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Dankwoord

Should I write this page in Dutch or in English?

It would be a lie to state that this was the most difficult question that occurred to me
during my PhD, but it was certainly not an easy one knowing that this is probably the
only page most people will ever read. In the end, I decided that this is my page and that
I can do whatever I want with it, so a combination of Dutch and English it will be.

Okay, let’s go.

Many will agree that completing a PhD is not an easy task. It’s like a walk in the park, but
there’s a storm and the park is on fire. Jokes aside, doing a PhD is indeed a sometimes
hard but often rewarding journey. It still feels somewhat strange to type these words,
since the fact that I am typing them implies that I actually completed the PhD. But did
I, meaning just me, myself, and I, really do it? Obviously, I did do a couple of things,
otherwise this would be an empty booklet. Yes, it was me who wrote the thesis and the
papers. Yes, it was me who prepared for the presentations and the conferences. Yes, it
was me who spent countless sleepless nights trying to figure out how to fix a problem or
wondering why this or that idea did not work, and it was me who quietly but victoriously
whispered ”Yes!” at my computer screen when an error in the code was finally discovered
after hours of searching, or when a paper was finally accepted for publication many
months after submission.

However, the truth is that all of this would never have been possible without the support
I have received in various ways from many different people. Although I will never be
able to thank all of you enough, I will try my best. First, I would like to thank my
supervisors, Jan and Jan, for their endless support. They tirelessly spent countless hours
giving feedback on ideas, papers, and presentations. Jan and Jan never stopped believing
in my ability to finish this PhD, even at times when I started losing faith myself. I have
learned so much from both of you, thank you for everything. In addition, I would like
to thank all the members of the jury, who are all absolute experts in their fields and
are therefore always overburdened with work, but still invested their precious time in
carefully reading my work.

Although doing the research for a PhD is mostly a solitary endeavor, I have never felt
alone at the lab. I have always enjoyed the atmosphere at Vision Lab, and for that I have
to thank all my Vision Lab mates. Thank you Femke, Pavel, Bikram, Vincent, Björn,
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Michele, Alice, Arpad, and so many others for the chats and the laughs. I consider myself
lucky for having been part of a journey where X-ray phase contrast imaging evolved
from a single project within the lab to a broader research topic involving multiple people.
Thank you Nathanaël, Ben, Nicholas, Pieter-Jan, and others for making this journey
possible. I have also always greatly enjoyed the teaching hours during my PhD, in part
due to the presence of fantastic fellow teaching assistants. Thank you Femke, Eline, Piet,
Jan, Quinten, Jeroen, Annelinde, Nathanaël, Daniel, Jens, Lars-Paul, Pieter-Jan, Ben,
Jannes, Caroline, and all others I might have accidentally overlooked in this long list that
grew over the years.

There’s a special class of lab mates, also known as office mates, consisting of the people
with whom you share your daily sorrows, PhD frustrations, and laughs. I would like to
explicitly thank dr. Tim Elberfeld for existing, and for replacing the emptiness in my
office by a top tier German quality colleague. I would also like to thank Van Nguyen for
the time we spent together at the office, I will forever cherish our little chats about all the
important and unimportant things in life. Thank you Jens for the jokes and the tenfold
increase in IQ points you brought to the office every day. Thank you Jian for being such
a kind and supportive colleague. Ja, Joaquim, jij bent ook een office mate, maar jij bent
vooral ook zoveel meer dan dat. Dus later meer daarover.

There’s also life outside the lab. Ik wil heel graag mijn familie en vrienden bedanken
voor de steun en broodnodige afleiding gedurende de afgelopen jaren, ook zonder jullie
was het niet gelukt. Ik koester voor altijd de fijne herinneringen die gemaakt werden met
mijn klasgenoten van 6WeWiB en mijn studiegenoten in de opleiding Fysica. Bedankt
Jonathan en Nick voor de vele surfer rosa’s in Vrij België na de werkuren. Ook de boskes
wil ik bedanken voor de jarenlange kamaraderie en de vele onvergetelijke momenten in
binnen- en buitenland. Ik denk uiteraard ook aan mijn jeugdvrienden Kilian en Kiara,
hoewel we ondertussen al lang elkaars buren niet meer zijn, is de afstand tussen ons nooit
echt groter geworden en daar ben ik dankbaar voor. Bedankt Laura en Cyrelle voor jullie
licht op de donkerste dagen, de wereld is een betere plek met jullie erin. En lieve, lieve
Charline. Ik weet dat jij weet dat het mij gelukt is. Ik koester voor altijd ieder moment.

Zonder de nooit aflatende steun van mijn ouders, onder wiens dak ik heb gewoond tot in
de eerste jaren van mijn doctoraat, zou ik niet staan waar ik vandaag sta. Ik heb heel veel
aan jullie te danken, meer dan ik met woorden kan uitdrukken. Ook de rol van mijn grote
kleine broer Joaquim valt niet te overschatten. Weet dat ik elke dag trots ben jouw broer
te zijn en dat ik mij geen betere peter kan inbeelden voor ons zoontje. Bedankt om samen
met je geweldige vrouw Audrey jullie prachtige dochter Donna op de wereld te zetten.
Al vanaf haar geboorte is Donna een wonderlijk lichtpuntje in mijn leven.

Tenslotte wil ik Merel bedanken, mijn lieve Merel. Bij de start van mijn doctoraat al mijn
vriendin en ondertussen al ruim anderhalf jaar mijn vrouw. Bedankt om deze onwaar-
schijnlijke rollercoaster ride samen met mij uit te zitten en om mij mee over de finishlijn
te trekken toen deze eindelijk binnen handbereik kwam. Je bent de beste, ik zie je graag.
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13 januari 2026

P.S.: I would also like to sincerely thank my chickens, Mambo, Tango, Hix, and Fix for
the mental support and for simply being the utterly fantastic animals they always were.
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Voor Charline
I won’t let you fade

Questions of science,
science and progress

Do not speak as loud as my heart
- The Scientist, Coldplay
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Summary

Über eine neue Art von Strahlen, or On a new kind of rays. With this compelling
manuscript title, Röntgen introduced his newly discovered rays to the scientific com-
munity. More than a century has passed, and today these once mysterious rays can no
longer be described as new or unknown. Nowadays, the applications of X-rays extend far
beyond frightening Röntgen’s wife. X-rays are found in airports for luggage screening,
hospitals for medical imaging, research labs for material characterization, and so on. It
goes without saying that X-rays left an impact on our society that cannot be overesti-
mated. The existence of dozens of impressively large and impressively expensive syn-
chrotrons all around the world, whose main purpose is simply to generate high-quality
X-ray beams, is just one indication of the importance of X-rays. Therefore, it can be be
considered symbolic today that the first Nobel prize in physics was awarded to Röntgen
for the discovery of the X-ray.

In fact, X-rays later turned out to show a lot of similarities with the visible light rays we
are all so familiar with. Just like visible light, X-rays are essentially traveling photons,
illuminating their environment. X-ray photons, however, carry much more energy than
their visible counterparts, allowing them to penetrate many materials, especially soft tis-
sue, in contrast to visible light. Although their high energy makes X-rays invisible to
the human eye, their invisibility does not mean that they are harmless. In the early days
after the discovery of the X-ray, little to nothing was known about the hazard associated
with long or repeated exposure to X-rays or other types of ionizing radiation. Today, it is
well-known that ionizing radiation poses a health risk. Nonetheless, if used with caution,
the diagnostic value of X-rays often largely outweighs the risks. As such, strict safety
regulations keep the radiation dose administered to patients and staff as low as possible.
In addition, there are numerous nonmedical applications as well, particularly in the fields
of nondestructive testing and materials science.

Similar to how visible light is refracted by a prism or deformed by a glass of water, X-
rays will also refract when passing through a material. In conventional X-ray images,
the contrast relies on local differences in absorption of the X-rays. Interestingly, X-ray
refraction yields information about the object as well. It has been shown that this refrac-
tion, or in more general terms, phase contrast, can provide improved contrast in certain
materials compared to conventional absorption contrast, without necessarily increasing
the radiation dose. Unfortunately, the magnitude of X-ray refraction is many orders of
magnitude smaller compared to visible light, making it much harder to detect. Typically,
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this requires advanced, dedicated imaging systems, be it coherent synchrotron sources
or modified lab-based systems with dedicated X-ray optics. Due to the convenience of
such modified lab-based systems, lab-based X-ray phase contrast imaging is becoming
increasingly popular.

More recently, a third type of contrast gained increasing interest as well. This contrast
type, associated with phase contrast, is known as dark field contrast. Refraction is an
important underlying contribution to dark field contrast, but in this case results from
unresolved microstructures. Such unresolved interactions result in an increased angu-
lar spread of the X-rays, providing sensitivity to the presence of otherwise undetectable
microscopic features. These effects are often subtle, and typically require dedicated se-
tups as well. The design and development of such dedicated imaging system requires
the determination of its specifications in function of its envisaged purpose. This is espe-
cially true for the parameters of the X-ray components required for X-ray phase contrast
imaging. To this end, it is common practice to perform (sometimes extensive) parameter
studies using computer simulations.

In this dissertation, a collection of tools is presented that aim to meet the often chal-
lenging requirements associated with simulations for the design of X-ray phase contrast
imaging systems. Two types of X-ray phase contrast imaging methods will be of partic-
ular interest, namely grating-based interferometry and edge illumination.

The first chapter of this thesis, aptly named Chapter 1, provides a concise introduction to
the most important aspects of X-rays, describing interactions between X-rays and matter
and how these interactions can be exploited for imaging purposes in 2D and 3D. In addi-
tion, the concept of Monte Carlo simulations is introduced, and it is explained how it is
used for X-ray imaging simulations.

Chapter 2 introduces the fundamentals of X-ray phase contrast imaging and builds up
to the practical realization of a number of popular phase contrast imaging setups and
the concepts of wave optics simulations. In this chapter, special attention is given to
grating-based interferometry and edge illumination.

Chapter 3 is dedicated to the realization of X-ray phase contrast imaging simulations for
grating-based interferometry using the GATE Monte Carlo framework, hereby relying
on a hybrid simulation approach combining Monte Carlo simulations with wave optics.
This includes the implementation of both X-ray refraction and the construction of X-
ray wavefronts from photons in GATE. Subsequent propagation of this wavefront by
means of wave optics calculations then results in the generation of simulated grating-
based phase contrast images. The separation of the Monte Carlo and the wave optics part
allows for changes in the grating parameters and propagation distance without having
to repeat the time-consuming Monte Carlo calculations. The framework is validated by
comparison to theoretical expectations, and its functionalities are demonstrated for both
2D imaging and computed tomography of microstructured digital phantoms.
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The presented simulation framework can be used for edge illumination simulations as
well, where in most cases the memory-intensive wave optics calculations can be safely
omitted. This implies that the gratings are in this case directly modeled as objects in
GATE. However, Monte Carlo simulations are known to be very time-consuming, espe-
cially when performing grating parameter studies. In Chapter 4, it is demonstrated that
the total computation time required for edge illumination grating parameter studies can be
reduced by introducing the concept of virtual gratings. In the virtual gratings approach,
the explicitly modeled gratings in GATE are replaced by virtual volumes that do not in-
teract with the simulation, but track the position and direction of intersecting photons,
which allows for a post-simulation definition of the grating geometry. As such, a single
Monte Carlo simulation can serve as a basis for a multitude of different grating designs.
The validity of the virtual gratings approximation is checked by means of comparison to
explicit grating simulations and the effectiveness of the method is demonstrated for 2D
imaging applications.

In Chapter 5, the virtual gratings approach is used for the design of edge illumination
gratings to augment the flexible FleXCT micro-CT scanner of imec-Vision Lab with
phase contrast imaging capabilities. The system magnification, the desired phase sensi-
tive field of view, and the source voltage are fixed by the envisaged application, which is
phase contrast imaging of apple-sized fruits. The tunable grating parameters, being the
aperture size and the material thickness, are determined through a parameter study in-
cluding different focal spot sizes. For the grating thickness, the trade-off between grating
bar transmission and shadowing effects is taken into account, whereas for determining
the aperture size the peak-to-peak contrast-to-noise ratio is considered. At the time of the
writing of this thesis, the designed gratings have been manufactured and installed in the
FleXCT system.

Chapter 6 addresses the benchmarking of multi-contrast simulation results in GATE. This
is done by using the virtual gratings approach to determine the reference values required
for benchmarking. By tracking and storing the trajectories of the individual simulated
photons, which is the main functionality of the virtual gratings approach, the transmis-
sion, refraction, and local beam broadening can be estimated directly from the photon
tracks using straightforward calculations, without intermediate contrast retrieval steps.
In this way, a full set of reference values becomes available for benchmarking the sim-
ulation results without requiring additional Monte Carlo simulations. The interpretation
of the reference values is discussed in detail and a set of examples of benchmarking
simulation results is shown.

The thesis is concluded with a general conclusion of the research presented in the preced-
ing chapters, as well as an outlook on possible future work based on the results presented
in this work.
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Samenvatting

Über eine neue Art von Strahlen, of Over een nieuw soort stralen. Met deze gevatte
titel presenteerde Röntgen zijn net ontdekte stralen aan de wetenschappelijke gemeen-
schap. Meer dan een eeuw is inmiddels verstreken, en intussen kunnen deze eens zo
mysterieuze stralen al lang niet meer omschreven worden als nieuw of onbekend. Van-
daag de dag reiken de toepassingen van Röntgenstralen veel verder dan het louter angst
aanjagen van Röntgens echtgenote. Röntgenstraling wordt gebruikt in luchthavens voor
bagagecontrole, in ziekenhuizen voor medische beeldvorming, in onderzoekslaboratoria
voor het bepalen van materiaaleigenschappen, enzovoort. Het spreekt voor zich dat de
maatschappelijke impact van Röntgenstraling nauwelijks te overschatten is. Enkel en
alleen al het bestaan van tientallen, indrukwekkend grote (en indrukwekkend prijzige)
synchrotrons wereldwijd, met als enige doel het opwekken van kwalitatieve Röntgen-
straling, vormt een bewijs van het belang ervan. De ontdekking van de Röntgenstraling
is dus zonder twijfel een zeer symbolische eerste Nobelprijs in de fysica.

Later werd duidelijk dat Röntgenstraling in essentie niet zozeer verschilt van het zicht-
bare licht waarmee we allen zo vertrouwd zijn. Net zoals zichtbaar licht bestaat Rönt-
genstraling uit fotonen die de wereld rondom belichten. Röntgenfotonen zijn echter vele
malen energetischer dan hun zichtbare tegenhangers, waardoor ze met veel gemak door
velerlij materialen kunnen dringen, dit in tegenstelling tot zichtbaar licht. Hoewel hun
hoge energie de Röntgenstraling onzichtbaar maakt voor het menselijk oog, wil dat niet
zeggen dat deze straling niet schadelijk kan zijn. In de periode kort na de ontdekking
van de Röntgenstralen was er weinig tot niets geweten over de risico’s die verbonden zijn
aan Röntgenstraling en andere soorten ioniserende straling. Vandaag is men zich zeer
goed bewust van het feit dat ioniserende straling bepaalde gezondheidsrisico’s inhoudt.
Desalniettemin wegen de risico’s in vele gevallen niet op tegen de diagnostische waarde
wanneer Röntgenstraling op verstandige wijze gebruikt wordt. Strikte veiligheidsvoor-
schriften waken erover dat de stralingsdosis toegediend aan patiënten en personeel zo laag
mogelijk wordt gehouden. Bovendien bestaan er ook veel niet-medische toepassingen,
met name binnen de materiaalwetenschappen en het niet-destructief onderzoek.

Vergelijkbaar met hoe zichtbaar licht wordt gebroken door een prisma of vervormd door
een glas water, zullen Röntgenstralen ook breking ondergaan wanneer ze van een materi-
aal overgaan naar een ander. In conventionele Röntgenfoto’s wordt het contrast bepaald
door lokale verschillen in de absorptie van Röntgenstraling. Interessant genoeg kan de
breking van Röntgenstraling ons ook iets leren over voorwerpen. Het is aangetoond dat
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deze breking, of algemener gesteld, fasecontrast, tot een sterk verbeterd contrast kan
leiden in vergelijking met conventionele Röntgenfoto’s, zonder een verhoogde stralings-
dosis. De breking van Röntgenstralen is echter vele malen zwakker dan de breking van
zichtbaar licht, waardoor het een moeilijker te detecteren effect is. Dit vereist typisch het
gebruik van geavanceerde beeldvormingsapparatuur, hetzij coherente synchrotronbron-
nen, hetzij labsystemen met speciaal daarvoor ontworpen optische componenten. Het
hoeft niet te verbazen dat de tweede optie in veel gevallen de meest praktische is, waar-
door de populariteit van labgebaseerde Röntgenfasecontrastbeeldvorming nog steeds toe-
neemt.

Sinds kort kan ook een derde type contrast, dat gelieerd is aan fasecontrast, rekenen op
een toenemende mate van interesse. Dit type contrast staat bekend als donkerveldcon-
trast. Breking van Röntgenstraling is opnieuw een belangrijk onderliggend effect voor
dit type contrast, zij het in dit geval veroorzaakt door ononderscheidbare microstructuren.
Dit effect resulteert in een lokale verbreding van de Röntgenstralenbundel, wat een sig-
naal oplevert dat een gevolg is van de aanwezigheid van anders ondetecteerbare micro-
scopische structuren. Aangezien deze effecten vaak subtiel zijn, vereisen ze ook het ge-
bruik van speciaal ontworpen beeldvormingssystemen. De ontwikkeling en het ontwerp
van dergelijke speciale beeldvormingssystemen vereisen op hun beurt het bepalen van de
juiste specificaties in het licht van de beoogde toepassing. Dit is in het bijzonder zo voor
de parameters van de specifieke componenten die nodig zijn voor Röntgenfasecontrast-
beeldvorming. Doorgaans worden hiervoor parameterstudies uitgevoerd met behulp van
computersimulaties.

In dit werk worden een aantal hulpmiddelen ontwikkeld om het ontwerp van Rönt-
genfasecontrastbeeldvormingssystemen via Monte Carlo-simulaties te faciliteren. Twee
types van dergelijke systemen zijn hierin in het bijzonder van belang, namelijk rooster-
interferometrie en randbelichting.

Het eerste hoofdstuk van deze thesis, toepasselijk Hoofdstuk 1 genoemd, geeft een be-
knopt overzicht van de belangrijkste eigenschappen van Röntgenstraling. Hierbij is er
aandacht voor de interacties met materie en hoe deze aan de basis liggen van Röntgen-
beeldvorming in 2D en 3D. Verder wordt ook het concept van Monte Carlo-simulaties
uitgelegd, alsook hoe deze gebruikt kunnen worden voor het simuleren van Röntgen-
beeldvorming.

In Hoofdstuk 2 worden de fundamenten van Röntgenfasecontrastbeeldvorming uit de
doeken gedaan en wordt opbouwend toegewerkt naar de praktische realisatie van fasec-
ontrastbeeldvormingssystemen. Het concept van fasecontrastsimulaties gebaseerd op fy-
sische optica komt ook aan bod. Er is in dit hoofdstuk speciale aandacht voor roosterin-
terferometrie en randbelichting.

Hoofdstuk 3 behandelt het mogelijk maken van Röntgenfasecontrastsimulaties voor roos-
terinterferometrie met het Monte Carlo-simulatieraamwerk GATE, steunend op een hy-
bride aanpak die Monte Carlo-simulaties combineert met fysische optica. Dit omvat
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zowel de implementatie van refractie van Röntgenstralen als het opbouwen van een golf-
front uit de bijdragen van afzonderlijke Röntgenfotonen in GATE. De propagatie van
dit golffront door middel van golfoptische berekeningen laat vervolgens het genereren
van fasecontrastbeelden toe. Het feit dat in dit raamwerk de Monte Carlo-simulaties en
de golfpropagatie gescheiden onderdelen zijn, laat toe om de roosterparameters en de
propagatieafstand aan te passen zonder dat er een nieuwe Monte Carlo-simulatie nodig
is. De simulator wordt gevalideerd via vergelijking met theoretische verwachtingen en
gedemonstreerd aan de hand van de simulatie van 2D beeldvorming en computertomo-
grafie van digitale fantomen met microstructuren.

Het voorgestelde simulatieraamwerk kan eveneens gebruikt worden voor de simulatie
van randbelichting, waarbij doorgaans de geheugenintensieve golfoptische berekeningen
achterwege kunnen worden gelaten. In dat geval moeten de roosters evenwel expliciet
als objecten in GATE gemodelleerd worden. Monte Carlo-simulaties staan echter bekend
als zeer tijdrovend, zeker voor het uitvoeren van parameterstudies. In Hoofdstuk 4 wordt
aangetoond dat de totale simulatietijd voor parameterstudies voor randbelichtingsroosters
kan worden ingekort door het invoeren van het concept van virtuele roosters. Bij deze
methode worden de expliciet gemodelleerde roosters in GATE vervangen door virtuele
roosters, die niet interageren met de simulatie maar wel de positie en richting bijhouden
van de voorbijkomende fotonen. Dit laat toe om de parameters van de roosters achteraf te
bepalen, zodat een enkele Monte Carlo-simulatie volstaat als basis voor een groot aantal
roosterconfiguraties. De virtuele roosterbenadering wordt gevalideerd via vergelijking
met simulaties met expliciete roosters en de methode wordt vervolgens gedemonstreerd
aan de hand van 2D beeldvormingstoepassingen.

In Hoofdstuk 5 wordt de methode van de virtuele roosters toegepast om randbelicht-
ingsroosters te ontwerpen voor de FleXCT micro-CT-scanner van Visielab, teneinde deze
uit te breiden met fasecontrastbeeldvormingsmogelijkheden. De vergroting van het sys-
teem, de grootte van de fasegevoelige zone in het beeld en de bronspanning worden vast-
gelegd door de beoogde toepassing, namelijk fasecontrastbeeldvorming van vruchten ter
grootte van een appel. De aanpasbare roosterparameters, met name de apertuurgrootte
en de dikte van het materiaal, worden bepaald via een parameterstudie die verschillende
brandpuntgroottes in rekening brengt. De materiaaldikte wordt gekozen aan de hand van
een afweging tussen het blokkeren van voldoende fotonen en het beperken van schaduw-
effecten, terwijl er voor de apertuurgrootte wordt gekeken naar de piek-tot-piek contrast-
ruisverhouding. De roosters ontworpen in dit hoofdstuk werden inmiddels geproduceerd
en geı̈nstaleerd in het FleXCT-systeem.

Hoofdstuk 6 tenslotte behandelt hoe men multicontrastsimulatieresultaten van GATE kan
benchmarken. Dit kan worden gedaan door de methode van de virtuele roosters te ge-
bruiken om de referentiewaarden te bepalen die nodig zijn voor het benchmarken. Door
het registreren en opslaan van de individuele fotontrajecten is het mogelijk om refer-
entiewaarden te bepalen voor transmissie, refractie en lokale bundelverbreding via een-
voudige berekeningen, zonder dat hiervoor extra Monte Carlo-simulaties nodig zijn. De
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interpretatie van deze referentiewaarden wordt uitgebreid besproken en het benchmarken
van GATE simulaties wordt aan de hand van voorbeelden geı̈llustreerd.

Aan het einde van de thesis worden de resultaten uit dit werk samengevat, gevolgd door
een bespreking van potentiële verdere ontwikkelingen in navolging van deze resultaten.
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Chapter 1111111111111111111111111111111111111111111111111111111111111111111111111
Introduction to X-ray imaging

This chapter provides a broad overview of the fundamentals of conventional X-ray imaging and
Monte Carlo simulations. A much larger treasure trove of information can be found in Kak
and Slaney (1988), Ljungberg et al. (1998), Buzug (2008), Als-Nielsen and McMorrow (2011),
Bielajew (2020), and the user guides of Geant4 and GATE.

1.1 On a not so new kind of rays

Visible light is, without doubt, the most well known type of electromagnetic radiation.
With wavelengths in the range of 400 to 750 nanometers, its name simply results from
the fact that it is the only radiation that the human eye can see. Everything we have
ever seen, or ever will see, is light originating from this range of wavelengths. However,
being unable to see other wavelengths does not prevent us from using them. Take, for
example, microwaves. Having wavelengths a million times longer than those of visible
light, microwaves are effectively invisible to the human eye. They are, however, still
perfectly capable of heating your food for you, and even if microwave meals are excluded
from your culinary preferences, you are most likely still using microwaves on a daily
basis through various wireless applications. Next up: infrared radiation. Equally invisible
to the eye, but not unnoticed: infrared is the warmth we feel on our skin from the sunlight.
Infrared wavelengths are just slightly longer than visible light wavelengths.

Then, once upon a time, there was the X-ray. Having much shorter wavelengths com-
pared to visible light (sub-nanometer), the properties of X-rays are as wonderful as they
are useful. X-rays have very high energies and can penetrate through many materials that
block visisble light, such as biological soft tissue. Their penetrating power is an interest-
ing feature, which was noticed by Wilhelm Röntgen at the time of the discovery of the

1
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X-ray

electron

X-ray

Figure 1.1: Illustration of the photoelectric effect, where an inner shell electron is ejected
from the atom by absorbing the energy of an incoming X-ray. The energy lost by the
outer shell electron occupying the vacancy is emitted as a characteristic X-ray photon or
an Auger electron (not shown). Modified from Janssens (2018).

X-ray (Röntgen, 1898). However, X-rays can still be blocked by relatively thin layers
of heavier materials such as lead or gold. This implies that X-rays, despite their high
penetrating power, still interact with matter they travel through. Without the existence of
these interactions, X-rays would be significantly less useful, and you would most likely
be reading the last page of this dissertation.

In the following sections, the fundamentals of X-ray imaging will be briefly addressed.
It will be shown that the interactions of X-rays in matter lead to attenuation of X-ray
beams, which forms the basis for radiographic and tomographic imaging with X-rays.

1.2 X-ray interactions in matter

The four most common interactions contributing to the attenuation of X-rays are 1) the
photoelectric effect, 2) Compton (or incoherent) scattering, 3) Rayleigh (or coherent)
scattering, and 4) electron-positron pair production. The probability for each of these
interactions to occur is material- and energy dependent, and is described by its respective
cross section σi. The total cross section σtot is given by the sum of the photoelectric (σpe),
Compton (σCompton), Rayleigh (σRayleigh), and pair production (σpp) cross sections:

σtot = σpe +σCompton +σRayleigh +σpp. (1.1)

1.2.1 The photoelectric effect

Photoelectric absorption, illustrated in Fig. 1.1, occurs if an incoming X-ray photon has
an energy larger than the binding energy of an inner shell electron. In that case, the
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X-ray electron X-ray

a) b)

Figure 1.2: Illustration of a) inelastic Compton scattering, where an X-ray photon trans-
fers energy to a weakly bound electron, and b) elastic Rayleigh scattering, where the
X-ray is deflected by the electron without energy loss. Modified from Janssens (2018).

photon can be absorbed to eject the electron from the atom. The resulting vacancy in the
inner electron shell will be occupied by an electron from an outer shell, emitting its excess
energy as a characteristic X-ray photon or Auger electron. The photoelectric effect is a
major contribution to the total attenuation cross section for diagnostic X-rays (50 keV −
140 keV) and the dominant effect for lower energies. Given its dependency on the X-ray
energy and material atomic number Z, it is often the main source of X-ray image contrast
formation, whereas scattering interactions are responsible for contrast degradation (e.g.,
blurring) and contribute to the total dose received by the patient in clinical imaging.

1.2.2 Compton scattering

Incoherent Compton scattering is an inelastic scattering event in which an X-ray photon
only partially transfers its energy to eject a weakly bound electron, without being ab-
sorbed in the process. As a result, the photon loses energy and its traveling direction is
changed. The wavelength shift corresponding to the energy loss can be written as

∆λ =
h

mec
(1− cosθ) , (1.2)

where h denotes Planck’s constant, c the vacuum speed of light, me the electron mass,
and θ the scattering angle. This implies that no photon energy is transferred for forward
scattering, whereas the energy transfer is maximal for backward scattering. Fig. 1.2 illus-
trates the Compton scatter process. The Compton effect becomes dominant in water and
soft tissue for X-ray energies above 30 keV, but depends on the electron density rather
than on Z. Since there is little difference in electron density between distinct tissues,
Compton scattering provides low-contrast information.
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X-ray

electron

positron

Figure 1.3: Illustration of the pair production process, where an electron-positron pair is
created within the Coulomb field of the nucleus. Pair production can occur in the electron
field as well (not shown). Modified from Janssens (2018).

1.2.3 Rayleigh scattering

Coherent Rayleigh scattering, illustrated in Fig. 1.2, is an elastic scattering event between
the incoming X-ray photon and the electrons of an atom in the material. As a result, no
photon energy is lost during the interaction. The photon is deflected by the electron cloud,
hereby undergoing a change in direction. If the elastic scattering occurs at the nucleus,
this interaction is known as Thomson scattering. Coherent scattering is mainly important
at the lowest X-ray energies.

1.2.4 Pair production

At very high energies, X-rays have a finite probability for electron-positron pair creation
within the Coulomb field of the nucleus (Fig. 1.3). The energy threshold for electron-
positron pair production is 1.022 MeV, since this is the energy equivalent to the mass of
the two particles. Pair production in the electron field requires 2.044 MeV. In matter, a
positron will only travel a short distance before encountering an electron, causing an an-
nihilation process producing two photons traveling in opposite directions. This annihila-
tion process forms the foundation of positron emission tomography (PET). Although the
contribution of pair production to the total attenuation will be negligible in the range of
energies relevant for most X-ray imaging applications (rarely above 240 keV (du Plessis
et al., 2017)), it becomes relevant for high energy (MeV) X-ray imaging systems (Kat-
suyama et al., 2007), and is even dominant above 10 MeV for lead and above 30 MeV
for water.
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Figure 1.4: a) Medical X-ray image of a clavicle fracture showing a clear bayonet ap-
position. b) X-ray image of the same shoulder after surgery, where the bone has been
repositioned and fixed with a titanium plate and screws.

1.3 X-ray imaging

Medical X-ray images are arguably the most well known application of X-ray physics.
An example of a medical X-ray image is shown in Fig. 1.4. Imaging, however, requires
a clear contrast mechanism. Without sufficient contrast, X-ray images would not be very
useful. Given that the X-ray interaction cross sections in Eq. (1.1) depend on the material
the X-ray is traveling through, different materials will lead to different amounts of inter-
actions. The higher the density and atomic number of the material, the higher the number
of X-rays lost in interactions. Furthermore, X-rays traveling longer distances through a
certain material will have a higher interaction probability. As such, three parameters ca-
pable of providing contrast can be identified: atomic number, mass density, and distance
traveled through the material. Using the law of Lambert-Beer, this contrast mechanism
can be formulated in a concise way.

1.3.1 The Lambert-Beer law

Assume that a monochromatic X-ray beam with intensity I0 illuminates a homogeneous
object with thickness ∆z. The intensity of the transmitted beam I is determined by how
much of the X-ray intensity is lost as a result of the interactions described in Section 1.2.
As mentioned earlier, this depends on the distance ∆z traveled through the material, as
well as on the atomic number Z and the mass density ρ .

In practice, the effect of Z and ρ on the X-ray beam attenuation is expressed through
the material- and energy dependent linear attenuation coefficient µ . Given that a lin-
ear attenuation coefficient can be associated with every interaction type, and since µi is
proportional to σi, Eq. (1.1) implies that:

µtot = µpe +µCompton +µRayleigh +µpp. (1.3)

The transmitted X-ray intensity through a homogeneous object with thickness ∆z is then
given by the Lambert-Beer law (Beer, 1852; Pfeiffer and Liebhafsky, 1951; Mayerhöfer
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et al., 2020):
I = I0e−µtot∆z. (1.4)

As is clear from Eq. (1.4), the transmitted intensity drops exponentially as a function of
the distance travelled through the material. In reality, most objects are not homogeneous,
and Eq. (1.4) has to be generalized to an integration over a spatially varying µ(z):

I = I0e−
∫

µ(z)dz, (1.5)

where the subscript in µtot has been omitted for the sake of simplicity. If the shape and
composition of an object is known, Eq. (1.5) can be used to predict the X-ray intensity
measured in a plane behind the object, providing a mathematical basis for X-ray imag-
ing. It should be noted that Eq. (1.5) is valid for a monochromatic (i.e. a single photon
energy) X-ray beam. For polychromatic beams, the energy dependence of µ(z) has to
be taken into account, and the right-hand side of Eq. (1.5) has to be integrated over the
energy spectrum (Six et al., 2019). In practice however, this is often omitted in com-
puted tomography using polychromatic sources (Section 1.4), leading to beam hardening
artifacts (Van de Casteele et al., 2002).

1.3.2 Generation of X-rays

Although natural X-ray sources do exist (e.g., cosmic radiation or radioactive isotopes),
X-rays intended for imaging purposes in a lab or clinical environment are generated in
a controlled way using X-ray tubes. A typical X-ray tube consists of a cathode and an
anode, as illustrated by Fig. 1.5. The cathode is heated to a temperature of approximately
2400 K, resulting in the thermionic emission of electrons. Due to the acceleration voltage
applied between cathode and anode, the electrons freed from the cathode are accelerated
towards the anode target. Upon arrival at the anode, the electrons are subject to a strong
deceleration due to interaction with the anode material, often tungsten. Energy lost by
the electrons in the deceleration process is emitted in the form of X-ray radiation, known
as bremsstrahlung. The energy of the emitted bremsstrahlung X-rays depends on the
amount of energy lost by the decelerating electrons, resulting in a broad, continuous X-
ray energy spectrum. The acceleration voltage of the X-ray tube determines the upper
energy limit of the spectrum.

In addition to the bremsstrahlung, an electron hitting the anode can free an inner shell
electron from an anode atom. As described in Section 1.2.1, the electron occupying
the vacancy will emit a characteristic X-ray photon. The energy of characteristic X-
rays is determined by the difference in energy between the electron shells involved in
the process. As a result, only a limited and discrete set of characteristic X-ray energies
is possible for a given material (hence the name characteristic X-rays). In the X-ray
emission spectrum, these characteristic energies will appear as distinct peaks on top of
the bremsstrahlung profile. An example of a typical X-ray spectrum is shown in Fig. 1.5.
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Figure 1.5: a) Schematic overview of an X-ray tube: X-rays are produced by accelerating
electrons generated at the cathode towards the anode. b) Typical X-ray spectrum showing
a combination of bremmstrahlung and characteristic X-rays. Modified from Janssens
(2018).

X-rays will only be emitted from the area on the anode targeted by the accelerated elec-
trons. The size of this area, also known as the focal spot size, finally affects the image
quality. In general, larger spots will result in more image blurring. The energy dissipated
by the electrons heat the anode, which is mitigated by rotating the anode, allowing the
material to cool down. However, the brightness of small (microfocus) focal spots is still
limited by the risk of melting the anode material, since the same material is being heated
repeatedly. Liquid metal jet anodes (Hemberg et al., 2003) make use of a stream of liquid
metal that replaces the rotating anode, ensuring a continuous replacement of the anode
material. This effectively removes the risk of melting the anode (it is already molten),
allowing for increased brightness using smaller focal spots. However, liquid metal jet
anodes can be prone to evaporation of the anode material due to the high electron flux.

A more dramatic way of generating X-rays, is by means of large-scale synchrotron fa-
cilities (Bilderback et al., 2005). Synchrotrons are large electron rings, in which the
electrons are accelerated by sequences of magnets to speeds close to the speed of light.
The X-rays produced by the curved trajectory of the relativistic electrons are millions
of times brighter than radiation produced from conventional X-ray tubes. As such, syn-
chrotron facilities are a unique class of X-ray sources, with applications ranging from
high-resolution imaging to crystallography.

1.3.3 Projection radiography

A standard X-ray imaging setup requires an X-ray source to generate the X-ray beam
and a detector to capture the radiation after interaction with the object of interest. Histor-
ically, fluorescent screens and photographic film were used to acquire X-ray projection
images, known as radiographs, but the development of detector technology has led to
a shift towards digital radiography. Here, the X-rays absorbed in the detector generate
an electric current, which is converted to an image. The most common detector type
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is probably the energy integrating flat panel detector, where a scintillator layer converts
X-ray photons into visible light, which is in turn captured by a photodiode. This type
of detector captures the total intensity accumulated in each pixel during a set integration
time. More recently, however, photon counting detectors have gained increased inter-
est (Taguchi and Iwanczyk, 2013; Greffier et al., 2025). These detectors are capable of
measuring single photon interactions and provide additional spectral information, as well
as showing improved spatial resolution and possible dose reduction. In addition, unlike
energy-integrating detectors, the recorded total number of counts in photon counting de-
tectors is unaffected by electronic noise, lowering the noise in the images to its theoretical
limit (Swank, 1973).

In general, an increased number of X-rays arriving at a detector pixel will result in a
higher intensity recorded by that pixel. It is, however, common practice to reverse the
contrast in X-ray images. This means that bright pixels correspond to strong X-ray at-
tenuation rather than high X-ray transmission. To convert the transmission contrast to at-
tenuation contrast (AC), the measured intensity is divided by the intensity without object
(flat field correction) and the negative logarithm is taken (log-correction). The resulting
projection image is then, following Eq. (1.5), given by

− ln
(

I
I0

)
=
∫

µ(z)dz. (1.6)

Eq. (1.6) forms the standard forward model for CT, the imaging method discussed in
Section 1.4, which extends two-dimensional (2D) to three-dimensional (3D) imaging.

1.4 X-ray computed tomography

Although projection radiography is a useful imaging method with many applications,
Fig. 1.4 also demonstrates its main disadvantage: 2D X-ray images lack depth informa-
tion. If the screws were translated slightly along the optical axis, this would result in
the same projected image. Hence, extracting reliable information with respect to the 3D
distribution of materials inside objects is impossible from a single radiograph. Multiple
projections from different viewing angles are required to retrieve the 3D spatial informa-
tion. In X-ray computed tomography (XCT), multiple radiographs are acquired (Section
1.4.1) and combined to reconstruct a 3D representation of the imaged object (Section
1.4.2).

1.4.1 Acquiring X-ray projections

CT requires the acquisition of multiple radiographs, each taken from a different viewing
angle. Changing the viewing angle can be done by rotating the source and detector gantry
around the object, or by using a rotation stage for the object while keeping the source and
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Figure 1.6: (a) Example of two orthogonal 1D projections of a 2D Shepp-Logan phantom,
showing the projected intensity. (b) Sinogram of the same phantom resulting from 720
equally spaced projections over a full angular range of 360◦. The dashed lines indicate
the angles corresponding to the intensity profiles shown in (a).

detector at fixed positions. These are the standard approaches for medical CT and micro-
CT, respectively.

A simplified example of a 2D Shepp-Logan phantom (Shepp and Logan, 1974) projected
onto 1D line profiles is shown in Fig. 1.6. Depending on the projection angle θ , a different
intensity profile I(η) will be acquired. The full set of projections can be represented in
a single sinogram, having one spatial and one angular coordinate (rather than two spatial
coordinates in the original image). As indicated by the arrows in Fig. 1.6, a parallel beam
geometry was assumed for the creation of this sinogram, which means that all projecting
rays follow parallel trajectories. Extending the parallel beam geometry to 3D results in
2D projections that can be represented by a stack of sinograms. Modern CT systems,
however, usually exhibit a cone beam geometry, where all rays connecting source to
detector lie in a cone originating from the focal spot. Considering only the central slice
in a 3D cone beam geometry leads to a 2D fan beam geometry.

1.4.2 Tomographic reconstruction

The objective of CT is to reconstruct the (3D) volume from its projection images. The re-
constructed volume can be used to extract cross-sectional slices or to compute a rendered
image. Fig. 1.7 shows the CT reconstruction of the treated clavicula fracture shown in
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Figure 1.7: Coronal (a) and axial (b) slices through the reconstructed CT volume of the
treated clavicula fracture shown in Fig. 1.4, providing 3D information about the positions
of the screws. c) 3D rendering of the reconstructed CT volume, clearly showing the
position of the titanium plate with respect to the bone.

Fig. 1.4. In contrast to Fig. 1.4, Fig. 1.7 provides reliable 3D information on the position
of the titanium plate and screws in the body. Reconstructing a volume from its projec-
tions requires dedicated mathematical algorithms, which aim at inversion of the forward
model from Eq. (1.6). Through the projection data, the left-hand side of this equation is
known. From these known values, the reconstruction algorithm estimates the spatially
dependent attenuation coefficient µ .

Assuming a 2D parallel beam geometry for simplicity, each line L that crosses a 2D
object is defined by its distance to the origin (η) and its rotation angle with respect to the
y-axis (θ ),

L(η ,θ) = {(x,y) ∈ R2 : η = xcosθ + ysinθ}. (1.7)

The projection of a 2D object onto 1D projections is then given by the Radon transform.
The Radon transform of µ maps each possible line through the object to the line integral
of µ(s) along that line, with s denoting the position on the line L:

p(η ,θ) =
∫

L(η ,θ)
µ(s)ds

=
∫ +∞

−∞

∫ +∞

−∞

µ(x,y)δD(xcosθ + ysinθ −η)dxdy.
(1.8)

Here, δD denotes the Dirac delta function. Associating each line with a point in a projec-
tion image, it is clear from (1.6) that the Radon transform of µ yields the collection of all
possible flat field and log-corrected X-ray projections of µ . This mathematical founda-
tion for CT has existed since the early 20th century (Radon, 1917), but the development
of XCT as an imaging technique was initiated only many decades later (Cormack, 1963,
1964; Hounsfield, 1973; Ambrose, 1973). It should be noted that tomography as a method
is used with various types of radiation, such as radio waves (Bracewell, 1956), terahertz
radiation (Hu and Nuss, 1995; Mittleman et al., 1997; Ferguson et al., 2002; Lumbeeck
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et al., 2023), neutrons (Matsumoto and Krata, 1983), and electrons (De Rosier and Klug,
1968; Crowther et al., 1970).

1.4.2.1 Analytical reconstruction

The most intuitive approach to reconstructing an object from its projections is to redis-
tribute all projected values back along the projection directions, which is known as back
projection. In practice, however, this leads to poor quality reconstructions. Instead, an
improved version of the back projection method is commonly used: the filtered back
projection (FBP). As its name implies, the back projection is in this case preceded by
a filtering step. As understood from the Fourier slice theorem, lower frequencies are
sampled much more densely relative to higher frequencies in the Fourier transform of
the object function. The underlying reason is that the 1D Fourier transform of a parallel
projection of an object is equal to a slice of the 2D Fourier transform of the object. The
dominant low-frequency sampling leads to significant blurring in the reconstructed image
domain. By applying a ramp filter |ωs| in the Fourier domain, the lower frequencies are
suppressed, improving the level of detail in the reconstruction.

µ(x,y) =
∫

π

0

∫ +∞

−∞

p̃(ωs,θ)|ωs|e2πiωs(xcosθ+ysinθ)dωsdθ . (1.9)

Here, p̃(ωs,θ) is the Fourier transform of p(η ,θ). Eq. (1.9) provides the inverse of the
Radon transform (Eq. (1.8)). The derivation of the FBP algorithm can be found in detail
in (Kak and Slaney, 1988), as well as considerations regarding the practical implemen-
tation of the reconstruction method for parallel and fan beam geometries. The pixel-
dependent weight factor in the backprojector associated with the fan beam reconstruction
(Gullberg, 1979) can be omitted by rebinning the fan beam data to parallel projections
(Besson, 1999). By setting the Fourier components of the highest frequencies to zero,
the noise level of the reconstruction is reduced. For the 3D cone beam geometry, the ap-
proximate Feldkamp-Davis-Kress (FDK) algorithm (Feldkamp et al., 1984) is the most
widely used analytical reconstruction method. Eq. (1.9) yields an exact reconstruction of
the original object under the assumption that an infinite number of projection angles is
available. In practice, however, the number of projections will always be limited. If a lot
of high quality projection data is available, FBP yields fast and high-quality reconstruc-
tions. Reducing the number of projections leads to degraded reconstructions suffering
from artifacts.

1.4.2.2 Algebraic reconstruction

In practice, both imaging and reconstruction are discrete processes in CT. A finite num-
ber of projections is acquired using a finite number of detector pixels, and the object is
reconstructed on a discrete pixel grid (although in some cases parametric or mesh re-
construction is possible (Elberfeld et al., 2023; Renders et al., 2024)). As a result, the



12 CHAPTER 1. INTRODUCTION: PART I

𝑝𝑖

𝑥𝑗

𝑎𝑖𝑗

Figure 1.8: Graphical representation of a forward projection as modeled by Eq. (1.10),
showing the intersection length (in red) corresponding to the weight ai j for detector pixel
pi and voxel x j.

continuous analytical formulas from the previous section are discretized for real world
CT reconstructions. Alternatively, the discrete nature can be incorporated in the recon-
struction model itself. In that case, the projection model from Eq. (1.8) is replaced by the
following linear system of equations:

ppp = AAAxxx. (1.10)

Here, xxx is the vectorized object, where each element x j corresponds to the local linear
attenuation coefficient µ(s) of the respective voxel. The flat field corrected and log-
corrected projection data (Section 1.3.3) is stored in vector ppp. The (forward) projection
data pi are modeled as a weighted sum of the linear attenuation coefficients in xxx by the
projection matrix AAA, representing a discretized form of the Radon transform. Conversely,
the transposed projection matrix AAAT is a discretized version of the back projection. The
matrix elements ai j represent the intersection lengths of the rays arriving at pi with voxel
x j. This is illustrated in Fig. 1.8.

Solving Eq. (1.10) directly by performing AAA−1 ppp = xxx is in general not possible as the
inverse of AAA cannot be determined. As such, the best possible solution xxx∗ is expressed as
a minimization problem:

xxx∗ = argmin
xxx

∥AAAxxx− ppp∥ , (1.11)

where ∥ · ∥ denotes some vector norm, usually the squared 2-norm ∥ · ∥2
2. Algebraic re-
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construction methods aim to approximate the solution x∗ using iterative schemes. Well-
known algorithms for solving the inverse problem for CT are the Algebraic Reconstruc-
tion Technique (ART) (Gordon et al., 1970), the Simultaneous Iterative Reconstruction
Technique (SIRT) (Gilbert, 1972; Gregor and Benson, 2008), and the Simultaneous Al-
gebraic Reconstruction Technique (SART) (Andersen and Kak, 1984). Taking the widely
used SIRT algorithm as an example, consider an initial guess xxx(0) for the reconstructed
volume, for example the 0-vector. SIRT then iteratively computes consecutive correc-
tions to the initial guess according to the update scheme

xxx(k+1) = xxx(k)+CCCAAATRRR
(

ppp−AAAxxx(k)
)
. (1.12)

Here, ppp−AAAxxx(k) is called the projection difference, and CCC and RRR denote the inverse column
and row sums, respectively:

c j j =

(
∑

i
ai j

)−1

, (1.13)

rii =

(
∑

j
ai j

)−1

. (1.14)

As a side note, we mention that SIRT can be interpreted as a Landweber algorithm where
the relaxation parameter follows from Eq. (1.13) and Eq. (1.14) (Landweber, 1951; Gre-
gor and Benson, 2008). Iterative reconstruction methods tend to be flexible with respect
to unconventional geometries (Nguyen et al., 2021) and more advanced acquisition pro-
tocols such as dynamic (4D) imaging (Van Eyndhoven et al., 2015) and extended field-
of-view (FOV) imaging (Sanctorum et al., 2021b), or when prior knowledge is available
(Batenburg and Sijbers, 2011). It should be noted that iterative tomographic reconstruc-
tion is not limited to Landweber-type algorithms and that other, more general solvers
such as gradient descent or quasi-Newton methods can be used as well (Six et al., 2021).

1.5 Monte Carlo simulations for X-ray imaging

The Lambert-Beer law (Eq. (1.5)) provides a method to compute projection images from
an object with a known spatial distribution of linear attenuation coefficients. Indeed,
by integrating µ(s) along straight lines connecting the source and detector, an artificial
X-ray image (forward projection) can be simulated. This is the fundamental principle
underlying deterministic ray-tracing tools for X-ray imaging simulations. Although this
is often sufficient, for example for modeling tomographic reconstruction (van Aarle et al.,
2016; Paramonov et al., 2024), other applications (e.g., the design of imaging setups or
dose calculations) require a more detailed physics-based approach.

Monte Carlo (MC) modeling is a popular method for all applications where measure-
ments are not feasible or where the complexity of the problem prevents the use of ana-
lytic models (Metropolis and Ulam, 1949; Raeside, 1976). Attempting to model physics
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through probabilistic estimates, it provides a numerical solution that models the inter-
action of objects, such as photons, with other objects or their environment. A stochastic
solution is determined by random sampling of relationships based on particle physics the-
ory and experimental data until convergence is reached. The history of every simulated
particle can be analyzed, and MC simulations find several applications in (nuclear) med-
ical imaging, such as detector and system design, quantification, and correction meth-
ods for image degradation. In this dissertation, all simulations are performed using the
Geant4-based GATE MC framework (Santin et al., 2003; Jan et al., 2011). In the fol-
lowing sections, two key aspects of MC simulations will be introduced: the generation
of random numbers and sampling techniques. Random numbers are essential to mimic
the stochastic nature of particle interactions, whereas sampling the relevant probability
density function (PDF) is required to obtain correct values for the stochastic variable of
interest.

1.5.1 Random number generation

Generating arbitrary samples from a given PDF relies on randomness. As such, full-
scale MC simulations require large sequences of random numbers. The order of these
sequences should be unpredictable and free from any patterns. In the early days of MC
calculations, random number tables (e.g., RAND) were used for this purpose, but today
these tables have become obsolete. In its most elementary form, a random number is
understood as a particular value of a continuous random variable distributed on the unit
interval.

A seemingly natural way to produce random numbers is by monitoring the output of a
physical process (e.g., electronic noise or quantum effects). This concept is gaining mo-
mentum in more recent literature (Ma et al., 2016; Cirauqui et al., 2024), but is still rarely
used in practice for MC simulations. The main reason for this is repeatability: retracing
the exact steps of a particular MC experiment requires knowledge of the correct sequence
of random numbers that was used. Hence, the most popular approach to generate ran-
dom numbers is to deterministically calculate series of (pseudo-)random numbers from a
random starting seed. As paradoxical as the previous sentence may seem, this approach
is in fact very effective for MC simulations. There is a practical reason for this: if a
mathematically calculated sequence of pseudo-random numbers and a sequence of true
random numbers pass a set of reasonable randomness tests (see e.g., L’Ecuyer (1988))
equally well, there is no real ground to favor one over the other. However, it is possible
that the pseudo-random number sequence begins to repeat itself once a certain number
of values has been generated. This number is called the period of the sequence. If the
period is very large, this behavior is of little importance. However, it is clear that the
period should always at least be large enough for its intended purpose.

An academic example of an algorithm to produce pseudo-random numbers, is the ‘mid-
square’ method (Raeside, 1976). It consists of taking an n-digit number N1 as the seed of
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the sequence, squaring it to form a 2n-digit number, and extracting the middle n digits to
form the second number in the sequence N2. If less than 2n digits are obtained, zeros are
placed in the left-most positions to obtain a 2n-digit number. The third pseudo-random
number N3 is obtained by squaring N2 and extracting its middle n digits. This procedure
is subsequently repeated until the sequence is considered long enough. In practice, other
methods are being applied to ensure high-quality pseudo-random number sequences with
long periods (James, 1990; James and Moneta, 2020).

1.5.1.1 Multiplicative linear congruential generators

One of the earliest and most well-known random number generators is the multiplica-
tive linear congruential generator (MLCG). Here, every successive integer is obtained by
multiplication of the previous one with a carefully chosen multiplier a (L’Ecuyer, 1988)
and adding a constant b:

si+1 = (asi +b) mod m. (1.15)

This method is implemented in Geant4 for a 32-bit and a 64-bit word length m. The
higher order bits are lost at multiplication, leaving pseudorandom lower-order bits. When
b is chosen as an odd number, a period of 232 can be obtained for a 32-bit word length.
However, MC simulations may exhaust the MLCG period, and this type of random num-
ber generator can lead to biased results. In addition, the generation of independent series
is not straightforward.

1.5.1.2 Lagged Fibonacci generators

In a standard Fibonacci series, each element is the sum of the two preceding elements.
A generalization of this concept can be used to construct a Fibonacci random number
generator. Here, each number is computed by performing some operation ⊙ on the
two preceding numbers, most commonly addition, subtraction, multiplication, and the
exclusive-or operation. In practice, lagged versions of Fibonacci sequences are always
used, where each number results from two numbers that have occurred somewhere earlier
in the sequence, but not necessarily the last two:

si = (si− j ⊙ si−k) mod m, j > k. (1.16)

If m = 2u, it is possible to obtain a period close to 2 j+u−1.
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1.5.1.3 Advanced long period generators

In so-called universal generators, two different approaches are combined to obtain a very
long period and excellent randomness behavior (Marsaglia et al., 1990). The RANMAR
generator, which is the default generator in Geant4, employs this technique by combin-
ing a lagged Fibonacci generator with an arithmetic sequence (James, 1990). RANMAR
reaches a period of about 2144, exhibits excellent statistical behavior, and allows the gen-
eration of independent streams, required for parallelization. Starting from the same ran-
dom seed yields exactly the same results. Due to these properties, RANMAR became
widely used for long MC simulations.

In GATE, the user has three random number generators at their disposal: JamesRan-
dom (Marsaglia et al., 1990), Ranlux64 (Marsaglia and Zaman, 1991; Lüscher, 1994),
and Mersenne Twister (Matsumoto and Nishimura, 1998). JamesRandom is a C++ im-
plementation of the RANMAR universal generator, whereas RANLUX64 is based on
the subtract-with-borrow RCARRY generator with period 2570 (James, 1990; James and
Moneta, 2020). The Mersenne Twister algorithm is known as a reliable, fast generator
with a very long period (219937−1). A comparative study found no systematic differences
between GATE simulation results obtained with the three available generators, suggest-
ing that it is recommended to use the faster Mersenne Twister (Sepehri et al., 2020).

1.5.2 Sampling methods

A Monte Carlo procedure aims to draw independent random samples from some proba-
bility law via the use of independent (pseudo-)random numbers. A typical example is the
estimation of π by taking the ratio of the area of the circle Sc to the area of the square Ss

as shown in Fig. 1.9. The ratio R equals

R =
Sc

Ss
=

π
(d

2

)2

d2 =
π

4
⇒ π = 4

Sc

Ss
. (1.17)

This implies an estimate of π can be computed by randomly sampling N points within the
square and counting the number of points inside the circle Nc. The estimate of π is then
given by π̂ = 4 Nc

N . The factor 4 can be incorporated in the counting process by assigning
a score of 4 to points within the circle and a score of 0 to points outside of the circle.

The generation of (pseudo-)random numbers has already been explored in Section 1.5.1,
and the following sections will discuss methods for converting random numbers into
random samples (Raeside, 1976).
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Figure 1.9: a) Circle embedded inside a square. The side of the square equals the circle
diameter d. b) Example of a probability density function PDF(x).

1.5.2.1 The direct method

Consider a cumulative distribution function (CFD) F(x) = P(X ≤ x) corresponding to
the integral of the probability density function PDF(x) over the interval [x1,x]:

F(x) =
∫ x

x1

PDF(x′)dx′. (1.18)

In the direct method, a random sample is created by replacing F(x) by a uniformly dis-
tributed random number from the interval [0,1] and subsequently solving Eq. (1.18) for
x. This method can be used if it is straightforward to determine the inverse function of
F(x).

As an example, consider a simplified case of a photon traveling a random distance be-
tween interactions (see also Section 1.3.1). This process is governed by the exponential
probability law, with µe−µzdz the probability that an interaction will occur in the distance
interval [z,z+dz]. The corresponding CFD is:

F(z) =
∫ z

0
µe−µz′dz′ = 1− e−µz. (1.19)

Replacing F(z) by the uniformly distributed random number 0 < sr < 1 and solving for
z yields a random sample for the distance traveled by the photon:

sr = 1− e−µz ⇒ z =− ln(1− sr)

µ
. (1.20)
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1.5.2.2 Rejection sampling

In practice, an application of the direct method is not always feasible. Alternatively,
the rejection sampling method can be used. As the name suggests, some of the generated
random samples are in this case rejected on the basis of some criterion. Consider a simple
PDF as depicted in Fig. 1.9, with upper bound m and PDF(x) = 0 for x < a and x > b.
Subsequently, independent pseudo-random samples can be generated from two uniform
distributions px(u) = 1/(b− a) and py(v) = 1/m to produce points (a+ ui,vi), where
ui and vi are the samples obtained from px(u) and py(v), respectively. All these points
are enclosed by the rectangle shown in Fig. 1.9, with some of the points falling above
the curve PDF(x) and some falling below it. Following the rejection method, all points
falling above the curve are rejected and only the points falling on or below the curve are
used to compute the desired samples xi through the scheme xi = a+ ui. This procedure
is equivalent to random sampling from the probability density PDF(x) (Raeside, 1976).

1.5.2.3 Mixed methods

When the previous two methods are not applicable independently, a mixture is commonly
used. Here, the PDF is written as the product of two probability distribution functions
PDF(x) = p1(x) · p2(x). An x value is determined using the direct method on p1(x) and
the rejection method is applied to p2(x) with that x. A detailed example concerning the
simulation of Compton scattering using a combination of the direct and rejection method
can be found in Raeside (1976).

1.5.3 Monte Carlo simulation software

A wide variety of MC simulation platforms suitable for X-ray imaging has been de-
veloped during the last few decades. Examples are EGSnrc (Kawrakow, 2000), McX-
trace (Bergbäck Knudsen et al., 2013), GATE (Santin et al., 2003; Jan et al., 2011),
and GAMOS (Arce et al., 2011). GAMOS and GATE are both built on top of Geant4
(Agostinelli et al., 2003; Allison et al., 2006, 2016)). Using general purpose nuclear
physics codes such as Geant4 ensures high flexibility in simulation design. The main
advantages are that they are extensively tested and widely used. They benefit from long-
term existence and support, and are continuously evolving following new hardware and
software developments. Compared to dedicated code, they show fewer simplifying as-
sumptions and fewer limitations on their possible applications.

Since GATE has been designed as an upper layer for the Geant4 nuclear physics code, it
takes advantage of all Geant4 features. This includes a great variety of physics models
and basic event timing information, as well as geometry modeling and visualization tools.
Its object-oriented design ensures high modularity. In addition, GATE has been using a
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scripting (macro) language for many years, allowing the user to easily design simula-
tions. GATE has been developed as an international collaboration effort (the OpenGATE
collaboration), and was publicly released in 2004. It is now shared by a large research
community, while long-term support and maintenance is still ensured by the OpenGATE
collaboration (Sarrut et al., 2022). Since 2024, two decades after its initial release, GATE
version 10 provides a simple-to-use yet flexible Python-based interface through which
users can set up Geant4 simulations, replacing the macro interface. Given that almost all
of the simulation and implementation work in this dissertation is based on GATE (version
8), the following sections are used to summarize some core aspects of Geant4 and GATE.

1.6 Geant4

Geant4 is a widely used general purpose nuclear physics code with a great variety of
physics models. In general, certain a priori information about the physics processes
that occur, expressed in the form of probability density functions (PDFs), is required for
performing MC simulations. Partial and total cross-section data provide this information
when simulating photon interactions. These cross-sections are based on the material
composition, and the data is subsequently used to calculate the path length and the type
of interaction. During a simulation, the PDFs are sampled using randomly generated
numbers. The energy of a photon is either dissipated along its path, or the photon can
penetrate the scattering and attenuating media to reach the detector. At the detector,
another PDF decides whether it should be accounted for, or discarded. The following
sections will address photon interactions and particle transportation in Geant4.

1.6.1 Photon interactions in Geant4

The Geant4 physics package includes electrons, positrons, γ-rays, X-rays, optical pho-
tons, muons, hadrons, and ions. When using the low-energy extension for electromag-
netic interactions, the modeling of photons and electrons is extended and verified down
to 250 eV, covering atomic numbers between 1 and 99. It furthermore includes Rayleigh
scattering. The low-energy processes make direct use of shell cross-section data in-
stead of parameterizations, since the atomic shell structure is often more important at
low energies compared to higher energies. In general, photon transport and interaction
mechanisms are governed by four processes: pair production, Compton scatter, Rayleigh
scatter, and the photoelectric effect (see Section 1.2). Each process involves two distinct
steps: calculating and using the total cross sections and generating the final state. The
total cross section’s energy dependence for each process is extracted from data libraries
(Amako et al., 2005), which provide cross sections for a discrete set of photon ener-
gies. For an intermediate energy E, the total cross section is thus obtained by logarithmic
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Figure 2.5: (a) Photon cross section in carbon, (b) Photon cross
section in lead. Images courtesy of (3)

2.7.1.5 Relative importance

The contributions of the processes to the total photon cross section
for carbon (low-Z material, present in human tissue) and lead (high-
Z material, present in collimator material) are shown in figure 2.5a
and b respectively. In the case of carbon the photoelectric effect is
dominant below 20 keV, while pair production is dominant above 30
MeV which is out of the range of nuclear medicine. In between those
regions Compton scatter is the dominant process. In the case of lead,
there dominant region for Compton scatter is much smaller, ranging
from 700 keV to 4 MeV (3).

2.7.2 GEANT4 Particle transportation

In GEANT4, the world geometry defined by the simulation setup ba-
sically consists of analytical or parameterized volumes with material
properties. The source definition determines the number of decays,
or events in GEANT4, that will be simulated over time. Every par-
ticle generated during a single event is represented by a track and is
sequentially numbered by a trackID and placed on a stack. A track
holds all the transient information concerning that particle as it is
transported from one point to the next. During tracking, a particle
is transported one step at a time through the geometry from interac-

C Pb

Figure 1.10: Relative importance (i.e. fraction of the total cross section) of different pho-
ton interaction mechanisms in (a) carbon and (b) lead. Modified from Bielajew (2020).

interpolation:

log(σ(E)) =
log(σ1) log(E2/E)+ log(σ2) log(E/E1)

log(E2/E1)
, (1.21)

with E1 and E2 the nearest lower and higher energy for which σ1 and σ2 are tabulated,
respectively. The mean free path for a certain process is then given by

∆l =
1

∑i σi(E)ni
, (1.22)

for a particle with energy E. Here, σi(E) is the microscopic integrated cross section of
the process at energy E, and ni is the atomic density of the ith element in the material. ∑i
is the sum over all the elements composing the material. The relative contributions of the
different photon cross section are shown in Fig. 1.10 for carbon (low-Z material) and lead
(high-Z material). The photoelectric effect is dominant for carbon below 20 keV, while
Compton scatter is the dominant process for higher energies up to 30 MeV. Compton
scatter is dominant in a much smaller energy range in the case of lead, ranging from 700
keV to 4 MeV. This implies that for most X-ray imaging applications, the image contrast
is dominated by either the photoelectric effect or Compton scatter (see Section 1.2).

1.6.2 Particle transportation in Geant4

In Geant4, the simulation setup defines a world geometry consisting of analytical or pa-
rameterized volumes that have been assigned certain material properties. The number of
particles initially generated at the source (events) depends on the source definition. Dur-
ing a single event, every (secondary) particle generated is represented by a track, labeled
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with a trackID. Each track holds all the temporary information concerning a specific par-
ticle during its transport from one point to another. A particle is transported one step at a
time, from interaction point to interaction point, until it either ceases to exist or reaches
the boundary of the world. It is assumed that the chosen step size is small enough to
ensure that the particle cross sections remain approximately constant during each step.
In principle, a very small step size should be used for an accurate simulation, but the
computational cost increases with decreasing step size. The particle tracking algorithm
used by Geant4 consists of two essential parts: the sampling of the number of interaction
lengths and the evaluation of the distance to the next interaction point. The number of
mean free paths (interaction lengths) that a particle travels can be written as (Agostinelli
et al., 2003):

N∆l =
∫ dx

∆l(x)
. (1.23)

Furthermore, given that the CFD of a random variable NR denoting the number of mean
free paths between a given point and the point of interaction is given by (cfr. Eq. (1.19))

P(NR ≤ N∆l) = 1− e−N∆l , (1.24)

the number of interaction lengths can be sampled using the direct method (see Section
1.5.2.1) as N∆l =− ln(sN), with 0 < sN < 1 a uniformly distributed random number. The
distance that the particle has to travel before a given process occurs in the current medium
is given by N∆l∆l(x), i.e. the number of interaction lengths multiplied by the inverse of
the macroscopic cross section for that process in the current material. As such, a travel
distance is obtained for each process. The shortest among these distances yields the
effective step over which the particle will be transported and determines which process
is triggered, provided that the step is not limited by geometric boundaries or thresholds
such as energy cuts and maximum step limits. N∆l is updated after each step ∆x according
to

N′
∆l = N∆l −

∆x
∆l(x)

. (1.25)

This includes the case of boundary crossing into a new medium, where tracking is con-
tinued in the new medium until an interaction point is reached.

1.7 GATE

GATE is written in C++ and has a modular structure built on three fundamental layers
(Staelens and Buvat, 2009): (1) the core layer, (2) the application layer, and (3) the user
layer. The core layer defines the basic mechanisms available in GATE for geometry
definition, time management, source definition, digitization, and data output, whereas
the application layer consists of derived classes to model-specific objects or processes.
The functionality provided by each class is available via script commands in the user
layer (replaced by a Python interface in GATE version 10). As a result, the end-user
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of GATE does not have to manipulate any C++ code, and a complete experiment can
be defined using the GATE script language (or Python interface). This includes object
geometry, source definition, camera geometry, detector electronics, physics processes,
time passing, kinetic parameters, and output format.

1.7.1 Building the simulation geometry

The spatial distribution of a source in GATE can be specified using five two-dimensional
shapes (circle, annulus, ellipse, square, and rectangle), and four three-dimensional shapes
(sphere, ellipsoid, cylinder, and parallelepiped). In addition, the angular distribution of
the departing particles can be defined using azimuthal and polar angles, allowing for dif-
ferent angular spans (e.g., fan beam or cone beam). Sources can also be described using
images, which results in a voxelized description. Modeling a scanner system or digital
phantom in GATE is based on basic elements known as logical volumes. A logical vol-
ume is defined by its name, shape, size, and material composition. It becomes a physical
volume once it is placed at a specific position. To replicate and place logical volumes
at multiple positions and orientations, repeaters can be used. Repeaters are elementary
geometrical transformations such as rotations and translations, applied in succession.
Combining various types of repeaters (e.g., ring, linear, and cubic array) to create more
complex structures is also possible. During a simulation, time is explicitly kept track
of by a virtual clock that synchronizes all time-dependent processes. The user provides
the start and stop times of the acquisition and the sampling interval. In each time slice,
the geometry is kept at rest (whereas the particle transport proceeds), and an update is
performed at the transition to the next time slice.

1.7.2 Detection and digitization

Certain parts of the scanner geometry act as sensitive detectors where particle interactions
are recorded. Interactions that occur inside the detector parts of the scanner create hits.
The information stored in these hits includes the energy that has been deposited, the
interaction positions, the origin of the particle, the type of interaction, the volume name
in which the interaction took place, and the time information.

Subsequently, a chain of processing modules takes a list of hits from the sensitive detec-
tors and transforms them into pulses, referred to as singles. This so-called digitizer can
be controlled using the GATE scripting language. A chain starts with the adder, summing
the deposited energy of all hits to yield a pulse. The energy-weighted centroid of the hit
positions yields the position of the pulse, and the time of the pulse is set to that of the
first hit within the volume. Secondly, the readout procedure of the scanner is triggered.
The energy response instruction applies a blurring to the energy of the pulse, and an en-
ergy discrimination is performed to set an acceptance window (thresholder electronics).
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Detector modeling is facilitated by predefined global systems, where the geometric hi-
erarchy is automatically accounted for by the corresponding data output formats (ASCII
and ROOT (Brun and Rademakers, 1997)).

1.7.3 Computational efficiency of GATE

Monte Carlo simulations are known for their notoriously long computation times. Real-
istic acquisitions in GATE may for example, in some cases, take several days or longer
to complete on a single CPU. An important reason why GATE simulations are compu-
tationally expensive is that neither Geant4 nor GATE were initially built with efficiency
as a primary objective. Geant4 comes with great flexibility and generality, inherited by
GATE, including the photon transport model, navigation algorithms and PDFs. The gen-
eral particle tracking algorithms of Geant4 are accurate and detailed, but this results in
slow navigation through voxelized and parameterized geometries. This has a direct im-
pact on the computational cost of GATE simulations. As a result, several strategies have
been implemented to improve the computational efficiency of GATE simulations, includ-
ing fast navigation algorithms (De Beenhouwer et al., 2008), parallelization (De Been-
houwer et al., 2007), dedicated variance reduction techniques (Staelens et al., 2006) and
efficient data analysis (De Beenhouwer et al., 2009).
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Introduction to X-ray phase contrast

imaging

This chapter provides a broad overview of the fundamentals of X-ray phase contrast imaging
and wave optics simulation. Information beyond the contents of this chapter can be found in
Goodman (1996), Born and Wolf (1999), Bartels (2013), Endrizzi (2018), Momose et al. (2020),
Olivo (2021), and Paganin and Pelliccia (2021).

2.1 Introducing the second introduction

Some might be surprised to find a second introductory chapter in this dissertation, possi-
bly assuming that all important X-ray matters have been covered in the previous chapter.
Regardless of the delight or despair this might evoke, there is still plenty of important X-
ray physics left to uncover. Chapter 1 has already introduced us to the essentials of X-ray
imaging, building up from the fundamental nature of X-rays and their interactions with
matter. As relevant and important as all of that may be, we are currently still looking at
an incomplete picture. Indeed, in all the previous sections, X-rays have been approached
from a particle perspective, with X-rays being described as photons or rays. Although
this suffices for a description of attenuation-based X-ray imaging, a proper understanding
of the principles of X-ray phase contrast imaging requires a wave optics description of X-
ray physics. The current chapter aims at removing this missing wedge of information by
addressing the (equally beautiful) wavelike nature of X-rays. First, some rather general
theoretical considerations will be made, providing a useful context for the introduction
of two new contrast types. Furthermore, the practical realization of X-ray phase contrast
imaging will be discussed, as well as an alternative approach to the simulation of X-ray
imaging. The final section of this chapter will be a bridge to the next chapters, where the
original results obtained during this PhD are presented.

25
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A B

Figure 2.1: (a) A ray of visible right refracting at the air-material boundaries of a trans-
parent piece of plastic. (b) Distorted view of a pen partially submerged in water due to
refraction of light.

2.2 On waves and X-ray refraction

2.2.1 Refracting Röntgen’s rays

Refraction, of which the basic principle is demonstrated in Fig. 2.1, is perhaps the most
well-known optical phase effect. Most people encounter it on a regular basis in daily life,
as illustrated in Fig. 2.1, where a distorted view of a pen partially submerged in water is
shown. The distortion visible in the submerged part of the pen results from the refraction
of light at the water surface, which forms a boundary between two media: water and
air. Refraction effects are typically described by one of the most well-known formulas
from high school optics: Snell’s law. Imagine a ray of light entering a medium (water,
glass), with index of refraction n1, from vacuum (or air), with index of refraction n0,
having an angle of incidence θ0. In absence of imagination, simply look at Fig. 2.2.
After entering the medium, the light ray will have changed direction, expressed by the
angle of refraction θ1. This angle can be calculated using Snell’s law:

n0 sin(θ0) = n1 sin(θ1). (2.1)

The index of refraction of vacuum is 1. Hence, visible light rays entering a material
from vacuum (or air) will refract toward the surface normal, i.e. θ1 < θ0, since n > 1 for
any material other than vacuum. Visible light entering vacuum will for the same reason
typically refract away from the normal. This principle is more generally applicable for
arbitrary media, in the sense that visible light rays will refract toward the normal if n1 > n0
and away from the normal if n1 < n0.

All of the above will probably sound familiar to anyone that has ever taken high-school
level physics courses. However, X-rays prefer to live by a slightly different set of optics
rules. First, let us rewrite (2.1) by substituting 1−δ for n:

(1−δ0)sin(θ0) = (1−δ1)sin(θ1). (2.2)

Why, one might ask. Luckily, there is a good reason for this modification: in contrast to
visible light, the index of refraction for X-rays is smaller than 1. But it is only slightly
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Figure 2.2: (a) Schematic depiction of the refraction of a ray of visible light entering
a medium from vacuum. The refraction is oriented toward the surface normal. (b)
Schematic depiction of the refraction of an X-ray entering a medium from vacuum. The
X-ray is refracted away from the surface normal. The drawing is not to scale.

smaller, with δ typically in the order of 10−7 or even less. Hence, in the case of X-rays,
this ‘decrement of the index of refraction’ (δ ) becomes the relevant material parameter,
which is why it makes sense to write Snell’s law as in Eq. (2.2). The fact that 1−δ < 1
has some seemingly counterintuitive consequences. In contrast to visible light rays, X-
rays refract away from the surface normal when entering a material from vacuum, as
illustrated in Fig. 2.2. At a secondary level, this implies that X-rays do not show the
effect of total internal reflection, as visible light does (e.g. observation of Snell’s win-
dow when swimming underwater). In contrast, X-rays show total external reflection
for large enough angles of incidence, or equivalently, sufficiently small grazing angles
(αc ≈ 0.0256◦ for δ ≈ 10−7). Total external reflection is an important underlying princi-
ple for reflective X-ray optics (Wolter, 1952a,b).

At this point, some questions might have formed in the reader’s mind, such as how all
of this is related to X-ray phase contrast imaging, and why we are still considering rays
instead of waves. Some might also wonder what the winning numbers of the lottery will
be next week, but that is beyond the scope of this work. The other questions are addressed
in the remainder of this chapter, where the following (sub)sections will loosely follow the
much more detailed derivations found in Paganin and Pelliccia (2021) and the references
therein.



28 CHAPTER 2. INTRODUCTION: PART II

2.2.2 A different point of view: the wave nature of X-rays

To get a more fundamental understanding of phase effects, we will have to take a step
back and introduce the wave-optical description of light. Let us start with briefly touching
upon the historical perspective, by considering the free space d’Alembert wave equations
resulting from the Maxwell equations for the electric and magnetic fields, E and B, re-
spectively: (

1
c2

∂ 2

∂ t2 −∇
2
)

E(x,y,z, t) = 0, (2.3)(
1
c2

∂ 2

∂ t2 −∇
2
)

B(x,y,z, t) = 0. (2.4)

In Eq. (2.3) and Eq. (2.4), x, y, and z are Cartesian spatial coordinates, t denotes the time,
∇2 is the Laplacian in three spatial dimensions, and c is a speed given by the Maxwell
relation:

c =
1

√
µ0ε0

. (2.5)

In Eq. (2.5), ε0 ≈ 8.854187 ·10−12 F/m and µ0 ≈ 4π ·10−7 H/m are the electrical permit-
tivity and the magnetic permeability of free space, respectively. The d’Alembert equa-
tions imply two interesting facts. First, E and B are described by wave equations, in-
dicating electromagnetic disturbances propagate as waves in vacuum. Furthermore, the
speed c of these electromagnetic waves, given by (Eq. (2.5)), corresponds extremely well
to the speed of light in vacuum (c0 ≈ 299792458 m/s), suggesting that light is an electro-
magnetic wave. This was a radical observation in the late 19th centure, and unified three
seemingly separate fields in physics: electricity, magnetism and (visible-light) optics.

The main take-away message is that all electromagnetic radiation, and therefore X-rays,
exhibit typical wavelike behavior, which was (deliberately) overlooked in Chapter 1.
However, this does not imply that the particle-oriented approach from Chapter 1 is wrong:
electromagnetic radiation has very clear particle-like properties as well (Einstein, 1905;
Compton, 1923; Lewis, 1926). In short, X-rays can be waves or particles, depending on
how you decide to look at it (Sakurai and Napolitano, 2017).

We conclude this section by noting that the pair of vector equations in Eq. (2.3) and
Eq. (2.4) is constructed from six scalar vacuum field equations, all having the following
form: (

1
c2

∂ 2

∂ t2 −∇
2
)

Ψ(x,y,z, t) = 0, (2.6)

where Ψ(x,y,z, t) should be interpreted as a complex function known as the wave func-
tion, used to describe the X-ray field. Although polarization is implicitly neglected by
using a scalar-wave description, this assumption is reasonable in many paraxial imaging
and diffraction contexts (Paganin and Pelliccia, 2021).
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2.2.3 The projection approximation for X-ray wavefronts

Taking a closer look at the wave function introduced in Section 2.2.2, we recall that
Ψ(x,y,z, t) is a complex number at each point in space (x,y,z) and at each point in time
t. This means it can be associated with a magnitude and phase as follows:

Ψ(x,y,z, t) =
√

I(x,y,z, t)eiφ(x,y,z,t). (2.7)

In Eq. (2.7), the magnitude of Ψ(x,y,z, t) is written as the square root of the field intensity
I(x,y,z, t), such that

I(x,y,z, t) = |Ψ(x,y,z, t)|2, (2.8)

and φ(x,y,z, t) denotes the phase of the wave function. At each point in time, surfaces of
constant phase represent wave fronts of the X-ray field. The wave fronts typically move
in a direction that is away from the source generating the waves.

Assuming monochromatic, and therefore perfectly coherent, waves, the time develop-
ment at a given point in space is described by a fixed angular frequency ω = 2π f = ck,
where f denotes the frequency and k is the wavenumber corresponding to the vacuum
wavelength λ via k = 2π/λ . As such, the variables can be separated:

Ψ(x,y,z, t) = ψω(x,y,z)e−iωt . (2.9)

Substituting Eq. (2.9) in Eq. (2.6) yields the Helmholtz equation in vacuum:(
∇

2 + k2)
ψω(x,y,z) = 0. (2.10)

It should be noted that, while monochromatic plane waves are an idealization, any poly-
chromatic electromagnetic field in a given volume of free space described by a scalar
function Ψp(x,y,z, t) can be spectrally decomposed as a superposition of monochromatic
fields:

Ψp(x,y,z, t) =
1

2π

∫
∞

0
ψω(x,y,z)e−iωtdω. (2.11)

Hence, even for a polychromatic wave function Ψp(x,y,z, t), we can always interpret
ψω(x,y,z)e−iωt as a monochromatic component of the spectral decomposition.

The vacuum wave equation for coherent scalar electromagnetic waves may be general-
ized to account for the presence of material media. Such media are here assumed to
be static, non-magnetic, and sufficiently slowly spatially varying, so that they may be
described by the position-dependent refractive index nω(x,y,z). This refractive index is
the same physical quantity as the index of refraction previously associated with X-ray
refraction in Section 2.2.1. The presence of a medium alters the vacuum wavelength and
wavenumber as follows:

λ → λnω
=

λ

nω(x,y,z)
, (2.12)

k → knω
= knω(x,y,z), (2.13)
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resulting in the following equation:(
∇

2 + k2n2
ω(x,y,z)

)
ψω(x,y,z) = 0. (2.14)

Interestingly, Eq. (2.14) is mathematically equivalent to the time-independent Schröding-
er equation for non relativistic electrons in the presence of a scalar scattering potential,
and the time-independent form of the Klein–Gordon equation, explaining the similarities
that exist between the fields of X-ray optics, electron optics (Knoll and Ruska, 1932) and
neutron optics (Kallmann, 1948).

Under the assumption that our monochromatic complex scalar X-ray wave field is parax-
ial, ψω(x,y,z) can be written as

ψω(x,y,z) = ψ̃ω(x,y,z)eikz, (2.15)

expressing that all wavefronts may be obtained by slightly deforming planar surfaces per-
pendicular to the optical axis (z) via multiplication of the plane wave eikz by an envelope
ψ̃ω(x,y,z). Note that |ψ̃ω(x,y,z)|2 = |ψω(x,y,z)|2 = Iω(x,y,z).

Inserting Eq. (2.15) into Eq. (2.14) yields the inhomogeneous paraxial equation:(
2ik

∂

∂ z
+∇

2
⊥+ k2 (n2

ω(x,y,z)−1
))

ψ̃ω(x,y,z) = 0, (2.16)

where the term containing the second derivative of the envelope with respect to z is omit-
ted since it is small compared to the other terms (paraxial assumption), and ∇2

⊥ denotes
the transverse Laplacian in the (x,y) plane. If it is furthermore assumed that the object is
sufficiently slowly varying in space so that the spread of the X-ray waves in the transverse
plane can be neglected, then the transverse Laplacian can be discarded as well, yielding:

∂

∂ z
ψ̃ω(x,y,z)≈

k
2i

(
1−n2

ω(x,y,z)
)

ψ̃ω(x,y,z). (2.17)

By neglecting the transverse spread of the field, it is effectively assumed that the influ-
ence of the sample upon the X-rays that traverse it is well approximated by the projection
of that sample onto a single plane. This assumption, also known as the projection approx-
imation, is valid in many cases for high-energy radiation like X-rays, but is less suitable
for short propagation distances (Morgan et al., 2010a,b). A more in-depth discussion on
the validity of these approximations is found in Paganin and Pelliccia (2021).

2.2.4 The index of refraction revisited

The approximations introduced in Section 2.2.3 have brought the wave description closer
to the ray description used in Section 2.2.1. It is worthwhile to travel a little further on this
path. Fig. 2.3 shows a monochromatic X-ray wavefront traveling parallel to the positive
z-axis, hereby illuminating a simple object from the left. The object is totally contained



2.2. ON WAVES AND X-RAY REFRACTION 31

x

zy

A B

C D

𝑧 = 0 𝑧 = 𝑧0 𝑧 = 𝑧1

Figure 2.3: Schematic overview of an X-ray wavefront propagating in the positive z-
direction, through an object under the projection approximation.

within the slab of space between z = 0 and z = z0 ≥ 0, and is described by its refractive
index distribution nω(x,y,z). The latter will only differ from unity (the refractive index
of vacuum, see Section 2.2.1) within the volume occupied by the object. The goal is to
determine the complex wave function in the plane z = z0 (the exit surface of the object),
as a function of the complex wave function at the entrance surface z= 0 and the refractive
index distribution of the object. Eq. (2.17) is, for each fixed point (x,y), a linear first-order
ordinary differential equation. This equation can be immediately integrated with respect
to z, which can be interpreted as the projection taking place:

ψ̃ω(x,y,z = z0)≈ exp
(

k
2i

∫ z0

0

(
1−n2

ω(x,y,z)
)

dz
)

ψ̃ω(x,y,z = 0). (2.18)

It gets even more interesting when a complex form is introduced for the index of refrac-
tion. The real part of this complex index of refraction corresponds to the refractive index
in the conventional sense (Section 2.2.1). However, the imaginary part of the complex
refractive index is a measure of the absorptive properties of a sample (Section 1.3 in
Chapter 1). The complex index of refraction can thus be written as:

nω = 1−δω + iβω , (2.19)

where |δω |, |βω | ≪ 1. Substituting Eq. (2.19) in Eq. (2.18) yields the following result for
the projection approximation:

ψ̃ω(x,y,z0)≈ exp
(

k
i

∫ z0

0
(δω(x,y,z)− iβω(x,y,z))dz

)
ψ̃ω(x,y,0), (2.20)
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Figure 2.4: Illustration of the wave-interpretation of refraction at the boundary of two
different materials (indicated by different background colors in the image), where refrac-
tion results from deformations in the wavefront.

where the terms with δ 2
ω , β 2

ω , and δωβω have been discarded since they are small com-
pared to the other terms. This shows that the exit wave may be obtained from the entrance
wave via multiplication by a complex-valued and position-dependent transmission func-
tion T (x,y):

T (x,y) = exp
(
−ik

∫ z0

0
(δω(x,y,z)− iβω(x,y,z))dz

)
. (2.21)

Omitting the explicit notation of the integration limits, we can write the position depen-
dent phase shift due to the object as:

∆φω(x,y) =−k
∫

δω(x,y,z)dz. (2.22)

Eq. (2.22) quantifies the deformation of the X-ray wavefronts due to passage through
the object. For each fixed transverse coordinate (x,y), phase shifts (and the associated
wavefront deformations) are continuously accumulated along rays such as AB in Fig. 2.3.
The phase shifts associated with passage of an X-ray wave through an object quantify the
refractive properties of that object. In the more general wave picture (compared to the
less general ray picture), refraction is associated with wavefront deformation rather than
ray deflection. As will be seen later, Eq. (2.22) is key in the development of X-ray phase
contrast CT.

Let us now consider the second term in the integrand of Eq. (2.21), which contains the
imaginary part of the refractive index. This term describes the attenuation of the X-ray
wave by the object and leads to a fairly familiar expression by taking the squared modulus
of Eq. (2.20):

|ψ̃ω(x,y,z = z0)|2 = I(x,y,z = z0) = e−2k
∫

βω (x,y,z)dzI(x,y,z = 0). (2.23)

Indeed, for µω(x,y,z) = 2kβω(x,y,z) this expression yields the Lambert-Beer law pre-
viously discussed in Section 1.3.1. By taking the negative logarithm, we rediscover the
standard forward model for attenuation-based X-ray imaging (Eq. (1.6)):

− ln
(

I(x,y,z = z0)

I(x,y,z = 0)

)
=
∫

µω(x,y,z)dz (2.24)
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(a) (b)

Figure 2.5: Early propagation-based phase contrast image of a 7 mm thick sample of
human vertebra, acquired at a synchrotron facility (ESRF). (a) Contact image showing
pure attenuation contrast. (b) Phase-modulated image at a propagation distance of 100
cm. Adapted from Cloetens et al. (1996).

In particular, if a two-dimensional position sensitive detector is placed in the plane z = z0
in Fig. 2.3, and the illuminating radiation has an intensity Iω(x,y,z = 0) that is approxi-
mately constant with respect to x and y, then all contrast in the resulting contact image
will be due to local absorption of rays such as AB in Fig. 2.3. However, the contact image
contains no contrast that is due to the phase shifts expressed by Eq. (2.22). The lack of
phase contrast in conventional contact X-ray imaging results in poor image contrast for
soft tissue and low-Z materials, being almost non-absorbing for hard X-rays. Fortunately,
the following sections will discuss how the power of phase shifts can be harnessed for
X-ray imaging.

2.3 X-ray phase contrast imaging

2.3.1 On the origin of phase contrast

Consider X-ray waves propagating in free space (vacuum), under the assumption that
all waves in this space are both paraxial with respect to the optical axis and monochro-
matic. In vacuum, the complex index of refraction nω(x,y,z) equals 1, which simplifies
Eq. (2.16) to: (

2ik
∂

∂ z
+∇

2
⊥

)
ψ̃ω(x,y,z) = 0, (2.25)

which is known as the free-space paraxial equation. The so-called diffraction problem
is now to determine the wave field over the plane z1 > z0, given the disturbance over
the plane z = z0. Based on the above free-space paraxial equation, the solution to the
diffraction problem may be written as:

ψ̃ω(x,y,z1 > z0) = D∆zψ̃ω(x,y,z0), (2.26)
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with D∆z the Fresnel diffraction operator, which propagates the forward traveling field
a distance ∆z from z = z0 to z = z1. The Fresnel diffraction operator D∆z is given by
(Paganin and Pelliccia, 2021):

D∆zψ̃ω(x,y,z0) = eik∆zF−1
[
e−

i
2k (k

2
x+k2

y )∆zF [ψ̃ω(x,y,z0)]
]
, (2.27)

where F denotes the Fourier transform operator. In contrast to Eq. (2.23), the squared
modulus of Eq. (2.26) (i.e. the intensity of the propagated field) now depends on both
the intensity and phase of the unpropagated field (Bartels, 2013). The latter is of key im-
portance for phase contrast imaging, since it implies that the Fresnel diffraction pattern,
namely the propagated intensity over the plane z1 > z0, provides the phase contrast that
was missing from the contact image described by Eq. (2.24). As illustrated by Fig. 2.5,
this effect forms the basis for propagation-based phase contrast imaging (Snigirev et al.,
1995; Cloetens et al., 1996). It immediately becomes clear that the phase-modulated im-
age shows much stronger contrast compared to the contact image. The origin of the phase
modulation is that the thin object, due to density variations, acts as a locally divergent
or convergent X-ray lens. As a result, the local ray density on the detector will decrease
or increase compared to the situation without the sample, and the corresponding detector
pixels will detect a lower or higher intensity. The object to detector distance through
which the wave propagates before reaching the detector plays a crucial role, explaining
why the contact image is free of phase contrast (Fig. 2.5). Another characteristic feature
of propagation-based phase contrast is the edge contrast, visible around edges as dark and
white bands, where the intensity is deflected outward from the geometrical projection of
the edge of the sample.

2.3.2 Phase contrast from X-ray refraction

It is worthwhile to take a step back in order to see how X-ray phase contrast is related to
X-ray refraction. To this end, consider a plane wave traveling in the z-direction with am-
plitude ψ0 that has undergone an x-dependent phase distortion φ(x) due to the interaction
with a phase object (Davis et al., 1995):

ψω(x,y,z) = ψ0eikz+iφ(x). (2.28)

As illustrated by Fig. 2.4, the resulting wave will have locally changed its direction from
k = kez to k′ = k′xex+k′yey+k′zez, with ex, ey, and ez denoting Cartesian unit vectors. We
may thus also write:

ψω(x,y,z) = ψ0eik′·r, (2.29)

with r = xex + yey + zez. Following Eq. (2.28), the gradient of the outgoing wave field is
given by:

∇ψω(x,y,z) = iψω(x,y,z)
(

∂φ(x)
∂x

ex + kez

)
. (2.30)
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Likewise, following Eq. (2.29), we can write:

∇ψω(x,y,z) = iψω(x,y,z)k′. (2.31)

From Eq. (2.30) and Eq. (2.31), it is clear that the new direction of the wave is given by:

k′ =
∇ψω(x,y,z)
iψω(x,y,z)

=
∂φ(x)

∂x
ex + kez. (2.32)

The local angular change in direction α (i.e. the refraction) can be calculated from the
magnitude of the cross product, |k×k′|= |k||k′|sinα , yielding:

sin(α(x)) =
1
k

∂φ(x)
∂x

1√
1+
(

1
k

∂φ(x)
∂x

)2
. (2.33)

For small phase variations, i.e.
(

1
k

∂φ(x)
∂x

)2
≪ 1, the angle between the initial and final

propagation direction can be approximated as:

α(x)≈ λ

2π

∂φ(x)
∂x

, (2.34)

providing a quantitative relationship between the gradient of the phase shift induced by
an object and the resulting refraction of the X-ray beam. This can be generalized to the
(x,y)-plane using the transverse gradient ∇⊥ (Paganin and Pelliccia, 2021):

(αx(x,y),αy(x,y)) =
1
k

∇⊥φ(x,y). (2.35)

In practice, many commonly used phase contrast methods measure phase derivatives,
with the following methods providing image contrast dependent upon the first deriva-
tive of the phase in the transverse plane (as in Eq. (2.35)): speckle-based imaging (SBI),
analyser-based imaging (ABI), grating-based interferometry (GBI), and edge illumina-
tion (EI). This type of phase contrast is also known as differential phase contrast (DPC).
However, propagation-based imaging (PBI) is sensitive to the second derivative of the
phase, and crystal interferometry is capable of direct phase shift measurements. The
phase contrast imaging techniques mentioned here will be briefly addressed further in
the text, with an emphasis on GBI and EI, as those two methods are the focus of the
results presented in the next chapters of this dissertation.

All phase gradient methods have in common that measuring the transverse phase gradi-
ent requires a certain propagation distance as well as the creation of a transverse inten-
sity gradient. This intensity gradient can occur within a single image (SBI) or between
consecutive images (GBI, ABI), which implies multiple images are required for phase
retrieval. In EI, the shaping of the beam behind the sample induces the intensity gradient.
In general, single-image methods are faster, whereas multi-image methods can achieve a
higher spatial resolution (Paganin and Pelliccia, 2021).
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2.3.3 The effect of unresolved phase variations

Let us consider a situation where the phase effects induced by an object cannot be re-
solved by the imaging system. In that case, assume we can split the phase into two
components, φ1(x) and φ2(x), representing the slowly-varying and rapidly-varying com-
ponents of the phase, respectively, with the latter being small in amplitude (Nesterets,
2008; Nesterets and Gureyev, 2016; Paganin and Pelliccia, 2021):

φ(x) = φ1(x)+φ2(x). (2.36)

This difference in oscillation speed between the two components φ1(x) and φ2(x) is a
construction that depends on the spatial resolution of the imaging system. Hence, the
slowly-varying component is that which can be spatially resolved by the imaging system.
However, although the rapidly-varying components cannot be spatially resolved by the
system, they do induce a third type of contrast, known as dark field contrast. This can
be seen by explicitly writing down the contributions to the intensity in the output plane
(Paganin and Pelliccia, 2021):

Iout(x)
Iin(x)

= 1+2Re[υ ]
∂φ(x)

∂x
+ Im[υ ]

∂

∂x
ln(Iin(x))

+ |υ |2
(

∂φ(x)
∂x

)2

+
|υ |2

4

(
∂

∂x
ln(Iin(x))

)2

,

(2.37)

where υ is a complex parameter with units of length. The terms containing the derivative
of the phase, i.e. the second and fourth, are those of interest for this discussion, as the
other terms are related to attenuation effects. Eq. (2.37) describes the ideal case where the
spatial resolution of the imaging system is arbitrarily good. In practice, the resolution is
finite. As obvious as this may sound, it implies an important difference in the measurable
signal. Indeed, phase variations smaller than the system resolution give a qualitatively
different type of contrast, despite being generated by the same underlying physical pro-
cess. In a realistic acquisition process, the incident intensity is averaged over the extent of
the point spread function (PSF) of the detector system. This yields the following spatial
average (Paganin and Pelliccia, 2021):〈

∂φ(x)
∂x

〉
=

〈
∂ (φ1(x)+φ2(x))

∂x

〉
≈
〈

∂φ1(x)
∂x

〉
. (2.38)

The rapidly-varying component of the phase is canceled by the average over the PSF,
leaving the slowly-varying component only. This corresponds to conventional differential
phase contrast imaging, now under the realistic assumption of finite spatial resolution. In
the fourth term of Eq. (2.37), we find the quadratic phase term, which behaves differently
when averaged by the PSF (Paganin and Pelliccia, 2021):〈(

∂φ(x)
∂x

)2
〉

=

〈(
∂φ1(x)

∂x

)2
〉
+

〈(
∂φ2(x)

∂x

)2
〉

+2
〈

∂φ1(x)
∂x

∂φ2(x)
∂x

〉
≈

〈(
∂φ2(x)

∂x

)2
〉
.

(2.39)
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In this case, the φ2 term does not disappear. On the contrary: the first term can now
be neglected, as the slow-varying component of the phase has, by definition, a small
transverse derivative. In addition, the cross term is a covariance that averages to zero as,
in this case, it is a rapidly changing component that becomes negligible once averaged
over the PSF. The remaining term may be identified with the local variance of the rapidly-
varying signal ∂φ2(x)/∂x. If we recall from Eq. (2.34) that:

α2(x)≈
1
k

∂φ2(x)
∂x

, (2.40)

with α2 the deflection angle due to φ2(x), it is clear that ⟨(∂φ2(x)/∂x)2⟩ is proportional
to the variance of the deflection angle induced by the spatially unresolved rapid phase
fluctuations (Paganin and Pelliccia, 2021):〈(

∂φ2(x)
∂x

)2
〉

= k2
〈
(α2(x))

2
〉
= Var(α2(x)) . (2.41)

In summary, the rapidly varying component φ2(x) yields a detectable position-dependent
signal, even though the rapid fluctuations in φ2(x) are unresolved. This signal can contain
important information regarding a sample, distinct from the other attributes of position-
dependent attenuation and position-dependent phase shifts.

2.3.4 On the origin of dark field contrast

The origin of the rapid phase fluctuations responsible for the dark field contrast (DFC)
is a popular topic within the rapidly evolving X-ray phase contrast literature, with the
earliest works dating back almost a century (Slack, 1926; von Nardroff, 1926). While the
physical interpretation of the dark field signal in those early works is that of unresolved
multiple refraction, the interpretation given in more recent literature is often that of (ultra)
small-angle X-ray scattering or (U)SAXS (Khelashvili et al., 2006; Pfeiffer et al., 2008;
Yashiro et al., 2010; Endrizzi et al., 2014). In practice, several authors have also used the
two interpretations interchangeably (Willer et al., 2018; Gassert et al., 2021; How and
Morgan, 2022).

Regardless of the interpretation, the dark field signal is measured as a local angular broad-
ening of the X-ray beam (Eq. (2.41)), commonly modeled by a Gaussian angular distri-
bution with scattering width σ2 = Var(α2) (Bech et al., 2010a):

A(α2) =
1√

2πσ
exp
(
− α2

2
2σ2

)
. (2.42)

For example, if a sample contains numerous microstructures that are smaller than the sys-
tem resolution, the unresolved multiple refraction at the interfaces of the microstructures
cause the beam to spread into a cone with a very small angular opening. Assuming that
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the unresolved structures are particles that can be modeled as spheres of radius R, the
scattering width (i.e. the local angular broadening) can be estimated by (von Nardroff,
1926):

σ
2 =

(
∆δ

ln2

)2(
ln
(

2
∆δ

)
+1
)

N0, (2.43)

where N0 is the average number of particles encountered and ∆δ is the difference in
refractive index decrement between the particles and the surrounding material. N0 is
given by:

N0 = ρNπR2d, (2.44)

where ρN is the particle number density and d the distance covered in the sample. SAXS,
on the other hand, is related to the acceleration of electrons by the oscillating electric field
of the incoming X-ray beam, which results in the emission of secondary waves with the
same frequency (Gommes et al., 2021). Due to nanometric differences in electron density
within the sample, the secondary waves will interfere along the propagation direction,
hereby generating the SAXS signal. Guided by the SAXS interpretation of DFC, many
models to quantify the DFC signal are based on SAXS (Lynch et al., 2011; Strobl, 2014).
It should be noted that (U)SAXS exists as a standalone material analysis technique, which
is, however, not optimized for fast 2D imaging purposes (Ilavsky et al., 2013; Magnin
et al., 2023).

In practice, the physical interpretation of the dark field depends on the length scale of the
electron density variations: unresolved multiple refraction is caused by variations at the
microscale, whereas pure SAXS-induced DFC results from variations at the nanoscale.
Recently, it has been experimentally shown that both multiple refraction and SAXS inde-
pendently generate a dark field signal (Magnin et al., 2025). This implies that, in samples
with structural features in the nanometer to micrometer range, the effects of multiple re-
fraction cannot be entirely isolated from other scattering phenomena that may contribute
to DFC generation. A full quantitative description of the DFC thus would require incor-
poration of both physical interpretations in the model.

2.3.5 Spatial and temporal coherence

Coherence is a key aspect in many X-ray phase contrast imaging methods. In short, two
wave fields are considered to be coherent if there is a fixed phase difference between two
points in space or in time. Therefore, if two waves are perfectly coherent, the phase of
the first wave can always be determined from the phase of the second wave, and vice
versa. As mentioned in Section 2.2.3, perfect coherence requires monochromatic waves,
which means that in practice there will almost always be a certain degree of decoherence.
This is known as partial coherence, the degree of which is a measure for the potential
of two waves to interfere with each other. As the concept of partial coherence is closely
tied to the ability of two separate optical disturbances to form interference fringes when
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combined, this can be expressed mathematically by the complex degree of coherence
(Bartels, 2013):

γ(r1,r2,∆t) =
Γ(r1,r2,∆t)√

Γ(r1,r1,0)Γ(r2,r2,0)
, (2.45)

where Γ(r1,r2,∆t) denotes the mutual coherence function, given by:

Γ(r1,r2,∆t) = ⟨ψω(r1, t +∆t)ψ∗
ω(r2, t)⟩. (2.46)

In Eq. (2.46), ⟨·⟩ denotes the time average and the superscript ∗ denotes complex con-
jugation. From Eq. (2.46), it is clear that Γ(r1,r1,0) and Γ(r2,r2,0) are equal to the
respective mean intensities I(r1) and I(r2). The degree of coherence is essentially about
the capacity of wave fields to form interference fringes: the higher the degree of visibility
of such interference fringes, the higher the degree of coherence (Zernike, 1938; Paganin
and Pelliccia, 2021). For monochromatic wave fields, the complex degree of coherence
has a unit modulus. For quasi-monochromatic wave fields, expressed as a superposition
of non-zero monochromatic components within a narrow spectral range, the modulus of
the complex degree of coherence satisfies |γ(r1,r2,∆t)| ≤ 1.

In Eq. (2.45), coherence of a wave field is expressed as correlations between points sep-
arated in both space and time. However, it is interesting to consider spatial and temporal
correlations separately as well. For ∆t = 0, Eq. (2.46) yields the mutual intensity:

Γ(r1,r2) = ⟨ψω(r1, t)ψ∗
ω(r2, t)⟩, (2.47)

describing the spatial (transversal) coherence properties. An important aspect of spatial
coherence is that spatial correlations of a wave field can be induced by free-space prop-
agation: a larger spatial coherence length can be generated by choosing an X-ray source
with a smaller intensity distribution or by increasing the distance to the source (Zernike,
1938; Bartels, 2013).

The influence of the spectral bandwidth of a quasi-monochromatic wave field can be
addressed by considering the special case of the mutual coherence function for r1 = r2,
yielding the temporal coherence function:

Γ(r1,∆t) = ⟨ψω(r1, t +∆t)ψ∗
ω(r1, t)⟩. (2.48)

The modulus of the complex degree of temporal coherence, which is given by γ(r1,∆t) =
Γ(r1,∆t)/Γ(r1,0), is a measure for the correlation of the wave field at a given point in
space r1 for two points in time separated by a time difference ∆t. For a spectral den-
sity with Lorentzian shape with bandwidth ∆ω , the modulus of the temporal coherence
function can be written as (Bartels, 2013):

|γ(∆t)|= e−∆t/τc , (2.49)

where τc denotes the coherence time, i.e. the time after which the coherence is considered
to be lost. The coherence time corresponds to a longitudinal coherence length ll = cτc,
and a low longitudinal coherence can limit the resolution of propagation-based X-ray
imaging experiments (Bartels, 2013). The specific coherence requirements depend on
the applied imaging method and the desired resolution.
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2.3.6 Propagation-based imaging

As mentioned earlier in the text, free-space propagation techniques require arguably the
simplest setup, since the introduction of an appropriate propagation distance between the
sample and the detector can be sufficient to measure phase effects. PBI requires a certain
degree of spatial coherence (see Section 2.3.5). The spatial coherence length, given by
(Endrizzi, 2018):

ls =
λdSOD

2
√

2ln2σs
, (2.50)

has to be comparable to or larger than the inverse spatial frequency of the feature of
interest in order to obtain significant phase contrast. In Eq. (2.50), σs is the standard
deviation of the spatial source intensity distribution, and dSOD is the distance between the
source and the object. In practice, this means that the source has to be relatively small
or that the object must be placed at a sufficiently large distance from it. In addition, the
spatial resolution of the imaging system must be high enough to avoid washing out the
interference fringes. This is expressed by the standard deviation of the total point spread
function (PSF) of the system σsys (Endrizzi, 2018):

σ
2
sys ≈

(
1− 1

M

)2

σ
2
s +

1
M2 σ

2
d +

1
2

√
1
2

λdODD, (2.51)

where dODD is the object to detector distance, M is the geometrical magnification, and σd
is the detector PSF.

The contrast retrieval in propagation-based X-ray phase contrast imaging is usually per-
formed by means of the so-called transport of intensity equation or TIE (Langer et al.,
2008; Gureyev et al., 2009):

−∇⊥ · (I(x,y,z)∇⊥φ(x,y,z)) = k
∂ I(x,y,z)

∂ z
, (2.52)

which is a continuity equation expressing the local conservation of optical energy. Al-
though the TIE will not be discussed here in detail, it is worth mentioning that the TIE can
be generalized to incorporate dark field effects (Leatham et al., 2023). Extracting both
attenuation and phase requires the acquisition of more than a single image, for example
by changing the propagation distance or by changing the energy, unless some constraints
can be imposed. Consider, for example, a single-material object with projected thickness
dob j(x,y) that is being illuminated by monochromatic plane waves of uniform intensity
I0. In addition, assume that the refractive index decrement δω and linear attenuation co-
efficient µω are known. The projection approximation then enables both the phase and
the amplitude at the exit surface of the object to be obtained from dob j(x,y), as Eq. (2.22)
and Eq. (2.23) simplify to:

∆φ(x,y) =−kδωdob j(x,y) (2.53)

and
Iω(x,y,z = z0) = I0e−µω dob j(x,y), (2.54)
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respectively. The projected thickness of a single-material sample may be obtained from
a single propagation-based phase contrast image, for a sufficiently small propagation
distance, by solving the TIE exactly under the given assumptions (Paganin et al., 2002;
Paganin and Pelliccia, 2021):

dob j(x,y) =− 1
µω

ln

F−1

 F [I(x,y,z1)]

I0

(
1+ δω ∆z

µω

(
k2

x + k2
y
))
. (2.55)

Eq. (2.55) has been widely used due to its practical advantages, such as simplicity, speed,
noise robustness, and the ability to process time-dependent objects frame-by-frame. How-
ever, these advantages come at the cost of the previously stated assumptions. Remarkably,
dark field contrast retrieval was unlocked only relatively recently in propagation-based
X-ray phase contrast imaging (Gureyev et al., 2020).

2.3.7 Other phase contrast imaging methods

Although the PBI configuration is arguably the most straightforward X-ray phase contrast
imaging setup, it is not the only (nor the oldest) X-ray phase contrast imaging method. In
addition to PBI, several other X-ray phase contrast imaging methods exist. A relatively
recent overview can be found in Endrizzi (2018), from which some key points will be
addressed here concerning crystal interferometry, analyzer-based imaging, and speckle-
based or single-grid methods.

2.3.7.1 Bonse-Hart crystal interferometry

The earliest example of an X-ray phase contrast imaging system, is the crystal interfer-
ometer of Bonse and Hart (Bonse and Hart, 1965), built from a single monolithic crystal
cut in three silicon beam splitters in Laue geometry that split, redirect and recombine the
X-ray beam (Fig. 2.6). Coherent beams are formed by dividing the incoming X-ray beam
at the beam splitter S and successively at the transmission element T. They meet again
at the analyzer A, where they interfere. In an ideal scenario, with a perfect plane wave
and a perfect crystal, the field is perfectly uniform until a sample is introduced in one of
the arms of the interferometer. If a sample is placed in one beam path, the phase shift in-
duced by the sample will produce an interference pattern from which the phase shift can
be extracted. The method shows very high phase sensitivity and the beam quality require-
ments are not very strict. However, the silicon crystals act as monochromator selecting a
narrow spectral width. This means a very intense beam is required to avoid excessively
long exposure times. In practice, local phase shifts, arising for example from strain and
defects in the crystal, will generate interference patterns that will be superimposed to the
modulations imposed by the sample. Due to the high sensitivity and limitations to sample
size, the crystal interferometer is best suited for high resolution imaging at synchrotron
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Figure 2.6: Schematic picture of a Bonse-Hart crystal interferometer based on three beam
splitter crystals: the beam splitter S, the transmission element T, and the analyser A.
Image not to scale.

sources where the requirement of high beam intensity is met (Momose and Fukuda, 1995;
Yoneyama, 2022).

2.3.7.2 Analyzer-based imaging

Analyzer-based imaging, also known as diffraction enhanced imaging (DEI), emerged
at synchrotron facilities more or less simultaneously with propagation-based imaging
(Davis et al., 1995; Chapman et al., 1996, 1997), although there are some examples of
preliminary versions of the technique (Goetz et al., 1979). Analyzer-based methods make
use of crystals both for beam preparation and analysis (see Fig. 2.7). The crystal arrange-
ment preceding the sample acts as a collimator and monochromator for the incoming
X-ray beam, while the crystal preceding the detector serves as a fine angular filter (an-
alyzer). In this configuration, the collimated beam penetrates the sample and is subse-
quently analyzed by the analyzer crystal, which deflects the beam onto the detector. The
goal of the method is to measure the first derivative of the phase by detecting refraction
angles (see Eq. (2.34)). The incidence angle of the analyzer crystal can be tuned such
that the refracted part of the beam is reflected onto the detector. When the angular tuning
is varied (rocking the analyzer), different refraction angles are analyzed, which results
in the recording of a so-called rocking curve. While rocking the analyzer, the deflection
angle results in a modulation of intensity, since the reflectivity and transmissivity of the
crystal is a function of the incident beam angle. A full data set therefore contains images
from several positions on the rocking curve.



2.4. GRATING-BASED INTERFEROMETRY 43

detector

rotating analyzer crystal

monochromator

X-ray beam

sample

Figure 2.7: Schematic overview of an analyzer-based X-ray phase contrast imaging setup
with a rotating analyzer crystal. Image not to scale.

2.3.7.3 Single grid and speckle-based methods

Single grid and speckle-based methods form a wide class of related X-ray phase contrast
imaging techniques. They make use of single absorption grids with one-dimensional
(Wen et al., 2008; Liu et al., 2023) or two-dimensional (Morgan et al., 2011) periodicity,
phase gratings with different shapes (Kagias et al., 2016; Liu et al., 2023), or even random
patterns such as sandpaper (Zanette et al., 2014). Such techniques attempt to recover
sample information from sample-induced deformations in the detected intensity pattern,
generated by the mask, hereby making use of Fourier or real space analysis methods.
The common factor in all of these methods is that a known structure is applied to the
wave field, of which the modifications are directly tracked. An overall reduction of the
structured beam intensity is related to absorption of the radiation within the sample, while
the spatial distortions of the known intensity patterns are used to determine the phase
shifts imposed to the wavefront by the sample. Although there has been a gradual shift
from synchrotron radiation towards lab-based X-ray sources, detecting the changes in the
intensity pattern often requires a (very) high resolution detector.

2.4 Grating-based interferometry

A popular alternative for crystal X-ray interferometers is found in grating-based X-ray
interferometers (Momose, 2003). Grating-based interferometry (GBI) is related to crys-
tal interferometry in the sense that it consists of a beam splitter and a beam analyzer
as well. GBI is also related to ABI by its ability to measure the first derivative of the
phase. Like ABI and crystal interferometry, GBI emerged as an X-ray phase contrast
imaging technique at synchrotron facilities (David et al., 2002; Momose et al., 2003), but
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has found its way to lab sources (Pfeiffer et al., 2006). Early on, grating interferome-
ters were used for coherence measurements (Cloetens et al., 1997, 1999; Pfeiffer et al.,
2005). The working principle of grating-based imaging is based on the creation of in-
tensity modulations through the Talbot self-imaging effect (Berry and Klein, 1996; Wen
et al., 2013). This phase contrast imaging method has become increasingly popular over
the past two decades, with the advent of Talbot (Momose et al., 2003) and Talbot-Lau
(Pfeiffer et al., 2006) interferometers, and is still in active development (Bech, 2022;
Momose et al., 2022). It should be noted that non-interferometric grating-based setups
exist as well (Huang et al., 2009; Wu et al., 2021), where two absorption gratings are
used to create a resolvable moiré pattern under weakly coherent conditions.

2.4.1 The Talbot effect

The Talbot self-imaging effect is an optical diffraction effect, reported for the first time in
the early nineteenth century using visible light (Talbot, 1836; Strutt Rayleigh, 1881). It
was then observed that light passing through a grating has the ability to replicate an im-
age of that grating at fixed propagation distances, now known as Talbot distances. Early
demonstrations of the Talbot effect in 1D and 2D using hard synchrotron X-rays fol-
lowed shortly after the demonstration of propagation-based X-ray phase contrast imaging
(Cloetens et al., 1997, 1999). Talbot effects are generated by both amplitude gratings and
phase gratings, when coherent X-rays illuminate a grating whose period is smaller than
the transverse coherence length. Amplitude gratings are regular structures in which the
gratings bars absorb the incoming X-ray beam, whereas the grating bars of phase gratings
induce a local phase shift with negligible attenuation of the X-ray beam. An amplitude
grating with period (or pitch) g, illuminated by a coherent plane wave with wavelength
λ , produces self-images at regular Talbot distances behind the grating, given by (Suleski,
1997):

dn = 2n
g2

λ
, (2.56)

with n ∈ N. In addition, self-images laterally shifted by half the grating pitch (g/2) are
generated at intermediate Talbot distances (Momose et al., 2003):

dn = (2n+1)
g2

λ
. (2.57)

When phase gratings are used, the self-images are not generated at the integer Talbot
distances, but instead appear at fractional Talbot distances (Cloetens et al., 1997; Momose
et al., 2003), also known as Lohmann distances (Suleski, 1997):

dn =

(
n+

1
2

)
g2

λ
(2.58)

where the intensity modulation of the self-images depends on the phase shift induced
by the phase grating (Momose et al., 2003). Considering three common types of grat-
ings (amplitude gratings, π-shifting phase gratings, and π/2-shifting phase gratings), the
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Figure 2.8: Schematic overview of a grating-based interferometer with a π-shifting phase
grating (not to scale). Since the period of the intensity modulation for a π-shifting phase
grating is half the grating period of G1, g2 must equal g1/2.

integer and fractional Talbot distances can be summarized as (Weitkamp et al., 2006):

dn = n
1

η2
g2

2λ
. (2.59)

Here, η = 1 for amplitude gratings and π/2-shifting phase gratings, and η = 2 for π-
shifting phase gratings. Eq. (2.59) yields the positions along the optical axis at which the
intensity fringe contrast takes a maximum or minimum. Amplitude gratings will exhibit
maximum fringe contrast at even Talbot orders n, while phase gratings do so at odd
Talbot orders. For π-shifting phase gratings, the period of the intensity modulation in the
self-images is half that of the grating itself. If the grating is not illuminated by a plane
wave, but by a spherical wave, the Talbot distances are shifted and the fringe spacing is
stretched due to the geometrical magnification (Weitkamp et al., 2006).

2.4.2 Talbot interferometry

A Talbot interferometer relies on a coherent X-ray source that emits X-rays towards a
detector. On their path to the detector, the X-rays encounter two gratings: G1 and G2
(Weitkamp et al., 2005), as shown in Fig. 2.8. The first grating (G1) in Fig. 2.8 generates
an interference pattern at regular propagation distances, with the same period (or half for a
π-shifting grating) as that of grating G1 (self-images). The distances dn at which it occurs
are given by Eq. (2.59), where g = g1, the pitch of the first grating G1. Placing an object
in the beam will distort the wavefront, causing the interference pattern to change. As the
fringes of the interference pattern are not resolvable by the detector, these changes cannot
be measured directly. Therefore, an absorbing analyzer grating (G2) is placed directly
in front of the detector, which has a pitch that matches the periodicity of the undistorted
interference pattern at that position. By shifting this grating along x (Fig. 2.8), the portion
of the interference pattern intensity that is being transmitted varies. This generates, for
every detector pixel, an intensity curve that oscillates as a function of the x-translation
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Figure 2.9: (a): Ideal case triangular phase stepping curves. (b): Cosine shaped phase
stepping curves.

of G2, hereby effectively translating the undetectable phase modulation into a detectable
intensity modulation. The parameters defining these curves can be retrieved from a set of
images taken at different G2 positions xg, a procedure known as phase stepping, using a
phase retrieval algorithm (Creath, 1988; Weitkamp et al., 2005).

In the ideal case, the modulation of the intensity in the phase stepping curve of a pixel
can be modeled by a triangle wave (Weber et al., 2011). The triangular wave function
fTW is given by:

fTW(x) =
2
π

arcsin(sinx), (2.60)

and the ideal case model is written as

I(xg) = a0 +a1 fTW

(
2π

xg

g2
+Φ1 +π

)
, (2.61)

were g2 denotes the pitch of the analyzer grating G2. The phase factor +π is introduced
to match the interpretation of Φ1 in Eq. (2.61) to the interpretation in Eq. (2.62), as the
latter is more common in literature.

Due to system imperfections such as variations in the widths and periodicity of the grat-
ings, detector imperfections, polychromaticity, and limited coherence, the intensity will
be blurred in most experiments (Weber et al., 2011) (Fig. 2.9). Therefore, the phase step-
ping curve corresponding to the detector pixel is typically described by a cosine function
(Momose et al., 2006; Pfeiffer et al., 2008; Bech et al., 2010b):

I(xg) = a0 +a1 cos
(

2π
xg

g2
+Φ1

)
. (2.62)

By estimating the model parameters a0, a1, and Φ1 from the intensity modulation curve
with object in the beam (Is(xg)), as well as from the intensity modulation curve without
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object in the beam (Ir(xg)), the AC (or equivalently the transmission T ), DPC (∇xφ ) and
DFC (V ) images can be calculated in every pixel (Bech et al., 2010b):

T =
a0,s

a0,r
, (2.63)

∇xφ =
g2

λd1,2
[Φ1,s −Φ1,r] , (2.64)

V =
a1,s/a0,s

a1,r/a0,r
, (2.65)

with d1,2 the distance between G1 and G2. The AC signal is hence the constant offset
of the phase stepping curve, while the first derivative of the phase of the wavefront is
related to the phase shift of the intensity modulation curve compared to the reference
curve. Eq. (2.64) results from Eq. (2.34), by considering that the shift in the interference
pattern is approximately given by ∆xs ≈ αd1,2 and ∆xs/g2 = ∆Φ1/2π (Engelhardt et al.,
2008). The DFC signal is determined by the relative amplitude of the curve, which
can be understood as a measure of how visible the interference pattern is. Increased
scattering will result in increased blurring of the interference pattern, thereby reducing
the amplitude of the stepping curve, which is why the DFC signal is often referred to as
the (normalized) visibility V = Vs/Vr. The visibility of a phase stepping curve is given
by:

Vr =
Imax,r − Imin,r

Imax,r + Imin,r
=

(Imax,r − Imin,r)/2
(Imax,r + Imin,r)/2

=
a1,r

a0,r
. (2.66)

The phase retrieval, i.e. the estimation of the function parameters from the phase stepping
measurements, can be performed through different procedures. In real measurements, the
parameters can be estimated from a least squares fit of a sine (or cosine) to the measured
points (Weber et al., 2011). It is also possible to treat Eq. (2.62) as the first order approx-
imation of a Fourier series (Pfeiffer et al., 2008; Bech et al., 2010b). As an alternative to
the phase stepping approach explained above, G2 can be slightly tilted around the z-axis
to generate moiré fringes, of which the changes induced by the presence of an object in
the X-ray beam can also be recovered (Momose et al., 2003, 2004).

The visibility of the fringes is an important figure of merit for the efficiency of the in-
terferometer. Concerning the longitudinal coherence (monochromaticity), it has been
shown how a deviation of the X-ray wavelength from its design value λ0 affects fringe
contrast (Weitkamp et al., 2005). As such, an approximate expression for the monochro-
maticity (expressed by the width ∆λ of the wavelength distribution around λ0) required
to maintain good contrast for a given Talbot order n is (Weitkamp et al., 2006):

λ0

∆λ
≳ n. (2.67)

This implies that a grating interferometer can be operated with fairly polychromatic ra-
diation. In addition, it can be shown that that the transverse spatial coherence length
required to obtain a given visibility Vr is (Weitkamp et al., 2006):

ls ≥ 0.94ng2 (lnVr)
−1/2 , (2.68)
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which can be related to the source size through Eq. (2.50). Although synchrotron facilities
can easily meet the coherence requirements, lab sources in general do not. However, this
can be overcome by introducing a third grating (G0, not shown) between the first one
(G1) and the source, as will be discussed in the next section.

2.4.3 Talbot-Lau interferometry

It can be shown that by inserting an additional absorption grating (G0) in front of the
X-ray source, a sufficiently strong intensity modulation pattern can be generated at G2,
even if incoherent sources are used for imaging (Clauser and Reinsch, 1992; Pfeiffer
et al., 2006). Such a three-grating interferometer is known as a Talbot-Lau interferome-
ter and is the standard configuration for lab systems. The slits of the source grating will
act as an array of mutually incoherent sources, which, due to their reduced individual
widths, are each in itself small enough to be sufficiently spatially coherent. By carefully
scaling the distances between the three gratings, the interference patterns caused by the
individual slits will coincide at a specific Talbot distance. Hence, the coinciding patterns
all incoherently contribute to a single detectable pattern. To achieve this, the fringe pat-
terns of neighboring virtual sources should be displaced by exactly one fringe period (or
multiples thereof) with respect to each other. This condition is fulfilled if the pitch of G0
is (Pfeiffer et al., 2006; Weitkamp et al., 2006):

g0 =
d0,1

d1,2
g2, (2.69)

where d0,1 denotes the propagation distance between G0 and G1. Thus, in a Talbot–Lau
interferometer, the effective coherence length determining the visibility of the fringes
is given by the size of the individual virtual sources, rather than the total size of the
source. In this way, the Talbot–Lau interferometer allows an efficient implementation
of phase contrast imaging with low brilliance lab sources. The spatial resolution of the
images, however, is determined by the total source size and the distances between source
and sample and between sample and detector in exactly the same way as for a non-
interferometric imaging system. The Talbot–Lau interferometer does not increase spatial
resolution in any way, but it allows for phase sensitivity where it would otherwise not be
accessible (Weitkamp et al., 2006).

2.5 Edge illumination

Edge illumination emerged in the early 21st century, as a product of synchrotron experi-
ments inspired by analyzer-based methods (Olivo et al., 2001), and was later transferred
to lab systems with extended focal spots (Olivo and Speller, 2007a). As we shall see
shortly, the EI setup shows, at first sight, a striking physical resemblance with the stan-
dard GBI setup. In contrast to GBI, however, EI is a non-interferometric phase contrast
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Figure 2.10: (a) Experimental setup for X-ray imaging with a smaller effective pixel
size. The red arrow indicates the scanning direction of the sample. (b) Original edge
illumination configuration, where a narrow beam impinges the edge of the effective pixel.
The narrower the beam, the stronger the detected phase contrast.

imaging method (Munro et al., 2010a). The EI gratings (or masks) are not designed to
produce interference patterns, but rather to subdivide the incoming X-ray beam, making
EI suitable for incoherent imaging conditions. Like GBI and ABI, EI is sensitive to the
first derivative of the phase, and the so-called illumination curves collected with a con-
ventional EI setup are similar in appearance to the rocking curves acquired with ABI.
Single mask configurations derived from EI, commonly known as beam tracking meth-
ods, have also been proposed (Vittoria et al., 2014). The experimental configuration of
beam tracking resembles that of the methods discussed in Section 2.3.7.3, but its con-
trast retrieval mechanism is more closely related to EI and ABI. In contrast, the retrieval
procedure for single grid methods is more closely related to GBI.

2.5.1 Principles of edge illumination

The original edge illumination setup resulted from an attempt to improve the phase con-
trast acquired with fairly large pixels using synchrotron radiation (Olivo et al., 2001). It
was shown that the contrast can be improved by masking the outer parts of the detector
pixel, retaining only the central region for illumination (Fig. 2.10). However, it was also
observed that the major contributions to the detected phase contrast arose from the nar-
row regions around the mask edges (the effective pixel edges), whereas the portion of the
beam illuminating the central pixel region merely contributed to the background signal.
As such, it suffices to retain a narrow beam, aiming at the effective pixel edge, to achieve
a good phase contrast signal (Fig. 2.10). Indeed, if a sample is transported through the
X-ray beam to acquire an image, it will locally deflect the X-ray beam due to refraction.
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Figure 2.11: (a) schematic overview of an EI system (not to scale). (b) illustration of an
IC with and without sample. The arrows indicate the IC shift and broadening, which are
linked to refraction and dark field, respectively. The transmission is given by how much
the area under the IC is reduced.

This deflection will be directed towards the pixel center when the sample is entering the
narrow beam, hereby increasing the measured intensity. Conversely, when the sample
is leaving the beam, the X-rays will be refracted away from the pixel center, lowering
the measured intensity. Recalling that refraction is related to the first derivative of the
phase (Eq. (2.34)), this provides an effective way to acquire phase contrast images with
larger pixels. The original EI configuration shown in Fig. 2.10, where a narrow beam
illuminates the effective pixel edge, explains the origin of the name of the method.

2.5.2 The conventional edge illumination setup

The standard EI setup for X-ray phase contrast imaging under lab conditions is depicted
in Fig. 2.11. The main components of an EI setup are the two absorbing gratings: one
in front of the sample and one in front of the detector. In contrast to the scanning setup
described in the previous section, the double-mask configuration enables image acquisi-
tion in a single shot with an area detector (Olivo and Speller, 2007a). The first grating
is known as the sample mask and serves as a beam splitter, subdividing the incoming
X-ray beam in several smaller beamlets. In a standard EI configuration, each beamlet
corresponds to exactly one pixel column on the detector. The amount of illumination
received by each pixel depends on the relative position between the sample mask and
the second grating, known as the detector mask. By shifting the sample mask along the
x-direction in Fig. 2.11, the projected positions of the beamlets on the detector mask will
shift accordingly. If the projected beamlet falls perfectly within the aperture of the detec-
tor mask, the measured intensity is maximal. Shifting away from this position to either
side will gradually decrease the received illumination until the beamlet is fully blocked
by the grating bar, resulting in minimal illumination.

The detector pixel illumination as a function of the sample mask translation is referred to
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as the illumination curve (IC) (Endrizzi et al., 2014). The IC, depicted in Fig. 2.11, can
be used to retrieve the three different contrasts. First, part of the incoming X-rays will be
absorbed by the object, reducing the total intensity in the beamlet and the area under the
IC (AC). Secondly, refraction in the object will deflect the beamlet from its original path,
shifting the IC (DPC). Finally, angular broadening due to unresolvable microstructures
increases the IC width (DFC). In practice, an EI experiment involves sampling the IC with
a finite number of grating shifts, known as mask stepping. At least three IC positions are
required to retrieve all three contrasts. Contrast retrieval is usually performed by fitting
the sampled IC with a Gaussian function in the sample mask plane:

IC(xs) =
a

c
√

2π
exp
(
−(xs −b)2

2c2

)
, (2.70)

with a the area under the IC, b the position of the mean, and c2 the variance. As such,
transmission, beamlet shift, and beamlet broadening in the sample mask coordinate sys-
tem are given by

T =
as

ar
, (2.71)

∆b = bs −br, (2.72)

∆c2 = c2
s − c2

r , (2.73)

respectively, where the projection with sample and corresponding reference flat field are
denoted by indices s and r, respectively. The AC can be computed from T as − lnT ,
although this additional conversion step is strictly speaking only required for CT. The
local X-ray refraction angle α (DPC) can be calculated from ∆b by accounting for the
distance between sample and detector dOD and the magnification M (Diemoz et al., 2013):

α =
M

dOD
∆b. (2.74)

Here, it is assumed that the small angle approximation holds. Similarly, the angular
broadening σ2 (DFC) can be calculated from ∆c2 (Astolfo et al., 2016; Doherty et al.,
2023):

σ
2 =

(
M

dOD

)2

∆c2. (2.75)

Under certain circumstances, such as residual transmission through the grating bars, an
offset might be present in the measured IC. This can be modeled by adding an offset
parameter to the model in Eq. (2.70) (Endrizzi and Olivo, 2014; Vittoria et al., 2015;
Astolfo et al., 2016). Similarly, overlap of neighboring beamlets can hamper the detection
of weaker dark field signals, which can be compensated for by simultaneous fitting of
neighboring curves (Maughan Jones et al., 2018; den Dekker et al., 2013).
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Figure 2.12: a) Schematic depiction of a single mask beam tracking configuration. b)
Example of how the beamlet intensity is distributed over several adjacent detector pixels
in a beam tracking approach, allowing for direct sampling of the beamlet profile.

2.5.3 Comparison with the grating-based interferometer setup

Although the standard setups for GBI and EI look very similar, there is a crucial differ-
ence in the design of the gratings for the respective techniques. GBI gratings typically
have smaller apertures, in the order of a few microns, as their purpose is to generate and
analyze interference patterns (Pfeiffer et al., 2006; Bech et al., 2010b). EI apertures can
be up to an order of magnitude larger, as their purpose is to generate and analyze spatially
separated beamlets (Olivo and Speller, 2007a; Endrizzi and Olivo, 2014). Similarly, GBI
grating periods are typically much smaller compared to EI grating periods, as each detec-
tor pixel column in a GBI setup covers multiple interference fringes, whereas a detector
pixel column in EI matches a single beamlet. As a result, EI gratings typically show
lower duty cycles compared to gratings for GBI. Interestingly, these considerations also
imply that the spatial resolution in GBI is limited by the detector pixel size (Weitkamp
et al., 2006), while in EI the spatial resolution is limited by the sample mask aperture size
if a sub-pixel sample stepping procedure, known as dithering, is applied (Hagen et al.,
2014b).

Whereas in conventional EI each beamlet illuminates one pixel column, a modified EI
setup was proposed where a single beamlet illuminates multiple adjacent pixel columns
(Vittoria et al., 2014, 2015). Such a single mask configuration allows for direct sam-
pling of the beamlet intensity profile using the detector pixels, provided that the pixels
are small enough (Vittoria et al., 2014) or that the geometrical magnification is large
enough (Vittoria et al., 2015). This approach, which is shown schematically in Fig. 2.12,
is known as beam tracking. Assuming a Gaussian beamlet intensity profile, the beam
tracking contrast retrieval procedure is essentially the same as the IC-based contrast re-
trieval procedure for conventional EI (Vittoria et al., 2018).



2.6. X-RAY PHASE AND DARK FIELD CONTRAST CT 53

2.6 X-ray phase and dark field contrast CT

The advancements in both GBI and EI resulted in the development of quantitative X-
ray phase contrast tomography using synchrotron radiation and lab sources (Momose
et al., 2004; Pfeiffer et al., 2007; Hagen et al., 2014a,b), soon followed by dark field con-
trast tomography (Wang et al., 2009b; Bech et al., 2010a; Endrizzi et al., 2017; Doherty
et al., 2023). In addition, tomographic imaging has been applied to many other phase
contrast imaging methods as well (Wernick et al., 2003; Alloo et al., 2022; Xiao et al.,
2022; Yoneyama, 2022). Most of the concepts introduced in Section 1.4 for attenuation
contrast CT are almost directly applicable to DPC and DFC, although there a some im-
portant differences, which will be highlighted in this section. It should be noted that joint
reconstruction methods, capable of reconstructing two, or even all three contrasts simul-
taneously from the stepping data have been proposed as well (von Teuffenbach et al.,
2017; Chen et al., 2017; Six et al., 2024).

2.6.1 X-ray phase contrast computed tomography

Both GBI and EI measure differential X-ray phase contrast, i.e. the first derivative of
the phase. Hence, the DPC images have to be integrated in order to apply standard
tomographic reconstruction methods (Weitkamp et al., 2005). Indeed, from Eq. (2.22)
and Eq. (2.34) it follows that:

α(x,y) =− ∂

∂x

∫
δ (x,y,z)dz. (2.76)

Alternatively, the derivative can be incorporated in the FBP reconstruction algorithm
(Eq. (1.9)) by replacing the ramp filter |ωs| by the Hilbert filter (Pfeiffer et al., 2007;
Faris and Byer, 1988):

h̃ =
|ωs|

2πiωs
. (2.77)

For algebraic reconstruction methods, the derivative is taken into account by incorpo-
rating a discrete differential operator DDD (e.g. the forward differences operator) in the
forward model. Eq. (1.10) then reads:

ppp = DDDAAAxxx, (2.78)

which can be solved using iterative reconstruction schemes (Hahn et al., 2015; Six et al.,
2024).

2.6.2 X-ray dark field contrast computed tomography

The angular broadening associated with DFC can be modeled by introducing a mate-
rial dependent linear diffusion coefficient ε(x,y,z) (Khelashvili et al., 2006; Bech et al.,
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2010a; Wang et al., 2009b; Doherty et al., 2023):

σ
2(x,y) =

∫
ε(x,y,z)dz. (2.79)

This expression is mathematically equivalent to the forward model for conventional at-
tenuation contrast CT (Eq. (1.6)), implying that the same reconstruction algorithms can
be applied. For GBI, the angular broadening is related to the normalized visibility by
(Bech et al., 2010a):

σ
2(x,y) =− g2

2

2π2d2
1,2

lnV (x,y). (2.80)

The dark field signal can have a very strong directional dependence when (strongly) or-
dered microstructures are present in the sample (Jensen et al., 2010a,b; Revol et al., 2012;
Malecki et al., 2013). Although X-ray phase contrast imaging with multi-directional sen-
sitivity is relatively common (Gustschin et al., 2021; Tao et al., 2023), there is an intrinsic
difference with directional dark field imaging in the sense that the refractive index decre-
ment δ is a scalar value, except for some crystalline materials (Bricogne et al., 2005),
whereas the generalized linear diffusion coefficient (the scattering strength) is best de-
scribed by a tensor (Bayer et al., 2014; Malecki et al., 2014). Tomographic reconstruction
of this tensor provides information about the orientation of unresolved microstructures,
and the forward model in this case is given by (Vogel et al., 2015):

σ
2(x,y) = ∑

j
ν j

∫
ζ

2
j (x,y,z)dz, (2.81)

where ζ j(x,y,z) denotes the effective scattering coefficient for the sampled scattering di-
rection j, and ν j is a weighting factor depending on the orientation of the beam, the scat-
tering direction and the sensitivity direction of the imaging system. After reconstruction,
an ellipsoid can be fitted to the reconstructed effective scattering coefficients, which is in
turn related to a scattering tensor (Wong, 1994). A generalized model relying on spheri-
cal harmonics instead of scattering tensors was later introduced as well (Wieczorek et al.,
2016). The microstructure orientations are extracted from the reconstructed scattering
distribution by means of the Funk-Radon transform (Wieczorek et al., 2018; Funk, 1913)
or constrained spherical deconvolution (Huyge et al., 2023a; Tournier et al., 2007).

2.7 Wave optics simulations for X-ray imaging

The classical Monte Carlo approach to simulating X-ray images, which was introduced
in Section 1.5, can be very effective in predicting X-ray images with absorption contrast,
but cannot compute X-ray phase contrast images without additional modifications. Tra-
ditionally, the simulation of X-ray phase contrast images employs wave optics, building
on the concepts introduced in Section 2.2. In general, three main aspects have to be con-
sidered in wave optics: (i) the interaction of the X-ray wave with the simulated phantom
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object, (ii) the interaction of the X-ray wave with the optical components (if present), and
(iii) the free-space propagation between optical components and objects. For the sake of
simplicity, the notation ψ̃(x,y,z) will be adopted to denote complex wavefront ampli-
tudes, replacing the energy-explicit notation ψ̃ω(x,y,z). Detailed examples of efficient
wave optics implementations for grating-based interferometry and edge illumination can
be found in Spindler et al. (2025) and Vittoria et al. (2013), respectively.

2.7.1 X-ray interactions in objects and gratings

In contrast to the extensive modeling of X-ray interactions in Monte Carlo simulations,
X-ray wave optics simulations usually employ a much more concise description of the
interaction physics, summarized by the complex index of refraction (Eq. (2.19)). The
complex wavefront amplitude of the outgoing wave field ψ̃out(x,y,z0) is then computed
from the complex wavefront amplitude of the incoming wave field ψ̃in(x,y,0) by multipli-
cation with the complex transmission function of the object T (x,y,z0) (Eq. (2.21)), which
is a direct application of the projection approximation (Eq. (2.20)) (Weitkamp, 2004):

ψ̃out(x,y,z0) = T (x,y,z0)ψ̃in(x,y,0). (2.82)

The assumption that the effect of the object on the passing wavefront can be described
by Eq. (2.82) is virtually always justified for thin optical components such as gratings
and masks, where in the most straightforward implementations T (x,y,z0) equals 1 for
perfectly transmitting apertures and T (x,y,z0) equals 0 for perfectly absorbing grating
bars (Vittoria et al., 2013). Partial transmission and absorption can then be modeled by
choosing values between 0 and 1. Likewise, T (x,y,z0) can be used to assign a phase shift
to the grating bars, required for modeling the phase grating (G1) in GBI (Malecki et al.,
2012).

Determining the complex transmission function of specific optical components and other
objects, characterized by their material properties and thickness, requires knowledge of
their respective complex index of refraction. Energy-dependent values for β and δ can
be extracted from databases1 or calculated from theoretical models (Als-Nielsen and Mc-
Morrow, 2011), based on:

β =
µλ

4π
, (2.83)

and

δ =
reλ 2

2π
ρe, (2.84)

respectively. In Eq. (2.83), µ is the linear attenuation coefficient introduced earlier in
Eq. (1.3). In Eq. (2.84), re denotes the classical electron radius and ρe the material elec-
tron density. For energies sufficiently far away from absorption edges, such that the real

1https://henke.lbl.gov/optical_constants/

https://henke.lbl.gov/optical_constants/
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part of the forward atomic scattering factor f (0) = f1(0)+ i f2(0) is approximately equal
to the atomic number Z, we may write (Henke et al., 1993; Peter et al., 2014):

ρe ≈ f1(0)ρa ≈ Zρa = Z
ρ

ma
, (2.85)

with ρa the atomic number density, ma the atomic mass, and ρ the mass density. The
linear attenuation coefficient µ can be expressed in terms of the total cross-section σtot

(Eq. (1.1)) as (Malecki et al., 2012; Peter et al., 2014):

µ =
ρNA

A
σtot , (2.86)

where NA denotes Avogadro’s number and A is the atomic mass number. In case of a
compound material consisting of more than one type of atom, Eq. (2.83) and Eq. (2.84)
can be modified to weighted sums over all atom types that are present (James, 1962):

β =
λ

4π

Nt

∑
j=1

ρa, jµa, j, (2.87)

δ =
reλ 2

2π

Nt

∑
j=1

ρa f1, j(0), (2.88)

with Nt the total number of different atom types. Near absorption edges, a more general
expression for the electron density of a material (with known stoichiometric composition)
that includes dispersion corrections should be used (Daillant and Gibaud, 2009):

ρe = ρNA
∑

Nt
j=1 n j

Z j+ f ′j+i f ′′j
M j

∑
Nt
j=1 n j

, (2.89)

where the real ( f ′j) and imaginary ( f ′′j ) part of the anomalous atomic form factor are
referred to as the dispersion corrections, M j is the molar mass, and n j is the number
of atoms of type j present in the stoichiometric formula. In the previous expression,
f ′ = f1+ frel −Z, with frel the relativistic correction factor, and f ′′ = f2 (Chantler, 1995).
Eq. (2.89) yields the following generalized expressions for the calculation of β and δ for
a compound material (Daillant and Gibaud, 2009):

β =
reλ 2

2π
ρNA

∑
Nt
j=1 n j

f ′′j
M j

∑
Nt
j=1 n j

, (2.90)

and

δ =
reλ 2

2π
ρNA

∑
Nt
j=1 n j

Z j+ f ′j
M j

∑
Nt
j=1 n j

. (2.91)

The atomic form factors and other physical variables required for the computation of the
complex index of refraction can be requested from online databases such as NIST FFAST
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(Chantler, 1995, 2000; Chantler et al., 2005) and NIST XCOM (Berger et al., 2010). It is
common to express the extracted attenuation data as mass-attenuation coefficients (µ/ρ)
rather than linear attenuation coefficients µ .

In cases where the effect of the object on the X-ray wave cannot be represented by a
single slice, one can use a multi-slice approach (Cowley and Moodie, 1957). In the
multi-slice method, the sample is represented by a series of consecutive thin slices, such
that Eq. (2.82) can be applied consecutively to each individual slice. The transmitted
wave function for a given slice is then propagated to the next slice (see Section 2.7.2) and
becomes the incident wave function for that slice. This process is repeated until the wave
function is obtained in the exit plane. The multi-slice method is expected to be valid
as long as a sufficient number of closely spaced slices are taken, such that the spread
of the wave function caused by Fresnel diffraction within the slice does not exceed the
spatial resolution required for the calculation. This can be expressed as (Włodarczyk and
Pietrzak, 2015):

(δx)2 +(δy)2 ≪ δ zλ , (2.92)

where the small lateral spread of the wavefunction is expressed by δx and δy, and δ z
is a small propagation distance equal to the slice thickness. More rigorous wave-optical
approaches should be applied in circumstances where the paraxial and projection ap-
proximations are challenged by thicker objects and diverging X-ray beams (Sung et al.,
2013).

2.7.2 Free-space propagation

Since in most cases finding an analytical solution is not possible, calculating the free-
space propagation of a wave field following Eq. (2.26) requires the numerical implemen-
tation of the Fresnel diffraction operator D∆z (Eq. (2.27)). To this end, a discrete repre-
sentation of ψ̃(x,y,z) is introduced, with sampling interval lengths ∆x and ∆y for the x
and y coordinates, respectively:

ψ̃(x,y,z)→ ψ̃(nx∆x,ny∆y,z). (2.93)

Here, nx and ny are the grid indices of the Nx ×Ny grid on which the wavefront is dis-
cretized, i.e. nx,y ∈ [0,Nx,y −1] for Nx,y ∈ N0. The discrete representation of free-space
propagation then becomes (Bartels, 2013):

ψ̃(x,y,z1) = eik∆zDFT−1
(

e−
i∆z
2k (k2

x+k2
y)DFT(ψ̃(x,y,z0))

)
, (2.94)

where DFT denotes the discrete Fourier transform, which can be performed efficiently
by means of the fast Fourier transform (FFT) algorithm (Cooley and Tukey, 1965), and
kx = nx∆kx and ky = ny∆ky should be interpreted as discrete sampling points on a grid
with grid spacings defined as:

∆kx =
2π

Nx∆x
(2.95)
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and
∆ky =

2π

Ny∆y
. (2.96)

By introducing the discrete Fresnel numbers:

Fx =
(∆x)2

λ∆z
(2.97)

and

Fy =
(∆y)2

λ∆z
, (2.98)

the complex exponential inside the inverse discrete Fourier transform in Eq. (2.94) can
be expressed as (Bartels, 2013):

e−
i∆z
2k (k2

x+k2
y) = exp

(
− iπn2

x

N2
x Fx

)
exp

(
−

iπn2
y

N2
y Fy

)
. (2.99)

This indicates that Fresnel propagation of a given wave field with a discrete Nx×Ny pixel
representation only depends on the combination of wavelength, propagation distance and
pixel size (Eq. (2.97) and Eq. (2.98)). To ensure proper sampling of the complex expo-
nential in Eq. (2.99) at smaller Fresnel numbers, the incident wave field can be embedded
in a larger array using symmetric padding (mirror reflections at the borders or replication
of the border values). Proper sampling implies that the sampling interval is sufficiently
small for the Nyquist frequency fN = 1/(2∆x) to exceed the high-frequency components
of the phase. Adhering to this criterion will avoid aliasing artifacts in the simulation.
A detailed investigation of the sampling requirements for the complex exponential in
Eq. (2.99) can be found in Voelz and Roggemann (2009), and some key points will be
addressed below. First, it should be noted that performing the propagation in Eq. (2.26)
by multiplication in Fourier space with the transfer function H(kx,ky), which is given by:

H(kx,ky)≡ eik∆ze−
i∆z
2k (k2

x+k2
y), (2.100)

is analytically equivalent to performing the propagation in real space by means of a con-
volution (∗) with the impulse response h(x,y):

ψ̃(x,y,z1) = F−1 [H(kx,ky)F [ψ̃(x,y,z0)]] = ψ̃(x,y,z0)∗h(x,y). (2.101)

Here, h(x,y) forms a Fourier pair with H(kx,ky). In their discretized form, however, the
two different approaches are only fully interchangeable if (Voelz and Roggemann, 2009):

∆x =
λ∆z
Lx

⇔ λ∆z
Lx∆x

= 1, (2.102)

which is known as the ideal sampling condition. Here, Lx denotes the size of the sampling
array along the x-axis. The same applies to the y-axis. In Eq. (2.102), λ∆z/Lx∆x can be
interpreted as a sampling regime factor, where a value less than 1 indicates an under-
sampled h(x,y) and oversampled H(kx,ky), a value equal to 1 indicates ideal sampling,
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and a value greater than 1 indicates an oversampled h(x,y) and undersampled H(kx,ky).
However, maintaining the ideal sampling condition can be inconvenient. Considering
again the x-axis, the ideal sampling criterion can be expressed in terms of the number of
samples Nx:

Nx =
λ∆z
(∆x)2 =

L2
x

λ∆z
. (2.103)

For a given simulation, this condition may dictate either too many samples for a practical
FFT calculation or too few for adequate sampling of the source or observation planes.
Note that this expression for Nx is the inverse of the discrete Fresnel number defined
earlier (Eq. (2.97)).

As mentioned earlier, the total size of the sampling array should be larger than the region-
of-interest (ROI) for the calculation of the wavefront propagation to avoid nonphysical
edge effects. In other words, if we denote the support length (the ROI) of the source field
(z = z0) by l0 and the support length of the observation field (z = z1) by l1, then {l0, l1}<
Lx. However, if the transfer function method is used when h(x,y) is undersampled and
H(kx,ky) is oversampled, the width l1 of the field in the observation plane that can be
modeled accurately is limited to (Voelz and Roggemann, 2009):

l1 ≤ l0 +
λ∆z
∆x

, (2.104)

which is typically less than Lx. The transfer function method tends to produce a field
in the observation plane that diminishes outside of the range given by Eq. (2.104). The
two orthogonal variables x and y can be evaluated separately, so the same considerations
apply to the y-axis.

2.7.3 Divergent X-ray beams

The projection and paraxial approximations together imply that the measured intensity
over the planar detector at z = z1, illuminated by a spherical wave (Isw(x,y,z = z1)), is
equal to the intensity that would be measured if the same thin object were illuminated
by z-directed plane waves with the detector moved to a distance of z1/M downstream
of the object (Ipw(x,y,z = z1/M)). Here, M denotes the geometric magnification. This
equality holds up to a transverse magnification and a multiplicative scaling M2 (Paganin
and Pelliccia, 2021):

M2Isw(x,y,z = z1) = Ipw

( x
M
,

y
M
,z =

z1

M

)
. (2.105)

Eq. (2.105) is know as the Fresnel scaling theorem. The scaling of x and y by a factor
1/M on the right-hand side of Eq. (2.105) stretches the plane wave illumination image
Ipw(x,y,z = z1/M) to be the same size as the spherical wave illumination image. The fac-
tor of M2 accounts for energy conservation, since geometric magnification by a factor of
M will increase the area of an image by a factor of M2, thereby reducing the intensity by a
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factor of 1/M2. For numerical computation of magnified or de-magnified images, proper
numerical sampling of the phase on a grid that is parallel to the optical axis becomes
problematic. The requirement for adequate sampling may necessitate an impracticably
large number of pixels. The Fresnel scaling theorem sidesteps this issue, by reducing the
computation of a Fresnel diffraction pattern of an expanding or contracting wave to an
equivalent calculation for a parallel wave.

If the paraxial approximation starts to break down for increasingly divergent X-ray fields,
the non-paraxial angular spectrum method gives a more suitable description of the wave
field propagation (Novotny and Hecht, 2012; Bartels, 2013). In the angular spectrum
method, spherical waves are expanded as a series of plane waves with variable ampli-
tudes and propagation directions. Recently, a method was presented for numerically
efficient and accurate simulations of divergent beams propagating through diffracting
structures using the multi-slice method, by applying a coordinate system transformation
that transforms the divergent spherical wave into a plane wave (Munro, 2019).

2.8 Design of X-ray phase contrast imaging systems

Over the past two decades, the transition of X-ray phase contrast imaging (XPCI) from
synchrotron facilities to lab systems has been successfully established (Endrizzi, 2018).
This transition has been achieved in particular for GBI (Pfeiffer et al., 2006) and EI
(Olivo and Speller, 2007a; Olivo, 2021). A natural consequence of this evolution is that
the research field is becoming increasingly oriented towards the development of real-
world applications, such as non-destructive testing (Glinz et al., 2021; Shoukroun et al.,
2022b), security screening (Olivo et al., 2009; Miller et al., 2013) and (bio)medical imag-
ing (Pfeiffer et al., 2013; Birnbacher et al., 2021; Massimi et al., 2022). Among these
examples, medical XPCI is arguably the most acclaimed application, even more so since
the recent demonstration of medical X-ray dark field imaging of human lungs with GBI
(Urban et al., 2022). Although GBI is currently a more widespread method, EI is partic-
ularly promising due to its low coherence requirements and relatively strong mechanical
robustness (Endrizzi, 2018). As the number of XPCI applications steadily grows, so does
the need for reliable simulation tools to support the design of novel imaging systems and
the development of advanced analysis methods. However, the employment of simulation
tools for these purposes poses multiple challenges.

First, wave optics simulators have proven to be a very valuable tool for the simulation
of diffraction effects, but efficient implementations often have to rely on the projection
approximation when modeling X-ray interactions in samples. MC simulators such as
GATE, on the other hand, showcase extremely detailed interaction models and built-in
tools for designing complex phantoms, but typically lack the default incorporation of any
phase effects. As such, in Chapter 3, this issue is addressed by upgrading GATE with the
necessary tools for XPCI simulations.
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In addition, MC simulations are known for their notoriously long computation times,
which hamper the often large parameter studies that are required for designing optimized
XPCI systems. In Chapter 4, it is demonstrated how this problem can be mitigated by
introducing the concept of virtual gratings. Subsequently, this method is applied to the
design of a pair of gratings for the FleXCT micro-CT system in Chapter 5.

Finally, Chapter 6 addresses the question of how to properly benchmark multi-contrast
simulation results, which is achieved through simultaneous extraction of detailed infor-
mation about photon trajectories from the MC simulations by relying on the flexibility of
the virtual grating approach.
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X-ray phase contrast simulations using

GATE

This chapter is published as:

• Sanctorum, J., De Beenhouwer, J., and Sijbers, J. (2020). X-ray phase contrast simulation
for grating-based interferometry using GATE. Optics Express, 28(22):33390–33412

3.1 Introduction

A number of different approaches has been proposed for X-ray phase contrast imag-
ing (XPCI) simulations, typically based on numerical wavefront propagation (Weitkamp,
2004; Malecki et al., 2012), MC simulations (Wang et al., 2009a; Prodi et al., 2011;
Cipiccia et al., 2014), or a combination of both (Bartl et al., 2009; Peter et al., 2014).
More recently, the combination of analytical and empirical input data has been explored
to reduce simulation times (Vignero et al., 2018). The latter approach, however, does
not include dark field imaging. In this chapter, we propose to apply the approach sug-
gested by Peter et al. (2014) to GATE and use Monte Carlo simulations in combination
with subsequent numerical wavefront propagation. GATE is used for modeling the X-ray
interactions in the sample, whereas the wave optics part is used to incorporate coherent
effects. To this end, we extend the existing GATE framework with additional tools for
the purpose of XPCI simulations, by adding X-ray refraction to the physics library and
by associating each photon with a complex wavefront amplitude. We discuss the key
aspects of the simulation framework, and show and discuss the simulation results. The
methodology presented in this chapter will be demonstrated for GBI, but is applicable to
PBI and EI as well.

63
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GATE MATLAB

incoming photons phantom virtual detection propagation detection

Figure 3.1: Schematic overview of the implemented simulation framework.

3.2 Methods

In this section, we will first briefly address the simulation approach and the corresponding
additions to GATE. The concept of using a consecutive combination of MC simulation
and wavefront propagation for XPCI was originally introduced by Peter et al. (2014),
where egs++ was chosen as MC framework. In this chapter, we will pave the way for
the simulation of advanced contrast modalities using GATE’s versatile macro interface.
Moreover, we will address aspects that were unexplored in the work of Peter et al. (2014),
such as 2D radiography including detailed phantom design (Section 3.3). Different ap-
proaches to the wavefront construction will be presented, as well as considerations with
respect to the implementation of phase stepping and phase retrieval.

3.2.1 Extensions to the GATE source code

GATE forms the first part of the simulation pipeline, where the X-ray interactions in the
phantom are simulated (Section 3.2.1.1). Despite regular advances in the list of GATE
functionalities, for example with respect to CT (Jan et al., 2011), XPCI has not been
taken into account apart from our preliminary work (Sanctorum et al., 2018, 2019). In
our modified version of GATE 8.0, the X-rays are collected in a discretized wavefront at a
virtual plane, placed behind the phantom (Section 3.2.1.3). In the second part of the sim-
ulation, the constructed wavefront interacts with the gratings and is propagated towards
the detector (Section 3.2.2.1). At the detector, phase stepping is performed. A schematic
overview of the simulation flow is shown in Fig. 3.1. In order to assess the simulation
results free from detector effects, the simulations in this chapter are performed without
the incorporation of extensive detector modeling. Hence, we will proceed under ideal-
ized imaging conditions, and Eq. (2.61) will be used for fitting whenever phase retrieval
is performed. Section 3.2.2.4 describes the phase retrieval procedure using Eq. (2.61).
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3.2.1.1 Introducing phase effects in GATE

The physics related to the absorption effects is already present in GATE by default. How-
ever, as described in Peter et al. (2014), taking phase effects into account requires the
photons to have an additional property (a phase or optical path length) and the inclusion
of refraction as an additional physics process. In order to define these, each material in
the simulation is associated with the decrement δ of the real part of its complex index of
refraction, n = 1−δ + iβ . This is implemented in such a way that the user can easily add
this property to the GATE material database on request by specifying a set of δ values in
the macro (a GATE script configuring a simulation) for a custom energy range:

/gate/refractiveindex/setRefractionIndex ‘name’ ‘E1’ ‘d1’

/gate/refractiveindex/setRefractionIndex ‘name’ ‘E2’ ‘d2’

...

Here, the material name is denoted by ‘name’. Next, the energy and δ values are spec-
ified. These values can be extracted from data tables (Henke et al., 1993), see Section
2.7.1. Having defined the material properties, a phase φ is associated with each photon
p. When traveling through a certain material, the phase added to the initial photon phase
is given by Eq. (2.22), where k is the photon wave number in vacuum and the integral is
calculated over the path followed by the photon. Tracking of the optical path length was
done using the processGate library (De Beenhouwer et al., 2009).

In addition, the physics library of GATE was extended with the X-ray refraction process.
At the boundary between one material (with refractive index decrement δ1) and another
(with refractive index decrement δ2), the photon undergoes a deterministic refraction
process (see Eq. (2.2)), governed by Snell’s law (Wang et al., 2009a):

(1−δ1)sinθ1 = (1−δ2)sinθ2. (3.1)

with θ1 the angle between the direction of the incoming photon in the first material and
the surface normal, and θ2 the angle between the direction of refracted photon in the sec-
ond material and the surface normal. The refraction process (named XrayRefraction)
is implemented in the GATE source code and is activated in the macro by:

gate/physics/addProcess XrayRefraction

which is similar to the activation of the other physics processes.

3.2.1.2 Introducing surface roughness

Now that refraction is included in our GATE simulations, the roughness of the surface at
which it occurs can be taken into account. To this end, we propose to use a simplified
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but effective model. For the refraction process, the key aspect of surface roughness is the
local orientation of the surface normal. Hence, the roughness modeling can be simplified
by introducing local variations in the surface normal with respect to the mean surface,
using a stochastic model. The local surface normal undergoes a slight deflection from its
original position every time a photon hits, and the rotation axis for the deflection is drawn
uniformly from all possible directions. The magnitude follows a Gaussian distribution,
expressing the expectation that smaller deviations are more likely than larger ones. Other
probability distributions could be of interest depending on e.g. the designed phantom,
but such a discussion exceeds the scope of our work. This surface roughness model was
applied to the simulations described in Section 3.3.2 and Section 3.3.3. Note that the
presented approach to model the surface roughness is similar to the treatment of optical
photons in GATE for e.g. explicit modeling of scintillator effects.

3.2.1.3 Wavefront construction in GATE

After interacting with the phantom, the photons arrive at a virtual detector plane, posi-
tioned directly behind the phantom. To construct the X-ray wavefront in that plane, the
photons are coherently added based on their position, energy, and phase. This plane is
not the actual detector in the simulation, but only serves as an intermediate step to switch
from a particle representation to a wave representation. For each photon, the position
where it first hits the virtual detector plane is determined, and this position is used to
assign the photon to a certain wavefront pixel. In this way, the wavefront is generated in
GATE, one photon at a time. Rather than adding intensities, as one would do for stan-
dard absorption imaging, complex amplitudes are added. In this way, interference effects
are accounted for in the final part of the simulation, where the wave propagation and the
interaction with the gratings are implemented as described in Section 2.7.

In GATE, the wavefront construction is done by discretizing the two-dimensional virtual
plane into Nx ×Ny pixels of size ∆x × ∆y. To coherently add the photons arriving at
the same pixel, the photons are assigned complex wave amplitudes Ψ. Given that every
photon p is represented by a position in the plane r, an energy E, and a phase φ , we write
p → p{r,E,φ}. Using this notation, we transform the particle representation into a wave
representation at position r:

p{r,E,φ} ⇐⇒ p{r,Ψ(E,φ)}, (3.2)

where
Ψ(E,φ) =

√
E exp(−iφ). (3.3)

The position r determines to which pixel of the wavefront a certain photon contributes.
If we write r = (rx,ry) and define the continuous coordinates of the central point of pixel
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(x,y) as (xc,yc), the condition for arriving at a certain pixel is given by

p{r,Ψ(E,φ)} ∈ P(x,y)

⇐⇒
(

rx ∈ [xc −∆x/2,xc +∆x/2[
)
∧
(

ry ∈ [yc −∆y/2,yc +∆y/2[
)
, (3.4)

where P(x,y) is the set of photons arriving at wavefront pixel (x,y).

Assuming N(x,y) photons arrive in pixel (x,y) and using the photon wave representa-
tions, the coherent addition of the complex amplitudes Ψn is written as:

ψ̃(x,y) =
N(x,y)

∑
n=1

Ψn =
N(x,y)

∑
n=1

√
En exp(−iφn). (3.5)

In Eq. (3.5), ψ̃(x,y) denotes the complex wavefront amplitude resulting from the contri-
butions of the N(x,y) photons arriving at pixel (x,y). By adding complex wave ampli-
tudes, both the gained phase and the energy of each photon are taken into account when
determining the total complex wavefront amplitude. The employed complex amplitude
summation allows one to simulate the interference effects needed to construct the correct
initial state of the wavefront. The sum can also be formulated as:

ψ̃(x,y) =
N(x,y)

∑
n=1

√
En cosφn − i

N(x,y)

∑
n=1

√
En sinφn. (3.6)

In our implementation, the real and imaginary part of the wavefront is stored in two data
vectors, replacing the energy and phase. However, both representations are completely
equivalent.

The user defines the number of pixels in the gridded plane with the following macro
commands:

/gate/processGate/setGridX ‘number of pixels’

/gate/processGate/setGridY ‘number of pixels’

The corresponding physical dimensions are defined using

/gate/processGate/setPhysicalGridX ‘size’

/gate/processGate/setPhysicalGridY ‘size’

However, deciding on the grid spacing requires careful thought, as explained in Section
2.7.2, since the pixel size of the wavefront must allow proper sampling of the smallest
structures in the simulation (Malecki et al., 2012).

In total, three such grids are generated as output: the real part, the imaginary part, and
the number of photons arriving in every wavefront pixel:
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/gate/processGate/setOutputNameReal ‘filename’

/gate/processGate/setOutputNameImag ‘filename’

/gate/processGate/setOutputNameCounts ‘filename’

The wavefront construction is initialized in the macro using

/gate/processGate/enableGrid

As was the case for the XrayRefraction process, the wavefront construction relies on
the processGate library for the collection of photons at the virtual plane. A complete
example of a GATE macro can be found in Appendix A.

3.2.2 Processing GATE output

In the second part of the simulation, the resulting wavefront from GATE interacts with
grating G1 and is further propagated towards G2 (Section 3.2.2.1). After interacting with
G2, the detection takes place and the phase stepping is performed.

3.2.2.1 Wave optics computations

The GBI system is modeled within the paraxial and projection approximations as a se-
quence of three events. The first event is the interaction of the wavefront with the first
grating G1, which is defined as a phase grating. This interaction introduces a phase mod-
ulation in the wavefront. Subsequently, the resulting wavefront propagates through free
space (second event) towards the absorption grating G2 and the detector, which form the
final part of the imaging system (third event). In our work, this three-step imaging proto-
col was implemented in MATLAB, since MATLAB allows a straightforward implemen-
tation and supports the ASTRA toolbox for tomographic reconstruction (van Aarle et al.,
2016). Hence, the binary files containing the real and imaginary vectors of the wavefront
are first loaded into MATLAB and reshaped to the original size of the wavefront.

An ideal G1 phase grating is constructed by using a superposition of two identical rectan-
gular Dirac combs, of which one is shifted along the x-direction by the grating bar width
and multiplied by an exponential phase factor exp(iφ) (O’Shea et al., 2003). This yields
a grating that has 100% transmission over its full range, but introduces a phase shift of
φ in a regular pattern. For Talbot interferometry, this phase shift is typically π or π/2.
Mathematically, a phase grating with bar width b and pitch g1 is expressed as

G1(x) = comb
(

x
g1

)
∗
([

rect
( x

b

)
∗δD(x)

]
+
[
rect

( x
b

)
∗δD(x−b)

]
exp(iφ)

)
,

(3.7)
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where ∗ denotes the convolution operator, the comb function can be written as

comb
(

x
g1

)
=

+∞

∑
n=−∞

δD(x−ng1), (3.8)

and

rect
( x

b

)
=

{
1, x ∈

[
−b

2 ,
b
2

[
0, otherwise

. (3.9)

The effect of G1 on the wavefront is subsequently simulated by means of a point-wise
multiplication of the wavefront with the 2D extension of the G1(x) function. Straight-
forward implementation is achieved through the built-in MATLAB function pulstran.
Propagation of the wavefront is subsequently performed as described in Section 2.7.2.
For our numerical simulation, the effect of G2, with bar width b2 and pitch g2, is simu-
lated similarly to the effect of G1. However, since G2 is an absorption grating, only one
Dirac comb is needed:

G2(x) = comb
(

x
g2

)
∗ rect

(
x
b2

)
. (3.10)

The effect of this grating on the wavefront is subsequently applied through point-wise
multiplication of the propagated wavefront intensity with the 2D extension of G2(x). In
this way, we obtain the final intensity at the detector, required for generating the phase
stepping images.

3.2.2.2 Phase stepping and detection

Finally, for simulating the detector intensity, a detector pixel size pd is defined and
the wavefront intensity |ψ̃(x,y)|2 is integrated over every detector pixel. Since pd ≥
{∆x,∆y}, a detector pixel will overlap with many wavefront pixels, meaning the integra-
tion corresponds to a summation over those wavefront pixels that overlap with a certain
detector pixel. As a result, phase stepping images are generated by repeatedly shifting the
G2 array (with periodic boundary conditions) over a number of wavefront pixels, corre-
sponding to the desired displacements of the grating. For every shifted position of G2, the
intensity arriving at the detector is recalculated and a phase stepping image is generated.

3.2.2.3 Subpixel phase stepping

The discrete nature of the phase stepping procedure in 3.2.2.2 imposes certain limitations
on the accuracy with which phase stepping can be performed. Indeed, if the grating and
the wavefront are defined on the same discrete grid, required for the point-wise multi-
plications, the smallest meaningful shift is determined by the pixel size of the grid. The
same is true for the definition of the pitch of G2. However, in some occasions, it might



70 CHAPTER 3. X-RAY PHASE CONTRAST SIMULATIONS IN GATE

0 2 3 4

-1

0

1

0 2 3 4

- /2

0

/2
(a) (b)

Figure 3.2: (a) Square wave with period 2π , mean 0 and amplitude 1. (b) The primitive
function of the square wave, up to a constant.

not be possible to express the desired shift by an integer number of grid pixels. There-
fore, we propose to use a subpixel phase stepping approach to omit these restrictions.
In order to do this in practice, a fractional transmission between 0 and 1 is assigned to
every wavefront pixel, rather than exactly 0 or 1 as was done in the pixel-based procedure
described above.

To determine the correct transmission factor Ftrans in a certain pixel (x,y) of the wave-
front, we propose to calculate the difference Ftrans = PG2(x1)−PG2(x0), where PG2(x) is
given by

PG2(x) =
1

2∆x

[
x+

g2

4
fTW

(
2π

g2
x
)]

. (3.11)

Here, it is assumed that x0 and x1 are the real world coordinates of the wavefront pixel
boundaries along the stepping direction. For convenience, assume x0 = 0 for pixels
(x,y) = (1,y). The rationale for this procedure is understood by considering G2(x) as
a modified square wave. First, assume fSW(x) denotes a regular square wave as shown in
Fig. 3.2 and given by

fSW(x) = sgn(sinx). (3.12)

The primitive function of fSW(x) is given by (π/2) fTW(x), up to a constant term, and is
also shown in Fig. 3.2. Subsequently, we transform fSW(x) to G2(x) by adding an offset
of 1 and dividing the result by 2. In this way, the square wave has a minimum value of
0 and a maximum value of 1, expressing the transmission of the grating. The desired
periodicity is attained by the transformation x → 2πx/g2. Therefore, we write

G2(x) =
1
2

[
1+ fSW

(
2π

g2
x
)]

. (3.13)

Next, this result must be transformed into a version for which the integral over a wave-
front pixel expresses the transmitted fraction in that pixel. Assume, for example, that
∆x = g2/2 and that a certain pixel is perfectly aligned with a transmitting grating line.
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The surface under the G2(x) curve in the pixel is then simply the width ∆x times 1, yield-
ing a value of ∆x. However, as G2(x) in this pixel is fully transmitting, we introduce a
scaled version G̃2(x) such that this calculation yields 1. In order to achieve this, we scale
G2(x) with a factor 1/∆x:

G̃2(x) =
1

2∆x

[
1+ fSW

(
2π

g2
x
)]

. (3.14)

Integration yields: ∫
G̃2(x)dx =

1
2∆x

∫
dx+

1
2∆x

∫
fSW

(
2π

g2
x
)

dx. (3.15)

Since the last term corresponds to the primitive of the square wave, we get∫
G̃2(x)dx =

1
2∆x

[
x+

g2

4
fTW

(
2π

g2
x
)]

+ const. (3.16)

This result equals, up to a constant, PG2(x) as defined in Eq. (3.11). The transmitted
fraction in a pixel is thus determined by calculating the area under G̃2(x) over the range
of the pixel, or in other words, by computing the definite integral of G̃2(x). By definition,
we have:

Ftrans =
∫ x1

x0

G̃2(x)dx (3.17)

=
1

2∆x

[
x1 +

g2

4
fTW

(
2π

g2
x1

)]
− 1

2∆x

[
x0 +

g2

4
fTW

(
2π

g2
x0

)]
(3.18)

= PG2(x1)−PG2(x0). (3.19)

The integration constants cancel out in the definite integral, and we obtain a straight-
forward way to precalculate the transmitted fraction in every pixel. Indeed, given that
the pixel size ∆x is fixed, Ftrans(m,n) is simply computed as Ftrans(m,n) = PG2(m∆x)−
PG2([m−1]∆x). This is evaluated directly for every pixel in the wavefront. The effect of
phase stepping is incorporated by shifting PG2(x) accordingly.

3.2.2.4 Triangle wave phase retrieval

Under idealized imaging conditions, the phase stepping curve is described by a triangular
model. Hence, a triangular wave form (Eq. (2.61)) is fitted to the measured phase step-
ping points following a least squares optimization procedure. For simplicity, we consider
only a single pixel and therefore omit the explicit notation of pixel indices (i, j). Since
proper initialization of the parameters a0, a1 and φ1 generally improves the optimiza-
tion performance, we will first describe an automated procedure for finding such starting
values.
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Suppose that only four measurements (four steps) are available, sampled over a single
period of the phase stepping curve, for initial estimation of the three parameters of a
triangle wave. First, as a single period of a triangle wave shows either two or three
consecutive slopes, at least two of these four measurements are situated on the same
slope. This means that one of the slopes can be easily estimated and, as a result, all other
slopes are also known. It is not immediately known which points lie on the same slope,
but this is deduced by calculating the slopes between adjacent measurements. Indeed, the
points lying on the same slope are found by extracting the steepest slope from the set of
calculated slopes, as the slope connecting points lying on a different side of the triangle
will always be less steep.

Having assigned the same slope to these two points residing on the same side of the tri-
angle, the slope for the neighboring points can be computed. If we connect a neighboring
point to the last know point, and the slope corresponds to the one found for the known
point, the neighboring point is assumed to lie on the same side and is assigned the same
slope. If no correspondence can be found, the neighboring point must lie on the other
side of the triangle and therefore is assigned the opposite slope. Using periodic boundary
conditions, the first and last point in the series can also be considered to be neighbors.
Generally speaking, due to the periodicity, every point can be shifted by ±2π , allowing
to move it to an equivalent position that is closer to its neighbor than π . This means that,
in case the adjacent measurements are more than π apart, we find the equivalent position
at the same side of the triangle as the neighboring point. In this way, we are able to assign
a slope to every point.

Subsequently, the points and slopes are used to find an estimate of the height and position
of the extrema of the phase stepping curve. These estimates are the crucial element for
finding the starting values, as the position of the peak leads to an estimate of the phase
shift φ1, whereas the mean of the extrema yields an estimate of a0, which in turn leads to
an estimate of the amplitude a1. This searching procedure is fully automated and leads
to appropriate starting values for the fitting procedure.

3.2.3 Alternative wavefront construction using ROOT

When building the wavefront in GATE, the wavefront resolution and number of con-
tributing photons are fixed as soon as the MC simulation is initialized. Changing these
parameters thus requires a new simulation. Alternatively, all photon tracking data gener-
ated with GATE, including position, energy, and phase of each photon, can be saved as a
tree structure in ROOT-format (Brun and Rademakers, 1997). A ROOT-program written
in C++ is applied to extract the photon information from the tree structure, in order to
coherently add the photon contributions.

An advantage of separating the MC simulation and the wavefront construction, is that the
sampling parameters of the wavefront are, in that case, independent of the MC simula-
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tion. Changing the wavefront grid size therefore does not require a new MC experiment.
Following this approach, however, the output size of the GATE simulations depends on
the number of photons, increasing rapidly as more photons are generated. Thus, the
gained flexibility comes at the cost of large amounts of intermediate ROOT-data and the
inclusion of an additional step in the procedure (three instead of two), where a loop over
all photons saved in the ROOT-file is required to build the wavefront. Which of the two
aforementioned approaches is the most suitable one therefore highly depends on whether
the user requires flexibility or computational efficiency.

3.3 Experiments

3.3.1 Validation tests

To validate the performance of our proposed X-ray phase contrast simulator, three distinct
tests were run. First, the simulated intensity profile resulting from refracting a 20 keV
parallel beam at a spherical phantom in GATE was compared to the theoretically expected
profile, following Wang et al. (2009a). The simulated sphere with radius 100 µm was
homogeneous, consisted of water and was assigned δ = 2.0 · 10−6 to ensure a visible
refraction effect. In total, 20 · 106 photons were considered in GATE for the generation
of the profile.

Subsequently, the phase gained by the photons was compared with the expected theoret-
ical result. For this, a GATE simulation was performed with 105 parallel beam photons
at 25 keV. A homogeneous 4 mm × 4 mm epoxy layer with a thickness of depoxy = 1 mm
was placed between source and detector. The detector size was 5 mm × 5 mm and the
expected number of photons entering the epoxy layer was therefore ≈ 62 ·103.

Finally, the propagation method was tested by propagating a plane wave, starting from
the phase grating, assuming 25 keV X-rays and an induced phase shift of π . The n-th
fractional Talbot distance dn is then given by (Weitkamp et al., 2006):

dn = n
g2

1
8λ

, (3.20)

where g1 is the grating pitch, which was assumed to be 4 µm. The pattern was simulated
up until the 7th fractional Talbot distance.

3.3.2 Radiography

In this section, the simulation of a 2D radiograph is demonstrated using the described
workflow. Prior to discussing the simulation, the GATE phantom used in this simulation
is briefly described.



74 CHAPTER 3. X-RAY PHASE CONTRAST SIMULATIONS IN GATE
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Figure 3.3: CFRP phantom as seen in GATE, showing a front view (a), side view (b) and
a zoomed in image (c). A central FOV of 5 mm × 5 mm of the front view is used for the
simulation. The gray cylinders show the positions of the carbon fibers, surrounded by an
epoxy matrix visualized by a transparent box.

3.3.2.1 Phantom design

The phantom was a simplified model of a carbon fiber reinforced polymer (CFRP), which
is an advanced composite material used in many industrial applications. A CFRP consists
of a number of bundles of carbon fibers, embedded in a resin, often epoxy. The combina-
tion of low-density materials and strongly ordered microstructures makes CFRPs inter-
esting objects for XPCI imaging (including DFC). For our experiments, a phantom was
constructed containing 12 fiber bundles, arranged in layers in pairs of two. Bundles in the
same layer were mutually parallel, and the orientation within a layer alternates between
horizontal and vertical. The cross section of the bundles was elliptical in shape with short
and long axis lengths of 112.5 µm and 675 µm, respectively, and the resin material was
epoxy. The phantom as represented in GATE is shown in Fig. 3.3.

For practical reasons, the size was limited in terms of thickness (2 mm) and field of view
(5 mm × 5 mm). In order to induce unresolved multiple refraction, the microstructure
was modeled down to the scale of individual carbon fibers. The number of fibers in a
bundle was determined through the number density ρN (Sanctorum et al., 2019):

ρN =

(
1

πr2
f

)(
1+

ρ f

ρr

(
1
c f

−1
))−1

. (3.21)

Here, r f is the radius of a single fiber, ρ f the mass density of the fiber material, ρr the
resin mass density, and c f the carbon fiber weight fraction. The positioning of the fibers in
the bundle was done in a randomized way, allowing the generation of 12 unique bundles
for the phantom. Assuming a weight fraction of 0.60 and a fiber radius of 3.5 µm, this
resulted in approximately 2570 fibers per bundle, of which the positions were determined
by Poisson disc sampling (Sanctorum et al., 2019). The phantom as a whole contained
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over 30,000 individual fibers. Given that the dark field signal is orientation dependent
(Jensen et al., 2010a), we expect to observe differences between horizontal and vertical
fiber bundles in the simulation results.

If the fibers are modeled as perfectly smooth cylinders in GATE, the refraction at each
individual fiber will generate an intensity profile similar to the one shown in Fig. 3.5.
The superposition of many of these perfect refraction events can, due to the low overall
absorption of the phantom materials, result in artifacts, as the positive peaks at the edges
will dominate the contrast. This is resolved by introducing a surface roughness for the
fibers as discussed in Section 3.2.1.2. Surface roughness is a useful addition to the sim-
ulation model, given that it is often a highly relevant property of CFRP materials (Yao
and Chen, 2013; Wu et al., 2019). Although the implemented model is a simplification,
it is considered to be sufficient for our goals, since the most important effect of the sur-
face roughness is taken into account. The scale at which we expect local surface normal
variations to occur is submicrometer (Zaitsev et al., 2008), and the potential differences
between using the stochastic model and using a well-defined map of local variations are
therefore not expected to have a strong effect on the global result. Furthermore, it should
be noted that the error propagation in this case does not differ from that of conventional
Geant4. The surface roughness model essentially just adds a randomization to a com-
putational step that would occur anyway, namely the calculation of the surface normal
vectors at the intersection points.

3.3.2.2 Simulation

The simulation was performed in GATE with 250 ·109 parallel beam photons at an energy
of 25 keV. For the wave propagation, a π-shifting phase grating with a pitch of 4 µm was
chosen. The matching absorption grating at the first fractional Talbot distance therefore
had a pitch of 2 µm (Weitkamp et al., 2006). The wavefront pixel size was set to 0.1
µm × 0.1 µm to keep the sampling well below the fiber size, resulting in a 50,000 ×
50,000 grid. For the GATE simulation, we used the Hopper HPC cluster installed at
the University of Antwerp 1 The wave propagation part was performed on a local server
with 16 (dual) cores. While performing the phase stepping, images were collected from
the 50,000 × 50,000 grid on a 250 × 250 detector. These phase stepping images were
subsequently inserted in the phase retrieval algorithm (see Section 2.4) to finally yield
the transmission image, visibility map (DFC) and DPC image.

In addition, a second radiography simulation was performed. The experimental condi-
tions were identical to those in the simulation described above, but with a slightly tilted

1Hopper was in operation from late 2014 until the summer of 2020. It was a HPE system consisting
of 168 nodes with two 10-core Intel E5-2680v2 Ivy Bridge generation CPUs connected through a FDR10
InfiniBand network. This cluster was moved out in the summer of 2020 to make space for the installation of
Vaughan, but 24 nodes with 256 GB were recovered for further use. Hopper was finally decommissioned in
the summer of 2023.

https://www.uantwerpen.be/en/core-facilities/calcua/infrastructure/
https://www.uantwerpen.be/en/core-facilities/calcua/infrastructure/
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1
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Figure 3.4: GATE phantom used for the CT simulation. The gray cylinders show the
positions of the carbon fibers and cylinders, surrounded by the epoxy matrix visualized
by a transparent cylinder.

phantom (rotation around the optical axis). As was already mentioned, the dark field
contrast is orientation dependent, meaning the simulation results with a rotated phantom
are expected to differ from those of the previously described experiment, even though the
experimental conditions and phantom were identical.

3.3.3 Computed tomography

In the following, the simulation of sinograms for CT is demonstrated, using the described
workflow. We limited the study to 2D sinograms to keep the computation times reason-
able. As was done in Section 3.3.2, a brief description of the phantom used in the sim-
ulation is given prior to demonstrating our results. For the tomographic reconstruction
of the simulated sinograms, a SIRT implementation of the open source ASTRA-toolbox
version 1.8.3 (Palenstijn et al., 2011; van Aarle et al., 2015, 2016) was used with 100 it-
erations on the GPU (NVIDIA GeForce GTX 1080) for the AC reconstruction, and FBP
was used for reconstructing DFC (Ram-Lak filter) and DPC (Hilbert filter).

3.3.3.1 Phantom design

The phantom used for the CT simulation, which is also based on CFRP properties, is
shown in Fig. 3.4. This phantom contained three cylinders consisting of carbon. Two
cylinders, one with a radius of 1 mm and one with a radius of 150 µm, were solid,
whereas the third cylinder, also having a 150 µm radius, was filled with 700 fibers with
radius 3.5 µm to simulate microstructure. These fibers were identical to those in Section
3.3.2.1 and were positioned following the same position sampling procedure. The three
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Figure 3.5: (a) Simulated and theoretical normalised intensity profiles resulting from
refraction at a spherical phantom with δ = 2.0 · 10−6. (b) Phase gained by 105 parallel
beam photons at 25 keV, of which a subset of 62% crossed a 1 mm thick epoxy layer with
δepoxy = 3.43593 ·10−7.

cylinders were embedded in an epoxy cylinder (radius 5 mm). Since the solid cylinders
were homogeneous, the DFC signal is expected to be zero. In contrast, the fiber bundle
is expected to induce a strong DFC signal. DFC reconstructions have proven to be a
valuable tool for the determination of fiber orientations and defects in reinforced polymer
samples (Revol et al., 2013; Prade et al., 2017; Senck et al., 2018).

3.3.3.2 Simulation

In the simulation experiments, 30 · 109 photons were simulated in a parallel beam in
GATE at an energy of 25 keV. For the wave optics part, we assumed a π-shifting phase
grating (G1) with a pitch of 4 µm. The matching absorption grating (G2) at the first
fractional Talbot distance therefore had a pitch of 2 µm. To investigate the effect of
surface roughness on the AC image, sinograms were simulated both with and without
surface roughness. For each of the two simulations, 200 equiangular projections were
simulated, spanning an angular range of 180◦. Five phase steps were simulated for every
orientation.

3.4 Results

3.4.1 Validation tests

The theoretical intensity profile as demonstrated by Wang et al. (Wang et al., 2009a) and
the simulated intensity profile are shown in Fig. 3.5, where the 300 pixels are each 1 µm
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Figure 3.6: Simulated wavefront intensity up to the 7th fractional Talbot distance for a
25 keV plane wave after interaction with a 4 µm pitch π-shifting grating. A higher gray
value indicates a higher intensity (arbitrary units).

wide. The simulated results are in good agreement with the theoretical expectations, with
a relative difference of -1.79% in average intensity. Due to the photon statistics from the
MC simulation, some fluctuations are visible in the simulated profile. The simulation
was performed with a 300×300 pixels detector. This means that on average, we would
expect each background pixel to collect about 200 photons. Increasing this number by
simulating more photons at the source would lower the noise in the intensity profile, at
the cost of a longer simulation time. The results of the simulation with the epoxy layer
are shown in Fig. 3.5. From the model and the fact that δepoxy = 3.43593 ·10−7 at 25 keV,
the gained phase was expected to be ∆φ = kpδepoxydepoxy = 43.5. It can be seen that the
simulation results in a correct fraction of photons with the expected phase gain of 43.5.
The other photons have not intersected the phantom and thus did not undergo a phase
shift, expressed by the peak at a phase gain of zero. This demonstrates that the phase
gained during the simulation corresponds to the theoretically predicted phase.

Finally, the wave propagation was evaluated. As expected, a Talbot carpet is observed
when visualizing the wavefront intensity as a function of the distance from the grating.
The resulting pattern is shown up to the 7th fractional Talbot distance in Fig. 3.6, covering
a field of view of approximately 20 µm × 200 mm. The pattern matches the Talbot
distances calculated from Eq. (3.20), indicated on the horizontal axis.

3.4.2 Radiography

The images after phase retrieval of the CFRP phantom with horizontal and vertical bun-
dles are shown in Fig. 3.7. Note that the horizontal fiber bundles are not visible in the
DFC and DPC images. This is because the fiber bundles are oriented perpendicular to
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A B C

Figure 3.7: Simulated images for the CFRP phantom shown in Fig. 3.3. (a) Transmission
image, (b) DFC image, and (c) DPC image. The horizontally oriented fiber bundle is not
visible in the DFC and DPC images. Color scale bars are omitted due to the qualitative
nature of the discussion in the main text.
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Figure 3.8: Simulated visibility for the phantom shown in Fig. 3.3, acquired at (a) the
first fractional Talbot distance, (b) the third fractional Talbot distance, and (c) the fifth
fractional Talbot distance. Note that the scaling of the grey values in these images differs
from the scaling in Fig. 3.7.

the grating bars, and the interferometer is only sensitive to phase variations perpendicu-
lar to the bar orientation. In contrast to the horizontal bundles, the vertical fiber bundles
are clearly visible in both DPC and DFC. The presence of the internal structure of the
fiber bundles is apparent in all contrasts. The DFC signal (visibility) is clearly lowered
because of scattering in the vertical bundle. Note that the visibility reduction caused by
the fibers affects the retrieved DPC image as well (Bech et al., 2010b).

Furthermore, the dark field signal or visibility is known to depend on the so-called auto-
correlation length of the GBI setup (Strobl, 2014). The autocorrelation length is defined
by the geometry of the interferometer as (Lynch et al., 2011):

ξ =
λdODD

g2
. (3.22)

In short, ξ is an indication of the size of the microstructures that will give rise to a dark
field signal, given the geometrical parameters describing the GBI setup. The exact depen-
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Figure 3.9: Simulated images for the CFRP phantom shown in Fig. 3.3, but with a slightly
tilted phantom. (a) Transmission image, (b) DFC image, and (c) DPC image. The hor-
izontally oriented fiber bundle is now visible in the DFC and DPC images. Color scale
bars are omitted due to the qualitative nature of the discussion in the main text.

dency of V on ξ is related to the properties of the scattering structures in the object and
is not always trivial, although microspheres are a well-studied case (Lynch et al., 2011;
Strobl, 2014). For a qualitative demonstration of this dependency, the simulated radio-
graph from the phantom shown in Fig. 3.3 was acquired for three different propagation
distances at the first, third and fifth fractional Talbot distance. In Fig. 3.8, we demon-
strate the evolution of the visibility while increasing the propagation distance, hereby ef-
fectively changing the autocorrelation length of the simulated setup (Strobl, 2014). The
notable decrease in visibility with increasing propagation distance clearly indicates that
the dark field signal in GBI indeed depends on the autocorrelation length. However, it
should be noted that this dependency only applies to GBI and other related dark field
imaging methods where the dark field contrast retrieval is based on the visibility reduc-
tion of an intensity modulation that depends on the fringe period. Indeed, the magnitude
of the visibility reduction depends on the scattering angle, which in turn depends on the
size of the diffracting particles (Paganin and Pelliccia, 2021). For EI and related methods
on the other hand, the grating period does not affect the dark field signal as the retrieval
is based on a direct measurement of local beam broadening.

In the second simulation, the fiber bundles were slightly rotated, tilting them away from
their perfectly horizontal and vertical orientations. The corresponding images are shown
in Fig. 3.9. As can be observed, the horizontal bundles now show up in both the DPC
and the DFC images. However, a more faint appearance is observed in comparison to
the vertical bundles, as the latter still resulted in a stronger phase variation and scatter
component along the sensitivity direction of the simulated interferometer. As can be seen
in the images, the discretization of the tilted bundles on the 250 × 250 grid leads to some
visual degradation effects in the images. See Section 3.5 for further considerations.
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Figure 3.10: Simulated sinograms for (a) absorption contrast; (b) differential phase con-
trast; and (c) dark field contrast. Color scale bars are omitted due to the qualitative nature
of the discussion in the main text.
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Figure 3.11: CT reconstructions of the sinograms shown in Fig. 3.10. Color scale bars
are omitted due to the qualitative nature of the discussion in the main text.

3.4.3 Computed tomography

The simulated projection data (sinograms) with surface roughness, resulting from the
phase retrieval, are shown in Fig. 3.10. Looking at the DFC sinogram, it is immediately
clear that the cylinder with microstructures yields a strong dark field signal due to the
unresolved multiple refraction of the X-rays. As the cylinder edges deflect X-rays, they
show up in the dark field sinogram for the larger cylinders. In the DPC sinogram, the
edge enhancement effect is also visible. The tomographic images, shown in Fig. 3.11,
were reconstructed from the sinograms using the ASTRA toolbox. As expected from the
sinogram, the fiber bundle gives a strong dark field signal in the CT reconstruction. The
star streak artifact surrounding the fiber bundle is a typical effect of using the Ram-Lak
filter in the FBP reconstruction algorithm in the presence of a locally strong signal, simi-
lar to high density streaks in conventional absorption CT. This effect can be mitigated by
using filters that suppress the highest frequencies (Lyra and Ploussi, 2011). In addition,
the edges of the cylinders are enhanced in the DFC image. Slight differences are visible
between the smaller solid cylinder and the fiber bundle in both the absorption and the
phase contrast reconstruction. As the reconstructed phase contrast image is no longer
proportional to the derivative of the phase shift, the edge enhancement disappears after
reconstruction. The typical high frequency noise present in the AC and DFC reconstruc-
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Figure 3.12: Simulated AC sinogram and corresponding tomographic reconstruction for
the phantom described in Section 3.3.3.1, without surface roughness of the fibers. The
red arrow indicates the affected fiber bundle in both the sinogram and the reconstruction.
Color scale bars are omitted due to the qualitative nature of the discussion in the main
text.

tions is missing from the phase contrast reconstruction. This is due to the integration
of the differential phase during reconstruction by means of the Hilbert filter, resulting in
the amplification of lower frequencies, which in turn changes the noise properties of the
image (Köhler et al., 2011). The AC sinogram and reconstruction from the simulation
without surface roughness are shown in Fig. 3.12 (see Discussion).

To illustrate how the computation time scales with the complexity of the phantom, the
plot in Fig. 3.13 shows the computation time for a simulation with 106 photons for a total
amount of fibers ranging from 100 to 30 000. The latter being the approximate number of
fibers in the phantom used for the radiographs. The following data points were collected:
100, 500, 1000, 2000, 5000, 10 000, 15 000, 20 000, 25 000, and 30 000 fibers. From
the plot, a linear increase in computation time can be observed. For clarity, only the MC
computation time was considered, as the time required for the wavefront propagation is
independent of the number of fibers in the phantom.

3.5 Discussion

The validation tests demonstrate the correct behavior of the key simulation elements
with respect to the theoretical expectations of photon refraction (Fig. 3.5), phase shifts
(Fig. 3.5), and wavefront propagation (Fig. 3.6). It should be noted that an alternative
validation approach could be to evaluate the simulations using experimental results. At
the time of the development of the simulation tool, the authors did not have a phase
contrast imaging system available at their lab. Hence, it was decided to instead rely on
established theory to test the simulator. However, later work has indirectly shown agree-
ment between GATE simulation results and experimental data (Huyge et al., 2025). In
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Figure 3.13: Computation time for the MC simulation for a constant number of 106

photons, but a varying amount of fibers in the phantom.

addition, the simulation framework was used to validate another ray tracing simulator
(Francken et al., 2024a), which was in turn found to yield results that were in agreement
with experimental data (Francken et al., 2024b, 2025). A recent comparison between ex-
perimental and simulated EI data, performed after publication of the original manuscript,
is presented in Appendix B. In Fig. 3.5, the refraction introduces a positive and a negative
peak at the phantom edge, since photons are deflected outwards. The magnitude of the
positive peak in Fig. 3.5 is significantly larger than its negative counterpart. Given the
parallel beam configuration, the two main contributions to the magnitude of the observed
peaks in the intensity profile are, most likely, monochromaticity and surface smoothness.
A reduction in either of those can be expected to smear out the peaks, as in both cases
the spread in photon deflection directions increases. Simulation experiments (not shown
here) revealed that the effect of polychromaticity is negligible, which is an indication that
the smoothness of the surfaces is the main factor. Indeed, introducing surface roughness
into the simulations effectively mitigated the effects. Surface roughness was taken into
account through a stochastic model, which does not use a detailed map of the surface
of individual fibers but allows one to simulate the global effect the roughness has on the
projection data in a more efficient way.

The simulated radiographs in Fig. 3.7 and Fig. 3.9, show that our GATE-based XPCI
simulation framework is able to generate the different types of contrast: the transmission
image shows the higher absorption in the fiber bundles, whereas the invisible horizontal
bundles in the DPC and DFC images reflect the absence of phase gradients along the
x-direction in those bundles. The fiber bundles in the phantom appear non-smooth in the
images, which can be explained by the fact that, for our parallel beam geometry, project-
ing the 5 mm × 5 mm FOV on a 250 × 250 detector results in each pixel representing 20
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Figure 3.14: a) Photon counts map of the CFRP phantom acquired with a 20 µm pixel
size, resulting in a 250×250 image size. b) Photon counts map of the CFRP phantom
acquired with a 50 µm pixel size, resulting in a 100×100 image size. In comparison to the
250×250 image, the discretization artifacts inside the fiber bundles are strongly reduced
in the 100×100 image. However, the larger pixel size results in a coarser representation
of the tilted edges.

µm × 20 µm of the FOV. As the fibers are 7 µm in diameter, this leads to a moiré-like
effect (darker and lighter vertical and horizontal bands) in combination with the struc-
ture of the superposed fiber bundles. In addition, as the fibers are perfectly parallel, the
discretization on the detector pixel grid is expected to introduce linear partial volume or
aliasing effects. Similar but more severe image degradation effects resulting from the
discretization are apparent in the tilted fiber bundles in Fig. 3.9. To show that these ar-
tifacts are indeed related to the discretization and not to the wavefront propagation or
contrast retrieval, the corresponding simulated contact image is shown in Fig. 3.14 for
two different detector resolutions (20 µm and 50 µm pixel size). These contact images
are simply maps of the accumulated photon counts in every pixel of a detector placed
directly behind the object, without any gratings or wavefront propagation. It is clear that,
for the same pixel size as in Fig. 3.9 (20 µm), similar discretization effects are visible in
the contact image. This indicates that the presence of these artifacts is indeed unrelated
to the wavefront propagation or the contrast retrieval. In addition, the introduction of a
larger pixel size (50 µm) clearly reduces the degradation effects inside the fiber bundles,
at the cost of a coarser representation of the tilted edges in the image. In real experiments,
these degradation effects would most likely not be visible due to the blurring of the image
by the source and detector point spread functions.

In Fig. 3.10, the sinogram data show the expected absorption effects. In the DPC and
DFC images, the expected edge enhancement is present and the DFC signal of the fiber
bundle is clearly visible. The CT reconstructions in Fig. 3.11 show streaking and edge
effects in the DFC image similar to those reported by Peter et al. (2014). The difference
between epoxy (matrix) and carbon (cylinders and fibers) is visible in both the AC and
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Figure 3.15: a) Log-corrected sinogram of the photons counts in the contact image of
the phantom shown in Fig. 3.4, without surface roughness (arbitrary units). b) CT re-
construction of the log-corrected photon counts sinogram (arbitrary units). The negative
density artifact visible in Fig. 3.12 is in this case not present.

DPC images. For the CT simulation, the detector pixel size was 50 µm, which is signif-
icantly larger than the fiber diameter, resulting in smoother projection data compared to
the radiographs of Section 3.4.2. Although the CFRP phantom designed for this demon-
stration case was only a simplified representation of an actual fiber-reinforced polymer
sample, which typically shows woven structures of curved fibers and crossing fibers in-
stead of parallel fiber bundles, the main features required to demonstrate X-ray phase and
dark field contrast imaging simulations were present. However, it is possible to extend
the modeling to crossing fibers (Elberfeld et al., 2018) or even curved fibers (Elberfeld
et al., 2023) by making use of STL files in GATE, but this advanced level of detailed
modeling is out of scope for this work.

In Fig. 3.12, the AC sinogram and its tomographic reconstruction are shown for a simula-
tion using the phantom from Section 3.3.3.1 without surface roughness. In other words,
the individual fibers all exhibit perfectly smooth surfaces. As can be seen from Fig. 3.12,
the absorption contrast in the fiber bundle is severely impacted. This effect can be under-
stood from the intensity profile shown in Fig. 3.5. Towards the edges of the sphere, the
intensity drops at the inner side of the edge, while a positive peak appears just outside of
the sphere. These peaks are present because photons are deflected outward (Hentschel
et al., 1987; Wang et al., 2009a) and can cause negative density effects (Lange et al.,
2012). In addition, curved surfaces have been shown to cause caustics when illuminated
by parallel beam synchrotron radiation, and it was suggested that surface roughness acts
as a mitigating factor for this effect (Evsevleev et al., 2019). The same effects occur
in the individual fibers in the fiber bundle, leading to the non-physical effects shown in
Fig. 3.12. Indeed, since the phantom contains over 700 fibers, a superposition of many of
these intensity peaks is created and amplified by the wavefront propagation. Due to this
effect, the intensity originating from the fiber bundle can appear to be higher compared to
the same amount of material but concentrated in a single cylinder. For strongly absorb-
ing phantoms, this effect might go unnoticed, but the phantom used for the CT simulation
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solely consists of low-absorbing materials. This allows the effect to dominate the con-
trast, contributing to negative density effects. To illustrate that the negative density effect
in the AC sinogram and reconstruction in Fig. 3.12 results from the amplification of the
peaks by the propagation of the wavefront, the log-corrected sinogram of the contact im-
ages (photon counts maps) is shown in Fig. 3.15 for the case without surface roughness.
It is clear that the negative density artifact is absent in both the contact image sinogram
and its reconstruction.

Recently, an advanced digital phantom was presented to demonstrate the phase contrast
simulation of a human thorax based on a full wave simulation approach (Sung et al.,
2015). To this end, the authors assumed that the refractive index of the phantom changes
gradually within the imaged object and at the boundaries, allowing the use of an ap-
proximated solution to the wave equation known as the first Rytov approximation (Sung
et al., 2013; Sung and Barbastathis, 2013). Their work is primarily oriented towards free-
space propagation phase contrast imaging, but a procedure for combining the calculated
attenuation and phase maps to generate a differential phase contrast image was also pro-
posed. In contrast to the method presented in our work, Sung et al. (2015) did not include
explicit modeling of the interferometer. An advantage of incorporating the interferome-
ter explicitly in the simulation is that this allows analysis of the phase stepping images,
which are of interest when exploring phase retrieval methods. In Sung et al. (2013), the
possibility of using the full wave approach as a forward model for tomography is briefly
discussed. Given the computational requirements inherent to the MC part of our work,
it is practically unfeasible to use our framework for this same purpose. However, the
MC part allows for detailed modeling of photon-matter interactions such as Compton
scatter and photoelectric absorption, relying on their respective physical cross sections.
Furthermore, tracking the individual refraction events of photons at microstructures is an
important feature of the MC part for accurate modeling of the unresolved multiple re-
fraction underlying the dark field image formation process. By passing the output of the
MC part to the wave optics part, both particle and wave properties are present in the sim-
ulations. Dark field contrast images were not simulated in Sung et al. (2015), and details
smaller than approximately 125 µm were not (yet) included in their phantom, whereas
microstructures well below 10 µm were taken into account in our work. It should be
noted that, while the work presented in Sung et al. (2015) focuses on the phase contrast
modality, our work intends to explore the dark field contrast modality as well, which
could explain the difference in methodology. Indeed, an as accurate as possible phase
contrast image at a human scale clearly benefits from exploiting the wave properties to a
maximum, whereas a Monte Carlo approach is well-suited for the detailed modeling of
the multiple refraction underlying the dark field contrast. The latter is also gaining in-
creasing interest with respect to medical applications such as lung imaging (Willer et al.,
2018).

Several improvements to our simulation framework can be considered. Firstly, we did
not focus on incoherent radiation and the need for grating G0 for lab-based cone beam
sources. Adequate modeling of G0 as part of the MC simulation significantly increases
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the complexity of the MC part and was out of scope of this study. Secondly, polychro-
maticity was not included in the simulation experiments. Although not shown, it can
be taken into account in the propagation part of the framework by integrating over the
energy spectrum (Weitkamp, 2004). Lastly, MC simulations are notoriously known to
be computationally expensive, and our simulation framework is no exception. Adding
additional refraction interactions to every photon trajectory certainly prolongs the sim-
ulation time. Despite our efforts to at least reduce the data output storage requirements
(Section 3.2.2) and the use of a computer cluster, this is still a mayor limitation. Improv-
ing the computational efficiency is, therefore, important future work. An efficient GPU
implementation of the simulation code could therefore substantially decrease the com-
putation time. Notwithstanding the shortcomings mentioned above, the results shown in
this study demonstrate the ability of our simulation framework to generate X-ray phase
contrast CT projection data of phantoms with realistic properties, paving the way for
simulation studies on phase contrast system design, acquisition strategies, phase retrieval
and reconstruction.

3.6 Conclusion

In this chapter, we extended GATE, a framework for Monte Carlo-based medical imag-
ing simulations, with novel tools to simulate X-ray phase contrast imaging. The GATE
output was post-processed for wavefront propagation to allow the simulation of grating-
based imaging. The implementation was validated by comparing the simulation results
to the expected theoretical results, which were found to be matching. Furthermore, 2D
radiography simulations were presented as well as sinogram simulations for CT recon-
struction. Realistic CFRP phantoms were designed and it was shown that the resulting
simulations produce the most important effects expected from an actual CFRP sample,
demonstrating that the framework can generate the most relevant effects in phase and
dark field imaging. To our best knowledge, this is the first time a 2D dark field image for
a CFRP-like phantom was simulated with such detailed fiber modeling at the presented
scale (5 mm × 5 mm FOV).
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Virtual grating approach for edge

illumination simulations

This chapter is published as:

• Sanctorum, J., Sijbers, J., and De Beenhouwer, J. (2022a). Virtual grating approach for
Monte Carlo simulations of edge illumination-based x-ray phase contrast imaging. Optics
Express, 30(21):38695–38708

4.1 Introduction

In the previous chapters, we have seen that X-ray phase contrast imaging (XPCI) simu-
lators are typically based on either wave optics calculations (Weitkamp, 2004; Malecki
et al., 2012; Vittoria et al., 2013; Sung et al., 2015), Monte Carlo (MC) code (Wang
et al., 2009a; Millard et al., 2014; Cipiccia et al., 2014; Tessarini et al., 2022; Brombal
et al., 2022a,b), or a combination thereof (Bartl et al., 2009; Peter et al., 2014; Ritter
et al., 2014; Sanctorum et al., 2018, 2020; Langer et al., 2020). In addition, ray tracing-
based (Bliznakova et al., 2015; Włodarczyk and Pietrzak, 2017; Wilde and Hesselink,
2020; Bliznakova et al., 2022) and empirical methods (Vignero et al., 2018) have been
reported. Some of these studies have explicitly included simulations for EI (Vittoria et al.,
2013; Millard et al., 2014; Cipiccia et al., 2014; Włodarczyk and Pietrzak, 2017; Brombal
et al., 2022a,b). In Chapter 3, we have demonstrated the hybrid (MC and wave optics)
simulation of XPCI for GBI using an extended version of GATE. Within this frame-
work, the MC code is used to generate a wavefront, which is subsequently propagated
through the gratings towards the detector using wave optics. The additional wave optics
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calculations allow to account for coherent effects, which are essential to GBI (Weitkamp
et al., 2006). EI, on the other hand, is designed as a non-interferometric XPCI method.
Hence, geometrical optics can typically be used to describe image formation, and phase
shifts are modeled as refraction effects (Munro et al., 2010a; Diemoz and Olivo, 2014).
As the calculation of interference patterns is not required for EI, the simulation can be
performed entirely in GATE, as demonstrated in earlier work (Sanctorum et al., 2021a;
Huyge et al., 2021). MC simulations, however, are notoriously known to be computation-
ally demanding, leading to long simulation times. To reduce simulation times, dedicated
implementations with simplified grating interaction models have been presented, where
the interactions in the grating are governed by the well-known Lambert-Beer law, instead
of distinct interaction cross sections (Buchanan et al., 2020). However, system design pa-
rameter studies, where possibly hundreds or more variations of the grating geometry are
tested, easily require hundreds of MC simulations. Even simply stepping the EI illumi-
nation curve (IC) already requires multiple simulations (Brombal et al., 2022b). Hence,
there is a need for computationally efficient MC simulation strategies in order to perform
these studies in an effective way.

In this chapter, we introduce the concept of virtual gratings to drastically reduce the total
simulation time for situations where many grating parameter variations are needed. The
proposed concept is based on replacing the explicitly defined gratings (with fixed param-
eters) by continuous volumes that register the photon trajectory at the grating position.
As such, the grating parameters can be defined after the MC simulation, regardless of
the presence of other objects in the beam path. One MC simulation therefore serves as
a basis for a virtually infinite number of possible experimental configurations. To our
best knowledge, the work presented in this chapter provides the first demonstration of an
effective approach to capture the full phase space of grating parameters with a single MC
simulation.

4.2 Methods

4.2.1 Simulation models for gratings

Modeling the effect of the gratings is a crucial aspect of the simulation. Different ap-
proaches exist, which can be roughly divided in three categories: (1) modeling the grating
as a plane under the projection approximation (2D) (Millard et al., 2014; Sanctorum et al.,
2018, 2020; Fu et al., 2019; Bartl et al., 2009; Malecki et al., 2012; Vittoria et al., 2013;
Ritter et al., 2014; Peter et al., 2014; Bliznakova et al., 2022; Tessarini et al., 2022), (2)
modeling the grating as a volume with bars extending along the direction of the optical
axis (3D) (Brombal et al., 2022a,b; Sanctorum et al., 2021a; Huyge et al., 2021), or (3)
simulation frameworks where the effect of the grating is accounted for implicitly, with-
out introducing the gratings as components in the simulation (Sung et al., 2015; Vignero
et al., 2018; Wilde and Hesselink, 2020).
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Two-dimensional (flat) grating models are common in, but not restricted to, wave-optics
simulations and involve either an idealized binary representation of the grating (Millard
et al., 2014; Sanctorum et al., 2018, 2020; Fu et al., 2019) or application of a complex
transmission function (projection approximation) (Bartl et al., 2009; Malecki et al., 2012;
Vittoria et al., 2013; Ritter et al., 2014; Peter et al., 2014; Bliznakova et al., 2022; Tes-
sarini et al., 2022). However, assuming the gratings are infinitesimally thin is not always
a valid approximation. X-rays can, for example, intersect the grating bars under an an-
gle, impacting the effective distance traveled through the material. To incorporate these
effects, grating bars are modeled as full 3D objects (Brombal et al., 2022a,b; Sanctorum
et al., 2021a; Huyge et al., 2021). Three-dimensional MC models of membranes have
been used for simulating speckle-based imaging as well (Quénot et al., 2021). However,
as long as the gratings are a fixed part of the simulation model, any change in grating
geometry requires a new MC simulation.

4.2.2 Virtual gratings in GATE

If the EI XPCI simulation is performed entirely in GATE without virtual gratings, the
two gratings (sample mask and detector mask) are explicitly modeled as physical objects
in the simulation. The photons will therefore interact with the grating bars the same way
as with any object in the beam path. To make a clear distinction with the virtual grat-
ings that we will define soon, gratings that are directly modeled in GATE will be called
explicit gratings in the remainder of the text. As mentioned in Section 4.1, an explicit
grating model requires a new MC simulation whenever a grating parameter, such as pitch
or aperture size, is changed. To drastically decrease the computation time when many
parameter variations are required, we propose to use an alternative simulation approach,
which we will call the virtual grating approach. This concept essentially encompasses
the decoupling of the grating parameters from the MC simulation, in such a way that
these can be defined after completion of the MC simulation. As such, the photon interac-
tions within the phantom and detector are preserved, regardless of the choice of grating
parameters. In other words, a single MC simulation can serve as a basis for a virtually
unlimited number of grating parameter variations.

To achieve this high degree of flexibility, the concept of virtual volumes is introduced
in GATE, using the ProcessGATE library (De Beenhouwer et al., 2009). The virtual
volumes replace the explicit gratings in GATE, as shown in Fig. 4.1. These volumes are
defined as (box) volumes in a GATE macro, and are named as follows:

/gate/world/daughters/name virtualvolume1

/gate/world/daughters/name virtualvolume2

for source and detector mask, respectively. To activate the virtual grating code in GATE,
the following macro command is added:
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Figure 4.1: Positioning of the virtual grating volumes in GATE (not to scale). The source
(not shown) is positioned to the left of virtual grating 1.

/gate/processGate/enableVirtualVolume

When activated, the standard ROOT output of GATE will be extended with additional
parameters. In short, the ROOT output of a simulation is a structured list of informa-
tion on the interactions and trajectories of all detected photons (Brun and Rademakers,
1997). It stores, for example, the 3D coordinates of the position where the photon de-
posited its energy in the detector, as well as the position where it was generated in the
source. For virtual grating simulations, twelve new parameters are added to this list, stor-
ing the coordinates of the intersection points with the front and back planes of the two
virtual gratings. With these additional parameters at hand, it is possible to reconstruct the
photon trajectories within the virtual gratings after the simulation. As will be shown in
Section 4.2.3, knowing these trajectories allows for the definition of grating parameters
after the MC simulation. More specifically, we can decide post-simulation which photons
are blocked by grating bars and which photons are transmitted, by defining grating bars
within the virtual grating volume. As the photon interactions in phantom and detector are
taken into account by default, this approach provides an efficient way to set up parameter
variation studies without the need for additional MC simulations. Important parameters
that can be varied post-simulation with the virtual grating approach are the pitch, aperture
size, grating thickness, shift, and rotation. As a result, misalignment effects can be ana-
lyzed as well. We note that the proposed approach is not limited to rectangular gratings
and allows for the insertion of more exotic grating designs such as asymmetric (Endrizzi
et al., 2016; Fu et al., 2019) or even bent (Wu et al., 2021) and circular (Dreier et al.,
2020) masks.
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Figure 4.2: Schematic depiction of the processing of virtual grating (VG) simulation
results.

4.2.3 Processing virtual grating simulation results

In this section, the processing of the virtual grating simulation output will be discussed.
Fig. 4.2 shows a schematic overview of the image formation based on virtual gratings
output. Through its ROOT output, GATE provides information on each photon’s energy
and position coordinates in the virtual grating volumes and the detector. The user pro-
vides information on the position of apertures and grating bars, through the definition of
the grating parameters. The combined knowledge of grating bar locations and photon
trajectories allows us to determine whether or not a photon intersects a grating bar. If a
grating bar is encountered, the distance traveled through the bar is calculated. The user
defines the material of the grating bar and the corresponding energy-dependent attenua-
tion coefficient. Subsequently, the Lambert-Beer law is used to determine the transmis-
sion factor of each photon. This yields a value between 0 and 1, acting as a weight for the
final contribution of the photon to the summed intensity at the detector. As each grating
yields a transmission factor, the total weight of the photon’s contribution is given by the
multiplication of the two weight factors.

Since the simulation output holds the location where the photon is absorbed within the
detector volume, the detector pixel boundaries are user-defined as well. This allows
for example for post-simulation variations in detector pixel size. Finally, the image is
formed by adding all transmission factor-weighted photons for each pixel. A detailed
example of analytical transmission factor calculation can be found in Section 4.2.4 for the
most commonly used EI configuration, consisting of two rectangular gratings (Endrizzi,
2018). An extensive overview of all possible mask geometries is beyond the scope of this
dissertation, but we note that similar reasoning leads to equivalent expressions for other
grating configurations.
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Figure 4.3: Schematic overview of the determination of photon transmission factors. The
calculation is based on the information enclosed by the dashed contour.

4.2.4 Analytical calculation of photon transmission factors

The calculation of photon transmission factors is based on the user-defined grating pa-
rameters, the photon energies from GATE, and the intersection coordinates with the initial
virtual grating volumes. A schematic overview is shown in Fig. 4.3. From the intersection
coordinates with the front and back planes of the virtual grating volume, the intersections
with the effective, user defined, front and back planes of the grating are computed (rF
and rB, respectively). These planes do not necessarily coincide with the virtual grating
boundaries as defined in GATE, depending on the user-defined material thickness and
shift (Fig. 4.4).

The possible intersection types are depicted in Fig. 4.4. If both rF and rB lie within the
same aperture, the photon does not intersect the grating bars and is classified as an A-
type photon. A-type photons are immediately assigned a transmission factor fT = 1,
indicating full transmission. If this is not the case, the photon intersects a grating bar
and is classified as a B-type photon. In Fig. 4.5, it is demonstrated that, for the case of
oblique incidence, all grating bar planes (extended to infinity) are intersected. However,
the intersection points of interest are in any case the middle two points with respect to
the z-coordinate. The intersection coordinates within the side planes are given by rL and
rR for left and right, respectively.

Although rather exceptional, the simulated geometry might lead to a certain number of
photons with nearly perpendicular incidence on the central grating bars. If this is the case,
B-type photons can be further split in two subclasses: B1 for perpendicular incidence
photons and B2 for oblique incidence. B1-type photons are easier to handle, as it can be
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Figure 4.4: Photon classification based on intersection type.

safely assumed that they will intersect only the front and back planes of the grating bars.

The four intersection points can often be determined analytically through application
of solid-geometry concepts. Each photon trajectory is described by a line, using the
intersection points with the front and back planes of the virtual grating volume, rin =
(xin,yin,zin) and rout = (xout,yout,zout), and a parameter κ0:

rline = rin +κ0 (rout − rin) , (4.1)

with rline = (x,y,z) the coordinates of a point on the line, defined by the value of the free
parameter κ0. The x- and y-dimensions of the virtual grating volume are assumed to be
large enough such that no other virtual volume boundaries are crossed.

Rectangular grating bars, defined by the user, can be described by four intersecting planes
(assuming the grating is large enough, such that the top and bottom planes are never
intersected). Planes in three-dimensional space are defined using two free parameters κ1
and κ2. In general, points on a plane are given by

rplane = r0 +κ1r1 +κ2r2, (4.2)

which is defined by three points: r0, r1, and r2. For the case of rectangular gratings
parallel to the detector plane, a natural choice for these points is

r0 = (0,0,zg)

r1 = (1,0,0)
r2 = (0,1,0)

(4.3)
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Figure 4.5: Possible oblique intersection scenarios of a photon trajectory and a grating
bar.

for the front and back planes, and 
r0 = (xg,0,0)
r1 = (0,0,1)
r2 = (0,1,0)

(4.4)

for the side planes. Here zg and xg indicate the position of the front or back plane along
the z-axis and the position of the side plane along the x-axis, respectively. Both zg and
xg follow from the user-defined grating geometry. Assuming the grating bar center along
the z-axis coincides with the center of the virtual volume, zg can be written as

zg =
zin + zout

2
± 1

2
dg, (4.5)

where the sign of the second term depends on the plane (front or back). Here, dg is the
grating thickness. Likewise, xg can be written as

xg = xc ±
1
2
(1−dc)g, (4.6)

where again the sign depends on the side plane (left or right). In this equation, xc is the
center of the grating bar along the x-axis, g the grating pitch and dc the duty cycle.

The intersection point of the photon trajectory with one of the four planes is subsequently
found by simply stating rline = rplane, and solving for κ0, κ1, and κ2. Finally, Eq. (4.1)
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(or Eq. (4.2)) then yields 
x = 1

2

(
xout − xin ±dg

xout−xin
zout−zin

)
y = 1

2

(
yout − yin ±dg

yout−yin
zout−zin

)
z = 1

2 (zout + zin ±dg)

(4.7)

for the front and back plane, and
x = xc ± 1

2(1−dc)g
y = yin +

yout−yin
xout−xin

(
xc − xin ± 1

2(1−dc)g
)

z = zin +
zout−zin
xout−xin

(
xc − xin ± 1

2(1−dc)g
) (4.8)

for the side planes. As such, the intersection points with the grating bar can be calculated
directly from Eq. (4.7) and Eq. (4.8), based on the six virtual grating output parameters
(xout, xin, yout, yin, zout, zin) and four user-defined values (dc, g, xc, dg).

As soon as the intersection points are determined, the distance d traveled by the photon
in the bar can be calculated. This distance is combined with the material- and energy-
dependent attenuation coefficient µ . Subsequently, a transmission factor is calculated
through application of the Lambert-Beer law.

As a side note, we mention that the transmission factor calculation depicted in Fig. 4.3
can be generalized to gratings where the apertures are not gaps but consist of a different
material than the grating bars. Instead of assigning 1 to the class-A photons, the Lambert-
Beer law can be applied with the corresponding attenuation coefficient. In the same way,
the presence of a grating substrate can be taken into account.

4.3 Experiments

To verify and demonstrate the proposed simulation approach, a series of test simula-
tions is performed. In Section 4.3.1, validation tests are presented that allow a compar-
ison of simulation results obtained from equivalent explicit and virtual grating simula-
tions in GATE. In addition, in Section 4.3.2, a simulation is defined that demonstrates
the formation of a 2D-image using virtual gratings. Finally, in Section 4.3.3, a sim-
ulation to demonstrate the effect of sample mask misalignment is presented. Simula-
tions are performed in GATE assuming a Gaussian, polychromatic 40 kV source with
50 µm focal spot size (full width at half maximum). For all simulations, the source
to detector distance (SDD) is fixed at 1800 mm, with a sample mask magnification
of 3/2. The object, if present, is placed directly behind the sample mask. All sim-
ulations were performed in air (world material) and unless stated otherwise, the fol-
lowing physics processes were included in the simulation: PhotoElectric, Compton,
RayleighScattering, XrayRefraction, ElectronIonisation, Bremsstrahlung,
eMultiple-Scattering.
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4.3.1 Validation tests

To validate the results produced with the virtual grating approach, equivalent simulations
with explicit gratings are performed. Equivalent means that the exact same geometry is
constructed, with the only difference being the definition of the gratings as either explicit
or virtual gratings. As the goal is to demonstrate that the virtual grating approach provides
a good approximation to the explicit grating approach, the explicit grating results act as
the ground truth. The implications of the virtual grating approximation will be discussed
in more detail in Section 4.5.

Two test cases are presented. First, a comparison between a virtual and explicit sample
mask is made at the level of the beamlet profiles. Thus, only a single grating is present
in the simulated geometry. To make the comparison, the beamlet profiles are sampled
at the detector with 1 µm pixels. A fan beam geometry is used to generate 1D detector
profiles with 14 beamlets, spanning 2100 pixels, for which 107 photons are simulated.
The gratings are defined as 220 µm thick gold gratings with a projected pitch of 150
µm. Given the magnification of 3/2, this results in a sample mask pitch of 100 µm,
whereas the aperture size is 20 µm. In addition, a test is performed with both sample
and detector mask in place. Here, sample mask parameters are identical to the first test
case. The goal of this test is to perform a comparison at the level of the ICs, being the
actual measurements in EI experiments. To ensure a good sampling of the IC, stepping is
performed with the sample mask in 15 steps of 3 µm. For the explicit grating approach,
this means 15 MC simulations are performed with 107 photons each, again considering 14
beamlets. As the comparison is now performed at the IC level, the pixel size is increased
to 150 µm, such that each beamlet corresponds to one pixel. The detector mask has a
pitch of 149.75 µm, since it is placed right in front of the detector, and an aperture size
of 32 µm. It should be noted that there is no need for a new virtual grating simulation
for this test, as the flexibility of the approach includes neglecting the presence of one of
the two, er even both, gratings. Changing the pixel size can, as mentioned earlier, also be
done post-simulation.

4.3.2 2D image simulation with virtual gratings

To demonstrate XPCI simulations with a virtual grating approach, AC, DPC, and DFC
images of a beryllium sphere are simulated. The sphere has a diameter of 7 mm, and
the contrasts are extracted from the sampled ICs by means of a Gaussian fit (Eq. (2.70)).
In the MC simulation, the 101×101 pixels detector is illuminated by 108 photons. The
pixel size is set to 150 µm, whereas the grating parameters are identical to those in Sec-
tion 4.3.1. A flat field simulation without sphere is performed with the same simulation
parameters. Stepping of the sample mask to generate the IC is done post-simulation,
using the virtual grating output.
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4.3.3 Simulation of sample mask misalignment

An important aspect of designing and building an EI setup is the matching and alignment
of the two gratings (Doherty et al., 2020; Shoukroun et al., 2022a). Using the same virtual
grating simulation output as in Section 4.3.2, we demonstrate the effect of a misalignment
between sample mask and detector mask. To this end, the z-shift of the sample mask is
varied in the flat field simulation results. The variation is performed in the range of ±5
mm shift with respect to the optimal position.

4.4 Results

4.4.1 Validation tests

In Fig. 4.6, the beamlet profiles resulting from the virtual and explicit grating simulations
are plotted together. As is clear from the plots, there is a very strong agreement between
the profiles generated with either method in the valleys between adjacent beamlets, where
the impact of the grating bars on the profiles is mostly present. As refraction by grating
bars is not taken into account in the case of virtual gratings, an explicit grating simulation
without refraction in the grating bars (labeled NR in the plot) is included for further
comparison. We refer to Section 4.5 for a more elaborate discussion.

Fig. 4.7 shows a comparison of ICs resulting from virtual and explicit grating simulations.
To avoid cluttering and redundancy, plots are shown for just two different pixels, which
we will denote pixel 1 and pixel 8. Pixel 1 corresponds to the first beamlet in Fig. 4.6,
starting from the left. Accordingly, pixel 8 corresponds to the eighth beamlet and is
therefore located closest to the center of the profile. From these plots, it is clear that
also for the case of two gratings the virtual grating results are consistent with the explicit
grating results. Both the sampled points and the fitted Gaussians show a good agreement.
Altogether, the plots from Fig. 4.6 and Fig. 4.7 indicate that the virtual grating approach
provides a valid approximation for the explicit grating approach. Further considerations
are provided in Section 4.5.

By using virtual gratings, the total computation time can be reduced significantly while
yielding highly similar results. The advantage grows fast when the size of the parameter
study increases, leading to time reductions of easily one or two orders of magnitude. This
is illustrated in the right panel of Fig. 4.7, where the total computation time is plotted for
an increasing number of parameter variations (grating translations). The GATE simula-
tions are much more expensive (750 s each) compared to the post-simulation parameter
iterations (1.3 s each). Hence, the total time needed for the post-simulation virtual grating
iterations increases slowly, appearing almost constant in the plot.
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Figure 4.6: Comparison of simulated virtual and explicit grating beamlet profiles. a) Plot
showing all 14 beamlets. b) Zoom on a single beamlet. c) Zoom on the valley between
adjacent beamlets.
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Figure 4.7: Comparison of simulated virtual and explicit grating ICs, including Gaussian
fit. a) ICs for pixel 1. b) ICs for pixel 8. c) Total computation time for an increasing
number of parameter (grating translation) variations.
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Figure 4.8: Images generated by virtual stepping of the sample mask. The values in the
image corners are grating shifts expressed in µm. Color scale bars are omitted due to the
qualitative nature of the discussion in the main text.

4.4.2 2D image simulation with virtual gratings

The 15 images generated by virtual stepping of the sample mask, with the beryllium
sphere in place, are shown in Fig. 4.8. As expected, the overall intensity decreases with
increasing misalignment between the two gratings. From these images, an IC can be con-
structed for every image pixel, on which a Gaussian fit is performed. Applying Eq. (2.71),
Eq. (2.72), and Eq. (2.73) results in the separation of transmission, DPC and DFC. The
result, after calculating AC from the transmission, is shown in Fig. 4.9. All three con-
trasts adhere to the expectations, with clear AC and DPC signals, and DFC only showing
up at the object edges.

a) b) c)

Figure 4.9: a) AC, b) DPC, and c) DFC images extracted from the mask stepping images
shown in Fig. 4.8. Color scale bars are omitted due to the qualitative nature of the discus-
sion in the main text.
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Figure 4.10: ICs extracted from the images shown in Fig. 4.8 (markers Ph 1 and Ph 2),
with the location of the respective pixels indicated on the DPC image in the left panel,
using the same markers. The ICs of the corresponding flat field pixels are indicated with
markers Ref 1 and Ref 2.

In Fig. 4.10, two ICs are plotted, corresponding to different locations within the projected
object. The IC corresponding to the pixel closer to the edge has clearly shifted due to
refraction, whereas the IC in the center of the object has lowered more due to stronger
attenuation.

4.4.3 Simulation of sample mask misalignment

In Fig. 4.11, the flat field intensity distribution resulting from a varying amount of sample
mask misalignment is shown for 21 cases, with a z-shift ranging between -5 mm and +5
mm relative to the optimal position. The position of the sample mask along the x-axis
corresponds to the maximum of the IC. An increasing reduction in intensity towards
the image edges is visible, as the detector mask partially blocks the incoming beamlets
departing from the non-matching sample mask (Shoukroun et al., 2022a). This effect
is even more apparent in Fig. 4.12, where horizontal line profiles through the images in
Fig. 4.11 are plotted.

4.5 Discussion

The results in Section 4.4.1 indicate that the virtual grating approach is a valid approxima-
tion for the explicit grating approach. Almost identical results (see Fig. 4.6 and Fig. 4.7)
are obtained with a strongly reduced total computation time. A single MC simulation
was sufficient to generate the virtual grating beamlet profiles and ICs, as all grating pa-
rameters were defined post-simulation. With respect to the simulation time, it should be
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Figure 4.11: Overview of the effect of increasing misalignment between the sample and
detector masks. The values in the image corners are sample mask z-shifts relative to the
optimal position, expressed in mm. Color scale bars are omitted due to the qualitative
nature of the discussion in the main text.

noted that a further speed-up can be achieved in GATE by splitting the simulation over
multiple CPUs. This has not been discussed here, as the speed-up would be the same
for explicit and virtual grating simulations, leading to the same conclusion regarding
the relative simulation time reduction. Alternatively, variance reduction techniques are
sometimes implemented to achieve a reduced simulation time (Tessarini et al., 2022).

In Fig. 4.8 it is demonstrated how the proposed approach adequately captures the effect
of the two gratings on the final image, resulting in the successful retrieval of the dif-
ferent contrast types, shown in Fig. 4.9. The fact that these contrast types result from
local changes in the IC is illustrated by Fig. 4.10. A comparison between the contrast
images retrieved from the virtual gratings and the contrast images retrieved from the cor-
responding explicit gratings simulation is provided in Appendix C. In addition, the effect
of poor grating alignment was demonstrated using the same virtual grating MC output,
introducing variations in the position of the sample mask along the z-axis. Fig. 4.11 and
Fig. 4.12 clearly show how the beamlets generated by the sample mask drift further away
from the detector mask apertures if the misalignment increases. This illustrates the rel-
evance of accurate grating alignment for EI. The advantage of a well-aligned system is
that the more homogeneous background signal allows for phase retrieval with a minimal
number of IC points. In contrast, a system with more misalignment can still be used for
phase contrast imaging, but requires more mask steps to ensure proper sampling of the
IC everywhere in the FOV.

The virtual grating approach provides a high level of flexibility with respect to post-
simulation grating design. Obviously, other setup parameter variations cannot be taken
into account with virtual gratings. Changing the SDD of the setup in GATE, for example,
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Figure 4.12: Line profiles taken from the images shown in Fig. 4.11, showing the in-
creasing intensity reduction towards the edges of the images due to the misaligned sam-
ple mask position. The values in the legend are z-shifts relative to the optimal position,
expressed in mm.

will always require a new simulation, as the photon trajectories are different. Likewise,
for a dithering procedure, the photon trajectories inside the phantom change. In general,
the virtual grating approach models variations in grating parameters, but not in phantom,
source and detector properties.

In the proposed approach, the grating bars are essentially modeled as purely absorbing
3D objects, where the absorption is calculated from attenuation coefficients through the
Lambert-Beer law. Whereas this is obviously an approximation compared to a full MC
grating bar model that includes explicit scattering events and refraction (Sanctorum et al.,
2021a; Huyge et al., 2021), it provides a more accurate grating representation than the
often-used projection approximation (i.e. infinitely thin gratings). This is illustrated in
Fig. 4.13, where a comparison is made between detector profiles simulated with virtual
gratings, explicit gratings and the projection approximation. The simulated setup cor-
responds to the two-mask setup presented in Section 4.3.1, but with a larger detector.
Shadowing effects that increase towards the detector edges are visible when 3D grating
models are used (Huyge et al., 2021). This shadowing effect is also known as angular
filtration, and is taken into account in our model but not in the projection approximation.

As scaling up the technology is an important goal for future EI applications (Olivo, 2021),
simulation requirements are expected to shift more towards cone beam systems with a
larger field of view. As such, angular filtration becomes an increasingly important effect,
implying the thickness of the gratings must be taken into account. Therefore, infinitely
thin grating models will most likely become insufficient for future grating design studies,
since these will require 3D grating models. The increased relevance of 3D grating models
in future MC simulations for EI illustrates the potential of the virtual grating approach.

To demonstrate that the residual difference between virtual and explicit grating models is
primarily due to refraction effects, an additional profile is plotted that results from purely
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Figure 4.13: Comparison of simulated detector profiles for different mask stepping posi-
tions. A shift of 0 µm corresponds to perfectly aligned gratings. V: virtual gratings. E:
explicit gratings. E-NR: explicit gratings without bar refraction. PA: projection approxi-
mation.
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absorbing explicit gratings, which neither refract nor reflect the X-ray photons. This
profile is practically identical to the virtual grating profile, indicating that the differences
are indeed due to refraction in the grating bars. The goal of the proposed approach is
thus not to give an as detailed as possible modeling of all possible photon interactions in
the grating bars, but to provide a balanced trade-off between simulation detail and total
simulation time. This is achieved by including the predominant grating bar effect, being
attenuation of the polychromatic photon beam. This ensures that effects such as beam
hardening due to residual grating bar transmission are taken into account (Endrizzi and
Olivo, 2014).

As indicated by the increased number of output variables in the ROOT output, the in-
creased flexibility of the virtual grating approach comes at the cost of increased output
file sizes. The twelve additional variables are stored with double precision, implying that
for every 106 detected photons the file size increases with 96 MB. To keep the file size
reasonable for very large simulations with very high numbers of simulated photons, sev-
eral modifications to the current implementation can be considered. The most obvious
modification would arguably be storing variables with single precision, hereby lowering
the additional file size by 50%. In addition, if the virtual volume is defined as a box with
planes parallel to the detector plane, all photons will enter and leave the virtual volume
at the same z-coordinates. Here, it is assumed that the box is large enough such that it is
unlikely for photons to enter or leave through planes other than the front and back planes.
If this is the case, all photons share their z-coordinates, meaning those need to be stored
only once. This would reduce the additional file size by another 33%. However, if the vir-
tual volumes defined by the user are not box-shaped, this is not always possible. Finally,
it can be considered to reduce the number of output variables in the ROOT output itself,
as there may be output variables that the user does not need for their application. The
reduction in file size would then depend on the number of variables which is removed
from the output.

It should be noted that, since the same MC simulation is used for the generation of var-
ious images with different grating parameters, all the images generated from this MC
simulation will exhibit highly similar photon statistics. Therefore, if a sufficient amount
of photons is generated in the virtual grating simulation, this will immediately keep the
noise low for all parameter variations. The similarity in noise properties is apparent
from Fig. 4.12. Finally, although not explicitly demonstrated in this work, we stress that
the virtual grating approach is applicable beyond rectangular grating designs. It can be
applied to less conventional, non-rectangular grating configurations as well, as long as in-
tersection points between photon trajectories and grating components can be calculated
in either an analytical or numerical way.
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4.6 Conclusion

An alternative simulation approach was proposed to reduce the computation time in full
MC XPCI simulations with varying grating parameters. To this end, the concept of virtual
grating volumes was introduced. By allowing the definition of grating parameters post-
simulation, the amount of required MC simulations for a parameter study, and therefore
the total computation time, can be reduced significantly. The results presented in this
chapter show the feasibility of adopting the proposed virtual grating approach to reduce
the total simulation time, especially when many variations of grating parameters (pitch,
aperture, thickness) and position are required. It should be noted that, whilst using GATE
for our MC simulations, the presented concepts are generic and therefore applicable in
any MC environment for XPCI simulations. We believe that this simulation approach has
the potential to facilitate the design of future EI systems, hereby supporting the propaga-
tion of XPCI as a standard imaging method.
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Grating design for augmenting a

conventional X-ray scanner with EI

This chapter is published as:

• Sanctorum, J., Six, N., Sijbers, J., and De Beenhouwer, J. (2022b). Augmenting a conven-
tional x-ray scanner with edge illumination-based phase contrast imaging: how to design
the gratings. In Müller, B. and Wang, G., editors, Proc. SPIE 12242, Developments in
X-Ray Tomography XIV, page 1224218. SPIE

5.1 Introduction

Edge illumination has been successfully transferred from synchrotron facilities to lab-
based X-ray systems (Zamir et al., 2017; Olivo, 2021) and is a valuable tool for non-
destructive testing (Shoukroun et al., 2022b), security (Olivo et al., 2009) and biomedical
imaging (Massimi et al., 2022). Existing EI imaging systems are typically custom-made
setups, with components carefully selected to achieve optimal imaging conditions. How-
ever, if a conventional X-ray micro-CT scanner is already available, it is worthwhile
considering augmenting it with phase contrast imaging functionalities, instead of com-
plementing it with a separate EI imaging system. Therefore, rather than installing a dedi-
cated EI XPCI system, our goal is to enable XPCI in an existing, custom-built, TESCAN
UniTOM XL system at the University of Antwerp, FleXCT, which is a novel and highly
flexible scanning system consisting of ten motorized axes, allowing a wide range of non-
standard scans such as tiled and off-center scans, conveyor belt, laminography, dynamic
zooming, and helical tomography (De Samber et al., 2021). To enable EI-based X-ray
phase contrast imaging, two gratings have to be incorporated in the existing FleXCT
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system. Although many system properties have been shown to influence the EI image
quality (Olivo et al., 2009), these are not necessarily free parameters in our case. Indeed,
the fact that the EI components are to be installed in an already existing setup, limits
the range of modifications to the CT-scanner that can still be considered reasonable (e.g.
source and detector are already installed and the system size is fixed). As such, the
two EI gratings are the most essential pieces of experimental equipment that have to be
designed. The design parameters of these gratings, mainly the pitch, duty cycle and ma-
terial thickness, impact the achievable image quality. Thus, a dedicated parameter study
is carried out to determine optimal parameters for the new gratings, relying on MC XPCI
simulations (Sanctorum et al., 2020). In this Chapter, we report on the methodology and
results of the parameter study. The effective experimental realization of the augmented
FleXCT-scanner using the gratings designed in this Chapter will be reported elsewhere
(Huyge et al., 2023b). The presented procedure is transferable to other attenuation-based
CT-systems and its use is therefore not limited to the FleXCT system. To our best knowl-
edge, this is the first demonstration of grating design for augmentation of an existing
X-ray scanner with EI-based XPCI.

5.2 Methods

During the simulation phase, experimental parameters such as the system geometry and
focal spot are taken into account. The tube voltage and geometrical magnification are
set based on the envisaged applications, which is mainly the imaging of fruits for qual-
ity control, including apples, pears, and tomatoes. Therefore, the goal is to achieve a
phase sensitive field of view within the FleXCT system of approximately 10-by-10 cm2

in the object plane, with a system magnification of 1.5 and a 80 kV tube voltage to ensure
sufficient X-ray transmission through the typically 5 to 10 cm thick pieces of fruit that
mainly consist of water. The optimization of the design parameters is based on maxi-
mizing peak-to-peak contrast in the phase contrast signal and finding a trade-off between
grating bar transmission and shadowing effects (angular filtration). The peak-to-peak
contrast is given by the difference between the positive and negative peak values in the
DPC signal. By dividing this by the standard deviation of the background DPC signal,
the peak-to-peak contrast-to-noise ratio (p2p-CNR) is defined as:

CNR =
αmax −αmin

σα

. (5.1)

Shadowing effects arise when a cone beam illuminates a pair of rectangular gratings
and are more severe towards the detector edges (Huyge et al., 2021). In the following
sections, design values for the pitch, aperture, and thickness parameters which are con-
sidered optimal for the FleXCT system will be determined for both gratings.



5.2. METHODS 111

(a) (b) (c)

Figure 5.1: The FleXCT micro-CT scanner installed at imec-Vision Lab at the University
of Antwerp (b). The side panels show (a) the X-ray source and sample rotation stage, and
(c) the flat panel detector. Image courtesy by Joaquim Sanctorum.

5.2.1 Monte Carlo simulations

Simulations were performed in order to determine the optimal parameters of the gratings
required for EI-based XPCI. More specifically, the parameter study is based on MC sim-
ulations, for which our in-house modified version of GATE (Jan et al., 2011; Sanctorum
et al., 2020) is used. Although originally intended for combination with wave optics to
enable XPCI simulations of grating-based interferometry, the full MC simulation of EI
experiments using our GATE-based tool is possible as well (Huyge et al., 2021; Sancto-
rum et al., 2021a). In the MC framework, the standard approach is to model grating bars
as 3D objects in the simulation, with energy-dependent attenuation properties following
from the material. In this Chapter, the virtual grating approach (Sanctorum et al., 2022b)
is used to impose grating parameter variations post-simulation, which reduces the total
simulation time.

5.2.2 The FleXCT system

The designed EI gratings are to be incorporated in the FleXCT micro-CT scanner (De
Samber et al., 2021), a customized UniTOM XL model from TESCAN (see Fig. 5.1
and Fig. 5.2). This highly flexible system allows a wide range of non-standard XCT
scans such as tiled and off-center scans, laminography, helical tomography, conveyor belt,
and dynamic zooming. Its ten motorized axes enable movement of sample, source, and
detector. Additionally, the ‘FlexRayTools’ software (De Samber et al., 2021) was written
to enable the reconstruction of the non-standard XCT projection data using the ASTRA
Toolbox, a highly efficient and open source set of tools for tomographic projection and
reconstruction (Palenstijn et al., 2011; van Aarle et al., 2015, 2016). After successful
installation of the gratings (illustrated in Fig. 5.3), the FleXCT system will also facilitate
XPCI imaging, including dark field contrast.
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a) b)

Figure 5.2: a) Schematic overview of the FleXCT micro-CT scanner, showing the ten
degrees of freedom. b) Digital twin of the FleXCT system. Image courtesy by Joaquim
Sanctorum and Pieter-Jan Vanthienen, respectively.

5.3 Experiments

5.3.1 System geometry

Although the FleXCT system has a variable source-to-detector distance (SDD) and geo-
metrical magnification, a choice has to be made prior to the optimization of the grating
parameters, as the gratings are designed for a specific magnification. Therefore, the SDD
remains fixed at 1800 mm in the simulations, with a sample mask magnification of 3/2.
Our goal is to achieve a phase sensitive area in the sample mask plane of approximately
100 mm by 100 mm. The focal spot of the simulated 80 kV polychromatic X-ray source
(Nazemi et al., 2021) is varied in size and four different spot sizes are considered: 5 µm,
20 µm, 50 µm, and 85 µm. These values correspond to the full width at half maximum
(FWHM) of a Gaussian focal spot. Due to the fact that an EI system is only phase sensi-
tive in the direction perpendicular to the grating bars, the simulations are performed using
a 1D line detector for the sake of simulation efficiency. This 1D detector consists of 101
pixels with a pixel size of 150 µm. The detector itself is constructed in GATE from 208
µm thick Gadox, preceded by a 750 µm thick carbon layer and a 250 µm thick plas-
tic layer. In addition, 200 µm amorphous silicon is introduced behind the Gadox layer.
The detector electronics were not modeled in GATE to avoid erroneous assumptions with
respect to their effects on the image.

5.3.2 Simulation

A beryllium cylinder with a diameter of 6.9 mm is used as a phantom in the simula-
tions. Sample mask apertures in the range of 5 to 50 µm are considered, whereas for
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Figure 5.3: Illustration of the augmented FleXCT system after installation of the gratings
for EI XPCI. Image courtesy by Pieter-Jan Vanthienen.

each sample mask aperture three distinct detector mask aperture sizes are simulated, cor-
responding to 1.5, 1.6, or 1.7 times the sample mask aperture. Seven phase steps are
performed to sample the IC, in combination with three dithering steps. In total, this re-
sults in 15456 generated profiles, including 3864 flat field profiles. The thickness of the
gold grating bars is determined through a trade-off between grating bar transmission and
grating bar shadowing (angular filtration), for which a separate set of MC simulations is
performed. In these simulations, the bar thickness is varied between 150 µm and 350
µm, and different levels of Al filtration are considered.

5.4 Results and discussion

5.4.1 Shadowing and grating bar transmission

Fig. 5.4 shows the transmission through the grating bar material for an increasing gold
layer thickness and different effective spectra, resulting from filtration by 0.5 mm, 1.0
mm and 2.0 mm of aluminum. Ideally, the transmission should be below 1%, although
5% is an acceptable level of transmission for EI systems (Olivo et al., 2009). The plot
indicates that, for the envisaged tube voltage of 80 kV, a gold bar thickness greater than
200 µm is required to satisfy this condition. By increasing the thickness further to 350
µm, the ideal 1% transmission level comes within reach. Such a large grating thickness,
however, introduces a significant amount of shadowing towards the detector edges, as
is clear from the line profiles in Fig. 5.4. In this figure, detector line profiles are shown
for increasing grating bar thicknesses. As a reference, an additional line profile (P) is
plotted, resulting from idealized gratings under the projection approximation, which are
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Figure 5.4: a) Grating bar transmission levels. b) Line profiles for different grating bar
thicknesses, legend expressed in µm. The profile resulting from a perfectly absorbing
and perfectly flat grating is indicated by P.
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infinitesimally thin and perfectly absorbing. From comparison to this reference profile,
it is clear that thinner gratings, although resulting in less shadowing, allow more trans-
mission through the grating bars. Hence, there is a trade-off between transmission and
shadowing effects. To quantify the amount of shadowing introduced by the grating bars,
the ratio between the intensity at the profile edge and the intensity in the center (no shad-
owing) is determined and plotted in Fig. 5.5. In order to limit shadowing as much as
possible while keeping transmission well below the critical 5% level, the optimal thick-
ness of the gold bars is estimated to be 225 µm. This corresponds to an intensity ratio of
65.7%.

5.4.2 Grating aperture size and CNR analysis

As the grating pitches are defined by the SDD and geometrical magnification, the only
parameters left to determine are the duty cycles, i.e. the aperture sizes. Given the SDD
of 1800 mm, pixel size of 150 µm, and magnification of 1.5, the sample mask pitch
must be 100 µm. As the detector mask cannot be put at the exact same position as the
detector panel, the pitch should be slightly less than the pixel size and was set to 148
µm. To perform the aperture size optimization, the differential phase in each pixel is
retrieved through Gaussian fitting of the sampled IC points. Subsequently, the peak-to-
peak contrast is extracted from the resulting profiles and compared to the background
fluctuations to yield the contrast-to-noise ratio (p2p-CNR). The results of this operation
are shown in Fig. 5.5 for sample mask aperture values in the range of 5 to 50 µm and
a detector mask to sample mask aperture ratio of 1.5. It should be noted that the same
amount of photons was simulated for every focal spot. In an actual experiment, however,
the focal spot size would determine the flux: larger focal spots tend to yield a higher flux.
By simulating the same amount of photons, we effectively remove this effect from the
plot in Fig. 5.5.

The optimal p2p-CNR value is reached at different aperture sizes, depending on the focal
spot. However, in practice, some focal spot sizes are more relevant than others. The 5
µm focal spot is close to the smallest focal spot size achievable with the FleXCT system.
In EI, however, the majority of the X-rays will be blocked by the gratings. Therefore, the
flux generated at the source has to be sufficiently large in order to keep acquisition times
reasonable. As such, it is unlikely that the 5 µm spot will be used often in practice. In
contrast, a spot size around 50 µm is expected to be much more suitable. When the flux
has to be maximized, this can be increased to 85 µm, or reduced to 20 µm if less focal
spot blur is desirable, though it has been shown that the point spread function (PSF) of
the DPC signal depends mainly on the aperture size, as long as that size is smaller than
the focal spot blur (Diemoz et al., 2015). In line with these practical considerations, the
optimal sample mask aperture is deduced from the 50 µm focal spot curve in Fig. 5.5,
where the maximal p2p-CNR is reached around 20 µm. As this value is also close to
optimal for the 20 µm spot and still yields 80% of the maximum p2p-CNR for the 85 µm
focal spot, a 20 µm aperture is considered to be the best candidate for the optimal sample
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mask design. Although not shown, no significant p2p-CNR gain could be perceived by
increasing the aperture size ratio to 1.6 and 1.7. This ratio was ultimately kept at 1.5,
corresponding to a 30 µm aperture size for the detector mask. In this work, the p2p-
CNR was chosen as the metric for optimizing the aperture size, due to the characteristic
refraction peaks present in cylinder profiles. Other possible metrics include the angular
sensitivity (Diemoz et al., 2015) and the accuracy (Astolfo et al., 2016) (Chapter 6). It
should be noted that it is implicitly assumed that the geometrical optics approximation is
valid for the MC simulations performed in this Chapter. However, given that the spatial
resolution in EI is determined by the aperture size for fully dithered images, some cau-
tion is required when interpreting results for the smallest focal spot (5 µm) and smaller
apertures (below approximately 10 µm), considering the weighted mean energy of the
80 kV spectrum (38.4 keV), as diffraction effects will become increasingly important at
higher spatial resolution (see also Section 6.2.2).

5.5 Conclusion

In this Chapter, we have presented the design of EI gratings for the augmentation of
the FleXCT system to a phase sensitive X-ray scanner. Through peak-to-peak contrast
analysis of simulated profiles, optimal aperture sizes for sample and detector mask were
deduced. In the final grating design, the sample mask has a pitch of 100 µm and aperture
of 20 µm, whereas the detector mask has a pitch and aperture size of 148 µm and 30
µm, respectively. Additionally, the material thickness was determined based on a trade-
off between shadowing effects and grating bar transmission. Based on this analysis, the
gold bar thickness was set to 225 µm. The next important step is the integration and
alignment of the newly designed components into the FleXCT system, on which we
intend to report in future work. The steps undertaken in this work are not specific to the
FleXCT system, and are applicable to support the augmentation of any X-ray scanner
with EI-based XPCI.
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Chapter 6666666666666666666666666666666666666666666666666666666666666666666666666
Multi-contrast benchmarking of edge

illumination simulations

This chapter is published as:

• Sanctorum, J., Sijbers, J., and De Beenhouwer, J. (2025). Multi-contrast benchmarking
of edge illumination Monte Carlo simulations using virtual gratings. Journal of Applied
Physics, 137(10):104904

6.1 Introduction

Whereas X-ray phase contrast imaging (XPCI) has become widely recognized for its ca-
pability to yield high contrast compared to conventional AC, DFC has been receiving
increased interest in recent years due to its unique ability to provide information about
unresolved microstructures (Pfeiffer et al., 2008; Endrizzi et al., 2014). The increased
accessibility of XPCI using compact laboratory systems has boosted its development
(Bravin et al., 2013; Endrizzi, 2018; Momose, 2020; Olivo, 2021; Quenot et al., 2022),
resulting in various applications such as spectral imaging and material decomposition (Ji
et al., 2020; Braig et al., 2020; Brombal et al., 2024), virtual histology (Massimi et al.,
2022), and clinical dark field imaging of lungs (Urban et al., 2022). Both DPC and DFC
are related to the X-ray refractive index of the object, but as opposed to DPC, DFC re-
sults from refractive index fluctuations that cannot be resolved by the imaging system
(Lynch et al., 2011). This results in a local increase in angular spread of the X-ray beam
(Bech et al., 2010b; Endrizzi and Olivo, 2014), referred to as angular broadening (see
Section 2.3.4). DFC is becoming increasingly important and is for certain applications

119
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even more of interest than AC or DPC. The measurement of the DFC signal is tradition-
ally performed with XPCI methods featuring special X-ray optics. Examples are analyzer
based imaging (ABI) (Rigon et al., 2007), grating-based interferometry (GBI) (Pfeiffer
et al., 2008), edge illumination (EI) (Endrizzi et al., 2014), beam tracking (BT) (Vittoria
et al., 2014), single-grid imaging (SGI) (Wen et al., 2010) and speckle-based imaging
(SBI) (Zanette et al., 2014). More recently, however, DFC imaging has been demon-
strated using propagation-based imaging (PBI) as well (Gureyev et al., 2020; Leatham
et al., 2023). Whereas GBI is arguably the most popular experimental configuration
for DFC imaging, EI is emerging as well as a suitable DFC imaging method for lab-
based setups (Matsunaga et al., 2020; Olivo, 2021). In contrast to recent developments
in GBI (Yan et al., 2020; Sauter et al., 2021; Urban et al., 2022; Organista et al., 2023;
Spindler et al., 2023), DFC is hardly ever explicitly considered when making design
choices for multi-contrast EI systems. Indeed, most studies are predominantly oriented
towards DPC, while assessment of DFC is minimal or even absent (Olivo and Speller,
2007b; Olivo et al., 2009, 2013; Diemoz et al., 2015; Havariyoun et al., 2019; Kallon
et al., 2020; Sanctorum et al., 2022b; Brombal et al., 2023; Vanthienen et al., 2023).
A rare exception is the work of Astolfo et al. (2016, 2017) concerning the design of a
large field-of-view (FOV) EI system. It has been shown that, compared to AC and DPC,
DFC is significantly more sensitive to grating imperfections and misalignment (Endrizzi
et al., 2015) and is affected by polychromatic effects such as beam hardening, resulting
from both the imaged object and partially transmitting grating bars (Endrizzi and Olivo,
2014; Vittoria et al., 2015). Furthermore, it has been suggested that the choice of system
and grating parameters could influence the linearity of the measured DFC (Astolfo et al.,
2022), which is highly relevant for tomography applications (Doherty et al., 2023).

Optimization and design of EI setups often relies on computer simulations (Olivo et al.,
2009; Vittoria et al., 2013; Astolfo et al., 2016; Buchanan et al., 2020; Sanctorum et al.,
2022b; Vanthienen et al., 2023). Benchmarking the simulated DFC signal originating
from an arbitrary object is not trivial and is often omitted. Since the first observations of
X-ray beam broadening due to microstructures (Slack, 1926), there have been many ef-
forts in modeling this effect and relating it to unresolved sample properties (von Nardroff,
1926; Khelashvili et al., 2006; Yashiro et al., 2010; Bech et al., 2010a; Lynch et al.,
2011; Malecki et al., 2012; Millard et al., 2013; Strobl, 2014; Modregger et al., 2017;
Wilde and Hesselink, 2021a,b; Meyer et al., 2021; How et al., 2023; Taphorn et al., 2023;
Auenhammer et al., 2024). In practice, simulation models are often simplified to reduce
simulation times, for example by condensing the dark field effect in a single (linear) ma-
terial parameter or by imposing an a priori scattering distribution (Rigon et al., 2007;
Bech et al., 2010a; Scattarella et al., 2013; Astolfo et al., 2016; Francken et al., 2023,
2025). Another possible approach is to calibrate the linear model using experimental
data (Astolfo et al., 2016), but this quickly becomes unfeasible if there is a directional
dependency in the signal, due to the complicated sampling schemes involved in measur-
ing directional DFC (Sharma et al., 2017; Huyge et al., 2023a). Amongst other methods,
Monte Carlo (MC) simulators are commonly used for EI-XPCI simulations (Peter et al.,
2014; Cipiccia et al., 2014; Astolfo et al., 2016; Sanctorum et al., 2022a). A balanced
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approach, which avoids a number of limiting assumptions, such as isotropic distributions
or linearity, whilst keeping the simulation cost reasonable, is to explicitly model the mi-
crostructures in the simulation (Millard et al., 2013; Sanctorum et al., 2020; Huyge et al.,
2023a). In such a MC simulation, the angular broadening is generated by the combined
effect of many refraction events. The retrieved DFC will depend on the characteristics
of the simulated setup and contrast retrieval algorithm (Astolfo et al., 2016, 2017). As
such, in order to assess which parameters yield the most accurate result, the retrieved
DFC must be benchmarked using a reference value (Scattarella et al., 2013). In general,
however, such a reference value is not readily available for comparison.

In this chapter, we demonstrate an approach to simultaneously simulate the retrieved
contrasts (AC, DPC and DFC) and corresponding reference values, allowing full multi-
contrast benchmarking of MC simulation results. The presented method relies on the
virtual grating approach from Chapter 4, which was recently developed to reduce sim-
ulation times for large parameter studies (Sanctorum et al., 2022a). We show how this
method can be used for multi-contrast benchmarking of simulation results and briefly
discuss both its limitations and other potential applications.

6.2 Methods

6.2.1 Finding reference values using virtual gratings

Multi-contrast reference values are required for the complete benchmarking of EI simu-
lations, meaning the reference T , α , and σ2 are to be determined for each X-ray beamlet.
Here, σ2 is the increase in angular variance of photon directions within a single beam-
let. The angular variance is a measure for the spread in photon directions relative to the
average direction in the beamlet. This is illustrated in Fig. 6.1.

If a virtual grating volume is placed at the position of the sample mask in the simulation,
and a second virtual grating volume is placed at the detector mask position, the direction
vectors of the photon trajectories before and after interaction with the phantom can be
retrieved. Indeed, if the intersection points with the front and back planes of the virtual
grating volume are written as rin = (xin,yin,zin) and rout = (xout,yout,zout), then the di-
rection vector for a given photon m is rd,m = (xd,m,yd,m,zd,m) = rout,m − rin,m. Due to the
orientation of the grating bars (Fig. 2.11), the system will only be sensitive to refraction
and broadening along the x-axis. Hence, to make a correct comparison with the con-
trast retrieval results, the reference σ2 and α should be estimated from direction vectors
projected along the y-axis. Assuming the projected direction vectors are normalized, the
average projected direction of Nb photons in a beamlet rav = (xav,yav,zav) can be written
as

rav =

(
1

Nb

Nb

∑
m=1

xd,m,0,
1

Nb

Nb

∑
m=1

zd,m

)
. (6.1)
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Figure 6.1: a) Close up of a photon trajectory within a beamlet (not to scale). b) Inter-
section of a photon trajectory with the virtual grating volume.

Subsequently, the individual angular deviations from all projected rd,m with respect to
the average direction rav can be found through their respective dot products, yielding the
angular variance around the mean direction:

σ
2
av =

1
Nb

Nb

∑
m=1

arccos(rd,m · rav)
2. (6.2)

If σ2
av,0 denotes the result of Eq. (6.2) for the undistorted beamlet, then the reference for

the angular broadening (and thus DFC) is given by:

σ
2
R = σ

2
av −σ

2
av,0. (6.3)

The change in average direction of the beamlet can be used to provide a reference for the
refraction angle αR:

αR = arccos(rav · rav,0), (6.4)

yielding a reference value for DPC. In addition, due to the nature of the virtual grat-
ings approach, the transmission reference TR can be generated as well by omitting the
gratings in the simulation, resulting in a conventional radiograph. For each measure-
ment point (pixel), the reference values are extracted from the corresponding idealized
beamlet, which is defined as the collection of photons passing through the aperture of
an infinitesimally thin but perfectly absorbing mask. Hence, undesirable effects such as
grating bar transmission and shadowing are eliminated, while still matching the mask
stepping. This is a reasonable definition, since it leads to the exact set of photons that
would contribute to an idealized EI measurement with perfect gratings. By design, the
generated virtual gratings output can be used in parallel to generate simulated detector
measurements, meaning that a single MC simulation suffices to simultaneously generate
the reference and contrast retrieved values for an arbitrary number of grating geometries
(Sanctorum et al., 2022a). Subsequently, these profiles can be converted to T , α and σ2

through contrast retrieval.
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To summarize, the proposed method uses the information stored by the virtual gratings
approach to extract a complete set of reference values for all three contrasts, as well as
mask stepping measurements. To differentiate between the contrast retrieval results (T ,
α and σ2) and the corresponding reference values, we will refer to the latter as TR, αR
and σ2

R, respectively.

6.2.2 Geometrical optics model for EI simulations

A full description of X-ray phase effects generally requires wave optics modeling. Using
GATE with X-ray refraction but without wavefront propagation, however, implies geo-
metrical optics modeling. Although EI is an imaging method that can, in most cases,
be modeled with geometrical optics, it is useful to briefly touch upon the geometrical
optics approximation. In general, a distinction is made between three imaging regimes:
the Fraunhofer regime, the Fresnel regime, and the geometrical optics regime. Although
moving from one regime to another is a gradual change without clear boundaries, differ-
entiation is possible through the Fresnel number NF (Paganin and Pelliccia, 2021):

NF =
M (∆xr)

2

λdOD
, (6.5)

where λ denotes the X-ray wavelength and ∆xr is the smallest resolvable transverse
characteristic feature size. The typically used condition for using the geometrical optics
model is that NF ≫ 1, with lower limit NF > 10, demarcating the relevant imaging con-
ditions. Smaller Fresnel numbers lead to the Fresnel (NF ≈ 1) and Fraunhofer (NF ≪ 1)
regimes. An in-depth discussion with respect to aperture size and focal spot can be found
in the work of Munro et al. (2010a,b).

6.3 Experiments

A number of virtual gratings simulation experiments was performed in GATE to demon-
strate the proposed method. The source-to-detector distance (SDD) of the simulated
system was 1800 mm, with a 1.5 magnification factor for the sample mask, placed at dis-
tance of 1200 mm from the source. The detector mask was positioned at 5 mm in front of
a line-detector, which consisted of 444 pixels with a size of 150 µm. X-rays were gener-
ated from a polychromatic 40 kV source (Nazemi et al., 2021) (Fig. 6.2) with a Gaussian
focal spot of 50 µm FWHM. Given the system dimensions and the weighted mean X-ray
energy of the spectrum (15.3 keV), Eq. (6.5) sets the geometrical optics limit for ∆xr at
18 µm. Since in EI the aperture size determines a lower limit to the smallest resolvable
features (Diemoz et al., 2015), this means the aperture size should, in this case, be at least
18 µm. In total, 108 photons were generated at the source for every virtual gratings simu-
lation. The phantoms were positioned between the two gratings, 30 mm from the sample
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Figure 6.2: a) Spectrum of the simulated 40 kV X-ray source. Schematic view (not to
scale) of b) the simulated 10 mm epoxy cylinder, c) the CFRP phantom with 10 µm
symmetric fibers, and d) the CFRP phantom with eccentric fibers (semi-axes of 12.5 and
5 µm).

mask. For each phantom, one virtual gratings simulation was performed, providing the
required output for generating both the mask stepping results and reference values. To
produce the mask stepping profiles, 15 mask steps were taken post-simulation for every
grating geometry (Sanctorum et al., 2022a). The sample mask aperture size was varied
in steps of 5 µm from 20 µm to 40 µm, whereas the grating thickness for both gratings
was varied from 150 µm to 350 µm in steps of 50 µm. The detector mask apertures
scaled with the sample mask apertures according to the magnification. This resulted in
25 different parameter combinations and 375 profiles in total for each phantom. For the
mask stepping results, gold gratings were considered.

In total, three different phantoms were designed for the simulations. First, a 10 mm thick
carbon fiber reinforced polymer (CFRP) phantom was used, consisting of cylindrical car-
bon fibers embedded in an epoxy matrix. The diameter of the fibers was set to 10 µm. To
demonstrate the method on more arbitrarily shaped structures, the fibers were, in a sec-
ond simulation, elongated to elliptical tubes with a long semi-axis of 12.5 µm and short
semi-axis of 5 µm. The y-axis rotation of the eccentric fibers was randomly assigned,
in order to avoid global directional dark field effects (Janssens et al., 2017) (Fig. 6.2). A
Poisson disc sampling algorithm was used to determine the positions of the symmetric
and eccentric fibers in the phantoms, where the longest axis of the eccentric fibers was
used to define the minimal separation distance between sampling points. In total, 290755
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Table 6.1: Monte Carlo simulation (GATE) and processing (MATLAB) times required
to compute the mask stepping profiles for all experiments for each phantom described in
Section 6.3. All times are expressed in seconds and the tabulated values are averages of
the five parallel simulations.

GATE MATLAB
Cylinder 5410±20 6940±60

Symmetric fibers 10390±80 4510±30
Eccentric fibers 36500±400 4270±20

Flat field 6480±40 7280±20

sampling points were generated for both phantoms. In addition to the microstructure
phantoms, a homogeneous epoxy cylinder with 10 mm diameter was simulated. Finally,
a simulation without phantom was performed. The imaging conditions were kept the
same for all simulations.

GATE simulations were performed on a server with 16 Intel Xeon E5-2670 @ 2.60GHz
CPUs (dual core) and 64GB RAM, using five cores in parallel for each simulation. The
subsequent processing and analysis of the virtual grating simulation results was per-
formed in MATLAB R2019a on a local machine with an NVIDIA GeForce GTX 1080
GPU, 6 Intel Core i7-6850K 3.60GHz CPUs (dual core), and 64GB RAM.

6.4 Results

The simulation times in GATE and the subsequent MATLAB processing times required
to compute the mask stepping profiles are summarized in Table 6.1. For GATE, the phan-
tom complexity is the main factor determining the simulation time for a given number
of photon trajectories (Sanctorum et al., 2020). Since tracking of absorbed photons is
stopped after absorption by the phantom, the average simulation time of the cylinder
simulation is shorter compared to the average flat field simulation time. The processing
times in MATLAB are mostly determined by the number of detected photons, given that
the number of virtual gratings parameter variations is kept constant. The higher memory
cost associated with an increasing number of photons, i.e. larger arrays, leads to longer
computation times.

6.4.1 Interpretation of the reference values

In Fig. 6.3, Fig. 6.4, and Fig. 6.5, αR and σ2
R profiles are plotted jointly with α and σ2

profiles for the epoxy cylinder and the two fiber phantoms, respectively. In these plots, a
distinction is made between type-1 and type-2 reference values.
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The type-1 reference values require two simulations: one with and one without object
in the beam path. When calculating σ2

R using Eq. (6.3), the simulation without object
yields σ2

av,0 and the simulation with object σ2
av. In the type-2 reference plots, σ 2

av,0 and
σ2

av both result from the simulation with object. However, σ2
av,0 is calculated from the

photon trajectories registered before interaction with the object and σ 2
av from the same

trajectories after interaction. Since by default only photons reaching the detector plane
contribute to σ 2

av,0 and σ2
av in GATE, this implies that, for the type-2 case, σ 2

av,0 and σ2
av are

extracted from the exact same set of simulated photons at different points in time. Hence,
type-2 reference values are free from beam hardening effects. Similar considerations
apply to type-1 and type-2 versions of αR with respect to rav and rav,0 in Eq. (6.4).

Due to the definition of type-2 reference values, the corresponding type-2 plots for the
epoxy cylinder in Fig. 6.3 show no fluctuations. Using a type-1 reference with a different
set of simulated photons results in statistical fluctuations, visible in the type-1 plots.
Furthermore, it can be seen that in the contrast retrieval plots the fluctuations become
even more apparent due to the contrast retrieval procedure. The edge effects in the outer
cylinder regions can be clearly seen in the reference plots, but are washed out by the
contrast retrieval.

It should be noted that all plots in Fig. 6.4 and Fig. 6.5 show fluctuations inside the CFRP
phantom region, including the type-2 plots. Outside the object, however, the type-2 pro-
files are still flat. This indicates that these fluctuations are due to local spatial variations in
the object microstructure, which is supported by the absence of these fluctuations in the
type-2 profiles of the homogeneous cylinder. Since type-1 reference values are closer to
actual EI measurements than type-2 reference values, type-1 will be used in the remain-
der of the work. Hence, unless stated otherwise, all reference values should be interpreted
as type-1 reference values.

6.4.2 Benchmarking contrast retrieval results

In this section, the contrast retrieval results are benchmarked to the corresponding refer-
ence values. The assessment is performed in terms of the sum of squared errors (SSE)
for α and the accuracy A for T and σ 2, defined as the relative difference between the
spatially averaged values (Astolfo et al., 2016):

Aσ2 =
⟨σ2⟩ROI −⟨σ 2

R⟩ROI

|⟨σ 2
R⟩ROI|

, (6.6)

where ⟨·⟩ROI denotes the spatial average in the object region of interest (ROI), which is
defined as the image region containing only the object pixels and no background pixels.
An equivalent expression is used for AT . The results of Eq. (6.6) are summarized in
heat maps shown in Fig. 6.6 and Fig. 6.7. Each value corresponds to a specific grating
geometry, defined by its aperture size and grating thickness. This is indicated on the
horizontal and vertical axis, respectively. The color map is chosen such that a green value
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Figure 6.3: α (refraction), αR (refraction reference), σ 2 (dark field), and σ2
R (dark field

reference) profiles resulting from the virtual gratings simulation with the single epoxy
cylinder. The aperture size was set to 20 µm. For the contrast retrieval results, the
grating thickness was set to 200 µm. The cylinder edges are clearly represented in all
profiles except for the DFC retrieved from the IC profiles. The contrast retrieval results
show the strongest signal fluctuations, whereas the type-2 references are, by definition,
completely free of such fluctuations.
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Figure 6.4: α (refraction), αR (refraction reference), σ 2 (dark field), and σ2
R (dark field

reference) profiles resulting from the virtual gratings simulation with the 10 µm symmet-
ric fiber CFRP phantom. The aperture size was set to 20 µm. For the contrast retrieval
results, the grating thickness was set to 200 µm. The CFRP edges are clearly represented
in all profiles. Here, the fluctuations only disappear in the background of the type-2 ref-
erences and not within the CFRP region, indicating that they are in this case related to
the presence of microstructures.
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Figure 6.5: α (refraction), αR (refraction reference), σ 2 (dark field), and σ2
R (dark field

reference) profiles resulting from the virtual gratings simulation with the eccentric fiber
CFRP phantom. The aperture size was set to 20 µm. For the contrast retrieval results,
the grating thickness was set to 200 µm. The average DFC is clearly higher compared
to the CFRP with symmetric fibers. In addition, the signal fluctuations within the CFRP
are visibly stronger for both DPC and DFC compared to the symmetric fibers, indicating
that the magnitude of the fluctuations is related to the microstructure properties.
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Figure 6.6: Accuracy heat maps of σ 2 (dark field) and T (transmission) for the CFRP
phantom with symmetric 10 µm fibers. Tabulated values are expressed in % and repre-
sent the accuracy as defined in Eq. (6.6) for different combinations of grating parameters
(thickness and aperture size). Values represented by red cells indicate an overestima-
tion of the respective reference values, whereas blue indicates an underestimation. Green
cells represent the most optimal grating parameters. Smaller apertures tend to give more
accurate σ2 estimates, whereas larger apertures yield more accurate T values.

corresponds to optimal accuracy, i.e. A close to 0, whereas darker red and blue values
indicate stronger deviations. Some degree of saturation in the color scale is tolerated
for higher values, to ensure sufficient contrast in the heat map for lower, more optimal
values. Tables summarizing the T and σ2 values used to generate the accuracy heat maps
can be found in Appendix D. It can be seen from Fig. 6.6 that smaller apertures tend
to give more accurate σ2 results, which is in line with expectations and the higher DPC
sensitivity generally associated with smaller apertures. A similar result is found from the
eccentric fibers in Fig. 6.7, where again the 20 µm aperture is more favorable compared
to other aperture sizes. In general, the effect of the grating thickness seems to be more
subtle than the effect of the aperture size. The heat maps show a gradually decreasing
trend for increasing grating thickness, indicating a lowering average σ2 compared to
the σ2

R (see Appendix D). Differences are, however, small compared to the differences
for varying aperture sizes. It should be noted that shadowing is a problem affecting all
contrasts for setups with larger cone angles and thicker gratings. Some shadowing is
present in the results shown here as well, but only limited for most grating configurations
due to the relatively small cone angle in the simulated geometry (2.1◦). Judging from the
accuracy maps for T , smaller apertures tend to give a more profound underestimation of
T . Differences are however small, especially in Fig. 6.7. The slightly decreasing trend
observed for Aσ2 with increasing grating thickness is present for AT as well.

The results of the SSE between α and αR are summarized in a heat map shown in Fig. 6.8.
The color map, chosen to visualize the SSE, shows darker red for a lower SSE and lighter
yellow for a higher SSE. It can be seen that the 40 µm apertures result in the highest SSE,
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Figure 6.7: Accuracy heat maps of σ2 (dark field) and T (transmission) for the eccentric
fiber phantom (10/25 axis ratio). Tabulated values are expressed in % and represent the
accuracy as defined in Eq. (6.6) for different combinations of grating parameters (thick-
ness and aperture size). Values represented by red cells indicate an overestimation of
the respective reference values, whereas blue indicates an underestimation. Green cells
represent the most optimal grating parameters. The most accurate σ2 estimate is found
for the 20 µm aperture with 200 µm thickness, whereas no clear trend is visible for T
values of this phantom.
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Figure 6.8: SSE (sum of squared errors) heat map of α (refraction) for the single cylin-
der simulation, showing different combinations of aperture size and grating thickness.
Darker red cells indicate lower, more optimal refraction estimates, whereas lighter yel-
low cells indicate larger deviations from the reference values. Smaller apertures yield
more accurate refraction estimates, whereas the grating thickness has only limited influ-
ence.
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whereas the lowest SSE is found for the 25 µm aperture. The influence of the grating
thickness on the SSE appears to be negligible, with a consistently decreasing SSE for
thicker gratings only visible with aperture sizes of 25 µm, 35 µm and 40 µm. The
negligible SSE variation within columns indicates that the effect of shadowing is small
for the considered system geometry. The overall SSE is however clearly higher in the last
column.

6.5 Discussion

The results shown in Section 6.4.1 illustrate that the most suitable definition for the refer-
ence type is problem-specific. Indeed, although type-1 reference values were chosen here
to account for the most relevant physical interactions of X-rays in the phantom, other ar-
guments may lead to different choices. If beam hardening effects are to be removed from
the reference, type-2 reference values gain interest. Choosing a type-2 reference does not
avoid a change in effective spectrum, but by design absorbed photons do not contribute
to the reference. Given that the energy of every photon is stored in the virtual gratings
output, a more dedicated approach could be to carefully select a subset of photons from
the virtual gratings output, in order to reconstruct the original spectrum. Although this
avoids a change in effective spectrum, the significant loss of photons can affect the refer-
ence estimates.

Furthermore, the type-2 reference profiles plotted in Fig. 6.4 and Fig. 6.5 reveal that the
presence of microstructures leads to fluctuations in α and σ2 that cannot be attributed
to photon statistics or the contrast retrieval procedure. This implies that these fluctu-
ations result from intrinsic phantom properties such as local spatial variations in fiber
concentration. It should be noted that such spatial signal fluctuations have received atten-
tion in recent experimental work as well (Shoukroun et al., 2023; Esposito et al., 2023),
where the standard deviation of α is treated as an alternative contrast type. The method
presented in this chapter allows to separate the intrinsic spatial fluctuations from other
contributions such as photon statistics and contrast retrieval algorithms. The proposed
method therefore seems well-suited to provide additional insight on how these fluctua-
tions are related to specific microstructure properties, especially since this effect is mostly
of interest for larger microstructures.

The accuracy and SSE maps shown in Fig. 6.6, Fig. 6.7, and Fig. 6.8, provide a direct
comparison of different grating designs for use in EI experiments based on all three con-
trast types. Fig. 6.6 shows a slow but steady increase in AT for increasing aperture size.
Given that TR is estimated from fully illuminated pixels, it is indeed to be expected that
AT improves when the effective pixel area illuminated by the beamlet approaches the
full pixel size. This trend is less apparent in Fig. 6.7, where the AT values show a more
constant behavior. It is expected that this is due to the stronger beamlet broadening asso-
ciated with the eccentric fiber phantom. Indeed, gratings with a finite thickness have an
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increasingly collimating effect with increasing thickness. The larger the angular range of
the photons, the more apparent the angular filtration by the gratings and the stronger the
underestimation of the transmission. This filtration effect also impacts Aσ2 , in combina-
tion with the grating bar transmission for thinner gratings, which may in turn contribute to
an overestimation of σ2. Given that the size and shape of the fibers was different in both
phantoms for the same total number of fibers, different packing densities are obtained.
For the symmetric fibers, the packing density was found to be 7%, whereas for the eccen-
tric fibers this was 17%, i.e. approximately 2.5 times higher. This difference is reflected
by the corresponding average and standard deviation of the dark field (σ2

R), which are
consistently higher for the eccentric fiber phantom (see Appendix D). Differences in σ2

R
between apertures are likely due to a change in number of photons and the effectively
illuminated sample area. A possible alternative strategy could be to take the full period
into account, although this implies that the set of trajectories used for the reference will
no longer spatially match that of the contrast retrieval results. In addition to the examples
presented in this chapter, the method is perfectly suited to test contrast retrieval methods,
as its primary goal is to assess if information is extracted correctly from the simulation.

In Section 6.3, Eq. (6.5) was used to find a lower limit on ∆xr for the validity of the ge-
ometrical optics model. It should be noted that this limit is indeed system dependent.
A shorter system (dOD ↓) would for example result in a smaller ∆xr value. Although,
for the 10 µm fiber case, the microstructure size lies below the estimated limit, the as-
sociated diffraction effects would not be resolvable with the modeled aperture and pixel
sizes. If smaller apertures are of interest, wave optics simulations should be considered.
Alternatively, the geometrical optics model could be extended through the geometrical
theory of diffraction (Keller, 1962). This would, however, result in a significantly in-
creased computational cost. Hence, the current scope of our work is limited to systems
for which the geometrical optics approach is a reasonable approximation. It should be
noted that the weighted mean energy of the spectrum was used to determine the ∆xr

limit. In practice, however, the majority of X-rays that are not absorbed by the object,
and therefore contribute to the measurement, will have higher energies. The associated
shorter wavelengths imply a lower effective ∆xr limit for these X-rays.

A practical limit of the presented method is the fact that the virtual gratings approach
tends to produce rather large output files for larger simulations (Sanctorum et al., 2022b).
If large simulations are required for a specific problem (e.g., 3D CT studies), the size of
the output files could reach challenging proportions. A possible way to reduce the re-
quired output size would be to develop a dedicated virtual gratings output format storing
only the minimal amount of data. Standard ROOT output files store information that is
not used in virtual gratings applications. However, in most cases data storage problems
are not expected to become a limiting factor.
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6.6 Conclusion

A method was presented to simultaneously simulate EI measurement data and corre-
sponding T , α and σ 2 reference values for multi-contrast benchmarking of EI simula-
tions. The example cases presented in this work demonstrate how benchmarking can be
performed without the need for additional simulations. Although GATE was used for our
simulations, the method can be incorporated in any MC toolbox. Given the increasing
interest in multi-contrast imaging, it is expected that the proposed method will prove to
be useful for the optimization of future EI systems. In addition, we see a broader poten-
tial towards investigating the recently described contrast based on the standard deviation
of the refraction signal, attributed to mainly larger microstructures.
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Conclusion

Monte Carlo simulations have been proven to be an extremely valuable tool for the design
and optimization of conventional and phase-sensitive X-ray imaging systems. Applica-
tion of Monte Carlo simulation methods to X-ray phase contrast imaging does, however,
come with a number of challenges. In this dissertation, a number of tools are presented
to address these challenges for the simulation of two popular X-ray phase contrast imag-
ing methods, namely grating-based interferometry and edge illumination. Both imaging
techniques rely on a set of gratings positioned between the X-ray source and detector, but
whereas grating-based interferometry is designed to be an interferometric method, edge
illumination is not. This implies that different simulation requirements are to be met,
depending on the method.

In Chapter 3, it was shown how the widely-used Monte Carlo simulation framework
GATE can be augmented with functionalities that allow for the simulation of grating-
based X-ray phase contrast imaging, by implementing X-ray refraction and the construc-
tion of X-ray wavefronts from photons that have interacted with a digital phantom. Sub-
sequent propagation of this wavefront by means of wave optics calculations then results
in the generation of simulated grating-based phase contrast images. The separation of the
Monte Carlo and the wave optics part allows for changes in the grating parameters and
propagation distance without having to repeat the time-consuming Monte Carlo calcula-
tions.

In contrast to grating-based interferometry, the simulation of edge illumination does not
require the fine sampling of interference patterns for image formation. This implies
that, in most cases, the memory-intensive wave optics calculations can be safely omitted.
However, the Monte Carlo simulations remain very demanding in terms of required CPU
computation time, especially when many simulations are required for extensive param-
eter studies. In Chapter 4, it was demonstrated that the total computation time required
for edge illumination grating parameter studies can be vastly reduced by introducing the
concept of virtual gratings, which allows for a post-simulation definition of the grating
geometry. As such, a single Monte Carlo simulation can serve as a basis for a multitude
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of different grating designs. The virtual gratings approach was subsequently used to de-
sign a pair of gratings for the FleXCT X-ray micro-CT scanner at imec-Vision Lab, in
order to augment the already versatile system with edge illumination-based X-ray phase
contrast imaging capabilities. The design process of these gratings was presented in de-
tail in Chapter 5. At the time of writing of this thesis, the gratings designed in Chapter 5
have been manufactured and installed in the FleXCT system, which was swiftly followed
by the development of innovative concepts for inline and continuous edge illumination-
based X-ray phase contrast imaging.

Finally, it is a reasonable question to ask ourselves how to determine whether one simula-
tion result is closer to the desired outcome than the other. Indeed, certainly for the case of
X-ray phase contrast imaging, where assessment of the simulation results is rarely based
on the directly simulated images, but rather on images derived thereof following a con-
trast retrieval procedure, this is not a trivial question. Ideally, there is a ground truth with
which the simulation results can be compared, a concept also known as benchmarking. In
reality, however, such a reference is often not readily available. In Chapter 6, a method is
proposed to extract reference values for all three contrasts provided by an edge illumina-
tion setup, using the virtual gratings approach. By tracking and storing the trajectories of
the individual simulated photons, the transmission, refraction, and local beam broadening
can be estimated directly from the photon tracks, without intermediate contrast retrieval
steps. In this way, a full set of reference values becomes available for benchmarking the
simulation results, without requiring additional Monte Carlo simulations.
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Outlook

Obviously, the development of simulation software for X-ray phase contrast imaging is a
never-ending story, which is steadily evolving one improvement at a time. Within the con-
text of the developments in GATE presented in this dissertation, there are several opportu-
nities to extend its functionalities even further. For example, the current implementation
of X-ray refraction in GATE is highly deterministic, as this is the most cost-effective
way to include phase contrast effects. This might seem counterintuitive given the intrin-
sic stochastic nature of Monte Carlo simulations, and a few alternative viewpoints have
been suggested in the literature accordingly. The most complete description is probably
provided by the geometrical theory of diffraction, which associates every diffracted ray
by a collection of secondary rays, perpendicular to the diffracted wavefront. The obvi-
ous challenge here is the enormous computational burden such an implementation could
bring forward. Alternatively, the splitting of photons into multiple secondary photons can
be replaced by a stochastic procedure, where the new photon direction is sampled from
the possible directions prescribed by the diffraction effect. However, this as well would
require a significant number of additional photons that would have to be simulated, to
ensure adequate sampling of the probability distribution.

Similarly, the deterministic implementation of the multiple refraction effect underlying
the dark field contrast is powerful, but comes with a certain computational cost as well.
A possible alternative approach could be to replace the explicitly defined microstructures
by a stochastic process governed by a mean free path for unresolved refraction events,
similar to the implementation of other physics processes in Geant4. Such a mean free
path calculation could account for electron density variations at multiple length scales,
allowing the inclusion of dark field effects other than those originating from unresolved
multiple refraction. Furthermore, this approach also allows for the incorporation of the
directional nature of the dark field signal. Alternatively, a condensed history approach
has been proposed for modeling dark field contrast in ray tracing simulations. Such a
condensed history approach allows for the combination of many consecutive events into
a single event, thereby circumventing the need for explicitly modeled microstructures.
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However, the single dark field material parameter currently associated with such an ap-
proach does not describe directional dark field effects and relies on a calibration proce-
dure which has to be repeated for every change in material properties. A more complete
condensed history approach to modeling the dark field effect should therefore ideally
include both directionality and a more straightforward strategy to account for specific
material properties.

The previous paragraphs have made clear that the underlying main challenge in perform-
ing Monte Carlo simulations for X-ray phase contrast imaging is the high computational
cost in combination with long simulation times. A highly-parallelized GPU implemen-
tation would therefore mean a step forward in terms of producing the large amounts of
simulation data required for e.g., X-ray phase contrast CT studies, but this has so far
proven to be a very challenging endeavor for the whole GATE community. In addition,
the possible gain is limited by the need to write data to the GPU memory, potentially
causing significant overhead.

Finally, the results presented in Chapter 6 show that the proposed method holds promise
beyond its initial purpose of serving as a benchmarking tool for edge illumination simu-
lations. Indeed, it was shown that the photon tracking mechanism uncovered fluctuations
in the local refraction and broadening reference values that were purely related to the
presence of microstructures in the object. It has been proposed in literature that these
fluctuations, in the form of the standard deviation of the refraction signal, could be useful
as an alternative image contrast type. This is especially interesting for microstructure
sizes comparable to or slightly larger than the edge illumination grating aperture size, as
this is a largely unexplored twilight zone between fully resolved microstructures yield-
ing pure differential phase contrast and fully unresolved microstructures yielding pure
dark field contrast. The reference values produced by the virtual gratings could there-
fore be used to facilitate a further investigation of this effect, for example by exploring
which information concerning the microstructure properties is possibly encoded within
the fluctuations.

The currently ongoing developments in the fast-evolving field of X-ray phase contrast
imaging bring new simulation challenges for both grating-based interferometry and edge
illumination. With the advent of human scale applications such as dark field lung imag-
ing, it becomes clear that the need for efficient and reliable simulations at a larger scale
is growing steadily. Hence, the efficient modeling of both gratings and digital phantoms
is expected to become even more important in the future. In addition, there is a growing
interest in alternative grating designs for both grating-based interferometry (e.g., dual-
binary or triangular phase gratings) and edge illumination (e.g., multi-resolution masks).
Recent advances in edge illumination towards fast cycloidal and cycloidal-spiral fly scan-
ning (roto-translation) include the application of new grating designs with circular aper-
tures in different arrangements (rectangular or slanted). Fast scanning is an important
prerequisite for 4D imaging of dynamic processes, which is currently still extremely
challenging for most X-ray phase contrast imaging methods. The simulation methods
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presented in this thesis are well-suited to support the design and testing of the alternative
mask types required for these nascent applications.

In conclusion, I foresee many more future PhD candidates dedicating their best efforts to
the exploration of the vast landscape of possibilities that X-ray phase contrast imaging
simulations still have to offer, and I can only hope that the contents of this dissertation
will prove to be useful on their journey.
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Appendix AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
GATE example macro

This appendix contains a complete example macro containing all required instructions for an X-
ray phase contrast simulation in GATE, as introduced in Chapter 3.

/control/execute .../verbose.mac #make sure folder is correct

#=====================================================

# GEOMETRY

#=====================================================

/gate/geometry/setMaterialDatabase .../GateMaterials.db

# World

/gate/world/geometry/setXLength 20. mm

/gate/world/geometry/setYLength 20. mm

/gate/world/geometry/setZLength 5. cm

/gate/world/setMaterial Air

/gate/world/vis/forceWireframe

/gate/world/vis/setColor black

# CTscanner system

/gate/world/daughters/name CTscanner

/gate/world/daughters/insert box

/gate/CTscanner/geometry/setXLength 5.0 mm

/gate/CTscanner/geometry/setYLength 0.01 mm

/gate/CTscanner/geometry/setZLength 0.1 mm

/gate/CTscanner/placement/setTranslation 0. 0. 1.5 cm

/gate/CTscanner/setMaterial Air

/gate/CTscanner/vis/forceWireframe

/gate/CTscanner/vis/setColor white

# Module

/gate/CTscanner/daughters/name module

/gate/CTscanner/daughters/insert box

/gate/module/geometry/setXLength 5.0 mm

/gate/module/geometry/setYLength 0.01 mm

/gate/module/geometry/setZLength 0.1 mm

/gate/module/setMaterial Air
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/gate/module/vis/forceWireframe

/gate/module/vis/setColor white

# Cluster

/gate/module/daughters/name cluster

/gate/module/daughters/insert box

/gate/cluster/geometry/setXLength 5.0 mm

/gate/cluster/geometry/setYLength 0.01 mm

/gate/cluster/geometry/setZLength 0.1 mm

/gate/cluster/setMaterial Air

/gate/cluster/vis/forceWireframe

/gate/cluster/vis/setColor white

# Pixel

/gate/cluster/daughters/name pixel

/gate/cluster/daughters/insert box

/gate/pixel/geometry/setXLength 0.1 mm

/gate/pixel/geometry/setYLength 0.010 mm

/gate/pixel/geometry/setZLength 0.1 mm

/gate/pixel/setMaterial Silicon

/gate/pixel/vis/forceSolid

/gate/pixel/vis/setColor red

/gate/pixel/repeaters/insert cubicArray

/gate/pixel/cubicArray/setRepeatNumberX 50

/gate/pixel/cubicArray/setRepeatNumberY 1

/gate/pixel/cubicArray/setRepeatNumberZ 1

/gate/pixel/cubicArray/setRepeatVector 0.1 0.010 0.1 mm

/gate/systems/CTscanner/module/attach module

/gate/systems/CTscanner/cluster_0/attach cluster

/gate/systems/CTscanner/pixel_0/attach pixel

/gate/pixel/attachCrystalSD

# Phantom

/gate/world/daughters/name epoxyBox

/gate/world/daughters/insert box

/gate/epoxyBox/geometry/setXLength 10. mm

/gate/epoxyBox/geometry/setYLength 2.05 mm

/gate/epoxyBox/geometry/setZLength 10. mm

/gate/epoxyBox/setMaterial Epoxy

/gate/epoxyBox/vis/forceWireframe

/gate/epoxyBox/vis/setColor white

/gate/epoxyBox/placement/setTranslation 0. -0.25 0.5 cm

/gate/epoxyBox/placement/setRotationAxis 1 0 0

/gate/epoxyBox/placement/setRotationAngle 90. deg

#/gate/epoxyBox/daughters/name CarbonCylinder

#/gate/epoxyBox/daughters/insert cylinder

#/gate/CarbonCylinder/placement/setTranslation 1.4 0.0 0.0 mm

#/gate/CarbonCylinder/geometry/setRmin 0. mm

#/gate/CarbonCylinder/geometry/setRmax 0.15 mm

#/gate/CarbonCylinder/geometry/setHeight 2.00 mm

#/gate/CarbonCylinder/setMaterial Carbon

#/gate/CarbonCylinder/vis/forceSolid

#/gate/CarbonCylinder/vis/setColor gray

/gate/epoxyBox/daughters/name layer1VerticalFibreCylinder1

/gate/epoxyBox/daughters/insert cylinder

/gate/layer1VerticalFibreCylinder1/placement/setTranslation 1.225 0.8125 0.0 mm

/gate/layer1VerticalFibreCylinder1/geometry/setRmin 0.0 mm

/gate/layer1VerticalFibreCylinder1/geometry/setRmax 0.0035 mm
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/gate/layer1VerticalFibreCylinder1/geometry/setHeight 10.00 mm

/gate/layer1VerticalFibreCylinder1/setMaterial Carbon

/gate/layer1VerticalFibreCylinder1/vis/forceSolid

/gate/layer1VerticalFibreCylinder1/vis/setColor gray

/gate/layer1VerticalFibreCylinder1/repeaters/insert genericRepeater

/gate/layer1VerticalFibreCylinder1/genericRepeater/setPlacementsFilename

.../placementsGATE2555PoissionDiskFlatBundle_v1.placements

/gate/layer1VerticalFibreCylinder1/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer1VerticalFibreCylinder2

/gate/epoxyBox/daughters/insert cylinder

/gate/layer1VerticalFibreCylinder2/placement/setTranslation -1.525 0.8125 0.0 mm

/gate/layer1VerticalFibreCylinder2/geometry/setRmin 0.0 mm

/gate/layer1VerticalFibreCylinder2/geometry/setRmax 0.0035 mm

/gate/layer1VerticalFibreCylinder2/geometry/setHeight 10.00 mm

/gate/layer1VerticalFibreCylinder2/setMaterial Carbon

/gate/layer1VerticalFibreCylinder2/vis/forceSolid

/gate/layer1VerticalFibreCylinder2/vis/setColor gray

/gate/layer1VerticalFibreCylinder2/repeaters/insert genericRepeater

/gate/layer1VerticalFibreCylinder2/genericRepeater/setPlacementsFilename

.../placementsGATE2545PoissionDiskFlatBundle_v2.placements

/gate/layer1VerticalFibreCylinder2/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer3VerticalFibreCylinder1

/gate/epoxyBox/daughters/insert cylinder

/gate/layer3VerticalFibreCylinder1/placement/setTranslation 1.225 0.1625 0.0 mm

/gate/layer3VerticalFibreCylinder1/geometry/setRmin 0.0 mm

/gate/layer3VerticalFibreCylinder1/geometry/setRmax 0.0035 mm

/gate/layer3VerticalFibreCylinder1/geometry/setHeight 10.00 mm

/gate/layer3VerticalFibreCylinder1/setMaterial Carbon

/gate/layer3VerticalFibreCylinder1/vis/forceSolid

/gate/layer3VerticalFibreCylinder1/vis/setColor gray

/gate/layer3VerticalFibreCylinder1/repeaters/insert genericRepeater

/gate/layer3VerticalFibreCylinder1/genericRepeater/setPlacementsFilename

.../placementsGATE2593PoissionDiskFlatBundle_v3.placements

/gate/layer3VerticalFibreCylinder1/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer3VerticalFibreCylinder2

/gate/epoxyBox/daughters/insert cylinder

/gate/layer3VerticalFibreCylinder2/placement/setTranslation -1.525 0.1625 0.0 mm

/gate/layer3VerticalFibreCylinder2/geometry/setRmin 0.0 mm

/gate/layer3VerticalFibreCylinder2/geometry/setRmax 0.0035 mm

/gate/layer3VerticalFibreCylinder2/geometry/setHeight 10.00 mm

/gate/layer3VerticalFibreCylinder2/setMaterial Carbon

/gate/layer3VerticalFibreCylinder2/vis/forceSolid

/gate/layer3VerticalFibreCylinder2/vis/setColor gray

/gate/layer3VerticalFibreCylinder2/repeaters/insert genericRepeater

/gate/layer3VerticalFibreCylinder2/genericRepeater/setPlacementsFilename

.../placementsGATE2564PoissionDiskFlatBundle_v4.placements

/gate/layer3VerticalFibreCylinder2/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer5VerticalFibreCylinder1

/gate/epoxyBox/daughters/insert cylinder

/gate/layer5VerticalFibreCylinder1/placement/setTranslation 1.225 -0.4875 0.0 mm
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/gate/layer5VerticalFibreCylinder1/geometry/setRmin 0.0 mm

/gate/layer5VerticalFibreCylinder1/geometry/setRmax 0.0035 mm

/gate/layer5VerticalFibreCylinder1/geometry/setHeight 10.00 mm

/gate/layer5VerticalFibreCylinder1/setMaterial Carbon

/gate/layer5VerticalFibreCylinder1/vis/forceSolid

/gate/layer5VerticalFibreCylinder1/vis/setColor gray

/gate/layer5VerticalFibreCylinder1/repeaters/insert genericRepeater

/gate/layer5VerticalFibreCylinder1/genericRepeater/setPlacementsFilename

.../placementsGATE2591PoissionDiskFlatBundle_v5.placements

/gate/layer5VerticalFibreCylinder1/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer5VerticalFibreCylinder2

/gate/epoxyBox/daughters/insert cylinder

/gate/layer5VerticalFibreCylinder2/placement/setTranslation -1.525 -0.4875 0.0 mm

/gate/layer5VerticalFibreCylinder2/geometry/setRmin 0.0 mm

/gate/layer5VerticalFibreCylinder2/geometry/setRmax 0.0035 mm

/gate/layer5VerticalFibreCylinder2/geometry/setHeight 10.00 mm

/gate/layer5VerticalFibreCylinder2/setMaterial Carbon

/gate/layer5VerticalFibreCylinder2/vis/forceSolid

/gate/layer5VerticalFibreCylinder2/vis/setColor gray

/gate/layer5VerticalFibreCylinder2/repeaters/insert genericRepeater

/gate/layer5VerticalFibreCylinder2/genericRepeater/setPlacementsFilename

.../placementsGATE2578PoissionDiskFlatBundle_v6.placements

/gate/layer5VerticalFibreCylinder2/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer2HorizontalFibreCylinder1

/gate/epoxyBox/daughters/insert cylinder

/gate/layer2HorizontalFibreCylinder1/placement/setTranslation 0.0 0.4875 0.825 mm

/gate/layer2HorizontalFibreCylinder1/geometry/setRmin 0.0 mm

/gate/layer2HorizontalFibreCylinder1/geometry/setRmax 0.0035 mm

/gate/layer2HorizontalFibreCylinder1/geometry/setHeight 10.00 mm

/gate/layer2HorizontalFibreCylinder1/placement/setRotationAxis 0 1 0

/gate/layer2HorizontalFibreCylinder1/placement/setRotationAngle 90. deg

/gate/layer2HorizontalFibreCylinder1/setMaterial Carbon

/gate/layer2HorizontalFibreCylinder1/vis/forceSolid

/gate/layer2HorizontalFibreCylinder1/vis/setColor gray

/gate/layer2HorizontalFibreCylinder1/repeaters/insert genericRepeater

/gate/layer2HorizontalFibreCylinder1/genericRepeater/setPlacementsFilename

.../placementsGATE2582PoissionDiskFlatBundle90rot_v1.placements

/gate/layer2HorizontalFibreCylinder1/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer2HorizontalFibreCylinder2

/gate/epoxyBox/daughters/insert cylinder

/gate/layer2HorizontalFibreCylinder2/placement/setTranslation 0.0 0.4875 -1.175 mm

/gate/layer2HorizontalFibreCylinder2/geometry/setRmin 0.0 mm

/gate/layer2HorizontalFibreCylinder2/geometry/setRmax 0.0035 mm

/gate/layer2HorizontalFibreCylinder2/geometry/setHeight 10.00 mm

/gate/layer2HorizontalFibreCylinder2/placement/setRotationAxis 0 1 0

/gate/layer2HorizontalFibreCylinder2/placement/setRotationAngle 90. deg

/gate/layer2HorizontalFibreCylinder2/setMaterial Carbon

/gate/layer2HorizontalFibreCylinder2/vis/forceSolid

/gate/layer2HorizontalFibreCylinder2/vis/setColor gray

/gate/layer2HorizontalFibreCylinder2/repeaters/insert genericRepeater

/gate/layer2HorizontalFibreCylinder2/genericRepeater/setPlacementsFilename

.../placementsGATE2572PoissionDiskFlatBundle90rot_v2.placements

/gate/layer2HorizontalFibreCylinder2/genericRepeater/useRelativeTranslation 1
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/gate/epoxyBox/daughters/name layer4HorizontalFibreCylinder1

/gate/epoxyBox/daughters/insert cylinder

/gate/layer4HorizontalFibreCylinder1/placement/setTranslation 0.0 -0.1625 0.825 mm

/gate/layer4HorizontalFibreCylinder1/geometry/setRmin 0.0 mm

/gate/layer4HorizontalFibreCylinder1/geometry/setRmax 0.0035 mm

/gate/layer4HorizontalFibreCylinder1/geometry/setHeight 10.00 mm

/gate/layer4HorizontalFibreCylinder1/placement/setRotationAxis 0 1 0

/gate/layer4HorizontalFibreCylinder1/placement/setRotationAngle 90. deg

/gate/layer4HorizontalFibreCylinder1/setMaterial Carbon

/gate/layer4HorizontalFibreCylinder1/vis/forceSolid

/gate/layer4HorizontalFibreCylinder1/vis/setColor gray

/gate/layer4HorizontalFibreCylinder1/repeaters/insert genericRepeater

/gate/layer4HorizontalFibreCylinder1/genericRepeater/setPlacementsFilename

.../placementsGATE2573PoissionDiskFlatBundle90rot_v3.placements

/gate/layer4HorizontalFibreCylinder1/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer4HorizontalFibreCylinder2

/gate/epoxyBox/daughters/insert cylinder

/gate/layer4HorizontalFibreCylinder2/placement/setTranslation 0.0 -0.1625 -1.175 mm

/gate/layer4HorizontalFibreCylinder2/geometry/setRmin 0.0 mm

/gate/layer4HorizontalFibreCylinder2/geometry/setRmax 0.0035 mm

/gate/layer4HorizontalFibreCylinder2/geometry/setHeight 10.00 mm

/gate/layer4HorizontalFibreCylinder2/placement/setRotationAxis 0 1 0

/gate/layer4HorizontalFibreCylinder2/placement/setRotationAngle 90. deg

/gate/layer4HorizontalFibreCylinder2/setMaterial Carbon

/gate/layer4HorizontalFibreCylinder2/vis/forceSolid

/gate/layer4HorizontalFibreCylinder2/vis/setColor gray

/gate/layer4HorizontalFibreCylinder2/repeaters/insert genericRepeater

/gate/layer4HorizontalFibreCylinder2/genericRepeater/setPlacementsFilename

.../placementsGATE2551PoissionDiskFlatBundle90rot_v4.placements

/gate/layer4HorizontalFibreCylinder2/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer6HorizontalFibreCylinder1

/gate/epoxyBox/daughters/insert cylinder

/gate/layer6HorizontalFibreCylinder1/placement/setTranslation 0.0 -0.8125 0.825 mm

/gate/layer6HorizontalFibreCylinder1/geometry/setRmin 0.0 mm

/gate/layer6HorizontalFibreCylinder1/geometry/setRmax 0.0035 mm

/gate/layer6HorizontalFibreCylinder1/geometry/setHeight 10.00 mm

/gate/layer6HorizontalFibreCylinder1/placement/setRotationAxis 0 1 0

/gate/layer6HorizontalFibreCylinder1/placement/setRotationAngle 90. deg

/gate/layer6HorizontalFibreCylinder1/setMaterial Carbon

/gate/layer6HorizontalFibreCylinder1/vis/forceSolid

/gate/layer6HorizontalFibreCylinder1/vis/setColor gray

/gate/layer6HorizontalFibreCylinder1/repeaters/insert genericRepeater

/gate/layer6HorizontalFibreCylinder1/genericRepeater/setPlacementsFilename

.../placementsGATE2573PoissionDiskFlatBundle90rot_v5.placements

/gate/layer6HorizontalFibreCylinder1/genericRepeater/useRelativeTranslation 1

/gate/epoxyBox/daughters/name layer6HorizontalFibreCylinder2

/gate/epoxyBox/daughters/insert cylinder

/gate/layer6HorizontalFibreCylinder2/placement/setTranslation 0.0 -0.8125 -1.175 mm

/gate/layer6HorizontalFibreCylinder2/geometry/setRmin 0.0 mm

/gate/layer6HorizontalFibreCylinder2/geometry/setRmax 0.0035 mm

/gate/layer6HorizontalFibreCylinder2/geometry/setHeight 10.00 mm

/gate/layer6HorizontalFibreCylinder2/placement/setRotationAxis 0 1 0

/gate/layer6HorizontalFibreCylinder2/placement/setRotationAngle 90. deg

/gate/layer6HorizontalFibreCylinder2/setMaterial Carbon

/gate/layer6HorizontalFibreCylinder2/vis/forceSolid
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/gate/layer6HorizontalFibreCylinder2/vis/setColor gray

/gate/layer6HorizontalFibreCylinder2/repeaters/insert genericRepeater

/gate/layer6HorizontalFibreCylinder2/genericRepeater/setPlacementsFilename

.../placementsGATE2563PoissionDiskFlatBundle90rot_v6.placements

/gate/layer6HorizontalFibreCylinder2/genericRepeater/useRelativeTranslation 1

#/gate/epoxyBox/moves/insert rotation

#/gate/epoxyBox/rotation/setSpeed 0.9 deg/s

#/gate/epoxyBox/rotation/setAxis 0 0 1

/gate/epoxyBox/moves/insert translation

/gate/epoxyBox/translation/setSpeed 0 0.010 0 mm/s

/gate/epoxyBox/attachPhantomSD

#/gate/CarbonCylinder/attachPhantomSD

/gate/layer2HorizontalFibreCylinder1/attachPhantomSD

/gate/layer1VerticalFibreCylinder1/attachPhantomSD

/gate/layer2HorizontalFibreCylinder2/attachPhantomSD

/gate/layer1VerticalFibreCylinder2/attachPhantomSD

/gate/layer4HorizontalFibreCylinder1/attachPhantomSD

/gate/layer3VerticalFibreCylinder1/attachPhantomSD

/gate/layer4HorizontalFibreCylinder2/attachPhantomSD

/gate/layer3VerticalFibreCylinder2/attachPhantomSD

/gate/layer6HorizontalFibreCylinder1/attachPhantomSD

/gate/layer5VerticalFibreCylinder1/attachPhantomSD

/gate/layer6HorizontalFibreCylinder2/attachPhantomSD

/gate/layer5VerticalFibreCylinder2/attachPhantomSD

#=====================================================

# PHYSICS

#=====================================================

/gate/physics/addProcess PhotoElectric

/gate/physics/processes/PhotoElectric/setModel StandardModel

/gate/physics/addProcess Compton

/gate/physics/processes/Compton/setModel StandardModel

/gate/physics/addProcess RayleighScattering

/gate/physics/processes/RayleighScattering/setModel PenelopeModel

/gate/physics/addProcess ElectronIonisation

/gate/physics/processes/ElectronIonisation/setModel StandardModel e-

/gate/physics/processes/ElectronIonisation/setModel StandardModel e+

/gate/physics/addProcess Bremsstrahlung

/gate/physics/processes/Bremsstrahlung/setModel StandardModel e-

/gate/physics/processes/Bremsstrahlung/setModel StandardModel e+

/gate/physics/addProcess eMultipleScattering e+

/gate/physics/addProcess eMultipleScattering e-

/gate/physics/addProcess XrayRefraction #decrement of real part

/gate/refractiveindex/setRefractionIndex Air 0.010 0.0

/gate/refractiveindex/setRefractionIndex Air 0.020 0.0

/gate/refractiveindex/setRefractionIndex Air 0.030 0.0

/gate/refractiveindex/setRefractionIndex Air 0.040 0.0

/gate/refractiveindex/setRefractionIndex Silicon 0.010 0.0 #0.0000171802239

/gate/refractiveindex/setRefractionIndex Silicon 0.020 0.0 #0.00000458362365

/gate/refractiveindex/setRefractionIndex Silicon 0.030 0.0 #0.00000206079153
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/gate/refractiveindex/setRefractionIndex Silicon 0.040 0.0 #0.00000206079153

/gate/refractiveindex/setRefractionIndex Epoxy 0.020000000 0.000000536910477000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020040588 0.000000534735705000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020081258 0.000000532569800000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020122010 0.000000530412763000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020162844 0.000000528264593000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020203764 0.000000526124893000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020244766 0.000000523993947000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020285850 0.000000521871641000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020327018 0.000000519757975000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020368268 0.000000517652950000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020409604 0.000000515556280000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020451022 0.000000513468194000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020492525 0.000000511388464000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020534113 0.000000509317147000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020575783 0.000000507254470000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020617539 0.000000505199978000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020659381 0.000000503153785000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020701307 0.000000501115835000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020743318 0.000000499086184000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020785412 0.000000497064946000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020827594 0.000000495051779000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020869863 0.000000493046571000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020912215 0.000000491049775000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020954654 0.000000489060938000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.020997178 0.000000487080229000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021039791 0.000000485107421000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021082486 0.000000483142799000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021125272 0.000000481186021000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021168145 0.000000479237144000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021211102 0.000000477296339000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021254147 0.000000475363350000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021297281 0.000000473438035000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021340502 0.000000471520593000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021383809 0.000000469611024000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021427205 0.000000467709128000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021470688 0.000000465814992000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021514262 0.000000463928359000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021557920 0.000000462049570000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021601670 0.000000460178256000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021645508 0.000000458314531000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021689436 0.000000456458309000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021733451 0.000000454609733000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021777557 0.000000452768603000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021821752 0.000000450934976000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021866037 0.000000449108768000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021910412 0.000000447289949000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021954875 0.000000445478577000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.021999430 0.000000443674509000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022044076 0.000000441877631000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022088811 0.000000440088201000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022133639 0.000000438305904000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022178557 0.000000436530883000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022223566 0.000000434762995000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022268664 0.000000433002413000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022313857 0.000000431248793000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022359141 0.000000429502393000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022404516 0.000000427763041000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022449982 0.000000426030738000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022495541 0.000000424305483000000
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/gate/refractiveindex/setRefractionIndex Epoxy 0.022541193 0.000000422587220000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022586940 0.000000420875807000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022632775 0.000000419171499000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022678707 0.000000417473956000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022724731 0.000000415783347000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022770848 0.000000414099588000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022817059 0.000000412422651000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022863361 0.000000410752563000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022909760 0.000000409089125000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.022956254 0.000000407432424000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023002842 0.000000405782430000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023049523 0.000000404139200000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023096299 0.000000402502593000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023143170 0.000000400872608000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023190137 0.000000399249245000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023237197 0.000000397632505000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023284354 0.000000396022358000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023331609 0.000000394418606000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023378957 0.000000392821505000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023426402 0.000000391230827000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023473941 0.000000389646686000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023521580 0.000000388068770000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023569315 0.000000386497334000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023617147 0.000000384932207000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023665076 0.000000383373418000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023713100 0.000000381820996000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023761223 0.000000380274827000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023809443 0.000000378734939000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023857760 0.000000377201332000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023906178 0.000000375673835000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.023954691 0.000000374152592000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024003305 0.000000372637487000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024052020 0.000000371128493000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024100828 0.000000369625752000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024149738 0.000000368129008000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024198746 0.000000366638375000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024247856 0.000000365153710000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024297063 0.000000363675156000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024346373 0.000000362202428000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024395781 0.000000360735811000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024445289 0.000000359275134000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024494898 0.000000357820312000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024544606 0.000000356371515000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024594416 0.000000354928460000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024644330 0.000000353491259000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024694342 0.000000352059885000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024744455 0.000000350634338000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024794672 0.000000349214559000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024844990 0.000000347800579000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024895410 0.000000346392284000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024945932 0.000000344989701000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.024996557 0.000000343592802000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025047283 0.000000342201560000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025098113 0.000000340815973000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025149047 0.000000339435985000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025200086 0.000000338061540000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025251227 0.000000336692665000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025302471 0.000000335329418000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025353818 0.000000333971684000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025405272 0.000000332619379000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025456828 0.000000331272616000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025508490 0.000000329931254000000
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/gate/refractiveindex/setRefractionIndex Epoxy 0.025560258 0.000000328595348000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025612127 0.000000327264900000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025664106 0.000000325939766000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025716188 0.000000324620004000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025768375 0.000000323305613000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025820670 0.000000321996509000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025873070 0.000000320692749000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025925574 0.000000319394303000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.025978190 0.000000318100973000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026030908 0.000000316813043000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026083734 0.000000315530286000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026136668 0.000000314252702000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026189709 0.000000312980319000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026242859 0.000000311713052000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026296115 0.000000310450957000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026349481 0.000000309193922000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026402953 0.000000307942031000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026456535 0.000000306695227000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026510225 0.000000305453511000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026564025 0.000000304216769000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026617932 0.000000302985114000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026671951 0.000000301758348000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026726078 0.000000300536612000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026780316 0.000000299319822000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026834664 0.000000298107892000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026889121 0.000000296900936000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026943691 0.000000295698811000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.026998369 0.000000294501604000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027053158 0.000000293309256000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027108061 0.000000292121683000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027163072 0.000000290938971000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027218197 0.000000289761005000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027273434 0.000000288587785000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027328781 0.000000287419397000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027384242 0.000000286255670000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027439816 0.000000285096661000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027495502 0.000000283942342000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027551301 0.000000282792769000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027607213 0.000000281647800000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027663238 0.000000280507464000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027719377 0.000000279371790000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027775631 0.000000278240691000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027831998 0.000000277114196000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027888479 0.000000275992278000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.027945074 0.000000274874935000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028001787 0.000000273762055000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028058613 0.000000272653693000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028115555 0.000000271549823000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028172611 0.000000270450414000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028229785 0.000000269355496000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028287074 0.000000268264984000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028344479 0.000000267178933000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028402002 0.000000266097203000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028459639 0.000000265019935000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028517395 0.000000263946987000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028575268 0.000000262878388000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028633258 0.000000261814080000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028691365 0.000000260754149000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028749592 0.000000259698453000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028807936 0.000000258647049000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028866398 0.000000257599908000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.028924979 0.000000256557030000000
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/gate/refractiveindex/setRefractionIndex Epoxy 0.028983680 0.000000255518330000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029042496 0.000000254483894000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029101436 0.000000253453578000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029160492 0.000000252427526000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029219670 0.000000251405567000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029278971 0.000000250387757000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029338389 0.000000249374068000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029397926 0.000000248364501000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029457586 0.000000247358997000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029517367 0.000000246357587000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029577270 0.000000245360155000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029637291 0.000000244366845000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029697438 0.000000243377485000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029757705 0.000000242392190000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029818094 0.000000241410845000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029878607 0.000000240433479000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.029939242 0.000000239460093000000

/gate/refractiveindex/setRefractionIndex Epoxy 0.030000000 0.000000238490628000000

/gate/refractiveindex/setRefractionIndex Carbon 0.020000000 0.000001141153690

/gate/refractiveindex/setRefractionIndex Carbon 0.020040588 0.000001136532890

/gate/refractiveindex/setRefractionIndex Carbon 0.020081258 0.000001131930960

/gate/refractiveindex/setRefractionIndex Carbon 0.020122010 0.000001127348010

/gate/refractiveindex/setRefractionIndex Carbon 0.020162844 0.000001122783830

/gate/refractiveindex/setRefractionIndex Carbon 0.020203764 0.000001118237720

/gate/refractiveindex/setRefractionIndex Carbon 0.020244766 0.000001113710140

/gate/refractiveindex/setRefractionIndex Carbon 0.020285850 0.000001109200980

/gate/refractiveindex/setRefractionIndex Carbon 0.020327018 0.000001104710120

/gate/refractiveindex/setRefractionIndex Carbon 0.020368268 0.000001100237680

/gate/refractiveindex/setRefractionIndex Carbon 0.020409604 0.000001095782860

/gate/refractiveindex/setRefractionIndex Carbon 0.020451022 0.000001091346230

/gate/refractiveindex/setRefractionIndex Carbon 0.020492525 0.000001086927340

/gate/refractiveindex/setRefractionIndex Carbon 0.020534113 0.000001082526300

/gate/refractiveindex/setRefractionIndex Carbon 0.020575783 0.000001078143330

/gate/refractiveindex/setRefractionIndex Carbon 0.020617539 0.000001073778090

/gate/refractiveindex/setRefractionIndex Carbon 0.020659381 0.000001069430250

/gate/refractiveindex/setRefractionIndex Carbon 0.020701307 0.000001065100150

/gate/refractiveindex/setRefractionIndex Carbon 0.020743318 0.000001060787550

/gate/refractiveindex/setRefractionIndex Carbon 0.020785412 0.000001056492690

/gate/refractiveindex/setRefractionIndex Carbon 0.020827594 0.000001052215110

/gate/refractiveindex/setRefractionIndex Carbon 0.020869863 0.000001047954360

/gate/refractiveindex/setRefractionIndex Carbon 0.020912215 0.000001043711340

/gate/refractiveindex/setRefractionIndex Carbon 0.020954654 0.000001039485480

/gate/refractiveindex/setRefractionIndex Carbon 0.020997178 0.000001035276800

/gate/refractiveindex/setRefractionIndex Carbon 0.021039791 0.000001031084710

/gate/refractiveindex/setRefractionIndex Carbon 0.021082486 0.000001026910240

/gate/refractiveindex/setRefractionIndex Carbon 0.021125272 0.000001022752370

/gate/refractiveindex/setRefractionIndex Carbon 0.021168145 0.000001018611330

/gate/refractiveindex/setRefractionIndex Carbon 0.021211102 0.000001014487450

/gate/refractiveindex/setRefractionIndex Carbon 0.021254147 0.000001010380060

/gate/refractiveindex/setRefractionIndex Carbon 0.021297281 0.000001006289040

/gate/refractiveindex/setRefractionIndex Carbon 0.021340502 0.000001002214840

/gate/refractiveindex/setRefractionIndex Carbon 0.021383809 0.000000998157248

/gate/refractiveindex/setRefractionIndex Carbon 0.021427205 0.000000994115908

/gate/refractiveindex/setRefractionIndex Carbon 0.021470688 0.000000990091166

/gate/refractiveindex/setRefractionIndex Carbon 0.021514262 0.000000986082341

/gate/refractiveindex/setRefractionIndex Carbon 0.021557920 0.000000982090114

/gate/refractiveindex/setRefractionIndex Carbon 0.021601670 0.000000978113803

/gate/refractiveindex/setRefractionIndex Carbon 0.021645508 0.000000974153636

/gate/refractiveindex/setRefractionIndex Carbon 0.021689436 0.000000970209499

/gate/refractiveindex/setRefractionIndex Carbon 0.021733451 0.000000966281391

/gate/refractiveindex/setRefractionIndex Carbon 0.021777557 0.000000962369199
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/gate/refractiveindex/setRefractionIndex Carbon 0.021821752 0.000000958472810

/gate/refractiveindex/setRefractionIndex Carbon 0.021866037 0.000000954592224

/gate/refractiveindex/setRefractionIndex Carbon 0.021910412 0.000000950727213

/gate/refractiveindex/setRefractionIndex Carbon 0.021954875 0.000000946878060

/gate/refractiveindex/setRefractionIndex Carbon 0.021999430 0.000000943044427

/gate/refractiveindex/setRefractionIndex Carbon 0.022044076 0.000000939226140

/gate/refractiveindex/setRefractionIndex Carbon 0.022088811 0.000000935423600

/gate/refractiveindex/setRefractionIndex Carbon 0.022133639 0.000000931636293

/gate/refractiveindex/setRefractionIndex Carbon 0.022178557 0.000000927864505

/gate/refractiveindex/setRefractionIndex Carbon 0.022223566 0.000000924107951

/gate/refractiveindex/setRefractionIndex Carbon 0.022268664 0.000000920366801

/gate/refractiveindex/setRefractionIndex Carbon 0.022313857 0.000000916640545

/gate/refractiveindex/setRefractionIndex Carbon 0.022359141 0.000000912929465

/gate/refractiveindex/setRefractionIndex Carbon 0.022404516 0.000000909233506

/gate/refractiveindex/setRefractionIndex Carbon 0.022449982 0.000000905552383

/gate/refractiveindex/setRefractionIndex Carbon 0.022495541 0.000000901886381

/gate/refractiveindex/setRefractionIndex Carbon 0.022541193 0.000000898234987

/gate/refractiveindex/setRefractionIndex Carbon 0.022586940 0.000000894598315

/gate/refractiveindex/setRefractionIndex Carbon 0.022632775 0.000000890976651

/gate/refractiveindex/setRefractionIndex Carbon 0.022678707 0.000000887369424

/gate/refractiveindex/setRefractionIndex Carbon 0.022724731 0.000000883776920

/gate/refractiveindex/setRefractionIndex Carbon 0.022770848 0.000000880198911

/gate/refractiveindex/setRefractionIndex Carbon 0.022817059 0.000000876635340

/gate/refractiveindex/setRefractionIndex Carbon 0.022863361 0.000000873086435

/gate/refractiveindex/setRefractionIndex Carbon 0.022909760 0.000000869551627

/gate/refractiveindex/setRefractionIndex Carbon 0.022956254 0.000000866031144

/gate/refractiveindex/setRefractionIndex Carbon 0.023002842 0.000000862524871

/gate/refractiveindex/setRefractionIndex Carbon 0.023049523 0.000000859032923

/gate/refractiveindex/setRefractionIndex Carbon 0.023096299 0.000000855555129

/gate/refractiveindex/setRefractionIndex Carbon 0.023143170 0.000000852091375

/gate/refractiveindex/setRefractionIndex Carbon 0.023190137 0.000000848641662

/gate/refractiveindex/setRefractionIndex Carbon 0.023237197 0.000000845206102

/gate/refractiveindex/setRefractionIndex Carbon 0.023284354 0.000000841784470

/gate/refractiveindex/setRefractionIndex Carbon 0.023331609 0.000000838376479

/gate/refractiveindex/setRefractionIndex Carbon 0.023378957 0.000000834982529

/gate/refractiveindex/setRefractionIndex Carbon 0.023426402 0.000000831602222

/gate/refractiveindex/setRefractionIndex Carbon 0.023473941 0.000000828235784

/gate/refractiveindex/setRefractionIndex Carbon 0.023521580 0.000000824882704

/gate/refractiveindex/setRefractionIndex Carbon 0.023569315 0.000000821543324

/gate/refractiveindex/setRefractionIndex Carbon 0.023617147 0.000000818217245

/gate/refractiveindex/setRefractionIndex Carbon 0.023665076 0.000000814904638

/gate/refractiveindex/setRefractionIndex Carbon 0.023713100 0.000000811605503

/gate/refractiveindex/setRefractionIndex Carbon 0.023761223 0.000000808319669

/gate/refractiveindex/setRefractionIndex Carbon 0.023809443 0.000000805047193

/gate/refractiveindex/setRefractionIndex Carbon 0.023857760 0.000000801788019

/gate/refractiveindex/setRefractionIndex Carbon 0.023906178 0.000000798541919

/gate/refractiveindex/setRefractionIndex Carbon 0.023954691 0.000000795309063

/gate/refractiveindex/setRefractionIndex Carbon 0.024003305 0.000000792089281

/gate/refractiveindex/setRefractionIndex Carbon 0.024052020 0.000000788882517

/gate/refractiveindex/setRefractionIndex Carbon 0.024100828 0.000000785688940

/gate/refractiveindex/setRefractionIndex Carbon 0.024149738 0.000000782508152

/gate/refractiveindex/setRefractionIndex Carbon 0.024198746 0.000000779340382

/gate/refractiveindex/setRefractionIndex Carbon 0.024247856 0.000000776185288

/gate/refractiveindex/setRefractionIndex Carbon 0.024297063 0.000000773043212

/gate/refractiveindex/setRefractionIndex Carbon 0.024346373 0.000000769913470

/gate/refractiveindex/setRefractionIndex Carbon 0.024395781 0.000000766796745

/gate/refractiveindex/setRefractionIndex Carbon 0.024445289 0.000000763692697

/gate/refractiveindex/setRefractionIndex Carbon 0.024494898 0.000000760601154

/gate/refractiveindex/setRefractionIndex Carbon 0.024544606 0.000000757522287

/gate/refractiveindex/setRefractionIndex Carbon 0.024594416 0.000000754455698

/gate/refractiveindex/setRefractionIndex Carbon 0.024644330 0.000000751401444

/gate/refractiveindex/setRefractionIndex Carbon 0.024694342 0.000000748359696



154 APPENDIX A. GATE EXAMPLE MACRO

/gate/refractiveindex/setRefractionIndex Carbon 0.024744455 0.000000745330340

/gate/refractiveindex/setRefractionIndex Carbon 0.024794672 0.000000742312977

/gate/refractiveindex/setRefractionIndex Carbon 0.024844990 0.000000739307836

/gate/refractiveindex/setRefractionIndex Carbon 0.024895410 0.000000736314803

/gate/refractiveindex/setRefractionIndex Carbon 0.024945932 0.000000733334105

/gate/refractiveindex/setRefractionIndex Carbon 0.024996557 0.000000730365343

/gate/refractiveindex/setRefractionIndex Carbon 0.025047283 0.000000727408576

/gate/refractiveindex/setRefractionIndex Carbon 0.025098113 0.000000724463860

/gate/refractiveindex/setRefractionIndex Carbon 0.025149047 0.000000721531023

/gate/refractiveindex/setRefractionIndex Carbon 0.025200086 0.000000718610067

/gate/refractiveindex/setRefractionIndex Carbon 0.025251227 0.000000715700992

/gate/refractiveindex/setRefractionIndex Carbon 0.025302471 0.000000712803796

/gate/refractiveindex/setRefractionIndex Carbon 0.025353818 0.000000709918311

/gate/refractiveindex/setRefractionIndex Carbon 0.025405272 0.000000707044478

/gate/refractiveindex/setRefractionIndex Carbon 0.025456828 0.000000704182241

/gate/refractiveindex/setRefractionIndex Carbon 0.025508490 0.000000701331601

/gate/refractiveindex/setRefractionIndex Carbon 0.025560258 0.000000698492443

/gate/refractiveindex/setRefractionIndex Carbon 0.025612127 0.000000695665051

/gate/refractiveindex/setRefractionIndex Carbon 0.025664106 0.000000692848801

/gate/refractiveindex/setRefractionIndex Carbon 0.025716188 0.000000690044033

/gate/refractiveindex/setRefractionIndex Carbon 0.025768375 0.000000687250690

/gate/refractiveindex/setRefractionIndex Carbon 0.025820670 0.000000684468603

/gate/refractiveindex/setRefractionIndex Carbon 0.025873070 0.000000681697770

/gate/refractiveindex/setRefractionIndex Carbon 0.025925574 0.000000678938250

/gate/refractiveindex/setRefractionIndex Carbon 0.025978190 0.000000676189757

/gate/refractiveindex/setRefractionIndex Carbon 0.026030908 0.000000673452519

/gate/refractiveindex/setRefractionIndex Carbon 0.026083734 0.000000670726251

/gate/refractiveindex/setRefractionIndex Carbon 0.026136668 0.000000668011069

/gate/refractiveindex/setRefractionIndex Carbon 0.026189709 0.000000665306914

/gate/refractiveindex/setRefractionIndex Carbon 0.026242859 0.000000662613616

/gate/refractiveindex/setRefractionIndex Carbon 0.026296115 0.000000659931345

/gate/refractiveindex/setRefractionIndex Carbon 0.026349481 0.000000657259818

/gate/refractiveindex/setRefractionIndex Carbon 0.026402953 0.000000654599205

/gate/refractiveindex/setRefractionIndex Carbon 0.026456535 0.000000651949449

/gate/refractiveindex/setRefractionIndex Carbon 0.026510225 0.000000649310437

/gate/refractiveindex/setRefractionIndex Carbon 0.026564025 0.000000646682054

/gate/refractiveindex/setRefractionIndex Carbon 0.026617932 0.000000644064471

/gate/refractiveindex/setRefractionIndex Carbon 0.026671951 0.000000641457291

/gate/refractiveindex/setRefractionIndex Carbon 0.026726078 0.000000638860740

/gate/refractiveindex/setRefractionIndex Carbon 0.026780316 0.000000636274649

/gate/refractiveindex/setRefractionIndex Carbon 0.026834664 0.000000633699017

/gate/refractiveindex/setRefractionIndex Carbon 0.026889121 0.000000631133730

/gate/refractiveindex/setRefractionIndex Carbon 0.026943691 0.000000628578732

/gate/refractiveindex/setRefractionIndex Carbon 0.026998369 0.000000626034250

/gate/refractiveindex/setRefractionIndex Carbon 0.027053158 0.000000623500057

/gate/refractiveindex/setRefractionIndex Carbon 0.027108061 0.000000620975982

/gate/refractiveindex/setRefractionIndex Carbon 0.027163072 0.000000618462252

/gate/refractiveindex/setRefractionIndex Carbon 0.027218197 0.000000615958641

/gate/refractiveindex/setRefractionIndex Carbon 0.027273434 0.000000613465147

/gate/refractiveindex/setRefractionIndex Carbon 0.027328781 0.000000610981942

/gate/refractiveindex/setRefractionIndex Carbon 0.027384242 0.000000608508742

/gate/refractiveindex/setRefractionIndex Carbon 0.027439816 0.000000606045489

/gate/refractiveindex/setRefractionIndex Carbon 0.027495502 0.000000603592298

/gate/refractiveindex/setRefractionIndex Carbon 0.027551301 0.000000601148997

/gate/refractiveindex/setRefractionIndex Carbon 0.027607213 0.000000598715644

/gate/refractiveindex/setRefractionIndex Carbon 0.027663238 0.000000596292068

/gate/refractiveindex/setRefractionIndex Carbon 0.027719377 0.000000593878326

/gate/refractiveindex/setRefractionIndex Carbon 0.027775631 0.000000591474361

/gate/refractiveindex/setRefractionIndex Carbon 0.027831998 0.000000589080116

/gate/refractiveindex/setRefractionIndex Carbon 0.027888479 0.000000586695649

/gate/refractiveindex/setRefractionIndex Carbon 0.027945074 0.000000584320787

/gate/refractiveindex/setRefractionIndex Carbon 0.028001787 0.000000581955476
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/gate/refractiveindex/setRefractionIndex Carbon 0.028058613 0.000000579599714

/gate/refractiveindex/setRefractionIndex Carbon 0.028115555 0.000000577253559

/gate/refractiveindex/setRefractionIndex Carbon 0.028172611 0.000000574917010

/gate/refractiveindex/setRefractionIndex Carbon 0.028229785 0.000000572589897

/gate/refractiveindex/setRefractionIndex Carbon 0.028287074 0.000000570272164

/gate/refractiveindex/setRefractionIndex Carbon 0.028344479 0.000000567963980

/gate/refractiveindex/setRefractionIndex Carbon 0.028402002 0.000000565664948

/gate/refractiveindex/setRefractionIndex Carbon 0.028459639 0.000000563375352

/gate/refractiveindex/setRefractionIndex Carbon 0.028517395 0.000000561094964

/gate/refractiveindex/setRefractionIndex Carbon 0.028575268 0.000000558823785

/gate/refractiveindex/setRefractionIndex Carbon 0.028633258 0.000000556561758

/gate/refractiveindex/setRefractionIndex Carbon 0.028691365 0.000000554308883

/gate/refractiveindex/setRefractionIndex Carbon 0.028749592 0.000000552064989

/gate/refractiveindex/setRefractionIndex Carbon 0.028807936 0.000000549830361

/gate/refractiveindex/setRefractionIndex Carbon 0.028866398 0.000000547604657

/gate/refractiveindex/setRefractionIndex Carbon 0.028924979 0.000000545388048

/gate/refractiveindex/setRefractionIndex Carbon 0.028983680 0.000000543180363

/gate/refractiveindex/setRefractionIndex Carbon 0.029042496 0.000000540981659

/gate/refractiveindex/setRefractionIndex Carbon 0.029101436 0.000000538791880

/gate/refractiveindex/setRefractionIndex Carbon 0.029160492 0.000000536611083

/gate/refractiveindex/setRefractionIndex Carbon 0.029219670 0.000000534438982

/gate/refractiveindex/setRefractionIndex Carbon 0.029278971 0.000000532275692

/gate/refractiveindex/setRefractionIndex Carbon 0.029338389 0.000000530121156

/gate/refractiveindex/setRefractionIndex Carbon 0.029397926 0.000000527975487

/gate/refractiveindex/setRefractionIndex Carbon 0.029457586 0.000000525838345

/gate/refractiveindex/setRefractionIndex Carbon 0.029517367 0.000000523709900

/gate/refractiveindex/setRefractionIndex Carbon 0.029577270 0.000000521589982

/gate/refractiveindex/setRefractionIndex Carbon 0.029637291 0.000000519478647

/gate/refractiveindex/setRefractionIndex Carbon 0.029697438 0.000000517375838

/gate/refractiveindex/setRefractionIndex Carbon 0.029757705 0.000000515281556

/gate/refractiveindex/setRefractionIndex Carbon 0.029818094 0.000000513195744

/gate/refractiveindex/setRefractionIndex Carbon 0.029878607 0.000000511118344

/gate/refractiveindex/setRefractionIndex Carbon 0.029939242 0.000000509049414

/gate/refractiveindex/setRefractionIndex Carbon 0.030000000 0.000000506988840

/gate/physics/processList Enabled

/gate/physics/processList Initialized

#=====================================================

# SIMULATION STATISTICS

#=====================================================

#/gate/actor/addActor SimulationStatisticActor stat

#/gate/actor/stat/save .../stat-wavefront.txt

/gate/processGate/enable

/gate/processGate/detectPerfectCrystalEnergy

/gate/processGate/detectFluorescence

/gate/processGate/setGridX 50000

/gate/processGate/setGridY 100

/gate/processGate/setPhysicalGridX 5.0

/gate/processGate/setPhysicalGridY 0.010

/gate/processGate/setOutputNameReal .../ProjReal_CFRPphantom125B

/gate/processGate/setOutputNameImag .../ProjImag_CFRPphantom125B

/gate/processGate/setOutputNameCounts .../ProjCounts_CFRPphantom125B

/gate/processGate/enableGrid

#=====================================================

# INITIALISATION
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#=====================================================

/gate/run/initialize

#=====================================================

# DIGITIZER

#=====================================================

/gate/digitizer/Singles/insert adder

/gate/digitizer/Singles/insert readout

/gate/digitizer/Singles/readout/setDepth 2

/gate/digitizer/Singles/insert thresholder

/gate/digitizer/Singles/thresholder/setThreshold 10 keV

#=====================================================

# SOURCE

#=====================================================

# Xray source (defined using a histogram to define the energy distribution)

/gate/source/addSource xraygun

/gate/source/verbose 0

/gate/source/xraygun/gps/verbose 0

/gate/source/xraygun/gps/particle gamma

/gate/source/xraygun/gps/type Plane

/gate/source/xraygun/gps/shape Rectangle

/gate/source/xraygun/gps/halfx 2.5 mm

/gate/source/xraygun/gps/halfy 0.005 mm

/gate/source/xraygun/gps/centre 0. 0. -2.4 cm

/gate/source/xraygun/gps/mintheta 0.0 deg

/gate/source/xraygun/gps/maxtheta 0.0 deg

/gate/source/xraygun/gps/angtype iso

/gate/source/xraygun/gps/energytype Arb

/gate/source/xraygun/gps/histname arb

/gate/source/xraygun/gps/histpoint 0.025 7

/gate/source/xraygun/gps/histpoint 0.025001 4

/gate/source/xraygun/gps/arbint Lin

/gate/source/list

#=====================================================

# VISUALISATION

#=====================================================

#/control/execute .../visu_test.mac

#=====================================================

# OUTPUTS

#=====================================================

/gate/output/allowNoOutput

# ROOT output

#/gate/output/root/enable

#/gate/output/root/setFileName .../flatFiberPhantom10M

#/gate/output/root/setRootHitFlag 0

#/gate/output/root/setRootSinglesFlag 1

#/gate/output/root/setRootNtupleFlag 0

#/gate/output/verbose 1

# Specific CT Image output

#/gate/output/imageCT/enable

#/gate/output/imageCT/setFileName .../wavefront_projection_flatFiberPhantom675M
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#/gate/output/imageCT/verbose 0

# VRT (variance reduction technique) for CT

# (the random seed is proper to the VRT module)

#/gate/output/imageCT/vrtFactor 5

#/gate/output/imageCT/setStartSeed 567489

#=====================================================

# START ACQUISITION

#=====================================================

# JamesRandom Ranlux64 MersenneTwister

/gate/random/setEngineName MersenneTwister

/gate/random/setEngineSeed 2134567

/gate/application/setTotalNumberOfPrimaries 125000000000

/gate/application/setTimeSlice 1. s

/gate/application/setTimeStart 0. s

/gate/application/setTimeStop 500. s

/gate/application/start
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Appendix BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Comparison of GATE EI simulations to

experimental FleXCT data

This appendix contains a comparison between an experimental EI dataset of a beryllium cylinder
acquired with the FleXCT system, equipped with the masks designed in Chapter 5, and the cor-
responding Monte Carlo simulation using the extended version of GATE described in Chapter 3
and Chapter 4. The presented results show a good agreement between simulation and experiment.

B.1 Methods

The experimental data was acquired with the FleXCT system of imec-Vision Lab (De
Samber et al., 2021) after installation of the EI masks designed in Chapter 5. The exper-
iment was performed with a tube voltage of 40 kVp and 50 W source power, acquiring
3 averages at 3 s exposure time for each image (150 µm detector pixel size). In total,
11 equally spaced sample mask steps were taken in the [-50 µm, 50 µm] interval rel-
ative to perfect sample and detector mask alignment and contrast retrieval (Eq. (2.70))
was performed to extract the transmission and refraction images. The source-to-detector
distance was 1800 mm and the distance between source and sample mask was 1200 mm.
The sample was a 8.9 mm diameter beryllium cylinder (see Fig. B.1) and was placed at
a distance of 55 mm behind the sample mask. The experiment was originally performed
by N. Francken from imec-Vision Lab (Francken et al., 2024b), and a small portion of
the results is reproduced here to provide a reference for comparison to simulations.

Next, the FleXCT experiment was modeled in GATE with the same geometrical param-
eters as in the experiment and a Gaussian focal spot of 50 µm. The detector consisted
of 101×101 Gadox pixels with a thickness of 208 µm (150 µm pixel size). In addition,
a 750 µm carbon layer and a 250 µm plastic layer were added in front of the detector
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Figure B.1: a) Photograph of the 8.9 mm diameter beryllium cylinder used in the FleXCT
experiment. b) Experimental EI transmission image of the cylinder. c) Experimental EI
refraction image of the cylinder (in rad).

pixels, as well as a 200 µm amorphous silicon layer at the back. Detector electronics
were not explicitly modeled in GATE and Gaussian blurring (0.5 pixel standard devia-
tion) was applied to the images post simulation. The gratings were modeled explicitly as
objects in the simulation and for each mask step 108 photons were simulated at the 40
kVp source. The slight tilt of the beryllium cylinder in the image plane was estimated
from the experimental images and set to 2.9◦ relative to the vertical axis.

B.2 Results and discussion

The experimentally determined transmission and refraction images of the beryllium cylin-
der are shown in Fig. B.1. A slight tilt in the positioning of the cylinder can be perceived,
which was estimated to be 2.9◦ from the transmission image. This tilt was subsequently
applied to the digital phantom in the simulation. The simulation results after contrast
retrieval are shown in Fig. B.2. Visual comparison of these results to the experimental
images shown in Fig. B.1 shows a good qualitative agreement between experiment and
simulation for both transmission and refraction.

Fig. B.3 shows a comparison of horizontal line profiles through the transmission and re-
fraction images from Fig. B.1 and Fig. B.2. The plotted profiles are averages calculated
from three adjacent central rows in the image, and the experimental profiles were cali-
brated such that the background signal was 100% for the transmission and 0 rad for the
refraction, respectively. An excellent agreement is found for the transmission profiles.
The refraction profiles show a good agreement between simulation and experiment as the
refraction peaks show up that the expected positions, but some differences are also visi-
ble. First, the refraction is less pronounced in the experimental profile compared to the
simulation. This can be explained by the tilt of the beryllium cylinder in the experimental
data. Although an estimate of this tilt was included in the simulation, the estimation could
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Figure B.2: a) Simulated EI transmission image of the 8.9 mm diameter beryllium cylin-
der. b) Simulated EI refraction image of the cylinder (in rad).
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Figure B.3: Comparison of experimental and simulated (a) transmission profiles and (b)
refraction profiles of the 8.9 mm diameter beryllium cylinder.

only be performed in the xy-plane. However, it is likely that the tilt in reality also had
an out-of-plane component, which cannot be estimated from a single radiograph. Such
an out-of-plane tilt will also affect the projected phase gradient, which can explain the
difference between the simulated and experimental profiles. An additional factor poten-
tially influencing the results is the fact that both the focal spot size and detector blurring
are estimates of the unknown true values in the experiment. An experimental measure-
ment of these values could further improve the accuracy of the simulation. In addition, it
can be seen that the refraction peaks in the experimental profile are asymmetric, whereas
the simulated profile shows the inversion symmetry expected from a symmetric cylinder
sample. This discrepancy in the experimental data could be related to the tilt of the object
or to the contrast retrieval procedure.

Overall, the results presented in this section indicate that the in-house version of GATE
presented in this work is capable of realistically simulating EI X-ray phase contrast imag-
ing experiments.
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Appendix CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Effect of the virtual gratings

approximation on the EI contrasts

This appendix contains a comparison between the contrasts retrieved from simulations with ex-
plicit and virtual gratings, as introduced in Chapter 4. The simulated setup, phantom, and ac-
quisition scheme used for the explicit gratings simulation are identical to those used for the 2D
virtual gratings simulation described in the main text (Section 4.3.2). The results presented in this
section show good agreement between the contrasts retrieved from equivalent virtual and explicit
grating simulations.

Fig. C.1, Fig. C.2, and Fig. C.3 show the difference maps between explicit and virtual
grating results for all three contrasts retrieved from the 2D simulations with the beryllium
sphere phantom (see 4.4.2), together with their corresponding histograms. The difference
maps show no clear structure and the histograms of the differences appear to be centered
around zero, implying that the differences exhibit a high degree of randomness. This
indicates that the virtual and explicit grating simulation results are highly similar for all
three contrast types, apart from statistical fluctuations. To illustrate the similarity between
explicit and virtual gratings simulations results further, horizontal line profiles are taken
along the central rows of the contrast images. These profiles are shown for all three
contrasts in Fig. C.4, confirming that the virtual and explicit grating simulation results
are matching. As can be seen from these plots, there is a difference between the two
grating models in the magnitude of the statistical fluctuations, which is mostly apparent
in the AC and DPC profiles. This is explained by the fact that the same set of photons
is used for the generation of all the mask steps when using virtual gratings, whereas for
the explicit grating simulations a separate MC simulation is performed for every mask
step. This results in different noise properties in the stepping images, and therefore in
the retrieved contrast images. Overall, the explicit and virtual grating simulations are in
good agreement, confirming the validity of the virtual gratings approximation.
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Figure C.1: Map and histogram of the pixelwise differences between the attenuation
contrast retrieved from simulations with virtual and explicit gratings (arbitrary units).
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Figure C.2: Map and histogram of the pixelwise differences between the differential
phase contrast retrieved from simulations with virtual and explicit gratings (arbitrary
units).
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Figure C.3: Map and histogram of the pixelwise differences between the dark field con-
trast retrieved from simulations with virtual and explicit gratings (arbitrary units).
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Figure C.4: Comparison between central horizontal profiles through the different contrast
images of the beryllium sphere for both explicit and virtual gratings (arbitrary units).
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Appendix DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
Multi-contrast benchmarking of EI

simulations: supporting tables

This appendix contains tables showing the spatially averaged dark field (σ2) and transmission (T )
signals for the CFRP phantoms with symmetric and eccentric fibers described in Chapter 6. The
phase retrieval results and corresponding reference values are summarized in tables for which the
row denotes the grating thickness and the column the aperture size. For the reference values, there
is only a variation in aperture size. These values are indicated in the tables by the letter R in the
first column. In addition to the the spatial averages, tables showing the corresponding standard
deviations are provided as well.

Table D.1: Average σ2 (µrad2): symmetric fibers

Grating
thickness (µm)

Aperture
size (µm)

20 25 30 35 40

R 212.4 216.1 215.5 214.0 215.4
150 223.8 235.4 246.3 251.0 247.7
200 220.8 232.5 243.5 248.7 245.5
250 219.7 231.7 242.7 248.1 245.1
300 218.9 231.0 242.1 248.1 244.7
350 218.2 230.3 241.5 248.2 244.6
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Table D.2: Standard deviation σ2 (µrad2): symmetric fibers

Grating
thickness (µm)

Aperture
size (µm)

20 25 30 35 40

R 60.8 58.9 51.9 45.2 43.0
150 89.0 89.9 98.0 104.3 92.5
200 88.8 89.7 97.4 104.4 93.4
250 89.0 89.9 97.1 104.4 94.2
300 89.5 90.2 96.9 104.5 95.0
350 90.0 90.5 96.9 104.6 95.4

Table D.3: Average T (%): symmetric fibers

Grating
thickness (µm)

Aperture
size (µm)

20 25 30 35 40

R 40.28 40.28 40.28 40.28 40.28
150 39.71 39.84 39.94 39.98 39.98
200 39.67 39.80 39.92 39.96 39.97
250 39.66 39.79 39.91 39.96 39.96
300 39.65 39.79 39.91 39.95 39.96
350 39.65 39.78 39.90 39.95 39.96

Table D.4: Standard deviation T (%): symmetric fibers

Grating
thickness (µm)

Aperture
size (µm)

20 25 30 35 40

R 0.31 0.31 0.31 0.31 0.31
150 1.59 1.13 0.86 0.78 0.73
200 1.61 1.14 0.87 0.78 0.73
250 1.63 1.16 0.87 0.78 0.74
300 1.65 1.18 0.88 0.79 0.74
350 1.66 1.21 0.89 0.79 0.74
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Table D.5: Average σ2 (µrad2): eccentric fibers

Grating
thickness (µm)

Aperture
size (µm)

20 25 30 35 40

R 282.8 288.7 295.3 298.4 306.0
150 285.6 299.4 314.8 325.2 333.3
200 282.2 296.3 311.3 322.2 329.9
250 281.1 295.2 310.2 321.3 328.4
300 280.2 294.5 309.3 320.5 327.2
350 279.7 293.8 308.3 319.9 326.4

Table D.6: Standard deviation σ2 (µrad2): eccentric fibers

Grating
thickness (µm)

Aperture
size (µm)

20 25 30 35 40

R 92.6 86.2 78.5 68.1 65.2
150 134.2 128.3 130.3 135.6 125.2
200 133.9 128.3 130.3 135.9 125.6
250 134.1 128.3 130.1 136.6 126.5
300 134.3 128.6 130.2 136.7 126.8
350 134.9 128.8 130.1 137.1 127.4

Table D.7: Average T (%): eccentric fibers

Grating
thickness (µm)

Aperture
size (µm)

20 25 30 35 40

R 34.56 34.56 34.56 34.56 34.56
150 34.04 34.05 34.08 34.07 34.06
200 34.00 34.01 34.06 34.05 34.04
250 33.99 34.01 34.06 34.04 34.03
300 33.98 34.00 34.06 34.04 34.03
350 33.98 34.00 34.05 34.03 34.02
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Table D.8: Standard deviation T (%): eccentric fibers

Grating
thickness (µm)

Aperture
size (µm)

20 25 30 35 40

R 0.37 0.37 0.37 0.37 0.37
150 2.10 1.67 1.35 1.13 0.94
200 2.12 1.69 1.36 1.13 0.95
250 2.14 1.70 1.37 1.14 0.96
300 2.16 1.71 1.38 1.15 0.97
350 2.18 1.73 1.39 1.16 0.97
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tive analysis of speckle-based X-ray dark-field imaging using numerical wave-optics
simulations. Scientific Reports, 11(1):16113.

Millard, T. P., Endrizzi, M., Diemoz, P. C., Hagen, C. K., and Olivo, A. (2014). Monte
Carlo model of a polychromatic laboratory based edge illumination x-ray phase con-
trast system. Review of Scientific Instruments, 85(5):053702.

Millard, T. P., Endrizzi, M., Rigon, L., Arfelli, F., Menk, R. H., Owen, J., Stride, E., and
Olivo, A. (2013). Quantification of microbubble concentration through x-ray phase
contrast imaging. Applied Physics Letters, 103(11):114105.

Miller, E. A., White, T. A., McDonald, B. S., and Seifert, A. (2013). Phase Contrast
X-Ray Imaging Signatures for Security Applications. IEEE Transactions on Nuclear
Science, 60(1):416–422.

Mittleman, D. M., Hunsche, S., Boivin, L., and Nuss, M. C. (1997). T-ray tomography.
Optics Letters, 22(12):904–906.

Modregger, P., Kagias, M., Irvine, S. C., Brönnimann, R., Jefimovs, K., Endrizzi, M.,
and Olivo, A. (2017). Interpretation and Utility of the Moments of Small-Angle X-
Ray Scattering Distributions. Physical Review Letters, 118(26):265501.

Momose, A. (2003). Phase-sensitive imaging and phase tomography using X-ray inter-
ferometers. Optics Express, 11(19):2303–2314.

Momose, A. (2020). X-ray phase imaging reaching clinical uses. Physica Medica, 79:93–
102.

Momose, A. and Fukuda, J. (1995). Phase-contrast radiographs of nonstained rat cere-
bellar specimen. Medical Physics, 22(4):375–379.

Momose, A., Kawamoto, S., Koyama, I., Hamaishi, Y., Takai, K., and Suzuki, Y. (2003).
Demonstration of X-Ray Talbot Interferometry. Japanese Journal of Applied Physics,
42(Part 2, No. 7B):L866–L868.

Momose, A., Kawamoto, S., Koyama, I., and Suzuki, Y. (2004). Phase tomography using
an x-ray Talbot interferometer. In Bonse, U., editor, Proc. SPIE 5535, Developments
in X-Ray Tomography IV, pages 352–360.

Momose, A., Takano, H., Wu, Y., Hashimoto, K., Samoto, T., Hoshino, M., Seki, Y.,
and Shinohara, T. (2020). Recent Progress in X-ray and Neutron Phase Imaging with
Gratings. Quantum Beam Science, 4(1):9.



BIBLIOGRAPHY 187

Momose, A., Ueda, R., Cai, M., Zhao, Z., Kalirai, S., Stan, M., Irwin, J., Kawakami, H.,
Zangi, P., Meyer, P., Börner, M., and Schulz, J. (2022). Recent progress in grating-
based microscopic x-ray phase tomography. In Müller, B. and Wang, G., editors, Proc.
SPIE 12242, Developments in X-Ray Tomography XIV, page 1224210. SPIE.

Momose, A., Yashiro, W., Takeda, Y., Suzuki, Y., and Hattori, T. (2006). Phase Tomog-
raphy by X-ray Talbot Interferometry for Biological Imaging. Japanese Journal of
Applied Physics, 45(6A):5254–5262.

Morgan, K. S., Paganin, D. M., and Siu, K. K. W. (2011). Quantitative single-
exposure x-ray phase contrast imaging using a single attenuation grid. Optics Express,
19(20):19781–19789.

Morgan, K. S., Siu, K. K., and Paganin, D. M. (2010a). The projection approximation
versus an exact solution for X-ray phase contrast imaging, with a plane wave scattered
by a dielectric cylinder. Optics Communications, 283(23):4601–4608.

Morgan, K. S., Siu, K. K. W., and Paganin, D. M. (2010b). The projection approximation
and edge contrast for x-ray propagation-based phase contrast imaging of a cylindrical
edge. Optics Express, 18(10):9865–9878.

Munro, P. R., Ignatyev, K., Speller, R. D., and Olivo, A. (2010a). The relationship be-
tween wave and geometrical optics models of coded aperture type x-ray phase contrast
imaging systems. Optics Express, 18(5):4103–4117.

Munro, P. R. T. (2019). Rigorous multi-slice wave optical simulation of x-ray propagation
in inhomogeneous space. Journal of the Optical Society of America A, 36(7):1197–
1208.

Munro, P. R. T., Ignatyev, K., Speller, R. D., and Olivo, A. (2010b). Limitations im-
posed by specimen phase gradients on the design of grating based x-ray phase contrast
imaging systems. Applied Optics, 49(20):3860–3863.

Nazemi, E., Six, N., Iuso, D., De Samber, B., Sijbers, J., and De Beenhouwer, J. (2021).
Monte-Carlo-Based Estimation of the X-ray Energy Spectrum for CT Artifact Reduc-
tion. Applied Sciences, 11(7).

Nesterets, Y. I. (2008). On the origins of decoherence and extinction contrast in phase-
contrast imaging. Optics Communications, 281(4):533–542.

Nesterets, Y. I. and Gureyev, T. E. (2016). Partially coherent contrast-transfer-function
approximation. Journal of the Optical Society of America A, 33(4):464–474.

Nguyen, V., Sanctorum, J. G., Van Wassenbergh, S., Dirckx, J. J. J., Sijbers, J., and De
Beenhouwer, J. (2021). Geometry Calibration of a Modular Stereo Cone-Beam X-ray
CT System. Journal of Imaging, 7(3):54.

Novotny, L. and Hecht, B. (2012). Principles of Nano-Optics. Cambridge University
Press.



188 BIBLIOGRAPHY

Olivo, A. (2021). Edge-illumination x-ray phase-contrast imaging. Journal of Physics:
Condensed Matter, 33(36):363002.

Olivo, A., Arfelli, F., Cantatore, G., Longo, R., Menk, R. H., Pani, S., Prest, M., Poropat,
P., Rigon, L., Tromba, G., Vallazza, E., and Castelli, E. (2001). An innovative digital
imaging set-up allowing a low-dose approach to phase contrast applications in the
medical field. Medical Physics, 28(8):1610–1619.

Olivo, A., Gkoumas, S., Endrizzi, M., Hagen, C. K., Szafraniec, M. B., Diemoz, P. C.,
Munro, P. R. T., Ignatyev, K., Johnson, B., Horrocks, J. A., Vinnicombe, S. J., Jones,
J. L., and Speller, R. D. (2013). Low-dose phase contrast mammography with conven-
tional x-ray sources. Medical Physics, 40(9):090701.

Olivo, A., Ignatyev, K., Munro, P., and Speller, R. (2009). Design and realization of
a coded-aperture based X-ray phase contrast imaging for homeland security applica-
tions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 610(2):604–614.

Olivo, A. and Speller, R. (2007a). A coded-aperture technique allowing x-ray phase
contrast imaging with conventional sources. Applied Physics Letters, 91(7):074106.

Olivo, A. and Speller, R. (2007b). Modelling of a novel x-ray phase contrast imaging
technique based on coded apertures. Physics in Medicine & Biology, 52(22):6555–
6573.

Organista, C., Kagias, M., Tang, R., Shi, Z., Jefimovs, K., Boone, M. N., and Stam-
panoni, M. (2023). Optimization of the visibility of a tunable dual-phase x-ray grating
interferometer. Optics Continuum, 2(1):232–248.

O’Shea, D. C., Suleski, T. J., Kathman, A. D., and Prather, D. W. (2003). Diffractive
Optics: Design, Fabrication, and Test. SPIE - The International Society for Optical
Engineering.

Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R., and Wilkins, S. W. (2002). Si-
multaneous phase and amplitude extraction from a single defocused image of a homo-
geneous object. Journal of Microscopy, 206(1):33–40.

Paganin, D. M. and Pelliccia, D. (2021). Chapter Two - X-ray phase-contrast imaging:
a broad overview of some fundamentals. In Hÿtch, M. and Hawkes, P. W., editors,
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