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Samenvatting

Medische Magnetische Resonantie beeldvorming is een belangrijk onderzoeks-
veld, in het bijzonder voor het bestuderen van het (menselijk) brein. Deze the-
sis bevat verschillende bijdragen aan dit onderzoeksveld. Het bevat verbeter-
ingen van Magnetische Resonantie (MR) beelden alsook verbeterde statistische
analyse van MR beelden die gevoelig zijn voor specifieke weefsel eigenschappen,
zoals de diffusie van water of het zuurstofniveau van het bloed. Deze nieuwe
methoden zijn er op gericht de gevoeligheid van de analyse van MR beelden te
optimaliseren.

Hoofdstuk 1 bevat een introductie van MR beeldvorming, een beschrijving
van enkele geconstateerde problemen bij MR beeldvorming en een opsomming
van de bijdragen die geleverd zijn aan de oplossingen voor deze problemen.

Hoofdstuk 2 bevat een beschrijving van de verschillende methoden die op
verschillende plekken in deze thesis zijn gebruikt.

Hoofdstuk 3 beschrijft een methode om de inhomogeniteiten van het
hoofdmagneetveld van de MR scanner te bepalen. Deze inhomogenitei-
ten zijn vaak een hoofdoorzaak van verstoringen die optreden bij het opnemen
van hele MR beelden na één echo, zogenaamde Echo Planar Imaging (EPI)
opnamen. EPI is een heel snelle opnamemethode die, helaas, erg gevoelig is
voor veldinhomogeniteiten. Echter, als de inhomogeniteiten van het hoofd-
magneetveld bekend zijn, dan is het mogelijk om de verstoringen substantieel
te reduceren. De nieuwe methode bepaalt de inhomogeniteiten van het mag-
neetveld met behulp van een niet lineaire kleinste kwadraten schatter (NLLS)
uit de complexwaardige gegevens die opgenomen werden met een aangepaste
EPI opnamesequentie. Deze NLLS methode bleek veel minder gevoelig voor de
meetruis dan een eerder gepresenteerde schatter voor de inhomogeniteiten van
het magneetveld, welke was gebaseerd op de correlaties van de meetgegevens.

Hoofdstuk 4 beschrijft een nieuwe methode om 3D MR beelden met een
hoge resolutie te reconstrueren uit een serie MR beelden, ieder bestaand
uit een aantal snedes. In zulke MR beelden is de dikte van de snedes door-
gaans substantieel groter dan de resolutie in iedere snede. De ontwikkelde
methode combineert meerdere beelden, ieder met een andere oriëntatie van de
snedes, tot een hoog resolutie beeld van het gescande object. Binnen deze me-
thode wordt een stelsel van lineare vergelijkingen opgesteld waarmee de opname
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Samenvatting

van MR beelden wordt gemodelleerd als een matrix-vector vermenigvuldiging.
Vervolgens wordt het hoog resolutie MR beeld bepaald door dit -enorm grote-
lineaire stelsel op te lossen met behulp van de ’geconjugeerde gradiënten’ (con-
jugated gradient) methode. Om de matrix-vector vermenigvuldigingen op effi-
ciënte wijze uit te voeren worden deze herschreven als combinatie van een filter
operatie en een affiene transformatie van afbeeldingen. Onder enkele voor-
waarden kan met behulp van deze nieuwe recontructie methode de opname
duur worden verkort door meerdere MR beelden bestaande uit snedes op te
nemen in plaats van directe 3D opnamen.

Hoofdstuk 5 beschrijft een methode om automatisch het ruisniveau van
MR beelden te bepalen. Dit is relevant voor statistische analyse van MR
beelden, aangezien het ruisniveau bekend moet zijn om onderscheid te kunnen
maken tussen relevant signaal en ruis. De ontwikkelde methode is gebaseerd
op het feit dat MR beelden meestal voor een relatief groot gedeelte uit achter-
grond bestaan. In deze achtergrond is niet het object, maar alleen lucht aan-
wezig. Verder wordt gebruikt dat bij de meeste MR opnamen de ruis ho-
mogeen is in het beeld. Dat wil zeggen dat het ruisniveau in de achtergrond
gelijk is aan het ruisniveau waarmee het object is verstoord. De intensiteit
van de voxels uit de achtergrond, welke dus alleen ruis bevatten, is verdeeld
volgens een Rayleigh verdeling. De methode in Hoofdstuk 5 gebruikt een maxi-
male waarschijnlijkheid (maximum likelihood, ML)-schatter om de standaard-
deviatie van de Rayleigh verdeelde achtergrond mode van histogram van een
MR beeld te schatten. Het aantal elementen van het histogram waarmee deze
schatter werkt wordt automatisch geselecteerd met behulp van een methode
die probeert om een balans te zoeken tussen de variantie en onzuiverheid van
de schatter. Simulatie experimenten laten zien dat de gemiddelde kwadratis-
che fout van het geschatte ruisniveau is gereduceerd ten opzichte van meerdere
eerder gepresenteerde methoden om het ruisniveau te bepalen.

Hoofdstuk 6 beschrijft op waarschijnlijkheid gebaseerde statistische
activatie detectie methoden voor functionele MRI. Met behulp van
functionele MRI kan de taakgerelateerde hersenactiviteit worden gedetecteerd
uit een tijdreeks van MR afbeeldingen van de hersenen. Door fysiologische
processen is de ruis die in deze tijdreeks van MR beelden zit gecorreleerd (ge-
kleurd i.p.v. wit). Zoals in dit hoofdstuk wordt gedemonstreerd moeten de
correlaties van de ruis nauwkeurig worden gemodelleerd om een juist niveau
van foutief actief gedetecteerde voxels te kunnen specificeren. Verder toont dit
hoofdstuk ook aan dat, zelfs als de ruis correct wordt gemodelleerd, het niveau
van foutief actief gedetecteerde voxels af kan wijken van de gespecificeerde
waarde; in het bijzonder voor datasets met een beperkt aantal elementen in de
tijdreeks. Aangezien in de praktijk het aantal elementen in de tijdreeks altijd
beperkt is, geven de verschillende activatie detectie methoden andere antwoor-
den bij reële datasets, terwijl ze asymptotisch identiek zijn. In Hoofdstuk 6
wordt de kwaliteit van de activatie detectie methoden onderzocht als functie
van de foutief actief gedetecteerde voxels en de gevoeligheid van de detectie van
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hersenactiviteit. Er wordt aangetoond dat de op waarschijnlijkheid gebaseerde
testen een kleine verbetering geven ten opzichte van de testen met het alge-
meen lineaire model (GLM) , zelfs als bij deze testen gebruik wordt gemaakt
van gedecorreleerde metingen.

Hoofdstuk 7 beschrijft een methode om de opnameinstellingen voor dif-
fusie kurtosis beelden (DKI) te optimaliseren. Het DKI model is een
recent ontwikkelde uitbreiding van het al bekende diffusie tensor model (DTI-
model) dat Gaussische diffusie van watermoleculen veronderstelt. Door re-
stricties van celwanden en andere structuren is de diffusie echter niet volledig
Gaussisch. Daarom wordt binnen het DKI model de beschrijving van de ver-
deling van diffunderende watermoleculen uitgebreid met de kurtosis van deze
verdeling. Door deze uitbreiding moeten diffusie gewogen beelden (DWI) met
verschillende intensiteiten van diffusie weging (b-waarden) worden opgenomen
voor een DKI-experiment. Door de b-waarden en de richtingen van de diffusie
wegingsgradiënten te optimaliseren kan de precisie van de uit de MR beelden
geschatte parameters van het DKI model worden gemaximaliseerd, voor een
vooraf gegeven aantal DWI. In Hoofdstuk 7 wordt de precisie gekwantificeerd
met behulp van de Cramér Rao ondergrens (CRLB). Dit is een theoretische on-
dergrens voor de variantie van parameters als ze worden geschat met een zuiv-
ere schatter. Met behulp van simulatie-experimenten wordt aangetoond dat de
variantie van de DKI parameters, als ze worden geschat met de maximale waar-
schijnlijkheidsschatter (ML), deze CRLB (bijna) bereikt. Dit geldt zelfs voor
de datasets met een beperkt aantal opnamen. Daarom kunnen de diffusie weg-
ingsinstellingen betrouwbaar worden geoptimaliseerd door het minimaliseren
van de CRLB van de DKI parameters. Opname instellingen die praktisch op-
timaal zijn worden gevonden met behulp van een gesimuleerde annealing (ges-
imuleerd uitgloeien) optimalisatie techniek. Wanneer deze geoptimaliseerde
instellingen worden vergeleken met de meer traditionele instellingen blijkt dat
de CRLB wordt gehalveerd door de instellingen te optimaliseren.
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Summary

Medical Magnetic Resonance image processing is an important research topic,
especially for studies of the (human) brain. This thesis contains several con-
tributions to this field of research, both for the improvement of Magnetic Res-
onance (MR) images, as well as for the statistical analysis of MR images that
are sensitive to specific tissue properties, such as water diffusion and blood oxy-
genation. These new methods aim to optimize the sensitivity of the analysis
of MR images.

Chapter 1 contains a brief introduction into MR imaging, a description of
problems that arise in MR imaging, and a description of the contributions that
are made to solve these problems.

Chapter 2 introduces existing methods that are used throughout this work.
Chapter 3 describes a method to measure the inhomogeneities of the

main magnetic field of the MR scanner. These inhomogeneities are often
a main cause of distortions for the Echo Planar Imaging (EPI) method, which
is a very fast acquisition method that, unfortunately, is sensitive to these field
inhomogeneities. However, when the main magnetic field inhomogeneities are
known, it is possible to significantly reduce these distortions. The new method
estimates the field inhomogeneities with a non linear least squares (NLLS)
estimator from the complex reference data that was acquired by a modified EPI
sequence. This NLLS method proved to be much more robust against noise
than a previously presented field inhomogeneity estimator that was based on
correlations in the reference data.

Chapter 4 describes a new method to reconstruct high resolution MR
images from a series of multi slice MR images with anisotropic resolution. In
these multi slice images, the slice thickness is substantially larger than the res-
olution in the acquired slice. The method combines several multi slice images,
each with a different slice orientation, to reconstruct a single high resolution
image of the object. The reconstruction method first models the acquisition of
the MR images by a linear system of equations. Next, the high resolution image
is reconstructed by solving this -very large- linear system with the conjugated
gradient method. The matrix vector multiplications present in the conjugated
gradient method are reformulated as a combination of a filter operation and
an affine transformation of images to obtain an efficient reconstruction method
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for the high resolution image. With this reconstruction method, under certain
circumstances, the acquisition duration can be reduced by acquiring several
multi slice images of a 3D volume, instead of a true 3D acquisition.

Chapter 5 describes a new method to automatically estimate the noise
level of magnitude MR images. This is relevant for statistical analysis of MR
images, as the noise level needs to be known in order to be able to discriminate
between signal and noise. The method that has been developed is based on the
fact that MR images often contain a relatively large background area, i.e. an
area in which the object is not present. In most acquisitions, the noise is homo-
geneous throughout the MR image. Therefore, the noise level that is present
in the background area is equal to the noise level by which the intensities of
the recorded object are corrupted. The magnitude of the voxels in the back-
ground area of MR images, which only contain noise, are known to be Rayleigh
distributed. The method in Chapter 5 uses a Maximum Likelihood estimator
to fit the Rayleigh distribution to the background mode of the histogram of an
MR image. The number of histogram bins with which the Maximum Likeli-
hood estimate of the noise variance is computed, is selected automatically by
a method that tries to balance bias and variance of the estimator. Simulation
experiments show that the root mean square error of the estimated noise level
is reduced compared to previously presented methods.

Chapter 6 describes likelihood based statistical activation tests for
functional MRI. With functional MRI, task related brain activation can be
detected from a time series of brain images. However, due to physiological
processes, the noise in the time series of MR images is often colored, instead of
white. As is demonstrated in this chapter, the coloring of the noise should be
appropriately modeled in order to correctly specify a false positive level. How-
ever, Chapter 6 also demonstrates that, even when the noise is appropriately
modeled, the false positive level of the statistical activation tests might deviate
from the intended value; especially for datasets with a limited number of time
points. As in practice the number of time points is limited in all datasets, the
activation tests, which are asymptotically equal, are not equal for real datasets.
In Chapter 6, the performance of these different activation tests, for finite data
length and with colored noise, is evaluated in terms of the false positive level
and the sensitivity by which activation will be detected. It is shown that the
likelihood based tests provide a slight improvement over the GLM test with
pre-whitened data.

Chapter 7 describes a method to optimize the acquisition of diffusion
kurtosis images (DKI). The DKI model is a recently developed extension to
the better known Diffusion Tensor imaging (DTI) model, which assumes Gaus-
sian diffusion of water molecules. However, due to cell boundaries and other
restrictions, the diffusion inside the brain is not purely Gaussian. In DKI, the
model of the distribution of diffusing water molecules is extended to include the
kurtosis of this distribution. Due to this extension, Diffusion Weighted images
(DWIs) with different amounts of diffusion weighting (b-values) have to be ac-
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quired in DKI experiments. By optimizing the b-values and diffusion weighting
gradient directions, the precision of the DKI parameters can be maximized for
any given number of DWI. In Chapter 7, the precision of the DKI parameters
is quantified by the Cramér Rao lower bound (CRLB), which is a lower bound
on the variance of these parameters when they are estimated by an unbiased
estimator. With simulation experiments it is shown that the variance of DKI
parameters estimated by the Maximum Likelihood estimator (almost) reaches
the CRLB, even for the finite length datasets that are considered. Therefore,
the diffusion weighting acquisition settings are optimized by minimizing the
CRLB of the DKI parameters. Acquisition settings that are close to optimal
are found by a simulated annealing optimization technique. A comparison of
the resulting optimized settings with more traditional settings shows that the
CRLB is halved by optimizing the settings.
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Introduction

Currently, the brain, and especially the human brain, is the focus of many
studies. The aim of these studies is to increase the insights in the very com-
plex anatomy and functionality of both the healthy and diseased brain. Until
recently, the only techniques that were available to obtain information about
the neural architecture and functionality of the human brain were histological
post-mortem studies of the human brain or invasive studies on animals [1, 2].
However, recent advances in the Magnetic Resonance (MR) scanner hardware,
as well as improvements in the analysis of the MR images, allowed advanced
studies of the living human brain [3–5].

The aim of the work presented in this thesis is to improve and develop
statistical methods for the acquisition and analysis of MR images in specific
contexts. These methods focus on brain images, although some of the new
methods can also be applied outside the area of brain imaging. As brain imag-
ing is still a very broad topic, two applications of brain imaging were selected:
Functional Magnetic Resonance Imaging (fMRI), which detects the active ar-
eas of the brain from a series of MR images, and Diffusion Weighted Imaging
(DWI), with which the diffusion of water inside the brain is studied. In or-
der to support the research for these applications, several other methods were
developed. Especially, the distortions that are present in MR images were in-
vestigated, both spatial distortions as well as the noise with which the MR
images are corrupted.

In this chapter, Magnetic Resonance imaging and Neuro Imaging are in-
troduced first. Next, the problems that were identified and which are studied
in this thesis are described. Finally, the main contributions of this thesis are
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1. Introduction

Figure 1.1: T1 weighted MR image in sagittal (surrounded by the blue rectangle),
coronal (red rectangle), and axial (green rectangle) views, combined with a semi
transparent view of the surface of the head.

summarized and the structure of this thesis is explained.

1.1 Magnetic Resonance Imaging

The brief introduction to Magnetic Resonance Imaging (MRI) that is given
in this section should not be considered as replacement for the many good
introductions to MRI which have previously been written, such as [6], [7].

The term ’Magnetic Resonance Imaging’ consists of 3 parts:

Imaging The aim of MRI is to obtain images of ’objects’. These ’objects’ can
really be objects, i.e. pieces of material, but in this context also a human
(patient) or a (small) animal. The images that are recorded by an MR
machine are not from the surface of an object, like a normal photograph,
but also of the inside. The whole object, or a part of it, is scanned into
a 3 dimensional (3D) image. Such 3D image consists of many volume
elements, which are called voxels. See Fig. 1.1 for an example of a 3D
MR image of the head of a human volunteer.

2



1.1. Magnetic Resonance Imaging

Magnetic The MR images are obtained by an MR scanner, which contains
a large magnet. Currently, the magnetic magnetic field strength, which
probably is the most important specification of a MRmachine, is 1.5 Tesla
(T) up to 7 T. This magnetic field is generated by a super conducting
magnet, since superconducting magnets are the most efficient at the field
strengths that are required. As a comparison, the magnetic field strength
of the earth is 30 µT to 60 µT, so approximately 100 000 times weaker
than the field strength of an MR magnet. A typical refrigerator magnet
is around 70 mT, so still 100 times weaker.

Resonance The large strength of the magnet in the MR scanner causes the
spins of nuclei of atoms with a net magnetic moment to align with the
main magnetic field. In medical MRI, usually only the nucleus of hydro-
gen atoms, i.e. protons, are studied. The images are created by exciting
the nuclear spin with radio waves of a specific frequency: the resonance
frequency of the imaged nucleus. This resonance frequency depends on
the magnetic field strength, is different for each type of nucleus, and is
moderately sensitive to the environment of the atom, i.e. in what kind
of molecule and tissue it is located. After excitation by the radio waves,
the object starts to emit radio waves. These are recorded by radio re-
ceiver coils that are placed around the object. For the reconstruction
of images, spatial information needs to be encoded into the recorded ra-
dio waves. This encoding is performed with spatially varying magnetic
fields, i.e. magnetic gradients, which cause the resonance frequency to
depend on the location. These magnetic gradients are generated by the
gradient coils that are located inside the main MR magnet. By applying
specific sequences of magnetic gradients, the (demodulated) radio waves
can record the k-space of an image. This k-space is the domain of spatial
frequencies and is related to the object space via the Fourier transform,
see Fig. 1.2.

There are many properties of the object that can influence the images
recorded by the MR scanner, such as proton density, tissue type, blood oxy-
genation, and water diffusion. The influence that these object properties have
on the images depends on the specific sequence of radio waves and magnetic
gradients, i.e. the type of acquisition, that is used to record the MR images.
Therefore, many specialized acquisition types have been developed to record
images. Each of these methods encodes specific information about the object
under study in the image contrast.

Of the different methods developed in this thesis, several are valid for almost
all MR images, regardless of the contrast by which they are recorded. These
methods are presented in the Chapters 3, 4, and 5. In the Chapters 6 and 7,
MR images with specific contrasts are studied.

3
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(a) k-space magnitude

F←−→

(b) magnitude in image space

Figure 1.2: One slice of a recorded MR image, in 2D k-space and 2D image space.
These two images are related through the Fourier transform.

1.2 Neuro imaging

The brain is a very complex organ that is still only partially understood. The
uniquely human cognitive capabilities are attributed to the brain. Many dis-
eases cause, or are caused by, disrupted processes in the brain. Therefore, a
lot of studies focus on the detection and characterization of both normal and
abnormal processes in the brain. The brain of animals, healthy human volun-
teers, and specific patient groups is studied in order to increase the insight in
the very complex anatomy and functionality of the brain, and how the normal
functionality is compromised in certain diseases. For these brain studies, MR
imaging is extremely important as it provides, in contrast to almost every other
method, the opportunity to study intact living brain tissue. The brain is not
only easily damaged by surgery, it is also hard to obtain significant intensity
differences with X-ray or CT imaging techniques, as the brain mainly consists
of soft tissues. Also, in contrast to X-ray imaging, MR images are recorded
without damaging ionizing radiation. In addition, MR imaging can be used to
study many different properties of the brain. Some of the MR imaging methods
have become available only recently. For example, the brain activation detec-
tion and the study of connections between brain regions, to which Chapter 6
and Chapter 7 contribute.

In this thesis, newly developed methods, that contribute to the field of
Neuro Imaging, are presented. The aim of these methods is to provide neu-
rologists with improved tools that allow the study of the properties of, and
processes in the (human) brain. As the author is no neurologist, the actual
neurological interpretation will be limited in this thesis. However, in order to
appreciate and understand the newly developed methods, some general facts
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about the brain should be known:

• The brain is the neural processing center that controls all actions and
thoughts,

• The brain consists mainly of 2 tissue types, grey and white matter, and
is surrounded by Cerebrospinal fluid (CSF). These different tissue types
and the CSF are visible in Fig. 1.1.

• The grey matter is mainly located in the folded cortex at the outside of
the brain, as well as in central structures such as the striatum, thalamus,
amygdala, and hippocampus. The grey matter is the tissue where the
neural processing, planning, and memory functions are located.

• The white matter is located more in the center of the brain and contains
the connections (‘phone cables’) between brain regions. It consists mainly
of (bundles of) myelinated axons which transport the action potential
between different brain cells.

The brain has many more or less distinct cognitive functions, which are
performed inside networks of the brain. In these networks, several grey matter
structures are connected by white matter tracts. These white matter tracts
are traditionally studied by diffusion weighted imaging (Chapter 7). Since the
brain networks are distinct for different cognitive functions, the task depended
grey matter activation has a different pattern for the different functions. These
activation patterns are studied by functional MRI (fMRI) (Chapter 6). For
some specific activations only a few grey matter regions are strongly involved,
which allows easy separation of the activation patterns. For example, the
activation pattern due to arm movement is very distinct from activation pattern
due to visual stimuli. For other functions the separation is more difficult, thus
requiring optimal grey matter activation detection. Although it is not part of
the brain tissue, Cerebrospinal fluid (CSF) is also important for brain imaging.
This fluid, which mostly consists of water, acts as a “cushion” or buffer for the
brain. For most brain studies the CSF is not relevant, but it shows up in any
brain image. Since it consists mainly of -homogeneous- water, the intensity of
CSF might differ strongly from the intensity of brain tissue. These intensity
differences might influence the analysis of nearby brain tissue due to effects
such as Gibbs ringing.

1.3 Problems in MR imaging

1.3.1 Field inhomogeneities

A problem in MR imaging are inhomogeneities of the main magnetic field, the
B0 field. To obtain high quality MR images, the main magnetic field should
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(a) SE image (b) EPI image

Figure 1.3: A water filled cylinder, recorded by two acquisition methods, Spin Echo
(SE) and Echo Planar Imaging (EPI). The SE method is much less sensitive to field
inhomogeneities than the EPI method. In this image, the deformations are caused
by an air bubble located just next to this slice.

be constant to the high degree of approximately 1 part per million (ppm) over
the entire imaged volume. However, the magnet is almost never constructed
accurately enough to obtain a magnetic field that is constant to this precision.
Furthermore, the magnetic properties of the object (head) also influences the
magnetic field. For example, the relative permeability of water is 0.999 992 and
of air it is 1.000 000 4, so there is a magnetic field inhomogeneity of 8 ppm when
water and air are located next to each other. As different tissue types have
different values for the permeability, and the location of the different tissues is
not known a-priory, the resulting inhomogeneities in the magnetic field are not
known a-priory. In practice, these magnetic field inhomogeneities are different
for each different object and might depend on the orientation of the object with
respect to the main magnetic field. As these magnetic field inhomogeneities
are larger than allowed for some imaging modalities, especially Echo Planar
Imaging (EPI), they will distort the recorded MR images. However, even with
these distortions, EPI is a very popular acquisition method, since it is able
to record images quickly. See Fig. 1.3, for an example of the distortions in
an EPI image, caused by an air bubble in a water filled cylinder. The air
bubble is located close to, but not in, the displayed slice. However, when the
magnetic field inhomogeneities are known, it is possible to (partially) correct
the distorted MR images. In Chapter 3, a method is developed to estimate
the field inhomogeneities with a modified EPI sequence, in order to allow the
correction of the distortions.

1.3.2 Long acquisition times or anisotropic MR images

With MR imaging, it is possible to record high resolution 3D images [8], with
2D or 3D sequences [9]. The difference between these is that 2D sequences

6



1.3. Problems in MR imaging

record the 2D k-space of a series of (adjacent) slices and 3D sequences record
the 3D k-space of a volume. A problem with high resolution imaging is that
it usually requires a long scan time. High resolution images require multiple
radio excitations. However, there needs to be a certain time between repeated
excitations of a volume (TR) and this minimum time depends on the type of
acquisition. The TR is especially long when each new excitation of a specific
volume requires T1 relaxation in order to obtain the desired contrast, as the
T1 relaxation time is of the order seconds in most tissues. With 2D acquisi-
tions, every excitation influences only a single slice, so within TR, a part of
the k-space of all slices can be recorded. However, when the slices are very
thin, the total signal power emitted by the slice is low and the excitation and
recording of all of these individual slices will require longer than the minimal
TR required for T1 relaxation. This causes an extension of the total acquisition
time, compared to an acquisition with thicker slices. Often, a compromise be-
tween acquisition speed and resolution is found in the recording of slices that
are substantially thicker than the in plane resolution, i.e. these images have an
anisotropic resolution. In this way, a good in plane resolution is combined with
a modest/short acquisition time. The obvious disadvantage is the reduced res-
olution in the direction in which the slices are stacked. In Chapter 4, a method
is developed that combines several of these anisotropic images into a single
isotropic high resolution image.

1.3.3 Noise level estimation

In order to be able to discriminate between signal and noise when statistically
analyzing MR images, it is necessary to know the noise level that is present in
the images. Without the knowledge of the noise level, it is difficult to determine
whether differences in the MR images are caused by differences in the object
or by the noise that is present in the MR images. This is especially difficult
when only one image is recorded, or when each image in a series of images
has a different contrast. However, under some quite common conditions, the
noise level in a MR image is constant over the entire image. Therefore, the
level of the noise that is present in the entire image can be estimated from the
background area, i.e. the area in which the object is not present. In Chapter 5,
a method is presented with which the noise level of MR images is estimated
by fitting the theoretical intensity distribution of the background intensities to
the image histogram. In this method, the bins of the histogram that do contain
the background mode are automatically selected.

1.3.4 Functional MRI

The aim of Functional MRI (fMRI) it to detect brain activity. In order to detect
brain activity, images acquired with a method special for fMRI are recorded.
Unfortunately, it is not possible to record MR images in which the brain activity
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Brain activity ↑

Oxygen usage ↑ Local blood flow ↑↑

Oxygenated hemoglobine ↑
Deoxygenated hemoglobine ↓

Magnetic Susceptibility ↓

T2* ↑

MR intensity ↑

Figure 1.4: This figure gives a schematic overview of the origin of the BOLD con-
trast, which is used for fMRI studies.

is directly visible. Instead, the brain activity is indirectly measured through
the influence it has on the oxygenation level of the nearby blood with Blood-
Oxygen-Level Dependent (BOLD) sensitive MR images. Since the activation
of specific brain areas is a dynamic process and changes relatively quickly, these
BOLD sensitive images are usually acquired with fast imaging techniques such
as EPI, which allow the acquisition of a time series of 3D images.

The BOLD contrast stems from the differences in magnetic properties of
oxygenated and de-oxygenated hemoglobin, see Fig. 1.4. As the brain uses extra
oxygen during activity, the concentration of oxygenated hemoglobin changes
due to brain activity. However, the vascular system compensates, and even
over-compensates, for the increased oxygen consumption. So, after a short de-
lay due to the not-instantaneous vascular response, the concentration of oxy-
genated hemoglobin increases and the concentration of de-oxygenated hemo-
globin decreases at locations with increased brain activity. This in turn reduces
the magnetic susceptibility differences, which increases the T ∗2 time constant,
which increases the intensity of the BOLD sensitive MR images. Unfortu-
nately, these brain activity induced MR intensity changes are low compared
to the noise that is present in the MR images. Therefore, advanced statistical
tests are needed to detect brain activation. These tests need to account for the
delayed transition between the activity states, which is caused by delayed reac-
tion of the vascular system. Also, these tests need to correctly model the noise
that is present in the BOLD sensitive fMRI images. In Chapter 6, advanced
tests to detect brain activity are developed, and the performance of these tests
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Figure 1.5: Simulation of isotropic Brownian motion of three molecules, overlaid on
the Probability Density Function (PDF) of the final displacement (shades of blue).
The diffusion coefficient D, which is the expected diffusion distance, is indicated by
the black arrow.

is studied.

1.3.5 Diffusion weighted MRI

This section describes some problems that were encountered in diffusion weighted
MRI. However, before introducing diffusion weighted MRI, first diffusion itself
is briefly described. Diffusion is the random displacement of molecules due to
Brownian motion, e.g. see Fig. 1.5. This Brownian motion is due to the thermal
energy of the molecules. In isotropic media, such as pure water, the spatial dis-
placement probability is given by a normal, also called Gaussian, distribution.
However, the brain is not isotropic, especially in the white matter structures
which consist of long white matter fibers. Therefore, the diffusion displacement
is non isotropic and generally deviates from the normal distribution.

The diffusion process of water molecules can be measured with Diffusion
Weighted MR images (DWI’s), as DWI’s are images that are made sensitive to
diffusion of hydrogen nuclei. Even though these images depend on the diffusion
of hydrogen nuclei, they mainly measure the diffusion of water, as water is the
main liquid in the brain and each water molecule contains two hydrogen atoms.
Diffusion weighted MRI is used to study the white matter of the brain, since
the white matter consists of organized fibrous structures that have a micro
structure in which the diffusion process is restricted in some directions. Along
the direction of the white matter fibers, the water molecules can diffuse in
a relatively unrestricted way. However, across the white matter fibers, the
diffusion is restricted due to the presence of cell boundaries. Due to these
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boundaries, which have low permeability, and different compartment sizes, the
diffusion displacement deviates from the normal distribution.

The sensitivity of DWI’s to the diffusion of hydrogen nuclei is generated by
the application of a pair of diffusion weighting gradients. The first diffusion
weighting gradient causes a de-phasing of the radio signal emitting nuclei and
the second undoes this de-phasing, but only for nuclei that did not move in
the time between the diffusion weighting gradients. For nuclei that did move
between the application of these diffusion weighting gradients, the re-phasing
is incomplete, resulting in destructive interference and thus a signal loss in
those regions where diffusion in the direction of the applied diffusion weighting
gradient is present. The amount of signal loss depends on both the diffusion
in the direction of the diffusion weighting gradient and the strength of the
diffusion weighting gradient.

In Chapter 7, a method is described with which the directions and the
strength of the diffusion weighting gradients can be optimized for diffusion
kurtosis imaging (DKI). DKI provides an extension to the more common diffu-
sion tensor imaging (DTI) model, which assumes a Gaussian diffusion process.
With DKI, this DTI model is extended to include the kurtosis, which is the
4th order moment of the diffusion process.

1.4 Main contributions

The main contributions presented in this thesis are:

• A method to estimate the magnitude of field inhomogeneities (Chap-
ter 3). The inhomogeneities of the main magnetic field are a main cause
of distortions in Echo Planar Images (EPI). With the new non linear least
squares estimator it is possible to estimate the field inhomogeneities from
reference data with a substantial increased precision, compared to a pre-
viously developed method.

• A method to reconstruct high resolution MR images from a set of multi-
slice MR images with anisotropic resolution (Chapter 4). This new
method allows the reconstruction of a high resolution isotropic image
from a series of multi slice MR images with thick slices, as long as the
direction in which the slices are stacked is sufficiently different for each
image.

• A method to estimate the noise level in magnitude MR images. This
method uses a histogram of the image and computes the noise variance
from the background mode (Chapter 5). When it can be assumed that the
noise level is constant throughout the image, it is possible to estimate this
noise level from the background area of the image. Since the background
area is that area where the object does not contribute to the signal,
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only the Rayleigh distributed noise is present in the background area
of magnitude MR images. By fitting the Rayleigh distribution to the
image histogram with a Maximum Likelihood estimator, the noise level
is accurately determined.

• Advanced statistical tests for functional MRI activation detection were
developed. The performance of these tests, in terms of sensitivity to
activation and false alarm rate, is investigated (Chapter 6). The noise of
the MR images used in functional MR, which studies brain activations, is
not white but colored. This does influence the likelihood based statistical
tests with which the brain activation can be detected. The actual effects
of the coloring of the noise in finite length datasets are investigated and
methods for correcting the false alarm rate, which is shown to deviate
from the theoretical value, are presented.

• A method to optimize the diffusion weighting gradient settings for Dif-
fusion Kurtosis Imaging (DKI) (Chapter 7). Since the DKI model is an
extension of the DTI model to a higher order of the diffusion process, the
parameters of the DKI are more sensitive to noise, compared to the pa-
rameters of the DTI model. The diffusion weighting settings with which
a set of Diffusion Weighted Images (DWI) is acquired, influences the
precision of the parameter estimates. Therefore, the variance of the pa-
rameters estimated from a set of DWI can be reduced by optimizing the
diffusion weighting gradient settings of these DWI. The new optimization
method finds the optimal diffusion weighting settings by minimizing the
Cramér Rao lower bound of a suitable DKI parameter.

1.5 Manuscript Organization

This thesis is structured as follows:

Chapter 1 is this chapter, in which the work described in this thesis is briefly
introduced.

Chapter 2 presents the methods that are used throughout the thesis.

Chapter 3 presents a method to estimate the strength of inhomogeneities in
the main magnetic field of the MR machine. Since these inhomogeneities
distort the MR images, they should be known with the highest possible
accuracy and precision in order to be able to correct the distorted MR
images.

Chapter 4 presents a method to create a high resolution MR image from
several multi slice MR images with anisotropic resolution. The individual
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MR images required by this method were acquired by a fast imaging
sequence with different orientations of the slices.

Chapter 5 presents a method by which the noise level in MR images can be
estimated. Knowledge of the noise level is essential for statistical analysis
of MR images.

Chapter 6 presents several likelihood based functional MRI (fMRI) brain ac-
tivation detection methods and studies their performance. Validating the
optimal activation detection methods is essential for reliable interpreta-
tion of the detected brain activations.

Chapter 7 presents a method by which the diffusion weighting acquisition
settings for Diffusion Kurtosis experiments can be optimized. With the
optimized settings, the precision of Diffusion Kurtosis imaging (DKI)
parameters is substantially improved.

Chapter 8 summarizes the conclusions of the work presented in this thesis.

Appendix A gives a description of the software that was developed in order
to support the research presented in this thesis.
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Methods

This chapter introduces the methods that are used in the different chapters
of this thesis. The first sections introduce important general concepts such as
models and statistics, followed by a description of the statistical distributions
with which the MR images can be described and the Maximum Likelihood
estimator for MR images. Furthermore, advanced properties derived from the
statistical distributions, such as the Fisher information and Cramér Rao lower
bound, are introduced in the final section of this chapter.

2.1 Models

In this thesis, a model of the MR acquisitions is at the basis of each method.
A model is a description of a system, or more specific, of measurements of
a system. A model is a set of mathematical relations that describe, in our
case, the MR images in terms of (interesting) parameters. With the aid of
such a model, these parameters can be estimated from recorded MR images. A
model tries to describe reality. However, all models are only an approximation
of reality and can hardly ever describe all aspects perfectly. However, when
properly validated, models can be used to obtain information about important
aspects of the object under study.
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2.2 Statistics

The methods that are developed in this thesis are based on the statistical
properties of MR images.

Statistics describes the properties of random variables, i.e. it describes pro-
cesses of which the outcome is random. A-priori, that is before the experiment
has been performed, only the probability of each possible outcome can be spec-
ified. For example, the outcome of a single throw with a fair cubic dice can
only be stated probabilistically: There is a chance of 1/6 to throw 6. A poste-
riori, i.e. after one or more experiments, the observed values might be used to
validate the model (e.g. was it a fair dice?).

When the range of outcomes of a random variable is a set of real numbers,
in contrast to the fixed set of integers of the dice, the random variable can be
described by a probability density function (PDF) over the range of outcomes.
This PDF might depend on some parameters. In this thesis, most PDF’s
describe the intensity of the MR images. Therefore, the PDF will depend
on tissue properties such as the spin-lattice relaxation time (T1), spin-spin
relaxation time (T2), BOLD, diffusion, and the acquisition parameters. The
mathematical representation of the PDF, which depends on parameters, can
be regarded as a statistical model.

2.3 Estimator

With measurements, i.e. the realizations of the random variables, it is pos-
sible to obtain information about the parameters of a statistical model. An
estimator is a method to extract the information about the model parameters
from the measurements. There exist several popular estimators, such as the
least squares (LS) estimator and the maximum likelihood (ML) estimator. The
LS estimator minimizes the sum of squared differences between the measured
values and the values predicted by the model. The ML estimator maximizes
the likelihood function, which is the probability density function where the ob-
served values are substituted for the random variables. The ML estimator finds
that value of the model parameters where the likelihood function is maximal.
That is, the ML estimator finds those parameters for which the probability
density of the observed measurements is maximal. When the PDF is a (multi
variate) normal distribution, the ML estimator is equivalent to a (weighted)
LS estimator. However, for PDF’s with different distributions, the ML esti-
mator and the LS estimator generally give different estimates. Whenever we
measure, measurements unavoidably contain some noise. Thus, by measuring,
it will be impossible to always obtain the true value of the parameters of the
models. However, with good measurements and a good estimator, it is possi-
ble to obtain a good estimate of, i.e. approximation to, the true value of the
parameters.
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Figure 2.1: This figure shows the difference between accuracy and precision when
aiming for the center.

2.4 Accuracy and precision

Important properties of estimators, which might also be used to compare dif-
ferent estimators, are the accuracy and precision, see Fig. 2.1. The accuracy
measures how far an estimated value is ’on average’ from the true value of the
parameter in which we are interested. The distance of the ’average’ to the true
value is called the bias:

bias(X) = E[X]−X0, (2.1)

where E is the expectation operator, X is the random variable that describes
the outcome of the potentially biassed estimator, andX0 is the true value of the
process that we want to measure. Note that in general X0 is unknown, except
for simulation experiments. A good estimator has high accuracy and thus has a
low, preferably zero, bias. The precision on the other hand is a measure of the
’average’ spread of the measurements; roughly how much the value changes
when the experiment is repeated. The variance, often used to quantify the
precision, is the average of the square of this spread of the measured values:

var(X) = E
[
(X − E[X])2

]
, (2.2)

Obviously, a good estimator should also have high precision and thus a low
variance. Note that, when noise is present in the measurements, it is impossible
to obtain a variance of zero with an estimator that always has a low (zero)
bias. These two properties, bias and variance, can be combined in the root
mean square error (RMSE) measure:

RMSE(X) =
√

bias(X)2 + var(X) =
√

E
[
(X −X0)2

]
, (2.3)
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2.5 Distributions of MR images

In order to treat MR images in a statistical way, the distribution of the MR
images needs to be known. In this section several distributions will be given,
which are valid under different circumstances.

The noise that is present in the recorded MR images is caused by several
different processes. A very prominent source of the noise are the receiver coils.
This noise enters the complex k-space signal and is (almost) normal distributed,
independent, and (almost) uncorrelated between the different k-space samples.
As the Fourier Transform is a linear operation, the complex image ỹ is complex
normally distributed as well:

< (ỹ) ∼N
(
<(Ã), σ

)
(2.4)

= (ỹ) ∼N
(
=(Ã), σ

)
, (2.5)

where ỹ is the complex valued observation, < and = select the real(<) and
imaginary(=) part of a complex value, Ã is the ‘true’ complex valued MR
signal without any noise contribution, and σ the standard deviation of the
noise in the MR image. The probability density function (PDF) of ỹ is given
by

p
(
ỹ|Ã, σ

)
= 1

2πσ2 e
−1
2σ2 |ỹ−Ã|

2
, (2.6)

where |.| computes the absolute value, or magnitude, of a complex value. The
phase of the complex valued image ỹ is often considered to be not interesting for
further analysis. Therefore, it is usually discarded and magnitude only images
are stored. Unfortunately, the computation of the magnitude is a non-linear
operation, so the noise distribution will be changed. It is well known that the
magnitude operation changes the distribution into a Rician distribution [10,11]

y ∼ rice(A, σ), (2.7)

with y = |ỹ| and A = |Ã|. The PDF of the Rician distribution is given by

p (y|A, σ) = y

σ2 e

(
− y

2+A2

2σ2

)
I0

(
yA

σ2

)
ε(y), (2.8)

where I0 is the order zero modified Bessel function of the first kind and ε is
the heavyside function, i.e. ε(y) is 1 for positive arguments and 0 for negative
arguments.

The Signal to Noise Ratio (SNR), defined as A/σ, is zero in non-signal
background areas. When the SNR is zero, it is known that the Rician PDF
reduces to the Rayleigh PDF, which is given by:

p (y|σ) = y

σ2 e
− y2

2σ2 ε(y) . (2.9)
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This reduction of the Rician PDF to the Rayleigh PDF can be easily be proven
with the asymptotic approximation of the νth order modified Bessel function:

Iν(z)→
(z

2

)ν
Γ(ν + 1) for z → 0 , (2.10)

where Γ denotes the Gamma function. The moments of the Rayleigh PDF are
given by:

E [mν ] = (2σ2)ν/2Γ
(

1 + ν

2

)
, (2.11)

where E[·] denotes the expectation operator. The first and second moment
of the Rayleigh distribution are often exploited to estimate the variance of
background MR data [10,12,13].

When magnitude MR images are processed, for example by smoothing or
even when interpolating in order to apply a spatial transformation, the distri-
bution of the intensity changes. As far as we know, the distribution of linear
combinations of rice distributed variables can not be given by an analytical
expression, although with the central limit theorem it can be proven that this
distribution approaches a normal distribution when the number of rice dis-
tributed values in the linear combination is large.

When multiple images are recorded in a series, either for fMRI, Chapter 6,
or a set of DWI, Chapter 7, the correlation of the noise in this series of images
is also important. In general, the time between the acquisition of these subse-
quent images is large compared to the typical correlation lengths present in the
MR system. Therefore the MR system will not introduce any correlations into
the series. However, when the activities of the brain are studied, unmodeled,
arbitrary, spontaneous activation might be regarded as noise in the fMRI anal-
ysis. This noise source might have a non zero correlation between subsequent
MR images. In Chapter 6 these correlations are explicitly modeled with an
Auto Regressive (AR) model.

2.6 Maximum Likelihood estimator in MR

The aim of the Maximum Likelihood (ML) estimator is to estimate parameters
of a model of MR images. For this, assume that there is a model Ai(θ) of
the magnitude of a set of N MR magnitude images. Furthermore, assume
that the magnitude MR images are not modified by smoothing, registration
or interpolation and no correlation is present between the individual images
in the image series, since otherwise the magnitude MR images are not rice
distributed any more. This implies that any smoothing/interpolation and re-
alignment should be done before computing the magnitude (i.e. it should be
done in the complex domain). The model of the magnitude of the MR images
can be any model that (tries to) describe the magnitudes of a specific voxel
in the set of magnitude MR images, such as a fMRI model, see Chapter 6,
DTI model, or DKI model, see Chapter 7. When the voxels of the images are
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studied independently, spatial correlations that might be present in the MR
images will not influence the validity of the following results.

The ML estimator optimizes the likelihood function, which is closely related
to the PDF of the MR images. With the assumptions given above, the joint
PDF of the measurements in a single voxel in the N magnitude MR images is
given by

p(y|A, σ) =
N∏
i=1

p(yi|Ai, σ) (2.12)

where y (N × 1) is a vector with the random variables that describe a specific
voxel in all N images, A (N × 1) is a vector with the magnitudes predicted by
the model for that same voxel, and p is the rice distribution, given in Eq. (2.8).

The ML estimator of θ from N magnitude MR images can now in general
be given by

θ̂ = arg max
θ

ln p(y) = arg max
θ

N∑
i=1

ln p(yi), (2.13)

in which p(y) is the PDF given by Eq. (2.12), evaluated at the observed values
of y. In general the optimum cannot be found by an explicit analytical formula
when rice distributions are involved, so nonlinear optimization techniques have
to be used. Due to the similarity of the rice distribution to the normal distri-
bution for large A/σ, a good initialization of the nonlinear minimization can
usually be found by least squares (LS) estimation,

θ̂LS = arg min
θ

|y −A|2 . (2.14)

The applicability of the LS initialization also depends on the actual model.
Therefore, the specification of the initialization is given only after the model
of the MR images is defined in the different chapters of this thesis.

2.6.1 Remarks for implementation
Non linear optimization techniques are often speeded up when the derivative of
the function to be optimized is available. Therefore, the derivative of ln p(yi)
with respect to θ is computed,

∂

∂θ
ln p(yi|Ai, σ) = ∂Ai

∂θ

ln p(yi|Ai, σ)
∂Ai

(2.15)

=

−Ai
σ2 +

yiI1

(
Aiyi
σ2

)
σ2I0

(
Aiyi
σ2

)
 ∂Ai

∂θ
, (2.16)

in which (of course) the derivative of the model A with respect to the param-
eters θ is still unknown.
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2.7 Cramér Rao Lower Bound

The Cramér Rao Lower bound (CRLB) is a lower bound on the variance of
parameters that are estimated with an unbiassed estimator. It can be proven
that the maximum likelihood estimator is a consistent estimator, and thus
reaches this lower bound asymptotically [14, 15]. Therefore, the CRLB is very
useful for the study of the variance of the ML estimator. In this section, the
general and model independent part of the CRLB of the model parameters θ
of the rice distributed MR images is given. The CRLB states that:

cov(θ̂) ≥ I(θ)−1, (2.17)

where I(θ) is the Fisher information matrix. This information matrix is given
by

I(θ) = E

[(
∂ ln p(y)
∂θ

)(
∂ ln p(y)
∂θ

)T]
(2.18)

= E

( N∑
i=1

∂Ai
∂θ

∂ ln p(yi)
∂Ai

) N∑
j=1

∂Aj
∂θT

∂ ln p(yj)
∂Aj

 (2.19)

=
N∑
i=1

N∑
j=1

∂Ai
∂θ

∂Aj
∂θT

E
[
∂ ln p(yi)
∂Ai

∂ ln p(yj)
∂Aj

]
. (2.20)

Obviously, the derivatives of Ai with respect to θ will depend on the actual
model A and will not be discussed further in this section. However, it is possible
to expand the expectation term of Eq. (2.20):

E
[
∂ ln p(yi)
∂Ai

∂ ln p(yj)
∂Aj

]
=
∫∫ ∞

yi,yj=0
p(yi)p(yj)

∂ ln p(yi)
∂Ai

∂ ln p(yj)
∂Aj

dyi dyj .

(2.21)

For i 6= j this is equal to:

=
∫ ∞
yi=0

p(yi)
∂ ln p(yi)
∂Ai

dyi

∫ ∞
yj=0

p(yj)
∂ ln p(yj)
∂Aj

dyj . (2.22)
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The two terms in this product can be expanded to:∫ ∞
yi=0

p(yi)
∂ ln p(yi)
∂Ai

dyi (2.23)

=
∫ ∞
yi=0

yi
σ2 e

(
−
y2
i

+A2
i

2σ2

)
I0

(
yiAi
σ2

)−Ai
σ2 +

yiI1

(
Aiyi
σ2

)
σ2I0

(
Aiyi
σ2

)
 dyi (2.24)

= −Aie
−A2

i
2σ2

σ4

∫ ∞
yi=0

yie
−y2
i

2σ2 I0

(
yiAi
σ2

)
dyi+

e
−A2

i
2σ2

σ4

∫ ∞
yi=0

y2
i e

−y2
i

2σ2 I1

(
yiAi
σ2

)
dyi (2.25)

= −Aie
−A2

i
2σ2

σ4 σ2e
A2
i

σ2 + e
−A2

i
2σ2

σ4 σ2Aie
A2
i

σ2 (2.26)

= 0 , (2.27)

where the following (simplified) identities from [?] were used:

1
t

∂

∂t
t−νIν(t) = t−ν−1Iν+1(t) (2.28)∫ ∞

yi=0
tν+1e−a

2t2Jν(bt) dt = bν

(2a2)ν+1 e
b2

4a2 (2.29)

Iν(t) = i−νJν(it), (2.30)

where Jν is the Bessel function of the first kind. For i = j in Eq. (2.21),
the expectation term is the Fisher information of a rice distributed variable,
Irice(A, σ), which can be simplified to

Irice(Ai, σ) = E

[(
∂ ln p(yi)
∂Ai

)2
]

=
∫ ∞
yi=0

p(yi)
(
∂ ln p(yi)
∂Ai

)2
dyi (2.31)

=
∫ ∞
yi=0

yi
σ2 e

(
−
y2
i

+A2
i

2σ2

)
I0

(
yiAi
σ2

)−Ai
σ2 +

yiI1

(
Aiyi
σ2

)
σ2I0

(
Aiyi
σ2

)
2

dyi.

(2.32)

This integral cannot be analytically solved, but it can be numerically computed
and/or tabulated. When this rice information is substituted in Eq. (2.20), the
Fisher information matrix of the parameters θ is simplified to

I(θ) =
N∑
i=1

∂Ai
∂θ

∂Ai
∂θT

Irice(Ai, σ). (2.33)
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Note that in order to compute the Fisher information with Eq. (2.33), the
magnitudes predicted by the model, Ai, and the derivatives of this magnitude
with respect to the model parameters, ∂Ai∂θ , need to be available.

2.7.1 Remarks for implementation
As noted, the integral Eq. (2.32) cannot be analytically solved, but it essentially
only depends on Ai/σ, as is demonstrated by introducing the substitutions
a = Ai/σ and ȳ = yi/σ,

Irice(aσ, σ) = 1
σ2

∫ ∞
ȳ=0

ȳe
−1
2 (ȳ2+a2)I0 (ȳa)

(
−a+ ȳI1(ȳa)

I0(ȳa)

)2
dȳ. (2.34)

As the integral in Eq. (2.34) only depends on a, it can be computed by nu-
merical integration and tabulated for reuse. Our implementation treats small
and large a separately. For a ≤ 326787

131072 ≈ 2.5, the value of Irice is computed
by one of the 87 precomputed 6th order interpolating polynomials in a. Each
precomputed polynomial is valid on a small domain. For a > 326787

131072 , the value
of Irice is computed by one of the 27 precomputed 6th order interpolating poly-
nomials in 1/a2. The resulting value is accurate to full double precision over
the entire domain of positive real numbers, as the residual error is approxi-
mately 2−52. The cutoff value, the domains, and order of the interpolating
polynomials are chosen to minimize table size and computation time.

Note that when a normal distribution is assumed for the measurements, the
equivalent Fisher information Inormal = 1

σ2 . Furthermore, it is easy to show
that the asymptotic behavior of Eq. (2.34) is given by:

Irice = 1
σ2

{
a2 for a� 1

1− 1
2a2 for a� 1 (2.35)
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Improved B0 field map estimation for high field EPI
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Abstract

Echo Planar Imaging (EPI) is an ultrafast Magnetic Resonance Imag-
ing (MRI) technique that allows one to acquire a 2D image in about
100ms. Unfortunately, the standard EPI images suffer from substantial
geometric distortions, mainly originating from susceptibility differences
in adjacent tissues. To reduce EPI distortions, correction methods based
on a field map, which is a map of the off-resonance frequencies, have
been developed. In this chapter, a nonlinear least squares estimator is
used to optimize the estimation of the field map of the B0 field. The
model of the EPI and reference data includes parameters for the phase
evolution, the complex magnitude, the relaxation of the MRI signal, and
the EPI-specific phase difference between odd and even echoes. With
these parameters additional corrections of MR images might be com-
puted. The reference data required to estimate the field map can be
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acquired with a modified EPI-sequence.
The proposed method is tested on simulated as well as experimental data
and proves to be significantly more robust against noise, compared to the
previously suggested method.

keywords Field mapping, Parameter Estimation, Susceptibility artifacts,
Echo Planar Imaging corrections

3.1 Introduction

Echo Planar Imaging (EPI) [16] is an ultrafast imaging technique, well-suited
for MRI applications that require high temporal resolution (e.g., functional
Magnetic Resonance Imaging (fMRI)) or in which a large number of different
images of the same object have to be acquired (e.g. Diffusion Tensor Imaging
(DTI) [17,18]). The main drawback of EPI is its sensitivity to off resonance fac-
tors such as B0 field inhomogeneity, chemical shifts, and eddy current effects
from fast switching gradients. These effects introduce image artifacts, espe-
cially at high fields (7T and higher). Since high field scanners are common in
small animal imaging and are also starting to enter clinical applications, it is of
major importance that correction strategies for EPI distortions are developed.

In the past, various methods to correct EPI distortions methods were pro-
posed. These methods can be subdivided in three categories:

acquisition The first category of EPI distortion correction methods are meth-
ods that are applied at the hardware level during the acquisition. These
methods commonly use shim coils, which generate spherical harmonic
magnetic fields, to compensate for global and local field inhomogeneities.
Conventional global shimming techniques try to optimize the field ho-
mogeneity for the entire imaged volume [19]. However, since the order
of the spherical harmonic magnetic fields generated by the shim coils is
limited, they cannot correct for all susceptibility differences in the brain.
Dynamic shimming [20] has been shown to improve magnetic field ho-
mogeneity to a larger extent than conventional global shimming, since it
optimizes the homogeneity of the main magnetic field by updating the
shim settings for each slice separately. However, a drawback of dynamic
shimming is the high performance of the shim coils that is required.

registration A second method to correct EPI distortions employs image reg-
istration [21] and post processing. For this method, a distortion free
reference image, such as a Spin Echo (SE) image, is required. The EPI
images are then registered to this reference image. Unfortunately, since
field inhomogeneities cause local distortions, it is generally not possible
to perform adequate corrections with affine transformations of the image
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only. Hence, more advanced, non-affine registration techniques are re-
quired. A drawback of these methods is that there might be insufficient
contrast for the registration or the reference image might be of a different
modality, which complicates the registration.

field mapping A last category of EPI distortion correction methods combines
a special acquisition and post processing techniques. For these methods,
extra reference data are acquired. From the reference data, a deformation
field can be computed. This deformation field can then be used by post
processing techniques to undo the deformations in the EPI images. Pre-
viously proposed methods that employ this approach measure the main
field inhomogeneities [22–25], or the Point Spread Function (PSF) [25,26].

In this chapter, a technique from the last category, the field mapping tech-
nique, is optimized. For the standard field mapping [22], at least two images
with different echo times have to be acquired. From the phase difference be-
tween these images, a field inhomogeneity map or off-resonance frequency map
is calculated. To obtain reliable displacement maps, the standard field map-
ping requires the unwrapping of the phase discontinuities. A refinement of
this method, which avoids the need for phase unwrapping, was proposed by
Schmithorst et al. [23], who acquired multiple gradient echo (GRE) images
to estimate the field map. However, due to the differences between even and
odd EPI echoes, this method requires the reference data to be divided in two
parts, containing either the echoes with odd or even echo number. Moreover,
relaxation effects were not taken into account.

We propose a new field mapping technique based on an improved model of
the reference data along with a nonlinear least squares estimator. The model
parameters represent properties of the MRI recording, the complex amplitude,
the off-resonance frequency, the T ∗2 relaxation, and the variation between even
and odd EPI echoes. The proposed model does not require the splitting of the
data in parts containing only the even and odd echoes prior to the estimation
of the parameters. The performance in terms of the root mean square error
(RMSE) and bias of this method is investigated by simulation and real data
experiments. These experiments test the robustness to noise as well as the
amount of reference data needed.

3.2 Methods

3.2.1 Field mapping

In magnetic resonance imaging, the demodulated MR signal S(t) of an excited
volume Ω, generated by freely precessing nuclear spins in the presence of a linear
magnetic field gradient G, equals the Fourier transform of the effective density
ρ(r). This effective density is the proton density weighted by the relevant
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decays (T1,T2,. . . ) and contrasts (e.g. diffusion weighting), and in general, it
is complex valued. When no distorting effects are present, the recorded signal
is given by [27]

S(t) =
∫∫

r∈Ω
ρ(r)e−ik(t).r dr . (3.1)

In Eq. (3.1), k is a vector in k-space of which the components are given by

kj(t) = γ

∫ t

0
G(t′).ej dt′ , (3.2)

with G(t′) the applied gradient at time t′, γ the gyromagnetic ratio, and ej the
cartesian unit vector in the direction j. From Eq. (3.1), it is clear that the image
reconstruction involves an inverse Fourier transform, which can efficiently be
computed when the signal is sampled on a regular grid in k-space, which it is
for echo planar imaging (EPI), at least when no samples are recorded during
the gradient switching.

In Eq. (3.1), it is assumed that only the gradients G affect the acquired
MR signal. However, in practice, additional factors such as timing offsets toff ,
susceptibility effects causing an extra off-resonance frequency term ω(r), and
T ∗2 decay, affect the measured signal S(t). Including these effects in Eq. (3.1)
yields a more realistic model of the acquired MR signal:

S̃(t) =
∫∫

r∈Ω
ρ(r)e

−i[k(t+toff )r−ω(r)t]− 1
T∗

2
t
dr. (3.3)

In a conventional EPI acquisition scheme the k-space is sampled line by
line after one excitation. Hence, the off-resonance frequency ω(r) generally
leads to a shift of the reconstructed position of ρ(r), in the phase encoding
direction. Since the field inhomogeneities, and therefore ω, are, by definition,
not constant in Ω, these field inhomogeneities will cause geometric distortions.
By using reference data, ω(r) can be estimated and the geometric distortions
can be corrected. In the next subsection, we will describe how the reference
data is acquired.

3.2.2 Reference data
Reference data is acquired with an adjusted EPI sequence as shown in Fig. 3.1a.
A standard EPI phase encoding scheme with N gradient echoes records a dif-
ferent k-space line with each echo. The echoes originate from the alternating
amplitude of the read-out gradient, and the phase encoding gradient is used
to select the line in k-space. However, in the sequence for the reference data
acquisition, the EPI phase encoding scheme is replaced by the phase encoding
of a conventional GRE sequence [23], so a k-space line is sampled N times after
an excitation pulse.
When all k-space lines for each echo number are combined, N images can be
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reconstructed by Fourier transforming each read-phase plane of the data cube.
Each image j (with j = 0, ..., N − 1) has a different echo time tj = t0 + jTr,
where t0 is the time between the radio pulse and the center of the first echo
and Tr is the time between two subsequent gradient echoes, see (Fig. 3.1b).
The differences between these images recorded with different echo times are
caused by relaxation, odd/even phase shift, and the off-resonance frequency
ω(r). When Tr is small enough to ignore relaxation and field inhomogeneity
effects during the readout of a single line, the model of the FFT reconstructed
GRE images I is given by

I(r, j) = ρ(r)e
(iω(r)− 1

T∗
2 (r) )tj+iϕ(r)mod(j,2)

, (3.4)

where r is the position in the plane, ϕ(r) is the phase difference between the
even and the odd images, caused by toff and mod(j, 2) computes j modulo
2, which is zero for even j and 1 for odd j. Although in practice decay of
transverse magnetization may be more complex than reflected in the mono-
exponential form of Eq. (3.4), this model is expected to be sufficiently accurate,
since our aim is to estimate the phase trend ω(r) from the reference data.
The magnitude and phase are orthogonal directions, coupled mainly by the
magnitude dependence of the phase variance. I.e. the variance of the phase
depends on the magnitude, but not the actual phase value. Therefore, small
errors in the magnitude model will not strongly influence the phase (trend)
estimates.

In the next section, an existing method to estimate ω(r) as well as a new
method to estimate ρ(r), T ∗2 (r), ω(r), and ϕ(r) from the reference data will
be described.

3.2.3 Autocorrelation method
The phase correction method (CORR) in [23], a modified version of the method
in [28], uses the autocorrelation function R to estimate the field map. The
autocorrelation of a series of N1 complex values zj (j = 0, . . . , N1−1), without
subtracting the mean, is given by

R(m) =
{ ∑N1−1−m

j=0 (zj+m)(zj)∗ m ≥ 0
R∗(−m) m < 0

. (3.5)

Due to the even-odd echo asymmetry, the even and odd echo images are pro-
cessed separately:

zeven,j(r) = I(r, 2j) (3.6a)
zodd,j(r) = I(r, 2j + 1), (3.6b)

where j = 0, . . . , N1, with N1 = bN/2c for zeven and N1 = dN/2e for zodd.
From these two time series, for each voxel, Reven and Rodd are computed,

27



3. Improved B0 field map estimation for high field EPI

where the position argument r is not shown to simplify notation. The phase
trend is present in Φ (R(1)), where Φ returns the phase of a complex value.
The estimator of the off-resonance frequency ω(r) is then given by

ω̂CORR(r) = Φ (Reven(1)) + Φ (Rodd(1))
4Tr

. (3.7)

Note that this procedure does not account for relaxation.

3.2.4 Nonlinear least squares estimator
Our proposed nonlinear least squares (NLLS) method to estimate ω(r) is
based on the complex valued data model from Eq. (3.4). In order to use
real-valued optimization routines, which are most common, the function is
re-parameterized for each position r as

f(j,λ(r)) = ei[λ1j+λ2+λ3mod(j,2)]+λ4j+λ5 , (3.8)

with

λ = [λ1, . . . , λ5] (3.9)

=
[
ω(r)Tr,={ln ρ(r)} , ϕ,− Tr

T ∗2
,<{ln ρ(r)}

]
, (3.10)

where <{} and ={} return the real and imaginary part of a complex value,
respectively. For each position r, the function f(j,λ) is fitted to the N data
points I(r, j) in a least squares sense, with respect to λ:

λ̂(r) = arg min
λ∈R5

N−1∑
j=0
|f(j,λ)− I(r, j)|2 , (3.11)

where the ˆ indicates an estimated value. The NLLS estimate of the off-
resonance frequency ω(r) is then given by

ω̂NLLS(r) = λ̂1

Tr
. (3.12)

During the optimization, no constraints are applied. However, due to the
periodicity of the exponential function in Eq. (3.8), the resulting parameter
vector estimate λ̂(r) given in Eq. (3.11), can always be mapped to satisfy |λ1| ≤
π
2 , |λ2| ≤ π, and |λ3| ≤ π. Note that the correlation estimator in Eq. (3.7)
produces phase trend estimates ω̂Tr in the interval [−π2 ,+

π
2 ] as well.

As long as individual parts of the object are displaced by less than half
the field of view in an EPI image, no phase unwrapping of λ̂1 (and indirectly
ω̂NLLS) is needed. This is usually ensured, as any MR imaging modality is
influenced by field inhomogeneities that are so strong.
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(a) Acquisition sequence (b) Data cube

Figure 3.1: (a) The sequence used for measuring the field map is a conventional
EPI readout train, but the phase encoding gradient is replaced by the phase encoding
gradient of a GRE sequence. (b) The data from the field map sequence is shown on a
data cube. The color of the EPI train corresponds to the color of the selected phase
encoding step from (a).
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(a) Phase, no noise
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(b) Phase, σ = 0.2

Figure 3.2: One realisation of the phase of the simulated signals with both phase
trends. No noise was added in figure (a), noise with σ = 0.2 was added in figure (b).
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3.3 Experiments

Simulation as well as imaging experiments were run to compare the phase
correction method CORR with the proposed nonlinear least squares (NLLS)
method in terms of the precision and accuracy of the field map estimation.
Reference data was simulated and the field map ω(r) was estimated with both
methods. In addition, to test the performance of the estimators with real data,
the different field map estimators were compared on experimental EPI images
along with reference data.

3.3.1 Simulation experiments
In order to test the precision and accuracy of the phase trend estimators as
a function of the number of echoes N , the noise standard deviation σ, and
the phase trend magnitude ω, several simulation experiments were performed.
To this end, two reference data sets were simulated with T ∗2 = 30ms, Tr =
1ms, ρ = 2, and ϕ = 0.2rad, which were held constant throughout all the
simulation experiments. The first reference data set was simulated with ω =
30 rad/sec, which did not cause a phase jump and the second reference data set
was simulated with ω = 180 rad/sec, which caused two phase jumps. Fig. 3.2a
shows the phase of both signals without noise added and with N = 64, and
Fig. 3.2b shows one simulation of both signals after Gaussian noise with σ = 0.2
was added. The value for ρ and σ should be interpreted in terms of the SNR,
which is given by

SNR = Psignal
Pnoise

=
|ρ|2

(
1− e−2N Tr/T

∗
2
)

2σ2N
(
1− e−2Tr/T∗

2
) , (3.13)

where Psignal and Pnoise denote the power of the signal and noise, respectively.
During all simulation experiments, the root-mean-squared-error (RMSE)

and the bias of the CORR and NLLS field map estimators were analyzed.
Three Monte Carlo simulations were produced according to the following

protocols:

• The first simulation experiment tested the precision and accuracy of the
phase trend estimators as a function of σ. For this, independent gaussian
noise with standard deviation 0 ≤ σ ≤ 0.9 was added to the real and
imaginary parts. In this experiment, the number of echoes was held
constant at N = 64 and the number of Monte Carlo realizations for each
tested σ was M = 100 000.

• The second simulation experiment investigated the effect of changing the
number of echoes 3 ≤ N ≤ 100. In this simulation experiment, the noise
level was fixed to σ = 0.2 and the number of Monte Carlo realizations for
each value of N was M = 100 000. Since the signal decays, the Signal to
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Noise Ratio (SNR) will depend on the number of echoes N . The CORR
and NLLS methods were again used to estimate ω.

• In the third simulation experiment, both the number of echoes N and the
standard deviation σ were varied, where 3 ≤ N ≤ 100 and 0 ≤ σ ≤ 0.9
and the number of Monte Carlo realizations for each combination of N
and σ was M = 10 000.

3.3.2 Imaging experiments

In order to investigate the performance of the methods on real data, three dif-
ferent datasets of a DTI hardware phantom were acquired with a 7T Pharmas-
can small animal system, manufactured by Bruker (Ettlingen, Germany). The
DTI hardware phantom consists of parallel bundles of woven strands of Micro
Dyneema fibers [29]. The first set was a DTI dataset, which was recorded with
an EPI sequence (TE = 35 ms, TR = 3000 ms, imaging matrix = 128 × 64).
This dataset contained substantial geometric distortions due to susceptibility
artifacts (see Fig. 3.7b).

To enable the correction of these geometric distortions, reference data, as
described in subsection 3.2.2, were recorded with the same parameters. To be
able to compare the quality of the estimated field maps, the acquisition of the
reference data was repeated 10 times, with an artificially increased noise level
to more clearly identify the effects of the noise on the estimated field maps. For
these reference datasets, the number of echoes N in the multi echo gradient
echo (GRE) sequence equals the number of phase encoding steps of the EPI
sequence. Hence, for each reference dataset, N = 64 GRE images with different
echo times were acquired.

To validate the correction results, a 256 × 128 Spin Echo (SE) image was
recorded with TE = 43ms, TR = 1500 ms. Since an SE sequence is less
sensitive to susceptibility artifacts than EPI, the image recorded with this SE
sequence can serve as a suitable basis for comparison of the corrected EPI
image. For all data sets, 20 slices of 1 mm thickness were acquired and the
field of view (FOV) was 45 mm.

3.3.3 Implementation details

For all simulations and experiments presented in this chapter, MATLAB (The
MathWorks, Inc. Natick, MA, USA) was used with custom routines. The
optimization of the NLLS method used the standard nonlinear least squares
routine (lsqnonlin). This routine is a local optimization routine, and thus
there is no guarantee that the global minimum will be found. However, when
the initial values are sufficiently close to the position of the global minimum,
the routine will converge to that. In Appendix 3.A a Fourier based initialization
of λ is described. This method was used in the remainder of this chapter and
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it was observed that with this initialization the global minimum was almost
always found, especially for low σ. Furthermore, a good initialization of λ
will decrease the number of iterations needed to reach the optimum. At our
machine (2.4Ghz Intel Core 2 Quad CPU), the initialization and estimation
procedure took approximately 9.6ms per voxel.

3.4 Results and discussion

3.4.1 Simulation experiments

This section discusses the results of the simulation experiments described in
subsection 3.3.1.

Performance as a function of the noise level

Fig. 3.3 shows the RMSE as well as the bias of the field map estimators as a
function of σ for the first data set (ω = 30 rad/sec) with N = 64. The lines
in the figures indicate the observed values and the shaded areas represent the
95% confidence intervals. Fig. 3.3a shows that the bias of the CORR and the
NLLS estimator cannot be proven to be non-zero in this simulation.

Fig. 3.3b shows that the RMSE of the NLLS estimator is substantially
smaller than the RMSE of the correlation estimator for all noise levels. Note
that the RMSE of both estimators is mainly caused by the variance of the es-
timators, not by the bias. Hence, the increase of the RMSE visible in Fig. 3.3b
is mainly due to the increasing noise level.

The scaling of the RMSE as a function of σ obscures the relative perfor-
mance of the different estimators. Therefore, to compensate for the expected
relation between RMSE and noise level, Fig. 3.4a shows the RMSE scaled by
1/σ. Note that, for the NLLS estimator, the scaled RMSE is constant, which
indicates constant efficiency of the estimation of the field map by this estima-
tor. On the other hand, the scaled RMSE of the CORR estimator increases
with increasing σ, which indicates that the estimator becomes less efficient with
increasing noise level.

Fig. 3.4b shows the results when phase jumps are present in the data. Com-
parison of Fig. 3.4a and Fig. 3.4b shows that the RMSE of CORR and NLLS
estimators are not significantly influenced by the phase jump.

Performance as a function of the number of gradient echoes

Fig. 3.5 shows the performance of the field map estimators as a function of N .
Fig. 3.5a shows the RMSE while Fig. 3.5b shows this RMSE scaled by

√
N to

remove the main trend of the RMSE. As can be seen in Fig. 3.5b, the RMSE
of the estimators sharply decreases with N , when N is small. Then, it levels
off and for large N the scaled RMSE starts to increase again. Note that the
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Figure 3.3: The bias (a) and RMSE (b) of the CORR and the NLLS field map
estimators from simulated data with ω = 30 rad/sec and N = 64. The shaded
areas represent the 95% confidence regions of the performance measures. For these
simulations, M = 100 000 realizations were used.
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Figure 3.4: This figure shows the RMSE/σ of the different methods for the simulated
signals with ω = 30 rad/sec (a) or ω = 180 rad/sec (b). Also for these results N = 64,
M = 100 000 and the shaded areas represents the 95% confidence regions of the scaled
RMSE. These figures show the RMSE divided by σ to demonstrate the difference
between the methods more clearly.
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3. Improved B0 field map estimation for high field EPI

RMSE itself, however, does not increase, even for large N . This decrease and
increase of scaled RMSE is expected. First, the scaled RMSE decreases with
increasing number of echoes, since the linear trend of the phase of the simulated
series of echoes is estimated. To accurately estimate a linear trend, the samples
should be separated by as large a distance as possible. Therefore, increasing
the maximum distance between the samples by adding an extra sample (i.e.
record an extra echo) decreases the (scaled) RMSE. Secondly, when the number
of echoes is increased beyond a certain limit, the scaled RMSE increases. This
is also expected, since the magnitude of ρ is fixed and each subsequent echo
has a lower magnitude due to the T ∗2 relaxation. Beyond a certain number of
echoes, the magnitude will be so low that the amount of information added
by each subsequent echo is less than expected by the scaling, which assumes a
constant amount of information per echo.

Performance as a function of noise level and number of echoes

Fig. 3.6 shows RMSE
√
N/σ, where both N and σ are varied and where the

scalings of the previous figures are combined. Fig. 3.6a shows that the scaled
RMSE of the NLLS estimator is (approximately) constant for a large part of
the parameter space (N > 20). This is not the case for the CORR estimator,
as can be seen in Fig. 3.6b.By comparing Fig. 3.6a and Fig. 3.6b, one can clearly
see that the RMSE of the NLLS estimator is much smaller than that of the
CORR estimator for any N and σ.

3.4.2 Experimental data

Fig. 3.7 shows the results of the recorded experimental MRI data. Fig. 3.7a
shows an SE image of the DTI phantom. This image serves as a suitable basis
for comparison of the corrected EPI images. Fig. 3.7b shows the corresponding,
original reconstructed EPI image. In this EPI image, a large distortion is visible
due to an air bubble located a few slices away, as well as a significant ghosting
artifact. Fig. 3.7c shows the field map obtained with the CORR method and
Fig. 3.7d shows the field map obtained with the NLLS method. Comparing
these images demonstrates that the NLLS method is less sensitive to magni-
tude differences, as the noise inside the (darker) fiber bundles is clearly lower
for the NLLS method. This is more clearly visible in Fig. 3.7e and Fig. 3.7f,
which show the standard deviation of the field map of the CORR and NLLS
method, respectively. This standard deviation map is computed from 10 com-
plete acquisitions of the reference data. From each of the 10 reference data sets
a field map is computed and after subtraction of the median of each field map,
the standard deviation of the field map is computed for each pixel. Fig. 3.8
demonstrates the corrected version of the EPI image Fig. 3.7b. Since the field
map can only be estimated inside the object, a blue color filter is applied to the
signal of the corrected images outside the object, as any signal in this region
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Figure 3.5: (a) RMSE and (b) RMSE
√
N of the different methods for the simulated

signals with ω = 180 rad/sec. For these results σ = 0.2, M = 100 000 and the shaded
areas represents the 95% confidence regions of the scaled RMSE.

0
0.3

0.6
0.9

0
50

100

0

100

200

300

400

500

Nσ

R
M
S
E
(ω̂

)
∗√

N
/
σ
[r
a
d
/
se
c]

(a) NLLS

0
0.3

0.6
0.9

0
50

100

0

100

200

300

400

500

Nσ

R
M
S
E
(ω̂

)
∗√

N
/
σ
[r
a
d
/
se
c]

(b) CORR

Figure 3.6: scaled RMSE of the NLLS (a) and CORR (b) estimators as function
of σ and N . To more easily compare the results the scaled RMSE is limited to 500.
The actual scaled RMSE of (b) is actually (much) higher than 500 for large N and
σ. for each point the number of repetitions is M = 10 000.
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Figure 3.7: Field map corrections. The images of the DTI phantom object are
acquired at the Bio Imaging Lab with a 7 T Bruker Pharmascan small animal MRI
system. Figure (a) shows a Spin Echo image of the phantom. Figure (b) shows an
EPI image of the same slice. This image shows a large distortion caused by a nearby
air bubble. The figures (c) and (d) show a phase map estimated from reference data
of this slice for the CORR and the NLLS method, respectively. The background is
masked in the field maps, since the field map cannot be estimated when no signal
is present. The figures (e) and (f) show the standard deviation of the field map,
computed from 10 acquisitions of the field map reference data, for the CORR and
NLLS method, respectively.

is due to off resonance effects of parts of the object and an object mask can be
used to remove these spurious signals. Fig. 3.8a and Fig. 3.8b show the results
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Figure 3.8: This figure shows the field map correction results. The figures (a) and
(b) show the EPI image corrected with the field maps computed with the CORR
method and NLLS method, respectively. Outside the object, the field map cannot
be estimated, and thus the image cannot be corrected outside the object. Therefore
a blue color mask is applied outside the object to indicate that any signal in these
regions is not relevant. In figure (c) the ghost of figure (b) is suppressed with the
odd-even phase difference estimated by the NLLS method. Figure (d) shows the
difference between (a) and (b).

of the application of the correction scheme to the EPI image with the field map
ω̂COR(r) and ω̂NLLS(r), respectively. Since no ghost correction is applied in
these images, the ghost is clearly visible. In Fig. 3.8c, the even-odd phase dif-
ference, which is also estimated by the NLLS estimator, is used to suppress the
ghost artifacts still present in Fig. 3.8b. Fig. 3.8d shows the difference between
Fig. 3.8a and Fig. 3.8b. As is clearly visible, the largest differences are at the
low signal regions around the fiber bundles. In these regions, the correction
with ω̂COR(r) is significantly worse.

In summary, Fig. 3.7 and Fig. 3.8 clearly show the superior performance of
the NLLS estimator.
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3. Improved B0 field map estimation for high field EPI

The reference data needed.

The off-resonance map is generally a smooth function of the spatial coordinates.
Hence, the spatial resolution with which the field map, and thus the reference
data, has to be acquired, may be lower than the resolution of the images that
need to be corrected. Moreover, scan time can be reduced by reducing the
number of gradient echoes recorded for the reference data. As is shown in
Fig. 3.5, the performance of the NLLS estimator improves substantially up to
approximately 20 echoes, and for higher N scales with approximately 1/

√
N . A

further aspect that might be exploited to minimize the reference data scan time
is that the reference data does not need to have the same image contrasts as
the images to be corrected. As long as the field inhomogeneities are equal, the
field map obtained from the reference data can be used for images with different
contrasts. Finally, we remark that the substantially improved precision of the
proposed NLLS field map estimator compared to the CORR estimators can as
well be traded for a faster acquisition of the reference data with reduced SNR
(e.g., by reducing TR).

3.5 Conclusions

High speed acquisitions such as EPI, are desirable for techniques like DTI and
fMRI. Unfortunately, such acquisitions suffer from serious geometrical distor-
tions, especially at high main magnetic fields. Therefore, correction methods
which reduce these distortions are necessary. Such methods estimate the field
map, which captures the local magnetic field inhomogeneities. The quality of
corrected EPI images depends on the precision and accuracy with which the
field map is estimated.

In this chapter, a nonlinear least squares method (NLLS) was described to
estimate the field map. Compared to a previously proposed estimation method
by Smithorst et al. [23], the proposed NLLS was shown to perform substantially
better in terms of the root mean squared error of the estimated field map and
thus lead to higher quality of the corrected EPI images.

A further benefit of the NLLS estimator is that other parameters of the
MR image are simultaneously estimated. These parameters, which include the
relaxation and the ghost causing odd/even k-line differences can be used to
correct the ghosting and T ∗2 blurring.
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3.A Initialization of the optimizations based on the FFT

For convergence to the global optimum of the NLLS estimator, the optimization
should be initialized close enough to this optimum. Since a linear phase trend
(i.e. frequency) is searched for, good initial values can be found with the Fourier
Transform of the signal. When we assume that the odd/even phase jump is
small (negligible), the data can be modeled by (compare with Eq. (3.8)):

A(j) = eλ5+iλ2ej(iλ1+λ4), (3.14)

Let

A(j) F−→ A(ω) =
eλ5+iλ2

(
eN(λ4+i(λ1−ω)) − 1

)
eλ4+i(λ1−ω) − 1

(3.15)

be the discrete Fourier transform (z-transform on eiω) of A(j), then the position
of the maximum absolute value of A is given by

ωmax = arg max
ω
|A(ω)| (3.16)

= λ1 (3.17)

For normal acquisitions, i.e. when the image should be visible, it can be as-
sumed that the strongest component in A is the exponentially decaying signal.
So, the peak at the maximum position ωmax is from this signal. The parameters
λ can now be computed from A(ω) by

λ1 = ωmax (3.18)

eλ5+iλ2 = A(ωmax) 1− eλ4

1− eNλ4
(3.19)

and λ4 can be computed from

∂2log |A(ω)|
∂ω2

∣∣∣∣
ω=ωmax

= −eλ4

(eλ4 − 1)2 + N2

(eNλ4 − 1)2 + N2

eNλ4 − 1 . (3.20)

For N →∞ this can be simplified to

∂2log |A(ω)|
∂ω2

∣∣∣∣
ω=ωmax,N→∞

= −eλ4

(eλ4 − 1)2 , (3.21)

which can be simplified even more for |λ4| � 1 to

∂2log |A(ω)|
∂ω2

∣∣∣∣
ω=ωmax,N→∞,|λ4|�1

= −1
λ2

4
+ 1

12 . (3.22)
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This last expression Eq. (3.22) can easily be solved for λ4. Since −1
λ2

4
+ 1

12 ≥
−eλ4

(eλ4−1)2 ≥ −1
λ2

4
and N2

(eNλ4−1)2 + N2

eNλ4−1 > 0, the true value of

|λ4| ≤
√√√√ −1

∂2log |A(ω)|
∂ω2

∣∣∣
ω=ωmax

. (3.23)

As long as the SNR is high enough, the initialization obtained by setting |λ4| to
the upper bound of Eq. (3.23) is accurate enough, although the better initial-
ization found by numerically solving Eq. (3.20) might reduce the optimization
time enough to be worthwhile. Since there is relaxation (decay of the signal) in
the time series, λ4 is obviously negative. The only parameter not yet initialized
by the above method is λ3, the phase step between the even and odd echoes.
Usually this phase step is small, so it can be initialized to zero. Otherwise,
the data can be split in an even and odd part and the above initialization can
be performed on both parts. The phase step can then be computed from the
combination of both parts. In order to numerically compute the second deriva-
tive accurately, the discrete Fourier transform A(ω) should be smooth enough.
This can be achieved by expanding A(j) with zeros before applying the Fast
Fourier Transform (FFT). An additional benefit of this expansion is that the
signal can be extended to a size for which the FFT is especially fast for any
number of echoes N .
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Abstract

In this chapter, a method is developed that reconstructs a high res-
olution image from an arbitrary set of multi-slice 3D MR images with a
high in-plane resolution and a low through-plane resolution. Such images
are often recorded to increase the efficiency of the acquisition. With a
model of the acquisition of MR images, which is improved compared to
previous super-resolution methods for MR images, a large system with
linear equations is obtained. With the conjugated gradient method and
this linear system, a high resolution image is reconstructed from MR im-
ages of an object. In this chapter, a new and efficient method to apply
an affine transformation to multi-dimensional images is presented. This
method is used to efficiently reconstruction the high resolution image
from multi-slice MR images with arbitrary orientations of the slices.
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keywords Super-resolution, multi-slice imaging, reconstruction, conjugated
gradients, affine transformation, tomographic MRI, multi-dimensional imaging.

4.1 Introduction

This chapter describes how a high resolution isotropic 3D image can be recon-
structed from a series of multi-slice 3D MR images, in which the slice thickness
is substantially larger than the in plane resolution. The motivation of this
work is that MR images, and especially multi-slice images are often acquired
with anisotropic voxels. In this case, the slice thickness can be substantially
larger than the in-plane resolution. The reason to record MR images with thick
slices is the increase in Signal to Noise Ratio (SNR), as the power of the signal
emitted by the object scales approximately linearly with the slice thickness. In
this chapter, it is shown that several of these multi-slice MR images, recorded
with different slice orientations, can be combined into a single, high resolution
3D image with isotropic voxels. A schematic view of such a set of MR images
is given in Fig. 4.1. The advantage of multi-slice images, compared to full 3D
acquisitions, is that it is possible to interleave the acquisition of slices. That is,
while waiting for the relaxation of the magnetization of a slice, (a part of) the
k-space of various other slices can be excited and recorded. In general, when
the repetition time (TR) is limited by the T1 decay, it is possible to record
multi slice images significantly faster than full 3D images with the same reso-
lution [?]. Furthermore, multi slice images might be less influenced by object
motion.

Previously, several attempts have been made to improve the resolution of
MR images. The methods of Peled et al. [30] and Carmi et al. [31] try to
improve the in-plane resolution. The validity of such methods was questioned
by Scheffler [32], to which Peled et al. [30] responded. The main criticism,
with which we agree, was that the same points in k-space are acquired by MR
images shifted in-plane. The in-plane shift introduces a linear phase shift in
these k-space samples, so each of the shifted images should contain the same
information, except for measurement noise, with no possibility to improve the
resolution. Furthermore, the blurring function of [30] was based on only the
T ∗2 decay, ignoring the blurring due to the finite part of k-space that was
sampled, and the up-sampling was performed by linear interpolation, which,
as will be demonstrated also in this chapter, introduces aliasing and reduces
the magnitude of high spatial frequencies. The method of Carmi et al. [31]
models the blurring function by a box function (1 inside the box, 0 outside).
This does not properly model the sinc blurring that is due to the sampling
inside a box in k-space. Also, the method of [31] is based on exact integer
oversampling factors, which limits the applicability. A different method to
improve the resolution of MR images is presented by Greenspan et al. [33].
That method improves the resolution in the slice direction, i.e. the direction in
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Figure 4.1: This figure schematically shows three anisotropic MR images acquired
with different orientations, rotated around either the phase or read encoding axis.

which the different slices of a multi slice MR image are recorded. Several multi
slice MR images with different positions in the slice direction are combined.
This method is not limited to the original resolution as the acquisition in the
slice direction is not band limited. However, only MR images in which the slice
orientation is identical can be combined. This limitation is removed by the
method of Shilling et al. [34], in which multi slice MR images rotated around
a common frequency encoding axis are combined. It allows the reconstruction
of high resolution slices by iterative projection reconstruction algorithms. In
their method they state the projection as a linear system and solve the high
resolution image from the set of linear equations by iterative solvers that are
also used in Computed Tomography (CT) reconstructions.

In our work, the method of Shilling et al. [34] is extended to allow for any
orientation of the slices of the multi-slice MR images, i.e. the images do not need
to be rotated around a common frequency encoding axis. Furthermore, the pro-
jection via matrix multiplication is reformulated as an affine transformation,
followed by a filter operation. This reduces the number of computations sub-
stantially. Finally, the method presented in this chapter uses the Conjugated
Gradient method to solve the large linear system in a small number of itera-
tions. In this respect, the work presented in this chapter has some relation to
the reconstruction of PROPELLOR acquisitions, as described by [35], where
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the reconstruction was also performed by the Conjugated Gradient method.
Our method, which has the same aim as the method of Greenspan et al. [33],
is a super resolution method because the through plane resolution is improved,
when a suitable set of differently oriented multi-slice MR images is recorded.
This method does not require knowledge about the object. Only, a model of
the acquisition system is required. The resolution improvement is obtained
by undoing the aliasing and blurring in the slice direction which is due to the
acquisition of thick slices.

The structure of this chapter is as follows. In section 4.2, the acquisition
model and reconstruction method is explained. Next, in section 4.3, the per-
formance of the method on experimental datasets is shown. In section 4.4, the
results are presented and in section 4.5 the conclusions are drawn.

4.2 Methods

4.2.1 Introduction
The acquisition of multiple MR images with the same contrast can be seen
as multiple samples from the same object. For each slice of a multi slice MR
image, the MR acquisition records a part of the k-space of the object. With
the discrete Fourier transform, usually the fast Fourier transform, a projection
of the object intensities in each slice is reconstructed on a discrete grid. Since
MR acquisitions record a limited part of the k-space, the intensity at a grid
point does not exclusively depend on the intensity of the object at the loca-
tion of that grid point. Essentially, due to the finite part of k-space that is
acquired, the MR acquisition effectively applies a low- pass filter to the ex-
cited slice of the object before sampling the intensities at the grid nodes. An
alternative interpretation is that the intensity value of each voxel of the MR
image is obtained by multiplying a properly shifted version of a (3D) sampling
function with the object. For the most common multi-slice MR acquisitions,
the sampling function can be decomposed in 3 components in orthogonal di-
rections. These 3 components are aligned with the main axis of the grid in the
MR image space, defined by the read, phase, and slice encoding directions. In
general, when the sampling function is not rotationally invariant and images
with different slice positions and/or orientations are recorded, it is possible
to reconstruct an image with a higher resolution in at least some directions.
In order to explain the method by which the higher resolution image can be
obtained, the sampling of the MR images is formalized in the next subsection.

4.2.2 Model of the MRI acquisition
Let x represent the 3D coordinates in the coordinate system of the object
o of which the MR images are recorded. Furthermore, let y denote the 3D
coordinates in the coordinate system of the jth multi slice MR image Sj . When
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both coordinate systems are linked by a coordinate transform Tj , the intensities
of Sj are related to those of o by:

Sj(y) =
∫
o(x)w(Tj(x)− y)dx+ ej(y), (4.1)

where ej(y) is a noise term that describes the measurement noise. The MR
image Sj in Eq. (4.1) is sampled at the integer positions of the MR-image
coordinate vector y. The sampling function w is (implicitly) defined by the
MR image acquisition method. For multi slice acquisition methods that sample
a rectangular part of the k-space, this sampling function can be split into 3
functions that are applied in orthogonal directions aligned with the MR- image
coordinates, w(y) =

∏3
i=1 wi(yi). Assume, without loss of generality, that the

coordinates yi are ordered 1, 2 and 3 for read encoding, phase encoding, and
slice encoding, respectively. Then, due to the rectangular part of k-space that
is regularly sampled, w1 and w2 are Dirichlet, or periodic sinc, functions. For
multi-slice MR images, w3 depends on the slice selection of the acquisition
method. Slice selection is often performed by either a (windowed) sinc or
a Gaussian shaped RF pulse, so the sampling in the slice direction w3 can be
modeled by a (smoothed) box or Gaussian function, respectively. Alternatively,
it is possible to measure the actual slice excitation profile w3. For this, in
a normal slice acquisition method, only the read encoding gradient direction
should be changed to the slice direction and the phase encoding gradient should
be set to zero. The recorded radio signal should be Fourier transformed to
obtain the slice excitation profile, multiplied by the object integrated over the
read and phase encoding directions. When the integrated reference object is
(approximately) homogeneous, the excitation profile is obtained.

Note that the transformation (Tj(x))2 is not necessarily just a rotation or
even only an affine transformation, but it might also contain other deforma-
tions. For example, when the images are recorded with Echo Planar Imaging
(EPI) it might also contain displacements in the phase encoding direction due
to inhomogeneities of the main magnetic field.

4.2.3 Sampling grid of the object
In Eq. (4.1), a model of the acquisition of MR images from a continuous object
is given. However, in order to effectively simulate the acquisition, the object
o needs to be discretized. During the MR acquisition, only a part of the k-
space is sampled. So, only a low pass filtered version of the object is recorded.
Therefore, only the spatial frequencies up to the maximum spatial frequency
sampled by the MR images should be representable by the discretized o. This
is equivalent to saying that the Nyquist frequency of the grid on which o is
discretized should be large enough to contain the part of k-space where the
Fourier transform of any w is (significantly) non zero. Note that w, expressed in
object coordinates, is different for each different slice orientation. To minimize
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the amount of memory used, and probably also the amount of computation
time, the number of samples of o should be minimized. Discretizing o by a
grid based on a closest sphere packing, such as HCP or FCC, would probably
maximize the lowest Nyquist frequency for a fixed number of samples. However,
for more convenient post processing, in the remainder of this chapter a regular
cubic lattice is used to discretize o.

4.2.4 Discrete model
Let o (no × 1) be a vector containing the object intensities at all grid points
xm, m ∈ {1, . . . , no} of the discretized object o. This grid should be sufficiently
dense and contain the region in which the object intensity is (might be) non
zero. Then, the sampling of a multi slice MR image Eq. (4.1) can be rewritten
as a matrix multiplication:

Sj = Xjo+ ej (4.2)

where Sj (nSj × 1) is the jth MR image with a noise term ej (nSj × 1). Both
Sj and ej are sampled at the nSj nodes of the grid of the jth MR image yl,
l ∈ {1, . . . , nSj}. The elements of the matrix Xj (nSj × no) are given by :

Xj(l,m) = w(Tj(xm)− yl) =
3∏
i=1

wi(Tj(xm)i − (yl)i), (4.3)

where Tj(xm)i and (yl)i indicate the ith component of the vectors Tj(xm) and
yl, respectively. The sampling of all N MR images can be combined into a
single matrix multiplication

S = Xo+ e, (4.4)

with

S =

 S1
...
SN

 , X =

 X1
...
XN

 , e =

 e1
...
eN

 . (4.5)

4.2.5 Reconstruction of the object
When the MR images S are acquired, the reconstruction of the object intensi-
ties o can be stated as a regularized least squares problem:

ô = arg min
o
|Xo− S|22 + |Ko|22 (4.6)

= arg min
o

(Xo− S)T (Xo− S) + oTKTKo, (4.7)
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where K specifies the regularization term, which will be explained in the next
subsection (subsection 4.2.6). In general, the solution of this regularized least
squares problem is given by:

ô = (XTX +KTK)−1XTS (4.8)

However, for realistic image dimensions, the matrices present in the gen-
eral solution Eq. (4.8) are too large to actually store, even as sparse matrices
(size X ≈ 40M × 10M). Furthermore, the solution of the linear system by
QR or LU decomposition [?] would consume prohibitively many computations
for any realistic size of images (≈ (10M)3 = 1021 flops). Therefore, a solu-
tion was obtained with the conjugated gradients method [?, ?], which is an
efficient iterative method to solve linear systems. The matrix vector multipli-
cations that are required by the conjugated gradient method were evaluated
by a function that did not explicitly store X. Actually, as will be explained
in subsection 4.2.7, the multiplication with X was reformulated as an affine
transformation, combined with 1D filter operations.

4.2.6 Regularization

Tikhonov regularization is a standard technique to solve under determined or
badly conditioned problems [36]. The current problem is badly conditioned,
or even under determined, even though

∑N
j=1 nSj usually exceeds no. This is

due to the high resolution of the grid on which the object intensities are recon-
structed. In order to obtain the maximum resolution, all spatial frequencies
present in the MR images should fall below the Nyquist frequency of the grid
at which the object o is reconstructed. Therefore, this grid will, most likely,
also contain (high) spatial frequencies not present in any of the MR images,
causing the reconstruction to be badly conditioned or under determined.

The regularization aims to improve the solution by reducing the variance of
the solution. However, this immediately introduces a bias into the estimated
ô. (Without regularizing, the Least Squares estimator is unbiased.) Therefore,
a good choice for the regularization it to choose it such that the Mean Square
Error (MSE) is minimized. Since the MSE is the sum of the variance and the
squared bias, these are first derived separately.

The variance of ô, assuming normally distributed independent noise with a
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standard deviation σ in the MR images, is given by:

var(ô) = E(ô− E(ô))(ô− E(ô))T (4.9)
= (XTX +KTK)−1XTE(eeT )X(XTX +KTK)−1 (4.10)

= σ2 ((UΣV T )T (UΣV T ) +KTK
)−1 (UΣV T )T

(UΣV T )
(
(UΣV T )T (UΣV T ) +KTK

)−1 (4.11)
= σ2(V ΣTΣV T +KTK)−1V ΣTΣV T (V ΣTΣV T +KTK)−1

= σ2V (ΣTΣ + V TKTKV )−1ΣTΣ(ΣTΣ + V TKTKV )−1V T ,
(4.12)

whereX = UΣV T is a Singular Value Decomposition (SVD) ofX, in which U
and V are unitary (U−1 = UT ) and Σ is non-zero only on the main diagonal.
The bias is given by:

bias(ô) = E{ô} − o0 =
(
(XTX +KTK)−1XTX − I

)
o0 (4.13)

=
(
V (ΣTΣ + V TKTKV )−1ΣTΣV T − I

)
o0 (4.14)

= −V (ΣTΣ + V TKTKV )−1V TKTKo0, (4.15)

where o0 is the true object magnitude. When V TKTKV = D and ǒ0 =
V Too, the MSE is given by:

MSE(ô) = var(ô) + bias(ô)2 (4.16)
= σ2V (ΣTΣ +D)−1ΣTΣ(ΣTΣ +D)−1V T+

V (ΣTΣ +D)−1Dǒ0ǒ
T
0D

T (ΣTΣ +D)−1V T

= V
(
ΣTΣ +D

)−1 (
σ2ΣTΣ +Dǒ0ǒ

T
0D

T
) (

ΣTΣ +D
)−1

V T .
(4.17)

Since V is a unitary matrix, only the diagonal elements of the part in Eq. (4.17)
between V and V T provide a non zero contribution to the MSE. Therefore,
the regularization that minimizes the MSE, assuming D is non-zero only on
the main diagonal, is given by:

Dii = arg min
Dii

(
|Σii|2 +Dii

)−2 (
σ2|Σii|2 +D2

ii|ǒ0,i|2
)

(4.18)

= σ2

|ǒ0,i|2
. (4.19)

Note that at first sight this might look as the inverse Signal to Noise Ratio
(SNR), but it is not. The scaling of o might differ from the scaling of S of
which σ specifies the noise level. There are several reasons why this result
cannot be applied directly to specify the regularization. First, in practice,
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the true o0 is, by definition, unknown (why would we want to estimate o,
when it is already known?). However, the regularization is close to optimal
when a reasonable estimate of the magnitude of this value (or the SNR ) is
provided. It can easily be demonstrated that when Dii is a factor 2 from the
value that provides the lowest MSE, the MSE might at most increase by a
factor 9/8. Therefore, with some general assumptions (e.g. a magnitude of
1/f of the spectrum of the image) and an initial reconstruction, obtained with
or without a ’default’ regularization, a close to optimal value for Dii can be
found. Second, as mentioned above, the matrices are large. Actually so large
that it is impossible, or at best impractical, to actually compute the SVD for
realistic image sizes. It might be possible to study the singular vectors and
values of a small problem and deduce a regularization strategy from these.
However, in this chapter, we follow a different approach.

In the current problem, the regularization is needed to constrain the high
spatial frequencies, as some of these might not be sampled by any of the MR
images. Since there is no specific prior knowledge about the high spatial fre-
quencies of the object, the regularization can be used to force the amplitude
of the under sampled high frequencies of ô to zero. This can be achieved by
adding the power in the (high) frequencies to the minimization criterium. As
especially the high spatial frequencies are under sampled, in this work, the
regularization term K computes the second derivatives of the reconstructed o:

oTKTKo = λ

((
∂2o

∂x12

)2

+
(
∂2o

∂x22

)2

+
(
∂2o

∂x32

)2)
, (4.20)

with the simple discrete second derivative, ∂2o
∂xi2

∣∣∣
x

= o(x−ai)−2o(x)+o(x+ai),
where ai are the base vectors of the grid of o. In the experiments sections, it
will be evaluated how closely this regularization matches the one specified by
Eq. (4.19). The parameter λ is introduced to scale the regularization to the
actual SNR.

4.2.7 Affine transform
It is possible to explicitly evaluate the matrix vector multiplications that are
required for the conjugated gradient method by which Eq. (4.8) is solved, by
repetitively computing parts of the matrix X and multiplying these with the
appropriate parts of the vectors. However, this will require a large amount of
computation time. When Tj is an affine transform, or a subset of an affine
transform, such as a combination of translation, scaling, and rotation, the
acquisition of the MR images can be reformulated as an affine transform of
the object o, followed by subsequent filter operations with the three orthogonal
sampling functions wi:

o
Tj−→ oj

∗w1−→ oj,1
∗w2−→ oj,2

∗w3−→ Sj (4.21)
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When implemented efficiently, this allows a substantial increase in performance
due to a substantial reduction in the number of operations. However, efficiently
applying an affine transform is non trivial. Therefore, several (new) methods
by which an affine transform can be applied to an image are studied below.
In order to study the properties of these methods, an ‘ideal’ affine transform
is specified, as well as criteria by which the quality of an transform can be
evaluated.

An affine coordinate transform between two coordinate systems x and y is
a linear transformation specified by

y = Tx+ c, (4.22)

where T n× n specifies the affine transformation matrix in n dimensions, and
c n× 1 specifies the translation part of the transformation. Alternatively, the
transformation can be specified as[

y
1

]
= Tf

[
x
1

]
, (4.23)

with

Tf =
[
T c
0 1

]
. (4.24)

The affine transformation of a continuous image o is specified by

õ(x) = o(Tx+ c), (4.25)

where õ is the continuous transformed image. This transform of a continuous
image specifies the ideal transform. However, as only a finite set of samples of
an object can be stored, this ideal transform can only be approximated. When
the image is band limited, i.e. it has a finite range of spatial frequencies, is
periodic, and is sampled on a sufficiently dense regular grid, then all informa-
tion of the continuous image is present in this finite sample. However, the grid
points at which the transformed image õ is requested are, in general, not equal
to the grid points on which the source image o is given. Hence, some kind of
‘interpolation’ is needed. Also note that after a general affine transform, the
original periodicity of the image will not be maintained. Thus some distortions
are unavoidable. However, in practice, these distortions can be limited to the
border region, both of the spatial and frequency domain.

In order to properly evaluate the errors introduced by a transformation
method, it is required to study both the spatial and the frequency domain.
Fortunately, when an affine transformation is applied to an image, the fre-
quency domain is distorted by an affine transformation and a phase factor.
Every vector f (1×n) in the frequency domain of o, is transformed to a vector
f ′ in the frequency domain of õ by :

f ′ = fT−1, (4.26)
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and the translation, specified by c, introduces a phase shift , which is linear in
f , in the frequency domain. Thus

Õ(f) = O(fT−1)eifc, (4.27)

where O = F(o), Õ = F(õ). This transformation allows the proper study of
errors introduced into the frequency domain when applying an affine trans-
formation. For the study of the transformation methods we assume that the
domain of spatial frequencies at which the image O has a non zero magnitude
is given by a convex set of frequency vectors f with |f |∞ ≤ fn, where fn = .5
is the Nyquist frequency in Hz. The spatial extent of o is assumed to be given
by a convex set of spatial vectors x. With these assumptions, already an ap-
proximation is introduced, since the extent of an image cannot be finite in both
the spatial and frequency domain. However, when the image, potentially after
proper extrapolation in the spatial domain, smoothly reaches zero at the bor-
ders, the errors introduced by this approximation are very (arbitrarily) small.

The transformation method by which an image is transformed might differ
in computational cost and/or accuracy of the transform. In this section the
computational cost is approximated by the average number of image samples
that is processed for a voxel of the destination image. Even though this might
not capture all performance influencing factors, it will allow accurate ordering
of the methods as long as the performance is not limited by memory bandwidth,
which usually is true for efficient implementations of the advanced methods.
The accuracy of a transformation method is a combination of several different
aspects:

Geometrical distortions: Are the object intensities displaced by the amount
specified by the transform?
This obviously is an important criterium. However, all methods that
will be considered introduce no erroneous geometrical distortions, so this
property does not discriminate between the methods studied below.

Spectral distortions: Are the (magnitudes of the) spatial frequencies of the
source image distorted in the output image?
The simple methods, e.g. the linear interpolator, do distort the spatial
frequencies, see Fig. ??. However, it is relatively easy to prevent or repair
these spectral distortions. The distortion d is evaluated with

d =
∫
f∈Ω

(h(f)− 1)2
df , (4.28)

where Ω is the region of spatial frequencies that are present in the source
image, i.e. all frequencies below the Nyquist frequency, and can be rep-
resented in the destination image, and h is the transfer function of the
spatial frequencies from source to destination image.
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Figure 4.2: This figure demonstrates spectral distortion and aliasing that can be
introduced by transformation methods. (a,b,c,d): Original images, a box with a sin-
gle spatial frequency, with 120 degree phase difference between the red green and
blue (RGB) channels. (e,f,g,h): Fourier transform of the images. The center is the
zero spatial frequency, the edges are at the Nyquist frequency. (i,j,k,l): Difference in
the spatial domain between the original image rotated over 45 degrees using linear
interpolation and a ’perfectly’ rotated version. To only focus on aliasing, the spec-
tral distortion introduced by linear interpolation was corrected, except for the images
displaying the distortion (left most column) (m,n,o,p): Fourier transform of the er-
ror images, i.e. the erroneous energy in the different spatial frequencies. (a,e,i,m):
Distortion due to linear interpolation, which is obvious even for this rather low spa-
tial frequency (20% of the Nyquist frequency). (b,f,j,n): Aliasing 1 & 3. In (n) the
brightest spots: aliasing 1, the lower intensity spots: aliasing 3. (c,g,k,o): Aliasing 2.
(d,h,l,p): Aliasing 3.
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Aliasing: Is there some power of spatial frequencies of the source image that
is aliased to different (thus: wrong) spatial frequencies in the destination
image?
This is an often overlooked, but important property of transformation
methods. It is difficult to avoid aliasing and, in general, it cannot be
corrected after the transform has been applied. In practice, it cannot
always be completely avoided, but by carefully designing the transfor-
mation, the amount aliasing can be minimized. The aliasing in multidi-
mensional (n > 1) images might arise from three subtly different sources,
which are described below and also visualized in Fig. 4.2. In order to in-
terpret these different forms of aliasing, the transformation procedure is
abstractly decomposed in three steps: First, interpolation of the discrete
image o to a continuous image. Second, affine transformation of this con-
tinuous image. Third, sampling of õ from this transformed continuous
image.

Aliasing1 The first source of aliasing, Aliasing1, are the spatial fre-
quencies that are below the Nyquist frequency in the source image o
(fNy,s), but are transformed to above the Nyquist frequency in the
destination image õ (fNy,d).

Aliasing2 The second source of aliasing, Aliasing2, are the spatial fre-
quencies that, due to aliasing introduced by the interpolation of the
sampled image o, are above fNy,s, but are transformed to below
fNy,d.

Aliasing3 The third source of aliasing, Aliasing3, are the spatial fre-
quencies that are above fNy,s in the continuous source image and
above fNy,d in the continuous destination image. When õ is sam-
pled from this continuous destination image, these frequencies alias
to below fNy,d.

In this subsection several different methods by which the affine transform
can be applied are considered. These methods are briefly listed here, and will
be explained in more detail below:

LIN LINear interpolation (LIN) computes the samples of the transformed
image õ by linear interpolating on the samples of the original image o.

RES Higher order direct RESampling methods (RES), which uses higher or-
der, i.e. longer than the length 2 of LIN, sampling functions. This includes
cubic interpolation and (windowed) sinc interpolation of the source im-
age.

URD Subsequently Up-sampling, Resampling with linear interpolation, and
Down-sampling (URD). As will be explained below, this reduces some of
the problems of LIN and RES.
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Table 4.2: Computational cost per voxel of the output image, distortion, and aliasing
when rotating a 2D image by 45 degree. An indication of the computational cost of
a 3D rotation is indicated as well. The filterlength specifies the number of lobes of
the filter, so the number of samples used in a single multiplication of the filter with
the image is (filterlength ∗ Nyquist frequency /cutoff frequency). This ensures that
the transition bandwidth in the final image is the same for each filter, and thus the
total distortion is minimized. For the FRF method, the filterlength is the number of
samples used at the resampling stage.

# comp 2D # comp 3D filterlength distortion Aliasing
LIN 4.0 8.0 2 0.317 0.441
RES 121.0 1331.0 11 0.010 0.171
URD 228.5 940.7 10 0.016 0.011
FRF 124.5 650.7 6 -.- -.-
SSH 122.9 241.7 16 0.002 0.002

FRF Fourier transform with zero expand, Resample in the frequency domain,
and inverse Fourier transform and select the result image. This is an
alternative which also reduces some of the problems of LIN and RES.

SSH Split the affine transform in a series of SHear operations, so each of the
2n steps can be performed with a (good) 1D interpolation.

In the remaining of this section, it is assumed that the grid points at which the
image is or should be known are located at the integer positions of either the
source or destination image. So o is known at the integer positions of x and õ is
requested at the integer positions of y. In the subsections below, the effects of
the methods are demonstrated with a 45 degree rotation. The figures display
the frequency domain response. The approximate computational complexity,
as well as the distortion and aliasing, of the 45 degree rotation of each method
is presented in Table 4.2. Note that in this 2D example, the SSH method was
set up to have a computational cost (almost) equal to the RES method, which
leads to distortions and aliasing well below that of both the RES and the even
more expensive URD methods.

LIN and RES

The linear interpolation (LIN) is a special case of the more general higher order
interpolation methods (RES). Therefore, they will be explained simultaneously
in this subsection. These methods are closely related to the specification of the
sampling of the MR images given in Eq. (4.1). For these methods, implicitly, the
discrete source image, which can be represented as scaled Dirac delta functions
at each grid node, is convolved with a continuous interpolation function. The
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destination image is then sampled from this continuous image:

õ(y) =
∑
x

o(x)w(Ty + c− x). (4.29)

For LIN, the interpolation function in each dimension is given by

wLIN(x) =


0 x < −1

x+ 1 −1 ≤ x < 0
1− x 0 ≤ x < 1

0 1 ≤ x

(4.30)

Note that wLIN(x) is nonzero for −1 < x < 1, which is an interval of length 2.
The interpolation functions of the other methods of RES will most often have
a larger interval in which they are non zero. For example, a sinc function with
a raised cosine window of length lw is given by:

wRES(x) =


0 −lw/2 ≥ x

1
2

(
1 + cos( 2πx

lw
)
)

sinc(x) −lw/2 < x < lw/2
0 lw/2 ≤ x

(4.31)

For an interpolation function with a non zero interval of length lw, the com-
putational cost in the number of samples for each element of an n dimensional
image õ is

cRES = lnw. (4.32)

The transfer function hLIN is the n dimensional Fourier transform of w:

hRES(f) = F(w(x)), (4.33)

which for the linear interpolation is given by

hLIN(f) =
n∏
i=1

sinc(fi)2. (4.34)

In order to prevent large distortions and a substantial amount of Aliasing2 and
Aliasing3, the filter lengths need to be large, which might require prohibitively
many computations for n ≥ 2. Even with long filters, a substantial amount
of Aliasing1 might still be present. See for example Fig. 4.3 for the aliasing
that is present with a 45 degree rotation in 2D. This aliasing is inherent to any
direct interpolation method. Finally, note that each sample of õ is sampled
individually from o. Thus, this resampling method can also be applied to non
affine transformations.
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Figure 4.3: Frequency domain distortions and aliasing when rotating over 45 degrees
and resampling by linear interpolation (a-d) or by the RES interpolator with lw = 10
(e-h). Note that the continuous images of which the frequency domain is shown
exist only implicitly. (a),(e) is the original image, periodic in the frequency domain.
The central mode is colored blue, the non central modes, which will contribute to
Aliasing3, are colored red. (b), (f) The continuous image after interpolation by the
2D interpolator. (c), (g) The continuous image after rotating. (d), (h) After sampling
the continuous rotated image. To show the aliasing more clearly, (i), (j), (k), and (l)
show the logarithm of (c), (g), (d), and (h), respectively. The green lines indicate
the borders of the elementary frequency cells. Only the blue part in these images is
not distorted due to aliasing. The intensity variations in the blue part are due to
the spectral distortions. The different aliasing contributions are colored: Aliasing1:
Cyan, Aliasing2: Yellow/Olive, Aliasing3: Purple (& Red)
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URD

The Aliasing1 that could not be avoided by the RES method, can be removed
by first up-sampling, then resampling, then down-sampling the image. The
up-sampling with a low pass filter creates an area in the frequency domain
where (almost) no energy is present. It can be ensured that at the resampling
step, only the area in the frequency domain without energy does contribute to
Aliasing1, but this might require sampling on a grid that is more dense than
required for õ. Therefore, the final stage in the URD method is down-sampling
with a lowpass filter. Schematically, the URD method is given by:

o
upsampling−→ oa

resampling−→ ob
downsampling−→ õ (4.35)

See Fig. 4.4 for an example where an image is rotated over 45 degrees by the
URD method.

The up and down-sampling that is present in this method can be applied
in every dimension separately, like the filter operations in Eq. (4.21). In this
method the actual transformation is still direct sampling as described in sub-
section 4.2.7. Hence, the computational cost strongly depends on the length
of the interpolation function w. However, there are three reasons why, for
the same quality of the result image, the length of the interpolation function
can be substantially shorter than in the RES method. First, the distortion
caused by w can be pre-compensated in the up-sampling stage. Second, inter-
polators typically introduce the largest errors close to the Nyquist frequency.
After up-sampling, the frequency domain is non empty only close to the zero
frequency, thereby reducing the Aliasing3. Thirdly, the main contribution to
Aliasing3 is caused by the first of the periodic aliases in the frequency domain,
see Fig. 4.4e. By carefully choosing the up and down-sampling factors, the
aliasing caused by these modes can be moved outside the area in the frequency
domain that remains after the low-pass filtering for the down-sampling step,
reducing Aliasing3.

The computational cost of the URD method is

cURD = lu ∗
n∑
i=1

ui + dn ∗ lnw + ld ∗
n∑
i=1

di−1, (4.36)

where lu is the length of the up-sampling filter, u the up-sampling factor, ld
the length of the down-sampling filter, d the down-sampling factor, where it
was assumed that the up and down-sampling factors and filter lengths are
equal along every axis. This is not required, but simplifies the design and
computation of the cost. Furthermore, it has been assumed that the up and
down-sampling is implemented as explicit convolution with finite length low-
pass filters. Alternatively, the up and down-sampling operations might be
implemented by zero filling or extraction in the frequency domain. With the
Fast Fourier Transform (FFT), the computational cost might be lower when
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Figure 4.4: Logarithm of the frequency domain of the individual steps when rotat-
ing over 45 degrees with the URD method.(a) The original image, which is periodic
in the frequency domain. The central mode is colored blue, the non central modes,
which will contribute to Aliasing3, are colored red. (b) Continuous image after con-
volving with a lowpass filter (with lu = 10). (c) Up-sampled image, (factor 3.3).
(d) Continuous image, obtained by 2D linear interpolation of the up sampled image.
(e) The continuous image after rotating. (f) Upsampled destination image, obtained
by sampling the rotated image on grid with 3.3 times higher density than the result
image. (g) is after low pass filtering (ld = 33) the up-sampled result image. (h)
Result image, obtained by sampling with the final grid density. The subfigure (h)
can be directly compared to Fig. 4.3 (k) and (l). The blue part is non aliased and
non constant intensity in the blue part indicates spectral distortions. The green lines
indicate the borders of the elementary frequency cells. The other colors indicate
aliasing. The different aliasing contributions are colored: Aliasing1: Cyan, Aliasing2:
Yellow/Olive, Aliasing3: Purple (& Red)
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lu or ld are large. Depending image size and implementation, typically around
l > 40.

Note that the up-sampled images that are created in the URD method
might require a large amount of memory to store. With a 3D image and an
up-sampling factor of 3.3, which was used for the 45 degree rotation presented
in Fig. 4.4, the temporary up-sampled image requires 3.33 ≈ 36 times as much
memory as the original image. The memory consumption might be reduced
by carefully ordering and interleaving the up-sampling, re-sampling and down-
sampling computations. It is quite easily possible to reduce the memory con-
sumption to slightly more than what is needed for the image after up-sampling
or before down sampling, whichever is smaller.

Finally, note that also this URD method can be applied to non affine trans-
formations, as long as it is possible to obtain the deformations at the nodes of
the up-sampled grid.

FRF

A substantially different way of affinely transforming an image is by apply-
ing the resampling in the spatial-frequency domain. So the transformation is
applied with Eq. (4.27):

o
F−→ O resampling−→ Õ F

−1

−→ õ (4.37)

With this method, the spatial and frequency domain are effectively switched
compared to the previous methods. Therefore, the Aliasing3 that was present
in the previous methods will manifest itself as fold over artefacts in the final
image õ. By expanding o with zeros and sampling F(õ) on a sufficiently dense
grid, these fold over artefacts can be moved outside of the final image. The
use of proper sampling filters should ensure that the non central modes do not
alias to inside the image. For this, the intensity of these non central modes
should be reduced to well below the noise level of the image. The resampling
filters should be designed specifically for each expansion factor, and together
with the expansion factor they influence the intensity of the fold over artefacts.
For example, with a filter length of 8 samples, and a 2 fold zero expansion in
every dimension, the relative intensity of the fold over artefacts can be as low
as 10−4. The main advantage of this method is that it avoids all aliasing of
spatial frequencies, at the expense of fold over artefacts.

Note that the resampling in the frequency domain that is required in this
method is very closely related to the resampling/gridding that is performed for
a non uniform FFT [37,38].

The computational cost is the cost of 2 n dimensional FFT’s and a resam-
pling which has a cost lnw. The length of the filters will usually be quite large in
order to avoid fold over artefacts of the non central modes. Furthermore, as the
image needs to be extended with zeros to reduce lw, the memory consumption
might be too high.
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SSH

The affine transform Tf can also be applied as a series of 1D shear transforms.
There exists a (non unique) set of transformations T̃j , different from the iden-
tity matrix only in row dj , such that Tf =

∏2n
j=1 T̃j . Each partial transform

T̃j is a shear transform and modifies the image only along one of the djth main
axis of the image. Therefore, each individual sub transform can be efficiently
applied by a 1D low pass filter. A general affine transform in n dimensions can
be split in 2n shear operations, which combined have arbitrarily low aliasing
and arbitrarily low distortion. This only requires the assumption that filters
(arbitrarily) close to ideal low-pass filters can be constructed. Schematically:

o
T̃1−→ oa

T̃2−→ . . .
T̃2n−→ õ (4.38)

In order to avoid aliasing and distortions, the set of frequencies that are
below fNy,s and which are transformed to below fNy,d, Ω, need to be below
the Nyquist frequency after every intermediate transformation. Since elements
of Ω might be close to the Nyquist frequency, this in general requires that the
frequency vectors should not be modified in a specific dimension, unless a large
enough empty area in the frequency domain has been created by up-sampling
in that dimension.

With the following procedure, the transform Tf is decomposed in a set of
shear transforms that satisfy these criteria:

• Initialize T̃j for j ∈ {1 . . . 2n} to the n+ 1× n+ 1 identity matrix.

• By computing the total cost of applying the transformations defined in
the following steps, search for the optimal permutation p of the numbers
{1, . . . , n}.

• Initialize the initial remaining transform to the inverse transformation:
R0 = T−1

f

• for j = 1 . . . n:

(T̃j)pj ,p1...j =
((

(Rj−1)p1...j ,p1...j

)−1
)
j,1...j

uj (4.39)

Rj = T̃jRj−1, (4.40)

where (A)a,b selects the rows a and the columns b, of the matrix A.

• for j = n+ 1 . . . 2n

(T̃j)pj−n,1...n+1 =
(
R−1
j−1
)
pj−n,1...n+1 (4.41)

Rj = T̃jRj−1. (4.42)
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• Find the lowest up-sampling factors uj , such that at every step the max-
imum spatial frequency that should be transfered to the final image in
the dimension dj is below the lowest aliased frequency in that dimen-
sion. Changing the permutation order p might influence these minimal
required up-sampling factors. The cutoff frequency of the 1D filter of
step j should be set to the average of the maximum spatial frequency
that should be transfered to the final image in the dimension dj and the
lowest aliased frequency in that dimension.

See Fig. 4.5 for this method applied to a 45 degree rotation.
We believe that splitting the general affine transformation with this proce-

dure leads to the lowest number of shear transformations by which all aliasing
can be avoided (with ideal low pass filters). As can easily be verified, the
transformations 1 . . . j − 1 and j + n + 1 . . . 2n, j ≤ n do not alter the spa-
tial frequencies in the dimension pj . For some transformations, such as those
close to a 90 degree rotation, the amount of shear of the partial transforms,
and therefore the up-sampling factors and number of computations, might be
reduced considerably by first permuting the source image, or, equivalently, by
permuting the destination image after the set of shear transformations has
been applied. Since the number of dimensions will always be small (1, 2, 3,
and possibly, 4), all permutations can be tested to search for the combination
that minimizes the number of computations. However, note that the number
of operations in this exhaustive search is of the order of O((n!)2n4), so for large
n (n > 5) the exhaustive search is not practical.

The number of computations in this method is approximately

cSSH = lu ∗
n∑
i=1

i∏
j=1

uj + ld ∗
n∑
i=1

n∏
j=i+1

dj , (4.43)

which depends on the up and down sampling factors. These strongly depend on
the actual transform, but are typically much lower than of the URD method.
Comparing this with Eq. (4.36) immediately shows the lower computational
cost of the SSH method. Furthermore, note that subsequent filter operations,
such as those specified in Eq. (4.21), can be incorporated in the down-sampling
filters by convolving the low-pass filter that is applied for the down-sampling
in dimension dj with wdj .

Note that this transformation method is specifically designed for affine
transformations, so non affine transformations can in general not be evaluated
by this method.

Comparison of transformation methods

As last part of this section about affine transformations, the different transfor-
mation methods are compared. First, Fig. 4.6 shows the aliasing and distortion
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(a) (b) (c) (d)

    1

  0.1

 0.01

0.001

(e) (f) (g) (h)

    1

  0.1

 0.01

0.001

(i) (j) (k) (l)

    1

  0.1

 0.01

0.001

Figure 4.5: Logarithm of the frequency domain of the individual steps when rotating
over 45 degrees with the SSH method. The original image, which is equal to Fig. 4.4(a)
is not shown. (a) Image continuous in the vertical direction after convolving the
original image with a lowpass filter in the vertical direction. (b) Increased resolution
in the vertical direction. (c) Sampled in the vertical direction (d) low pass filtered
in the horizontal direction (e) Shear applied in the horizontal direction, note that
this causes a vertical shear in the frequency domain. (f) After sampling in horizontal
direction (g) After low pass in vertical direction. (h) After shear in vertical direction.
Note that this vertical shear causes a horizontal shear in the frequency domain. (i)
After sampling in the vertical direction. (j) After low pass filtering in horizontal
direction. (k) After down sampling in horizontal direction. (l) The final image after
sampling in the horizontal direction. This subfigure can be directly compared to
Fig. 4.3(k) and (l) and Fig. 4.4(h). The blue part is non aliased. The green lines
indicate the borders of the elementary frequency cells. The other colors indicate
aliasing. The different aliasing contributions are colored: Aliasing1: Cyan, Aliasing2:
Yellow/Olive, Aliasing3: Purple (& Red)
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(a) LIN (b) RES (c) URD (d) SSH
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Figure 4.6: Logarithm of the frequency response of the different methods. In this
figure only the unit frequency cell of the final image is shown. For explanation of the
colors, see caption of Fig. 4.5

present in the unit frequency cell of the 45 degree rotated images. This distor-
tion and aliasing is due to the transformation methods. Fig. 4.6 is a combina-
tion of the central frequency cell of the final transformed images presented in
the previous Figures 4.3, 4.4, and 4.5. As is clearly visible, the SSH method has
the lowest distortion and least aliasing. Next, Fig. 4.7 shows a test image after
10 rotations of 36 degrees, rotated by all methods that have been explained.
Note that the LIN method strongly attenuates the high frequencies. With the
RES method with windowed sinc interpolation, the aliasing is clearly visible
in the corners of the central square. These corners should have a constant
intensity, as the spatial frequencies in the original image cannot be represented
in some of the intermediate rotated images. The FRF method has the lowest
distortions of the spatial frequencies, but a substantial amount of Gibbs ringing
shows up, substantially more than in the URD and SSH methods. Of these
two methods the SSH method has the lowest amount of frequency distortion,
almost as low as the FRF method. Note that with our implementation, the
computational time required by the SSH method was essentially equal to the
time required by the LIN method, which used the MATLAB linear interpo-
lation routine tformarray. The other methods required substantially more
computational time, although a substantial part of this might be due to lower
effort put in the optimization of this code.

4.2.8 Why not reconstruct in k-space?

The method described in this chapter reconstructs the high resolution isotropic
image in image space directly. Alternatively, one might consider the reconstruc-
tion of the k-space of the high resolution image. Since both the acquisition of
the MR image, as well as the Fourier transform, are linear operators, an equa-
tion equivalent to Eq. (4.3) can be given in k-space. However, in the slice
direction, the maximum frequency in which Fw3 is non zero is substantially
larger than the Nyquist frequency. This implies that the periodicity in the slice
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(a) Original (b) LIN (c) RES

(d) URD (e) FRF (f) SSH

Figure 4.7: Original test image (a), and the images obtained after rotating the test
image in 10 steps over a total of 360 degrees with the different affine transformation
methods (b)-(f). When viewing the PDF version of this thesis, please zoom to at
least 200% to avoid interference with the screen resolution.

direction of the k-space of a specific MR image, which is due to the distance be-
tween the acquired slices, needs to be taken into account. Without any detailed
study, we think that this would increase the complexity of a k-space version of
Eq. (4.3), which would most likely increase the amount of computations that
are required for the reconstruction. An advantage of reconstruction in k-space
might be that it could potentially be easier to include and correct distortions
due to inhomogeneities of the magnetic field.

4.3 Experiments

Several datasets of a bird were recorded at the Bio Imaging lab, University of
Antwerp, with a Bruker small animal scanner. The resulting MR images were
192 × 192 × 32 with voxel dimensions 0.125mm × 0.125mm × 0.75mm. MR
images in N = 36 different orientations were recorded and the reconstructed
volume spanned the whole head in a volume of 21mm × 21mm × 22mm with
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isotropic voxel dimensions 0.1mm× 0.1mm× 0.1mm.
The alignment of the images as obtained by the scanner was found to be

insufficient for accurate reconstruction. Therefore, as preprocessing step, the
MR images were properly aligned by computing the required translations from
the projections of the MR images to the object space,

oj = XT
j Sj . (4.44)

Since the images are assumed to have the same contrast, the optimal translation
between two images was computed by a mean square difference measure,

∆̂j,k = arg min
∆j,k∈R3

∑
x

(oj(x)− ok(x+ ∆j,k))2
. (4.45)

The position of each image j was adjusted by 1/N
∑N
k=1 ∆̂j,k.

After the alignment of the images, the conjugated gradient method was used
to approximately solve Eq. (4.8). The matrix vector products that are part of
this method are evaluated by the SSH affine transformation method. As the
SSH method assumes band limited signals, the low-pass sampling functions w1
and w2, which are due to the finite part of k-space that is sampled in the read
and phase encoding directions, do not need to be explicitly included. The only
non ideal low pass sampling function that is present in the MR acquisition is
the slice selection function w3. All MR images are acquired with the same
Hermite slice selection RF pulse. The spatial slice selection function w3 is the
Fourier transform of this slice selection RF pulse and thus is approximated by
a smoothed box function. In our reconstruction experiments, it was observed
that the exact shape of w3 did not strongly influence the reconstructed images,
so a relatively simple smoothed box function was used:

w3(y3) =

 1 |y3| ≤ 1
31

2 −
1
2 sin (3π(|y3| − .5)) 1

3 < |y3| < 2
3

0 2
3 ≤ |y3|

(4.46)

See Fig. 4.8 for a graphical representation of this slice selection function in MR
image coordinates, both in spatial as well as in frequency domain.

The strength of the regularization is controlled with the variable λ in
Eq. (4.20). In our reconstructions λ was set to 5. In order to interpret this
value it is important to know the magnitude scaling between the MR images
and the reconstructed image. In our implementation, w was normalized in
the MR image space, causing the magnitude of the reconstructed object to be
reduced by the ratio of the voxel volumes, which was (1.252 ∗ 7.50 = 11.72).
When we assume that by choosing K to be the second derivative, D happens
to be (approximately) diagonal and the singular vectors (approximately) select
specific spatial frequencies, Dii = 3 ∗ 6λ for i corresponding to singular vectors
that select the in-plane Nyquist frequency of an MR image. Then, the MSE
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Figure 4.8: The slice selection sampling function w3, in spatial (a) and frequency
(b) domain.

is optimal for |ǒ0,i|2 = σ2

Dii
= σ2

3∗6λ , which, optimizes the MSE for a SNR of√
(11.71872/(5 ∗ 6 ∗ 3)) = 1.2 at the Nyquist frequency of MR images. We

investigated whether this very rough approximation has any connection to re-
ality. For this, the matrix X was explicitly computed for a problem in which
the object space was reduced to 15× 15× 15 voxels and MR image space was
reduced as well. The geometry of the MR images was the same as in the exper-
iment. First, it was observed that most singular vectors indeed approximately
contain spatial frequencies of a specific magnitude. Next, it was observed
that Dii ≈ 3 ∗ 6λ for the i corresponding to the singular vectors that select the
Nyquist frequencies in the MR images. Also, for these i,

∑
k 6=i |Dki| ≈ 4Dii and√∑

k 6=i |Dki|.2 ≈ 1
4Dii, indicating that D is approximately diagonal. Thus,

we can be reasonably confident about the approximation.
See Fig. 4.9 for the orientations of the 36 slices that were recorded. Note

that the first 3 groups are acquisitions rotated around one of the slice encoding
axis (except for 1 MR image that whose orientation was specified incorrectly)
and the last group is rotated around a different axis.

With our implementation of the SSH affine transformation method, each
iteration of the conjugated gradient method, with all 36 MR images, took
approximately 5m:35s of CPU time on one core of a Intel Core 2 Quad CPU
@ 3.0 GHz, with 8GB of RAM.

4.4 Results

One of the original MR images is shown in Fig. 4.11. This 3D MR image
is displayed in the read-phase, read-slice, and phase-slice directions, which,
for this image, coincide with the coronal, sagittal and transversal directions.
Note the substantially lower resolution of the MR image in the slice direction.
Fig. 4.12 shows the high resolution image reconstructed from all 36 MR images.
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(a) Images 1-7 (b) Images 8-18

(c) Images 19-26 (d) Images 27-36

Figure 4.9: This figure displays every 5th slice of each of the 36 multi slice MR
images, all planes of a multi slice MR image have the same color. The 36 images are
separated in 4 groups to prevent an overly cluttered view.

Fig. 4.12a, 4.12b and 4.12c show intersections of the reconstructed object in the
same planes as Fig. 4.11. Note the substantial improvement of the resolution
in the slice direction and the reduction of the noise. Furthermore, note the
improved detail in the coronal views, which is due to the reduced blurring in
the slice direction. Fig. 4.13 shows reconstructions with reduced sets of images.
The high resolution image was reconstructed with each of the groups of Fig. 4.9.
Note that especially group (a) has artefacts, which are due to the substantial
part of k-space that is not sampled by this group of images, which is also visible
in Fig. 4.10. Furthermore, note that the noise level is slightly higher for these
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(a) Images 1-7 (b) Images 8-18

(c) Images 19-26 (d) Images 27-36

Figure 4.10: This figure schematically displays the part of k-space that each of
the 36 multi slice MR images sample. Each k-space box that is sampled by a multi
slice MR image has the same color as the slices of that image in Fig. 4.9. The solid
inner box contains the spatial frequencies at which the frequency response of the
slice selection is larger than .8, the outer, highly transparent box contains the spatial
frequencies whose magnitude is higher than the maximum sidelobe.

images.
Fig. 4.14a shows the progression of the conjugated gradient method. The

blue curve, |o100 − oi|, shows the progression of the norm of the difference
between an intermediate reconstruction oi at iteration i and the final recon-
struction after 100 iterations. The green curve, |oi − oi−1|, shows the norm
of the update in each iteration. Since each update of the conjugated gradient
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(a) coronal (b) sagittal (c) transversal

Figure 4.11: One of the 36 original MR images. Intersections along the 3 main
directions are displayed.

(a) coronal (b) sagittal (c) transversal

Figure 4.12: The high resolution reconstructed image. Intersections along the 3
main directions are displayed.

method is orthogonal with respect to the previous updates,
∑99
j=i |oj−oj+1|2 =

|o100 − oi|2. The red curve, |ri|, shows the residue norm at each iteration i:
ri = XT (S −Xoi)− λKoi, which is zero in the true solution of the regular-
ized least squares solution. As is clearly visible, the magnitude of the update
of o quickly reduces and after 15 iterations it is approximately 0.001 of the
magnitude of o. After these 15 iterations, the difference to the final image is
approximately 0.01 of the magnitude of o. Even though the update of o is
still non-zero, only a limited number of iterations is needed before the error
of the solution due to the limited number of iterations is small compared to
the noise that is transfered to the reconstructed image. Note that this number
of iterations needed for convergence is substantially lower than the approxi-
mately 1000 iterations required by the methods in [34]. This higher rate of
convergence of the Conjugated Gradient method directly translates to faster
reconstruction times. Fig. 4.14b shows the relative updates, |oi − oi−1|/|oi|,
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of the reconstructions with the different groups of images. This image demon-
strates that the convergence speed is reduced when a lower number of images
is used for a reconstruction.

4.5 Conclusion

In this chapter, a method was developed by which a high resolution isotropic
image can be reconstructed from a set of anisotropic multi-slice MR images,
recorded with different slice orientations. In contrast to previous reconstruction
methods, this new method does not constrain the slice orientations. The recon-
struction method uses an improved model of the MR acquisition, but does not
require any prior knowledge about the imaged object. The high resolution im-
age of the object is accurately reconstructed by the conjugated gradient method
in a small number of iterations, substantially less than previous methods. The
experiments show that the quality of the reconstructed isotropic image is sub-
stantially better, both in resolution and SNR, than any of the original MR
images.

In order to perform the matrix multiplications that are present in the Con-
jugated Gradient method with a reasonable amount of computational power,
this matrix multiplication was reformulated as affine transformation combined
with a filter operation. A fast method to affinely transform images while avoid-
ing aliasing as well as distortions in the frequency domain was developed. This
method splits a general affine transformation in a set of shear operations, each
of which can be efficiently applied by a 1D low pass interpolation filter.
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(a)

coronal sagittal transversal

(b)

(c)

(d)

Figure 4.13: The high resolution reconstructed image, reconstructed with the 4
groups of images also selected in Fig. 4.9 and Fig. 4.10. Intersections along the 3
main directions are displayed.
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Figure 4.14: (a) Norm of update, difference with final, and residue during the
conjugated gradient iterations, when all 36 images are used for the reconstruction.
(b) Relative update at each iteration for the different groups of images.
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Automatic estimation of the noise
variance of MR images

The work described in this chapter has been published as:

J. Sijbers, D. H. J. Poot, A. J. den Dekker and W. Pintjens
Automatic estimation of the noise variance from the histogram of
a magnetic resonance image

in: Physics in Medicine and Biology,
Volume 52, February 2007, Pages 1335-1348

Abstract

Estimation of the noise variance of a magnetic resonance (MR) image
is important for various post-processing tasks. In the literature, various
methods for noise variance estimation from MR images are available,
most of them however requiring user interaction and/or multiple (per-
fectly aligned) images. In this chapter, we focus on automatic histogram-
based noise variance estimation techniques. Previously described meth-
ods are reviewed and a new method based on the maximum likelihood
(ML) principle is presented. Using Monte Carlo simulation experiments
as well as experimental MR data sets, the noise variance estimation meth-
ods are compared in terms of the root mean-squared error (RMSE). The
results show that the newly proposed method is superior in terms of the
RMSE.
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5. Estimation of the noise variance

5.1 Introduction

The noise variance in magnetic resonance (MR) images has always been an
important parameter to account for when processing and analyzing magnetic
resonance imaging (MRI) data. Algorithms for noise reduction, segmenta-
tion, clustering, restoration, and registration highly depend on the noise vari-
ance [39–42]. Also, many applications that employ statistical analysis tech-
niques, such as functional MRI or voxel based morphometry, often base their
conclusions on assumptions about the underlying noise characteristics [43–45].
Finally, knowledge of the noise variance is useful in the quality assessment of
the MR imaging system itself, for example to test the noise characteristics of
the receiver coil or the preamplifier [46].

In the past, many techniques have been proposed to estimate the image
noise variance. These can be subdivided into two classes:

multiple images In the past, noise variance estimation methods were devel-
oped based on two acquisitions of the same image. A standard procedure
was developed by Sano in which the noise variance was estimated by
subtracting two acquisitions of the same object and calculating the stan-
dard deviation of the resulting pixel values [47, 48]. Multiple acquisition
methods are relatively insensitive to structured noise such as ghosting,
ringing, and DC artifacts [49, 50]. However, strict requirements are the
perfect geometrical alignment of the images and temporal stationarity of
the imaging process.

single image The image noise variance can also be estimated from a single
magnitude image. A common approach is to estimate the noise variance
from a large, manually selected, uniform signal region or non-signal (i.e.,
noise only) region [10, 12, 14, 51, 52]. Manual interaction however clearly
suffers from inter and intra operator variability. An additional problem
is that the size of the selected (homogeneous) regions should be suffi-
ciently large to obtain a precise estimate of the noise variance. Moreover,
background data may suffer from systematic intensity variations due to
streaking or ghosting artifacts.
Often, magnitude MR images contain a large number of background data.
Hence, the noise variance can as well be estimated from the background
mode of the image histogram. Automatic noise variance estimation have
been designed from the knowledge that this background mode can be
represented by a Rayleigh distribution [53, 54]. In this chapter, these
procedures are reviewed and a new method is presented.

In this chapter, we describe a new method to estimated the image noise
variance from the background mode of the image histogram. Our initial mo-
tivation to search for a new method was that existing methods that exploit
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this background mode for the same purpose, seemed to be based on heuristic
arguments, leaving significant space for finding an improved method.

In Section 5.2.1, we will describe previously reported procedures to estimate
the noise variance from the background mode of the image histogram. Then, in
Section 5.2.2, we will present a new noise variance estimation method based on
maximum likelihood (ML) estimation from a partial histogram. Subsequently,
in Section 5.3 and 5.4, the performance of the described noise variance estima-
tion procedures in terms of precision and accuracy are evaluated and discussed,
respectively, for simulated as well as experimental data sets. Finally, in Section
5.5, conclusions are drawn.

5.2 Methods

Recall that in Section 2.5 was proven that the distribution of the non-signal
background areas is Rayleigh distributed.

5.2.1 Previously reported, histogram-based noise variance
estimation methods

Magnitude MR images generally contain a large number of background data
points. Hence, the histogram of such images often shows a background mode
that is clearly distinguishable from the signal contributions in the histogram.
As an example, in Fig. 5.1, three coronal spin-echo MR images of a mouse
brain are shown along with the corresponding histogram. The images, of size
256× 256, were acquired on a 7 Tesla SMIS MR imaging system, using a field
of view of 30 mm in both directions. Fig. 5.1a shows a proton density weighted
image (TE=20 ms, TR=3000 ms), Fig. 5.1c a T2 weighted image (TE=60 ms,
TR=3000 ms), and Fig. 5.1e a T1-weighted image (TE=20 ms, TR=300 ms).
As can be observed from Fig. 5.1b, Fig. 5.1d, and Fig. 5.1f, a background mode
can easily be observed.

To estimate the noise variance from the image histogram background mode,
automatic and robust noise variance estimation methods have been reported
that exploit this background mode along with the knowledge that the noise-only
contribution represents a Rayleigh distribution [53–55]. In this section, these
methods are reviewed. Next, in subsection 5.2.2, a new method is described
based on ML estimation.

Maximum of the background mode of the histogram

From the Rayleigh PDF, given in Eq. (2.9), the noise variance can be estimated
by searching for the value ofm for which the Rayleigh PDF attains a maximum
[55]:

∂p

∂m
= 0 ⇔ 1− m2

σ2 = 0 . (5.1)
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(d) Histogram of Fig. 5.1c
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(f) Histogram of Fig. 5.1e

Figure 5.1: 2D coronal MR image and corresponding histogram of a mouse brain:
(a-b) proton density-, (c-d) T2-, (e-f) T1-weighted image.
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From this, it is clear that an estimate of the noise standard deviation is simply
given by:

σ̂ = mmax . (5.2)
In practice, mmax can easily be found by searching for the magnitude value at
which the background mode in the histogram attains a maximum. Since the
background mode is always located on the left side of the histogram, finding
this maximum is trivial.

Brummer

In the work of Brummer et al. [53], a noise variance estimation method is
presented in which the Rayleigh distribution is fitted to a partial histogram
using least squares estimation:

N̂Br, σ̂Br = arg max
NBr,σBr

fc∑
f=0

(
h(f)−NBr

f

σ2
Br
e−(f2/2σ2

Br)
)2

, (5.3)

where NBr is the amplitude and σBr the width of the Rayleigh distribution that
is fitted to the histogram h. The cutoff fc is defined as

fc = 2σBr,0 , (5.4)

where σBr,0 is an initial estimate of the noise level. Brummer’s method speci-
fies that the position of the first local maximum of the low-pass-filtered grey-
value histogram is to be used as the initial estimate. In our implementation
of Brummer’s method, we used Chang’s estimate (see subsection 5.2.1) as an
initial value.

Chang’s noise variance estimation method

In order to improve robustness of the noise variance estimation method de-
scribed in the subsections 5.2.1 and 5.2.1, Chang et al. proposed a procedure
to smooth the histogram prior to estimation [54]. Thereby, a Gaussian smooth-
ing kernel

κ(y) = 1√
2π
e−y

2/2, (5.5)

was used. The smoothing width h was set to

h = 1.06σ0n
1/5 (5.6)

in which σ0 is the sample standard deviation and n the sample size. The
smoothed histogram at signal level x is given by

f̂(x) = 1
nh

n∑
i=1

κ

(
x− xi
h

)
, (5.7)
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where {xi} is the image intensity data. This smoothed histogram is then
searched for the location of the first local maximum:

σ̂Ch = arg max
σ

1
nh

n∑
i=1

κ

(
σ − xi
h

)
. (5.8)

5.2.2 New noise variance estimation method
In this subsection, a new noise variance estimation method will be described
based on ML estimation.

Let {li} with i = 0, ..., B denote the set of boundaries of histogram bins.
Furthermore, let ni represent the number of observations (counts) within the
bin [li−1, li], which are multinomially distributed. Then, the joint PDF of the
histogram data is given by [56]:

p({ni}|σ, {li}) = NB !∏B
i=1 ni!

B∏
i=1

pnii (σ) , (5.9)

with NB =
∑B
i=1 ni the total number of observations within the partial his-

togram and pi the probability that an observation assumes a value in the range
[li−1, li]. For Rayleigh distributed observations, this probability is given by

pi(σ) =

∫ li
li−1

m
σ2 exp

(
−m2

2σ2

)
dm∑B

i=1
∫ li
li−1

m
σ2 exp

(
−m2

2σ2

)
dm

. (5.10)

Since ∫ b

a

m

σ2 exp
(
−m

2

2σ2

)
dm = e−

a2
2σ2 − e−

b2
2σ2 , (5.11)

it is easy to show that Eq. (5.10) simplifies to

pi(σ) =
(
e−

l2
i−1
2σ2 − e−

l2
i

2σ2

)(
e−

l20
2σ2 − e−

l2
K

2σ2

)−1

. (5.12)

When the set of observations {ni} is fixed and σ is regarded as a variable, the
joint PDF given in Eq. (5.9) is called a likelihood function. The ML estimate
is then found by maximizing this likelihood function L with respect to σ:

σ̂ML,B = arg max
σ

L(σ|{ni}, {li}) . (5.13)

Equivalently, the ML estimate of σ is found by minimizing − lnL with respect
to σ:

σ̂ML,B = arg min
σ

[
NB ln

(
e−

l20
2σ2 − e−

l2
K

2σ2

)
−

B∑
i=1

ni ln
(
e−

l2
i−1
2σ2 − e−

l2
i

2σ2

)]
.

(5.14)
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Eq. (5.14) is the ML estimator of the noise standard deviation σ from B bins.
This estimator Eq. (5.14) finds that specific value for the noise variance σ

for which the probability Eq. (5.9) of observing the set of observations {ni} is
maximal. That is, for any other value of σ the probability Eq. (5.9) of observing
{ni} is lower.

Selection of the number of bins

Notice that basically the ML estimator Eq. (5.14) fits a (discretized) Rayleigh
PDF to the partial (left side of the) MR image histogram. The criterion for
the quality of the fit is given by the likelihood function. Since the number
of bins B that are used is not given a-priori, this raises the question how the
number of bins B is selected. Generally, a more precise estimate (i.e., a smaller
variance) will be obtained if the number of bins taken into account increases,
provided that the counts in those bins are indeed Rayleigh distributed back-
ground noise contributions. However, incorporating bins with counts that can
not be attributed solely to noise but also to signal contributions will introduce
a bias into the estimate of σ. Hence, as a selection criterion for B, a combined
measure of the bias and variance of the estimator σ̂ML,B was chosen. This
criterion is derived in the next paragraphs.

Variance A measure of the variance of σ̂ML,B was constructed from the
Cramér-Rao lower bound (CRLB), which is a lower bound on the variance of
any unbiased estimator σ̂ of σ [57]:

E
[
(σ − σ̂)2] ≥ I−1(σ) , (5.15)

with
I(σ) = −E

[
∂2

∂σ2 ln p({ni}|σ)
]

(5.16)

the Fisher information, also known as the expected Fisher information. It is
known that the ML estimator is consistent and asymptotically most precise
(i.e., it attains the CRLB asymptotically). Therefore, a useful measure of the
variance of σ̂ML,B is given by

V̂ar(σ̂ML,B) = −
(

∂2

∂σ2 lnL(σ|{ni})
∣∣∣∣
σ=σ̂ML,B

)−1

. (5.17)

The term right hand side is known as the inverse of the observed Fisher infor-
mation. This estimate of the variance was observed to be reliable only when
a sufficient number of bins was taken into account. In our implementation,
this number was chosen such that at least the maximum of the histogram was
included.
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5. Estimation of the noise variance

Bias A measure of the bias was found by quantifying the difference between
the Rayleigh distribution fitted using the first B bins of the histogram and the
actual bin counts in the histogram.

The histogram bin counts ni are distributed with a multinomial distribu-
tion. Furthermore, the marginal distribution of the number of counts in each
bin is a binomial distribution with parameters NB and pi. This means that
the expected value of ni is piNK and its variance is pi(1 − pi)NB . However,
since in general NB is large (and pi is small), the binomial distribution can
be approximated by a normal distribution with expectation value and variance
both equal to piNK . Under the null hypothesis (H0) that the observations in
all bins are Rayleigh distributed, pi is given by Eq. (5.10). Next, consider the
test statistic:

λK =
N∑
i=1

(fi,B − ni)2

fi,B
, (5.18)

with N the number of bins in the histogram and

fi,B = pi(σ̂ML,B)NB . (5.19)

It can be shown that, under H0, λK is approximately χ2
N−2 distributed (i.e.,

chi-squared distributed with N − 2 degrees of freedom). Obviously, H0 is more
likely to be rejected with increasing λK . Notice, that a large value of λK may
indicate the presence of a bias in our estimate of σ. Therefore, λK will be used
as a bias measure.

Most of the major contributions to λK can be expected to come from bins
for which i > B, since these bins have not been taken into account in the
estimation of σ. It is reasonable to assume that for these bins the counts due
to the underlying, noiseless signal outnumber those due to the background
noise only. Since contributions from the underlying signal can only increase
the bin counts ni, the actual bin counts will likely be significantly higher than
the counts predicted by the fitted Rayleigh distribution. If we exclude the bins
i with i > B for which ni > fi,B from Eq. (5.18), we obtain the modified test
statistic:

λ∗K =
B∑
i=1

(fi,B − ni)2

fi,B
+

N∑
i=B+1

[max(0, fi,B − ni)]2

fi,B
. (5.20)

The first term of Eq. (5.20) is known as Pearson’s test statistic [74], which
is approximately (that is, asymptotically) χ2 distributed with B − 2 degrees
of freedom under H0. The second term of Eq. (5.20) is approximately χ2

M

distributed under H0, with

M =
N∑

i=B+1
ε(fi,B − ni) . (5.21)
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Since both terms are independent, λ∗K is approximately χ2
B−2+M distributed

under H0. Hence, the statistic

b̂ = λ∗B − (B − 2 +M)√
B − 2 +M

(5.22)

has approximately a standard normal distribution under H0. The statistic
Eq. (5.22) will be used as a measure of the bias.

Selection criterion Finally, both measures of bias and variance given in
Eq. (5.17) and Eq. (5.22), respectively, are combined into a single criterion that
selects the optimal number of bins B̂:

B̂ = arg min
K

[
b̂+ V̂ar(σ̂ML,B)

]
. (5.23)

5.3 Experiments

Experiments were designed to compare the performance of the noise variance
estimators discussed in subsection 5.2.1 to that of the newly proposed method
presented in subsection 5.2.2. The experiments used simulated as well as exper-
imental data. As a performance measure, the root-mean-squared-error (RMSE)
was used.

Simulated noise-only images First, the performance of the estimators was
compared using simulated, integer valued Rayleigh distributed data (cor-
responding to noise-only magnitude MR images), with different noise
levels σ. The size of the image was 181× 80.

Simulated three-modal image Next, an image was generated that would
generate one background mode and two signal modes in the image his-
togram. In this way, overlap of the background mode with a signal mode
could be studied. A three-modal image was obtained from an image with
signal levels 0 (background), 100, and 200. Each level had an equal num-
ber of data points. Based on these levels, Rician distributed data were
generated. Depending on σ, the modes overlapped which challenged es-
timation of the noise variance from the background mode. The size of
the image was 181× 240.

Simulated 2D MR image In a next experiment, a single slice of a noise free
MR image was simulated using a web based MR simulator [58]. Thereby,
the normal brain database was employed (Modality: T1 weighted; slice
thickness: 3 mm; noise: 0%; Intensity non-uniformity (RF): 20%). Rician
distributed data with varying σ were then generated from the noiseless
image obtained from the simulator. The dimensions of the slice used were
181× 217.
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5. Estimation of the noise variance

Simulated 3D MR image Next, a similar simulation experiment was set up
as described above (i.e., using the web based MR simulator [58]), but now
with a 3D MR image of size 181× 217× 60.

Simulated 3D MR image with ghost Furthermore, the robustness of the
noise variance estimators in the presence of a ghost artefact was tested.
The ghost was generated by circularly shifting the original image in one
direction over half the image size in that direction and scaling the inten-
sities to 5% of the original intensities. This ghost was then added to the
original image. Also for this simulation experiment, Rician distributed
noise with different σ was added.

Experimental 3D MR images Finally, in order to test the different esti-
mators on experimental data, a cherry tomato was scanned with a 7
Tesla (Bruker, DE) MR imaging system with self shielded gradients of
300 mT/m and an aperture of 10 cm.
To evaluate the standard deviation of the estimators experimentally, the
estimators were applied to averaged images. Each averaged image was
obtained by averaging over a number of images acquired under identical
experimental conditions. Averaging was done in the complex k-space, so
before reconstructing the magnitude image. The theoretical reduction
of the noise standard deviation as a function of the number of images n
over which the average was taken is known to be 1/

√
n. Therefore, the

estimated noise standard deviation, multiplied by
√
n is expected to be

constant as a function of n. In this experiment, it was tested whether the
slope of the line obtained by linear regression differed significantly from
zero.

5.4 Results and discussion

Simulated noise-only images In Fig. 5.2, the bias and RMSE of the dif-
ferent estimators are shown as a function of σ. At low noise levels,
Chang’s estimator and the Maximum estimator show an oscillatory be-
havior, which is caused by the discreteness of the histogram. Indeed, at
low values of σ, the width of the Rayleigh distribution is smaller than the
histogram bin width, which leads to an estimate of σ that is consistently
located in the center of the bin, which in turn has a consistent negative
or positive bias. Since for low σ, the smoothing parameter of Chang’s
estimator given by Eq. (5.6) is too small to compensate for this effect,
the oscillatory behavior of this estimator is still apparent. For all values
of σ, the Maximum estimator and Chang’s estimator have significantly
larger RMSE than Brummer’s estimator and the ML based estimator.
Brummer’s method and the ML based method account for the Rayleigh
distribution, which leads to significantly improved RMSE values of the
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Figure 5.2: The bias (a) and RMSE (b) of the noise variance estimators as a function
of σ for simulated noise-only MR data. For each value of σ, 5000 simulations were
used.

noise variance estimator. The proposed ML based noise variance estima-
tor clearly performs best in terms of the RMSE because:

1. the ML based estimator correctly accounts for the discreteness of the
data. This is especially important when σ is close to the histogram
bin width. For all values of σ, only for the ML based estimator
the bias could not be shown to be significantly different from zero
(which can also be appreciated from Fig. 5.2a.

2. the multinomial distribution of the histogram bins is only taken into
account by the ML based estimator. This results in a lower variance
of the ML based estimator compared to that of Brummer’s estimator
for a given number of bins.

3. the number of bins to be used for estimation is adaptively deter-
mined. For noise only data, the ML based estimator takes generally
all bins into account since they pass the Rayleigh distribution test
(cfr. Eq. (5.20)) and thus has the lowest RMSE when the noise level
is larger. In contrast, Brummer’s method, the number of bins used
for estimation is determined in a ‘hard’ way from an initial estimate
of σ (cfr. Eq. (5.4).

The RMSE of the ML based estimator is approximately half of the RMSE
of the second best, which is Brummer’s estimator.

Simulated three-modal image In Fig. 5.4, the RMSE of the different esti-
mators is plotted. As can be seen, the RMSE is low for most estimators
when the signal level is below 1/3 of the first signal level and rises sharply
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Figure 5.3: Histogram of the simulated three-modal-image with standard de-
viation σ = 30, along with the true Rayleigh distribution as well as the Rayleigh
distributions based on the estimated noise standard deviations and the low pass fil-
tered histogram as specified by Chang’s method.
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Figure 5.4: The RMSE of the noise variance estimators as a function of σ for a
simulated three-modal MR image. The simulated image contained three grey
values: 0, 100, and 200. For each value of σ, 1000 simulations were used.
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Figure 5.5: (a) The RMSE of the noise variance estimators as a function of σ for
simulated 2D MR data. For each value of σ, 500 simulations were used. The noise
free 2D slice used for this simulation is shown in (b).

after that. For large σ (i.e., approximately σ > 30) the noise variance es-
timations yield less reliable results, because the background mode largely
overlaps with the signal modes.
To illustrate the difficulty of estimating σ accurately, a representative
realization of the histogram with a noise level of 30 is plotted in Fig. 5.3.
Along with the histogram, the true, underlying Rayleigh distribution as
well as the fitted Rayleigh distributions of the different estimators are
shown. As can be observed, the fitted distribution using the proposed
ML based estimation procedure, approximates the true distribution best.
From Fig. 5.4, it is clear that for low σ (i.e., approximately σ < 30), both
Brummer’s method and the ML base method have significantly lower
RMSE than the Maximum estimator and Chang’s estimator, which is
due to the fact that much more data from the histogram are taken into
account, leading to a reduced variance of the noise variance estimator. For
large σ (i.e., approximately σ > 30), the ML based estimator outperforms
all other estimators with respect to the RMSE. This is because the ML
based method tries to find the right balance between the variance and
the bias of the σ estimator by optimizing the number of bins used for
estimation.

Simulated 2D MR image The noise variance estimation results for simu-
lated 2D MR image are shown in Fig. 5.5. Given that the mean value
〈m〉 of the noiseless image (in this case 〈m〉=210), the image SNR can be
defined as 〈m〉/σ. For low SNR, the Chang’s method performs best, prob-
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(b) with Ghost

Figure 5.6: The RMSE of the noise variance estimators as a function of σ for
simulated 3D-MR data. The left image shows the results without ghost and the
right image shows the results with a ghost added. For each value of σ, 500 simulations
were used.

ably caused by the smoothing of the histogram. For extremely low SNR,
however, none of the methods are suitable for accurate noise variance de-
termination because in this region the signal and noise contributions in
the image histogram severely overlap. For moderate or high values of the
SNR (i.e., SNR > 2), the proposed ML based noise variance estimator
performs best in terms of the RMSE.

Simulated 3D MR image The results of the simulated 3D data set are
shown in Fig. 5.6a. For 3D data sets, the ratio of the number of back-
ground voxels to the number of non-background voxels is generally sig-
nificantly larger compared to 2D data sets, which facilitates estimation
of the noise variance from the histogram background mode.
In contrast to the noise-only data, Brummer’s method scores worse for
simulated 3D MR data than the Maximum and Chang’s estimators. The
main reason for this is that Brummer’s estimator uses two times the
initial noise σ estimate as the number of bins (cfr. Eq. (5.4)). When a lot
of (background) data is present, as it is in a 3D image, the bias of this
estimator becomes prominent. The ML based method, which searches for
a compromise between precision and accuracy, uses fewer bins to obtain
a lower RMSE value.

Simulated 3D MR image with ghost In Fig. 5.6b the results of the 3D im-
age with ghost are presented. The change in the histogram of the noise
free image which resulted from adding the ghost is mainly concentrated
in the range 10 - 70. The ghost seems to slightly affect the noise variance
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(a) No averaging (b) Average of 12 acquisitions

Figure 5.7: MR image of a cherry tomato acquired with 1 and 12 images shown in
(a) and (b), respectively.

estimation for all noise variance estimation methods. However, also in
this case, the proposed ML based estimator performs best in terms of the
RMSE.

Experimental 3D MR images Finally, the noise variance was estimated
from MR images of a cherry tomato. Fig. 5.7a and Fig. 5.7b show the
MR reconstruction obtained by averaging over 1 and 12 acquired images,
respectively. The resulting σ̂ as a function of n, for each estimator, is
shown in Fig. 5.8. Chang’s estimator did reveal a statistically significant
trend, while the other estimators did not. Note that the variance of the
Maximum estimator and Chang’s estimator are larger than the variance
of the ML based estimator and Brummer’s estimator. This is because
the latter estimators exploit a larger part of the Rayleigh distributed
histogram background mode.

In general, we may conclude that the RMSE of the Maximum estimator
performs worst of all described estimators in terms of the RMSE, mainly be-
cause the variance of this estimator is large. The RMSE of Chang’s estimator
is smaller than that of the Maximum estimator. However, in general, its RMSE
is still significantly larger than that of Brummer’s and the proposed ML based
estimator. The large RMSE of the Maximum and Chang’s estimators can
partially be explained by the fact that they do not exploit the fact that the
Rayleigh distribution characterizes background the histogram bins.

Brummer’s method as well as the proposed ML based estimator do ac-
count for the Rayleigh distribution for the estimation of the noise variance.
However, in general, the proposed ML estimator performs significantly better
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Figure 5.8: Estimated σ of an experimental MR image of a cherry tomato, as a
function of the number of averages n used during the acquisition.

than Brummer’s method, mainly because it selects the number of bins used to
estimate the noise variance in an optimal way.

5.5 Conclusions

In this chapter, previously proposed noise variance estimation methods that
employ the image histogram were reviewed and a new method was proposed
based on Maximum Likelihood (ML) estimation. Simulation experiments showed
that the ML based estimator outperforms the previously proposed estimators
in terms of the root mean squared error.
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Likelihood based hypothesis tests for
brain activation detection from FMRI

data disturbed by colored noise

The main part of the work described in this chapter has been published as:

A. J. den Dekker, D. H. J. Poot, R. Bos and J. Sijbers
Likelihood based hypothesis tests for brain activation detection
from FMRI data disturbed by colored noise: a simulation study

in: IEEE Transactions on Medical Imaging,
Volume 28, February 2009, Pages 287-296

Abstract

Functional magnetic resonance imaging (fMRI) data that are cor-
rupted by temporally colored noise are generally preprocessed (i.e. pre-
whitened, or precolored) prior to functional activation detection. In this
chapter, we propose likelihood based hypothesis tests that account for
colored noise directly within the framework of functional activation de-
tection.

Three likelihood based tests are proposed: the generalized likelihood
ratio (GLR) test, the Wald test, and the Rao test. The fMRI time se-
ries is modeled as a linear regression model, where one regressor describes
the task-related hemodynamic response, one regressor accounts for a con-
stant baseline and one regressor describes potential drift. The temporal
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correlation structure of the noise is modeled as an autoregressive (AR)
model. The order of the AR model is determined from practical null data
sets using Akaike’s information criterion (with penalty factor 3) as order
selection criterion. The tests proposed are based on exact expressions for
the likelihood function of the data.

Using Monte Carlo simulation experiments, the performance of the
proposed tests is evaluated in terms of detection rate and false alarm
rate properties and compared to the current general linear model (GLM)
test, which estimates the coloring of the noise in a separate step. Results
show that theoretical asymptotic distributions of the GLM, GLR, and
Wald test statistics cannot be reliably used for computing thresholds
for activation detection from finite length time series. Furthermore, it
is shown that, for a fixed false alarm rate, the detection rate of the
proposed GLR test statistic is slightly, but (statistically) significantly
improved compared to that of the common GLM based tests. Finally,
simulations results reveal that all tests considered show seriously inferior
performance if the order of the AR model is not chosen sufficiently high
to give an adequate description of the correlation structure of the noise,
whereas the effects of (slightly) overmodeling are observed to be less
harmful.

keywords fMRI, Statistical Parametric Maps, Generalized Likelihood Ratio
test, time series analysis, Wald test, Rao test

6.1 Introduction

Functional magnetic resonance imaging (fMRI) is a noninvasive technique used
to detect brain activity. By utilizing the fact that the magnetic resonance
signal intensity is correlated with the cerebral blood flow, which in turn is
correlated with neural activity [4], fMRI can localize brain regions that show
significant neural activity upon stimulus presentation, where the stimulus is a
task designed to activate specific brain regions related to the studied cognitive
process. fMRI data sets typically consist of time series associated with the
voxels of the brain. For each voxel, the significance of the response to the
stimulus is assessed by statistically analyzing the associated fMRI time series.
In this way, brain activation maps, or statistical parametric maps (SPMs),
reflecting brain activity can be constructed.

Nowadays, fMRI time series are commonly modeled by a general linear
model (GLM) disturbed by Gaussian distributed noise [59, 60]. Such a model
is capable of including potential time trends by adopting extra linear terms.
Furthermore, the GLM contains one or more activation related parameters
of interest. SPMs are obtained by testing the significance of the activation
related GLM parameter(s) using standard statistical tools such as the two-
sided t-test (in the one parameter case) or the F -test (in the case of more than
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one parameter). This method is also used in the ’Estimate’ and ’Inference’
steps of the well known SPM software package [61].

The fMRI recordings are contaminated by noise from sources such as the
MRI scanner, residual motion, physiological processes (breathing, blood circu-
lation), and non task related ’spontaneous’ brain activations [3]. It is reasonable
to assume that this noise is colored (i.e. correlated) in the time direction. Un-
like white noise, colored noise does not have a uniform (i.e. flat) power spectral
density function. Since the underlying correlation structure is unknown, cur-
rent methods deal with temporally correlated noise by prewhitening the data
based on an estimated correlation matrix of the noise [60]. This correlation
matrix is usually estimated by fitting an autoregressive (AR) time series model
to the residuals obtained after fitting the general linear model to the fMRI time
series in least squares sense [62]. This introduces a, usually small, bias in the
correlation estimates [63]. Since an estimate of the correlation matrix instead
of the unknown, true correlation matrix of the noise is used for prewhitening,
the assumption that the test statistic has a Student’s t or F distribution (upon
which inference on the significance of the response is based) is only approxi-
mately valid.

In this chapter, an alternative approach is proposed. This approach is
also based on a GLM with correlated noise modeled as an AR process, but
unlike the common GLM approach, it does not require a prewhitening step.
Instead, statistical inference is based on the exact likelihood function that
describes the statistics of the data including the temporal correlation structure
of the noise. No approximations are made. The order of the AR process is
determined from practical null data sets, acquired in the absence of activity.
Three likelihood based statistical binary hypothesis tests are proposed: the
generalized likelihood ratio test (GLRT), the Wald test, and the Rao test. In
each case, the null hypothesis H0 that no activation is present, is tested against
the alternative hypothesis H1 (activation is present). In the context of fMRI,
the use of the GLRT has previously been proposed by Nan and Nowak [64].
However, they consider complex valued fMRI data contaminated with white
noise while in the present work, we consider magnitude fMRI data and colored
noise.

For the computation of the test statistics proposed, the maximum likeli-
hood (ML) estimates of the unknown parameters under H0 (Rao), H1 (Wald),
or both H0 and H1 (GLRT) are needed. They are obtained by maximizing
the likelihood function with respect to all unknown parameters (including the
parameters of the AR model) simultaneously. In this chapter, the performance
of the proposed tests are evaluated in terms of detection rate and false alarm
rate.

It is known that the tests proposed have favorable asymptotic statistical
properties [65]. The asymptotic statistical distributions of the test statistics
under H0 do not depend on any unknown parameters. Therefore, independent
of the noise power, tests can be constructed that have a (specified) constant
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false alarm rate. Such a test is referred to as a constant false alarm rate
(CFAR) test [65]. Whether these asymptotic properties also apply to a finite
number of observations is investigated by means of simulation experiments.
The performance of the proposed tests is also compared to that of the widely
used t-test (which is based on the GLM approach).

The remaining part of this chapter is organized as follows. Section 6.2.1
describes a general, statistical model of fMRI time series. Section 6.2.2 dis-
cusses the general linear model (GLM) approach, assuming correlated noise
described by an autoregressive (AR) process. In Section 6.2.3, the joint prob-
ability density function (PDF) of the data is derived. In Section 6.2.4, some
optimizations are introduced to efficiently compute the ML estimate. The Sec-
tions 6.2.5, 6.2.6, 6.2.7, 6.2.8 and 6.2.9 describe the different test statistics. In
Section 6.3, experimental results are described. Section 6.3.1 describes how to
determine the order of the AR process from null data sets. In the Section 6.3.2
and Section 6.3.3, the tests are applied to simulated and experimental data.

Finally, conclusions are drawn in Section 6.4.

6.2 Method

6.2.1 The statistical model of the fMRI time series

An fMRI time series y = [y1, ..., yn]T (the superscript T denotes matrix
transposition) of equidistant observations can in general be modelled as

y = Xθ + v , (6.1)

in whichX is an n×m design matrix [3,59]. It consists ofm columns that model
signals of interest and nuisance signals such as potential drift. Furthermore, θ
is an m× 1 vector of unknown regression parameters and v is an n× 1 vector
that represents stochastic noise contributions. The noise v is modelled as a
stationary stochastic AR process of order r (i.e. an AR(r) process) [66]:

vt = et − α1vt−1 − α2vt−2 − · · · − αrvt−r , (6.2)

with α = [α1, . . . , αr]T the vector of AR parameters, t the time index and
et independent, zero mean Gaussian distributed white noise with variance σ2

e .
Let σ2

eV be the n× n covariance matrix of the AR process Eq. (6.2), that is,

σ2
eV = E

[
vvT

]
, (6.3)

with v = (v1, . . . , vn)T and E[.] the expectation operator. For observations of
stationary stochastic processes, the covariance matrix has a Toeplitz structure.
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Therefore, the covariance matrix of the AR(r) process vt may be written as

σ2
eV = σ2

v


ρ(0) ρ(1) . . . ρ(n− 1)
ρ(1) ρ(0) . . . ρ(n− 2)
...

...
. . .

...
ρ(n− 1) ρ(n− 2) . . . ρ(0)

 , (6.4)

where ρ(k) = E[vtvt+k]/σ2
v and σ2

v is the variance of vt. Notice that it follows
from this definition that ρ(0) = 1. The elements of the matrix V can be
expressed in terms of the AR parameters through the (r + 1) Yule Walker
relations [?]:

ρ(k) + α1ρ(|k − 1|) + · · ·+ αrρ(|k − r|) = 0 ∀k ∈ {0 . . . r}. (6.5)

Furthermore, it can be shown that [66]

σ2
v = σ2

e

1−
∑r
k=1 αkρ(k)

. (6.6)

Several authors have performed analyzes that indicate that AR models give
an accurate description of the actual temporal autocorrelation structure of the
noise that contaminates fMRI data [?, 62]. The validity of the model will be
assessed using experimental data in Section 6.3.1.

In order to derive the different test statistics in the Sections 6.2.6, 6.2.7,
6.2.8 and 6.2.9, first the generalized least squares (GLS) estimator, the joint
probability density function of the data and the ML estimator are derived in
the Sections 6.2.2, 6.2.3 and 6.2.4, respectively.

6.2.2 The common GLM approach
The widely used GLM approach, for example by SPM [61], consists of two
steps. First, an estimate of the parameter vector θ is obtained by least squares
fitting of the model described by the right hand side of Eq. (6.1) to the data
y. This so-called ordinary least squares (OLS) estimator can be expressed in
closed form by

θ̂OLS = (XTX)−1XTy . (6.7)

Although not fully efficient, this estimator is unbiased [57]. Therefore, the
residuals εεεOLS = y −Xθ̂OLS have zero expectation values and a correlation
structure that is approximately equal to that of the noise v. Assuming that
the noise is generated by an AR(r) model, the parameters of this model and
hence the matrix V can be estimated from the residuals [60]. In the simulation
experiments, described in Section 6.3 of this chapter, the sig2ar function of
the ARMASA Matlab toolbox [?], was used for this estimation. The estimated
covariance matrix will be denoted as V̂ .
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Second, V̂ −1 is used as weighting matrix in a generalized least squares
(GLS) estimator of θ, which results in

θ̂GLS = (XT V̂ −1X)−1XT V̂ −1y = ŴXT V̂ −1y , (6.8)

where the m×m matrix Ŵ = (XT V̂ −1X)−1 is an estimator of the covariance
matrix of θ̂GLS . Notice that estimator Eq. (6.8) is equivalent to prewhitening
the data and model with V̂ −1/2. That is, with X̃ = V̂ −1/2X and ỹ = V̂ −1/2y
the GLS estimator can be written as

θ̂GLS = (X̃T X̃)−1X̃T ỹ (6.9)

In principle, the procedure can be iterated by repeating both steps described
above, that is, by re-estimating the covariance matrix V from the residuals

εεεGLS = y −Xθ̂GLS (6.10)

and substituting the result in Eq. (6.8). However, this procedure was not im-
plemented in the simulation experiments described in Section 6.3, since it was
observed that iterating didn’t change the results significantly. Notice that if V
is known, an unbiased estimator of σ2

e is given by

σ̃2
e =(y −XWXTV −1y)TV −1(y −XWXTV −1y)/(n−m) , (6.11)

where W = (XTV −1X)−1 and (n − m)σ̃2
e/σ

2
e is χ2 distributed with n − m

degrees of freedom. If we substitute the estimator V̂ for V in Eq. (6.11), we
yield the estimator

σ̂2
e = εεεTGLSV̂

−1εεεGLS/(n−m) (6.12)
of which the statistics are not known exactly. However, as we will see later, the
validity of the assumption that the test statistic Eq. (6.32) associated with the
widely used F -test (described in Section 6.2.6) has indeed an F-distribution is
subject to the validity of the assumption that σ̂2

e has the same distribution as
estimator σ̃2

e . Obviously, this assumption is questionable.
Note that the GLM method described above can be implemented for any

AR model order on a voxel by voxel basis. This differs from its implementation
in the SPM software package [61], where only a single, iteratively estimated,
global AR(1) model for all brain voxels is used.

6.2.3 The joint probability density function of the data
In order to derive the ML estimator of θ,α and σ2

e , the joint probability density
function (PDF) of the fMRI data is needed. This joint PDF p(y;θ,α, σ2

e) can
be factorized as:

p(y;θ,α, σ2
e) = p(yr+1:n|y1:r;θ,α, σ2

e) p(y1:r;θ,α, σ2
e), (6.13)
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with y1:r = [y1, . . . , yr]T and yr+1:n = [yr+1, . . . , yn]T . With Eq. (6.1) and
Eq. (6.2) it can be shown that

et = yt − xtθ + α1(yt−1 − xt−1θ) + αr(yt−r − xt−rθ), (6.14)

where xt denotes the t-th row of the design matrix X. Therefore, the condi-
tional PDF of the observations yr+1:n, given that the first r observations y1:r
remain fixed at their observed values, may be written as [66, p. 347]

p(yr+1:n|y1:r;θ,α, σ2
e) =

(
1

2πσ2
e

)(n−r)/2
× (6.15)

exp
(
− 1

2σ2
e

n∑
t=r+1

{yt − xtθ + α1(yt−1 − xt−1θ) + . . .+ αr(yt−r − xt−rθ)}2
)
.

The joint PDF of the data y1:r may be written as [66, p. 350]

p(y1:r;θ,α, σ2
e) =

(
1

2πσ2
e

)r/2
|Vr|−1/2×

exp
(
− 1

2σ2
e

(yr −X1:rθ)T V −1
r (yr −X1:rθ)

)
,

(6.16)

where X1:r denotes the r × m matrix consisting of the first r rows of the
design matrix X. Furthermore, Vr denotes the r × r covariance matrix of
v1:r = (v1, . . . , vr)T divided by σ2

e and |Vr| denotes the determinant of Vr. By
multiplying the conditional PDF in Eq. (6.15) by Eq. (6.16), the exact joint
PDF of the data y may be written as [66]

p(y;θ,α, σ2
e) =

(
1

2πσ2
e

)n/2
|Vr|−1/2 exp

(
−Q̃(y;θ,α)/2σ2

e

)
, (6.17)

where

Q̃(y;θ,α) = (yr −X1:rθ)T V −1
r (yr −X1:rθ) +Q(y|θ,α) (6.18)

and

Q(y;θ,α) =
n∑

t=r+1
{yt − xtθ + α1(yt−1 − xt−1θ) + . . .+ αr(yt−r − xt−rθ)}2

(6.19)

are defined for convenience.

6.2.4 Maximum likelihood estimator
When the data y are given, the PDF given in Eq. (6.17) is a function of the
parameters α,θ and σ2

e only and it is called the likelihood function. In order
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to compute the likelihood based tests, the ML estimate of the unknown param-
eters has to be found, both under the null hypothesis H0 and the alternative
hypothesis H1. For that purpose, the likelihood function has to be maximized
with respect to the unknown parameters (α,θ, σ2

e). Note that maximization of
the likelihood function is equivalent to maximization of the (natural) logarithm
of the likelihood function because the logarithmic function is monotomic. It
follows from Eq. (6.17) that the natural logarithm of the likelihood function,
which is called the log-likelihood function, is given by

ln
(
p(y;θ,α, σ2

e)
)

=− n

2 ln
(
2πσ2

e

)
− 1

2 ln (|Vr|)−
1

2σ2
e

Q̃ (y;θ,α) . (6.20)

The noise variance σ2
e can be eliminated from the optimization problem since

the value of σ2
e that maximizes the likelihood function p(y;α,θ, σ2

e) can easily
be solved from

∂ ln p(y;θ,α, σ2
e)

∂σ2
e

= − n

2σ2
e

− 1
2σ4

e

Q̃ (y;θ,α) = 0 , (6.21)

and is equal to
σ̂2
e = 1

n
Q̃(y;θ,α). (6.22)

Substituting Eq. (6.22) in Eq. (6.17) yields the so-called concentrated likelihood
function:

p(y;θ,α) =
(

n

2πQ̃(y;θ,α)

)n/2
|Vr|−1/2 exp

(
−n2

)
. (6.23)

Notice that Vr depends on the parameters α. The ML estimates (α̂, θ̂) of
the parameters (α,θ) can now be found by maximizing Eq. (6.23) with respect
to (α,θ), both with and without the H0 constraints. The maximization of
the likelihood function is a nonlinear optimization problem that can be solved
numerically. Substituting (α̂, θ̂) for (α,θ) in Eq. (6.22) yields the ML estimate
of σ2

e .
For computational reasons, the logarithm of the concentrated likelihood

function

ln (p(y;θ,α)) = −n2 ln
(

2π
n
Q̃(y;θ,α)

)
− 1

2 ln (|Vr|)−
n

2 , (6.24)

is maximized. Since numerical optimization is much more efficient when the
gradient (and hessian) is available, one can also compute the first (and second)
derivative of the concentrated log-likelihood function with respect to θ and α.
These derivatives, in which non trivial simplifications have been applied, are
explained in Appendix 6.A.
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In the simulation experiments described in Section 6.3 of this chapter, the
ML estimator was implemented in MATLAB, using a built-in unconstrained
optimization routine which uses a subspace trust region method and is based
on the interior-reflective Newton method [?].

Extension to multiple independent traces

With the above method, a noise model is computed for each voxel trace. How-
ever, analyzing measured brain data indicated that the correlation structures
of the noise of neighboring voxels are similar. Since the power of inferences
usually increases with increasing number of data points available for estima-
tion, it would be beneficial to estimate a single noise model from multiple
neighboring traces. We observed that in our non-motion-corrected fMRI data
sets the spatial correlation of the noise was quite low. Thus, the correlation
structure is similar between neighboring voxels, while the actual noise realiza-
tions are (almost) uncorrelated. This would justify simultaneous modeling of
multiple neighboring voxel traces with a single AR process. As an extension of
Eq. (6.23), in this section, the time series of neighboring voxels are treated as
independent and are modeled by one single AR process describing the coloring
of the noise of the set of neighboring voxels. Let Y , Yi = y with i ∈ {1 . . .M},
be the set of the time series of the M voxels in the region of which the noise
can be described by one noise model. Furthermore, let Θ, Θi = θ, be the set
of regression parameter vectors from these M voxels: Then, the joint PDF is
given by

ln p(Y |Θ,α, σ2
e) =

M∑
i=1
−n2 ln

(
2πσ2

e

)
− 1

2 ln (|Vr|)−
1

2σ2
e

Q̃ (Yi|Θi,α)

= −Mn

2 ln
(
2πσ2

e

)
− M

2 ln (|Vr|)−
1

2σ2
e

M∑
i=1

Q̃ (Yi|Θi,α) . (6.25)

The σ2
e that maximizes this likelihood is given by

σ̂2
e = 1

nM

M∑
i=1

Q̃(Yi|Θi,α) , (6.26)

with which again a concentrated likelihood can be computed

ln (p(Θ,α|Y )) = −nM2

[
1 + ln

(
2π
nM

M∑
i=1

Q̃(Yi|Θi,α)
)]
− M

2 ln (|Vr|) .

(6.27)
As both the noise level and coloring of the noise is estimated from M voxel
time series, it is expected that they have a substantially improved precision
and the strength of the activation tests might be improved.
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6.2.5 Statistical inference

Brain activation can now be detected on a voxel by voxel basis by testing the
significance of the task-related parameter(s). To determine whether a voxel
is active or not, one can distinguish one-sided and two-sided tests. One-sided
tests should be applied when the sign of the activation parameter(s) is known
a-priori. Since this is usually not justified in fMRI experiments [67], we will
restrict our analysis to two-sided tests. However, the methods presented can
be easily extended to one-sided tests. Since all considered tests can easily
be stated for the multi parameter case, this section is not restricted to single
parameter testing, but to a more general linear hypothesis test. Suppose that
we wish to test if τ satisfies the linear equations Cτ = c, where C is a known
full rank j×(m+r+1) matrix and c is a known j×1 vector. Then a two-sided
hypothesis test can be specified by

H0 : Cτ = c (6.28)
H1 : Cτ 6= c. (6.29)

The hypothesis test decides H0 when Cτ is not statistically significantly dif-
ferent from c and H1 otherwise. For testing the presence of activation, usually
j = 1, c = 0, and C reduces to a row vector in which only the element corre-
sponding to the activation parameter (e.g. θ1) is nonzero. For some tests, the
ML estimator of the parameters with and/or without the constraints imposed
by Eq. (6.28) are needed. When we substitute the values of the acquired data
y in the expression for the joint PDF of the data, given by Eq. (6.17), the
resulting function is a function of the unknown parameters τ only. The ML
estimates under H0 and H1 are then given by, respectively,

τ̂0 = arg max
τ

p (y|τ ) , subject to Cτ = c (6.30)

τ̂1 = arg max
τ

p (y|τ ) . (6.31)

In the next section, the GLM based F -test is reviewed. Subsequently, three
likelihood based tests are described: the GLRT, the Rao test, and the Wald
test. All these tests are based on the joint PDF of the data, described in
Section 6.2.3. Furthermore, the Rao test and the Wald test are based on the
Fisher information matrix, derived in the appendix.

6.2.6 F -test

For the GLM based F test, where only the linear regression parameters θ can
be tested, τ = θ and C is a j ×m matrix. The test statistic of the F -test is

98



6.2. Method

then given by

TF =

(
Cθ̂GLS − c

)T (
CŴCT

)−1 (
Cθ̂GLS − c

)
σ̂2
e

, (6.32)

where θ̂GLS denotes the GLS estimator and σ̂2
e is given by Eq. (6.12). Under

H0, the test statistic TF has approximately an F distribution with j and n−m
degrees of freedom. If V would be known, TF would be exactly F distributed
with the specified degrees of freedom. The F -test, decides H1 if TF > γ, with
γ some user specified threshold. This threshold is usually computed using the
F distribution and balancing the false alarm rate (probability of deciding H1
when H0 is true) against the detection rate (probability of deciding H1 when
H1 is true).

6.2.7 The generalized likelihood ratio test (GLRT)

The generalized likelihood ratio (GLR) is given by [65]:

λ = p (y|τ̂0)
p (y|τ̂1) . (6.33)

The GLRT principle now states that H0 is to be rejected if and only if λ ≤ λ0,
where λ0 is some user specified threshold. It can be shown that, asymptotically
(i.e. for n→∞), the modified GLR test statistic

TLR = −2 lnλ (6.34)

possesses a χ2
j distribution with j degrees of freedom when H0 is true.

Notice that, if X is not of full rank, the optimization implicit in Eq. (6.33)
might be numerically difficult. In that case, the use of Bayes factors may be
considered [?].

6.2.8 The Wald test

The Wald test statistic is given by [65]

TW2 = (Cτ̂1 − c)T
(
CF−1(τ̂1)CT

)−1 (Cτ̂1 − c) , (6.35)

where F−1(τ̂1) is the inverse of the Fisher information matrix (see Appendix 6.B),
evaluated at τ̂1. The (two-sided) Wald test decides H1 if TW2 > γ, where γ is
some user specified threshold. Asymptotically, the test statistic TW2 has a χ2

j

distribution, that is, a χ2 distribution with j degrees of freedom under H0.
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6.2.9 The Rao test

The Rao test statistic is given by [65]

TR2 = ∂ ln p(τ )
∂τ

∣∣∣∣T
τ=τ̂0

RCF−1(τ̂0)CTRT ∂ ln p(τ )
∂τ

∣∣∣∣
τ=τ̂0

(6.36)

where F−1(τ̂0) is the inverse of the Fisher information matrix, evaluated at
τ = τ̂0 and the (m + r + 1) × j matrix R is the pseudoinverse of C. The
Rao test decides H1 if TR2 > γ, where γ is some user specified threshold.
Asymptotically, the test statistic TR2 has a χ2

j distribution under H0.

6.2.10 Discussion

Knowledge of the PDF of the test statistic under H0 allows one to compose
tests with a desired false alarm rate. The false alarm rate is the probabil-
ity that the test will decide H1 when H0 is true. The detection rate is the
probability that the test will decide H1 when H1 is true. Throughout this
chapter, we will denote the false alarm rate and the detection rate by Pf and
Pd, respectively. Furthermore, a test has the so-called constant false-alarm rate
(CFAR) property if the threshold required to maintain a constant Pf can be
found independently of the signal-to-noise ratio (SNR) [65], which is usually
unknown beforehand. Since the asymptotic PDFs of the likelihood based test
statistics discussed in this section are known and parameter and SNR invariant,
the tests will all have the CFAR property at least asymptotically. Whether or
not the tests have the CFAR property for a finite number of observations can
be found out by means of simulations. For more details on likelihood based
tests, see [65].

6.3 Experiments and results

Experimental fMRI data sets were obtained from a healthy human volunteer,
male, age 32 years. An informed consent was signed by the participant. All
human experiments were performed on a 1.5T scanner with high-performance
40 mT/m gradients (Siemens Sonata, Erlangen, Germany). Gradient-recalled
multi-shot EPI sequences (TE 50 ms, TR 3000 ms) were used with 30 slices
covering the whole brain. The voxel dimensions were 3mm×3mm×3mm. Head
movement was restricted by foam-padded cushions and the subject wore ear-
plugs and noise reducing head-phones throughout the entire experiment.

6.3.1 Estimation of the order of the AR and trend models

Experimental fMRI resting (null) data were used to determine relevant orders
of the AR noise process and trend model.
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The trend model we used was a polynomial of order m (to be selected):

trend = Σmk=0bkt
k. (6.37)

The noise was modeled by an AR process as in Eq. (6.2). AR models of orders
0 to 8 and trend models of orders 0 to 4 were evaluated for a random selection
of 10 000 brain voxel traces with 90 time points from an fMRI null data set.
The polynomial order and AR order of each voxel was selected using Akaike’s
information criterion (AIC) [?], where a penalty factor of 3 instead of 2 was
chosen [?],

AIC3 = 2 ln p(y|τ̂1) + 3(m+ r). (6.38)

A histogram of the selected orders is plotted in Fig. 6.1a. For most traces, the
selected order of the polynomial was 0 or 1 (linear trend). Also, for most traces
the AR order selected was between 0 and 4. Due to the statistics involved in the
order selection, it is unlikely that for all traces the selected order of the model
equals the model of the underlying process. In order to get an impression of
the orders selected for a given model, a simulation of AR(4) noise with a linear
trend was set up. The simulation also had 90 time points per voxel trace. The
parameters of the AR noise generating process and the trend used are given by

AR = [1 − 0.177 − 0.164 − 0.115 − 0.130]
trend = 0.2t , (6.39)

where t is the time index of the simulated volume. In Fig. 6.1b, the results
of the order selection, again using the AIC order selection procedure with a
penalty factor 3, of the simulated data are plotted. The parameters of the
simulation were chosen to give approximately the same selection results, as
can be seen by comparing Fig. 6.1a with Fig. 6.1b.

The most interesting parts of the histograms are those parts where the
order of the trend model exceeds 1 or where the order of the AR model exceeds
4. In these parts, the orders are selected approximately equally often from
the measured and simulated data. Therefore, we think that a model with a
linear trend (polynomial order 1) and an AR(4) noise model gives a sufficiently
accurate description of the data. A linear trend and AR models up to order
4 were therefore used in the simulation experiments of the next section. Note
that we do not claim that the process underlying the data actually consists
of a linear trend and AR(4) noise process, but only that there is not enough
evidence to assume that higher order parameters are significantly present in
the data. For AR orders lower than 4 or trend orders lower than 1 this could
not be concluded since the histograms were always substantially different.

This analysis has been performed for several other data sets (results not
shown). In these other data sets, the linear trend was generally present, but
for some data sets AR(3) models turned out to give a sufficiently accurate
description of the data. AR orders higher than 4 or trend orders higher than
1 were not needed to describe the data sets considered.
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6.3.2 Simulation experiments

Simulation experiments were set up to detect brain activation. A simple block
design activation scheme was used in which traces of 100 time points were
generated with period equal to 20 (10 stimulus on, 10 stimulus off). This block
stimulus was convolved with a standard HRF function [60] (fmridesign with
default parameters and TR = 2) to get the activation pattern. Also, for each
voxel a small linear trend increasing 0.1 per time point and a baseline of 100
were introduced. A linear trend model (m = 1) was used in the model, as well
as the activation pattern. Note that when the trend (including baseline) is
modeled correctly (as it is here), changing trend parameters does not influence
the value of the likelihood function in its maximum, and thus the likelihood
based test values are independent of the actual trend parameters. Several
different noise models, based upon results of the previous section and selected
to investigate different properties of the estimators, were used to generate fMRI
data. These noise models were

ARa = [1 −0.177 −0.164 −0.115 − 0.130] (6.40)
ARb = [1 −0.208 −0.056 0.115] (6.41)
ARc = [1 −0.400 0.118 0.568] (6.42)

The power spectral density (PSD) of these noise processes is plotted in Fig. 6.2a
and the correlation functions in Fig. 6.2b. ARa is a low frequency colored
noise process. ARb is almost white, but has slight excess power near one of
the main frequencies present in the stimulus used. ARc is stronger colored,
also with the maximum power near one of the main frequencies present in
the stimulus used. The simulations of the null-data (i.e. data containing no
activation) with model ARa used 20 000 independent traces, the simulations
with model ARb used 100 000 independent traces, and the simulations with
model ARc used 100 000 and 40 000 independent traces for the lengths 100 and
2500, respectively. To investigate the effect of changing SNR in the simulation
experiments, the amplitude of the activation pattern was changed from 0 till
1.2, while the noise standard deviation was fixed to 1, which are realistic values
of SNR in fMRI [?]. At each activation level, the time courses of 1000 voxels
were generated. In this simulation experiment, the null hypothesis is given by
Eq. (6.28), with c = 0 and C = [1, 0, . . . , 0] (the first column of X contains
the activation related regressor).

Null distribution

The observed distribution of the test statistics under H0, the null distribu-
tion, was compared with the theoretically known asymptotic null distribution.
This is important since the asymptotic distribution might be used to compute
thresholds for a given false alarm rate Pf . The comparison of the distributions
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was made by observing the actual Pf of null data as a function of the theo-
retical asymptotic Pf . To help visualizing this, Fig. 6.3 shows a slice with the
(falsely) detected active voxels in a real fMRI null experiment.

Activation sensitivity of the test statistics

For a fixed Pf of 0.1%, the detection rates (Pd) of the different tests were
compared. Since it was observed that the observed null distribution of the
test statistics was not equal to the asymptotic distribution, a correction was
needed in order to make a fair comparison of the different test statistics and
models. Therefore, in all experiments where different Pd values were compared,
the observed null distribution of the simulated null data was used to compute
threshold values to obtain a specified Pf .

6.3.3 Results of the simulation experiments

Null distribution

The thresholds for detecting activation can be computed by using the theo-
retical asymptotic distribution of the test statistics under H0. However, this
does not necessarily lead to an accurate Pf for time series with a limited trace
length. In Fig. 6.4, the observed Pf of the different tests, with a linear trend
and AR(4) noise model, are plotted as a function of the theoretical asymptotic
Pf . Model ARa was used to generate the noise for Fig. 6.4a, Fig. 6.4c and
Fig. 6.4d and model ARb was used to generate the noise for Fig. 6.4b. The
first thing to note from Fig. 6.4a and Fig. 6.4b is that the distribution of the
test statistics has not reached the asymptotic distribution for 80 or 100 samples
per time series.

It can be noted from these figures as well that the observed Pf is larger
for the Wald test than for the LR test, which in turn is larger than the Pf
of the Rao test statistic. The Pf of the GLM test is somewhere in between.
For linear models the ordering of the Wald, LR and Rao tests statistics can
be proven to be as observed here, (see [68], p. 231). Since the models used in
this chapter are nonlinear, this ordering might be different. However, we did
not observe this in any data analyzed. Usually, as is the case in the presented
figures, the Rao test statistic approximates the asymptotic distribution most
accurately, especially in the most relevant region of false alarm rates between
0.01 and 0.001. However, even in this interval, the Rao test statistic has an
actual Pf that might differ from the asymptotic value by a factor larger than
2. So for data series with 80 to 100 time points the asymptotic distribution
cannot be reliably used to determine the thresholds of the test statistics.

When the length of the data series is increased, the asymptotic distribu-
tion is approached much more accurately, as is demonstrated in Fig. 6.4c and
Fig. 6.4d were the trace length was 500 and 2500, respectively.
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6. Hypothesis tests for fMRI

The main contribution to the difference between the observed and asymp-
totic distributions is the finite length of the time series. However, changing the
regression model or noise process influences the distribution of the test statis-
tic slightly. Therefore, the observed distributions shown in Fig. 6.4 cannot be
reliably used for all different regression models and noise sources.

When the order of the noise model is below the order needed to give an
accurate description of the data, the null distribution of the test statistics
deviates from the asymptotic distribution as well, as might be expected since
the model of the data is incomplete. In fact, this deviation can easily be much
larger than the deviation caused by short data series. A demonstration of this
is shown in Fig. 6.5, where the observed Pf is much larger or smaller than the
Pf set using the asymptotic distribution for the AR(0), AR(1) and AR(2) noise
models.

Apart from simulation experiments, the Pf of the tests under concern were
computed for experimental fMRI null data sets. The asymptotic theoretical
distribution was used to obtain the thresholds for the tests with a theoretical
Pf of 1%. Fig. 6.3 shows the voxels that are detected as active with this thresh-
old. For this threshold, the observed Pf of the Rao test statistic (Fig. 6.3a)
is 2.0 (±0.7) times the asymptotic theoretical Pf . As is clear from Fig. 6.3b,
Fig. 6.3c, and Fig. 6.3d, the LR, GLM, and Wald tests were observed to have
even higher false alarm rates of approximately 4.4%, 5.7%, and 6.4%, respec-
tively. This clearly demonstrates the need for correction of the Pf to obtain
reliable activation detection.

Activation sensitivity of the test statistics

In the second simulation experiment, the activation sensitivity of the test statis-
tics is investigated. The results are plotted in Fig. 6.6. An upper limit to the
detection rate is included in these plots. This upper limit is the theoretical de-
tection rate for the case in which the noise generating AR process and the noise
variance σ2

e are known. In this case, all evaluated test statistics are equivalent
and equal to

Tt =

(
Cθ̂ − c

)T (
CWCT

)−1
(
Cθ̂ − c

)
σ2
e

= θ̂1
2

σ2
θ1

, (6.43)

still with c = 0, j = 1 and C = [1, 0, . . . , 0]. Note that σ2
θ1

= σ2
eW1,1 is

the variance of θ̂1. When the noise process is known, the tests are optimally
sensitive, θ̂1 will be normally distributed with mean value a (denoting the acti-
vation level used in the simulation), and the test statistic Eq. (6.43) has a non-
central chi-squared distribution with 1 degree of freedom and non-centrality
parameter λ =

(
a
σθ1

)2
. The threshold value tt, which can be computed from
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Pr(Tt > tt;H0) = α, can be used to compute the detection probability at each
activation level, pd = Pr(Tt > tt;H1)

In practice, the coloring of the noise and the noise variance are not known.
Therefore, this theoretical limit is unreachable. In Fig. 6.6a, it is visible that the
Rao test statistic generally is the least sensitive to activation. The other three
test statistics, LR, Wald, and GLM have approximately equal detection rates,
although, by evaluating many simulations, it turns out that the LR test often
has a slightly higher detection rate. However, it is far more important to use
the correct noise model, as can be seen in Fig. 6.6b and Fig. 6.6c. These figures
contain the results of the LR test statistic. The other statistics are almost
overlapping and are therefore not plotted. When no or little color is present
in the noise, as is the case with noise process ARb, the optimal detection rate
can be reached by an AR(0) model (Fig. 6.6b). This is expected, since this
is the model that can describe the data accurately with the lowest number
of parameters. However, when the coloring of the data is stronger, as it is
in noise model ARc, which is used for Fig. 6.6c, the reduced precision due to
the extra parameters of the AR models is more than compensated for by an
increase in accuracy of the model and thus, for a given activation amplitude, the
detection rates of the AR(2) and AR(4) models are higher. So for (nearly) white
noise processes, using a high order AR model (AR(4)) results in a “modest”
performance loss, but, using a low order AR model (AR(0)) when there is
strongly colored noise results in a “large” performance loss. This suggests that
the order of the AR model should not be chosen too low.

6.4 Conclusions

In this chapter, likelihood based tests for the detection of functional brain
activity were presented. In contrast to the general linear model (GLM) tests,
the proposed likelihood ratio tests allow direct incorporation of colored noise
and do not require an explicit prewhitening step. Simulation results showed
that the detection rate of the proposed likelihood ratio test is slightly, but
significantly improved compared to the detection rate of the currently popular
GLM based tests. Furthermore, it was demonstrated that thresholds based
on theoretical, asymptotically valid null distributions of test statistics cannot
be reliably used when the data series does not have more than a few hundred
time points per voxel. In that case, thresholds obtained from observed null
distributions should be used instead. Finally, it was shown that undermodeling
of the (correlation structure of the) noise leads to inferior test results.

6.A Derivatives of the concentrated likelihood function

The concentrated likelihood function, as given in Eq. (6.27) is maximized to
obtain the maximum likelihood function. However, in order to be able to
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(a) Measured fMRI data
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(b) Simulated fMRI data

Figure 6.1: Histogram of the selected AR and polynomial orders from measured as
well as simulated data, using the AIC criterion with penalty factor 3. See Eq. (6.39)
for the parameters of the simulation model. 10 000 traces inside the brain were used
for the measurements and 10 000 generated independent traces were used for the
simulation. Note that for AR orders 5-8 the selection frequency for the measured and
simulated data is approximately equal.
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Figure 6.2: (a) Power spectral density of the noise processes used in the simula-
tions as function of the normalized frequency. (b) Correlation functions of the noise
processes used in the simulations.
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6. Hypothesis tests for fMRI

(a) Test: Rao (b) Test: LR (c) Test: GLM (d) Test: Wald

Figure 6.3: In these figures, the yellow dots are the voxels that were detected as
active in real fMRI null data, by each of the four different test statistics. No stimulus
was provided and thus the brain is expected to work in default mode in which the
resting state networks are activated. The spontaneous activations in these networks,
which are regarded as colored noise in our framework, are not correlated with the
tested task and thus should not increase the false alarm rate. The threshold was
computed to have a theoretical asymptotic Pf of 1% for all test statistics. An AR(4)
model was used for the noise model, and the fMRI time series had a length of 80
points. Note the difference in false alarm rate of the different test statistics. For this
asymptotic Pf , even the Rao test has an observed Pf that is 2.0 (±0.7) times higher
than the theoretical value.

efficiently maximize this likelihood function, the first and second derivatives are
needed. In this section these derivatives of the logarithm of the concentrated
likelihood function are derived. First, recall Eq. (6.27):

ln (p(Θ,α|Y )) = −nM2 − nM

2 ln
(

2π
nM

M∑
i=1

Q̃(Yi|Θi,α)
)
− M

2 ln (|Vr|)

(6.44)
with

Q̃(y;θ,α) = (yr −X1:rθ)T V −1
r (yr −X1:rθ) + (6.45)

n∑
t=r+1

(yt − xtθ + α1(yt−1 − xt−1θ) + . . .+ αr(yt−r − xt−rθ))2
.

With the definitions:

εεε = y −Xθ (6.46)

εεεr = [ε1, . . . , εr]T (6.47)

εεεt = [εt, εt−1, . . . , εt−r]T (6.48)
a = [1, α1, . . . , αr], (6.49)
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(a) Noise process ARa, trace length:
100
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(b) Noise process ARb, trace length:
80
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(c) Noise process ARa, trace length:
500
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(d) Noise process ARa, trace length:
2500

Figure 6.4: Logarithmic plot of Pf as a function of the Pf computed from the
asymptotic distribution for the different test statistics. The diagonal corresponds
with the asymptotic distribution. The shaded areas indicate the 95% confidence
regions of the observed Pf as computed from the binomial counting statistics. The
uncertainty indicated by these regions is caused by the finite number of voxel time
series used in the simulations. For each simulation the noise contaminated time trace
was modelled by a linear trend and an AR(4) model.

Eq. (6.45) can be simplified to:

Q̃(y;θ,α) =εεεTr V −1
r εεεr +

n∑
t=r+1

(aεεεt)2 (6.50)

The first and second order derivatives of Eq. (6.27) with respect to Θ and α
are given by

∂ln (p(Θ,α|Y ))
∂Θ = −nM2

∑M
i=1

∂Q̃(Yi|Θi,α)
∂Θ∑M

i=1 Q̃(Yi|Θi,α)
− M

2

∂|Vr|
∂Θ
|Vr|

(6.51)

∂ln (p(Θ,α|Y ))
∂α

= −nM2

∑M
i=1

∂Q̃(Yi|Θi,α)
∂α∑M

i=1 Q̃(Yi|Θi,α)
− M

2

∂|Vr|
∂α

|Vr|
(6.52)
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(a) Noise process ARc, 100 volumes
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(b) Noise process ARc, 2500 vol-
umes

Figure 6.5: This figure shows the observed distributions of the LR test statistic for
different AR orders in the model. The axes in this figure are the same as in Fig. 6.4.
Note that even for long time series (Figure (b)) the asymptotic distribution is not
reached for the AR(1) and AR(2) models, since the noise is generated by an AR(3)
process. Also note that for short time series none of the tests reaches the asymptotic
χ2

1 distribution.

∂2ln (p(Θ,α|Y ))
∂Θ2 = nM

2

 ∑M
i=1

∂Q̃(Yi|Θi,α)
∂Θ∑M

i=1 Q̃(Yi|Θi,α)

2

− nM

2

∑M
i=1

∂2Q̃(Yi|Θi,α)
∂Θ2∑M

i=1 Q̃(Yi|Θi,α)

+
(
M

2

∂|Vr|
∂Θ
|Vr|

)2

− M

2

∂2|Vr|
∂Θ2

|Vr|
(6.53)

∂2 ln (p(Θ,α|Y ))
∂Θ∂α

= nM

2

(∑M
i=1

∂Q̃(Yi|Θi,α)
∂Θ

)(∑M
i=1

∂Q̃(Yi|Θi,α)
∂α

)
(∑M

i=1 Q̃(Yi|Θi,α)
)2

− nM

2

∑M
i=1

∂2Q̃(Yi|Θi,α)
∂Θ∂α∑M

i=1 Q̃(Yi|Θi,α)
+ M

2

(
∂|Vr|
∂Θ

)(
∂|Vr|
∂α

)
|Vr|2

− M

2

∂2|Vr|
∂Θ2

|Vr|
(6.54)

∂2ln (p(Θ,α|Y ))
∂α2 = nM

2

 ∑M
i=1

∂Q̃(Yi|Θi,α)
∂α∑M

i=1 Q̃(Yi|Θi,α)

2

− nM

2

∑M
i=1

∂2Q̃(Yi|Θi,α)
∂α2∑M

i=1 Q̃(Yi|Θi,α)

+
(
M

2

∂|Vr|
∂α

|Vr|

)2

− M

2

∂2|Vr|
∂α2

|Vr|
(6.55)

In order to evaluate these derivatives, the first and second derivatives of Q̃(y;θ,α)
and |Vr| with respect to θ and α are needed. As the expansion of each of these
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(a) Noise process ARb, modelled
with AR(4) noise model
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(b) Noise process ARb, LR test
statistic
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(c) Noise process ARc, LR test
statistic

Figure 6.6: Activation sensitivity of the different test statistics, with corrected false
positive level. The theoretical maximum is reached when the true noise model and
the noise variance are known. The number of timepoints is 80 for the figures (a)
and (b) and 100 for figure (c). Figure (a) shows that the Rao test is less sensitive in
detecting activation and that the LR test is slightly more sensitive than the others.
Figures (b) and (c) show that the order of the noise model should be chosen carefully
so as to avoid inferior activation sensitivity.
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terms is requires a few lines, each is expanded separately. In all the expansions,
matrix identities, which were collected in the Matrix Cookbook [?], have been
extensively used.

6.A.1 Derivatives of |Vr|
This subsection expands the derivatives of |Vr|. Since Vr does not depend
on the parameters θ, all derivatives of |Vr| with respect to θ are zero. The
derivatives of |Vr| with respect to α are not as trivial:

∂|Vr|
∂α

=|Vr| tr
(
V −1
r

∂Vr
∂α

)
(6.56)

∂2|Vr|
∂αi∂αj

=|Vr|
(

tr
(
V −1
r

∂2Vr
∂αi∂αj

)
+ tr

(
V −1
r

∂Vr
∂αi

)
tr
(
V −1
r

∂Vr
∂αj

)
− tr

((
V −1
r

∂Vr
∂αi

)(
V −1
r

∂Vr
∂αj

)))
. (6.57)

Recall that Vr = g toeplitz(ρ) = gR, where g = σ2
v

σ2
e

is the gain and R =
toeplitz(ρ) is a function of ρ = [ρ(1), . . . , ρ(r)]T which is a function of α.
Therefore, we can write

∂Vr
∂α

=g ∂R
∂ρ

∂ρ

∂α
+ ∂g

∂α
R (6.58)

∂2Vr
∂α2 =2 ∂g

∂α

∂R

∂ρ

∂ρ

∂α
+ ∂2g

∂α2R+ g
∂R

∂ρ

∂2ρ

∂α2 + g
∂2R

∂ρ2
∂ρ

∂α

∂ρ

∂α
(6.59)

Since R = toeplitz(ρ) we can compute ∂R
∂ρ ,

∂(R)kl
∂ρi

= δk,l+i + δk,l−i ∀ i, k, l ∈ {1 . . . r} , (6.60)

with the δi,j Kronecker delta function, so the second order order derivative of
R is zero.

The vector with correlation coefficients ρ can be computed from α with the
Yule-Walker equations

M(α)ρ = −α ⇒ ρ = −M(α)−1α (6.61)

where

Mij(α) = δij + αi+j + αi−j (6.62)

and αi = 0 for i ≤ 0 or i > r. This allows to immediately compute the
derivative of M to α:

∂Mij

∂αk
= ∂

∂αk
(δij + αi+j + αi−j) (6.63)

=δi+j,k + δi−j,k, (6.64)
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and the second derivative is (obviously) zero. The derivatives of ρ with respect
to α are given by

∂ρ

∂αi
=−

(
M(α)−1)

:,i −
∂M(α)−1

∂αi
α (6.65)

∂2ρ

∂αi∂αj
=−

(
∂M(α)−1

∂αj

)
:,i
− ∂2M(α)−1

∂αi∂αj
α−

(
∂M(α)−1

∂αi

)
:,j

(6.66)

where an index Mi,: indicates the ith row of the matrix M , the index M:,i
indicates the ith column of the matrix M and

∂M(α)−1

∂αk
=−

r∑
i,j=1

(M(α)−1):,i (δi+j,k + δi−j,k) (M(α)−1)j,: (6.67)

∂2M(α)−1

∂αk∂αl
=2

r∑
i,j,m,n=1

(M(α)−1):,m (δm+n,k + δm−n,k) (M(α)−1)n,i×

(δi+j,k + δi−j,k) (M(α)−1)j,: (6.68)

The gain g can be computed from reflection coefficients rc or with α and
ρ as in Eq. (6.6)

g = 1
1−

∑r
k=1 αkρk

= 1∏r
k=1(1− rc2k)

(6.69)

Reflection coefficients rc might be used for faster computing and to be able
to more easily include stability constraint on the AR model (i.e. finite gain),
since a AR model is stable iff |rci| ≤ 1 ∀ i = 1 . . . r. The derivative of g
with respect to α is given by

∂g

∂αi
= ∂

∂αi

1
1 +αTM(α)−1α

=−
(M(α)−1)i,:α+αT (M(α)−1):,i +αT ∂M(α)−1

∂αi
α

(1 +αTM(α)−1α)2 (6.70)

∂2g

∂αi∂αj
=2

(
(M(α)−1)i,:α+αT (M(α)−1):,i +αT ∂M(α)−1

∂αi
α
)2

(1 +αTM(α)−1α)3 (6.71)

−

(M(α)−1)i,j + (M(α)−1)j,i + ∂M(α)−1)i,:
∂αj

α+αT ∂(M(α)−1):,i
∂αj

. . .

. . .+ αj

(
∂M(α)−1

∂αi

)
j,:
α+αT ∂

2M(α)−1

∂αj∂αi
α+αT

(
∂M(α)−1

∂αi

)
:,j
αj

(1 +αTM(α)−1α)2

6.A.2 Derivatives of Q̃(y;θ,α)

This subsection describes the derivatives of Q̃(y;θ,α). As this term depends
both on α and θ, both derivatives have to be computed.
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First the derivative of Q̃(y;θ,α) with respect to θ:

∂Q̃(y;θ,α)
∂θi

=− 2εεεTr V −1
r Xr,i −

n∑
t=r+1

2εεεTt aaTXt,i (6.72)

∂2Q̃(y;θ,α)
∂θi∂θj

=2XT
r,iV

−1
r Xr,j +

n∑
t=r+1

2XT
t,iaa

TXt,j (6.73)

were we noted that Vr is symmetric, εεε is the only term that depends on θ and
∂εεε

∂θi
=−Xi (6.74)

∂εεεr
∂θi

=−Xr,i (6.75)

∂εεεt
∂θi

=−Xt,i (6.76)

where Xi is the ith column of the matrix X and
Xr,i = [X1,i, . . . , Xr,i]T (6.77)

Xt,i = [Xt,i, Xt−1,i, . . . , Xt−r,i]T , (6.78)

corresponding to Eq. (6.47) and Eq. (6.48). Next the derivatives of Q̃(y;θ,α)
with respect to α:

∂Q̃(θ,α)
∂αi

=− εεεTr V −1
r

∂Vr
∂αi

V −1
r εεεr +

n∑
t=r+1

2εt−i
(
aTεεεt

)
(6.79)

∂2Q̃(θ,α)
∂αi∂αj

=− εεεTr
(
−V −1

r

∂Vr
∂αj

V −1
r

∂Vr
∂αi

V −1
r + V −1

r

∂2Vr
∂αi∂αj

V −1
r

−V −1
r

∂Vr
∂αi

V −1
r

∂Vr
∂αj

V −1
r

)
εεεr +

n∑
t=r+1

2εt−iεt−j (6.80)

where we note that ∂Vr∂αi
and ∂2Vr

∂αiαj
have been derived in the previous subsection.

The final second derivative is given by:

∂2Q̃(θ,α)
∂θi∂αj

=2εεεTr V −1
r

∂Vr
∂αj

V −1
r Xr,i +

n∑
t=r+1

(
2εt−jaTXt,i + 2Xt−j,ia

Tεεεt
)

(6.81)

6.B The Fisher score vector and the Fisher information
matrix

For the Rao and Wald tests the Fisher information matrix is needed. Therefore,
the Fisher score vector and Fisher information matrix are computed in this
appendix.
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The Fisher score vector of the data set y with respect to the parameters
τ = (θTαTσ2

e)T is defined as the (m+ r + 1)× 1 vector

s(τ ) = ∂ ln p
∂τ

, (6.82)

with p the joint PDF of the observations described by Eq. (6.17). It can be
shown that the expectation of the Fisher score (evaluated at the true values of
the parameters) is equal to zero [74], that is,

E [s(τ )] = 0, (6.83)

with 0 the (m+ r+ 1)×1 null vector. The (m+ r+ 1)× (m+ r+ 1) covariance
matrix of the Fisher score is therefore given by [74]

F = E
[
s(τ )sT (τ )

]
= E

[
∂ ln p
∂τ

(
∂ ln p
∂τ

)T]
. (6.84)

This covariance matrix is called the Fisher information matrix [74]. It can be
shown that under certain regularity conditions F may alternatively be written
as

F = −E
[
∂2 ln p
∂τ 2

]
. (6.85)

The Fisher matrix may be written in the form

F =

 Fθθ Fθα Fθσ2
e

Fαθ Fαα Fασ2
e

Fσ2
eθ

Fσ2
eα

Fσ2
eσ

2
e

 , (6.86)

where

Fθθ = −E
[
∂2 ln p
∂θ2

]
Fαα = −E

[
∂2 ln p
∂α2

]

Fσ2
eσ

2
e

= −E
[
∂2 ln p
∂(σ2

e)2

]

Fθα = F Tαθ = −E
[
∂2 ln p
∂θ∂α

]

Fθσ2
e

= F Tσ2
eθ

= −E
[
∂2 ln p
∂θ∂σ2

e

]

Fασ2
e

= F Tσ2
eα

= −E
[
∂2 ln p
∂α∂σ2

e

]

with Fθθ ∈ Rm×m,Fαα ∈ Rr×r,Fσ2
eσ

2
e
∈ R1×1,Fθα ∈ Rm×r, Fαθ ∈

Rr×m,Fθσ2
e
∈ Rm×1. It can be shown that all elements of Fθα, Fαθ, Fασ2

e
,
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Fσ2
eα

, Fθσ2
e
and Fσ2

eθ
are equal to zero. This means that Eq. (6.86) simplifies

to

F =

 Fθθ 0 0
0 Fαα 0
0 0 Fσ2

eσ
2
e

 . (6.87)

It can be shown that

Fθθ = 1
σ2
e

XT
1:rV

−1
r X1:r + 1

σ2
e

n∑
t=r+1

XT
t:t−rAXt:t−r, (6.88)

where

Xt:t−r =


xt
xt−1
...

xt−r

 (6.89)

and
A =

[
1 αT

α ααT

]
. (6.90)

For activation detection only θ is used in the test statistics. Therefore, and
because F is block diagonal, the only term of F that is needed is Fθθ.
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Abstract

Diffusion Kurtosis Imaging (DKI) is a new magnetic resonance imag-
ing model that describes the non-Gaussian diffusion behavior in tissues.
It has recently been shown that DKI parameters, such as the radial or
axial kurtosis, are more sensitive to brain physiology changes than the
well known diffusion tensor imaging (DTI) parameters in several white
and grey matter structures.

In order to estimate either DTI or DKI parameters with maximum
precision, the diffusion weighting gradient settings that are applied dur-
ing the acquisition need to be optimized. Indeed, it has been shown pre-
viously that optimizing the set of diffusion weighting gradient settings
can have a significant effect on the precision with which DTI parameters
can be estimated. In this chapter, we focus on the optimization of DKI
gradients settings. Commonly, DKI data are acquired using a standard
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set of diffusion weighting gradients with fixed directions and with regu-
larly spaced gradient strengths. In this work, we show that such gradient
settings are suboptimal with respect to the precision with which DKI pa-
rameters can be estimated. Furthermore, the gradient directions and the
strengths of the diffusion weighted MR images are optimized by mini-
mizing the Cramér Rao lower bound of DKI parameters. The impact of
the optimized gradient settings is evaluated, both on simulated as well
as experimentally recorded datasets. It is shown that the precision with
which the kurtosis parameters can be estimated, increases substantially
by optimizing the gradient settings.

keywords Diffusion Kurtosis Imaging, Diffusion weighted MRI, Experimen-
tal design, optimization, gradient settings

7.1 Introduction

Diffusion weighted (DW) magnetic resonance imaging (MRI) is the only method
available that measures non-invasively diffusion properties of tissues. Knowl-
edge of these diffusion properties allows the characterization of intrinsic features
of tissue microdynamics and microstructure, such as cell permeability [69,70].
The diffusion of water molecules within a voxel is characterized by a statistical
distribution describing the random displacement of these molecules during a
fixed-time diffusion process. A popular model to describe this distribution is
the Diffusion Tensor (DT) model, which assumes the diffusion distribution to
be Gaussian.

Previously, it has been reported that the diffusion distribution in the hu-
man brain is generally non-Gaussian [70–72], due to diffusion restriction by cell
membranes and compartments of different sizes present in the neural tissue.
Since the DTI model is limited to Gaussian diffusion only, the model can gener-
ally not describe these diffusion profiles accurately. Diffusion kurtosis imaging
(DKI) was recently proposed as an extension to the Gaussian DT model. It
was shown that DKI allows a better detection and characterization of changes
in various white and grey matter structures [73]. In addition to the second
central moment of the diffusion distribution, DKI also measures the kurtosis
excess of that distribution. The kurtosis excess is defined as the fourth central
moment of the distribution divided by the square of the variance minus 3 [74].
The “minus 3” term is often explained as a correction to make the kurtosis
zero for a Gaussian distribution. Hence, compared to a DTI model, the inclu-
sion of the kurtosis excess allows a more accurate description of the diffusion
properties of neural tissues [71,75].

Commonly, DKI data are acquired using a standard set of diffusion weight-
ing gradients with fixed directions and with regularly spaced gradient strengths.
As is shown in this chapter, such imaging settings are suboptimal with respect
to the precision with which DKI parameters can be estimated from the DW-
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MR images. This precision strongly depends on the directions and strengths
(b-values) of the diffusion weighting gradients during the DW-MR acquisition.
A lower bound on the variance (precision) of any unbiased estimator is given
by the Cramér Rao Lower Bound (CRLB) [15]. In this chapter, the gradient
settings of the DKI experiments are optimized by minimizing the CRLB of
DKI parameters of interest.

Previously, several studies were published that optimized DW-MRI settings
for estimating DTI parameters such as the fractional anisotropy (FA) and the
mean diffusivity (MD) [76, 77]. In [76], for example, the CRLB of various dif-
fusion tensor parameters was minimized with respect to the b-values of the
DW-MR images. In this chapter, that work is extended to the optimization
of DKI gradient settings. Furthermore, since the DKI model has significantly
more parameters than the DTI model, a new numerical optimization strategy is
developed. Extensive simulation experiments validated with real experiments
show that using the optimized gradient settings allows estimation of DKI pa-
rameters with a substantially higher precision.

This chapter is organized as follows. Section 7.2 describes the DKI signal
model, the DKI parameters, the CRLB for estimating these parameters, and
the optimization method. Next, in Section 7.3, simulations and real experi-
ments are presented which investigate the robustness and improvement of the
performance of the optimized gradient settings, compared to the traditional
gradient settings. Finally, in Section 7.5, the conclusions are drawn.

7.2 Methods

To obtain the most precise DKI parameter estimates, the directions and b-
values of the diffusion weighting gradients need to be optimized. First, in
Section 7.2.1, the kurtosis imaging model is explained. Next, Section 7.2.2
describes the computation of the CRLB for estimating kurtosis estimators. In
Section 7.2.3, various kurtosis parameters are introduced. After that, Section
7.2.4 elaborates on the optimization of the gradient settings. Finally, Sections
7.2.5 describes an efficient optimization strategy.

7.2.1 Diffusion Kurtosis Imaging

The diffusion of hydrogen atoms in a voxel can be characterized by a 3D sym-
metric probability density function (PDF) f(x, t), where the random variable
x denotes the random displacement of molecules during a diffusion process
in a time interval t. It depends on the microstructure of the voxel, which is
generally different for each voxel.

DW-MRI does not measure the diffusion PDF directly. The gradients that
are applied during the diffusion weighting introduce a change in the phase of
the precessing and diffusing hydrogen atoms, which leads to a reduction of the
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magnitude of the DW image when compared to the unweighted image. The
magnitude of a DW image depends on the diffusion in the direction of the
applied diffusion weighting gradient, specified by q. The q-space vector q is
given by

q = γδG , (7.1)

where γ [rad/s,T] is the gyromagnetic ratio, δ [s] is the duration of the pulsed
gradients, andG = Gg is a vector of the magnitude and direction of the applied
diffusion weighting gradient where G [T/m] specifies the strength and g is the
unit length gradient direction vector. To take the duration of the diffusion
gradient pulses into account, the b-value is usually defined as [6]

b = q2t [s/m2], (7.2)

where q = |q| and t = (∆− δ/3) in which ∆ [s] is the time separation between
the leading edges of the diffusion gradient pulses [6].

Let x = gTx be the component of a displacement vector x in the direction
of g. The PDF of x in the direction of g is then given by:

fg(x; t) =
∫
gTx=x

f(x; t)dx. (7.3)

That is, fg(x; t) is f(x; t) integrated over the 2 dimensions orthogonal to g.
The diffusion coefficient Dg in the direction of the gradient g, which is the

variance of the diffusion in that direction, is given by:

Dg = 1
2tEfg [x2], (7.4)

where Efg [.] is the expectation operator with respect to fg. The excess kurtosis
Kg of the diffusion in the direction g is given by [74]

Kg =
Efg [x4]
Efg [x2]2 − 3. (7.5)

The phase shift induced by the diffusion weighting gradients along the direction
g is a linear function of x and q. Therefore, the magnitude of the noise free
MR signal after diffusion weighting with the gradient q, is given by

A(q) = A0Efg [eiqx] = A0

∫ ∞
x=−∞

eiqxfg(x; t)dx, (7.6)

where A0 is the non diffusion weighted signal intensity. Note that Eq. (7.6) is
equal to the characteristic function of fg(x; t), multiplied by A0.
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An approximate parametric model of Eq. (7.6) can be derived from a Taylor
series expansion around q = 0 of the natural logarithm of A(q) [75]:

lnA(q) = lnA0 − b
3∑

i,j=1
gigjDij +

b2

6

( 3∑
i=1

Dii

3

)2 3∑
i,j,k,l=1

gigjgkglWijkl +O(q6) (7.7)

in which gi is the ith component of g, Dij is the ijth element of the 2nd order
diffusion tensor D and Wijkl is the ijklth element of the 4th order kurtosis
tensor W . A detailed derivation of Eq. (7.7) can be found in Appendix 7.A.
The elements Dij and Wijkl are defined as

Dij = 1
2tEf [xixj ] (7.8)

and

Wijkl = 9Ef [xixjxkxl]− Ef [xixj ]Ef [xkxl]− Ef [xixk]Ef [xjxl]− Ef [xixl]Ef [xjxk]
(Ef [xTx])2 ,

(7.9)

respectively, where Ef [.] is the expectation operator with respect to f and with
xi the ith component of x [75]. Note that both D and W are fully symmetric
with respect to an interchange of indices.

From Eq. (7.7), the following approximate parametric DKI model of the
magnitude of the noise free diffusion weighted MR signal can then be obtained:

A(q;θ) = A0 exp

−b 3∑
i,j=1

gigjD
app
ij + b2

6

( 3∑
i=1

Dapp
ii

3

)2 3∑
i,j,k,l=1

gigjgkglW
app
ijkl

 ,

(7.10)

where the diffusion and kurtosis tensorsD andW are replaced by the apparent
diffusion and kurtosis tensors Dapp and W app, respectively [?]. It is known
that, for short duration δ of the diffusion gradient pulse, the apparent diffusion
and kurtosis tensors approach the true diffusion and kurtosis tensors given by
Eq. (7.8) and Eq. (7.9), respectively [75]. In Eq. (7.10), θ denotes a 22 × 1
parameter vector composed of the following scalar valued parameters: A0,
6 parameters representing the independent elements of the symmetric tensor
Dapp, and 15 parameters representing the independent elements of the fully
symmetric tensor W app.
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Remarks on the implementation

parameterization For the actual implementation of Eq. (7.10), the param-
eter vector θ needs to be explicitly defined. In our diffusion kurtosis model we
used a simple parameterization consisting of the independent elements of the
Diffusion and Kurtosis tensor:

d = [Dij;1≤i≤j≤3]T 6 element vector (7.11)
w = [Wijkl;1≤i≤j≤k≤l≤3]T 15 element vector (7.12)
θ = [A0 dT wT ]T . (7.13)

Other parameterizations are possible and, potentially, this might influence the
estimated values. For example, it is possible to use a parameterization of
the diffusion tensor Di,j that guarantees positive definiteness of this tensor.
A possible alternative for the parameterization of the kurtosis tensor is the
selection of the coefficients of

Mapp
ijkl =

( 3∑
m=1

Dapp
mm

3

)2

W app
ijkl , (7.14)

instead of Wijkl, as this is more directly related to the 4th derivative. As the
different parameterizations describe the same function they will find the same
optimal position. That is, unless constraints introduced in a specific parame-
terization, such as positive definiteness of the diffusion tensor D, are violated
in this optimum. However, the parameterization that is used might influence
the rates of convergence and/or differ in computational complexity. So, the
CPU time required to reach the optimum might differ for different parame-
terizations. Since there are 1 + 5 + 15 = 22 parameters to be optimized for
each voxel, the efficiency of the estimator is important. Therefore, in the opti-
mization, it is best to choose the parameterization with which the estimation
requires the least amount of CPU time. When desired, the parameters can be
transformed to any different parameterization after the optimization.

derivatives To be able to estimate θ with the ML estimator, as well as to be
able to compute the CRLB, the derivative of the model Eq. (7.10) with respect
to θ is required. With the parameterization Eq. (7.13), the derivatives of the
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model are given by

∂A(q;θ)
∂A0

= ∂

∂A0
A0 exp

−b 3∑
i,j=1

gigjD
app
ij + b2

6

( 3∑
i=1

Dapp
ii

3

)2 3∑
i,j,k,l=1

gigjgkglW
app
ijkl


= exp

−b 3∑
i,j=1

gigjD
app
ij + b2

6

( 3∑
i=1

Dapp
ii

3

)2 3∑
i,j,k,l=1

gigjgkglW
app
ijkl


= A(q;θ)

A0
(7.15)

∂A(q;θ)
∂d

= A(q;θ)

− 3∑
i,j=1

qiqj
∂Dapp

ij

∂d
+ 2

18

∑3
i=1D

app
ii

3

3∑
i,j,k,l=1

qiqjqkqlW
app
ijkl

3∑
i=1

∂Dapp
ii

∂d


(7.16)

∂A(q;θ)
∂w

= A(q;θ)1
6

( 3∑
i=1

Dapp
ii

3

)2 3∑
i,j,k,l=1

qiqjqkql
∂W app

ijkl

∂w
, (7.17)

∂A(q;θ)
∂θ

=
[
∂A(q;θ)
∂A0

∂A(q;θ)
∂dT

∂A(q;θ)
∂wT

]T
, (7.18)

where ∂Dapp
ij

∂dk
and ∂W app

ijkl

∂wm
is either 1 or 0, depending on whether the element

from d or w fills that specific element of D or W or not.

Weighted least squares The ML estimator computes the optimum of a
non linear function. Most efficient non linear optimization routines are lo-
cal optimization routines. These routines require an initialization which is as
good as possible for two reasons. First, to avoid convergence to potential erro-
neous local minima. Second, to converge with the fewest number of iterations.
Therefore, we developed a good initialization for the ML estimator of the dif-
fusion kurtosis model. This initialization is obtained with the (weighted) least
squares estimator. First, to remove the exponential function, the logarithm of
both sides of the DKI model Eq. (7.10) is taken:

logA(q;θ) = log(A0)− b
3∑

i,j=1
gigjD

app
ij + b2

6

3∑
i,j,k,l=1

gigjgkglM
app
ijkl , (7.19)

which can be written as:

Ã = Xθ̃, (7.20)
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with

θ̃ =
[
log(A0) dT w̃T

]T (7.21)

w̃ = w

( 3∑
i=1

Dapp
ii

3

)2

(7.22)

Ã = log(A) (7.23)

X =
[
1 (−bgigj)1≤i≤j≤3

b2

24 (gigjgkgl)1≤i≤j≤k≤l≤3

]
(7.24)

whereA = (N×1) is a vector containing the model predicted values for all DWI
in a specific voxel, X (N ×22) is the regression matrix, where the index values
i, j, k, l correspond to those of θ. To obtain the WLS estimate of the parameters
θ̃, a sufficient number DWI, with sufficiently different gradient directions g and
b-values vectors need to be recorded. When Ã contains the observed intensity
of all DWI in a specific voxel, the parameters θ̃ of the diffusion process in that
voxel can be estimated with :

W = diag(A2) (7.25)

θ̂LS =
(
XTWX

)−1
XTWÃ (7.26)

where W is the inverse of the covariance matrix of the (independent) DWI
measurements. This estimator assumes the noise level to be equal in each
DWI. However, due to the log function, the variance of Ã is (approximately)
1/A2 times the variance of A.

As this estimator is substantially faster to compute, and has been observed
to provide reasonably good results, it might even be used without the subse-
quent ML estimator.

7.2.2 CRLB of the kurtosis

The goal in this chapter is to optimize the experimental design of a diffusion
weighting acquisition scheme such that diffusion kurtosis parameters can be
estimated as precisely as possible. For this purpose we will employ the Cramér-
Rao lower bound (CRLB) framework. As explained in Section 2.7, the CRLB
provides a lower bound on the variance of any unbiased estimator θ̂ of the
parameters θ of a statistical model of measurements. Experiments showed that
the number of observations available in typical DKI measurements is sufficient
for the asymptotic properties of the ML estimator, i.e. that it reaches the
CRLB, to be valid.

The parameters of the DKI model are not directly relevant for analysis, but
derived parameters, of which several will be explained in the next section, are.
In order to optimize the CRLB of a derived kurtosis parameter, the CRLB
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of this derived parameter need to computed. Let m(θ) be a derived kurtosis
parameter, given as function of the DKI model parameters θ. Then, the CRLB
of m(θ) is given by

cov(m(θ̂)) ≥ Im(θ)−1, (7.27)

where Im is given by

Im(θ)−1 = ∂m(θ)
∂θT

I(θ)−1 ∂m(θ)
∂θ

, (7.28)

with I(θ) given by Eq. (2.33). The gradient settings of the DW-MR images
can be optimized by minimizing the CRLB of a well chosen parameter m(θ).

7.2.3 Kurtosis parameters
In this section, the kurtosis parameters that will be considered in the experi-
mental design and analysis are described.

Mean kurtosis

The mean kurtosis is given by

MK = 1
4π

∫∫
n∈S2

K(n)dn, (7.29)

where K(n) is the parameterized excess kurtosis, given by

K(n) =

(∑3
i=1

Dii
3

)2∑3
i,j,k,l=1 ninjnknlWi,j,k,l

(
∑3
i,j=1 ninjDi,j)2

, (7.30)

integrated over the unit sphere S2.The derivation of Eq. (7.30) is given in Ap-
pendix 7.A. Note that the definition of the mean kurtosis in Eq. (7.29) differs
from a previous definition in Eq. {2} in [78], where the MK is computed by
averaging the kurtosis in the sampled gradient directions. This requires the
same gradient directions to be sampled at multiple b-values. We prefer the
definition in terms of the integral since this allows free selection of the gradient
directions and b-values and allows accurate mean kurtosis values, even when
the gradient directions are not uniformly distributed on S2.

Radial kurtosis

The radial kurtosis is the mean of the kurtosis in the directions orthogonal to
the direction of main diffusion:

K⊥ =
∫ 2π

φ=0
K (v2 cosφ+ v3 sinφ) dφ, (7.31)
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where vi is the ith eigenvector of the diffusion tensor D, sorted by decreasing
eigenvalue. This definition differs slightly from the radial kurtosis defined in
[78], where the kurtosis along the second and third eigenvectors is averaged.
The radial kurtosis is an interesting parameter, since the diffusion is restricted
mainly in the radial direction. Therefore, it can be expected that the kurtosis,
which is non zero due to the restricted diffusion, is most pronounced in the
radial direction.

Kurtosis Anisotropy

In Eq. {8} in [78], the kurtosis anisotropy was defined as:

FAK =

√
2
3

(K1 − K̄)2 + (K2 − K̄)2 + (K3 − K̄)2

K2
1 +K2

2 +K2
3

, (7.32)

with Ki ≡ K(vi) and K̄ = (K1 + K2 + K3)/3 the mean of the kurtosis in
the diffusion tensor eigenvector directions. This definition is in direct analogy
to the fractional anisotropy in DTI. The original motivation for the diffusion
fractional anisotropy (FA) was that it is a coordinate system invariant, dimen-
sionless characterization of the differences between diffusion in the different
directions. However, in contrast to the diffusion eigenvalues, the kurtosis itself
is dimensionless and thus does not need to be normalized to obtain a dimen-
sionless value. In our opinion, a kurtosis anisotropy parameter should not
scale with the inverse mean kurtosis, which might be zero, but should only be
based on the variability in the kurtosis. Also, note that Eq. (7.32) only uses
the kurtosis in the 3 directions specified by the diffusion eigenvectors. Since
the kurtosis is specified by a higher order tensor, this might not capture all
kurtosis variability.

We propose a different kurtosis anisotropy parameter, which, in our opinion,
is more in line with the important characteristics of the FA. This new kurtosis
anisotropy (KA) parameter is given by the standard deviation of the kurtosis:

KA =

√
1

4π

∫∫
n∈S2

(K(n)−MK)2
dn. (7.33)

Efficient evaluation of the integrals of the kurtosis measures

The integral in Eq. (7.29) and Eq. (7.33) over S2 is numerically approximated
by sampling the integrand on a weighted set of n, approximately uniformly
distributed, sample points p1, · · · ,pn in S2. The weights w = [w1, · · · , wn] of
the sample points are chosen to maximize the accuracy of the approximation of
the integrals. For this, first note that any function on S2 can be expanded in the
spherical harmonics basis. Since the integral of all non zeroth order spherical
harmonics is zero, integrating over S2 determines the magnitude of the zeroth
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order spherical harmonic of the integrand, multiplied by the area of S2. As the
zeroth order spherical harmonic is constant, accurate evaluation of the integral
requires that

∑
i wi = 4π. Smooth functions, such as the integrands considered

in Eq. (7.29) and Eq. (7.33), generally have a decaying spectrum; i.e. the energy
of the functions is mainly concentrated in low order spherical harmonics. To
avoid contamination of the evaluated integral by the energy in these low order
spherical harmonics, the weights w are orthogonalized to a finite number of
spherical harmonics. To minimize the influence of energy of the integrands in
arbitrary higher order harmonics, the 2-norm of w is minimized. It can be
proven that the weight vector w that has these properties is the solution of a
least squares problem with only 1 non-confound:

w = [4π , 0 , . . . , 0]
(
STS

)−1
ST , (7.34)

where the components of S are given by:

Si,j = Y
mj
lj

(pi) (7.35)

where Y mjlj
is the mth

j real valued spherical harmonic of order lj , and l1 = 0,
m1 = 0. Usually, all (l + 1)2 < n unique combinations of |mj | ≤ lj ≤ l have
to be included, where l is the maximum order of spherical harmonics to which
w is orthogonal. However, when both the set of points and the integrand are
symmetric around 0, the odd lj and a symmetric half of the points pi do not
need to be included in the computations. The integrands in Eq. (7.29) and
Eq. (7.33) are symmetric around 0, so by selecting a symmetric set of points,
this property can be used.

Distributing point uniformly on a sphere

As described in the previous subsection, the integration over the spere requires
a set of points that are approximately isotropically distributed over this sphere.
Since the surface of the sphere is a curved space, a set of points cannot be
distributed evenly, except for the sets of points defined by the platonic solids,
containing 4, 6 8, 12 or 20 points. Obviously non uniform covers of the sphere
can be created:

1. First it is possible to space the points on a regular regular in spherical
coordinates. This gives a distribution like the often used intersections of
the circles of constant longitude or latitude of the earth. This distribution
gives a substantially increased density at the poles.

2. A second possibility, which already provides much more equal spacing,
is by threading a spiral around the sphere and sampling at regular steps
along this spiral.
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(a) (b) (c)

Figure 7.1: Meshes of thee different covers of the sphere with 100 points. (a)
regular grid in spherical coordinates, (b) regularized spiral, (c) points optimized with
electrostatic potential.

3. The third option, explained in more detail in this section, is by optimizing
a set of points, by simulating repulsion between the points.

See Fig. 7.1 for an example of these three distributions, where sets with 100
points were selected.

Distribution 1: For the regular sampling in the spherical coordinates, the
distribution the points P is created by sampling θ from −π to π with nθ + 1
equally spaced samples and φ from −π/2 to π/2 with nφ + 1 samples. When
double points are removed, n = nθ(nφ − 1) + 2 points remain.

Distribution 2: The spiral sampling of the sphere was defined in [79]. This
is a generalized spiral set of points that tries to approximate optimal isotropic
sets of points.

Distribution 3: The optimized sets of points. In general the points can be
optimized by minimizing

P = arg min
∑

1≤i<j≤n
|pi − pj |α (7.36)

for some power α of the Euclidean distance between the points pi and pj . Since
the optimization involves many degrees of freedom, 2n − 3, the optimization
consumes quite some computation time and is best evaluated offline. Since
the main specifying parameter is the number of points n, only a relative low
number of optimized sets need to be stored.

The optimization itself is not trivial due to the many degrees of freedom and
the presence of a large number of local minima. It is practically impossible to
guarantee convergence to the global minimum when more than, say, 30 points
are optimized. However, by optimizing with multiple initializations, a very
close to optimal set of points can be found. The quality of the set of optimized
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points could potentially depend on the kind of application the set of points is
optimized for. However, it was observed that the quality for integration does
not strongly depend on α, as long as it is negative. Therefore, α can be chosen
such that the function can be efficiently evaluated. The most easy and fast to
evaluate powers are integer powers close to 0, such as −1 or −2. Note that for
α < −2 the function value is more strongly influenced by the nearest neighbors,
in effect maximizing the distance to the nearest neighbors. General non linear
optimization routines strongly benefit from the availability of the gradient of
the function to optimize. Fortunately, computing the gradient of |pi − pj |α is
almost trivial. In our implementation, which is in a MATLAB routine called
sphere_best.m, a limited memory BGFS optimization method was employed
for the actual non linear optimization.

7.2.4 Optimization of the gradient settings
Let the settings of all diffusion weighting gradients during a DKI experiment,
in which N DW-MR images are acquired, be defined by Q = [q1, . . . , qN ]T .
Here each qi specifies the gradient settings, i.e. the b-value and the direction
of the diffusion weighting gradient, of a DW-MR image. Then, Q can be
optimized by minimizing the CRLB of the model parameters, I(θ)−1. However,
optimization methods need a scalar function to optimize. Therefore, a scalar
objective function of the CRLB of the model parameters is required. This scalar
objective function should evaluate the overall quality of the gradient settings
Q. Our objective function is the CRLB of a kurtosis parameter, Im(θ)−1,
given in Eq. (7.28). This function depends on the actual tissue properties θ0.
These properties θ0 are generally different in each voxel. Since the brain images
contain many voxels and different tissues in which one might be interested, the
acquisition scheme should be optimal for a distribution of θ, p(θ). The optimal
Q can then be found by minimizing the objective function, weighted with the
prior distribution p(θ):

Q̂ = arg min
Q

∫
θ

p(θ)Im(θ)−1dθ. (7.37)

In practice, the prior distribution p(θ) can be approximated with experimen-
tal data. However, it is difficult to evaluate the 22 dimensional integral in
Eq. (7.37). Therefore, it often is much more convenient to approximate the in-
tegral by drawing M samples from the prior distribution p(θ) and evaluating the
objective function on this set only. TheseM samples θi from p(θ), which should
be fixed during the optimization, can be collected in a set Θ = {θ1, ...,θM}.
Then, the integral in Eq. (7.37) can be approximated by

H(Q; Θ) = 1
M

M∑
i=1

Im(θi)−1, (7.38)
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which is the mean CRLB of the kurtosis parameter of the elements of Θ. The
optimal gradient settings are then given by

Q̂ = arg min
Q

H(Q; Θ). (7.39)

7.2.5 Efficient implementation of the optimization
The optimal set Q is in principle given by Eq. (7.39). However, due to the
large number of diffusion weighted images in a typical DKI experiment, it is
not trivial to find this optimum. The actual function to optimize is a sum of
scalar functions, each of which depends on the CRLB of a parameter vector
θ, which is a 22× 22 matrix. Most common optimization techniques for large
problems use the analytic or numerically computed derivatives of the function
to be optimized. However, the derivative of the inverse Fisher matrix I with
respect to Q is difficult and computationally expensive to compute. There are
general optimization routines which do not use the gradient of the function, for
example fminsearch in MATLAB (The MathWorks, Inc.), but they typically
require a huge number of function evaluations and it was observed that the
final gradient set found by fminsearch was not close to optimal. This might
be due to local minima and/or almost flat parts in the objective function. To be
able to overcome local minima, simulated annealing was chosen as alternative
optimization method [?]. The simulated annealing method iteratively updates
the diffusion weighting gradients, one at a time. When a gradient is modified,
the Fisher information matrix I needs to be updated to evaluate the change in
objective function. From Eq. (2.33) it follows that updating the magnitude and
direction of one diffusion weighting gradient, which influences the magnitude
in one MR image, causes a rank two update of I. Therefore, the Woodbury
identity [?],

(A+ CBCT )−1 = A−1 −A−1C
(
B−1 + CTA−1C

)−1
CTA−1, (7.40)

can be used to efficiently update the inverse Fisher matrix.

7.3 Experiments

As described in Section 7.2.4, the gradient settings are optimized by minimizing
the CRLB of a kurtosis parameter, evaluated on a set Θ obtained from a
prior distribution of DKI model parameters. In practice, samples from this
distribution are obtained from prior DKI measurements. In this chapter, the
prior DKI measurements were obtained from a human and small animal DKI
experiments of which the details are described in Section 7.3.1. In Section
7.3.2, several aspects that are important for the selection of Θ are discussed.
Then, in section 7.3.3, the sets Θ that were used for the optimizations are
specified. Finally, in section 7.3.4, traditional gradient settings are reviewed
and the settings of the optimized gradients are described.
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7.3.1 Acquisition of DKI data
Human DKI data was used for the construction of Θ. This data was acquired
after approval of the institutional review board and after informed consent was
obtained from the healthy volunteer. The dual spin echo diffusion-weighted
2D EPI images were acquired with a Siemens 3.0-T MRI scanner. The volume
was recorded with 45 slices with an acquisition matrix of 82 × 82. The voxel
dimensions were 2.7 mm isotropic and the echo time was TE = 96 ms. A 8
channel head coil was used and the GRAPPA acceleration factor was 2, with
24 reference lines. The bandwidth was 1356 Hz/pixel and the TR = 5.900
sec. The maximum b-value of the set of recorded DW-MR images was 2800
s/mm2. The SNR of the grey matter in the MR images with a b-value of
zero was 12. To evaluate the performance and robustness of the optimized
gradient settings, a second volunteer was scanned with the optimized settings
on a different Siemens 3.0-T MRI scanner. This dataset was recorded with 55
slices with an acquisition matrix of 128 × 128. The voxel dimensions were 2.5
mm isotropic and the echo time was TE = 104 ms. A 30 channel head coil
was used and the GRAPPA acceleration factor was 2, with 24 reference lines.
The bandwidth was 1955 Hz/pixel and the TR = 7.700 sec. The maximum
b-value of the set of recorded DW-MR images was 2800 s/mm2. Furthermore,
DKI data of a rat was acquired with a Bruker 7T small animal scanner. This
dataset was acquired with 50 slices with an acquisition matrix of 96 × 64,
reconstructed to an image size of 128 × 64. The slice thickness was 0.37 mm,
excluding the gap of 0.10 mm between slices. The in plane resolution was 0.37
mm and the echo time was TE = 24 ms. The bandwidth was 8333 Hz/pixel
and the TR = 11.000 sec. The images were recorded with 2 shot EPI and
mono polar diffusion weighting gradients with a maximum b-value of 2800
s/mm2, obtained with the diffusion times δ = 5ms and ∆ = 12ms. From these
datasets, the model parameters were estimated with a Maximum Likelihood
estimator [14].

7.3.2 Prerequisites for the selection of prior DKI model
parameters

There are several aspects that influence the selection of Θ:

• For elements of Θ with a large positive kurtosis, the magnitude of the
DW-MR images, predicted with the DKI model Eq. (7.10), will grow
strongly for large q. This is caused by the 4th power of q inside the
exponent function and indirectly, it is a result of the finite region in
which the series expansion used for the DKI model is accurate. The high
SNR of these anomalously high predicted DW-magnitudes reduce the
CRLB of the kurtosis parameters, which might cause the optimization
procedure to increase some gradients to unrealistically high magnitudes.
This can be avoided by limiting the maximum q value that is allowed in
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the optimization or by selecting elements for Θ without large positive
kurtosis.

• The DKI parameters will depend on the tissue type under study. There-
fore, representative parameter vectors of the different tissues should be
included in Θ. When the set Θ is too small or does not contain elements
from all relevant tissue types, the optimized gradient settings might be
good for the kurtosis parameters in the test set, but not for all the various
brain tissue types.

• The computation time required for the optimization depends almost lin-
early on the number of elements in Θ. Therefore, to limit the computa-
tion time required by the optimization, Θ should not contain excessively
many elements. In our experiments, optimizations are performed with
several hundreds of test tensors in Θ.

• Some kurtosis parameters, such as the radial kurtosis, depend on the in-
trinsic diffusion tensor coordinate system. When the optimization is per-
formed w.r.t. these kurtosis parameters, the coordinate system should be
well defined for all elements of Θ. This can be established by selecting Θ
from sufficiently anisotropic tissues, such as the white matter structures.

7.3.3 Selection of DKI model parameter sets
This section describes the sets Θ. These sets Θ contain the samples from the
prior distribution p(θ) that were selected for the optimization experiments.
Each element of a Θ contains the parameters of the DKI model, from which
the kurtosis parameters can be evaluated. In order to investigate the sensitivity
of the optimization of the kurtosis parameters to different Θ, the optimization
is performed for the following three sets:

Θ1 To avoid unrealistically large b-values due to large positive kurtosis, the
set Θ1 was constructed to have zero kurtosis and a range of realistic
diffusion tensor eigenvalues. The diffusion eigenvalues were typical for
the grey matter, white matter, and the cerebrospinal fluid (CSF) present
in the human DKI dataset. To avoid indeterminacy of diffusion tensor
eigenvectors, the eigenvalues were chosen sufficiently different. The diffu-
sion tensor eigenvalues are given in Table 7.2 and were manually selected
from the DKI dataset (cfr. Section 7.3.1). Furthermore, to make the
gradient settings to be optimized (approximately) rotationally invariant,
60 diffusion tensors were generated from each set of eigenvalues by rotat-
ing the first eigenvector towards the 20 corners of a dodecahedron and
subsequently rotating the second eigenvector in steps of 120◦.

Θ2 The second set was obtained by randomly selecting 400 DK-tensors from
the white and grey matter of the DKI dataset. The probability to
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be included in the set was equal for each grey and white matter voxel.
Since the estimated parameter vectors are noise corrupted, the diffusion
eigenvalues might occasionally be unrealistically low or the estimated
kurtosis might be large in some directions. Therefore, the lowest diffusion
eigenvalues were adjusted to be at least 1/bm, with bm = 3000 s/mm2

and for all directions g in which the kurtosis was positive, the kurtosis
was decreased as long as q2

mt < bm, with qm = arg min
q
A(qg), with A

from Eq. (7.10).

Θ3 The third set was obtained by randomly selecting 400 DK-tensors from
white matter only, FA> 0.4, of the DKI dataset. The probability of a
voxel to be included in the selection was proportional to the FA value of
the voxel. The elements of Θ3 were adjusted with the same procedure as
the elements of Θ2.

Table 7.2: Diffusion eigenvalues for Θ1 in mm2/s and FA value

λ1 × 103 λ2 × 103 λ3 × 103 FA
0.955 1.076 1.287 0.1507
0.940 1.103 1.309 0.1639
0.525 0.687 2.813 0.7514
0.631 1.250 1.839 0.4528
0.522 0.680 2.570 0.7286
0.525 0.782 2.317 0.6711
4.057 4.349 4.877 0.0936
3.217 3.441 3.944 0.1050

7.3.4 Optimized and traditional gradient settings

The optimized gradient settings were compared with a ‘traditional’ set T of
diffusion gradient settings for DKI [71]:

T specifies DW-MR images with diffusion weighting gradients in 30 direc-
tions, with 5 different b-values, 500 to 2500 s/mm2 in steps of 500 s/mm2

and 10 images with a b-value of zero. So in total T specifies 160 DW-MR
images.

For fair comparisons, the optimized sets used the same number of DW-MR
images as the traditional set T. The optimized sets of gradient settings were:

O
bj
i,m These DKI gradient settings were optimized with Θi, with a maximum b-

value bj allowed in the optimization, with b1 = 2800 s/mm2 and b2 = 2500
s/mm2. The optimization was performed with respect to the CRLB of
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the mean kurtosis of the elements of Θi. The maximum allowed b-value
was limited to avoid the selection of excessively large b-values due to the
breakdown of the DKI model for very high b-values.

O
bj
i,r The same as Obji,m, but now optimized with respect to the CRLB of the

radial kurtosis obtained from Θi.

7.4 Results and discussion

In this section, the results of the experiments are discussed. First, in Section
7.4.1, the optimized and traditional gradient settings are compared on kurtosis
parameters of the sets Θ. Next in Section 7.4.2, a good optimized set of
gradient settings is reviewed. Finally, in Section 7.4.3, recorded DKI data is
used to compare the performance of the optimized gradient settings with the
traditional gradient settings.

7.4.1 Results of the optimization
In this section, the performance of the different gradient settings is compared.

Table 7.3 shows the relative H(Q; Θi), Eq. (7.38). That is, Table 7.3 shows
the normalized mean CRLB of the mean (Table 7.4a) or radial (Table 7.4b)
kurtosis from the three sets Θi, for all gradient sets Q. The values are normal-
ized by dividing with the lowest H(Q; Θi) in each column. This table clearly
shows that the gradient settings influence the precision with which the kur-
tosis parameters can be estimated, as the normalized mean CRLB of kurtosis
parameters of the elements of Θi is different for each gradient set. Also, Table
7.3 shows that only the gradient settings optimized for Θ1, i.e. Ob1

1,r and O
b1
1,m,

have a low relative mean CRLB on kurtosis parameters computed from Θ1.
The relative mean CRLB of the other gradient settings, Obj2 and Obj3 , on the
estimation of kurtosis parameters of Θ1 is much larger.

Further inspection showed that these other gradient settings had a substan-
tially higher CRLB on the elements of Θ1 that modeled CSF. This is caused
by the very high diffusivity of CSF, which is not present in the grey or white
matter from which Θ2 and Θ3 were selected. Since one is usually not interested
in the CSF, this is not a problem for the use of the other optimized gradient
settings, but clearly shows the importance of the selection of the elements of
Θ.

Furthermore, Table 7.3 shows that the traditional gradient settings T has
a higher mean CRLB, especially for Θ3, which contains parameter vectors of
white matter structures. The mean CRLB of the radial kurtosis of T is 2.5
times larger than the mean CRLB of the radial kurtosis of the best gradient
settings.

Table 7.3 further shows that the gradient settings Ob1
2,m, optimized for the

mean kurtosis based on Θ2, generalizes well. That is, the mean CRLB of the
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mean and radial kurtosis of Θ2 and Θ3 is close to minimal, when the gradient
settings are specified by Ob1

2,m. Since Θ2 was randomly selected from the grey
and white matter, it contains mostly grey, but also white matter voxels, which
might explain the relatively low mean CRLB of the kurtosis parameters on the
white matter only set Θ3.

The sets of gradient settings Ob2
i were limited to a maximum b-value of 2500

s/mm2. When the performance of these sets is compared to Ob1
i , it is clear that

the mean CRLB for the set Θi which they are optimized on is only slightly
increased. In particular, the mean CRLB of the mean kurtosis of Θ2 is only
increased by 6.1% for Ob2

2,m, compared to Ob1
2,m. However, the mean CRLB of

different kurtosis parameters or model parameters is increased substantially by
this lower b-value of 2500 s/mm2. This can, for example, be seen by comparing
the relative mean CRLB of the radial kurtosis of Θ3 of the gradient settings
Ob2

2,m with that of Ob1
2,m, i.e. 1.758/1.379, which is larger than the 6.1% increase

in mean CRLB of the mean kurtosis of Θ2 for these gradient settings.
Summarized, the tables 7.3 and 7.4b show that:

• The mean CRLB can be substantially decreased by optimizing the set of
gradients.

• For the optimization, it is important that the selection of samples from a
prior distribution of tensors matches the diffusion and kurtosis properties
found in the relevant tissues under study.

• Gradient sets with good performance for both grey and white matter
structures and for both the mean and radial kurtosis can be found, such
as our set Ob1

2,m

7.4.2 Optimized set of DW-gradients
From the results presented in the previous section, it can be concluded that
the optimized gradient set Ob1

2,m produced the best results overall. Therefore,
Fig. 7.2 shows the optimized gradients Ob1

2,m, which are optimized with respect
to the mean kurtosis of Θ2. Fig. 7.2a shows the sorted b-values of the optimized
gradient set. The b-values automatically separate in, more or less, distinct
levels. Fig. 7.2b shows the gradient directions and magnitudes of the individual
directions, plotted on a sphere. The density of gradients is indicated by the
grey level of the sphere. As can be seen in Fig. 7.2b, the gradient directions
are approximately isotropically distributed, which is a result that is obtained
automatically by the optimization.

As in the acquired DKI dataset, the maximum b-value allowed in the op-
timization was 2800 s/mm2. Fig. 7.2a shows that a substantial number of gra-
dients are located at this maximum b-value. This suggests that the precision
might be improved by increasing the maximum allowed b-value even further.
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Table 7.3: Normalized value of the objective function H of the mean (a) kurtosis,
radial (b) kurtosis, or kurtosis anisotropy (c). This objective functionH is the average
CRLB of the mean or radial kurtosis of the gradient sets for the different test sets
Θi. The normalization was performed such that the lowest value in each column was
1.

Θ1 Θ2 Θ3
T 151 1.406 1.911

Ob1
1,m 1 2.299 4.737
Ob1

1,r 1 1.455 1.880
Ob1

2,m 496 1.000 1.186
Ob1

2,r 116 1.261 1.437
Ob1

3,m 203 1.367 1.000
Ob1

3,r 453337 3.983 1.137
Ob2

2,m 211 1.061 1.396
Ob2

2,r 125 1.296 1.653
Ob2

3,m 326 1.584 1.242
Ob2

3,r 460150 2.623 1.357
(a) Mean kurtosis

Θ1 Θ2 Θ3
T 77 1.571 2.541

Ob1
1,m 1 1.966 7.173
Ob1

1,r 1 1.398 2.267
Ob1

2,m 332 1.410 1.379
Ob1

2,r 80 1.000 1.480
Ob1

3,m 260 1.719 1.112
Ob1

3,r 220969 3.696 1.000
Ob2

2,m 112 1.393 1.758
Ob2

2,r 73 1.042 1.842
Ob2

3,m 410 1.720 1.517
Ob2

3,r 226377 2.517 1.406
(b) Radial kurtosis

Θ2 Θ3
T 1.253 1.717

Ob1
1,m 1.744 3.716
Ob1

1,r 1.319 1.569
Ob1

2,m 1.000 1.177
Ob1

2,r 1.110 1.316
Ob1

3,m 1.616 1.000
Ob1

3,r 4.515 1.113
Ob2

2,m 1.048 1.345
Ob2

2,r 1.130 1.444
Ob2

3,m 1.803 1.210
Ob2

3,r 2.957 1.282
(c) kurtosis anisotropy
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However, as the model Eq. (7.10) is based on a series expansion, it is not suited
to extrapolate the magnitude of DW-MR images acquired with higher b-values.

7.4.3 Comparison of the precision
This section compares the CRLB of kurtosis parameters of the optimized gra-
dient set Ob1

2,m with the traditional gradient set T. Fig. 7.3a and Fig. 7.3b show
the mean and radial kurtosis of the human DKI dataset, respectively. As is
clearly visible, the radial kurtosis is substantially larger in the white matter
structures, compared to the mean kurtosis. This indicates that the deviations
from the Gaussian distribution are strongest in the radial direction. Fig. 7.4
shows the square root of the CRLB of the mean kurtosis, evaluated with the
traditional and the optimized gradient sets, respectively. Thus, this figure dis-
plays a lower bound on the standard deviation of the mean kurtosis. In Fig. 7.4,
it is clearly visible that the kurtosis parameters of the CSF cannot be precisely
estimated by both gradient settings, as the square root of the CRLB of the
mean kurtosis is high compared to the mean kurtosis of the CSF. The CRLB
of the other tissues is lower, indicating more precise estimates. In Fig. 7.4,
the differences between the CRLB of the mean kurtosis of the gradient sets
are difficult to see. Therefore, the precision of a kurtosis parameter estimate
obtained with the gradient sets T and Ob1

2,m was compared by evaluating the
logarithm of the ratio of the CRLB of that kurtosis parameter,

R(θ;T,Ob1
2,m) = ln

(
I−1
m (θ, T )

I−1
m (θ, Ob1

2,m)

)
. (7.41)

The value of R is 0 when both gradient sets have an equal CRLB of the kurtosis
parameter in that voxel. Positive values indicate that the CRLB of the kur-
tosis parameter obtained with gradient settings T is larger than that obtained
with the optimized gradient set Ob1

2,m. Fig. 7.5 shows R of the mean kurtosis,
radial kurtosis, and kurtosis anisotropy parameters. It is clearly visible that
the gradient set Ob1

2,m improves the CRLB for all brain structures, except for
the CSF. It was observed that the median reduction of the CRLB of the mean
kurtosis in the grey matter was a factor 2.1. The factor is even larger than
the value obtained in the simulation experiment with Θ2, which consists of a
selection of grey and white matter voxels. Fig. 7.6 shows R(θ, T,Ob1

2,m) for the
diffusion parameters. The median of the CRLB of the mean diffusion in the
grey matter is 12% larger for the traditional gradient settings compared with
Ob1

2,m. The precision of the FA and direction of the first eigenvector is almost
equal for these 2 sets of gradient settings. Fig. 7.5 also shows the difference
in performance between the gradient sets optimized with respect to the mean
and radial kurtosis. As could be expected, the CRLB of the mean kurtosis is
higher for Ob1

2,r than for Ob1
2,m. The median CRLB of the mean kurtosis in the

grey matter increases by 29%, the radial kurtosis is approximately the same
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and the CRLB of the kurtosis anisotropy increases by 19%. This is a further
indication that the gradient settings Ob1

2,m are better than Ob1
2,r.

The last row of Fig. 7.5 shows R(θ, T,Ob1
2,m) of the second dataset, recorded

with the optimized gradient settings Ob1
2,m (accidently) rotated 90◦ in the slice

direction. These figures are quite similar to the first row. This demonstrates
that the optimized gradient settings are robust to differences between subjects
and not very sensitive to changes in the acquisition parameters and orientation,
as the acquisitions differ substantially. The median reduction of the CRLB of
the mean kurtosis in the grey matter of this dataset was a factor of 1.9, which,
considering the differences in acquisition, is close to the original improvement
factor.
To further study the influence of changing recording settings, the DKI recording
of a rat was made and the results are presented in Fig. 7.8. This figure shows
that the gradient settings Ob1

2,m, which are optimized for the human brain, im-
prove the precision of the mean kurtosis, compared to the traditional gradient
settings T . For the entire brain, the medianR(θ, T,Ob1

2,m) = 0.72, while the gra-
dient settings optimized for this acquisition have a median R(θ, T,Orat) = 0.96.
So from these datasets we find that the gradient settings specific for the rat
brain improve the CRLB of the median kurtosis by 27%, compared to the gra-
dient settings found for the human brain. This relatively small difference, w.r.t.
the substantially different MR system and subject, that the optimized gradient
settings can be applied to slightly different acquisitions without substantial loss
in precision of the diffusion and kurtosis parameters.
Finally, Fig. 7.7 shows the performance, as measured by R(θ, T, ∗), of the op-
timized gradient settings ∗ as function of the number of elements in Θ. The
value of R was computed for each θ of the 20k voxels from the first dataset that
were not used in any optimization. As is clearly indicated by this figure, this
performance quickly levels off and is essentially constant above 350 elements.
Hence, 400 elements are sufficient to optimize the gradient settings.

7.5 Conclusion

In summary, this chapter presents a novel method to optimize the diffusion
weighting gradient settings. This method is based on the minimization of the
Cramér Rao lower bound (CRLB) for estimating kurtosis parameters. The
results show that the increase in precision that can be obtained, compared
to a traditionally used set of gradients, is substantial. For the mean kurtosis
estimated in grey matter voxels an improvement of the CRLB with a factor of
2.1 was observed. Alternatively, when the required precision is already achieved
using standard gradient settings, optimizing the gradient settings allows one to
achieve the same precision from a reduced number of DW MR images or from
a set of DW-MR images with a reduced signal to noise ratio (allowing a higher
resolution).
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Figure 7.2: Magnitude and direction of optimized gradients Ob1
2,m .
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(a) Mean kurtosis
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Figure 7.3: Mean kurtosis, radial kurtosis and kurtosis anisotropy of a human
volunteer.
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Figure 7.4:
√
CRLB of the mean kurtosis, when estimated with T or Ob1

2,m.

The gradient settings are optimized using a prior distribution of DKI model
parameters. This prior distribution can be obtained from DW-MR images. In
this chapter it was shown that the prior distribution substantially influences
the precision of the kurtosis parameters. However, it was also shown that the
performance of the optimized gradient settings is not substantially reduced
when a different subject is scanned or other parameters of the acquisition are
(slightly) changed.
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Figure 7.5: This figure shows R (Eq. (7.41)) with mean kurtosis, (a),(d),(g), radial
kurtosis, (b),(e),(h), and kurtosis anisotropy, (c), (f), (i), of the diffusion kurtosis
tensors of a human DKI dataset. The subfigures (a), (b), and (c) are from a dataset
recorded with the traditional gradient settings, compared with Ob1

2,m, R(θ, T,Ob1
2,m).

In (d), (e), and (f), the gradient settings optimized w.r.t. the mean and radial
kurtosis are compared by R(θ, Ob1

2,m, O
b1
2,r), in terms of the precision of the mean

kurtosis, radial kurtosis and kurtosis anisotropy. The subfigures (g), (h), and (i) are
from a dataset recorded with the optimized gradient settings Ob1

2,m, compared with
the traditional gradient settings, R(θ, T,Ob1

2,m)
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(a) Mean diffusion

2

1

−0

−1

−2

(b) FA (c) Direction of first
eigenvector

Figure 7.6: This figure shows R(θ, T,Ob1
2,m) of the first dataset, for the mean diffu-

sion (a), fractional diffusion anisotropy (FA)(b) and direction of the first eigenvector
(c). As is visible in these figures, the precision of the diffusion tensor parameters in
the white and grey matter is not substantially changed when the traditional gradient
settings are replaced by the gradient settings Ob1

2,m.
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Figure 7.7: The subfigures (a) and (b) show the relative performance of the opti-
mized gradient settings as function of the number of elements in the set Θ that is
used during the optimization. All gradient settings were optimized w.r.t. the mean
kurtosis. The performance of each optimized settings O is measured with R(θ, T,O)
(Eq. (7.41)) for the mean kurtosis (a) and radial kurtosis (b). For each set of opti-
mized gradient settings, R is computed for θ of each of the 20k voxels not used in
any optimization. The three curves, 20%, 50% (=median) and 80%, give the value of
R for which the indicated percentage of tested voxels has a larger value. The shaded
areas indicate the 95% confidence interval of a single optimization, obtained by re-
peating the selection of voxels and optimization 10 times for each number of voxels
in the selection.
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Figure 7.8: The subfigures (a), (b), and (c) show the relative performance of the
traditional gradient set T , Ob1

2,m and Orat for the mean kurtosis. For localization,
an FA map colored with the direction of the first eigenvector (FEFA) is provided in
subfigure (d).

7.A Derivation of a parametric model of the DW-MR
images and excess kurtosis

This appendix gives a derivation of the expressions Eq. (7.7) and Eq. (7.30).
First, it is shown that the first terms of the Maclaurin series (Taylor expansion
around q = 0) of the logarithm of the diffusion weighted image intensity A(q),
Eq. (7.6), lead to simple expressions in terms of the diffusion and kurtosis co-
efficients. Next, the formula that computes the kurtosis in any direction from
the diffusion and kurtosis tensors is derived.

The diffusion kurtosis model is based on a truncated Taylor series expansion
of Eq. (7.6) around 0. Therefore, we first compute the derivatives of Eq. (7.6).

143



7. Optimal experimental design for DKI

Fortunately, all derivatives can be computed simultaneously:

∂kA(q)
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= ikA0

∫ ∞
x=−∞

xkfg(x)dx = ikA0Efg [xk], (7.46)

where we assume all integrands are finite, the derivatives and integrals exist
and are finite and fg is normalized. Note that the odd derivatives are purely
imaginary, and thus, even when fg(x) is a-symetric, the magnitude MR images
do not change due to this a-symetry.

Since magnitude DW-MR images are recorded, and by construction A(q) =
A∗(−q), the magnitude is symmetric in q. With Eq. (7.46) and the symmetry,
the following expression can be derived for the 2nd derivatives of the logarithm
of A(q):
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Furthermore, the 4th derivative is given by:
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With these derivatives in terms of the diffusion and kurtosis coefficients, the
series expansion of the logarithm of the DW-signal can be given by:

lnA(q) = lnA0 −Dgq2t+ 1
6D

2
gKgq

4t2 +O(q6) . (7.49)

In general, the 3D 2th derivative of lnA can be described by a symmetric tensor
of rank 2,

∂2lnA
∂q2 = ∂2 lnA

∂qi∂qj
= −2tDi,j , (7.50)

from which the diffusion in the direction g can be computed by

Dg =
3∑

i,j=1
gigjDi,j . (7.51)

The 3D 4th derivative of lnA can be described by a fully symmetric tensor of
rank 4,

∂4lnA
∂q4 = ∂4 lnA

∂qi∂qj∂qk∂ql

= Mi,j,k,l = 4t2
( 3∑
i=1

Dii

3

)2

Wi,j,k,l. (7.52)

With this 4th derivative and Dg, the kurtosis in any direction can be computed
by:

Kg ≡ K(g) =
∑3
i,j,k,l=1 gigjgkglMi,j,k,l

4t2(
∑3
i,j=1 gigjDi,j)2

=

(∑3
i=1

Dii
3

)2∑3
i,j,k,l=1 gigjgkglWi,j,k,l(∑3

i,j=1 gigjDi,j

)2 . (7.53)

Note that, due to the division by the diffusion in the direction of g, the Kurtosis
itself cannot be represented by a rank 4 tensor.
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Conclusions

The goal of this work was to develop new statistical analysis methods for MR
images of the brain, focused on functional MRI and diffusion weighted MRI.

Brain images are often acquired with fast imaging techniques, such as Echo
Planar Imaging (EPI). Unfortunately, these techniques suffer from distortions.
In EPI, a major source of distortions is the inhomogeneity of the main mag-
netic field. In order to be able to correctly interpret the brain images and to
be able to relate the image to the brain anatomy, these distortions need to
be minimized. In Chapter 3, a method has been developed with which these
field inhomogeneities can be estimated. The field inhomogeneities and other
distorting factors were estimated from reference data with a least squares es-
timator. The results demonstrated that the proposed estimator for the field
inhomogeneities is substantially less sensitive to noise in the reference data and
has the additional benefit that it returns other interesting parameters, such as
a map of the T ∗2 time constant of the object.

Multi slice images are generally anisotropic with respect to spatial resolu-
tion. That is, the in plane resolution is often much larger than the through-
plane resolution. In Chapter 4, a method was developed to combine several
multi slice images into a single, isotropic, high resolution image. The acqui-
sition of the MR images was modeled with a set of linear equations and the
reconstructed image was a regularized least squares solution of this linear prob-
lem. The resulting images demonstrate a substantially improved resolution,
compared to any of the original images.

In order to allow a reconstruction with an acceptable computational cost,
an advanced method to affinely transform multi dimensional images was de-
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veloped. This method avoids aliasing and distortions by splitting the affine
transform in a series of carefully designed shear transformations, which can be
applied efficiently.

For statistical analysis of MR images, the level of the noise that is present in
the MR images needs to be known. In Chapter 5, a Maximum Likelihood (ML)
based method was developed with which the noise level of MR images can be
estimated from the Rayleigh distributed background mode of MR images. Ad-
ditionally, a method was developed to automatically select the optimal number
of bins of the image histogram that is used for the ML estimate of the noise
level. This selection method tries to balance the variance and bias of the noise
level estimator. The new ML based method was compared with previously
proposed methods and showed a substantial improvement in terms of the root
mean squared error.

The most sensitive detection of brain activations from functional MRI
datasets requires advanced statistical tests. Advanced likelihood based tests
were developed in Chapter 6. These tests allow, in contrast to the general lin-
ear model (GLM), direct incorporation of the correlation structure of the noise.
Simulation experiments showed that the detection rate of the proposed likeli-
hood ratio test is slightly, but significantly improved compared to the detection
rate of the GLM tests. This is true, even when the correlation structure of the
noise is estimated separately and the data for the GLM tests is pre-whitened
with this estimated correlation structure. Furthermore, it was demonstrated
that, for reliable false detection rates with realistic complexity of the noise
model, thresholds based on asymptotic theory cannot be used unless the time
series contains at least several hundreds of time points for each voxel. Addi-
tionally, it was demonstrated that undermodeling of the correlation structure
of the noise leads to inferior activation tests.

An important limitation of Diffusion Kurtosis Imaging (DKI) is the sen-
sitivity to noise in the MR images. Due to the extended model of DKI, this
sensitivity is increased compared to the Diffusion Tensor Imaging (DTI) model.
By optimizing the magnitude and direction of the diffusion weighting gradients
of the MR images, the precision of the DKI parameters is maximized. In Chap-
ter 7, a method was developed that optimizes the diffusion weighting gradient
settings by minimizing the Cramér Rao Lower Bound (CRLB), which is a lower
bound of the variance, of DKI parameters. The improvement in precision that
is obtained by optimizing the diffusion weighting gradient settings is substan-
tial; the CRLB of the mean kurtosis in grey matter voxels was improved by
a factor 2.1. The optimization of the settings requires a prior distribution of
DKI parameters. In Chapter 7, it was shown that the elements selected for the
prior distribution substantially influence the obtained precision. For optimal
precision of the DKI parameters in brain tissue, all brain tissue types need to
be present in the prior distribution. However, when parameters of non brain
voxels are included, they will deteriorate the precision with which DKI param-
eters inside the brain can be estimated. Therefore, DKI parameters from non
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brain voxels, such as those of the Cerebrospinal fluid, should not be included
in the prior distribution with which the gradient settings are optimized.

Finally, the different methods that have been developed in this thesis are
presented together since they can, and in some cases should, be combined for
improved statistical analysis of MR images. Even though the actual combi-
nations of methods have not been presented in this thesis, due to practical
limitations and time constraints, several relevant combinations that should be
investigated further are:

Correct field inhomogeneity distortions in DWI and fMRI
The DWI images recorded for DKI experiments and the BOLD images for
fMRI experiments are usually acquired with EPI readout. These images
(might) need correction for field inhomogeneities in order to allow correct
processing and interpretation of the results. For example, in order to
correctly trace the white matter fibers with tractography, the DWI should
be anatomically correct. Also, when the results of DTI of fMRI analysis
are combined with other anatomical images, such as a high resolution
T1 or even a CT image, which are not (or substantially less) distorted,
anatomical correct localisation is relevant.

Improve the resolution of DWI
For DTI and DKI experiments, it would be very beneficial to reduce par-
tial voluming effects by improving the resolution of the diffusion weighted
MR images. Currently, the DWI are usually acquired with isotropic vox-
els. However, when the resolution of isotropic multi-slice MR images
is increased, the SNR is strongly reduced. Thus, the high SNR that is
required severely limits the maximum resolution with which the images
can be recorded. Therefore, a method that improves the resolution with-
out substantial loss of SNR would be beneficial. Such a method was
described in Chapter 4. This method combines several anisotropic multi-
slice images in an optimal way and each of these anisotropic images can
be acquired with a better SNR than a single isotropic high resolution
multi-slice image.

Background noise level estimation for activation detection
Knowledge of the noise level is important for activation detection in fMRI
experiments. However, the activation detection method developed in
Chapter 6 does not use the noise level estimated from the background
mode. The reason for this is additional colored noise that is introduced by
non task related ‘spontaneous’ brain activations and possibly activated
default mode networks. In our detection method these contributions are
regarded as noise with respect to task related activation detection. Our
method does not separate the different noise sources and thus the noise
level in the background area, which is mainly due to thermal noise in the
MR machine, is not representative of the (colored) noise level in the fMRI
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time series. However, a lot of current research focuses on the spontaneous
activations and the default mode networks. Since these methods try to
separate the different ‘noise’ contributions, knowledge of the noise level
introduced by the MR scanner is relevant for these methods.

Optimal experimental design of MR acquisitions
The basic principle of optimal experimental design, and also how it was
used in Chapter 7, is applicable to many MR acquisitions. The formalism
of optimizing acquisition settings by minimizing the CRLB of interesting
parameters is very powerful. In principle almost all acquisition settings
can be optimized, as long as a model of the acquisition that includes
the acquisition settings as well as the relevant parameters, is available.
For example, it might be possible to automatically optimize acquisition
settings (TR, flip angle, inversion time, . . . ) for a contrast of interest
(e.g. grey vs. white matter). Such an optimization method might pro-
vide especially large benefits when one is interested in several different
contrasts that can be acquired simultaneously, as manual optimization of
such acquisitions is especially difficult. Furthermore, on the newly devel-
oped human 7T MR scanners it is difficult or even impossible to obtain
homogeneous B1 fields, and therefore flip angle, due to the high frequency
and absorption. This presents extra challenges for manual design of the
acquisition settings. With automatic design, it might be easier to obtain
acquisition settings with which accurate and precise quantitative mea-
surements can be performed.
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In this section, a general description of the most important software routines
that were developed during the authors’ PhD project is given. The exact input
and output of the routines that are described is well documented in the help
text of each routine. Therefore, that information will not be repeated in this
appendix.

A.1 Fieldmap estimation

The core routine of the estimation of the main magnetic field inhomogeneities
is LScomputeFieldInhomogenityPoint. This routine computes the optimal
parameter vector of the model Eq. (3.8), as implicitly given by Eq. (3.11). This
routine also includes the initialization by the method described in Appendix
3.A. A simple method to compute correction factors for EPI images, based on
the parameters estimated for each voxel, is called calcEPIcorrections. The
routine that can be used to apply the correction factors to an image is called
EPIreconstruct. Note that these last two routines were developed quickly
to visualize the correction; they are not intended as general reconstruction
method. Furthermore, it is certainly possible to improve the reconstruction
based on the computed field map and other parameters by extending the cor-
rections to more than just the even/odd k-space line phase difference and shift.
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A.2 Super-Resolution method for Multi-Slice MRI

For the Super-Resolution reconstruction described in Chapter 4 several rou-
tines were developed. First, the matrix vector multiplications XTS and Xo
can be computed by TomographicMRI_Mul and TomographicMRI_Transf. The
first of these routines explicitly computes X, which it is able to return as
output, and is partly implemented in C: computeVc. The second routine,
TomographicMRI_Transf, uses the SSH transformation method for the com-
putation of the matrix vector products. This routine requires an initial ’plan’
stage in which the MR acquisition problem is parsed. This parsing consists
of two steps. First the affine transformations are decomposed in sets of shear
transformations by planAffineTransform. Next, the acquisition filter w is
incorporated in these transforms. The regularized least squares conjugated
gradient solver has been implemented in cgiterLS. The regularization ma-
trix, which computes the power in the second derivative of o, was created with
createRegularisationmat and was provided as sparse matrix to the cgiterLS
routine.

Connected to both the Fieldmap estimation method, Chapter 3, and the
Super-Resolution method, Chapter 4, an advanced reconstruction method was
developed for the ISMRM reconstruction challenge 2010. This method uses
the regularized least squares conjugated gradient solver and a simulation of
the MR acquisition process, simu_MRI. This simulation routine simulates the
acquisition of the k-space samples of each of the potentially multiple coils, with
unique spatial sensitivity and phase offsets, when field inhomogeneities and T ∗2
decay are present. When a suitable GPU is present and the GPUmat toolbox
is loaded, the matrix operations are performed on the GPU. To allow the iter-
ative reconstruction with cgiterLS, an interface for simu_MRI is provided by
MRrecfun, which also allows the distribution of the computations over multiple
worker processes.

A.3 Noise level estimation

In chapter 5 a method was developed to estimate the noise level from the
background of MR images. The main routine for this noise level estimation is
called RayleighBackgrndNoiseLvlEst. This routine uses a histogram of the
image, and automatically estimates the noise level.

After the publication of our method we improved our original method to use
some spatial information present in the images. Therefore, this method com-
putes the noise level from an image, instead of from the histogram. This new
method is called rayleighBackgroundNoiseLvlMasked. The improvement is
obtained by removing a few voxels around the object’s edges, as the true noise
free magnitude of these voxels is likely to be unequal to zero (due to Gibbs
ringing and/or blurring and/or motion artefacts).
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A.4. Functional MRI

A.4 Functional MRI

The routine that computes the maximum likelihood estimates for the functional
MRI data is called findparmllh_multi. This function optimizes the likelihood
mllh_rc_multi of the magnitude and noise model. The experiments for an
entire dataset was performed with testdata_multi, which was called from the
overall test routine ActivationSensitivityTest that sets up the simulation
experiments.

A.5 Diffusion weighted MR imaging

In preparation for the optimization of the diffusion weighting gradient settings
for DKI experiments some general routines for the estimation of both DTI and
DKI parameters were developed. The diffusion (kurtosis) tensors were esti-
mated with the 4 routines ComputeDT[Kurtosis][_parfor], potentially with
a parfor loop. The ’parfor’ command is the command that allows MATLAB to
issue the iterations of the loop to different processors (when a ’matlabpool’ has
been opened). The results of the parfor version and the non parfor version are
not numerically exactly equal, as the optimization is evaluated slightly differ-
ently in the parfor version. All these routines call functions that calculate the
log likelihood function (and gradient) DifusionTensorLL[Kurtosis], which is
based on the magnitude predicted by the signal model Difusion[Kurtosis]Tensor_Apred
and the Rician PDF logricepdf.

Several routines to compute relevant parameters from the estimated dif-
fusion (kurtosis) parameters were developed as well. The diffusion tensor
eigenvectors and eigenvalues can be computed with DT_eig, and the FA with
DT_fa. The diffusion and kurtosis coefficient in specific directions is returned
by DT_evaluate_Diff_Kurt, the mean diffusion and kurtosis is returned by
DT_evaluate_mean_Diff_Kurt, and finally, the radial diffusion and kurtosis is
returned by DT_evaluate_Diff_Kurt_radial.

A.6 Optimization of diffusion weighted gradients

In Chapter 7 a method was developed to optimize the diffusion weighting set-
tings for DKI analysis. In this section it is explained how the implementation of
this method can be applied. The Cramér Rao Lower Bound (CRLB) of the dif-
fusion and kurtosis model parameters is evaluated with CramerRaoDTKurtosis.
The simulated annealing optimization of the CRLB is implemented in the rou-
tine optimizeDKIgradients This routine is easy use, with the aid of the pro-
vided help text. However, it requires an a-priory set of DKI (or DTI) tensors,
which need to be carefully created or selected from a recorded DKI dataset.
Therefore, the routine optgrad_DKIdataset was created to do just that. The
routine optgrad_DKIdataset has many options to load processed DKI datasets
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(processDKIdataset) and extract DKI parameters for the optimization from
these results. After the preparation stage that includes selection of the ten-
sors, optgrad_DKIdataset starts a distributed computing job in which each
task performs an optimization of DKI diffusion weighting gradient settings
(optimizeDKIgradients). After the optimization, the optimized gradient set-
tings are stored and the CRLB of many DTI and DKI parameters is computed
and stored for further analysis. The optimizations of the diffusion weight-
ing gradient settings of which the results were presented in Chapter 7 are
started with a script Optimize_DKIgradients_withdataset_2. This script
calls optgrad_DKIdataset with the right parameters.

A.7 General routines

In this thesis, several general routines to support the analysis and presentation
of the results were developed:

progressbar to indicate the progress of computations, also when computing
inside MATLAB workers.

DistTest to test if the outcome of some (simulation) process is distributed
according to a specific distribution, such as normal with unspecified mean
and variance.

fftresample to up or down-sample N-D images by zero filling or extraction
in the Fourier domain.

affineTransform to apply an affine transformation to an N-D image. All
methods described in subsection 4.2.7 are supported.

sphere_best to evenly distribute sets of points on a sphere.

imagebrowse for quick visual inspection of N-D images.

ploterror to clearly present (overlapping) uncertainty bounds in figures.
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weighting

Eq. (7.1)

g gradient direction (unit length) Eq. (7.3)
H objective function in optimization of DKI gradient set-

tings
Eq. (7.38)

H. hypothesis Eq. (6.28)
h Transfer function of spatial frequencies Eq. (4.28)
I Fisher information Eq. (7.37)
Iν νth order modified Bessel function of the first kind Eq. (2.8)
i imaginary unit, i2 = −1 Eq. (3.8)
Jν νth order Bessel function of the first kind Eq. (2.29)
j rank of C Eq. (6.28)
i, j, k, l (summation) indices, used in many locations and does

not have explicit meaning
K Regularization matrix Eq. (4.7)
K kurtosis (true; and evaluated from parameters) Eq. (7.5),

Eq. (7.29)
K⊥ radial kurtosis Eq. (7.31)
KA Kurtosis anisotropy Eq. (7.33)
k(t) position in k-space, as function of time Eq. (3.1)
L Likelihood function Eq. (5.13)
li edges of the bins of the histogram Eq. (5.9)
l maximum order of spherical harmonics Eq. (7.35)
M Number of voxels with which the noise model is es-

timated, or with respect to which the DKI gradient
settings are optimized

Eq. (6.25),
Eq. (7.38)

MK Mean kurtosis Eq. (7.29)
m,n, r matrix or sample sizes Eq. (6.1)
m measure function of the CRLB Eq. (7.28)
N number of (diffusion weighted) MR images or number

of echos
Eq. (3.13),
Eq. (4.5),
Eq. (7.37)

NBr Number of elements, estimated by the method of
Brummer, in the background mode of the MR image

Eq. (5.3)
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NB Total number of elements in the selected bins of the
histogram

Eq. (5.9)

n unit length direction vector, so a point on S2 Eq. (7.29)
n Number of sample points used to integrate a function

on S2 in Chapter 7. Number of dimensions in Chap-
ter 4

Eq. (7.35),
Eq. (4.22)

O.. Optimized sets of diffusion weighting settings subsection
7.3.4

o object intended to be reconstructed Eq. (4.1)
o sampled object, intended to be reconstructed, in ma-

trix representation
Eq. (4.2)

P Power Eq. (3.13)
Pd Detection rate subsection

6.2.10
Pf False alarm rate subsection

6.2.10
p Probability density function (PDF) Eq. (6.13),

Eq. (7.37)
p set of (approximately isotropic) points in S2 Eq. (7.35)
Q Set of (optimized) gradients for DKI Eq. (7.37)
Q Norm of the residu, mainly used to simplify notation

of the PDF
Eq. (6.17)

q q-space vector Eq. (7.1)
q Magnitude of the q-space vector Eq. (7.1)
R Relative performance of 2 sets of diffusion weighting

gradient settings
Eq. (7.41)

R The pseudo inverse of C, i.e. the part corresponding
to C of the inverse of C joined with its orthogonal
complement

Eq. (6.36)

r Position coordinate Eq. (3.1)
S set of spherical harmonics Eq. (7.34)
Sj jth MR image Eq. (4.2)
S(t) Demodulated MR signal, as function of time Eq. (3.1)
S2 Surface of the unit sphere (2D surface of 3D sphere) Eq. (7.29)
s Fisher score vector Eq. (6.82)
T Affine transformation matrix Eq. (4.22)
Tf Affine transformation matrix including offset Eq. (4.22)
T. test . Eq. (6.32)
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List of symbols

T1 longitudinal relaxation time (of tissues), i.e. the time
constant of the magnetization of the tissue in the di-
rection of the magnetic field

T2, T
∗
2 transverse relaxation time. Nececarily lower than T1.

T ∗2 also includes de-phasing due to local field inhomo-
geneities and molecular interactions

Eq. (3.3)

Tr Time between the start of the acquisition of 2 k-space
lines in an EPI acquisition

Eq. (3.12)

T Coordinate transform linking object and MR image Eq. (4.1)
T Tesla, unit of magnetic strength Section 1.1
TR Repetition time; time between subsequent recordings

of the same slice/volume.
.T transpose of the matrix/vector .
t index of time Eq. (3.1),

Eq. (6.2)
t (effective) diffusion time Eq. (7.2)
U Matrix with left singular vectors Eq. (4.12)
V Chapter 4: Matrix with right singular vectors, Chap-

ter 6: covariance matrix of measurements Chapter 6
Eq. (4.12),
Eq. (6.3)

v colored noise Eq. (6.1)
vi the ith eigenvector of the diffusion tensor D Eq. (7.31)
W Inverse covariance matrix for the Least Squares DKI

parameter estimate
Eq. (7.25)

W Kurtosis describing tensor Eq. (7.9)
w Optimal weights for integrating on a sphere Eq. (7.34)
w Sampling function Eq. (4.1)
X regressionmatrix Eq. (6.1)
Xj Matrix that describes the relation between the object

and the jth MR image
Eq. (4.2)

X General random process Eq. (2.1)
x 3D position coordinate (in object space) Eq. (4.1)
x 3D diffusion distance Eq. (7.3)
Y ml the mth real valued spherical harmonic of order l Eq. (7.35)
y fMRI data Eq. (6.1)
ỹ Complex valued MR image voxel Eq. (2.5)
y 3D coordinate (in MR image space) Eq. (4.1)

α AR-coefficients Eq. (6.2)
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Γ Gamma function (Γ(n+ 1) = n!) Eq. (2.10),
Eq. (3.2),
Eq. (7.1)

γ gyromagnetic ratio of the imaged nuclei Eq. (7.1)
∆ time separation between the leading edges of the dif-

fusion gradient pulses
Eq. (7.2)

δ duration of the pulsed diffusion weighting gradients Eq. (7.1)
ε heaviside function Eq. (2.8)
εεε residu vector Eq. (6.10)
Θ set of parameter vectors, either of multiple fMRI time

series, or of DKI tensors with which the gradient set-
tings are optimized

Eq. (6.25),
Eq. (7.38)

θ parameter vector Eq. (6.1),
Eq. (7.13)

λ parameter vector of the MR decay Eq. (3.8)
λ weight for the regularisation Eq. (4.7)
λ likelihood ration Eq. (6.33)
λi ith eigenvalue of the diffusion tensor, sorted in decreas-

ing order (λi > λi+1),
Table 7.2

λK Test statistic Eq. (5.18)
λ∗K Test statistic Eq. (5.18)
ν Order of the modified Bessel function Eq. (2.10)
ρ correlation (of v) Eq. (6.4)
ρ(r) Local MR signal intensity, i.e. proton density weighted

with the applied contrast
Eq. (3.1)

Σ Diagonal matrix with singular values. Eq. (4.12)
σ Noise standard deviation Eq. (2.5),

Eq. (6.3)
τ Combination of all fMRI parameters (σ, α, θ) Eq. (6.28)
Φ(.) Function that returns the phase of a complex value Eq. (3.7)
ϕ(r) phase difference between images from even and the odd

k-space lines
Eq. (3.4)

χ2
i Chi-square distribution with i degrees of freedom Eq. (6.12)

Eq. (5.19)
ω(r) Off resonance frequency, as function of location Eq. (3.3)
Ω Excited volume when acquiring a MR image Eq. (3.1)

ˆ Estimated value Eq. (3.11)
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