM12 [119].

CSF biomarkers

37 individuals underwent a lumbar puncture less than 3 months before or after image
acquisition. This subset included 8 controls, 19 patients with MCI due to AD, and
10 patients with AD dementia. CSF biomarker analyses were performed with single
parameter ELISA kits following standard procedures [181]. CSF levels of Amyloid-� of
42 amino acids (A�1−42), total tau (T-tau), and phosphorylated tau at threonine 181 (P-
tau181) were considered to investigate linear relations of these biomarkers with integrity
measures derived from multi-shell DW-MRI.

3.3 Methods

The methodology in this work can be divided into three parts. First, CSF and GM
signal contributions as well as the full WM fODF were extracted in each voxel using
MSMT-CSD. Second, the tissue decomposition maps were spatially normalized across
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Group
Sample Sex Age in years Subjects with Scanner gradient strength
size F/M mean (sd) CSF biomarkers 40/80 mT/m

CO 27 12/15 70.3 ± 3.8 8 19/8
MCI 29 16/13 72.0 ± 3.6 19 15/14
ADD 23 10/13 71.4 ± 4.0 10 19/4

All 79 38/41 71.3 ± 3.8 37 53/26

Table 3.1: Description of data per group: cognitively healthy controls (CO), patients with
MCI due to AD, and AD dementia (ADD). Final column indicates the number of subjects
in each group for which data were acquired before vs. after scanner hardware upgrade.
sd: standard deviation.

the study subjects, achieved by calculating a study-specific template and transforming all
the subjects’ data to this template using amulti-channel registrationmethod. In the third
step, spatially normalised information was analysed with non-parametric hypothesis
tests. A schematic overview of the pipeline is presented in Figure 3.1.

3.3.1 Multi-tissue decomposition

A multi-tissue model was obtained by applying MSMT-CSD to each DW-MR dataset.
To perform MSMT-CSD, a representative signal response for each of WM, GM, and
CSF was estimated using an unsupervised method based on specific tissue diffusivity
properties [41, 40]. Average tissue responses were obtained across subjects (separate
average responseswere calculated for the scans acquired before the upgrade and for those
acquired after the upgrade to facilitate consistent tissue decompositions before and after
the upgrade), and then, using these averaged tissue responses, MSMT-CSD was applied
to each dataset. To assure WM fODF, GM, and CSF contribution maps were comparable
across subjects they were normalised with a multi-tissue approach that minimizes the
average difference between 1 and the sum of the three tissue-like contributions while
simultaneously performing bias field correction [151, 42]. The resulting multi-tissue
decomposition consists of the WM fODF along with the GM and CSF contributions to
the signal, the WM contribution map is extracted from the WM fODF as l=0 term of the
spherical harmonic (SH) expansion [22]. The minimum contribution of each tissue-like
component was set at 1e−8.

3.3.2 Spatial normalisation

3.3.2.1 Population template

A study-specific template was built from a set of 24 cases including 12 controls, 6 patients
with MCI and 6 patients with AD. These sub-groups were age-matched and balanced
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Figure 3.1: Methodology overview. In the first step, a multi-tissue decomposition is
obtained from the multi-shell diffusion data. In the second part, the information is
spatially normalised to a population template calculated for the study population, and
each subject is represented by 6 feature maps: 2 fixel maps containing the apparent fibre
density (AFD) and fibre cross-section (FC), and 4 voxel maps containing the tissue-like
signal fractions for WM, GM and CSF, and 1 map with the local volumetric changes
induced by the spatial deformations. Finally, differences of these measures between
groups of subjects are investigated following non-parametric statistical frameworks for
fixel- and voxel-based analysis.

by gender. This multi-tissue population template was constructed with an iterative atlas
building framework [152] that used amulti-channel nonlinear diffeomorphic registration
algorithm [146] to align the fODFs as well as the GM and CSF-like contribution maps
(See Figure 3.2). The same registration algorithm was applied to align the multi-tissue
decompositions for all participant scans to the population template.

3.3.2.2 Diffusion-derived measures

The fODF is a continuous function represented in the SH basis, which can represent
multiple fibre populations crossing within a single voxel. To facilitate quantification and
statistical analysis, these are segmented to estimate within each voxel a finite number of
discrete fibre orientations [179]. The term fixel is used to refer to a specific population
of fibres oriented in a specific direction within a specific voxel [154]. The integral of
the fODF ascribed to each fixel is proportional to the volume of fibres aligned in the
corresponding direction; this measure is known as Apparent Fibre Density (AFD) [153]
and it has been demonstrated to effectively quantify specific fibre integrity in crossing
fibre regions [161]. The AFD values extracted from the fODF can be mapped to their
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Figure 3.2: The study-specific population template is composed of a white matter fibre
orientation distribution function (WM fODF) template along with the voxel templates
containing the tissue-like contributions for grey matter (GM) and cerebrospinal fluid
(CSF).

respective fixels as shown in Figure 3.3.

During the spatial normalisation process, the multi-tissue model is warped to match the
population template. When applied to voxel maps, thewarping causes expansion or con-
traction of regions in the spatially normalised image. In a particular voxel, this volumetric
change (with respect to the population template) is captured by the determinant of the
Jacobian matrix �. This concept has been extended to the fixel-based analysis framework
by accounting for the effect of the Jacobian transformation along different fibre directions
[153, 155]. Given the unitary vector corresponding to a fixel 5 , the change in scale along
this direction is ‖� 5 ‖, and the total volumetric change is the product between ‖� 5 ‖ and
the change in the area perpendicular to 5 ; the latter of these is a measure of the variation
in fibre bundle cross-section (��) [153, 155] and is calculated as:

��( 5 ) = 34C(�)
‖� 5 ‖ (3.1)

The determinant of the Jacobian as well as the fibre bundle cross-section measure are
not absolute measures of volume or area but rather measures of changes relative to the
population template. When one of thesemeasures is smaller than one, the corresponding
features are smaller in the subject space than in the template space, and vice-versa.

In some neuroimaging analysis pipelines, a modulation step is carried out to combine
the model-derived normalised measures with the macroscopic changes induced by the
spatial normalisation to capture both mesoscopic and macroscopic changes. However, it
has been shown that the use of these modulatedmeasures for hypothesis testing can lead
to decreased sensitivity, probably due to the introduction of multiplicative noise [150].
For this reason, in our analysis we treat model-derived measures and morphological
measures separately. To ensure model-derived measures (tissue-like contributions and
AFD) represent true fractions of the signal, they were divided by the sum of the three



“output” — 2022/6/8 — 7:17 — page 41 — #57

3.3. METHODS 41

fO
D

F
A

F
D

 i
n

 �
x

e
ls

1.25

0.75

0

0.25

0.50

1.00

Figure 3.3: The fibre orientation distribution functions (fODF) can encode multiple fibre
populations within a single voxel; each of these fibre populations is described with
directional elements called “fixels". Each fixel is here coloured according to the value of
Apparent Fibre Density (AFD).

tissue-like contributions at each voxel. In template space, each subject is described by
two fixel maps and four voxel maps. Fixel maps contain the two fibre specific measures:
AFD and the fibre cross-sectional (FC) area. The set of voxel maps consist of the three
tissue-like fraction maps accompanied by the determinant of the Jacobian matrix.

3.3.3 Statistical Analysis

Hypothesis testing to detect differences of measures between controls, MCI and ADD
patients was done using the General Linear Model (GLM) framework including age,
gender, intracranial volume (ICV), and scanner version as covariates. Non-parametric
permutation testswereperformed to calculate family-wise error (FWE) corrected ?-values
for each hypothesis by computing an empirical null distribution for the enhanced statistic
[214, 6]. In this study, permutation testing was conducted with 5000 permutations and
the significance level was set at 
 = 0.05.

Fixel measures were compared using FBA [155, 178], while voxel-wise measures were
studied using VBA [13, 180]. Both approaches are closely related and include many
equivalent steps: data smoothing, statistical enhancement and calculation of ?-values
with correction for multiple comparisons.
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3.3.3.1 Fixel-based analysis of fibre-specific measures

Smoothing and statistical enhancement of fixel-wise quantitative parameters was based
on a fixel-fixel connectivity matrix, encoding fractional connectivity between fixels based
on streamlines tractography. A whole-brain tractogram of 10 million streamlines was
generated from the population fODF template using the iFOD2 algorithm [201]; from
this a subset of 2 million streamlines was extracted using the Spherical-deconvolution
Informed Filtering of Tractograms (SIFT) method [179] to reduce density biases in the
reconstruction. Elements of the fixel-fixel connectivity matrix are calculated as the frac-
tion of streamlines intersecting one fixel that also intersect another fixel [154]. These data
were used both for smoothing of fixel-wise measures in conjunction with an isotropic
Gaussian kernel with FWHM = 10 <<, and for performing statistical enhancement via
Connectivity-based Fixel Enhancement (CFE), for which the default parameters were
used (� = 2; � = 3; � = 0.5).

An omnibus �-test was performed first to detect any effect across the three groups and
the two fixel measures: AFD and FC (first log-transformed for normality). Pairwise
differences for the two measures were interrogated by simultaneously testing multiple
contrasts in a GLM (3 pairs of groups × 2 measures × 2 effect directions) within the set
of fixels that showed significant group effects according to the omnibus �-test. Strong
FWE-corrected ?-values were computed by generating a single null distribution for the
12 contrasts [6].

3.3.3.2 Voxel-based analysis of voxel-wise measures

Statistical analysis of the three tissue-like fractions {)2B 5 , )6< , )F<} should take into ac-
count the compositional nature of this data: 0 < )8 < 1 and)2B 5 +)6<+)F< = 1. The latter
implies the three tissue-like fractions are not linearly independent with only two degrees
of freedom, therefore projecting them to a 2-dimensional space is more appropriate for
the statistical analysis than treating the three measures independently. At each voxel, the
tissue-like fraction values were mapped into a 2-dimensional space using the isometric
log-ratio (8;A) transformation [57], an approach that was recently adopted to study the
tissue composition of lesions in AD using DWI [127]. The two independent isometric
log-ratios were calculated as follows:

8;A1 =
1√
6

ln
[
)2B 5 × )6<
)F<

2

]
8;A2 =

1√
2

ln
[
)2B 5

)6<

] (3.2)

The isometric log-ratios can capture changes in the relation between the three tissue-like
fractions, an example of resulting 8;A is shown in Figure 3.4. Increasing 8;A1 values could
reflect: decreasedWM-like fraction, accompanied by increased GMor CSF-like fractions,
or unchanged WM-like fraction with increased product of GM and CSF-like fractions.
Increases in 8;A2 reflect an increase in the CSF-like fraction relative to theGM-like fraction.

Before statistical analysis, voxel maps containing the 8;A were smoothed using a 3DGaus-



“output” — 2022/6/8 — 7:17 — page 43 — #59

3.3. METHODS 43

Figure 3.4: The three tissue-like fractions are bounded and linearly dependent with only
twodegrees of freedom, these fractionswere transformed into two independent isometric
log-ratios following Equation 3.2.

sian kernel with FWHM = 5 << (voxel maps are smoothed with a narrower Gaussian
filter than the spatial kernel used in FBA due to the latter being additionally constrained
by fixel-fixel connectivity).

Voxel-based analysis also included an initial omnibus �-test to detect any effect across
groups and voxel-wise measures. Post hoc testing for pairwise differences of isometric
log-ratios and Jacobian determinant (log-transformed for normality) were performed
simultaneouslywhile applying strong correction of ?-values over the 18 contrasts (3 pairs
of groups × 3 measures × 2 effect directions). Statistical enhancement was done using
the Threshold-free cluster enhancement (TFCE)method appliedwith default parameters
(� = 0.5 and � = 2) [180].
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3.3.3.3 Linear correlations with CSF biomarkers

Possible relationships between CSF biomarkers and tissue degeneration were explored
by testing the linear correlations of levels of CSF A-�1−42, total tau, and P-tau181 with the
extracted fixel- and voxel-wise measures. The CSF levels of each biomarker were con-
sidered as a continuous regressor in a GLM that also included age, gender, intracranial
volume (ICV) and scanner as covariates. In these analyses, the relation of each biomarker
with diffusion-derived measures was tested with two omnibus �-tests, one for the two
fixel measures, and another one for the three voxel-wise measures. If any significant ef-
fects were detected, post hoc testingwas performedwhile applying strong FWE correction
across contrasts. Effects were considered significant when the FWE corrected ?-values
associated with the alternative hypotheses are below the significance level (
 = 0.05).

Implementation

All steps in the analyses were performed using MRtrix3 (version 3.0.2) [200] (https:
//www.mrtrix.org/). DuringDW-MRI preprocessing,MRtrix3 scripts invoke the “eddy”
tool from FSL [11] and “N4BiasFieldCorrection” from ANTs [202].

3.4 Results

Specific tractswhere fibre integritymeasures decreasewith the disease emerged from the
FBA approach. From theVBApipeline, widespread areas in the brain showed differences
in tissue-like content and macroscopic volume changes.

3.4.1 Fixel-based analysis

The integrity of WM fibres was evaluated using two fixel-wise measures: apparent
fibre density (AFD) and fibre bundle cross-section (FC). The initial omnibus �-test iden-
tified an extensive set of fixels where the fibre measures differ across disease stages
(FWE-corrected ? < 0.05), Figure 3.5 shows the streamline segments corresponding to
those fixels where significant effects were detected. Effects are present in the splenium
and tapetum of the corpus callosum (CC), the inferior longitudinal fasciculus (ILF), the
uncinate fasciculus, the thalamo-occipital projection, the cortico-spinal tract (left), the
cingulum bundle (right), the parahippocampal part of the cingulum bundle (left), and
the left arcuate fasciculus.

From post hoc pairwise comparisons of the two fixel measures, areas with significant
differences were detected for 4 out of 12 tests when setting the significance level at 0.05
after strong FWE correction. Patients withMCI andADD show less AFD than controls in
the splenium and tapetum of the CC (See Figure 3.6), while FC decreases in both groups
of patients (compared to controls) are present in other white matter tracts, including the
splenium, such as the left corticospinal tract, left uncinate fasciculus, and right ILF. For
ADDpatients, decreased FC is also detected in the right cingulum, left arcuate fasciculus,
left parahippocampal gyrus, and left thalamo-occipital projections (see Figure 3.7). Many

https://www.mrtrix.org/
https://www.mrtrix.org/
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Figure 3.5: Streamline segments in the population template tractogram corresponding to
fixels where the disease stage has a significant effect on any of the two fixel-specific mea-
sures (FWE-corrected ? < 0.05). Streamlines are coloured according to their orientation.

of these fibre tracts overlap with the areas resulting from the �-test shown in Figure 3.5,
explaining most of the significant effects in the omnibus test. Pairwise differences of fixel
measures between ADD and MCI did not meet the level of statistical significance.

3.4.2 Voxel-based analysis

Widespread significant group effects across the three voxel-wise measures (2 8;A param-
eters and the Jacobian determinant) were identified by the omnibus �-test across much
of the template analysis mask. As shown in Figure 3.8, voxel-wise measures differ across
disease stages in 44.1% of the analysed brain area.

After applying strong FWE correction across the 18 post hoc pairwise comparisons, voxels
with significant effects were detected for 9 of the tested contrasts. Increases of the
first isometric log-ratio (8;A1 in Equation 3.2) were detected in MCI and ADD patients
compared with controls, and in ADD compared with MCI. The increment of this ratio
indicates: the reduction of WM-like fraction accompanied by increased CSF or GM-
like fractions, or the increased product of CSF and GM-like fractions while WM-like
remains constant. Significant increases of the second isometric log-ratio (8;A2 in Equation
3.2) were revealed for both MCI and ADD patients when compared to control subjects.
Increased 8;A2 could be the result of: decreased GM-like fraction with increased or
constant CSF-like fraction, or increased GM-like fraction with also increased CSF-like
and therefore decreased WM-like fraction. Figure 3.9 shows the absolute variation of
tissue-like fractions in areas where significant increases in 8;A1 or 8;A2 were detected.
When MCI subjects are compared against controls, significant changes in tissue-like
composition are detected in the intersection between the insular cortex and planum
polare, in the cingulate cortex, the amygdala, the hippocampus, the caudate, and some
WM areas such as the cingulum and inside the temporal lobe surrounding the ILF (see
Figure 3.9 top row). In the case of ADD patients when compared to controls, all of
these observations are recapitulated and expanded, along with changes in the temporal
cortex, the temporal pole, the CC, the superior and inferior longitudinal fasciculi, the
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Figure 3.6: Section of the corpus callosum where AFD is significantly reduced in both
groups of patients compared to control subjects (strong FWE-corrected ? < 0.05). Colour
corresponds to the value of the difference between the mean AFD for patients and the
mean AFD for controls. No statistically significant differences of AFD between ADD and
MCI patients were detected.

parahippocampal gyrus of the cingulum, and the thalamic radiations (see Figure 3.9
middle row). Significant differences of tissue-like composition between ADD and MCI
patients were also detected in the inferior temporo-occipital region of the right temporal
lobe and in the right cingulum (see Figure 3.9 bottom row).

Significant differences of local volume were detected in both MCI and ADD patients
groups when compared with controls. In Figure 3.10 are shown the resulting pairwise
differences in the determinant of the Jacobian matrix (which accounts for volumetric
changes induced by spatial normalisation). For both groups of patients, ventricles are
significantly larger and there is a significant shrinkage of the anterior part of the left
temporal lobe. For ADD patients, the significant reduction of the local volume in the
temporal lobe was detected in both hemispheres, and it reached the angular gyrus where
the posterior parts of the middle and inferior longitudinal fasciculus are located.
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Figure 3.7: Streamline segments corresponding to fixelswhere FC is significantly reduced
in patients compared to controls (strong FWE-corrected ? < 0.05). Colour corresponds
to the percentage of change in each group of patients compared with the control group.
Given that analyses were performed with the log(��), this value was calculated as
exp(���)−1 with ��� representing the difference betweenmeans of log(��) for controls
and AD dementia patients. No significant differences of FC between ADD and MCI
patients were detected.

3.4.3 Correlation betweenCSFbiomarkers anddiffusion-derivedmea-
sures

Significant effects of ��1−42 in fixel- and voxel-wise measures were detected with the
omnibus F-tests. From post hoc testing negative correlations between ��1−42 level and
the fixel-wise / voxel-wise measures of macroscopic area/volume change relative to the
template were found in the interface between the ventricles and the genu of the CC
(shown in Figure 3.11). The negative regression coefficient in this case means that the
lower the CSF ��1−42 levels, and thus the more pathological, the greater the volumetric
change caused by the registration to the population template.

Interestingly, but not surprisingly, a significant linear correlation between ��1−42 level
and 8;A2 was found in the left hippocampus, and also in the anterior part of the cingulate
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Figure 3.8: Brain areas where the disease stage has a significant effect on any of the
voxel-wise measures (FWE-corrected ? < 0.05).

cortex, in the left dorsal anterior insula, and in the genu of the CC (see Figure 3.12).
From the F-tests for the other two CSF biomarkers, total tau and P-tau181, no significant
correlations were detected between them and diffusion-derived measures.

3.5 Discussion

In this work, we presented a comprehensive analysis of AD effects in brain tissue by com-
paring tissuedecompositions frommulti-shellDWIbetweengroups of subjects belonging
to the AD continuum and cognitively healthy controls. To the best of our knowledge,
this is the first study that combines multi-shell multi-tissue CSD with both fixel and
voxel-based analysis approaches to detect changes of tissue diffusivity properties related
to AD progression. With MSMT-CSD, we can obtain a multi-tissue model that estimates
the contribution of each tissue type to the diffusion signal while modelling the WM fibre
configuration taking into account the PVE.

Differences of fibre-specific measures

To studyWM integrity, fibre specificmeasures, namely apparent fibre density (AFD) and
fibre bundle cross-section (FC), were investigated following the FBA approach [155]. The
integration of the MSMT-CSD within the FBA pipeline allows improving the estimation
of the mentioned fibre measures because it gives a more precise fODF in voxels where
WM/GMandWM/CSF signals aremixed [99]. After applying the strong FWEcorrection
to post hocpairwise one-sided comparisons in twodirections, decreasedAFDwasdetected
in the splenium and tapetum of the CC for both MCI and ADD patients compared
to controls (Figure 3.6), while macro-structural decreases of fibre bundle cross-section
were found in several WM tracts (Figure 3.7). A previous investigation applied the
FBA framework to study the WM integrity in AD and MCI patients using single-shell
diffusion data [128] finding specific fibre tracts with significant decreases of the WM
integritymeasures inADpatientswhen compared tohealthy controls. There are common
findings such as reduced AFD in the splenium and reduced FC the right cingulum,
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Figure 3.9: Brain areas where at least one of isometric log-ratios is significantly greater
(strong FWE-corrected ? < 0.05) in patients than in controls, and in ADD patients
compared to MCI. The absolute value of the difference between mean tissue-like fraction
between groups is represented in a different colour channel for each tissue type: red for
CSF, green forGM, andblue forWM.The resulting colour corresponds to the combination
of change for multiple tissues.

uncinate fasciculus, and ILF.Mito et al., 2018 also reported a larger set of fibres tracts with
decreased AFD in ADD patients, those tracts include the parahippocampal cingulum,
the inferior fronto-occipital fasciculus and the left fornix.

Some of the tracts with macrostructural differences, which manifested as a significant
reduction of fibre bundle cross-section, correspond with tracts that have previously been
reported to showdifferences in diffusion-basedmeasures such as FA andMD.Our results



“output” — 2022/6/8 — 7:17 — page 50 — #66

50
CHAPTER 3. INVESTIGATING TISSUE-SPECIFIC ABNORMALITIES IN AD WITH

DW-MRI

Figure 3.10: Brain areas where the Jacobian determinant is significantly different (strong
FWE-corrected ? < 0.05) in patients compared to controls. The colourmap represents
the percentage of change in local volume compared to the control group. Analogous to
FC, analyses for this value were performed in the log domain therefore this percentage
of change was calculated as exp(�%)) − 1 where �%) represents the difference between
the mean value of the logarithm of the Jacobian determinant for MCI/AD patients and
the mean of those values for controls.

suggest some of those changes previously attributed to microstructural properties could
in fact be macroscopic effects captured by DTI metrics due to PVE [206]. The study of
voxel-based metrics derived from the diffusion tensor and diffusion kurtosis models has
also reported reduced WM integrity measures in the cingulum, the uncinate fasciculus,
the arcuate fasciculus, and the ILF [47, 2, 183, 109]. In the corticospinal pathway, previous
works have reported reduced mean kurtosis, increased free-water index, and increased
FA in regions where the corticospinal tracts cross with other ones [183, 52, 47, 189], which
can be observed whenWMdegeneration occurs in a subset of crossing fibre populations.
This hypothesis is consistent with the results herein presented, which show degeneration
specifically along the fibre bundles in the corticospinal tract in AD patients.
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Figure 3.11: Brain areaswhere there is a significant linear relation betweenCSFbiomarker
for ��1−42 and measures of macroscopic change relative to the population template.
Colour corresponds to the percentage of change in these measures for 100 pg/mL in-
crease in biomarker value. Given that analyses for fibre cross-section and Jacobian
determinant were performed in the log scale, the colour-coded effects in significant areas
were calculated as exp(� × 100) − 1 where � is the GLM coefficient of ��1−42 for the
corresponding measure.

Differences of tissue-like composition

Detected changes in tissue-like composition (Figure 3.9) in the ILF, cingulum, thalamic
radiations and superior temporoparietal areas correspond to reduction of WM-like frac-
tion (See Figure 3.13), these changes are concordant with previously reported decreased
FA and increased MD in such areas [122, 2, 47] suggesting a widespread degeneration of
diffusion barriers inWM. It is worthmentioning thatWM-like reduction in temporal and
parietal structures coincides with a significant reduction of the local volume (See Figure
3.10), meaning that the WM degeneration is also detectable at the macroscopic level and
might be more advanced than the degeneration observed in the frontal areas where no
volumetric differences were detected.

When looking at the GM-like fraction variation between groups, shown in Figure 3.14,
the decreases detected in the cortical and subcortical areas are consistent with the widely
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Figure 3.12: Significant linear relation between CSF biomarker for ��1−42 and the sec-
ond isometric log-ratio was found in the left hippocampus. Colourmap represents the
estimated GLM coefficient of ��1−42 (multiplied by 100) for the GM-like and CSF-like
fractions.

reported landmarks of the disease: hippocampal atrophy and cortical atrophy in the
temporal lobe. Therefore, these differences most likely correspond to actual GM degen-
eration. Some of the observed changes in tissue-like composition, manifested as increases
in 8;A, are the result of increased GM-like fraction (Figure 3.14), from the calculation of
8;A we know that there must be an increase of the CSF-like fraction too, and therefore a
reduction of the WM-like fraction; as this effect is mostly observed in WM areas such as
the longitudinal fasciculi (cyan areas in Figure 3.9), this is a change consistent with de-
generation of diffusion barriers in WM. Increased CSF-like fraction accompanying these
changes (See Figure 3.15) is compatible with recent research reporting differences of the
free-water index between AD and MCI compared to controls [52]. Although their anal-
yses use a different diffusion model, the CSF-like signal fraction obtained in this work
is conceptually close to the free-water index, both being related to the part of the signal
produced by isotropic unrestricted diffusion.

Correlations with CSF biomarkers

We included an exploration of the relation between CSF biomarkers and the different
diffusion-derived measures, resulting in significant effects of ��1−42 levels in macro-
scopic measures and tissue composition in certain areas. Negative correlations between
measures of volumetric change (with respect to the template) and CSF ��1−42 values
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Figure 3.13: Difference of meanWM-like fraction between groups in brain areas where at
least one of isometric log-ratios is significantly different between pairs of groups (strong
FWE-corrected ? < 0.05).

were found in the interface between the ventricles and the genu of the CC (Figure 3.11),
indicating expansion of the ventricles in the presence of decreased (i.e. pathological)
values of this biomarker. All effects of CSF ��1−42 levels in fibre-specific measures de-
tected with the omnibus �-test were confirmed as macrostructural effects driven by the
volumetric differences with respect to the population template, and no significant cor-
relations with AFD were detected at the significance threshold level after applying the
strong correction for multiple comparisons during post hoc testing; this is an important
consideration because some of the previous findings of significant correlations between
CSF biomarkers and DTI measures of WM integrity have been reported without proper
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Figure 3.14: Difference of mean GM-like fraction between groups in brain areas where at
least one of isometric log-ratios is significantly different between pairs of groups (strong
FWE-corrected ? < 0.05).

adjustments for multiple comparisons [7].

The significant correlations between CSF ��1−42 levels and tissue-like composition come
from different combinations of tissue-like content variation depending on their location
(seen as different colors in Figure 3.12). As CSF ��1−42 levels are more pathological, GM-
like fraction decreases in the left hippocampus and genu of the CC, WM-like fraction
decreases in the cingulate cortex and insula, and CSF-like fraction increases in all these
areas.
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Figure 3.15: Difference of mean CSF-like fraction between groups in brain areas where at
least one of isometric log-ratios is significantly different between pairs of groups (strong
FWE-corrected ? < 0.05).

Limitations

One limitation of this work is the restricted field of view of the acquired DW-MR images.
As a result, the analysed area did not include the superior slices of the brain, where GM
changes might be ubiquitous. Geometric distortions due to field inhomogeneity were
not corrected, as no explicit image data tailored for this purpose were acquired; therefore
high variability in high susceptibility areas could limit the power to detect significant
differences.
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Conclusions

This study demonstrates that there are widespread significant differences between the
brains of patients with AD dementia and MCI due to AD, and those of age-matched
healthy controls. The comprehensive analysis framework presented here facilitates si-
multaneous macro- and microscopic assessment of CSF, GM, and WM, all from a single
DW-MRI data set. This study includes a strong control for false positives supporting
the robustness of reported findings. Abnormalities related to AD symptomatic stages
were detected in specific WM fibre pathways, cortical and subcortical GM, as well as
macroscopic patterns such as temporal lobe atrophy and ventricle expansion.
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4.1 Introduction

Currently, there is no cure for AD and the vast majority of clinical trials for disease-
modifying drugs, designed to slow down AD progression from MCI to dementia, have
so far failed [125]. Aside the questioned efficacy of the tested treatments, other possible
reasons for failures may come up from two sources. First, heterogeneity of recruited
participants, including advanced AD and variable MCI manifestations, or participants
without any underlying pathology [125]. Second, standard cognitive outcomes, set as
endpoints, might be highly variable and not sensitive enough to detect subtle cognitive
performance changes [125, 166]. This is the case of the widely used Alzheimer’s disease
Assessment Scale - Cognitive (ADAS-Cog), that has shown high variability and poor
sensitivity, likely by measurement errors, patient heterogeneity, and ceiling effects of its
sub-scores, making some sub-scores uninformative in patients at early stages [166, 156,
80].

Composite outcomes computed with informative sub-scores from one or multiple tests
have demonstrated to be more robust and sensible measures to detect cognitive and
functional changes in MCI [166, 156]. However, single composite scores may mask the
heterogeneity of cognitive impairment.

Patients diagnosed with MCI show varying levels of impairment in different cognitive
domains beyond memory, including language, visuospatial skills, attention and exec-
utive function [116, 210, 66]. This heterogeneity is likely linked to differences in the
clinical evolution [186, 78]. Therefore, evaluation of domain specific changes could help
to identify individuals at greater risk of progressing to dementia. Composite scores for
measuring specific domain impairment have been proposed for memory [30] and execu-
tive function [69]. These scores mitigate the effect of measurement errors for individual
items while combining informative sub-scores from multiple tests. Evaluation of these
two previously proposed scores demonstrated they show better performance than indi-
vidual test scores in detecting domain changes over time and predicting conversion from
MCI to dementia [30, 69].

57
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This chapter presents a data-driven framework which learns to combine and weight
sub-scores from the neuropsychological test battery to calculate a set of domain-specific
composite scores that quantify impairment in 6 domains: memory, language, visuospa-
tial abilities, executive functioning, orientation and attention. Theweighting schemewas
obtained by estimating the parameters of a multi-factor model with Confirmatory Factor
Analysis (CFA). The usefulness of the developed composite scores in MCI was evalu-
ated in two different tasks using machine learning methods. First, the set of composite
scores was taken as input for unsupervised cluster analysis, aiming to identify different
sub-groups of individuals in the MCI sample. Second, we tested the ability of compos-
ite scores to predict progression from MCI to dementia within specific time windows,
ranging from 1 to 5 years, and compared the performance against standard outcomes.

4.2 Methods

Thedata-drivenmethodologypresentedhere is divided in twoparts (Figure 4.1). Thefirst
part consists in learning the parameters for sub-score standardization and domain scores
calculation. The second part evaluates the composite scores in two automated tasks:
clustering of patients diagnosed with MCI, and predicting progression to dementia.

Figure 4.1: The proposed data-driven methodology can be divided in two blocks: learn-
ing and evaluation. During the learning phase, the parameters for sub-score standard-
ization and domain composite calculation are estimated using a data sample including
cognitively unimpaired participants andMCI patients. In the second part, the calculated
domain scores for a separate sample of MCI are evaluated in terms of two tasks: unsu-
pervised clustering of patients and prediction of future progression to dementia within
different time windows.
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4.2.1 Participants data

Datawasprovidedby theAlzheimer’sDiseaseNeuroimaging Initiative (ADNI) database.
The ADNI is a public-private partnership with the primary goal of testing whether
magnetic resonance imaging (MRI), positron emission tomography (PET), biological
markers, and clinical and neuropsychological assessment can be combined to measure
the progression of MCI and early AD. For additional and up-to-date information, see
www.adni-info.org. The dataset herein used comprised 680 patients with MCI and
668 cognitively unimpaired (CU) participants. The demographics and characteristics of
these groups are presented in Table 4.1, corresponding to the first visit with the available
information.

4.2.1.1 Data partition

The ADNI sample was split following the twomethodological parts: learning and evalu-
ation. For the learning set, 60% of the CU sample (= = 400)was taken as normative data
for sub-score standardization while the remaining 40% (= = 268) and 40% of the MCI
sample (= = 272) were used to learn the parameters for calculating the composite scores
with CFA. The evaluation set corresponded to the remaining 60% of MCI participants
(= = 408), for which composite scores were calculated using the parameters from the
learning set.

Learning set Evaluation set

CU (= = 668) MCI (= = 680)
Normative data CFA CFA Evaluation
(= = 400) (= = 268) (= = 272) (= = 408)

Sex (% female) 54.5 59.3 44.5 40.7
Age (mean ± sd) 73.4 ± 6.9 72.6 ± 8.0 72.6 ± 8.2 72.8 ± 7.8
APOE-�4 (% carriers) 31.0 28.9 43.8 46.7
CDR-SOB (mean ± sd) 0.1 ± 0.2 0.1 ± 0.2 1.5 ± 1.0 1.5 ± 1.0
MMSE (mean ± sd) 29.2 ± 1.1 28.9 ± 1.2 27.9 ± 1.8 28.0 ± 1.7
ADAS-Cog (mean ± sd) 10.0 ± 4.7 11.1 ± 4.5 16.4 ± 6.8 15.0 ± 6.8

Table 4.1: Description of sets used in each step of the methodology, including the per-
centage of carriers of the �4 allele of the apolipoprotein E (APOE) gene, and distributions
of total scores for the Mini-Mental State Examination (MMSE), Clinical Dementia Rating
- Sum of Boxes (CDR-SOB), and the Alzheimer’s Disease Assessment Scale - Cognition
(ADAS-Cog). *sd: standard deviation.

www.adni-info.org
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4.2.1.2 Neuropsychological data

Sub-scores fromninedifferent testswereused in thepresent study, namely: theAlzheimer’s
Disease Assessment Scale - Cognition (ADAS-Cog) [162], Mini-Mental State Examination
(MMSE) [60], Montreal Cognitive Assessment (MoCA) [133], Rey auditory verbal learn-
ing test (AVLT), Logical Memory test immediate and delayed [208], Clock Drawing test
[77], Category Fluency test [131], Trail Making A and B [158], and one of the naming tests
depending on its availability: Boston Naming test [102] or Multilingual Naming test [75].
The initial list of 50 sub-scores is presented in Table 4.2.

Sub-score code Test Description

Q1SCORE ADAS-Cog Word Recall
Q2SCORE ADAS-Cog Commands
Q3SCORE ADAS-Cog Constructional Praxis
Q4SCORE ADAS-Cog Delayed Word Recall
Q5SCORE ADAS-Cog Naming
Q6SCORE ADAS-Cog Ideational Praxis
Q7SCORE ADAS-Cog Orientation
Q8SCORE ADAS-Cog Word Recognition
Q9SCORE ADAS-Cog Remembering Test Instructions
Q10SCORE ADAS-Cog Comprehension
Q11SCORE ADAS-Cog Word-finding Difficulty
Q12SCORE ADAS-Cog Language
Q13SCORE ADAS-Cog Number cancellation
MMORITIME MMSE Orientation to time
MMORISPACE MMSE Orientation to space
MMREGI MMSE Three word registration
MMRECALL MMSE Three word recall
MMSPELLBKW MMSE Spelling a 5 letters word backwards
MMNAM MMSE Naming 2 objects
MMCOMMAND MMSE Following a verbal command
MMREPEAT MMSE Repeating a short sentence
MMREAD MMSE Reading a sentence wit an instruction
MMWRITE MMSE Writing a sentence about anything
MMDRAW MMSE Copying a drawing
TRAILS MoCA Trails
CUBE MoCA Copying a cube drawing
MOCACLOCK MoCA Drawing a clock
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MOCANAM MoCA Naming 3 animals
MOCADIG MoCA Repeating digits forward and backwards
MOCALET MoCA Tapping with the hand when a letter is read

from a list
MOCASERIAL MoCA Serial subtraction starting at 100
MOCAREP MoCA Repeating 2 sentences
MOCAFLUEN MoCA Naming words that beginwith the letter F
MOCAABS MoCA Abstraction of similarities between words
MOCADLREC MoCA Five word recall
MOCAORI MoCA Orientation to time and space
CLOCKSCOR Clock Drawing test Drawing a clock with details
COPYSCOR Clock Drawing test Copying the drawing of a clock
TRAASCOR Trail Making test Time to complete Part A
TRABSCOR Trail Making test Time to complete Part B
LIMMTOTAL Logical Memory test Immediate recall of a story read by the exam-

iner
LDELTOTAL Logical Memory test Delayed recall of a story read by the examiner
CATANIMSC Category Fluency test Naming animals
RAVLT.IMMED Rey AVLT Repeating a list of 15 words 5 times
AVTOT6 Rey AVLT Recall of the first list of words after a second

list was read
AVTOTB Rey AVLT Repeating words from the second list
AVDEL30MIN Rey AVLT Recall of words from the first list after 30 min-

utes
AVDELTOT Rey AVLT Delayed recognition of written words from

the first list

BMNOCUE
Boston /
Multilingual Naming test

Naming objects in pictures

BMCUED
Boston /
Multilingual Naming test

Namingobjects inpictures after semantic cues

Table 4.2: The set of 50 sub-scores from 9 neuropsychological tests initially considered
for the analysis.
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4.2.2 Learning domain composite scores

4.2.2.1 Sub-score standardization

Given the heterogeneous scales of neuropsychological tests, some of the scales were
inverted to ensure that increasing values correspond to poorer performance. The initial
set of 50 sub-scores were transformed into standardized regression based (SRB) I-scores
using the parameters learnt from a normative sample. Specifically, each sub-score G was
modelled as linear function of age and years of education:

G = �0 + �43 × Education + �064 ×Age + � (4.1)

Linear regression parameters �0, �43, �064 and �2 = var(�)were estimatedwith data from
400 CUparticipants. Then, the corresponding SRB I-score for each participant 8 (denoted
H8 for consistency with upcoming formulations) was calculated as:

H8 =
G8 − Ĝ8

�
=
G8 −

(
�0 + �43 × Education8 + �064 ×Age8

)
�

(4.2)

The sub-score from the naming test after a semantic clue (BMCUED) was dropped from
further analysis because higher values, after scale inversion, can be associated with poor
performance or perfect performance without the cue.

4.2.2.2 Derivation of domain scores

The estimation of composite measures for 6 different domains was done by proposing
and testing a factor model which links a set of sub-scores frommultiple tests with six do-
mains: memory, language, visuospatial abilities, executive functioning, orientation and
attention (See Figure 4.2). Before establishing a factor model, variability of sub-scores
and pairwise correlations were examined in the data partition used for CFA. Sub-scores
whose variance was inflated by a few outliers were not included in the model, neither
were the sub-scores showing no significant correlation (greater than 0.25) with any other
one and were not evaluating a similar task. The factor model was proposed taking into
account what sub-scores evaluate, but also the number of previousworks that performed
Factor Analysis on similar neuropsychological test batteries [30, 69, 138, 72].

Factor analysis formulation

Factor analysismethods exploit the correlations between observedmeasuresy to quantify
the influence of unobserved factors z [31]. Let the vector yi ∈ R<×1 be the 8-th observation
of < variables, and zi ∈ R?×1 the unobserved measures of ? factors. The common factor
model states:

yi = Fzi + ei (4.3)

Or component-wise:

H8 9 =

<∑
:=1

59:I8: + 48 9 (4.4)
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Figure 4.2: Proposed factor model connecting 6 cognitive domains with 35 sub-scores
from 9 different neuropsychological tests. Sub-scores code and description is presented
in Table 4.2.

Matrix F ∈ R<×? contains the factor loadings, also known as the factor structure. Residuals
4. 9 ∈ R1×< contain the portion of the 9-th variable that is not defined by the factors and
matrix of residuals correlations Ce ∈ R<×< is assumed diagonal. Therefore, components
of the correlation matrix between observed variables Cy ∈ R<×< are given by:[

Cy
]
9;
= corr(H·9 , H·;)

=

<∑
B=1

<∑
C=1

59B 5;C [Cz]BC for 9 ≠ ;
(4.5)

In Exploratory Factor Analysis (EFA) the matrices F, Cz, and Ce are estimated without
any assumptions about the underlying factor structure. On the contrary, Confirmatory
Factor Analysis (CFA) estimates those matrices for an hypothesized factor model from
Equation 4.5. CFA was performed with the lavaan package [163] in R (v.3.6.3) using the
unweighted least squares estimator. Model fit was evaluated by the Root Mean Square
Error of the Approximation (RMSEA) and the Tucker-Lewis index (TLI), these measures
evaluate a model in relation to a baseline model which assumes all variables to be inde-
pendent.

Domain scores calculation

The factor structure matrix F ∈ R<×? quantifies the influence of the ? unobserved factors
over the < observed variables. The set of unobserved factors zi for a particular case 8 can
be calculated as linear combinations of its observations yi [15, 79]. That is, the estimated
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vector of factors, ẑi, is given by:

ẑi = Wyi (4.6)

With W ∈ R?×< a weight matrix that needs to be estimated. A solution that minimizes
the sum of squares of the uniqueness [15], i.e., the portion of the observations variance
that is not explained by the factors, is given by:

W =
(
F)Ce

−1F
)−1 F)Ce

−1 (4.7)

The resulting estimated factor values quantify dysfunction of the different domains
included in the model. The learnt set of weights can be used to calculate the domain
specific scores of new observations once they have been transformed into SRB I-scores.

4.2.3 Evaluation

4.2.3.1 Clustering the MCI sample

By exploring the existence of MCI subgroups with an unsupervised clustering method,
the six composite scores expose different cognitive profiles in the MCI sample. Specifi-
cally, the Partition AroundMedoids (PAM)method, also known as k-medoids, iteratively
splits the data set in k clusters, being the k representative points the most central points
(medoid) in each cluster, and the remaining points assigned to the clusterwith the nearest
representative point [111, 159].

Here we incorporated the inherent relations between domains by including the covari-
ance matrix Cz in the calculation of distance between subjects, the distance between a
pair of subjects 8 and 9, described by their domain scores zi and zj, was defined as:

3(zi , zj)2 = (zi − zj)Cz(zi − zj)) (4.8)

Unlike the Mahalanobis distance, the distance between two subjects is weighted by
the covariance between factors, thereby ensuring that the largest variance dimensions
contribute more to the differences between subjects. The matrix used for this step was
the estimated covariance matrix between domains Cz resulting from the CFA.

The number of clusters was set by revising a collection of 30 indices [25] for multiple
options of k from 2 to 10. Cluster stability for these possible partitions (2 ≤ : ≤ 10) was
also evaluated following a bootstrap approach. For a given partition in k subgroups, this
process consists in partitioning a sub-sample of the data (80%), calculating the subset
of observations that remains in their initial cluster and repeating this process multiple
times (1000 iterations). The overlap between the initial clusters and bootstrap clusters
was assessed via the Jaccard coefficient and the mean value of this index over the total of
repetitions is reported for all clusters.
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Differences between MCI subgroups

Resulting subgroups of MCI participants were compared in terms of their composite
scores per domain and their risk of progression to dementia. Pairwise domain score
differences between sub-groups were examined with Wilcoxon-Mann-Whitney U tests
while applying the Bonferroni correction for multiple comparisons. A multivariate Cox
proportional hazard regression model tested the sub-group effect in the progression
from MCI to AD dementia while controlling for age, gender and years of education.
Kaplan-Meier survival curves illustrated progression to dementia of the different MCI
sub-groups, and curves were compared using omnibus and pairwise log-rank tests. A
multivariate Cox proportional hazard regression model was used to evaluate the effect
of the cognitive profile on the progression from MCI to AD dementia while controlling
for age, gender and years of education. The resulting hazard ratios (HR) account for the
risk difference of each MCI sub-group with respect to a reference group.

4.2.3.2 Prediction of progression to dementia

Domain specific scores were also evaluated in the automated prediction of progression
fromMCI toADdementia. This evaluation consisted in classifyingMCI patients as either
stable or converters following the time window approach[141] fixing five different time
periods: 12, 24, 36, 48, and 60 months. The 6 composite scores along with age, gender
and years of education were used to train random forest classifiers [20]. A Random forest
(RF) is an ensemble of decision trees constructed using a bootstrap aggregating approach.
To create each decision tree, a new training set is generated by sampling, uniformly and
with replacement, the original training set. This procedure ensures the collection of trees
comes from independent identically distributed samples. The prediction is given by the
majority voting of the decision trees in the ensemble, effectively improving the prediction
accuracy [20].

Classification performance was assessed by constructing the Receiver Operating Charac-
teristic (ROC) curve and calculating its Area Under the Curve (AUC). Depending on the
time window, data for training the classifier might be highly unbalanced. This was taken
into account when designing the cross validation scheme: at each iteration, a random
forest classifier was trained with a balanced subset by randomly selecting the 70% of
the underrepresented class with an equal number of samples from the other class. The
classifier was tested with the remaining observations, in some cases reaching a larger
number of samples. This process was repeated 1000 times per time window.

4.3 Results

4.3.1 Parameters for composite scores calculation

4.3.1.1 Sub-score standardization

Parameters to calculate the SRB I-scores (Equation 4.2), obtained from the linear regres-
sion with a sample of 400 cognitively unimpaired individuals are presented in Table
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4.3.

Sub-score Intercept (�0) Education (�43) Age (�064 ) �

Q1SCORE 1.044 -0.045 0.034 1.294
Q2SCORE 0.072 -0.001 0 0.353
Q3SCORE 0.178 -0.015 0.006 0.55
Q4SCORE -0.549 -0.065 0.06 1.811
Q5SCORE -0.094 -0.001 0.002 0.265
Q6SCORE 0.145 -0.001 -0.001 0.231
Q7SCORE 0.258 -0.009 0 0.321
Q8SCORE 5.095 0.035 -0.037 2.375
Q9SCORE -0.042 -0.006 0.002 0.148
Q10SCORE -0.203 0.001 0.003 0.148
Q11SCORE -0.266 0 0.004 0.257
Q12SCORE -0.138 0.001 0.002 0.171
Q13SCORE -0.405 -0.001 0.015 0.819
MMORITIME -0.024 0.001 0.001 0.301
MMORISPACE 0.432 -0.009 -0.002 0.351
MMREGI -0.02 -0.001 0.001 0.1
MMRECALL -0.556 -0.016 0.015 0.621
MMSPELLBKW 0.529 -0.032 0.002 0.492
MMNAM -0.05 0.001 0.001 0.05
MMCOMMAND 0.103 -0.007 0.001 0.244
MMREPEAT 0.252 -0.005 -0.001 0.264
MMREAD 0.028 0 0 0.05
MMWRITE -0.02 0.001 0 0.05
MMDRAW 0.183 -0.01 0.001 0.241
TRAILS -0.078 -0.008 0.004 0.27
CUBE 0.451 -0.03 0.004 0.447
MOCACLOCK -0.058 -0.003 0.005 0.483
MOCANAM -0.102 0 0.003 0.276
MOCADIG -0.001 -0.008 0.003 0.26
MOCALET -0.113 -0.002 0.003 0.177
MOCASERIAL 0.153 -0.016 0.003 0.385
MOCAREP 0.14 -0.018 0.005 0.454
MOCAFLUEN 0.198 -0.016 0.003 0.385
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MOCAABS 0.457 -0.029 0.002 0.393
MOCADLREC -2.029 -0.049 0.074 1.691
MOCAORI 0.271 -0.005 -0.002 0.254
CLOCKSCOR 0.092 -0.012 0.005 0.536
COPYSCOR 0.167 0.003 -0.001 0.42
TRAASCOR 2.772 -0.099 0.42 9.601
TRABSCOR 9.705 -1.968 1.386 39.867
LIMMTOTAL 15.084 -0.242 -0.012 3.086
LDELTOTAL 15.238 -0.234 -0.002 3.27
CATANIMSC 36.053 -0.62 0.174 5.35
RAVLT.IMMED 2.848 -0.473 0.456 9.81
AVTOT6 -0.858 -0.15 0.123 3.248
AVTOTB 4.328 -0.072 0.089 1.988
AVDEL30MIN -1.107 -0.075 0.129 3.9
AVDELTOT -1.478 -0.042 0.058 2.267
BMNOCUE 2.035 -0.134 0.026 1.995
BMCUED 29.761 0.032 -0.007 0.592

Table 4.3: Parameters for sub-score standardization estimated from normative data.
Complete description of each sub-score code is presented in Table 4.2.

4.3.1.2 Factor analysis

The proposed factor model was constructed with 35 sub-scores linked to 6 cognitive
domains: memory, language, executive function, visuo-spatial, orientation and attention.
Fit statistics given by Confirmatory Factor Analysis indicate a good model fit (RMSEA
= 0.09, TLI = 0.95). Once the factor model parameters are estimated, dysfunction
measures for each domain are obtained as linear combinations sub-scores, the resulting
set of weights for domain score calculation are presented in Table 4.4.

Domain
Sub-score Memory Language Executive Visuospatial Orientation Attention

Q1SCORE 0.126 0 0 0 0 0
Q4SCORE 0.125 0 0 0 0 0
MOCADLREC 0.061 0 0 0 0 0
RAVLT.IMMED 0.15 0 0 0 0 0
AVTOT6 0.128 0 0 0 0 0
AVTOTB 0.052 0 0 0 0 0
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AVDEL30MIN 0.068 0 0 0 0 0
AVDELTOT 0.052 0 0 0 0 0
LIMMTOTAL 0.085 0 0 0 0 0
LDELTOTAL 0.113 0 0 0 0 0
MMRECALL 0.039 0 0 0 0 0
Q5SCORE 0 0.097 0 0 0 0
MOCANAM 0 0.093 0 0 0 0
BMNOCUE 0 0.291 0 0 0 0
CATANIMSC 0 0.306 0 0 0 0
Q13SCORE 0 0 0.026 0 0 0
TRAASCOR 0 0 0.065 0 0 0
TRABSCOR 0 0 0.224 0 0 0
MOCASERIAL 0 0 0.036 0 0 0
TRAILS 0 0 0.025 0 0 0
CLOCKSCOR 0 0 0 0.395 0 0
COPYSCOR 0 0 0 0.229 0 0
MOCACLOCK 0 0 0 0.448 0 0
Q3SCORE 0 0 0 0.157 0 0
CUBE 0 0 0 0.164 0 0
MMDRAW 0 0 0 0.048 0 0
Q7SCORE 0 0 0 0 0.331 0
MMORITIME 0 0 0 0 0.313 0
MMORISPACE 0 0 0 0 0.114 0
MOCAORI 0 0 0 0 0.418 0
Q9SCORE 0 0 0 0 0 0.074
Q10SCORE 0 0 0 0 0 0.092
Q11SCORE 0 0 0 0 0 0.204
Q12SCORE 0 0 0 0 0 0.148
Q2SCORE 0 0 0 0 0 0.085

Table 4.4: Weight of each sub-score in the calculation of the 6 domain scores (Matrix W)).
Complete description of each sub-score code is presented in Table 4.2.

Domain dysfunction scores of all subjects were calculated using the learnt parameters
while differences between cognitively normal subjects and MCI patients were tested
using Mann-Whitney U tests. As one test was performed per domain, ?-values were
adjusted using the Bonferroni correction for the 6 tests. The 6 domains differ significantly
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between these groups: memory (A = 0.59, ? < 0.00005), language (A = 0.34, ? < 0.00005),
executive functioning (A = 0.33, ? < 0.00005), visuospatial abilities (A = 0.20, ? < 0.00005)
, orientation (A = 0.25, ? < 0.00005), and attention (A = 0.21, ? < 0.00005).

4.3.2 Sub-groups of MCI patients

The cognitive state of MCI participants was characterized by the six domain scores and
different impairment profiles were found in the MCI patient sample by cluster analysis.
Once the distance between subjects is estimated, there are multiple criteria to choose
the number of clusters (:) in which data could be divided. After examining 30 different
indices [25], data partition in 4 clusterswas suggested by 13 of these indices. Additionally,
the mean cluster stability index was checked for multiple values of : resulting in values
above 0.85 for 2 ≤ : ≤ 4. Partition around medoids (PAM) was applied to divide the
sample of 408 MCI patients in 4 different subgroups. The description of these subgroups
is presented in Table 4.5 along with the description of the entire group of cognitively
unimpaired participants as a reference. Figure 4.3 shows the distributions of domain
dysfunction scores for each one of the MCI subgroups. A total of 60 pairwise tests were
performed to compare domain composite scores between MCI subgroups and against
the CU group, effect size A was computed for each test and ?-values were adjusted for
multiple comparisons using the Bonferroni correction. Two profiles were observed at
the extremes of the dysfunction spectrum: group 1 exhibits the lowest impairment in all
domains, with all score distributions being comparable with the CU group, and group 4
has the highest average dysfunction scores in 5 out of 6 domains.

In the control-like subgroup 49 out of 159 individuals progressed to dementia on the
course of the follow-up, those participants converted on average 44.5 months after evalu-
ation. Thisparticular sub-group supports previousfindingswhich suggest a considerable
number of false positives in the diagnosis of MCI in ADNI database [54, 58].

Characterization of MCI participants with the 6 proposed domain dysfunction scores
revealed 4 different cognitive profiles in the sample of ADNI participants diagnosed
with MCI:

• The first subgroup (MCI 1) with the lowest mean dysfunction scores for all 6 do-
mains compared to the other MCI subgroups. When compared to controls, this
group shows significantly higher memory dysfunction (A = 0.31, ? < 0.00005) and
lower visuospatial dysfunction score (A = 0.17, ? = 0.00008). Indeed, these partic-
ipants should have exhibited some memory impairment during the neuropsycho-
logical evaluation to be diagnosed with MCI according to the ADNI criteria.

• Subjects in MCI 2 show higher impairment in memory than MCI 1 (A = 0.39, ? <
0.00005), language (A = 0.44, ? < 0.00005), executive function (A = 0.25, ? = 0.0012),
and visuospatial abilities (A = 0.75, ? < 0.00005). Although the attention dysfunc-
tion does not differ from MCI 1, the difference of this domain with respect to the
CU group is significant but small (A = 0.18, ? = 0.00001).

• The third subgroup (MCI 3) differs fromMCI 2 only inmemory (A = 0.25, ? = 0.015)
and orientation (A = 0.81, ? < 0.00005).
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Cognitively
unimpaired

MCI subgroup
MCI 1 MCI 2 MCI 3 MCI 4

N 668 159 129 88 32
Age (years) 73.1±7.4 72.4±7.8 72.2±7.8 74.6±7.5 72.9±7.7
Sex (% female) 56.4 43.4 34.9 43.2 43.8
APOE-�4 (% carriers) 30.2 35.9 47.3 55.2 75.0

Memory -0.59±0.70 -0.04±0.63 0.57±0.72 0.95±0.73 1.51±0.67
Language -0.26±0.56 -0.18±0.49 0.39±0.72 0.50±1.01 0.66±1.00
Executive -0.14±0.26 -0.09±0.26 0.13±0.47 0.19±0.44 0.31±0.62
Visuospatial -0.27±0.96 -0.71±0.43 0.83±1.09 0.49±1.40 1.22 ± 1.35
Orientation -0.51±0.82 -0.70±0.41 -0.59±0.45 1.60±0.98 5.06±1.84
Attention -0.15±0.35 -0.08±0.38 0.11±0.72 0.28±1.00 0.22±0.89

Mean CSI - 0.97 0.94 0.90 0.85

Cox proportional HR - ref. 2.57 3.84 7.68
95% CI - ref. 1.59 - 4.20 2.33 - 6.30 4.32 - 13.70

Table 4.5: Description of MCI subgroups, along with the CU sample for reference. De-
mographic information, mean and standard deviation (sd) of domain composite scores,
mean cluster stability index (CSI), and proportional hazard ratios (HR) with their 95%
confidence intervals (CI).

• The last subgroup MCI 4 differs from MCI 3 in memory (A = 0.32, ? = 0.026) and
orientation (A = 0.73, ? < 0.00005).

Kaplan-Meier survival curves for the 4 subgroups of MCI are illustrated in Figure 4.4,
according to the omnibus log-rank test, survival curves for the 4 subgroups differ signif-
icantly ("2

3 = 64.2, ? ≤ 0.001). According to the pairwise comparison between curves,
MCI subgroup 1 exhibits significantly lower progression probability than subgroup 2
("2

1 = 15.61, ? = 0.0001), and subgroup 4 has significantly higher progression probability
than subgroup 3 ("2

1 = 5.74, ? = 0.02). Although the difference between subgroups 2
and 3 does not reach the significance level of 0.05 after false discovery rate correction,
the adjusted ?-value is still relatively low ("2

1 = 3.65, ? = 0.056). The resulting MCI
subgroups show with distinctive survival curves confirming that the different cognitive
profiles are related with different progression risk.

Differences of progression risk across MCI sub-groups were quantified using multivari-
ate Cox models taking the control-like subgroup (MCI 1) as reference and including
gender, age and years of education as covariates. The resulting proportional HR are
presented in Table 4.5, HR estimates for MCI subgroups 2 and 3 compared with the
control-like subgroup are 2.57 (95% CI [1.59 − 4.20]) and 3.84 (95% CI [2.33 − 6.30]), re-
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Figure 4.3: Distribution of domain dysfunction scores per MCI subgroup including the
complete group of cognitively unimpaired (CU) participants as reference.

spectively. Significantly higher hazard ratio results for MCI subgroup 4 which have a
risk of progression to AD dementia around 7.7 (95% CI [4.32− 13.70]) times higher than
the risk for the control-like subgroup. From the Cox model, age, years of education and
gender had no effect.

4.3.3 Automated prediction of progression to AD dementia

Random Forest classifiers were trained to classify between MCI patients who remained
stable (sMCI) and the ones who converted to dementia (cMCI) using data from the
evaluation set. The number of cases in each one of these two groups depended on the
time window being considered, Table 4.6 presents the number of cases used for training
and testing the classifiers for the 5 time windows considered 4.6.

Included features for classification were the six domain scores and years of education,
age, and gender. To compare with standard outcome measures, at each iteration of the
validation scheme, two additional classifiers were trained while including the same co-
variates. The first one was trainedwith the scores of commonly used neuropsychological
tests, namely the ADAS-Cog, MMSE, MoCA, and AVLT while the second was trained
only with the ADAS-Cog. The number of trees for all RF was set at 200. The distribution
of AUC values per time period across the 1000 iterations for the three classifiers is shown
in Figure 4.5, mean AUC for classification with domain scores are 0.68, 075, 0.74, 0.74,
and 0.76 for prediction within 12, 24, 36, 48, and 60 months, respectively.
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Figure 4.4: Kaplan-Meier curves for the found MCI sub-groups

Classifier performance is significantly higher when trained with domain scores rather
than with the set of test totals, including the ADAS-Cog. When predicting MCI con-
version within 12 months, resulting mean AUCs are 0.68 and 0.63 (Cohen’s 3 = 0.73,
? ≤ 0.00001) for classifiers trained with dysfunction scores and total tests, respectively.
When the conversion prediction is done within 60 months, these mean AUC values are
0.76 and 0.69 (Cohen’s 3 = 1.59, ? ≤ 0.00001), respectively.

Although it might be counter-intuitive that prediction performance is better for the
long term than for the short term, this is likely due to the varying number of cases
used for training and testing at each time window. With longer time windows, the
number of stable MCI subjects decreases while the number of MCI who converted to
dementia increases. Although all RF classifiers were trained with balanced sets of cases,
classifiers within 1 year were trainedwith fewer samples and testedwith larger andmore
unbalanced sets, making this experiment more challenging than the classification within
longer time windows (See Table 4.6).

4.3.3.1 Direct comparison with state-of-the-art predictors

To compare the prediction of MCI progression to dementia with domain scores against
other composite scores and predictors in the literature, nine different sets of featureswere
used to train theRF classifiers following a randomsampling cross-validation schemewith
200 iterations. The nine sets of predictors are:
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Total Training RF Testing RF
Time window sMCI cMCI sMCI cMCI sMCI cMCI

12 months 356 46 32 32 324 14
24 months 263 82 57 57 206 25
36 months 206 99 69 69 137 30
48 months 159 114 80 80 79 34
60 months 109 122 76 76 33 46

Table 4.6: NumberofMCI subjects that remained stable (sMCI) andconverted todementia
(cMCI) within each time window, along with the number of subjects per class that were
used to train and test the Random Forest (RF) classifier at each iteration of the cross-
validation scheme.

1. PROPOSED domain-specific composite scores.

2. PROPOSED domain-specific composite scores, with the Clinical Dementia Rating
(CDR) - Sum of Boxes, and the Functional Assessment Questionnaire (FAQ).

3. ADASTree [115]=1.05*Q1SCORE+0.38*Q2SCORE+0*Q3SCORE+1.17*Q4SCORE
+ 0.61*Q5SCORE + 0.13*Q6SCORE + 1.13*Q7SCORE + 0.41*Q8SCORE +
0.54*Q9SCORE+0.49*Q10SCORE+0.69*Q11SCORE+0.39*Q12SCORE+0.68*Q13SCORE.

4. Composite [88] = Q1SCORE + Q4SCORE + Q7SCORE + CDRSB + FAQTOTAL.

5. Cognitive composite 1 [156]: CC1 = ADAS3 + (75-RAVLT.IMMED) + (30 - MMTO-
TAL).

6. Cognitive composite 2 [156]: CC2 = ADAS3 + CDMEMORY.

7. Cognitive–functional composite 1 [156]: CFC1 = CC1 + FAQTOTAL.

8. Cognitive–functional composite 2 [156]: CFC2 = CC2 + FAQTOTAL.

9. Selected features [140]: TRABSCOR,Forget.index, RAVLT.IMMED,TOTAL13, TRAAS-
COR, AVTOT6, LIMMTOTAL, CATANIMSC, AVDEL30MIN, FAQTOTAL, LDEL-
TOTAL, MOCADLREC, AVDELTOT, BNTTOTAL, Q4SCORE, Q8SCORE, MMTO-
TAL, Q1SCORE, MOCAFLUEN, CDORIENT, CDHOME, AVTOTB.

The distribution of the AUC values for the 9 classification experiments along the 5 time
windows is presented in Figure 4.6. The proposed domain composite scores outperform
the other predictors that rely only on cognitive measures. When functional measures
such as the FAQ and CDR are included in the set of predictors, AUC values improve
for all the time windows. In particular, MCI conversion prediction with the domain
composite scores and functional measures is slightly better than the prediction with 22
selected features from the battery of cognitive and functional assessments.
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Figure 4.5: Distribution of AUC values for prediction of progression from MCI to de-
mentia within 12, 24, 36, 48 and 60 months. Classifiers trained with composite domain
scores consistently outperform classifiers trained with the ADAS-Cog, and with the set
of total tests scores from ADAS-Cog, Mini-Mental State Examination (MMSE), Montreal
Cognitive Assessment (MoCA), and Rey auditory verbal learning test (AVLT).

4.4 Discussion

Thiswork has introduced adata-drivenmethodology to characterize the cognitive state of
patients diagnosedwithMCI bydeveloping specific domain scores using sub-scores from
the neuropsychological tests battery applied to the ADNI participants. These domain
scores highlight sub-groups of MCI patients who exhibit different risks of progression
to AD dementia, and show better performance than standard outcomes when predicting
conversion from MCI to dementia up to 5 years.

Factor model and composite scores

A 6 factor model estimates simultaneously composite scores for all the domains. By
learning the weights for domain score calculation from a sample containing both CU
and MCI in similar proportions, we can capture a more general statistical structure of
the cognitive evaluation than if we had used a narrower sample within the spectrum of
impairment. This is an extension of previous works that establish single factor models to
obtain a composite measure for particular domains such as memory [30] and executive
functioning [69]. Memory composite score in this work strongly agrees with the one
hypothesized for ADNI-Mem [30], resulting therefore in highly correlated memorymea-
sures (A = −0.943, ? < 0.00005). Executive function score proposed here is also correlated
with ADNI-EF [69] (A = −0.818, ? < 0.00005), even though sub-scores from ADAS-Cog
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Figure 4.6: Distribution of AUC values for MCI conversion prediction within 12, 24, 36,
48 and 60 months using different sets of features.

and MoCA, not considered in ADNI-EF, were herein included.

MCI heterogeneity

As weights for domain score calculation were obtained as a solution that minimizes the
portion of the variance that is not explained by the factors [15], the obtained composite
scores do mitigate the effect of individual measurement errors, leading to more robust
measures of impairment for each domain. This is a methodological advantage over
previous works that studiedMCI heterogeneity with separate neuropsychological scores
per domain [18, 54, 58]. Another methodological advantage consists in adapting the
notion of distance between subjects by including the domain covariance in the metrics.
Most of the state-of-the-art researchperforms the cluster analysis [142, 18, 54, 56] using the
euclidean distance to compare sets of cognitive variables between individuals. However,
this distance relies on the assumption of orthogonality between dimensions and therefore
eachmeasure is considered independent from the other ones, an assumption hard to hold
and far from the given nature of the data.

The cognitive characterization presented here produced a partition of theMCI group into
4 different sub-groups. Beyond the methodological differences, the obtained division is,
to some extent, consistent with previous works investigating cognitive heterogeneity
in MCI with ADNI data [18, 54, 58]. All these works also identified a sub-group of
control-like individuals in the group of participants diagnosed with MCI according
to ADNI criteria, and 2 or 3 MCI sub-groups which vary in the level of impairment
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of memory, executive functions[18], and language[54]. In this work, the separation
between the remaining three MCI sub-groups is guided by two domains that covariate
closely, memory and orientation, while showing relatively similar levels of impairment
in language, executive functioning, visuospatial abilities, and attention to the CU and
the control-like MCI sub-group. Examination of future progression to dementia for the
different MCI sub-groups in this study resulted in well differentiated survival curves,
providing evidence for the usefulness of the proposed characterization to stratify the risk
of progression to dementia during the upcoming 5 years. Therefore, the progressive risk
of progression from MCI 1 to MCI 4 seems to be driven by memory and orientation.
Although the important role of orientation might be unexpected, it is coherent with
previous works that have identified orientation sub-scores among the most sensitive
measures of cognitive change [156, 88]. The four MCI subgroups are similar in terms
of age and sex distribution, but they exhibit differences in terms of the percentages of
APOE-e4 carriers. Although the relation between APOE status and risk of AD dementia
is widely known, the fact that this known pattern was exposed, in an unsupervised way,
by orientation impairment might be worthy of further analysis in future work.

Predicting progression fromMCI to dementia

The domain scores were also evaluated at automatically predicting future progression
from MCI to AD dementia. Cross-validated results demonstrate that classifiers trained
with our composite scores consistently outperform classifiers trained with the ADAS-
Cog andmultiple standard cognitive measures in addition to the ADAS-Cog, such as the
MMSE,MoCA, and theAVLT.Predictionwith domain scores also outperforms prediction
with other cognitive composite scores in the literature [115, 156, 88]. When the domain
scores are accompanied by the Clinical Dementia Rating (CDR) and the Functional Activ-
ities Questionnaire (FAQ), prediction performance is slightly better than the prediction
with a set of 22 selected neuropsychological features [140].

Considering that psychiatric conditionsmayplay an important role in the development of
cognitive impairment, we tested if the addition of psychiatric information improved the
performance of progression prediction. Classification experiments adding the Geriatric
Depression Scale (GDS) and the abbreviated version of the Neuropsychiatric Inventory
(NPI-Q) to the composite domain scores result in a very modest improvement of AUC
values (Comparative results shown in Figure 4.7). It suggests psychiatric symptoms give
little additional information that could be used to distinguish between MCI patients that
will or will not progress to dementia.

Limitations

One important limitation of this study is that only data from ADNI was used, so gen-
eralization to other samples of population was not tested. The main reason for this is
that the proposed methodology needs the sub-scores from neuropsychological tests and
information with this level of detail is not available in other public databases. Survival
analysis and progression prediction were based on data labels provided by ADNI, how-
ever recent studies have highlighted some flaws of the MCI diagnosis in ADNI database.
First, it relies on a single test to evaluate memory leading to a high number of false
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Figure 4.7: Distribution of AUCvalues forMCI conversion predictionwithin 12, 24, 36, 48
and 60months. Classifiers were trained with domain scores, age, sex, years of education,
with and without assessments of psychiatric symptoms.

positives [55]. Secondly, the MCI diagnostic criteria was not applied consistently after
the first visit [192] and around 35% of subjects considered as stable MCI after a year did
not meet all criteria so the continuation of MCI diagnosis appeared to be driven only by
the CDR score.

Conclusions

The presented set of composite scores leads to a quantitative characterization of cognitive
state for MCI patients. The presented results demonstrate that, relying only in the
neuropsychological assessment, these composite domain scores are useful to stratify
MCI patients and predict their future progression to dementia. Therefore, those scores
could be easily included for patient monitoring or clinical trials. Future work should
include longitudinal evaluation of domain dysfunction, along with AD biomarkers, that
could improve understanding of the continuum between MCI and AD dementia.

4.5 Products

Journal paper

• Diana L. Giraldo, Jan Sĳbers, Eduardo Romero. Quantification of cognitive impair-
ment to characterize heterogeneity of patients at risk of developing Alzheimer’s disease



“output” — 2022/6/8 — 7:17 — page 78 — #94

78
CHAPTER 4. IMPROVING THE QUANTITATIVE CHARACTERIZATION OF

COGNITIVE IMPAIRMENT

dementia. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring.
2021; 13(1):e12237. https://doi.org/10.1002/dad2.12237 [73]

Conference papers

• Diana L. Giraldo, Jan Sĳbers, Eduardo Romero. Quantifying cognition and behavior
in normal aging, mild cognitive impairment, and Alzheimer’s disease. Proc. 13th Inter-
national Conference on Medical Information Processing and Analysis. San Andrés
- Colombia, 2017. https://doi.org/10.1117/12.2287036

• German A. Pabón, Diana L. Giraldo, Eduardo Romero. Mining relations between
neuropsychological data to characterize Alzheimer’s disease. Accepted to the joint con-
ference: 17th International Symposium on Medical Information Processing and
Analysis (SIPAIM) - 10th Symposium on Medical Instrumentation and Imaging
(SIIM). To be held in November 2021.

All methods and analysis in this section were implemented in R (version 3.6.3), code for
processing ADNI data, reproducing the reported results, and calculate composite scores
in new data is available in https://github.com/diagiraldo/neuropsycho_adni .

https://doi.org/10.1002/dad2.12237
https://doi.org/10.1117/12.2287036
https://github.com/diagiraldo/neuropsycho_adni
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Conclusions

This thesis has presented three strategies that address relevant needs in AD research. In
Chapters 2 and 3 we present two contributions in the field of computational anatomy
using different modalities of magnetic resonance imaging:

• We introduced a method to quantitatively describe regional anatomy extracting
grey scale intensity information from )1 weightedMRI and used this description in
the automatic classification of whole-brain images. Previous works have included
information from a predefined set of anatomical regions or have used whole-brain
information leading to high-dimensional features that have no direct interpretation
in terms of disease progression. The approach we presented falls in between these
two kinds of analysis by quantifying changes in a set of anatomical regions covering
the whole brain cortex and subcortical structures. The proposed metric quantifies
how much regional tissue constituency is drifting away from what is considered
normal, resembling the way clinicians evaluate anatomy with structural MRI but
expanding this evaluation to several brain regions. This quantitative description
of multiple brain areas exposes multi-dimensional patterns of AD progression that
could be used to describe or evaluate anatomical changes along the AD continuum
in clinical scenarios.
The use of ensemble classifiers allows the assessment of how much additional
information each region gives for the classifier to decide whether a case is a control
or a patient. Although the presented methodology explored a set of anatomical
regions covering the whole brain without giving preference to certain areas, the
resulting set of most informative regions agrees with the widely reported changes
in the temporal lobe.

• We presented a comprehensive analysis of micro- and macrostructural differences
between groups using multi-shell DW-MRI data. Although several works have
investigated the microstructural differences between AD or MCI patients and con-
trols, most of them have used the diffusion tensor model to capture the underlying
tissue properties, suffering from the known limitations of this model. The analysis
pipeline we presented integrates: i) advanced models for the diffusion signal that
represent crossing fibre configurations in WM and effectively separate tissue dif-
fusivity properties for different tissue types, ii) the fixel-based analysis framework

79
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to investigate changes in specific fibre pathways along with the voxel-based anal-
ysis to investigate tissue composition and volumetric changes, and iii) appropriate
statistical inference methods that support the robustness of the results.
Results of the analyses revealed that patients with MCI and dementia due to AD
exhibit degeneration of microstructural diffusion barriers in both white and grey
matter in several brain areas such as the spleniumof the corpus callosum, the cingu-
lum and cingulate cortex, the insular cortex, and in the temporal lobe including its
cortex, withe matter connections and subcortical structures. Volumetric changes,
indicating macrostructural atrophy, were detected in temporal and parietal areas
suggesting tissue degeneration might be more advanced than the one observed in
superior and frontal areas. In addition to the investigation of group differences, we
also applied the analysis pipeline to the exploration of linear relations between CSF
biomarkers anddiffusion-derivedmeasures ofmicro- andmacrostructural changes,
finding significant correlations between CSF ��1−42 levels and GM degeneration in
the left hippocampus and expansion of the frontal horn of the lateral ventricles.
The presentedmethodology is a holistic neuroimaging approach that can be used to
test linear hypotheses about tissue constituency andmorphology. Beyond the study
of group differences, it can be employed to interrogate correlations with disease
quantitative markers, being also a methodological contribution to the investiga-
tion of AD-related neurodegeneration processes. The proposed approach relies on
an advanced imaging acquisition technique (high angular resolution, multi-shell
DW-MRI), which is not widely available out of research contexts, thus the potential
implementation of presented diffusion-derived measures of tissue integrity in clin-
ical scenarios is very unlikely. However, they could be used to evaluate the effect
of potential disease-modifying treatments in preventing, slowing down, or even
reversing microstructural degeneration of diffusion barriers.

Additionally to the contributions in computational anatomy, in Chapter 4 we presented a
data-driven strategy aiming to improve the quantitative assessment of cognitive abilities
in MCI patients:

• We developed a methodology to calculate a set of composite scores that quantify
the level of impairment in six different cognitive domains: memory, language,
visuospatial abilities, executive functioning, orientation and attention. These com-
posite scores were obtained by combining andweighting sub-scores extracted from
commonly used neuropsychological tests. This strategy incorporates the advan-
tages of composite scores, e.g. robustness and sensitivity, with a domain specificity
that facilitates the study of cognitive impairment heterogeneity. The proposed
composite scores demonstrated to be useful for finding subgroups of MCI patients
with different risks of progression to dementia and were able to better predict pro-
gression than standard outcomes. These results supports the idea that assessing
domain-specific impairment could help to delineate cognitive profiles linked with
differences in the clinical evolution.
Domain-specific composite scores calculation could be easily included in the rou-
tine neuropsychological evaluation, giving useful information about the cognitive
progression pattern and risk of progression to dementia within certain time. Fur-
thermore, these scores couldgivemoreprecisemeasures of the effects of therapeutic
interventions designed to alleviate the cognitive consequences of AD.
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In summary, this thesis presented a set of computational strategies with a common aim,
the identification and quantification of pathological changes associated with AD. These
contributions use information from neuroimages and cognitive evaluation to charac-
terize patterns of disease progression. Assessment of pathological brain patterns with
quantitative tools, like the ones herein developed, help patients’ clinical management
and monitoring and could improve the evaluation of potential, and urgently needed,
disease-modifying treatments.

Perspectives

The contributions of this thesis have great potential for the study of AD-related patho-
logical processes. There is still some work that could be done to validate each one of
those strategies and evaluate how they compare to traditional methods in AD research in
terms of providing better insights about AD progression patterns and patients’ evolution
along the AD continuum.

The first methodological contribution, the description of regional changes with distances
between image intensity histograms, could be compared with traditional descriptions of
regional anatomy: volume and cortical thickness. Such comparison could evaluate if the
proposeddescriptiondiscriminates better betweengroups of subjects or if it ismore sensi-
tive to subtle longitudinal changes in brain anatomy. Regarding the second contribution,
the comparison of tissue diffusivity properties between groups, the reported findings
could be compared with results of investigating traditional diffusion tensor metrics such
as FA and MD. Moreover, it would be interesting to examine how the diffusion-derived
maps of tissue-like content relate to the tissue "concentration" maps used for VBM with
structural images. The domain composite scores, presented in the third contribution,
could be applied to longitudinal data to test how sensitive are these scores to longitu-
dinal changes and explore the progression trajectories of different profiles of cognitive
impairment.

A straightforward next stepwould be to integrate the computational anatomydescriptors
with the domain-specific scores to explore the relationship between profiles of cognitive
impairment and different neurodegeneration pathways. Investigation of the relationship
between regional anatomical differences and levels of compromise per domain is possi-
ble with the available data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
However, investigation of the relations between cognitive impairment and degeneration
of diffusion barriers with the proposed strategies would require multi-shell DW-MRI
paired with information from neuropsychological tests with an adequate level of gran-
ularity. To the best of our knowledge, only very few cases from ADNI satisfy those
conditions.
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