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Summary
Diffusion magnetic resonance imaging (dMRI) is currently the method of choice
for the in vivo and non-invasive quantification of water diffusion in biological
tissue. Several diffusion models have been proposed to obtain quantitative diffusion
parameters, which have shown to provide novel information on the structural and
organizational features of biological tissue, the brain white matter in particular.
The goal of this dissertation is to improve the accuracy of the diffusion parameter
estimation, given the non-Gaussian nature of the diffusion-weighted MR data. In
part I of this manuscript, the necessary basics of dMRI are provided. Next, Part II
deals with diffusion parameter estimation and includes the main contributions of
the research. Finally, Part III covers the construction of a population-based dMRI
atlas of the rat brain.

Diffusion MRI: the basics
Chapter 1 briefly introduces magnetic resonance imaging (MRI), the medical
imaging technique that utilizes a strong static magnetic field and radio frequent
electromagnetic waves to create images based on local properties of water molecules
and their mutual interactions.
One property of interest is the local mobility of water molecules. The sensitization
of a MR image to the molecular diffusion is called diffusion-weighted MRI (or
diffusion MRI, dMRI). Statistically spoken, the signal intensity of each voxel in a
diffusion MR image depends on the displacement probability distribution function
(PDF) of water molecules captured in the imaged volume. The knowledge of that
displacement PDF would provide information about the geometry of the underlying
tissue microstructure, at scales much smaller than the imaging resolution. For
example, in fibrous tissue, water molecules tend to diffuse more along the fibers,
enabling researchers to obtain information about the orientation and integrity of the
underlying tissue. Unfortunately, due to hardware limitations and time constraints,
the full displacement PDF can generally not be computed. However, the cumulant
expansion of the diffusion-weighted signal allows extracting several statistics from
that PDF. Indeed, the second order cumulant expansion – cf. Diffusion Tensor
Imaging (DTI) – provides the standard deviation of the displacement, which relates
to the diffusion coefficient by the Einstein equation. Extending the series expansion
to the fourth order – cf. Diffusion Kurtosis Imaging (DKI) – would reveal the
kurtosis of the displacement PDF. Both diffusion and kurtosis values have shown
to be useful in the diagnosis of stroke and to investigate white matter pathologies
such as brain tumors. The reader is referred to Chapter 2 for a detailed review of
the principles of diffusion MRI and diffusion modeling.
The quantitative diffusion measures have the highest clinical value – especially
in multi-center clinical trials – if they can be extracted precisely and accurately.
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To date, that is challenging due to the low signal-to-noise ratio (SNR) of the
diffusion-weighted MR data. Indeed, at low SNR, the measured MR signals
cannot be assumed to be normally distributed variables. Although the actual data
distribution is often assumed to be Rician, it actually depends on the applied image
formation technique – e.g. single v. multichannel imaging or image v. frequency
space reconstruction. The possible data distributions are discussed in Chapter 3.

Diffusion MRI: parameter estimation
The diffusion models, described in Chapter 2, are mathematical relations that
describe the diffusion-weighted MR images in terms of diffusion parameters. Those
parameters need to be estimated from a series of acquired diffusion-weighted
MR images. However, acquired MR signals are disturbed by noise. In Chapter
4, a theoretical introduction to estimators, i.e. methods to extract information
about model parameters from noisy measurements, is given. In Chapter 5, the
strengths and limitations of the popular class of least squares estimators in context
of dMRI is discussed. Special attention goes to the weighted linear least squares
estimator. Indeed, the DTI and DKI model have in common that they can be
structured into a linear regression form depending on the natural logarithm of the
diffusion-weighted MR signals. The (weighted) linear least squares estimator has a
closed-form solution and a low computation cost. Moreover, the linear estimators
are very accurate, especially compared to the nonlinear alternative if the SNR of all
(Rician distributed) data exceeds two. If that condition is not met, more advanced
estimators need to be considered. A typical example is the maximum likelihood
estimator (MLE). The MLE has some desirable properties such as consistency,
asymptotic efficiency and asymptotic normality. Those properties stem from its
basis on the joint PDF of the diffusion-weighted data. Unfortunately, the necessity
of data correction (e.g. motion and eddy current corrections) prior to model fitting
causes the MLE’s dependency on the joint PDF to become a weakness because the
altered data PDF can no longer be expressed analytically. A practical alternative
to the MLE, i.e. the conditional least squares estimator, is introduced in Chapter 6.
These advanced diffusion parameter estimators require the knowledge of the noise
parameter. The estimation of the noise parameter has become very challenging
due to the use of parallel imaging techniques. Indeed, the noise parameter is
generally spatially varying. As such, a 3D noise map must be estimated from
the diffusion-weighted images. The development of such 3D noise map estimation
strategy is described in Chapter 7. In Chapter 8, necessary constraints on the DKI
model parameters are discussed.

Atlas construction
In this final part, an anatomically labeled DTI atlas of the adult rat brain is
proposed. The atlas is constructed using a population based atlas approach to
create a template, which represents the average anatomy. During the construction,
a non-rigid coregistration technique is used to avoid local misalignment inaccuracies
due to intersubject differences. The delineation of brain structures was performed on
high resolution ex vivo scans and the resulting parcellation maps were non-linearly
warped into the in-vivo atlas space afterwards.



Samenvatting
Diffusie magnetische resonantie beeldvorming (dMRI) is een unieke techniek die
toelaat om de willekeurige bewegingen (of diffusie) van de waterstofkernen in bio-
logische weefsels – vaak de witte hersenmaterie – niet-invasief te meten. Er werden
reeds verschillende modellen geïntroduceerd om dit diffusieproces te kwantificeren
met verschillende diffusie parameters. Op basis van deze parameters kan op een in-
directe manier informatie verkregen worden over de geometrie van de onderliggende
microstructuur. Het doel van deze thesis is het verbeteren van de juistheid van de
diffusie parameterschatting, gegeven dat de diffusie-gewogen MR data niet normaal
verdeeld zijn.

Diffusie MRI: de basis
In Hoofdstuk 1 worden kort de basisprincipes van MRI geïntroduceerd. MRI is
een medische beeldvormingstechniek die gebruik maakt van een krachtige magneet
en radiogolven om lokale eigenschappen van waterstofkernen en hun onderlinge
interacties in kaart te brengen. Een interessante eigenschap is de lokale beweeg-
lijkheid/diffusie, die indirect gemeten kan worden met dMRI. Het gemeten diffusie
MR signaal is afhankelijk van de statistische waarschijnlijkheidsdistributie (PDF)
van de verplaatsing van de waterstofkernen. Deze statistische verdeling bevat
biologisch en klinisch relevante informatie omtrent de microstructuur van weefsels.
Bijvoorbeeld, in weefsels met een sterke vezelstructuur zullen de waterstofker-
nen meer bewegen langsheen de vezels dan loodrecht daarop. Op basis van dit
principe kan informatie verkregen worden over de oriëntatie en integriteit van de on-
derliggende microstructuur. Door hardware - en tijdsbeperkingen is het meestal niet
mogelijk om de volledige PDF te berekenen. Echter, de cumulant reeksontwikkeling
van het diffusie-gewogen signaal laat het toe om enkele eigenschappen van de PDF
te bepalen. Zo zal de tweede-orde cumulantontwikkeling – cfr. diffusie tensor
beeldvorming (DTI) – resulteren in de standaardafwijking van de verplaatsing.
Deze standaardafwijking is rechtstreeks gekoppeld aan de diffusiecoefficiënt door de
Einstein vergelijking. De vierde-orde cumulantonwikkeling – cfr. diffusie kurtosis
beeldvorming (DKI) – levert daarenboven ook nog de kurtosis van de diffusie
PDF op. Zowel de diffusie- als kurtosiscoefficiënten zijn interessante maten voor
de diagnose van beroertes en voor het bestuderen van hersenaandoeningen zoals
tumoren. Een gedetailleerde beschrijving van diffusie MRI en diffusie modelering is
gegeven in Hoofdstuk 2. De kwantitatieve parameters hebben de hoogste klinische
waarde indien ze een met een hoge juistheid en precisie bepaald kunnen worden.
Dit is tot op vandaag niet vanzelfsprekend doordat diffusie-gewogen MR beelden
inherent een lage signaal-ruisverhouding (SNR) hebben. Gemeten MR signalen
met een lage SNR kunnen niet beschouwd worden als normaal verdeelde variabelen.
De feitelijke verdeling van MR signalen hangt namelijk af van het opnameproces.

xiii



De mogelijke dataverdelingen worden besproken in Hoofdstuk 3.

Diffusie MRI: parameterschatting
De diffusiemodellen, geïntroduceerd in Hoofdstuk 2, leggen een wiskundige relatie
tussen het verwachte diffusie-gewogen signaal en tal van diffusieparameters. In de
praktijk dienen deze parameters geschat te worden op basis van een reeks gemeten
diffusie-gewogen signalen. Deze signalen zijn echter verstoord door ruis. Een
theoretische inleiding over parameterschatters – i.e. functies om parameters te
bepalen op basis van ruizige data – is gegeven in hoofdstuk 4. In Hoofdstuk 5
wordt er dieper ingegaan op de kracht en beperkingen van de populaire klasse
van de kleinste kwadratenschatters in het kader van dMRI. Speciale aandacht
gaat naar de gewogen lineaire kleinste kwadratenschatter aangezien zowel DTI als
DKI gelineariseerd kunnen worden door een log-transformatie. Lineaire kleinste
kwadratenschatters hebben steeds een gesloten uitdrukking voor de oplossing en
een lage computationele kost. Daarenboven zijn deze schatters mogelijks juister dan
hun niet-lineaire variant. De SNR moet in dat geval wel hoger zijn dan 2. Indien
niet aan deze voorwaarde voldaan kan worden, schakelt men best over naar meer
geavanceerde schatters. Een typisch voorbeeld is de maximale waarschijnlijksheid-
schatter (MLE). De MLE heeft optimale theoretische eigenschappen betreffende
precisie en juistheid indien de verdeling van de data gekend is. Deze voorwaarde
is in praktijk echter niet steeds vervuld aangezien parameterschatting vaak wordt
voorafgegaan door bewegingscorrectie. Dergelijke beeldverwerkingsstappen zullen
de dataverdeling vaak zodanig wijzigen dat ze niet meer analytisch uit te drukken
zijn. Een praktisch alternatief voor MLE – de conditionele kleinste kwadratenschat-
ter – wordt geïntroduceerd in Hoofdstuk 6. De geavanceerde schatters vereisen
de kennis van het ruisniveau. De opmars van parallele beeldvormingstechnieken
maakt het schatten van het ruisniveau extra uitdagend. Inderdaad, het ruisniveau
is meestal spatiaal variërend waardoor een 3D ruismap geschat zal moeten worden
op basis van de diffusie-gewogen data. Een nieuwe techniek om dit te verwezen-
lijken wordt voorgesteld in Hoofdstuk 7. In Hoofdstuk 8, zullen er noodzakelijke
randvoorwaarden aan de DKI model paramterschatting besproken worden. Deze
voorwaarden moeten garanderen dat de uitkomsten voldoen aan biologische en
fysische randvoorwaarden.

Atlasconstructie
In dit laatste gedeelte wordt een anatomisch gelabelde DTI atlas van de hersenen
van de Sprague Dawley rat voorgesteld. De atlas representeert de gemiddelde
anatomie van de rathersenen en is bepaald op basis van DTI beelden van een
gehele populatie. Anatomische verschillen tussen verschillende subjecten werden
geminimaliseerd door gebruik te maken van niet-lineaire beeldregistratietechnieken.
Hoge resolutie ex vivo diffusiegewogen beelden werden gebruikt voor de manuele
aflijning van de anatomische structuren.
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Diffusion MRI: the basics
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Chapter 1. Magnetic resonance imaging

1.1 Introduction

Magnetic resonance imaging (MRI) is a powerful medical imaging technique that
enables the visualization of structure and function in vivo because of large contrast
within soft tissue without the need for ionizing radiation. A basic knowledge of MRI
is required for understanding the concepts discussed in this thesis. Therefore, this
introductory chapter briefly explains the principles of nuclear magnetic resonance
(NMR) and image formation. Also, the basics of pulse sequence design and parallel
imaging are shortly discussed here. For more in-depth information on these topics
we refer to literature [e.g. Liang and Lauterbur, 2000].

1.2 History

The extraordinary journey of MRI started in the 1930s by pioneering work of
Isodor Isaac Rabi, who was awarded by the Nobel Prize in Physics in 1944
for his observation of the nuclear magnetic resonance (NMR) phenomena in an
artificial environment [Rabi et al., 1938]. This American physicist showed that
one can manipulate and identify atomic nuclei, which behave like spinning tops
whose orientation axes are aligned with an externally magnetic field, by exposing
them to radio-waves. Almost a decade later, Felix Bloch and Edward Mills
Purcell independently demonstrated that any solid or liquid can be placed in a
magnetic field to identify the specific atoms without affecting it in any perceptible
way using the NMR phenomena [Bloch et al., 1946, Purcell et al., 1946]. They were
jointly awarded by the Nobel Prize in Physics in 1952. A promising technique was
born. However, only at the seventies NMR signals could be used to generate two-
dimensional (2D) images. Paul Lauterbur expanded upon the work of Herman
Carr to develop spatial information encoding principles [Carr and Purcell, 1954,
Lauterbur, 1973]. Peter Mansfield developed a method, currently known as echo
planar imaging (EPI) to acquire such 2D images in only a few seconds [Mansfield,
1977]. Both scientist received the Nobel Prize in Physiology and Medicine in 2003
for their seminal contributions, which led to the applications of magnetic resonance
in medical imaging. However, the Nobel Prize ensued some controversy [Dreizen,
2004, Macchia et al., 2007]. Why was Raymond Damadian not honored by the
Nobel Prize for his contribution to MRI in medicine? The Armenian-American
medical doctor showed differences in NMR properties among normal tissues and
between normal and cancer tissues [Damadian, 1971]. Moreover, he was the first to
achieve human whole-body MR images (granted a patent in 1974). Finally, in this
brief overview of the main pioneers of NMR/MRI, one cannot disregard Richard
Ernst, which was awarded by the Nobel Prize in Chemistry in 1991. In 1975 he
described the use of Fourier transform to reconstruct 2D images, using switched
magnetic field gradients in the time domain for spatially encoding [Kumar et al.,
1975]. A more extensive overview of the history of MRI is given in The pioneers of
NMR and Magnetic Resonance in Medicine. The Story of MRI by Mattson and
Simon [1996].
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1.3. Signal generation and detection

(a)

B
0

(b)

Figure 1.1: (a) Due to thermal motion, the magnetic dipoles moment will have random
orientation. (b) When placed in a static magnetic field B0, the magnetic dipoles will
align with the direction of B0.

1.3 Signal generation and detection

1.3.1 Spin physics
All atomic nuclei consisting of an odd number of protons or neutrons possess a spin
angular momentum J , often called nuclear spin. The nuclear spin is fundamental
to the existence of a magnetic dipole moment µ. Both properties are linked by a
nucleus-dependent constant, the gyromagnetic ratio γ:

µ = γJ . (1.1)

The magnitude of the magnetic dipole moment depends on the spin quantum
number I, which is another intrinsic property of the nucleus. To exhibit the
property of magnetic resonance, the nucleus must have a non-zero value of I. This
is, for example, the case for 19F, 13C, 23Na, or 31P. Although all these nuclei can
be studied with NMR, the most common nucleus of interest in MR research is
the hydrogen nucleus (1H), because of its high natural abundance under the form
H2O in biological tissues. For 1H, the gyromagnetic ratio is 2.675× 108rad/s/T,
whereas 1H has half-integer spin, i.e. I = 1/2. The ensemble of protons present
in the object form a spin system. Such a spin system has no net magnetization
in the absence of an external magnetic field. Indeed, due to thermal motion, the
magnetic dipoles moment will have random orientation. When placed in a static
magnetic field B0

1, the magnetic dipoles will align with the direction of B0, i.e. the
z-axis. However, the magnetic dipole moments can take two possible orientations
with respect to the z-axis: parallel and antiparallel (see Fig. 1.1). As a result, the
z-component of the magnetic dipole can have two values:

µz = ±1

2
γ~, (1.2)

1In a clinical setting, the strength of the magnetic field B0 is typically 1.5T or 3T.
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Chapter 1. Magnetic resonance imaging

with ~ Planck’s constant divided by 2π. Next, driven by the external magnetic
field, the magnetic dipole moments will precess about the z-axis. The angular
frequency of the precession is better known as the Larmor frequency and given by:

ω0 = γB0. (1.3)

In equilibrium, the phase of the rotation is random. Furthermore, it has been
observed that spins that occupy a different state will show a different potential
energy:

E = µ ·B0 =


E↑ = −1

2
γ~B0

E↓ =
1

2
γ~B0

(1.4)

The nonzero difference in energy level – ∆E = γ~B0 – is known as the Zeeman
splitting. The two energy levels are commonly referred to as spin-up and spin-down
with the spin-down state having higher energy than the spin-up state. Consequently,
the spin-up state has higher prevalence:

N↑
N↓

= exp
∆E

kBT
> 1, (1.5)

with T the temperature and kB the Boltzmann constant. Furthermore, N↑ and
N↓ are the number of spins in the low and high-energy state, respectively. The
difference in occupation of both states:

N↑ −N↓ ≈ Ns
γ~B0

2kBT
, (1.6)

with Ns the total number of spins, is very small. Nevertheless, it is sufficient to
generate an observable macroscopic magnetization vector M . Being able to treat
the behavior of all spins in the system in terms of a net magnetization vector M
allows a classical description of NMR.

1.3.2 Bulk magnetization: a classical NMR description

The magnetization vector can be decomposed in an x, y, and z-component: M =
[Mx,My,Mz]. At equilibrium, both transverse components (Mx(0) and My(0)) are
zero because of the random phase of the individual magnetic dipole moments. The
z-component, on the other hand, is nonzero:

Mz(0) =
1

2
(N↑ −N↓) γ~. (1.7)

A magnetization vector, placed in an external magnetic field, is subject to a torque.
Given that B0 is a static magnetic field along the z-axis, the resulting rate with
which M changes in time is given by:

dM

dt
= γM ×B0 = [ω0My, ω0Mx, 0] , (1.8)
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1.3. Signal generation and detection

with ω0 again the Larmor frequency [Bloch et al., 1946]. The solution of Eq. (1.8)
gives an expression for the components of M(t):Mx(t)

My(t)
Mz(t)

 =

 cos(ω0t) sin(ω0t) 0
− sin(ω0t) cos(ω0t) 0

0 0 1

Mx(0)
My(0)
Mz(0)

 (1.9)

If an electrically conducting coil is placed around the subject, perpendicular to
the transverse plane, a rotating transverse magnetization component will induce
a voltage in the coil whose amplitude is proportional to the magnitude of the
transverse component (cf. Faraday law). So, to generate measurable signals in such
a receiver coil, the magnetization vector should be tilted into the transverse plane.
This tilting is a consequence of exciting spins out of equilibrium state and getting
them in-phase, and is achieved by shortly turning on an additional – oscillating –
magnetic field B1: the radio frequency (RF) pulse [Rabi et al., 1938]. Note that
B1 is much weaker than B0 as its strengths is only about 50 mT.

1.3.3 RF Excitation

A RF pulse circularly oscillating in the xy-plane at the same frequency as the
precessing spins carries the required amount of energy, that is ∆E, to induce a
coherent transition of those spins from one energy state to another. The transition
will change both the transversal and longitudinal components of the magnetization
vector. The application of a rotating magnetic field B1 in distinction to the static
B0 will change the motion of M . Indeed, M will precess around B1 at an angular
frequency ω1 = γB1, while B1 rotates at an angular frequency ω0 = γB0 about
the z-axis. If a rectangular RF pulse is turned on during a period ∆t, then M
will be flipped in the tranverse plane by an angle α = ω1∆t. Often, the RF pulse
is applied so that α = 90◦, i.e. the magnetization vector is perpendicular to the
z-axis (see Fig. 1.2a). That pulse is called a 90◦-pulse.

1.3.4 Relaxation

After turning off the RF pulse, the magnetized spin system will gradually return
to the equilibrium state. This phenomena is called relaxation. Relaxation can be
decomposed into the following processes.

Spin-lattice relaxation: An energy exchange between the spins and their
surrounding environment by heat transfer;

Spin-spin relaxation: Loss of phase coherence of the magnetized spin system
due to local field inhomogeneities, which are induced by surrounding spins.

The spin-lattice relaxation refers to the process in which the spins give the energy
they obtained from the RF pulse back to the surrounding lattice, thereby restoring
the equilibrium distribution of the populations of both spin states (cfr. Eq. (1.6)).
The result is growth of Mz, characterized by the longitudinal relaxation time T1.
After applying a 90◦-pulse, the longitudinal component of the magnetization vector
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Figure 1.2: (a) Trajectory followed by the tip of the magnetization vector M excitation
(dashed line 1→ 2) and relaxation (solid line 2→ 1) given a 90◦-pulse. (b) Transversal
(solid line) and longitudinal (dashed line) relaxation after the 90◦-pulse. Note that
longitudinal relaxation is a much slower process than transversal relaxation. T1 and T2

relaxation times at 3T in the human white matter are approximately 1000ms and 60ms,
respectively [Stanisz et al., 2005].

evolves in function of the time t:

Mz(t) = Mz(0
−)

[
1− exp

(
− t

T1

)]
, (1.10)

with Mz(0
−) the longitudinal magnetization at equilibrium. The spin-spin relax-

ation is the result of local fluctuations of the magnetic field induced by surrounding
magnetized spins. Indeed, the magnetic moments of the spins are superimposed
to the main magnetic field. Such local field fluctuations cause temporal variations
in precession frequency that depahse the spins. The process finds expression in
an exponential decay of the transversal component of the magnetization vector.
The exponential decay is characterized by a time constant T2. After applying an
RF-pulse, the evolution of Mx and My in time is given by:

Mx(t) = Mx(0+) sin (ω0t) exp

(
− t

T2

)
My(t) = My(0+) cos (ω0t) exp

(
− t

T2

)
,

(1.11)

with Mx(0+) and My(0
+) the x and y-component of the magnetization vector

immediately after turning off the RF pulse [Bloch et al., 1946]. In case of a 90◦-
pulse, the total transversal component Mxy(0

+) equals Mz(0
−). Note that this

transversal component, Mxy(t) = Mx(t) + iMy(t), keeps precessing around the
z-axis with a constant angular frequency equal to the original Larmor frequency
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1.3. Signal generation and detection

(ω0), while its magnitude decreases exponentially (see Fig. 1.2b):

Mxy(t) = Mxy(0+) exp

(
− t

T2

)
exp (−iω0t) (1.12)

Due to heterogeneity of the sample and inhomogeneity of the magnetic field, the
decay will be faster than T2 though. The actual relaxation time is T ∗2 . Anyhow,
a voltage (signal) with exponentially decaying magnitude will be induced in an
electrically conducting coil that is positioned in the transverse plane. This time-
dependent signal is called free induction decay (FID).

1.3.5 Spin echo

Relaxation times vary across different healthy and pathological tissue types [Dama-
dian, 1971]. Therefore, both T1 and T2 are besides the proton density main intrinsic
factors to determine contrast in MR signals. A common way to generate T2 -
weighted contrast is the application of a pulse sequence that is well-known as the
spin-echo sequence [Hahn, 1950]. The spin echo sequence is schematically presented
in Fig. 1.3. After applying a 90◦-pulse, the spins start to dephase due to all effects
contributing to the T ∗2 relaxation. At TE/2 – with TE short for echo time – the
magnetization is flipped by applying a 180◦-pulse. After another period of TE/2,
the spins are rephasing, thus producing a measurable echo signal. The signal
decay at TE, compared to the start of the experiment, now solely originates in the
T2-relaxation.

RF

Signal

Time

90o 180o

0 TE/2 TE

T2*

T2

Figure 1.3: Spin echo sequence
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Chapter 1. Magnetic resonance imaging

1.4 MR image formation

1.4.1 Magnetic field gradients
Spatial localization of signals is essential to move from MR signals to MR images
[Carr and Purcell, 1954, Lauterbur, 1973]. Two ways to encode spatial information
will shortly be discussed:

Frequency encoding: The spins’ precessing rate is made linearly dependent
to (a component of) the spatial location by applying magnetic field gradients. Such
magnetic field gradients are static magnetic fields whose strength varies linearly
across a region of space. Let’s consider a frequency encoding gradient Gx, applied
along the x-axis. The Larmor frequency at position x is now given by:

ω(x) = ω0 + γGxx (1.13)

All spins in an infinitesimal neighborhood dx of x will generate following signal:

dK(x, t) = ρ(x)dx exp (−iω(x)t) , (1.14)

with time t and ρ(x) the (weighted) spin-density at location x. Note that, for
simplicity, the relaxation effects are ignored. The received signal for the entire
object thus becomes:

K(t) =

∫
object

dK(x, t)

=

∞∫
−∞

ρ(x) exp (−iω(x)t) dx

= exp (−iω0t)︸ ︷︷ ︸
carrier signal

∞∫
−∞

ρ(x) exp (−iγGxxt) dx

(1.15)

Phase encoding: Alternatively, the signal can be spatially encoded by shortly
applying a magnetic field gradient for a given time, τ , after the application of a
RF pulse. Let’s now assume a phase encoding gradient Gy was applied along the
y-axis. After time τ , a phase offset to the magnetization vector, which depends on
the y-position, has been introduced:

φ(y) = γGyyτ. (1.16)

The received signal for the entire object is now given by:

K(t) =

∞∫
−∞

ρ(y) exp (−i (ω0t+ φ(y))) dy

= exp (−iω0t)︸ ︷︷ ︸
carrier signal

∞∫
−∞

ρ(y) exp (−iφ(y)) dy

(1.17)
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1.4. MR image formation

Quadrature detection and signal demodulation: The detection of complex-
valued MR signals must be done with a phase sensitive receiver in order not to lose
any encoded information [Hoult et al., 1984]. Such a receiver is called a quadrature
detector and consists out of two antennae, which are positioned perpendicular
to each other. One antenna receives the cosinusoidal component of the complex
exponential signal function, the other the sinusoidal. In both components, the
high frequency carrier signal is removed by applying a low-pass filter after mixing
the signal with a cosine oscillating at the Larmor frequency. This is called signal
demodulation. From this point on, the carrier signals in Eq. (1.15) and Eq. (1.17)
are assumed to be crossed out.

1.4.2 k-space
Let’s return to the (demodulated) signal given in Eq. (1.15). By substituting

kx =
γ

2π
Gxt (1.18)

into Eq. (1.15), the frequency encoded signal is given by:

K(kx) =

∞∫
−∞

ρ(x) exp (−i2πkxx) dx. (1.19)

Clearly, there is a Fourier relationship between ρ(x) and the received signal in k-
space [Kumar et al., 1975]. Similar conclusions can be drawn for the (demodulated)
phase encoded signal. After substituting:

ky =
γ

2π
Gyτ, (1.20)

the phase encoded signal can be written as

K(ky) =

∞∫
−∞

ρ(y) exp (−i2πkyy) dy. (1.21)

The application of frequency and phase encoding along the x and y-direction, allows
two-dimensional (2D) imaging:

K(kx, ky) =

∞∫
−∞

∞∫
−∞

ρ(x, y) exp (−i2π (kxx+ kyy)) dxdy. (1.22)

K(kx, ky) is often called the k-space. After sampling the k-space at several frequen-
cies, a 2D image showing the local spin densities, can be computed by the inverse
Fourier transformation F−1 [Kumar et al., 1975] (see Fig. 1.4(a,b)).

There are many possible schemes for sampling the k-space, each scheme having
its own strengths and limitations. In this thesis, a Cartesian sampling scheme
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F←→

(a) (b)

F←→

(c) (d)

Figure 1.4: The MR image (a) can be computed as the inverse Fourier transform of a
fully sampled k-space (b). Both the k-space and image are complex-values. However, only
their magnitudes are shown. Undersampling of the k-space (c) will result in aliasing in
the image space (d).

will always be applied. Specifically, each spin-echo signal is first phase-encoded
along the y-axis by shortly switching on Gy. Next, the signal is acquired in the
presence of a frequency-encoding gradient Gx. A fast implementation of the scheme
is used in single-shot Echo Planar Imaging (ss-EPI) [Mansfield, 1977]. After a single
excitation, the full k-space is efficiently traversed using time-varying gradients.
Between positive and negative lobes of the frequency encoding gradient Gx, a short
phase encoding blip is applied to step along the y-direction of the k-space (see
Fig. 1.5). The trajectory of this so-called blipped EPI sequence is given in Fig. 1.6.
ss-EPI is an acquisition technique prone to several imaging artifacts. Nevertheless,
the use ss-EPI in diffusion MRI is encouraged by its low sensitivity to motion
artifacts, which result in image blurring, signal drop-outs and ghosting. In the next
chapter, the EPI artifacts that are important for diffusion MRI, will be discussed.
A complete overview of all MRI artifacts goes beyond the scope of this work.
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Figure 1.5: Blipped ss-EPI
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Figure 1.6: EPI k-space traversal with subsampling factor R = 1 and 2 for (a) and (b),
respectively.
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1.5 Parallel MRI

Phased array coil technology has seen significant developments in the last decade
[Roemer et al., 1990, Carlson and Minemura, 1993, Sodickson and Manning, 1997].
The introduction of coil systems with multiple receiver coils allowed increasing the
signal-to-noise ratio (SNR) of the MR images. Nowadays, phased array coils are
most often used to reduce the scan time. This approach is referred to as parallel
MRI. Spatially encoding, which is typically performed by applying time-consuming
magnetic field gradients, can partially be replaced by spatial sensitivity information
rooted in such multichannel coil systems. Parallel imaging thus allows accelerated
imaging without losing spatial resolution or image contrast. On the contrary,
by skipping a fraction R of the phase-encoding steps, EPI related artifacts, such
as geometrical distortions, goes down by the same factor [Bammer et al., 2002].
Obviously, there’s no such thing as a free lunch. A reduction in signal-to-noise
ratio (SNR) is inherent to parallel MRI (pMRI). Therefore, the acceleration factor
R is in clinical experiments most often limited to 2 or 4. In this section, a brief
technical overview of SENSitivity Encoding (SENSE) [Pruessmann et al., 1999] and
generalized autocalibrating partially parallel acquisitions (GRAPPA) [Griswold
et al., 2002], two routinely used pMRI reconstruction techniques, is given. A more
general overview is given by Blaimer et al. [2004].

1.5.1 SENSE
Let’s consider a MR receiver system with an array of L, simultaneously operated
receiver coils. Furthermore, the coil elements show inhomogeneous, mutually
distinct spatial sensitivity. Those sensitivity maps are assumed to be known, or at
least, estimated during a calibration process, which often involves the acquisition
of additional calibration scans. In pMRI, the number of phase-encoding steps is
reduced by the factor R. Hence, the k-space is undersampled. The inverse Fourier
transformation of undersampled k-space data yields images with reduced field-of
view (FOV), causing aliasing artifacts (see Fig. 1.4(c,d)). More specifically, the
FOV is reduced by the factor R. Exploiting the knowledge of the sensitivity maps
allows to create an full-FOV image from the L folded images. To achieve this, one
must undo the signal superposition underlying the fold-over effect. Indeed, the
signal measured at location (x, y) in the kth coil image Csk, which has reduced FOV,
is the weighted sum of an R-tuple of signals in the full FOV image C:

Csk(x, y) =

R∑
i=1

Sk(x, yi)C(x, yi), (1.23)

with {(x, yi) : i = 1, ..., R} the spatial locations the of involved full FOV pixels and
Si(x, yi) is the local sensitivity of the kth coil element (see Fig. 1.7 and Fig. 1.8).
Eq. (1.23) can be written as follows:

cs = Sc, (1.24)

with cs = [cs1, · · · , csL]
T

= [Cs1(x, y), · · · , CsL(x, y)]
T being an L × 1 column vector

representing the coil image values at location (x, y). Furthermore, S is an L×R

14



1.5. Parallel MRI

(a) (b)

(c) (d)

Figure 1.7: (a) Actual image; (b) Coil sensitivity map; (c) Observed image with R=1,
that is, (a) weighted by (b); (d) Observed image with R=2. In (d), the intensities of (c)
at 2 spatial locations (red and green) are superimposed.
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Figure 1.8: Schematic overview of signal superimposition due to undersampling with
R = 2.

matrix for which S(i, j) = Si(x, yj), and the R × 1 column vector c lists the R
pixel values at locations {(x, yi′) : i = 1, ..., R} in the full FOV image C. Given the
mutually distinct sensitivity maps, and under the condition that L > R, one can
construct following linear estimator:

ĉ =
(
SHΣs−1

S
)−1

SHΣs−1

cs (1.25)

with Σs a covariance matrix, describing the noise characteristics of the different
coil elements and H the transposed complex conjugate. The unfolding comes with
a decrease in SNR:

SNRŝ =
SNRs

g
√
R
, (1.26)

with g a spatially varying geometry factor. The nonuniformity and other noise
properties are more thoroughly described in Chapter 3. The reconstruction tech-
nique, or closely related alternatives, might also be known as ASSET, SPEEDER
or mSENSE. Unlike the others, mSENSE does not require calibration scans to esti-
mate the sensitivity maps. In case of mSENSE, the sensitivity maps are estimated
by some additional k-space lines. This is called autocalibration. The additional
k-space lines are called autocalibration signal (ACS) lines. The ACS lines can be
acquired anywhere in the k-space, however, they are usually acquired near the
k-space center because of its high SNR. The reconstruction of ACS lines provide
an unaliased, though low resolution, image that can be used for the estimation of
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1.5. Parallel MRI

the sensitivity maps. The advantage of autocalibration is the tolerance to patient
motion between multiple scans. The downside is a slight decrease in acceleration
factor. Autocalibration plays a central role in GRAPPA.

1.5.2 GRAPPA
In GRAPPA, the missing k-space lines are estimated prior to the inverse Fourier
transform yielding a full FOV image for each coil element. Filling the missing
k-space lines, or in other words, estimating the fully sampled k-space of the
kth coil elements Kk, can be seen as a convolution procedure of the acquired
undersampled k-spaces {Ksi : i = 1, ..., L} with a set of GRAPPA reconstruction
kernels {wki : i = 1, ..., L} see(Fig. 1.9):

K̂k =

L∑
i=1

Ksi ⊗wki (1.27)

How to obtain the kernels? K̃i is defined as the fully sampled part of the under-
sampled k-space Ksi . Next, K̃si is derived from K̃i by nullifying the ACS lines. So,
K̃si is how K̃i would have looked like without the acquisition of the additional ACS
lines. Then, the kernels are the results of following optimizer:

wki = arg min
wki
‖K̃k −

L∑
i=1

K̃si ⊗wki‖22. (1.28)

Hence, the additionally acquired calibration lines are used to predict the convolution
kernels, which are afterwards used to fill up all non-acquired k-space lines. The
inverse Fourier transform of K̂k results in an unaliased (complex) image Ĉk. After
the reconstruction of all L unaliased images, they are commonly combined into a
single magnitude image using the sum-of-squares (SoS) formula:

M̂ =

√√√√ L∑
k=1

Ĉ2
k. (1.29)

Alternatives to the SoS approach are present, but not covered in this work [Gilbert
et al., 2007]. Similar to SENSE, a g-factor map indicating the spatially varying
SNR reduction can be computed [Breuer et al., 2009]. Again, we refer to Chapter
3 for a more in-depth discussions on noise in MRI.
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Figure 1.9: Schematic overview of GRAPPA with L = 4 and R = 2. (a) The acquired
k-spaces: the black dots represent acquired k-space data, whereas the white dots were
the skipped points. (b) Schematic description of GRAPPA reconstruction: each dot
represents a 3-tuple of points in k-space in a single coil of the receiver array. Indeed, the
dashed boxes in (a) and (b) represent the same k-space points and arrows. Therefore,
each arrow in (b) is basically the sum of three arrows in (a). Multiple weighted k-space
points (here 2 × 3) from all coils are needed to calculate the center point of the 3 × 3
window coil 1. The weight terms, or the convolution kernels, were estimated a priori
by the ACS lines. This procedure needs to be repeated for every point, for every coil,
resulting in unfolded coil images, which can be finally combined using – for example – a
sum of squares reconstruction.
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Chapter 2. Diffusion magnetic resonance imaging

2.1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a popular modality within MRI
and currently the only non-invasive method that provides information about the
orientation and integrity of tissue – e.g. the brain white matter – microstructure,
based on the local water diffusion properties. In this chapter, we cover the basic
physics of Brownian motion or self-diffusion. After having described how a spin
echo MR sequence can be sensitized to that self-diffusion, we will introduce diffusion
tensor imaging and diffusion kurtosis imaging, i.e. two popular diffusion models
derived from the cumulant expansion of the diffusion-weighted MR signal.

2.2 Diffusion

2.2.1 Brownian motion
Any type of molecule in a fluid (e.g. water) is in constant motion because of its
thermal energy. Given a large collection of molecules in an environment without any
obstacles or restrictions, molecules undergo a random walk consisting of independent
steps with a change of direction after each collision with another molecule. This
motion is named after the botanist Robert Brown, who observed the everlasting
jittery motion of grains of pollen suspended in water under a microscope [Brown,
1828]. The Brownian motion was theoretically substantiated by Einstein [1905].
He showed that the random motion of numerous molecules in an open body of
water such as a glass of water can statistically be captured by a Gaussian diffusion
probability distribution function:

p(r) =
1√

(4πDτ)n
e−
‖r‖2
4Dτ , (2.1)

r

Figure 2.1: A molecule undergoes a random walk consisting of independent steps with a
change of direction after each collision with another molecule.
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2.2. Diffusion

with r an n-dimensional displacement vector, τ the diffusion time, and D the
diffusion coefficient, which quantifies the molecules’ capacity to diffuse (see Fig. 2.2).
In the absence of flow, the Gaussian distribution will be centered around zero. The
root-mean-square displacement is given by:

rRMS =
√
〈‖r‖2〉 =

√
2nDτ, (2.2)

with the angle brackets denoting the averaging operator. The metric is often called
the characteristic diffusion length or Einstein length. The diffusion length has
no dependency on the diffusion direction. Hence, the diffusion process is called
isotropic. Obviously a glass of water is a poor model to describe the diffusion in
biological tissue. Given typical diffusion times in diffusion-weighted MRI – about 50
to 100 ms – free diffusion can only be expected in the cerebrospinal fluid in the large
chambers of the ventricular system. However, biological tissues such as the brain
white matter are highly heterogeneous media that consist of various individual
compartments (e.g. intracellular, extracellular, neurons, glial cells, and axons) and
barriers (e.g. cell membranes and myelin sheaths). Therefore, the random movement
of water molecules is hindered and/or restricted by compartmental boundaries and
other molecular obstacles. There is no doubt that molecules’ mobility is reduced
by their interactions with compartments and barriers. However, diffusion is only
termed restricted if molecules that are confined in a bounding structure, which they
are not likely to leave, collide with this structural boundary during the diffusion
time. Typically, the diffusion of water molecules confined within the intra-axonal
spaces is expected to be restricted. Indeed, given a diffusion time of 50 ms, a
freely diffusing water molecule would displace on average 25 micrometers whereas
the diameter of myelinated axons varies between 1 and 20 micrometers. Because
of the hindrances and restrictions, the diffusion process in biological tissue can
no longer be described by Eq. (2.1). On the one hand, hindrances might reduce
the molecules’ mobility in particular directions, causing the diffusion process to
become anisotropic [Moseley et al., 1991, Chenevert et al., 1990]. On the other
hand, restrictions or the presence of multiple diffusion compartments will render
the diffusion non-Gaussian (see Fig. 2.3) [Assaf and Cohen, 1998, Beaulieu and
Allen, 1994, King et al., 1994, Niendorf et al., 1996, Stanisz et al., 1997, Stanisz
and Henkelman, 1998].

2.2.2 Apparent diffusion coefficient and tensor
In biological tissue, molecules’ mobility might be reduced by interactions of the
diffusing molecules with compartments and barriers. However, the strength of
the reduction is time and – possibly – direction dependent. For realistic diffusion
times, the apparent root-mean-square displacement, and as such the diffusion
coefficient, strongly depend on those interactions of the diffusing molecules with the
underlying microstructure, rather than on intrinsic diffusion properties. Therefore,
it is convenient to substitute D in Eq. (2.1) and Eq. (2.2) by Dapp, the apparent
diffusion coefficient [Le Bihan et al., 1986]. Next, highly ordered microstructure
such as axonal tracts in nervous systems or protein filaments in muscle renders the
motion parallel to the structure more likely than perpendicular to it. HenceDapp has
directionality and, as such, the diffusion cannot be described adequately by a single
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(a) (b)

(c) (d)

Figure 2.2: Given the same initial position, different random walks end up in different end
positions (blue dots in (a) and (b) for isotropic and anisotropic diffusion, respectively). The
Brownian motion processes can be described by their respective displacement probability
density function (PDF) of finding a molecule at a specific position, given the starting
point and diffusion time. Free diffusion can be well described by a Gaussian PDF, which
is centered around the initial position in the absence of flow (c,d). The width of the
Gaussian PDF relates to the diffusion coefficient, which is direction dependent in case of
anisotropic diffusion (d).

scalar. A more general PDF is needed to characterize the 3D orientation-dependent
water diffusion:

p(r) =
1√

(4πτ)3|D|
e−

rTD−1r
4τ , (2.3)
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with D the (apparent) diffusion tensor:

D =

〈
rrT

〉
2τ

=

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 , (2.4)

which is a full symmetric, positive definite tensor with six independent tensor
elements [Basser et al., 1994b].

2.2.3 Apparent kurtosis coefficient and tensor
So far, the apparent diffusion is always assumed to be Gaussian. However, in
biological tissue, that might be too strict as an assumption. Indeed, the presence
of barriers in biological tissues renders short displacements more probable than
long ones with respect to Gaussian diffusion. Moreover, the presence of multiple
non-interacting water compartments with differing diffusivities might contribute
to the non-Gaussian nature of the diffusion (see Fig. 2.3). In 1D, the deviation to
Eq. (2.1) can be quantified by the excess kurtosis K, a dimensionless statistical

2σ1 2σ2 2σ1+2

Fast diffusion
Compartment 1

Slow diffusion
Compartment 2

+ =

Figure 2.3: A two-compartment model with equal contributions has been used to demon-
strate that due to the heterogeneity of the environment the diffusion can no longer
assumed to be Gaussian. Given the same initial position (center of black circles), different
2D random walks end up in different end points (red and green points for the fast and
slow diffusion compartment, respectively). Histograms of both individual compartments
reveal the Gaussian nature of the diffusion. The standard deviation is proportional to
the square root of the respective diffusion coefficients. The histogram of the composited
compartments shows a clear deviation from a normal distribution (blue bars vs. black
line).
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Figure 2.4: Different displacement probability density functions with zero mean, standard
deviation one, and varying kurtosis values are shown. Functions with a positive kurtosis
are more peaked than the normal distribution (black line)

metric, which quantifies the degree of non-Gaussianity of an arbitrary PDF [Balanda
and Macgillivray, 1988]. In case of a zero-centered PDF, the excess kurtosis is the
ratio between the fourth and the square of the second moment of the PDF minus
three:

K =

〈
r4
〉

〈r2〉2
(2.5)

Throughout the thesis, the term excess kurtosis is shortened to kurtosis, although in
literature, kurtosis often refers to the first term on the right-hand side. Zero-mean
1D PDFs with equal standard deviation, but varying kurtosis are shown in Fig. 2.4.
Basically, the kurtosis measures the peakedness of a distribution. A Gaussian
PDF has zero kurtosis, whereas a positive kurtosis indicates that the probabilities
of values near the center or extreme values are high in comparison to those of a
Gaussian distribution. A PDF with negative kurtosis, on the other hand, has a
more rounded peak and wider shoulders, meaning that, compared to a Gaussian
distribution, the probability to observe values near the center or for extreme values
is lower. The kurtosis has a theoretical lower bound of minus two. Analogue to
Dapp, it is common to refer to K as Kapp, the apparent kurtosis [Jensen et al., 2005].
For n-dimensional directional non-Gaussian diffusion, an n× n covariance matrix –
and as such the diffusion tensor – provides an incomplete description of the diffusion
process. The (apparent) kurtosis tensor K being the n−dimensional generalization
of Kapp needs to be introduced to quantify the deviation to Gaussianity on a
direction dependent basis K is an n× n× n× n tensor, which is fully symmetric
with respect to an interchange of indices. For 3D, the tensor has thus 81 tensor
elements, of which only 15 elements are independent. In the context of diffusion
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MRI, Jensen et al. [2005] introduced the diffusion kurtosis tensor as follows:

Kijkl = 9
〈rirjrkrl〉 − 〈rirj〉 〈rkrl〉 − 〈rirk〉 〈rjrl〉 − 〈rirl〉 〈rjrk〉

〈rTr〉2
, (2.6)

with i, j, k, and l ranging from one to three and r = [r1, r2, r3]T = [rx, ry, rz]
T .

The absence of odd-order terms in the numerator suggests the assumption of
antipodal diffusion. At this point, it is sufficient to grasp that hindrances and
restrictions inherent to the microstructure hampers the statistical description of the
displacements of a collection of diffusing molecules. Fortunately, the knowledge of
the diffusion tensor and the diffusion kurtosis tensor might reveal some information
about the underlying microstructure. Before elaborating on both tensors, we will
first discuss how they can be measured non-invasively using MRI.

2.3 Diffusion-weighted MRI

2.3.1 Stjeskal-Tanner sequence
Already before the introduction of MR imaging, Stejskal and Tanner [1965] were
able to demonstrate that placing a pair of dephasing and rephasing gradients of
the same polarity on either side of the 180◦-pulse of a classic spin echo sequence
causes the echo MR signal to be sensitized by molecular diffusion. Let’s consider
two rectangular diffusion gradient pulses g(t) with duration time δ and amplitude
G:

g(t) = Gĝ(t), (2.7)

with ĝ(t) the unit vector denoting the gradient direction. Gradient coils in clinical
scanners have maximum gradients magnitudes Gmax of 40− 80 mT/m. The time
between the ramp ups of the gradients is ∆. A schematical overview of the so-called
Pulsed Gradient Spin-echo (PGSE) sequence is given in Fig. 2.5. Owing to the
linear relationship between precession rate and the applied magnetic field, the first
gradient pulse induces a position-dependent phase shift:

φ1 = γ

δ∫
0

g(t) · x(t)dt

= γ

δ∫
0

Gĝ · x(t)dt

= γG

δ∫
0

xg(t)dt

= γδGx′g

(2.8)

with x(t) the spin position, and xg(t) the projection of the spin position on the
gradient direction. The spin position is assumed to be constant during the pulse
duration. This assumption obviously only holds for infinitely short gradient pulses,
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i.e. the short pulse gradient (SPG) condition. The second gradient induces a similar
position-dependent phase shift:

φ2 = γ

∆+δ∫
∆

g(t) · x(t)dt = γG

∆+δ∫
∆

xg(t)dt = γδGx′′g, (2.9)

The 180◦-pulse applied between the two gradient pulses inverts the sign of φ1.
Hence, the resulting net dephasing is given by:

φ = φ2 − φ1 = γδG(x′′g − x′g) = γδGrg, (2.10)

with rg = r · ĝ the projection of the displacement vector on the gradient direction.
The net phase shift is thus zero for static spins. For randomly moving molecules,
however, the initial induced phase shift will not fully be cancelled by the second
(reversed) phase shift. The incomplete cancellation results in phase incoherence
among the spin system, which on its turn, causes a signal drop compared to the
observed MR signal in absence of any gradients, i.e. the nondiffusion-weighted
signal S(0). The attenuated diffusion-weighted MR signal is given by:

S(q) = S(0)
〈
e−iqrg

〉
= S(0)

∞∫
−∞

e−iqrg p̄(rg,∆)drg ≤ S(0),
(2.11)

with q = γδG and p̄(r,∆) the ensemble average propagator given by:

p̄(rg,∆) =

∞∫
−∞

ρ(x′g)p(x′g, x
′
g + rg,∆)dx′g, (2.12)

RF

g

Signal

Time

90o 180o

0 TE/2 TE

G

δ ∆

without diffusion
with diffusion

Figure 2.5: Pulsed gradient spin echo sequence
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with p(x′g, x
′
g + rg,∆) probability of finding a molecule at specific position x′g + rg,

given the starting point x′g and diffusion time ∆. Furthermore, ρ(x′g) quantifies the
probability of finding a spin at location x′g at the start of the dephasing gradient.
The ensemble average propagator fully describes the average diffusion process of
the imaged sample. In the next section, methods trying to extract the PDF – of
some of their statistics – out of a set diffusion-weighted signals are discussed.

2.3.2 Q-space imaging

Callaghan et al. [1988] introduced the q-vector q as:

q =
γδ

2π
g =

q

2π
ĝ. (2.13)

Assuming that the SPG condition holds, Eq. (2.11) can be rewritten as:

S(q)

S(0)
=

∞∫
−∞

e−i2πq·rp̄(r,∆)dr. (2.14)

Hence, Eq. (2.14) shows the Fourier relationship between the ensemble average
propagator and the normalized diffusion-weighted samples, which are elements
of the so-called q-space. The analogy with the k-space is trivial. By acquiring
the diffusion signal for a large number of q-values along many different gradient
directions the ensemble average propagator can be computed using the Fourier
transformation. The q-space needs to be sampled by increasing the gradient
strength G and changing the gradient direction. Unfortunately, the limited gradient
strength of modern MR scanner and the wish/need for short scan times restrict
whole q-space sampling and, as such, the potential of the method. An alternative,
though closely related strategy to obtain diffusion properties from q-space samples
is given by the cumulant expansion framework.

2.3.3 The cumulant expansion

Let’s recall Eq. (2.11). The Taylor series of the natural logarithm of the function in
powers of q is given by:

ln
S(q)

S(0)
=

∞∑
n=0

kn
(−iq)n
n!

, (2.15)

with kn the nth order cumulant of the propagator p̄(rg, τ) describing the diffusion
process projected on the gradient direction [Minati and Weglarz, 2007, Kiselev,
2010]. Note that τ – the effective diffusion time – not equals ∆ if the SGP condition
is violated. In the absence of flow, the diffusion propagator is even w.r.t rg. Hence,
all odd-order cumulants are zero. The second cumulant equals the variance of the
propagator. The variance on its turn links to the apparent diffusion coefficient by
the Einstein equation Eq. (2.2):

k2 = 2Dappτ, (2.16)
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whereas the fourth cumulant relates to the apparent kurtosis coefficient:

k4 = Kappk
2
2 = 4KappD

2
appτ

2. (2.17)

The cumulant expansion can thus be written as:

ln
S(b)

S(0)
= −bDapp +

1

6
Kapp (bDapp)

2
+O(b3), (2.18)

with b = q2τ (see section 2.3.4). The cumulant expansion is a method to directly
compute diffusion properties such as diffusion coefficient and kurtosis coefficient
along the gradient directions without the need for knowing the propagator itself.
The widely used diffusion tensor and diffusion kurtosis model both originate in a
truncation of this cumulant expansion.

2.3.4 b-value
The b-value quantifies the sensitivity to diffusion and determines the strength and
duration of the diffusion gradient. For an arbitrary diffusion-weighted sequence,
the b-value can be calculated as:

b = γ2

TE∫
0

 t∫
0

g̃(t′)dt′

2

dt, (2.19)

with g̃(t) all applied gradients in function of the time [Le Bihan et al., 1986]. For
the Stjeskal-Tanner sequence, the b-value becomes:

b = γ2G2δ2

(
∆− δ

3

)
. (2.20)

2.4 Diffusion Tensor Imaging

2.4.1 DTI model
For Gaussian diffusion, all cumulants except k2 are zero. The logarithm of the
attenuation of the diffusion-weighted signals thus linearly decays with the b-value.

lnS(b) = lnS(0)− bDapp (2.21)

Alternatively, one might say that there is an exponential relation between the
diffusion-weighted signal and the apparent diffusion coefficient:

S(b) = S(0)e−bDapp (2.22)

To estimate the diffusion coefficient – and potentially the nondiffusion-weighted
signal S(0), which might be seen as a second unknown – it is sufficient to acquire
two diffusion-weighted signal along the same gradient direction ĝ, but with different
b-values. As previously stated, a single scalar cannot describe an anisotropic
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[e1, λ1][e2, λ2]

[e3, λ3]

Figure 2.6: The diffusion ellipsoids, color encoded for the diffusion direction – left-right
(red), anterioposterior (green), and superior-posterior (blue) – are superimposed on the
FA map of a coronal slice. The ellipsoids are uniquely determinded by their eigenvectors
and eigenvalues.

Gaussian diffusion process. The apparent diffusion tensor D, however, does so.
Given that:

Dapp =

3∑
i,j=1

ninjDij = ĝTDĝ, (2.23)

with Dij the ijth element of D, Eq. (2.21) and Eq. (2.22) can be written in terms
of D:

lnS(b, ĝ) = lnS(0)− bĝTDĝ, (2.24)

and
S(b, ĝ) = S(0)e−bĝ

TDĝ, (2.25)

respectively. This equation is widely known as the diffusion tensor imaging (DTI)
model, originally introduced by Basser and co-workers in the mid-nineties [Basser
et al., 1994b].

2.4.2 DTI parameters

According to Eq. (2.4), the diffusion tensor D is basically the 3D covariance matrix
of the displacements in a given time. Hence, the diagonal elements correspond to
the diffusivities along the three orthogonal axes. The off-diagonal elements, on the
other hand, correspond to the correlations between displacements along those axes.
The isoprobability surface of the diffusion tensor is an ellipsoid (see Fig. 2.6). The
principle axes of the ellipsoid and their corresponding radii, i.e. the diffusion length
in a given time along the principal directions, are determined by a decomposition
of the diffusion tensor into its real eigenvectors and eigenvalues:

D = EΛE−1, (2.26)
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with E = [e1 e2 e3] being the mutually orthogonal eigenvectors, and

Λ =

λ1 0 0

0 λ2 0

0 0 λ3

 , (2.27)

the positive eigenvalues for which λ1 ≥ λ2 ≥ λ3 [Hasan et al., 2001]. The eigenvector
e1 associated to the largest eigenvalue, is called the principal eigenvector. The
direction of the principal eigenvector is assumed to indicate the main diffusion
direction, which is for example the direction parallel to the axonal tracts in the
brain white matter. The diffusion process is commonly characterized by rotationally
invariant scalar measures, calculated from the eigenvalues [Bahn, 1999]:

• Mean diffusivity (MD) is the average diffusion coefficient:

MD =
λ1 + λ2 + λ3

3
, (2.28)

which can also be computed as the sum of the diagonal tensor elements, i.e.
the trace, divided by three.

• Axial diffusivity (AD) is the diffusivity along the principal diffusion direc-
tion:

AD = λ1. (2.29)

• Radial diffusivity (RD) is average diffusivity in the equatorial plane, i.e.
the plane perpendicular to the principal diffusion direction:

RD =
λ2 + λ3

2
. (2.30)

• Fractional anisotropy (FA) is the variance of the eigenvalues, normalized
by the magnitude of the tensor [Basser, 1995]:

FA =

√
3

2

(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)

λ2
1 + λ2

2 + λ2
3

. (2.31)

The FA can take values between zero (isotropic diffusion) and one (diffusion
limited to a single axis).

The orientation of the principal eigenvector is often co-displayed with the FA-
images, in separate channels for left-right (red), anterioposterior (green), and
superior-posterior (blue) orientations, respectively [Pajevic and Pierpaoli, 1999].
This directionally encoded color (DEC) FA map provide enhanced contrast between
different structures.
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2.5. Diffusion Kurtosis Imaging

2.4.3 DTI acquisition

To be able to compute the diffusion tensor with its six independent tensor elements,
diffusion-weighting needs to be applied along – at least – six non-collinear and
non-coplanar diffusion gradient directions for a single non-zero b-value. In addition,
at least, one reference image – typically, though not exclusively, a nondiffusion
-weighted image – need to be acquired [Basser et al., 1994a]. The selection of
diffusion gradient directions and the strength and number of b-values to maximize
precision of the estimated diffusion tensor parameters has been an extensive topic of
research. To minimize the amount of noise propagation, it is advised to (a) use the
nondiffusion-weighted signal as the reference image, (b) acquire diffusion-weighted
images with a b-value around 1000 s/mm2 [Jones et al., 1999], and (c) oversample
the q-space, i.e. acquiring more diffusion-weighted images than the bare minimum
[Papadakis et al., 1999]. Indeed, robust and rotationally invariant estimation of the
diffusion tensor requires at least 30 gradient directions [Jones, 2004]. Furthermore,
the gradient directions are optimally uniformly distributed over a unit sphere. A
commonly used algorithm to obtain such an optimal distribution is based on the
minimization of electrostatic repulsion [Jones et al., 1999].

2.4.4 DTI applications

With MD probing the overall water content, and FA indicating the degree of
coherence or integrity of underlying structure, various pathological processes at
a microscopical level might affect the measured diffusion parameters. Therefore,
its widely recognized that DTI can provide an additional insight into the normal
and pathological brain. The DTI-derived measures have been applied to study
the effects of a continuously growing list of white matter diseases such as multiple
sclerosis, Huntington disease, and Alzheimer’s disease [Horsfield and Jones, 2002]
and psychiatric disorders like schizophrenia [Kubicki et al., 2007]. In addition,
diffusion MRI has been used extensively to study brain development [Neil et al.,
2002] and aging [Sullivan and Pfefferbaum, 2006]. Another clinical application of
DTI is tractography in neurosurgical planning. Tractography is the reconstruction
of the pathways of major white matter fiber tracts from the local white matter
orientation provided indirectly by the first eigenvector of the diffusion tensor. An
accurate localization of those fiber tracts is for example of utmost importance during
neurosurgery or to probe brain connectivity. Nowadays different techniques beyond
DTI have been presented to bypass the assumption of a single fiber orientation
inherent to DTI. An overview of those techniques is outside the scope of this
chapter. The interested reader might enjoy the PhD thesis of Ben Jeurissen [2012].

2.5 Diffusion Kurtosis Imaging

2.5.1 DKI model

A natural extension of the diffusion tensor model is given by the diffusion kurtosis
model [Jensen et al., 2005, Lu et al., 2006]. The model additionally includes the
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Figure 2.7: Diffusion-weighted signals (left), as well as their log-transformation (right),
are shown as a function of the b-value. Owing to the non-Gaussian diffusion, the addition
of the b2-term improves accuracy of the fit. This is mainly noticeable at intermediate
b-values. At high b-values, the error term O(b3) becomes dominant. Therefore, DKI is a
low to intermediate b-value technique.

2nd term of Eq. (2.18):

ln
S(b)

S(0)
= −bDapp +

1

6
Kapp (bDapp)

2
, (2.32)

assuming the higher order terms are ignorable. Given Eq. (2.23) and

KappD
2
app = MD2

3∑
i,j,k,l=1

ĝiĝj ĝkĝlKijkl

=

(
3∑
i=1

Dii

3

)2 3∑
i,j,k,l=1

ĝiĝj ĝkĝlKijkl,

(2.33)

with Kijkl the ijklth element of K, the apparent kurtosis tensor as defined in
Eq. (2.6), one can write Eq. (2.32) as

lnS(b, ĝ) = lnS(0)− b
3∑

i,j=1

ĝiĝjDij +
b2

6

(
3∑
i=1

Dii

3

)2 3∑
i,j,k,l=1

ĝiĝj ĝkĝlKijkl,

(2.34)
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or, equivalently,

S (b, ĝ) = S(0) exp

−b 3∑
i,j=1

ĝiĝjDij

+
b2

6

(
3∑
i=1

Dii

3

)2 3∑
i,j,k,l=1

ĝiĝj ĝkĝlKijkl

 .
(2.35)

The diffusion kurtosis model has in total 21 independent tensor elements (6 diffusion
tensor elements and 15 diffusion kurtosis tensor elements). Furthermore, most
often, S(0) is considered as an additional model parameter.

Typically, a slightly different parameterization of the DKI model is preferred.
Indeed, often one substitute MD2K by K̃:

lnS(b, ĝ) = lnS(0)− b
3∑

i,j=1

ĝiĝjDij +
b2

6

3∑
i,j,k,l=1

ĝiĝj ĝkĝlK̃ijkl, (2.36)

or, equivalently,

S (b, ĝ) = S(0) exp

−b 3∑
i,j=1

ĝiĝjDij

+
b2

6

3∑
i,j,k,l=1

ĝiĝj ĝkĝlK̃ijkl

 ,
(2.37)

with K̃ijkl the ijklth element of K̃, the scaled apparent kurtosis tensor. Given this
parameterization, the DKI model is like the DTI model log-linear.

2.5.2 DKI parameters
Since the diffusion tensor is a subset of the diffusion kurtosis model parameters, all
DTI parameters discussed in section 2.4.2 can again be computed. It is noteworthy
that, on the one hand, DKI provides a more objective and accurate quantification
of these scalar metrics in that the b-value dependence of the estimated diffusivity
is eliminated or at least strongly reduced [Veraart et al., 2011a]. On the other
hand, DKI provides additional rotationally invariant metrics of diffusional non-
Gaussianity, complementary to the diffusion metric obtained with DTI. The most
commonly used kurtosis metrics are:

• Mean kurtosis (MK) is the average Kapp over a sphere:

MK =
1

4π

x

Ω

Kapp(n)dΩ, (2.38)

with

Kapp(n) =

(∑3
i=1

Dii
3

)2

(∑3
i,j=1 ninjDij

)2

3∑
i,j,k,l=1

ninjnknlKijkl, (2.39)
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Figure 2.8: Scatter plots show the correlation between (left) mean kurtosis and mean
diffusivity, (middle) radial kurtosis and radial diffusivity, and (right) axial kurtosis and
axial diffusivity. The corresponding metrics are weakly correlated. The Spearman’s rank
correlation coefficients are, respectively, -0.07, -0.65, and -0.13.

integrated over the unit sphere Ω with n = [n1, n2, n3] ∈ Ω [Lu et al., 2006].

• Axial kurtosis (AK) is the apparent kurtosis coefficient, measured along
the principal direction e1, determined by the first eigenvector of the diffusion
tensor [Hui et al., 2008]:

AK = Kapp(e1). (2.40)

• Radial kurtosis (RK) is the average Kapp, measured in the equatorial
plane, i.e. the plane spanned by e2 and e3 [Poot et al., 2010]:

RK =

2π∫
0

Kapp(e2 cos(φ) + e3 sin(φ))dφ, (2.41)

• Kurtosis anisotropy (KA) is in analogy with FA defined as the standard
deviation of Kapp [Poot et al., 2010]:

KA =

√
1

4π

x

Ω

(Kapp(n)−MK)
2
dΩ, (2.42)

In practice, the integrals can only be approximated by a summation over a densely
sampled sphere. Alternatively, direct formulae to compute MK, RK, and AK are
given in [Tabesh et al., 2011, Jensen and Helpern, 2010]. The complementariness
of the kurtosis and diffusion measures is indicated in the scatter plots of Fig. 2.8,
which show the weak correlation between directional diffusion and kurtosis metrics,
observed in the white matter of the healthy human brain (cf. [Jensen et al., 2005]).
Typical values of the DKI metrics for the healthy human brain are presented in
[Lätt et al., 2013]. The parameter maps are shown in Fig. 2.8. The diffusion kurtosis
metrics are potentially more sensitive to local (microstructural) tissue properties
[e.g. Jensen et al., 2005, and section 2.5.4]. Furthermore, it has been shown that

36



2.5. Diffusion Kurtosis Imaging

the diffusion kurtosis metrics are less sensitive to certain confounding effects and
thereby serve as a more robust biomarker. One study, for example, showed that the
mean kurtosis in gray matter is altered substantially less by CSF contamination
than either of the conventional diffusion metrics [Yang et al., 2013].

2.5.3 DKI acquisition
Since the apparent diffusion tensor has 6 independent elements and the kurtosis
tensor has 15 elements, there is a total of 21 parameters to be estimated. As an
additional degree of freedom is associated with the noise-free nondiffusion-weighted
signal, S(0), at least 22 diffusion-weighted images must be acquired for DKI. It can
be further shown that there must be at least three distinct b-values, which only differ
in the gradient magnitude. Furthermore, at least 15 distinct diffusion (gradient)
directions are required [Jensen et al., 2005]. Some additional consideration must be
made. The maximal b-value should be chosen carefully and is a trade-off between
accuracy and precision. While for DTI, diffusion-weighted images are typically
acquired with rather low b-values, about 1000 s/mm2 , somewhat stronger diffusion
sensitizing gradients need to be applied for DKI as the quadratic term in the
b-value needs to be apparent (see Fig. 2.7). It is shown that b-values of about 2000
s/mm2 are sufficient to measure the degree of non-Gaussianity with an acceptable
precision [Jensen and Helpern, 2010]. Nevertheless, several studies reported b-values
up to 3000 s/mm2 and even more [e.g. Grinberg et al., 2012, Wang et al., 2011].
The assumption that the diffusion-weighted signal is a monotonically decreasing
function in terms of the b-value imposes an analytical upper bound on the maximal
b-value [Lazar et al., 2008, Tabesh et al., 2011, Veraart et al., 2011b]:

bmax ≤ 3/(DappKapp) (2.43)

Typical diffusion and kurtosis values, observed in the human brain, are Dapp ≈
1µm2/ms and Kapp ≈ 1. Those values as such justify the use of b-values up to
3000 s/mm2 for studies involving the human brain [Jensen and Helpern, 2010].
High b-valued diffusion-weighted images suffer from low signal-to-noise ratio due
to the severe signal attenuation. Since SNR has a direct impact on the precision
and accuracy of the diffusion quantification, the acquisition of dMRI along more
diffusion directions than strictly necessary is advisable. In practice, a minimum of
30 directions for each b-value is fairly common [Jensen and Helpern, 2010]. However,
note that gradient directions might vary from b-value to b-value. A wide range of
DKI data acquisition protocols in line with these considerations are possible and
reported in recent literature. Depending on the set of diffusion parameters one
is interested in, a specific acquisition protocol can be computed, i.e. b-values and
gradient directions, that is optimal in terms of highest achievable precision on the
measurements of interest [Poot et al., 2010].

2.5.4 DKI applications
Despite DKI being a recently developed technique, an exponential growth of
publications already suggests DKI to become a new important imaging modality in
detecting microstructural changes, e.g. following pathological alterations, in human
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living tissue that are not revealed by the Gaussian DTI model. Preliminary, though
promising results, showed better differentiation between high-grade and low-grade
cerebral gliomas [Raab et al., 2010, Van Cauter et al., 2012]. Furthermore, clinical
studies indicate that DKI has the potential to improve the early diagnosis of, or
to gain more insight in pathologies such as Parkinson Disease [Wang et al., 2011,
Giannelli et al., 2012], attention-deficit hyperactivity disorder [Helpern et al., 2011],
temporal lobe epilepsy [Gao et al., 2012], traumatic brain injury [Grossman et al.,
2012], Alzheimer’s disease [Gong et al., 2013], and cerebral infarction [Jensen et al.,
2011, Hori et al., 2012, Hui et al., 2012]. Its potential use, however, is not restricted
to the brain. The greater relative contrast of kurtosis metrics for cancerous sextants
also suggests the potential clinical advantage of incorporating DKI into liver and
prostate MR imaging protocols [Rosenkrantz et al., 2012b,a]. Additionally, one
study reported on the sensitivity of the DKI metrics to abnormalities in the lung,
i.e. the bronchioles and bronchi, using hyperpolarized 3HE imaging [Trampel
et al., 2006]. Microstructural changes associated with human development and
aging were studied with DKI [Falangola et al., 2008]. The study showed different
mean kurtosis patterns for different age ranges, indicating that DKI is able to
detect changes in microstructural complexity for both gray and white matter.
Complementary, the practical utility of DKI for the (early) diagnosis of pathological
changes has been studied in small animal imaging. It was, for example, shown
that DKI enhanced the early detection of ischaemic lesion, associated with a stroke
model for rats, compared to DTI [Grinberg et al., 2012]. Moreover, DKI may help
stratify heterogeneous diffusion-weighted MRI lesions for enhanced characterization
of ischemic tissue injury [Cheung et al., 2012]. Furthermore, studies reported
on the increased sensitivity of kurtosis metrics to changes in the white and gray
matter, associated to rodent models for Huntington Disease [Blockx et al., 2012b,a],
Chronicle mild stress [Delgado y Palacios et al., 2011], Alzheimer’s disease [Zhang
et al., 2012], traumatic brain injury [Zhuo et al., 2012], and brain maturation
[Cheung et al., 2009]. It might be expected that many new potential applications
of DKI will be revealed in the near future.

2.6 Challenges and limitations

2.6.1 Interpretation
The potential risk of DKI and DTI is the over-interpretation of observed changes
in diffusional measures. Both models just arise from a mathematical expansion
of the diffusion-weighted signal as a function of the b-value and, as such, do not
involve any biophysical modeling [Fieremans et al., 2011, De Santis et al., 2012,
Nilsson et al., 2013]. From a change in kurtosis or diffusivity, one might only
conclude that there is something in the tissue microstructure that is changing
the way that molecules can diffuse. More specific inferences, however, are not
substantiated without the justification of a biophysical model that helps to interpret
the biophysical meaning of DTI/DKI metric changes. Recently, the two-tensor
model has been studied to elucidate the underpinnings of DKI contrast [Fieremans
et al., 2011]. In that model, it is assumed that brain white matter consists of
two non-exchanging compartments: an intra-axonal space, consisting of parallel
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Figure 2.9: The main diffusion and kurtosis parameter maps, obtained from the healthy
human brain, are shown. The range of the mean, axial and radial diffusivity is [0, 3 ×
10−3]mm2/s, while the range of the corresponding kurtosis metrics was [0, 1.5]. The
anisotropy maps are bounded by [0, 1].

impermeable cylindrical axons and an extra-axonal space. The diffusion in both
compartments is assumed to be anisotropic and Gaussian. The white matter
model links the DKI metrics to microstructural properties such as the axonal water
fraction and the tortuosity of the extra-axonal space. In another attempt to gain
insight in the mathematical DKI model, the DKI information was matched to
the information extracted from the biophysical composite hindered and restricted
model of diffusion (CHARMED) model [Assaf et al., 2004, Assaf and Basser, 2005,
De Santis et al., 2012]. In that model, the white matter is again assumed to be
consisting of two compartments: (a) a hindered extra-axonal space, and (b) one
or more intra-axonal compartments modeled as impermeable cylinders showing
restricted diffusion perpendicular to the fiber. The CHARMED model allows the
description of the diffusion weighted-signals in terms of biophysical parameters such
as extra- and intra-axonal volume fractions and axonal diffusivities. It was shown
that those biophysical parameters correlate with the DKI parameters in areas of
higher intra-voxel directional coherence, and as such, the CHARMED model might
be used the get more insight into the meaning of the DKI parameters [De Santis
et al., 2012]. Those findings, however, only apply within the limits of the validity
of both white matter models.

2.6.2 b-value dependency of DTI parameters
Diffusion of water molecules is a physical property of the tissue being measured and,
thus, its estimated coefficient should not depend on scanner settings or properties,
such as the b-value. However, due to the non-linear relation between the natural
logarithm of the diffusion weighted signal and the b-value, the DTI model results
in an inaccurate and a b-value dependent parameterization of the diffusion process.
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Such a b-value dependency might root in inaccurate data statistics (see Chapter 4)
or in the complex relation between the diffusion weighted signal and the b-value due
to factors such as cerebral perfusion, restricted diffusion, membrane permeability
and extra- and intracellular water compartments. In the former case, more advanced
parameter estimators might be used (see Chapters 5 and 6). In case of the latter,
the b-value dependency of the DTI measures can strongly be reduced by fitting the
DKI model to the diffusion-weighted data [Veraart et al., 2011a].

2.6.3 Resolution and signal-to-noise ratio

Diffusion-weighted images suffers from low SNR due to the induced signal attenu-
ation. A low SNR hampers the precise and accurate estimation of the diffusion
model parameters (see the next chapter for more details). Increasing the voxel
dimensions to increase the SNR is common practice. Typical voxel sizes for human
brain diffusion MRI studies are 2 × 2 × 2mm3 to 3 × 3 × 3mm3, whereas the
axonal diameter only goes up to 30µm [Beaulieu, 2002]. Partial volume effects, or
intra-voxel heterogeneity, are inherent to diffusion MRI. This limits the validity of
the assumptions made in diffusion models such as DTI [Jeurissen et al., 2012].

2.6.4 Artifacts

(Diffusion-weighted) MR images are vulnerable for several kinds of artifacts [Le Bi-
han et al., 2006, Jones and Cercignani, 2010]. A brief overview is given.

2.6.4.1 Motion

Diffusion-weighted MR images are sensitized to random motion of water molecules.
Random motion will result in signal loss that can be modeled. Unfortunately,
coherent motion cannot be avoided, though, it will strongly affect the MR signal.
Even if subjects wouldn’t move during the MR scan, there will be still localized
coherent movement present due to eye motion, swallowing, or cardiac pulsation.
Such coherent motion will introduce random phase shifts in each echo readout.
Hence, the acquisition of a single diffusion-weighted image using multiple readouts
is challenging because the random phase shift will introduce ghosting, blurring
and signal loss [e.g. Skare and Andersson, 2001]. As discussed in section 1.4.2,
the ss-EPI sequence fully samples the k-space at once, and as such, the sequence
is widely used to avoid such imaging artifacts. Although ss-EPI is less sensitive
to motion in comparison to standard sequences, it is considerably more sensitive
to off-resonance factors such as B0 field inhomogeneity, chemical shifts, and eddy
current effects from fast switching gradients [Skare and Bammer, 2010].

2.6.4.2 Susceptibility artifact

Resonance frequency offsets cause apparent spatial displacement of signals owing
to the low bandwith along the phase-encoding directions during an EPI acquisition.
Although such frequency offsets might have multiple causes, local magnetic field
inhomogeneities are a primary source. Field inhomogeneities are observed at
transitions between regions with different magnetic susceptibility, such as air and
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Figure 2.10: Shown are axial EPI axial slices acquired with different phase-encoding
directions. The image in right column is the corresponding anatomically undistorted T1

weighted image. The distortions, and their dependency on the phase-encoding directions,
are clearly visible around the frontal sinus.

soft tissue [Jezzard and Balaban, 1995]. Therefore, the susceptibility artifacts are
typically observed near the sinuses (see Fig. 2.10) or the auditory canals. The
artifact, however, goes beyond geometrical distortions. Due to the non-linearity of
the susceptibility-induced distortions, it is possible that the signal intensity from
neighboring voxels collapses into a single voxel, resulting in signal drop-outs in the
one area and pile-ups in the other [Jones and Cercignani, 2010].

2.6.4.3 Eddy currents

Rapidly switching diffusion gradients will generate eddy currents in nearby con-
ductors. These currents will perturb the spatial encoding locally, and, as such,
the reconstructed diffusion-weighted image will be geometrically distorted [Jezzard
et al., 1998]. The strength of the distortions – stretch or compression of the image
along the phase-encoding direction – increases with the diffusion encoding amplitude
[Jones and Cercignani, 2010]. Although the effect of eddy currents can be minimized
at the acquisition stage [Reese et al., 2003], residual distortions will still be present.
Moreover, those residual distortions vary from one image to another. Correction
of those distortions prior to the estimation of the diffusion model parameters is
required. A common strategy is to correct subject motion and eddy current distor-
tions simultaneously by a global affine transformation [Netsch and van Muiswinkel,
2004]. However, some criticisms on that approach are ventilated, see e.g. Fig. 2.11.
Recently, several techniques dedicated to motion/eddy current correction of high
b-valued diffusion-weighted images were presented. Anyhow, the corrections need
to be followed by signal modulation according to the volumetric change [Rohde
et al., 2004, Jones and Cercignani, 2010]. However, the signal modulation step is
widely ignored, partly motivated by a lack of this post-processing step in most
software packages.
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Figure 2.11: Global affine registration based on mutual information seems not to work
for high b-values. (top) uncorrected images, (bottom) corrected images using eddycorrect.
Global affine registrations seems to blow up the brain, ignoring the presence of CSF

2.6.4.4 Chemical shift artifact

The chemical shift artifact is another off-resonance artifact. Protons are magneti-
cally shielded by their surrounding electrons, and as such experience a magnetic
field that is different from the external magnetic field. Therefore, the effective
precession rates of the proton depend on their chemical environment. Since the
chemical environment varies from one molecule to another, protons in fat and water
don’t have the same resonance frequencies. Given that fat resonates at a slightly
lower frequency than water, a mismapping of water and fat signals can be observed
[Babcock et al., 1985]. The artifact is clearly recognized by the fat-band.
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Chapter 3. MR data distribution

3.1 Introduction

Noise is an important source of MR image distortion, especially in dMRI where the
sensitization to the diffusion process is characterized by a strong signal decay. In this
chapter, we will review the main source of noise in the complex-valued MR signals,
which is assumed to be additive and normally distributed. However, the calculation
of the signal’s magnitude to avoid signal drop-outs in the diffusion-weighted images
due to random phase shifts, will alter the data distribution. Although the resulting
data distribution is often assumed to be Rician, it will depend on the applied
image formation technique. The possible data distributions and their statistics are
discussed in this chapter.

3.2 Noise in MRI

Physicist John Johnson experimentally showed that thermal motion of electrons
in a resistor, R, results in random fluctuations in the voltage across its terminals
[Johnson, 1928]. This voltage fluctuations, known as Johnson noise or thermal noise,
are proportional to the temperature, T [K]. The noise variance, or mean-squared
noise, is given by: 〈

V 2
n

〉
= 4kbTR∆f, (3.1)

with kb the Boltzmann constant (1.38× 10−23J/K) and ∆f the receiver frequency
bandwidth in Hz [Nyquist, 1928]. Johnson noise was shown to have a uniform
spectral density (cfr. white noise), whereas the noise itself is normally distributed.
This thermal noise is the principal source of noise in MR imaging. The effective
resistance R is the sum of the coil resistance Rc and the resistance induced by the
conductive losses in the scanned subject Rs [Hoult and Lauterbur, 1979]. Generally,
the latter is the dominant source of noise. At this point, it is sufficient to take up
that – in the complex data domain – the noise is additive, stationary, uncorrelated
and normally distributed [Henkelman, 1985]. The noise in the corresponding real
and imaginary voxels is also assumed to be uncorrelated. Furthermore, the noise
has zero mean and variance:

σ2
k =

〈
V 2
n

〉
. (3.2)

Assuming that the noisy k-space data are processed using the linear and orthogonal
inverse Fourier reconstruction algorithm, the noise will have the same properties in
the (complex) image domain. However, the noise variance will be scaled by the
inverse of the number of k-space data points (Nk):

σ2
c =

σ2
k

Nk
. (3.3)

In practice, the story might become more complicated if users (or vendors) choose
for example for repeated measurements (NEX) or zero-filling. On the one hand,
averaging of repeated measurements to increase the SNR, will reduce the noise
variance with a factor NEX. On the other hand, zero-filling, which is often used
to increase the apparent spatial resolution or to extend the data length to a
power of two, will correlate the noise without changing any of the other properties.
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3.3. Single-channel acquisition

Furthermore, to avoid alias artifacts, low band-pass filtering is applied prior to
digitizing the received analogue MR signal. Because of these filters, the actual noise
variance will depend on imaging parameters such as FOV in the x and y-directions
(FOVx and FOVy), number of samples in the x and y-direction of the reconstructed
image (Nx and Ny), the sampling interval (∆t), and a factor depending on the
filter characteristics [Parker and Gullberg, 1990]:

σ2
c = K

NxNy
〈
V 2
n

〉
NEX FOV2

yFOV2
y∆t

. (3.4)

In that case, the noise variance might become spatially varying along the frequency
encoding direction.

Although all information is present in the complex data, it is common practice
to compute the magnitude image because they avoid the problem of phase shifts.
However, the computation of the magnitude is a nonlinear operation and therefore
the noise distribution is no longer Gaussian [Henkelman, 1985, Rice, 1944]. The
actual MR magnitude distributions are discussed in the following sections.

3.3 Single-channel acquisition

A single receiver quadrature detector generates a single, complex-valued k-space
that can be transformed into a single complex-valued image by the inverse Fourier
transform. Both the real and imaginary part of the image is corrupted with zero-
mean, normally distributed noise [Gudbjartsson and Patz, 1995]. The noisy image
intensity at location x is thus given by:

C(x) = C0(x) + εc(x)

= R0(x) + iI0(x) + εR(x) + iεi(x)

= R0(x) + εr(x)︸ ︷︷ ︸
real

+i (I0(x) + εi(x))︸ ︷︷ ︸
imaginary

,
(3.5)

with R0(x) and I0(x), respectively, the real and imaginary part of the noise-
free complex-valued signal C0(x). Furthermore, εr(x) and εi(x) are the real and
imaginary part of the complex-valued noise component εc(x). Following assumptions
regarding the noise terms are made for all x:

1. εr(x) ∼ N
(
0, σ2

c

)
2. εi(x) ∼ N

(
0, σ2

c

)
3. E [εr(x)εi(x)] = 0.

In words, the noise, independently added to both parts of the image, comes from
a white noise process with zero mean and standard deviation σc. The magnitude
image is calculated as the root sum-of-squares (SoS) of the real and imaginary part
of the complex image:

M0(x) = |C0(x)| =
√
R2

0(x) + I2
0 (x). (3.6)
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Figure 3.1: (solid line) PDF of Rice distributed variable with SNR=0, 2 and 5. The SNR
varied by changing m0 whereas σc was fixed to 1. (dashed line) Gaussian PDF with the
same mean and variance as the Rice distributed variable.

After adding noise, the computed magnitude becomes a random variable:

M(x) = |C(x)| =
√

(R0(x) + εr(x))
2

+ (I0(x) + εi(x))
2
, (3.7)

which is best described by its PDF [Bernstein et al., 1989]:

fm (m|m0, σc) =
m

σc
exp

(
−m

2 +m2
0

2σc

)
I0

(
mm0

σ2
c

)
, (3.8)

with m =M(x), m0 =M0(x), and I0 the zeroth order modified Bessel function
of the first kind [Rice, 1944]. For m0 = 0, the distribution – named after Stephen
O. Rice. – reduces to a Rayleigh distribution [Edelstein et al., 1984]:

fm (m|0, σc) =
m

σc
exp

(
−m

2

2σc

)
. (3.9)

Another asymptotic case of the Rice distribution is the normal distribution:

lim
m0→∞

fm (m|m0, σc) =
1√

2πσc
exp

(
− (m−m0)

2

2σ2
c

)
. (3.10)

For SNR values – defined as the ratio between m0 and σc – larger than five, the
Rice distribution is already well-approximated by a normal distribution with mean√
m2

0 + σ2
c and variance σ2

c (see Fig. 3.1) [Gudbjartsson and Patz, 1995]:

fm (m|m0, σc) ≈
1√

2πσc
exp

−
(
m−

√
m2

0 + σ2
c

)2

2σ2
c

 , (3.11)

The transition from the Rayleigh distribution to the normal distribution can
be observed in Fig. 3.2. For completeness, the moments (and derivatives) of the
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Figure 3.2: PDF of Rice distributed variables with varying m0 and fixed σc. Note that
the SNR is defined as the ratio between m0 and σc.

Rice distribution are discussed. The first and second raw moments of the Rice
distributed variable are given by

E [m] = σc

√
π

2
L1/2

(
−m

2
0

2σ2
c

)
(3.12)

and
E
[
m2
]

= 2σ2
c +m2

0, (3.13)

respectively. In Eq. (3.12), L1/2 () is the Laguerre polynomial of half order. The first
raw moment is better known as the mean or average. From Eq. (3.12) and Eq. (3.13),
the second central moment, also known as the variance, can be computed:

σ2
m = E

[
(m− E [m])

2
]

= E
[
m2
]
− E [m]

2

= 2σ2
c +m2

0 − σ2
c

π

2
L2

1/2

(
−m

2
0

2σ2
c

) (3.14)

The mean and variance of a Rice distributed variable, as a function of the SNR,
are shown in Fig. 3.3. The difference between E [m] and m0 equals the expectation
value of the error term εm = m−m0. From a parameter estimation’s point of view,
it is of utmost importance to grasp that the error term εm is no longer zero-centered
(see next chapter). The skewness and kurtosis are shown as well. Those plots were
experimentally obtained. Note that the mean of a Rice distributed variable always
exceeds its noise-free value, whereas the variance is always smaller than σ2

c .
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Figure 3.3: Mean (a), variance (b), skewness (c) and kurtosis (d) of a Rice distributed
variable as a function of SNR. SNR was changed by changing the underlying signal
intensity, while keeping the noise parameter constant, i.e. σc = 1.

3.4 Parallel MRI

Phased array coil technology has seen significant developments in the last decades.
The introduction of coil systems with a large number of channels, along with new
parallel imaging techniques has resulted in significant improvements in scan times
or SNR. The resulting magnitude MR data distribution, however, depends on
the reconstruction method that is used to combine the complex signals from all
independent channels [Dietrich et al., 2008]. In the next sections, it will be shown
that the Rician noise model only holds under well-defined cases.

3.4.1 Unaccelerated MR imaging

If L fully sampled k-spaces are recorded, the sum-of-squares (SoS) method is widely
used to combine the individual images into a single composite magnitude image
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3.4. Parallel MRI

with improved SNR:

M(x) =

√√√√ L∑
k=1

|Ck(x)|2, (3.15)

with L the number of receiver channels and Ck the complex image from the kth

channel. All Ck are assumed to be corrupted with zero-mean complex additive
Gaussian noise. If, in addition, the variance of noise at each coil is the same,
and the signals from the different coils are not correlated, then M(x) follows a
noncentral χ distribution, described by following PDF:

p(m|m0) =
mL

σ2
c

m1−L
0 exp

(
−m

2
0 +m2

2σ2
c

)
IL−1

(
m0m

σ2
c

)
, (3.16)

with m = M(x), m0 = M0(x) the noise-free composite magnitude signal and
IL−1 the (L− 1)th-order modified Bessel function of the first kind [Constantinides
et al., 1997]. The distribution has 2L degrees of freedom. Furthermore, note that
for L = 1, the distribution reduces to the Rice distribution. The PDF is shown
for L = 1, 2, 4, 8, 16 and 32 in Fig. 3.4. The mean of the noncentral χ distributed
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Figure 3.4: PDFs of noncentral χ distributed variables with varying L.

variable is

E [m] = βL 1F1

(
−1

2
, L,−m

2
0

2σ2

)
σ, (3.17)

with

βL =

√
π

2

(2L− 1)!!

2L−1(L− 1)!
=
√

2
Γ(L+ 0.5)

Γ(L)
, (3.18)

and 1F1(x) the confluent hypergeometric function. The variance of m equals

σ2
m = E

[
m2
]
− E [m]

2
= 2Lσ2 +m2

0 − β2
L 1F

2
1

(
−1

2
, L,−m

2
0

2σ2

)
σ2. (3.19)
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Chapter 3. MR data distribution

The mean, variance, skewness and kurtosis for L = 1, 2, 4, 8, 16 and 32 are shown
in Fig. 3.5.
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Figure 3.5: Mean (a), variance (b), skewness (c) and kurtosis (d) of a noncentral chi
distributed variables with varying L as a function of SNR. SNR was changed by varying
the underlying signal intensity, while keeping the σc constant.

Note that m can only be described by a noncentral χ with 2L degrees of freedom
if all the receiver antennae in the scanner have the same variance (σ2

c ) of noise and
there is no correlation between them. In that case, the covariance matrix Σ is a
diagonal matrix:

Σ = σ2
cIL, (3.20)

with IL the L× L identity matrix. However, noise correlations do exist, and they
can seriously affect the statistical distribution of data, especially for modern scan
systems with a large number of receiving coils. Therefore, in practice, the proposed
noncentral χ model is, in general, inaccurate [Aja-Fernández and Tristán-Vega,
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3.4. Parallel MRI

2012]. Let us assume a more general covariance matrix:

Σ =


σ2

1 σ2
12 · · · σ2

1L

σ2
21 σ2

2 · · · σ2
2L

...
...

...
σ2
L1 σ2

L2 · · · σ2
L

 . (3.21)

The off-diagonal elements stand for the correlations between the respective pair
of coils. Although the actual PDF can no longer analytically be expressed, it has
been shown that the PDF is still well-approximated by a noncentral χ distribution
[Aja-Fernández and Tristán-Vega, 2012]. The number of degrees of freedom will,
however, be reduced due to the correlations. Therefore, the composite magnitude
data is assumed to be noncentral χ distributed with an effective parameterization:
effective noise level σeff and effective number of receiver coils: Leff . Both effective
parameters are calculated as:

Leff =
m2

0 tr (Σ) + (tr (Σ))
2

cHΣc+ ‖Σ‖2F
(3.22)

and
σ2

eff =
tr (Σ)

Leff
, (3.23)

with c = [C1 (x) , · · · , CL (x)]. As expected, the effective number of coils is lower
than the actual one due to the correlations. Furthermore, both effective parameters
depend on the underlying signal, and thus, are no longer spatially stationary.
However, in case of fully sampled k-space data, or in other words unaccelerated
data acquisition, the {σ2

i : i = 1, ..., L} is still assumed to be independent of the
spatial location x. Therefore, tr (Σ) =

∑L
i=1 σ

2
i is spatially stationary and, as such,

Leffσ
2
eff is a constant as well [?].

3.4.2 Accelerated MR imaging
The acquisition time is an important issue in a clinical setting. With the evolution
of parallel MRI (pMRI), a decrease in acquisition time can be achieved without
the need of compromising in spatial resolution or image contrast. pMRI takes full
advantage of spatial sensitivity information inherent in an array of multiple receiver
coils to partially replace spatial encoding. Indeed, only a fraction of phase-encoding
steps needs to be acquired. However, reconstruction methods have to be used
to suppress the aliasing and underlying artifacts created by the subsampling of
the k-space. The most widely used reconstruction algorithms are SENSE and
GRAPPA. Both techniques were already briefly introduced in Chapter 1. In this
subsection, a more in-depth description of their implications on the noise properties
will be given.

3.4.2.1 SENSE

All aliased complex images Csi with i = 1, · · · , L are assumed to be corrupted with
uniform zero-mean complex additive Gaussian noise. The covariance matrix Σs
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Chapter 3. MR data distribution

describes the levels and correlation of noise in the aliased complex images. Eq. (3.3)
showed that the noise variance in the complex images is inversely proportional to
the number of k-space samples. A reduction of the number of k-space samples by
a factor R, will scale the noise variance by the same factor. Therefore,

Σs = RΣ, (3.24)

with Σ defined as in Eq. (3.21). As explained in section 1.5.1, the SENSE algorithm
can be seen as an unfolding technique that reconstructs a single unaliased complex
image C by linearly combining all aliased complex images. Owing to the linearity
of the SENSE algorithm, that reconstructed image C is also disturbed by zero-
mean complex additive Gaussian noise. Consequently, each point of the associated
magnitude image follows a Rice distribution. The noise variance, however, is no
longer spatially uniform [Pruessmann et al., 1999]. Let us recall Eq. (1.25):

ĉ =
(
SHΣs

−1

S
)−1

SHΣs
−1

cs (3.25)

Consequently, the R×R covariance matrix of ĉ can be computed as follows:

cov(ĉ) =

[(
SHΣs

−1

S
)−1

SHΣs
−1

]
Σs−1

[(
SHΣs

−1

S
)−1

SHΣs
−1

]H
=
(
SHΣs−1

S
)−1

(3.26)

Since SH is spatially varying, so will the variance of the reconstructed variables
be. Since signals ĉ = {Ĉ(x, yi) : i = 1, · · · , R} are basically different linear
combinations of the same Gaussian variables, they will be strongly correlated. The
standard deviation σsc of the SENSE-reconstructed signal at locations (x, yi) with
i = 1, · · · , R can be related to the standard deviation σc of the signal without
subsampling:

σsc(x, yi) =
√
Rg(x, yi)σc(x, yi), (3.27)

with g a spatially varying geometry factor, which is calculated as:

g(x, yi) =

√[(
SHΣs−1S

)−1
]
i,i

[
SHΣs−1S

]
i,i

(3.28)

3.4.2.2 GRAPPA

In GRAPPA, the missing lines in the subsampled k-spaces are estimated by a linear
combination of recorded k-space samples drawn from all coil elements. In Eq. (1.27),
completing the k-spaces was written as a convolution of the undersampled k-spaces
with a set of GRAPPA reconstruction kernels. Afterwards, L complex images with
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full FOV are reconstructed by applying the inverse Fourier transformation:

Ĉk = F−1

[
L∑
i=1

Ksi ⊗wki
]

=

L∑
i=1

F−1 [Ksi ⊗wki]

=

L∑
i=1

F−1 [Ksi ]×F−1 [wki]

=

L∑
i=1

Csi ×Wki,

(3.29)

withWki an inhomogeneous interpolation matrix [Breuer et al., 2009]. The variances
and inter-coil correlations for {Csi : i = 1, · · · , L} are again given by Σs, defined in
Eq. (3.24). The weighted sum of normally distributed variables is also normally
distributed. As such, Ĉk is disturbed by zero-mean Gaussian noise, whose variance
is spatially variable and not constant across the different complex images. Indeed,
the covariance matrix of Ĉk at location (x, y) is given by:

Σ′(x, y) = Wki(x, y)ΣsWH
ki (x, y), (3.30)

Due to the coil-dependency of the noise variance and their correlations, the magni-
tude data

M̂(x, y) =

√√√√ L∑
k=1

|Ĉk(x, y)|2, (3.31)

cannot strictly be modeled by a noncentral χ distribution with 2L degrees of
freedom. Again, an effective parameterization is needed to approximate the actual
data distribution with a noncentral χ model [Aja-Fernández et al., 2011]. The
effective parameters are now given by:

Leff =
m2

0 tr (Σ′) + (tr (Σ′))
2

ĉHΣ′ĉ+ ‖Σ′‖2F
(3.32)

and
σ2

eff =
tr (Σ′)

Leff
, (3.33)

with ĉ =
[
Ĉ1 (x, y) , · · · , ĈL (x, y)

]
and m0 = M̂0(x, y). Note that the calculation

of the effective parameters requires the knowledge of the noise-free coil images
and the GRAPPA kernels. Therefore, it is still very challenging to parametrically
describe multichannel MR data if GRAPPA has been used in combination with
SoS.
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Chapter 4. A theoretical introduction to parameter estimation

4.1 Introduction

The diffusion models, described in Chapter 2, are mathematical relations that
describe the diffusion-weighted MR images in terms of diffusion parameters. By
using such models, interesting diffusional properties of the object under study
can be obtained by estimating the diffusion parameters from a series of acquired
diffusion-weighted MR images. However, acquired MR signals are disturbed by
noise and are, as such, random variables. The random variable is best described by
its probability distribution function (PDF) over the continuous range of its possible
outcomes. In Chapter 3, the PDFs describing the intensity of magnitude MR images
were discussed. In this chapter, a more general introduction to estimators, i.e.
methods to extract information about model parameters from noisy measurements,
is given. Popular examples of such estimators are the least squares (LS) estimator
and the maximum likelihood (ML) estimator. The general properties of both
estimators, their strengths, and limitations will be discussed. Interested readers
are referred to van den Bos [2007] for further reading.

4.2 Properties of estimators

4.2.1 Accuracy and precision

We will consider an estimator θ̂N of an underlying parameter θ0 based on N
measurements. The accuracy of an estimator is high if the estimated value is on
average close to the true value. The distance from the average value to the true
value, or in other words the systematic estimation error, is called the bias:

bias
(
θ̂N

)
= E

[
θ̂N

]
− θ0 (4.1)

in which E [] denotes the expectation operator. A good estimator has a high
accuracy and thus a low, preferably zero, bias. The estimator is called unbiased if
the bias is zero for a finite N . Furthermore, the estimator is called asymptotically
unbiased if

lim
N→∞

E
[
θ̂N

]
= θ0 (4.2)

The precision, on the other hand, relates to the average spread of the outcomes
of the estimator. The precision of an estimator is generally quantified by its
variance, i.e. the diagonal elements of the covariance matrix of the estimator:

cov
(
θ̂N

)
= E

[(
θ̂N − E

[
θ̂N

])(
θ̂N − E

[
θ̂N

])T]
. (4.3)

Note that the estimator’s variance is the expectation value of the square of the
residual of the estimated values. Obviously, a high precision, or low variance,
is also a property of a good estimator. An overarching measure to compare the
performance, comprising both accuracy and precision, of different estimators is the
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4.3. Maximum likelihood estimator

mean squared error (MSE):

MSE
(
θ̂N

)
= E

[
‖θ̂N − θ0‖2

]
=
∑
i

var(θ̂
(i)
N ) +

∑
i

bias(θ̂
(i)
N )2,

(4.4)

with (·)(i) the ith component of the vector.

4.2.2 Properties
Consistency: An estimator is (weakly) consistent if for every δ > 0,

lim
N→∞

Pr
[∥∥∥θ̂N − θ0

∥∥∥ > δ
]

= 0, (4.5)

with Pr [] being the probabilty. A (weakly) consistent estimator is thus
not only asymptotically unbiased. Its variance also converges to zero with
N →∞. The property, however, does not guarantee unbiasedness for finite
N .

Efficiency: If within the family of unbiased estimators, θ̂N has the highest
precision, then θ̂N is called efficient. An efficient estimator has thus the
smallest MSE, compared to all other unbiased estimators. Note, however,
that a biased estimator might have a higher precision.

Normality: If the outcomes of the estimator are normally distributed, the
estimator is called normal.

If efficiency or normality is only true for N →∞, the estimator is called asymptot-
ically efficient or asymptotically normal, respectively.

4.3 Maximum likelihood estimator

Assuming the probability distribution function of variable y is known and given by
py(y|θ) with θ as set of parameters, then a general estimation method with optimal
(asymptotical) statistical properties, both in terms of accuracy and precision can
be developed. The method is known as the maximum likelihood estimator. The
maximum likelihood estimator is the maximizer of the likelihood function (L),
which has close relation to the probability distribution function. Nevertheless, both
functions are fundamentally different. The likelihood function of parameter vector
θ given a measurement y equals the probability of the measurement, given θ:

L (θ|y) = py(y|θ) (4.6)

As such, the likelihood function is a function of the model parameters, whereas the
probability distribution function is a function of the measurements. Loosely speak-
ing, the maximum likelihood estimator tries to determine the model parameters
that generate a probability distribution function for which the measurements were
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the most probable data. Given a series of measurement y the maximum likelihood
estimator maximizes the joint (log)likelihood function:

θ̂N = arg max
θ

N∏
i=1

L (θ|yi)

= arg max
θ

N∑
i=1

logL (θ|yi)
(4.7)

Both expressions leads to the same outcome since the logarithmic function is
monotonically increasing. However, the maximization of the loglikelihood function
is more convenient because nonlinear optimization tools are commonly needed
to solve Eq. (4.7). Note that nonlinear optimization tools might suffer from poor
convergence due to the local maxima.

If the detailed knowledge of py(y|θ) is known, the maximum likelihood estimator
hold the attractive property that for N tending to infinity,

θ̂N → N
(
θ0,J

−1
)
, (4.8)

with J the Fisher information matrix:

Jij = E

[
− ∂2

∂θiθj
log py(y|θ)

∣∣∣∣
θ=θ0

]
(4.9)

The estimator θ̂N thus converges in distribution to a normal distribution, centered
around θ0, the vector of noise-free model parameters. Furthermore, the covariance
matrix reaches asymptoically the Cramér-Rao lower bound (CRLB), i.e. the
minimal achievable variance of all unbiased estimators θ̂′N :

cov
(
θ̂′N

)
≥ J−1. (4.10)

Therefore, the maximum likelihood estimator is:

1. asymptotically normal

2. asymptotically unbiased

3. asymptotically efficient

4. consistent

However, one must conclude that there is no guarantee for unbiased and minimum
variance estimators for finite N .

In the next section, another popular class of estimators, i.e. the least squares
estimators, will be discussed. Furthermore, its relation to the maximum likelihood
estimator will be given.
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4.4 Least squares estimators

A general form of models describing the relationship between a dependent variable
(y) and one or more independent variables (x) is

y = h (x,θ0) + ε, (4.11)

with h an arbitrary function, θ0 the vector of noise-free model parameters and ε
an error term with a particular probability distribution function. In general, x is
assumed to be measured noise-free, whereas y is noise disturbed. The method of
least squares is typically used to obtain an estimate the unknown model parameters,
θ̂N , on the basis of a set of noisy measurements, i.e. {(xi, yi) : i = 1, ..., N}. A
least squares estimator results in θ̂N that minimizes the sum of squared residual, e:

θ̂N = arg min
θ

N∑
i=1

(yi − h(xi,θ))
2

= arg min
θ

N∑
i=1

(ei)
2
. (4.12)

Note the subtle, though important, difference between residuals (e) and errors (ε):

ε = y − h(x,θ0), (4.13)

whereas
e = y − h(x, θ̂N ), (4.14)

To study the properties of the least squares estimator, a distinction between linear
and nonlinear least squares estimators should be made.

4.4.1 Linear least squares

4.4.1.1 Ordinary linear least squares

Let’s assume that the relationship between y and θ is linear, and as such, can be
written as:

y = f (1) (x) θ1 + f (2) (x) θ2 + · · ·+ f (n) (x) θn + ε, (4.15)

with f (i) (x) , i = 1 · · ·n, with n being the number of model parameter, an arbitrary
function of x. Then, the linear least squares estimator (Eq. (4.12)) can be written
in matrix form:

θ̂N =
(
XTX

)−1
XTy, (4.16)

with

X =


f (1) (x1) f (2) (x1) · · · f (n) (x1)

f (1) (x2) f (2) (x2) · · · f (n) (x2)

...
...

...
f (1) (xN ) f (2) (xN ) · · · f (n) (xN )

 and y =


y1

y2

...
yn

 . (4.17)

The design matrixX is an N×n matrix and the data vector y an N×1 vector. The
solution only exists if X has full column rank. In that case, the inverse of

(
XTX

)
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exists, and the estimator will have a unique solution. Due to the random noise
disturbations, the estimator’s outcome is also a random variable, which statistical
properties must be evaluated to interpret the strengths and limitations of the linear
least squares estimator.

Accuracy Substituting y in Eq. (4.16), by

y = Xθ0 + ε, (4.18)

results in

θ̂N =
(
XTX

)−1
XT (Xθ0 + ε) = θ0 +

(
XTX

)−1
XT ε, (4.19)

The estimator is unbiased if its expectation value equals the noise-free value,
i.e. E

[
θ̂N

]
= θ0. Assuming that X are not random variables, the equality

only holds under the condition of zero-centered error terms, or equivalently, if
{E [εi] = 0 : i = 1, ..., N}.

Precision The covariance matrix of an unbiased estimator θ̂N is given by:

cov
(
θ̂N

)
= E

[(
θ̂N − θ0

)(
θ̂N − θ0

)T]
= E

[(
XTX

)−1
XT εεTX

(
XTX

)−1
]
.

(4.20)

If ε is a vector of independent, identically and zero-mean distributed error terms,
then

E
[
εεT

]
= σ2IN , (4.21)

with IN the N ×N identity matrix and σ2 the variance of {εi : i = 1, ..., N}, then
Eq. (4.20) simplifies to:

cov
(
θ̂N

)
= σ2

(
XTX

)−1
. (4.22)

Hence, Eq. (4.22) only holds if ε is homoscedastic, i.e. all random variables in the
vector have the same variance σ2. If this assumption does not hold, or equivalently
if ε is heteroscedastic, the linear least squares estimator as defined in Eq. (4.16)
cannot be the best linear unbiased estimator, i.e. the most precise estimator within
the class of unbiased linear estimators. By taking the varying variances into account,
the estimator will obtain improved statistical properties.

4.4.1.2 Weighted linear least squares

In linear least squares estimator, the sum of squared residuals is minimized. Hereby,
all residuals are weighted equally. However, if the assumption of homoscedasticity
does not hold, the introduction of different weighting for each measurement will
allow the design of a more precise estimator – the weighted linear least squares
estimator. The closed-form solution of the weighted linear least squares estimator
is:

θ̂N =
(
XTWX

)−1
XTWy, (4.23)

wih W an N × N weight matrix. Note that if W = IN , Eq. (4.23) reduces to
Eq. (4.16). Again, the accuracy and precision of the estimator needs to be evaluated.
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Accuracy Analogue to Eq. (4.19), the weighted linear least squares estimator
can be rewritten as:

θ̂N = θ0 +
(
XTWX

)−1
XTWε. (4.24)

Under the assumption that W is deterministic, the estimator is still unbiased if all
error terms have zero expectation (cf. linear least squares estimator).

Precision The covariance matrix of θ̂N , assumed to be unbiased, is now given
by:

cov
(
θ̂N

)
= E

[(
XTWX

)−1
XTWεεTWX

(
XTWX

)−1
]
. (4.25)

If W = E
[
εεT

]−1, i.e. the inverse covariance matrix of the error terms, Eq. (4.25)
reduces to:

cov
(
θ̂N

)
=
(
XTWX

)−1
. (4.26)

It has been proven that the weighted linear least squares estimator with this
particular choice of weights is the best linear unbiased estimator.

4.4.2 Nonlinear least squares

Often, function h in Eq. (4.11) cannot be expressed as a linear combination of the
model parameters (cf. Eq. (4.15)). In that case, model parameters can no longer be
determined by linear least squares estimators. There is a need for an alternative,
more general method of estimation: nonlinear least squares. The nonlinear least
squares estimator is defined as the minimizer of the sum of squared residuals
(Eq. (4.12)). The estimator’s outcome θ̂N meets:

N∑
i=1

[
yi − h(xi, θ̂N )

] ∂h(xi,θ)

∂θ

(
θ = θ̂N

)
= 0. (4.27)

The solution must be calculated iteratively. Compared to closed-form linear coun-
terparts, the nonlinear least squares estimator is prone to get stuck in local optima
rather than reaching the global optimum. Under some more general assumptions, it
can be shown that the nonlinear least squares estimator is asymptotically unbiased
if:

1. Conditional mean: if h(xi,θ0) = E [yi|xi] for i = 1, · · · , N . Given Eq. (4.11),
it follows from this condition that the error term will again be zero-centered.

2. Uniqueness: the estimator has a unique solution, or equivalently, there does
not exist a parameter vector θ 6= θ0 such that h(xi,θ) = h(xi,θ0) for all xi.

If the error terms are heteroscedastic, proper weighting of the squared residuals will
increase the precision of the estimator (cf. weighted linear least squares estimators).
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4.4.3 Maximum likelihood v. least squares estimators
Consider following model:

yi = h (xi,θ0) + εi with i = 1, · · · , N, (4.28)

and let us assume the error terms εi all to be independent Gaussian random
variables having zero-mean and variance σ2

i . The PDF is then given by:

fε (εi) =
1√

2πσi
e
− ε2i

2σ2
i (4.29)

Substiting εi by yi − h(xi,θ0) in Eq. (4.29), results in a PDF for the measured
variable yi:

fy (yi) =
1√

2πσi
e
− (yi−h(xi,θ0))2

2σ2
i . (4.30)

The joint PDF is given by:

fy (y) =

N∏
i=1

1√
2πσi

e
− (yi−h(xi,θ0))2

2σ2
i . (4.31)

Obviously, the joint likelihood function then becomes

L (θ|y) =

N∏
i=1

1√
2πσi

e
− (yi−h(xi,θ))

2

2σ2
i . (4.32)

Maximizing Eq. (4.32) over θ leads to the same argument as minimizing− logL (θ|y)
over θ. The maximum likelihood estimator can thus be written as:

θ̂N = arg min
θ

N∑
i=1

− logL (θ|yi)

= arg min
θ

N∑
i=1

− log
1√

2πσi
e
− (yi−h(xi,θ))

2

2σ2
i

= arg min
θ

N∑
i=1

log 2π

2
+ log σi +

(yi − h(xi,θ))
2

2σ2
i

(4.33)

Since the first two terms on the right hand side are not functions of θ and the fact
that the estimator is scale invariant, the estimator can further be simplified:

θ̂N = arg min
θ

N∑
i=1

(yi − h(xi,θ))
2
i

σ2
i

= arg min
θ

N∑
i=1

wii (yi − h(xi,θ))
2
,

(4.34)

with wii = 1
σ2
i
. The last expression is the same as the weighted least squares

estimator. One can thus conclude that for N measurements that are described by a
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4.4. Least squares estimators

joint Gaussian distribution, the maximum likelihood estimator is given by a weighed
least squares estimator for which the weight terms are the inverse of the variance
of respective the measurement. Consequently, the best linear estimator can only
be the minimum variance estimator if the error terms are Gaussian distributed.
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5.1 Introduction

Diffusion magnetic resonance imaging (dMRI) is currently the only method for in
vivo and non-invasive quantification of water diffusion in biological tissue [Le Bihan
and Johansen-Berg, 2012]. Several diffusion models have been proposed to obtain
quantitative diffusion measures, which could provide novel information on the
structural and organizational features of biological tissues, the brain white matter
(WM) in particular. Typical examples of such diffusion models are diffusion
tensor imaging (DTI; [Basser et al., 1994b]) and diffusion kurtosis imaging (DKI;
[Jensen et al., 2005]). Both diffusion models have in common that they can be
linearized by the natural log-transformation for computing the model parameters.
Unsurprisingly, the class of least squares (LS) estimators – both linear and nonlinear
– is very popular in diffusion MRI. Indeed, many widely used software packages
(e.g., ExploreDTI v4.8.2 [Leemans et al., 2009], FSL v5.0.1 [Jenkinson et al., 2012],
Tortoise v1.3.1 [Pierpaoli et al., 2010], Camino [Cook et al., 2006], Slicer v4.2.1
[Pieper et al., 2006]) and, as such, numerous researchers working in the field of
dMRI, adopted those least squares estimators. In this chapter, we will introduce and
compare different least squares estimators in terms of accuracy and precision. By
doing so, we aim to obtain more insight in the strengths, limitations, and potential
pitfalls of this simple, though elegant, class of diffusion parameter estimators.

5.2 b-matrix

Both the DTI and DKI model – given by Eq. (2.25) and Eq. (2.35), respectively,
can be written as:

S(B,β) = exp(Bβ), (5.1)

or, alternatively
lnS(B,β) = Bβ, (5.2)

with S(B,β) the N model evaluations given B, a model-specific design matrix cov-
ering all diffusion gradient information, i.e. unit-length diffusion gradient directions
({[ĝix, ĝiy, ĝiz]T : i = 1 · · ·N}) and diffusion strengths ({bi : i = 1 · · ·N}). The
design matrix is typically called the b-matrix [Mattiello et al., 1997]. Furthermore, β
is the diffusion model’s parameter vector, including all independent tensor elements
and the noise-free nondiffusion-weighted signal S0(0). For DTI, β is given by:

β = [lnS0(0), Dxx, Dxy, Dxz, Dyy, Dyz, Dzz]
T
, (5.3)

whereas for DKI, the parameter vector β is given:

β =
[
lnS0(0), Dxx, Dxy, Dxz, Dyy, Dyz, Dzz, K̃xxxx, K̃xxxy, · · ·

K̃xxxz, K̃xxyy, K̃xxyz, K̃xxzz, K̃xyyy, K̃xyyz, K̃xyzz, · · ·

K̃xzzz, K̃yyyy, K̃yyyz, K̃yyzz, K̃yzzz, K̃zzzz

]T (5.4)
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5.3. Non-linear Least Squares estimator

Although several closely related definitions do exist for the b-matrix, B must be
defined as following N × 7 matrix:

B =


1 −b1ĝ21x −2b1ĝ1xĝ1y −2b1ĝ1xĝ1z −b1ĝ21y −2b1ĝ1y ĝ1z −b1ĝ21z
1 −b2ĝ22x −2b2ĝ2xĝ2y −2b2ĝ2xĝ2z −b2ĝ22y −2b2ĝ2y ĝ1z −b2ĝ22z
...

...
...

...
...

...
...

1 −bN ĝ2Nx −2bN ĝNxĝNy −2bN ĝNxĝNz −bN ĝ2Ny −2bN ĝNy ĝNz −bN ĝ2Nz

 .

for DTI, whereas, for DKI, the b-matrix needs to be extended to an N × 22 matrix. More
specifically, the nth row of the B must be complemented with:

b2n
6

[
ĝ4nx 4ĝ3nxĝny 4ĝ3nxĝnz 6ĝ2nxĝ

2
ny 12ĝ2nxĝny ĝnz 6ĝ2nxĝ

2
nz 4ĝnxĝ

3
ny · · ·

12ĝnxĝ
2
ny ĝnz 12ĝnxĝny ĝ

2
nz 4ĝnxĝ

3
nz ĝ4ny 4ĝ3ny ĝnz 6ĝ2ny ĝ

2
nz 4ĝnyg

3
nz ĝ4nz

]
.

5.3 Non-linear Least Squares estimator

Consider a set of N independently Rice distributed diffusion-weighted signals S̃.
Now, S̃ can be modeled as:

S̃ = exp (Bβ0) + ε, (5.5)

with β0 the underlying model parameter vector and ε the column vector with inde-
pendent error terms. Obviously, the number of independent observations/equations
(N) must be greater than or equal to the number of model parameters (7 for DTI
and 22 for DKI). If so, the model parameter vector β can be estimated by the
minimization of the sum of squared deviations about the model predictions:

β̂ = arg min
β
‖S̃ − exp (Bβ) ‖22, (5.6)

The estimator has no closed-form solution and needs to be solved iteratively until
convergence. A typical algorithm to tackle such optimization problems is the
Levenberg-Marquardt algorithm. Such iterative optimizers are prone to get stuck in
local minima. Therefore, it is important to have a proper initialization. Commonly,
(weighted) linear least squares estimators are chosen for this purpose.

5.4 Linear Least Squares estimator

Given the linearized DTI/DKI model:

ln S̃ = Bβ0 + ε∗, (5.7)

the linear least squares (LLS) estimator of β is:

β̂ =
(
BTB

)−1
BT ln S̃. (5.8)

The estimator has a unique closed-form solution if the design matrix has full column
rank. It is well recognized that the log-transformed diffusion-weighted signals are
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Figure 5.1: The expectation value (a) and variance (b) of the error term before and after
linearization by taking the natural logarithm of the Rice distributed variables is shown as
a function of the SNR. In the log-Rice framework, the residuals have zero expectation
if SNR> 2. The variance, on the other hand, is then well-approximated by SNR−2.
Both curves indicate the potentially high accuracy and precision of WLLS. In the Rice
framework, the slow convergence to null expectation reduces the accuracy of the NLS
estimator.

heteroscedastic [Basser et al., 1994a, Koay et al., 2006, Salvador et al., 2005].
Therefore, a weighted linear least squares (WLLS) approach with well-defined
weights, i.e. the inverse of the log-transformed signals’ variances, is expected
to provide more precise diffusion parameter estimates, at least, compared to its
unweighted linear alternative.

5.5 Weighted Linear Least Squares estimator

Salvador et al. [2005] also showed that the variance of ε∗ depends on the respective
noise-free signals (see Fig. 5.1b):

V ar(ε∗) ≈
[

σ2
c

S2
0(B1∗)

, ...,
σ2
c

S2
0(BN∗)

]
, (5.9)

with S0(B) = {S0(Bi∗) : i = 1, ..., N} the noise-free diffusion-weighted signals and
σc the noise level if SNR exceeds two for each datum. The best linear unbiased
estimator (BLUE) of β, i.e. the estimator with the highest precision within the
class of unbiased linear estimators, can only be designed by including weights
that equal the (scaled) reciprocal of the variance of the corresponding error terms
(Eq. (5.9)):

β̂ =
(
BTWB

)−1
BTW ln S̃, (5.10)

with
W = diag

(
S2

0(B)
)
. (5.11)
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Obviously, the noise-free diffusion-weighted signals are not known and, as such,
the weight matrix W needs to be estimated. Different ways to approximate the
theoretically optimal weights have been presented [Basser et al., 1994b, Salvador
et al., 2005] and adopted by the community. However, most often, information
on the weighting is not provided in scientific reports or software documentation.
Nonetheless, suggested approaches are:

(a) WLLS1: W̃ = diag
(
S̃2
)
, the weight are the squares of the respective noisy

diffusion-weighted signals [Basser et al., 1994a, Koay et al., 2006];

(b) WLLS2: W̃ = diag
(

exp
(

2Bβ̂LLS

))
, the weights are the preliminary esti-

mates of S2(b, g), reconstructed from the LLS estimate of β [Salvador et al.,
2005].

The subindices of WLLS indicate that (a) and (b) are single-step and dual-step
strategies, respectively. The estimation ofW can iteratively be improved [Salvador
et al., 2005]. The weight matrix for the nth iteration is given by the predicted
diffusion-weighted signals from the previous estimate of the diffusion model param-
eters (β̂n−1):

W̃n = diag
(

exp
(

2Bβ̂n−1

))
. (5.12)

This iterative WLLS can be initialized by (a) or (b), which will be referred to as
IWLLS1 and IWLLS2, respectively.

5.6 Strengths, limitations, and pitfalls

5.6.1 General comment

Let’s start with a shot from the hip: a drop in accuracy is the price to pay when
using ordinary least squares estimators in diffusion MRI. The SNR dependent
difference between the expectation value of a Rice – or more generally, a noncentral
χ – distributed value and its underlying noise-free value causes inaccuracies in the
estimation of the diffusional tensors. Since the SNR of the dMRI signals depends
on factors such as diffusion gradient direction, b-value, diffusivity, and diffusion
anisotropy, the so-called noise bias is omnipresent in quantitative dMRI. Indeed,
many noise artifacts have been discussed earlier. For example, the (directional)
diffusivity coefficients will be underestimated. The lower the SNR of the diffusion-
weighted signals, the stronger the underestimation will be. Since a low SNR can
result from a high b-value and/or a high direction diffusivity, one can immediately
conclude that the noise bias will be more expressed at high b-values or along
the gradient direction with the highest diffusivity. Indeed, axial diffusivity will
more strongly be underestimated compared to radial diffusivity. Therefore, an
underestimation in FA is a direct consequence (see Fig. 5.2). This phenomenon is
often referred to as squashing the ADC1 peanut [Jones and Basser, 2004]. However,
for low anisotropy factors, overestimation of FA was observed previously [Pierpaoli

1ADC: apparent diffusion coefficient
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Figure 5.2: Average ADC profiles estimated using different least squares estimators. The
squashing the ADC peanut strongly depend on the used estimator. Theoretically, the
(weighted) linear least squares estimators have the potential to be more accurate than
the nonlinear least squares estimator. However, its actual accuracy will depend on the
selected weight terms. The SNR is here defined as the ratio of the nondiffusion-weighted
signal and the noise level. The SNR of the diffusion-weighted images are inherently lower
and will depend on the gradient direction.

and Basser, 1996]. The increase in FA originates in the eigenvalue repulsion, which
is a general noise effect rather than a consequence of the elevated expectation value
of the noncentral χ distribution. The b-value dependency of the noise bias, on
its turn, lead to an overestimation of the directional kurtosis coefficients [Veraart
et al., 2011]. Even a quick look at Fig. 5.2 already suggests the importance of a
well-considered choice of the diffusion parameter estimator. Indeed, in terms of
accuracy, the different estimators shows different behavior. At first glance, the
LLS appears more accurate in the estimation of the diffusion tensor, compared
to NLS. Furthermore, the weighting strategy in case of WLLS highly impact the
estimators’ performance. After some theoretical considerations, simulation and real
data experiments are done to evaluate the different estimation strategies.

5.6.2 Theoretical considerations

Salvador et al. [2005] derived an analytical expression for the expectation value
of the error term, given that the linearized diffusion model is fitted to the natural
logarithm of Rice distributed diffusion-weighted measurements (S̃). The probability
distribution function (PDF) of an arbitrary Rice distributed variable m is given by
Sijbers et al. [1998]:

fm (m|m0, σ) =
m

σ2
exp

(
−m

2 +m2
0

2σ2

)
I0

(mm0

σ2

)
, (5.13)
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with m0 the noise-free signal, σ2 the noise variance, and I0 the zeroth order
modified Bessel function of the first kind. The PDF of the log-transformed variable
m∗ = ln (m) can be determined by substituting m in Eq. (5.13) by m∗:

fm∗ (m∗|m0, σ) = fm (exp(m∗)|m0, σ)
d exp(m∗)

dm∗

=
e2m∗

σ2
exp

(
−e

2m∗ +m2
0

2σ2

)
I0

(
em
∗
m0

σ2

)
.

(5.14)

The expectation value of m∗ is given by:

E [m∗] =

∞∫
−∞

m∗fm∗ (m∗|m0, σ) dm∗

=

∞∫
SNR2/2

1

t et
dt+ ln(m0),

(5.15)

with SNR = m0

σ . If the error term ε∗ is defined as m∗− ln(m0), then its expectation
value can immediately be derived:

E [ε∗] = E [m∗ − ln(m0)]

=

∞∫
SNR2/2

1

t et
dt+ ln(m0)− ln(m0)

=

∞∫
SNR2/2

1

t et
dt.

(5.16)

In Fig. 5.1a, E [ε∗] is shown for different SNR values. It can be seen that for
SNR> 2, the error term is zero-centered. The expectation value of ε = m−m0 is
given by:

E [ε] = σc

√
π

2
L1/2

(
−m

2
0

2σ2
c

)
−m0. (5.17)

In Fig. 5.1a, we also showed E [ε] as a function of the SNR. The expectation value
of the error terms is always larger than zero. Based on the comparison of both
curves, one might expect only the LLS to be unbiased, at least, if SNR> 2.

The SNR dependency of the variance of ε∗ cannot be ignored. To increase the
precision of the linear estimators, weights needs to be added to the LLS. However,
adding weights might lower the accuracy of the estimator. Indeed, the expectation
value of the error term of the WLLS, ε∗w, might be larger than zero, even with
SNR> 2:

E [ε∗w] = E [wε∗]

= E [w]E [ε∗] + σwσε∗corr (w, ε∗)

= σwσε∗corr (w, ε∗) ,

(5.18)

with σw and σε∗ the standard deviation of the weights and the unweighted error
term, respectively. Note that the last step only holds if SNR> 2, because then
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E [ε∗] = 0. If w is deterministic or uncorrelated to ε∗, then the WLLS will also
be unbiased. This, however, cannot be guaranteed in practice. Indeed, often the
weights are the diffusion-weighted signals themselves (cf. WLLS1). Due to the high
correlation with the unweighted error term, a bias will be introduced by weighting
the linear least squares estimator. Attempts to lower the σw or corr (w, ε∗) are
expected to give improved accuracy, at least compared to WLLS1. Therefore, one
might expect WLLS2 to be more accurate than WLLS1.

5.6.3 Experimental validation

5.6.3.1 Single voxel simulations

Monte Carlo simulations (50000 trials) were performed to evaluate the performance
of the different strategies in the estimation of FA, MD, and MK. In addition to the
linear estimators, the ordinary nonlinear least squares (NLS) estimator, initialized
by a guess through WLLS2, was evaluated. Throughout all experiments, FA and
MD were estimated with the DTI model, whereas the MK was estimated with the
DKI model. First, the accuracy and the precision of the different estimators were
evaluated as a function of the SNR of the Rician distributed nondiffusion-weighted
signals, that is, SNRb0

. Indeed, SNRb0
is here defined as the ratio between the

nondiffusion-weighted signal and the noise level (cf. Jones and Basser [2004]). Note
that the SNR of the diffusion-weighted signals are always lower because of the
diffusion-dependent signal attenuation. For the DTI model, the MD and FA were
set to 0.8× 10−3 mm2/s and 0.85, respectively. The b-value was 1000 s/mm2, and
60 gradient directions – isotropically distributed over a unit sphere using Coulomb’s
law of repulsion [Jones et al., 1999] – were used. We included five nondiffusion-
weighted signals. For the DKI simulations, additional diffusion-weighted signals
with b = 2500 s/mm2 were sampled along the same 60 directions. The MK was
defined as 1.05, which is in agreement with values typically observed in the corpus
callosum of the healthy human brain [Lätt et al., 2013]. Noisy synthetic data
were obtained by adding zero-mean complex Gaussian noise to the noise-free
diffusion-weighted signals, which were calculated from the ground truth tensors
using Eq. (5.1). The absolute value of the resulting complex noisy signals was taken
afterwards to obtain their magnitudes. First, in Fig. 5.3, the different estimators
are compared in terms of accuracy, precision, and MSE as a function of SNR−1b0

.
The FA, MD, and MK values – calculated from the average model parameters
to exclude nonlinear effects such as eigenvalue repulsion [Pierpaoli and Basser,
1996]– strongly vary across the different estimators (see Fig. 5.3(a-c)). Generally,
the NLS estimator shows a large difference to the reference values, compared to
the unweighted and weighted linear approaches. However, note that non-optimal
weighting strongly reduce the accuracy of the estimator. The practical WLLS
approaches, i.e. WLLS1 and WLLS2, show a lower accuracy than the LLS and
BLUE. Remarkably, the drop in accuracy is especially large for the WLLS1. While
the accuracy of the WLLS2 is only slightly lower than BLUE, the WLLS1 performs
even worse than the NLS in terms of accuracy. At very low SNR, e.g., due to
the use of high b-values, all least squares estimators are inherently biased. In
terms of precision (see Fig. 5.3(d-f)), all weighted linear estimators outperform the
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unweighted alternative. The LLS has low performance in terms of MSE because
of the low precision, whereas the high MSE of the WLLS1 results from its low
accuracy (see Fig. 5.3(g,h)). For the MSE in the estimation of MK (see Fig. 5.3(i)),
the low accuracy of the NLS and the WLLS1 is strongly counterbalanced by their
high precision. Therefore, both estimators have a relatively low MSE. Simulations
beyond these single-voxel experiments are needed to avoid overinterpretation of
that observation. In general, the differences between the estimators diminish with
increasing SNRb0

. The same could be observed by lowering b-value or simulated
diffusion coefficients. Second, we evaluated the influence of the number of gradient
directions per b-value shell on the accuracy of WLLS. Unlike the initial simulation
experiment, the SNRb0

was kept constant at the level of 20, whereas the number
of gradient direction per shell varied from 6 to 120 for DTI and from 15 to 120
for DKI. In Fig. 5.4, the influence of the number of gradient directions per b-value
shell on the accuracy of the different estimators is shown. The accuracy of the
WLLS2 increases steadily with increasing number of gradient directions due to
the increasing precision of the LLS estimator or, as such, the increasing precision
of the predicted diffusion-weighted signals. By contrast, with a low number of
gradient directions, the difference between the WLLS1 and the WLLS2 in terms of
accuracy vanishes due the reduced performance of the WLLS2. Third, the effect
of increasing the number of iterations (n) on the iterative WLLS approaches was
evaluated. Now, the SNRb0 was kept constant at the level of 20, whereas n varied
from one to ten. In Fig. 5.5, the effect of iterations on the performance of the
(I)WLLS estimators is shown. The graphs indicate that after a few iterations, both
IWLLS estimators already closely approximate the performance of the BLUE, in
terms of accuracy, precision, and MSE. The effect of the initial weighting matrix
already vanishes for n > 1. The same findings are observed for all diffusion metrics.

5.6.3.2 Whole brain simulations

Rice distributed simulation data sets, representing the whole human brain white
matter, rather than a single voxel, were used for comparing the MSE of the diffusion
parameters obtained by the different least squares estimators. The simulated data
sets were constructed as follows. First, ground truth tensors were obtained by
voxel-wise fitting the DKI model to a real data set (see section 5.6.3.3: Data
set 1). Second, a set of noise-free diffusion-weighted signals was reconstructed
from those diffusion tensors using the DTI and DKI model for the DTI and
DKI analyses, respectively. Gradient directions and b-values were in agreement
with the single-voxel experiments. Third, 5000 sets of noisy diffusion-weighted
signals with a uniform SNRb0 of 20 were generated by adding 5000 realizations
of complex Gaussian noise to the noise-free diffusion-weighted signals. From each
set, the diffusion tensors were estimated. From the 5000 trials, the accuracy
and precision of the different estimators were evaluated. In Fig. 5.6, scatter plots
show the relationship between the accuracy, precision and MSE in the estimation
of the diffusion model parameters of WLLS1 and WLLS2 against that of LLS.
Each point in the scatter plot corresponds to a single voxel of the simulated data
set. In Fig. 5.7, WLLS1 and WLLS2 are compared to NLS, whereas in Fig. 5.8,
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Figure 5.3: Simulation experiment 1: FA, MD, and MK calculated from the average model
parameters (a-c), the standard deviation (SD) of the estimated diffusion parameters (d-f),
and MSE in the estimation of FA, MD, and MK (g-i) are shown as a function of the
SNR−1

b0
for the different least squares estimators.
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Figure 5.4: Simulation experiment 2: FA, MD, and MK calculated from the averaged
model parameters are shown as a function of the number of gradient directions per b-value
shell for the different least squares estimators.

IWLLS1 and IWLLS2 are compared to their non-iterated counterparts. First, on
average, the WLLS1 has a significantly large bias in the estimation of the diffusion
model parameters, compared to the LLS, WLLS2, IWLLS1,2 (n = 5), and NLS.
Indeed, WLLS1 significantly underestimates FA and MD. The underestimation
is significantly larger than the underestimation of FA and MD observed for the
NLS. The NLS, on its turn, is significantly outperformed by the multi-step WLLS
approaches and the LLS in terms of accuracy in the estimation of the diffusion
tensor. Moreover, the one-sample Wilcoxon signed rank test demonstrated that
LLS, WLLS2, IWLLS1,2 are not significantly biased. For MK, similar conclusion
can be drawn. However, this time, all least squares estimators show a significant
overestimation of the MK. Again, LLS, WLLS2, and WLLS1,2 show significantly
higher accuracy compared to NLS and, especially WLLS1. Second, in terms of
precision, LLS is significantly outperformed by all of its weighted alternatives as
theoretically expected. In general, NLS showed higher precision in the estimation of
all diffusion parameters than the WLLS approaches. However, in the estimation of
MD and MK, the WLLS1 showed the highest precision. Third, on average, WLLS1

showed the highest MSE in the estimation of MD and MK in comparison to all
other estimators. The estimator with the least average MSE in the estimation of
MD was the WLLS2. For MK, WLLS2 was significantly outperformed by NLS,
which compensated its low accuracy by its high precision. The NLS also showed
the least MSE in the estimation of FA. The MSE in the estimation of FA, MD and
MK was significantly lower for WLLS2 in comparison to IWLLS2, whereas IWLLS1

had always significantly lower MSE than its non-iterated alternative. During these
simulations, statistical significance (p < 0.01) was always shown with a paired
Wilcoxon signed rank test.

5.6.3.3 Real data experiments

The following diffusion-weighted data sets of different healthy volunteers were
acquired:

85



Chapter 5. Ordinary least squares estimators

2 4 6 8 10
0.84

0.842

0.844

0.846

0.848

0.85

n

F
A

 

 

REF
LLS
NLS
BLUE
WLLS

1

WLLS
2

(a)

2 4 6 8 10

7.75

7.8

7.85

7.9

7.95

8

x 10
−4

n

M
D

 [m
m

2 /s
]

 

 

REF
LLS
NLS
BLUE
WLLS

1
WLLS

2

(b)

2 4 6 8 10
1.04

1.06

1.08

1.1

1.12

n

M
K

 

 

REF
LLS
NLS
BLUE
WLLS

1

WLLS
2

(c)

2 4 6 8 10
0.016

0.018

0.02

0.022

n

SD
 F

A

 

 

LLS
NLS
BLUE
WLLS

1

WLLS
2

(d)

2 4 6 8 10
2.65

2.7

2.75

2.8

x 10
−5

n

S
D

 M
D

 [m
m

2 /s
]

 

 

LLS
NLS
BLUE
WLLS

1

WLLS
2

(e)

2 4 6 8 10
0.11

0.115

0.12

0.125

0.13

0.135

n

SD
 M

K

 

 

LLS
NLS
BLUE
WLLS

1
WLLS

2

(f)

2 4 6 8 10

3

3.5

4

4.5

5x 10
−4

n

M
S

E
 F

A

 

 

LLS
NLS
BLUE
WLLS

1

WLLS
2

(g)

2 4 6 8 10
0.6

0.8

1

1.2

1.4

1.6x 10
−9

n

M
S

E
 M

D
 [m

m
4 /s

2 ]

 

 

LLS
NLS
BLUE
WLLS

1

WLLS
2

(h)

2 4 6 8 10
0.012

0.014

0.016

0.018

0.02

0.022

n

M
SE

 M
K

 

 

LLS
NLS
BLUE
WLLS

1
WLLS

2

(i)

Figure 5.5: Simulation experiment 3: FA, MD, and MK calculated from the average model
parameters (a-c), the standard deviation of the estimated diffusion parameters (d-f), and
MSE in the estimation of FA, MD, and MK (g-i) are shown as a function of the number
of iterations (n) for the different least squares estimators.
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Figure 5.6: Simulation experiment 4: Scatter plots show the relationship between the
bias, standard deviation and MSE in the estimation of the diffusion model parameters
of WLLS1 and WLLS2 against that of LLS. red circles: Initial weights of the WLLS
approaches are the squares of the respective noisy diffusion-weighted signals – green dots:
Initial weights are the predicted signal from an estimate of the diffusion model parameters,
obtained with the unweighted LLS estimator. The blue lines are unit-slope-lines.
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Figure 5.7: Scatter plots show the relationship between the bias, standard deviation and
MSE in the estimation of the diffusion model parameters of WLLS1 and WLLS2 against
that of NLS. red circles: Initial weights of the WLLS approaches are the squares of the
respective noisy diffusion-weighted signals – green dots: Initial weights are the predicted
signal from an estimate of the diffusion model parameters, obtained with the unweighted
LLS estimator. The blue lines are unit-slope-lines..
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Figure 5.8: Scatter plots show the relationship between the bias, standard deviation and
MSE in the estimation of the diffusion model parameters of IWLLS1 and IWLLS2 against
that of their respective non-iterated counterparts. red circles: Initial weights of the WLLS
approaches are the squares of the respective noisy diffusion-weighted signals – green dots:
Initial weights are the predicted signal from an estimate of the diffusion model parameters,
obtained with the unweighted LLS estimator. The blue lines are unit-slope-lines.
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Data set 1: A first diffusion-weighted data set was collected on a 3T Philips
Achieva MR scanner, using a 8-channel receiver head coil. Diffusion sensitizing
was applied along 60 isotropically distributed gradient directions with b =
1200 s/mm2 as well as b = 2500 s/mm2. Additionally, one image without
diffusion sensitization was acquired. Other imaging parameters were: TR/TE :
10265/107 ms; in-plane resolution: 1.75× 1.75 mm2; NEX: 1; slice thickness:
2 mm; axial slices: 70; and parallel imaging: SENSE with acceleration factor
2.

Data set 2: A second diffusion-weighted data set was acquired on a 1.5T
Siemens MR system using a single receiver coil [Leemans et al., 2006].
A gradient configuration with 60 isotropically distributed gradient direc-
tions with b = 700 s/mm2 was used. 10 nondiffusion-weighted images
were additionally acquired. Other acquisition parameters were as follows:
TR/TE : 8300/108 ms; in-plane resolution: 2×2 mm2; NEX: 1; slice thickness:
2 mm; and axial slices: 60.

Data set 3: A third diffusion-weighted data set was acquired on a Siemens Trio
(3T) MR scanner, using a 12-channel receiver head coil. Diffusion weight-
ing was applied along 60 isotropically distributed gradient directions with
b = 1000 s/mm2 as well as b = 2500 s/mm2. Additionally, 10 nondiffusion-
weighted images were acquired. Other imaging parameters were: TR/TE :
6100/118 ms, in-plane resolution: 2.5 × 2.5 mm2; NEX: 1; slice thickness:
2.5 mm; axial slices: 40; and parallel imaging: mSENSE with acceleration
factor 2.

The diffusion-weighted data were corrected for motion and eddy currents, including
signal modulation and b-matrix rotation [Leemans et al., 2009, Leemans and Jones,
2009]. Next, if the diffusion protocol met the minimal DKI requirements [Lu et al.,
2006], a DKI analysis was performed in addition to a DTI analysis. During the
DTI analyses, all high b-valued – b > 1500 mm2/s – diffusion-weighted images were
excluded. Since data set 2 has only one nonzero b-value shell, a DKI analysis was
not possible. FA and MD maps were calculated from the DTI analysis with the
optional DKI analysis also providing a MK map. The percentage differences in
the estimation of the diffusion parameters of the different estimators, compared
to a bronze standard were calculated. As a bronze standard, we adopted the
previously proposed parameter estimation framework, consisting of the estimation
of a (spatially varying) noise map (see Chapter 7) and an accurate parameter
estimator, i.e. the conditional least squares (CLS) estimator, which properly
accounts for the Rice distribution of all acquired diffusion-weighted data samples
(see Chapter 6). In Fig. 5.9, Fig. 5.10, and Fig. 5.11, the percentage differences in
the estimation of FA, MD, and MK of the different estimators, compared to the
bronze standard, are shown for a single slice of data set 1, 2, and 3, respectively.
For each data set, an axial slice composed out of white matter, (deep) gray matter,
and cerebrospinal fluid was selected to represent the anatomy of the human brain.
The bronze standard maps are shown for anatomical reference (left columns). In
general, the results are in-line with the simulation results. Indeed, the WLLS1

and the NLS significantly underestimate the diffusion tensor model parameters in
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Figure 5.9: Real data set 1: The percentage differences between the FA, MD, and MK
estimates for the least squares estimators and the bronze standard, i.e. an accurate
diffusion parameter estimation framework, which accounts for the Rice data statistics.
The bronze standard diffusion parameter maps are shown for anatomical reference (left
column)

both gray and white matter. In all cases, the error is significantly larger for the
WLLS1. In general, the LLS, WLLS2, and IWLLS1,2 show small underestimation
of FA and MD. However, it must be noted that for data set 1, a minimal, though
significant, overestimation of MD was observed. This observation might indicate a
slight underestimation of the spatially varying noise levels in the bronze standard.
Unsurprisingly, for all estimators, the overestimation of MK is significant due to the
low SNR of the high b-valued diffusion-weighted images. Again, the overestimation
is significantly larger for the WLLS1, compared to all others. The NLS showed
significantly higher error in the estimation of MK than the LLS, WLLS1, and
IWLLS1,2. The paired Wilcoxon signed rank test was always applied to evaluate
the pairwise difference between two estimators. The statistical tests included all
white and/or gray matter voxels.

5.7 Discussion

The DTI and DKI model are both log-linear models. Hence, the unknown model
parameters can be estimated with an LLS estimator, or its weighted variants,
after log-transforming the diffusion-weighted MR signals. Those estimators are
widely used in DTI and DKI studies, because they come with several strengths.
First, the (weighted) LLS estimators have a closed-form solution. Therefore,
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Figure 5.10: Real data set 2: The percentage differences between the FA, MD, and MK
estimates for the least squares estimators and the bronze standard.

Figure 5.11: Real data set 3: The percentage differences between the FA, MD, and MK
estimates for the least squares estimators and the bronze standard.
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unlike iterative nonlinear strategies, the linear estimators are computationally
efficient and not prone to getting stuck in a local optimum. Second, the linear
estimators are potentially very accurate, especially compared to the NLS estimator
[Salvador et al., 2005]. Under conditions that are discussed below, the linear
estimators are even unbiased due to the zero expectation of the error term in the
log-Rice framework. Third, the high accuracy is not at the expense of the ease of
use. In other words, unlike many advanced diffusion parameter estimators, e.g.,
the maximum likelihood (ML) estimator, the linear estimators don’t require the
knowledge of the noise parameter [Veraart et al., 2012]. The estimation of the noise
parameter is not only challenging, it also reduces the precision of the diffusion
parameter estimator. Unfortunately, those advantages go hand in hand with some
limitations and potential pitfalls. Some of them are to the best of our knowledge
still unrecognized.

The unbiasedness of the linear estimators, even under inequality of variances, is
subject to two conditions: the SNR of the diffusion-weighted signals should not be
too low (> 2) and the diffusion-weighted data are assumed to be Rice distributed
before the log-transformation. Those conditions might not be fulfilled because the
use of high b-values or high spatial resolution, magnitude image operations prior to
model fitting [Rohde et al., 2004, Veraart et al., 2012], or the use of parallel MR
imaging techniques [Aja-Fernández et al., 2011, Aja-Fernández and Tristán-Vega,
2012]. Indeed, our simulation and real data experiments confirmed that systematic
errors in the calculation of quantitative parameters of clinical interest such as
FA, MD, and MK will appear by lowering the SNR. The bias becomes even more
prominent for multichannel and/or accelerated MRI reconstruction techniques
that generate non-Rice distributed data (e.g., GRAPPA [Griswold et al., 2002] or
homodyne partial Fourier reconstruction [Noll et al., 1991]) [Tristán-Vega et al.,
2011, Veraart et al., 2012]. Furthermore, the accuracy of the linear estimators drops
by applying operations such as motion correction and smoothing on the magnitude
diffusion-weighted data as these might change the native data distribution [Veraart
et al., 2012]. The mathematical reasoning of Salvador et al. [2005] then no longer
holds. However, although motion and eddy current distortion correction was
applied prior to tensor fitting in our real data study, the linear approaches still
outperformed the NLS estimator in terms of accuracy.

The linearization of both diffusion models comes with the cost of a reduced
precision of the diffusion parameter estimators. The cost, however, can be limited
by accounting for the heteroscedasticity of the log-transformed data. The variances
of the log-transformed Rice distributed magnitude MR signals must be known to
design a WLLS estimator with optimal precision. Unfortunately, the variances
depend on the unknown noise-free diffusion-weighted signals [Salvador et al., 2005].
Therefore, the best linear unbiased estimator (BLUE), i.e. the unbiased linear
estimator with the highest precision, does not exist in practice. Nevertheless, we
showed that optimal linear performance can be well approximated by a WLLS
estimator for which the weight terms are estimated from noisy data with SNR> 2.
The approximation improves by drawing more diffusion-weighted samples or by
iteratively updating the estimate of the weight matrix. In practice, only a few
iterations are needed for convergence.

Already in the early days of DTI, [Basser et al., 1994a] stated that the weights
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for the WLLS can simply be the squares of the respective noisy diffusion-weighted
signals (cf. WLLS1). More than a decade later, the statement was repeated
by Koay et al. [2006]. Many widely used software packages (e.g., ExploreDTI
v4.8.2 [Leemans et al., 2009], FSL v5.0.1 [Jenkinson et al., 2012], Tortoise v1.3.1
[Pierpaoli et al., 2010]) and, as such, numerous researchers working in the field of
dMRI, adopted the approach. In the meantime, Salvador et al. [2005] proposed
alternative, multi-step weighting schemes. In those approaches, the weights are the
squares of the predicted signals, which are reconstructed from a previous estimate
of the diffusion model parameters, obtained with the unweighted LLS estimator (cf.
WLLS2) or a previous iteration of the WLLS estimator (cf. IWLLS). The latter
strategy was adopted by software packages such as Camino [Cook et al., 2006]
and Slicer v4.2.1 [Pieper et al., 2006]. So, nowadays, different weighting strategies
are commonly used in a daily practice. This lack of unity not only obstructs
multi-center research, it might also lead to misleading conclusions or irreproducible
results. Indeed, we showed in this work that the performance of the WLLS strongly
depends on the selected weight terms. More specifically, ill-chosen weights strongly
reduce the accuracy of the linear estimator. Simulation and real data experiments
indicated that the strategy proposed by Basser et al. [1994a] (WLLS1) is the least
favorable weighting strategy. Therefore, we suggest always opting for multi-step
weighting strategies.

In this study, we only reported FA, MD, and MK. Nevertheless, it might be
expected that similar conclusions can be drawn for the other tensor-derived metrics
to a greater or lesser degree depending on the directionality of the SNR. However,
note that unlike diffusion metrics such as axial and radial diffusivity, or axial and
radial kurtosis, the principal diffusion direction, i.e. the first eigenvector of the
diffusion tensor, is not subject to the Rician noise bias due to the symmetry of the
diffusion tensor.

If the number of diffusion-weighted samples and the SNR are low, then the
diffusion-weighted signals predicted from the LLS estimates may show high variance.
A weight matrix estimated with low precision might lower the accuracy of the
WLLS2 estimator. Increasing the number of diffusion-weighted samples thus not
only improves the precision of the WLLS2 estimator, it also improves its accuracy.
The latter does not hold for the WLLS1. Recently, it has been suggested to use
non-linear tensor estimators rather than its linear alternatives [Jones et al., 2013].
Our results, however, indicate the non-triviality in choosing between multi-step
WLLS and NLS strategies for estimating dMRI parameters. Indeed, the decision
depends on the number of diffusion-weighted signals (see Fig. 5.4), the parameter
of interest [see Fig. 5.7 and Landman et al., 2007], and – possibly – the actual
data distribution. However, further study is needed to extensively showcase the
strengths, limitations, and pitfalls of the different diffusion estimators in case of
non-Rice data distributions.

5.8 Summary

The DTI and DKI model have in common that they can be structured into a
linear regression form depending on the natural logarithm of the diffusion-weighted
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MR signals. The unknown model parameters can be estimated with an LLS
estimator, or its weighted variants. Those estimators are widely used in DTI
and DKI studies, because they come with several strengths. First, the (weighted)
LLS estimators have a closed-form solution. Therefore, unlike iterative nonlinear
strategies, the linear estimators are computationally efficient and not prone to
getting stuck in a local optimum. Second, the linear estimators are potentially
very accurate, especially compared to the NLS estimator [Salvador et al., 2005].
If the diffusion-weighted data is Rice distributed with SNR> 2, then the linear
estimators are even unbiased due to the zero expectation of the error term in the
log-Rician framework. Third, the high accuracy is not at the expense of the ease of
use. In other words, unlike many advanced diffusion parameter estimators, e.g.,
the maximum likelihood (ML) estimator, the linear estimators don’t require the
knowledge of the noise parameter σc [Veraart et al., 2012]. The estimation of the
noise parameter is not only challenging, it also reduces the precision of the diffusion
parameter estimator. Unfortunately, those advantages go hand in hand with some
limitations (i.e. reduction of precision, optimal weights cannot be determined) and
a potential pitfall (i.e. accuracy might strongly depend on selected weights).
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Chapter 6. Conditional least squares

6.1 Introduction

Since many diffusion models require many diffusion-weighted MR images, often
in combination with high b-values, dMRI is a technique that suffers from low
SNR, severe geometric eddy current distortions, and long scanning times that
cause subject motion to become more probable. The geometrical distortions and/or
misalignments between diffusion-weighted images are generally minimized by a series
of image processing steps preceding the diffusion model fitting. Furthermore, the
final accuracy of the diffusion measures will largely depend on the appropriateness
of the statistical model of the magnitude dMRI data during estimation of the
diffusion measures. It is widely recognized that native magnitude MR data follows
a Rice distribution under some well-defined conditions [e.g. Gudbjartsson and Patz,
1995, Dietrich et al., 2008, or see Discussion]. Hence, the assumption of the noise
being additive and normally distributed as implicit in the use of ordinary least
squares estimators cannot be made at low SNR [Gudbjartsson and Patz, 1995]. As a
result, least squares estimators are most often biased in dMRI [e.g. Sijbers and den
Dekker, 2004, Jones and Basser, 2004, Veraart et al., 2011]. Nevertheless, they are
commonly preferred in dMRI analyses, probably because of their low computational
expense. Furthermore, Salvador et al. [2005] showed that the log-transformed MR
data (SNR > 2) can be closely approximated by a normal distribution with a
variance equal to the reciprocal of the squares SNR. This property underlies the
popularity of the weighted linear least squares estimator (WLLS) in combination
with diffusion models that can be linearized by the log-transformation. Typical
examples of such diffusion models are diffusion tensor imaging (DTI; [Basser et al.,
1994]) and diffusion kurtosis imaging (DKI; [Jensen et al., 2005]). During the
last decade, methods to further remove or reduce the noise bias in dMRI analyses
have been presented. Jones and Basser [2004] modified the ordinary nonlinear
least squares estimator (NLS; [Koay et al., 2006]) by replacing the diffusion model
prediction by its approximate expectation under the assumption of a Rice noise
model [Gudbjartsson and Patz, 1995]. Kristoffersen evaluated fitting the mean value
of the Rice distribution to dMRI data to correct for the noise bias given repeated
measurements in context of one-dimensional diffusion models [Kristoffersen, 2007].
Next, maximum likelihood (ML) estimation of diffusion model parameters was
presented [e.g. Landman et al., 2007, Veraart et al., 2011]. Andersson [2008]
further extended the ML approach to a maximum a posteriori (MAP) model by
the introduction of priors on the model parameters. Both ML and MAP estimators
depend on the knowledge of the full shape of the data distribution, whereas the
methods presented in [Jones and Basser, 2004] and [Kristoffersen, 2007] only require
the (approximate) expression of the expectation value of the data’s distribution.
The increased accuracy of those advanced diffusion estimators is typically observed
in well-defined simulations, where, for instance, the assumptions regarding the
data distribution are known to be valid. In practice, however, correcting for
EPI distortions, subject motion, or eddy current induced geometric deformations
alters the data distribution such that it can no longer be analytically expressed,
potentially nullifying the consistency of the ML estimators. Therefore, we here
describe and evaluate the conditional least squares estimator (CLS) in the context
of (unaveraged) dMRI. Basically, the CLS is a nonlinear least squares estimator,
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which recognizes a) the actual difference between the model prediction and its
expectation value and b) the heteroscedasticity of the data due to the signal
dependency of the variance. Therefore, the method is an asymptotically normal,
consistent, and computationally convenient parameter estimator without the need
for full description of the data distribution. We will evaluate the estimator in terms
of accuracy, precision, and robustness to dMRI data correction applied prior to
model fitting. Although the proposed estimator can be combined with all existing
diffusion models, we limit ourselves in this study to the DTI and DKI models.

6.2 Maximum likelihood estimator

Consider N noisy magnitude diffusion-weighted signals S̃n (n = 1, · · · , N). If the
data are independently noncentral χ distributed, then the probability of observing
S̃n, given its respective noise-free signal S0n and noise level σc is

p(S̃n|S0n , σc) =
S̃Ln
σ2
c

S1−L
0n

exp

(
−S

2
0n + S̃2

n

2σ2
c

)
IL−1

(
S0n S̃n
σ2
c

)
, (6.1)

with S0n = exp(βBn∗) and Bn∗ the nth row of the b-matrix B. The diffusion
model parameters β can be estimated voxelwise with a consistent, asymptotically
normal and asymptotically efficient maximum likelihood estimator (MLE; [e.g.
Sijbers et al., 1998, Veraart et al., 2011]) in each voxel by substituting the observed
values for the stochastic variables and maximizing over the parameters:

β̂ = arg max
β

N∑
n=1

ln p(S̃n|S(β,Bn∗), σc). (6.2)

If (an estimate of) σc is not known in advance, σc can be estimated as part of the
fitting procedure.

6.3 Conditional least squares estimator

An alternative estimation procedure is based on the minimization of a weighted
sum of squared deviations about conditional expectations:

β̂ = arg min
β

N∑
n=1

Wnn

[
S̃n − E(S̃n|S(β,Bn∗), σc)

]2
, (6.3)

with Wnn the nth element of the diagonal weight matrix W , which equals the
reciprocal of the variance of the measurement. After substituting m0 in Eq. (3.19)
by the predicted signal, the weight will depend on the diffusion model parame-
ters. The weights should therefore iteratively be updated during the parameter
estimation. The diffusion model parameters D are estimated by solving Eq. (6.3)
using Levenberg-Marquardt optimization. In theory, σc can be estimated as part
of the fitting procedure. However, the CLS without prior noise knowledge will lack
consistency in case of isotropic diffusion as no unique solution then exists.
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6.4 Strengths, limitations, and pitfalls

6.4.1 Theoretical and practical considerations

Theoretically, the MLE is a precise and accurate alternative to least squares
estimation, irrespective of SNR. This nonlinear estimator has optimal asymptotical
properties regarding accuracy and precision, but it requires the analytical expression
of the data PDF. However, there are two practical concerns regarding the use of
MLE in the context of dMRI. First, the analytical expression of the PDF is based
on the noise level. Nowadays, the estimation of the noise level is challenging due
to the use of parallel imaging techniques (see Chapter 7). Second, the necessity
of data correction (e.g. motion and eddy current corrections) prior to model
fitting causes the MLE’s dependency on the data PDF to become a weakness
because the altered data PDF can no longer be expressed analytically. Indeed,
head motion and eddy current distortions can be reduced by realigning all diffusion-
weighted images, Mn(n = 1, ..., N), to a distortion-free reference image, often an
nondiffusion-weighted image [Rohde et al., 2004]. Common practice is to use an
affine approach:

M̂n =
An(Mn)

λn
(6.4)

with An the affine transformation and λn = |J(An)|, the Jacobian determinant of
An. The B-matrix should be reoriented accordingly [Leemans and Jones, 2009]. As
it is most likely that the transformed voxel grids of the diffusion-weighted images
do not coincide with any of the discrete voxel positions in the reference image,
the diffusion-weighted images need to be resampled to the reference image grid.
So, Eq. (6.4) basically corresponds to calculating image intensities at transformed
voxel coordinates as a weighted sum of the scaled intensities at surrounding voxels.
The scaling as well as the resampling will, however, alter the data distribution.
First, the noncentral χ distribution is scale invariant, i.e. if the random variable m
follows a noncentral χ distribution with noise-free signal ν and noise parameter σc,
then m

λn
is also noncentral χ distributed with parameters ν

λn
and σc

λn
, respectively.

The expectation value of the scaled distribution is scaled accordingly. Second,
the Central Limit Theorem states that the average of a large set of independent
and identically distributed samples tends to follow a normal distribution. Thus,
interpolation between noncentral χ distributed samples, might cause the noncentral
χ PDF to change towards a Gaussian PDF. No closed form expression exists for
the resulting distribution. However, the expectation value of the native distribution
does not alter in high SNR or homogeneous regions. This finding favorizes the use of
the CLS as a practical alternative to MLE in dMRI. The assumption of zero-centered
normally distributed error terms in regressive models render MLE equivalent to the
minimization of a sum of squares. By accounting for the actual difference between
the model prediction and its expectation value and the heteroscedasticity of the data
due to the signal dependency of the variance of a noncentral χ distribution, the CLS
is the most precise unbiased least squares estimator. The CLS enjoys consistency
and asymptotic normality, under some mild regularity conditions [Newey and
McFadden, 1994]. However, despite the data PDF will converge towards a normal
distribution by motion or eddy current distortion corrections, the error terms are
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generally not normally distributed if SNR is very low. Therefore, the CLS might
have lower precision than the MLE.

6.4.2 Experimental validation

6.4.2.1 Single voxel simulations

Noncentral χ distributed data was simulated using the DTI model as well as the
DKI model, given predefined diffusional tensor(s), b-values, and gradient directions.
For the DTI model, MD and FA were 0.8×10−3 mm2/s and 0.85, respectively. The
b-value was 1000 s/mm2, and 60 gradient directions – isotropically distributed over
a unit sphere using Coulomb’s law of repulsion, were selected [Jones et al., 1999].
Since we also simulated 12 nondiffusion-weighted signals, a set of 72 intensities
was obtained. For the DKI simulations, additional diffusion-weighted signals with
b = 2500 s/mm2 were simulated along the same gradient directions. The MK
was 0.6223 for the single-voxel simulations. Noisy synthetic data was obtained by
adding zero-mean Gaussian noise, N

(
0, σ2

c

)
, to both the real and imaginary part

of the noise-free signals S0. The composite magnitude signal S̃ was then obtained
using the SoS method:

S̃ =

√√√√ L∑
l=1

|S0 +Nl (0, σ2
c )) + jNl (0, σ2

c )|2. (6.5)

During all experiments, L = 1, unless explicitly mentioned otherwise.
First, Monte Carlo simulations (2500 trials) were done to evaluate the effect of

varying SNRb0 , that is, the SNR of the nondiffusion-weighted signal on the accuracy
and precision of the (a) WLLS, (b) ordinary NLS, (c) MLE, and (d) CLS. The
SNRb0

range was [10
√
L, 20

√
L]. The Gaussian noise level, σc, was assumed to be

known a priori. In Fig. 6.1(a-c) the accuracy of the estimators is studied by plotting
the FA, MD, and MD - derived from the average model parameters - as a function
of the SNR. The bias inherent to ordinary NLS estimators is inversely proportional
to the SNRb0 . Properly accounting for the noise statistics, as done with MLE
and CLS, minimized the bias. Although the accuracy of WLLS approximates the
accuracy of the CLS and MLE in DTI analyses, the WLLS suffers from a lower
precision Fig. 6.1(d-f). Note the slightly lower precision of CLS, compared to MLE,
in the estimation of MK Fig. 6.1(f). The MSE in estimates of FA, MD, and MK
were shown in Fig. 6.1(g-h) as function of the SNR.

Second, in Fig. 6.2, the effect of an incorrect noise prior – σ̃c = σc × (1 +
noise offset) – is shown in terms of accuracy and MSE in estimates of FA, MD, and
MK. The SNR was 15. Noise offsets in a range of [−100% · · · 100%] were simulated.
For σ̃c = 0, the CLS is identical to the NLS. Therefore, the performance (both in
terms of accuracy and MSE) of the CLS will converge to the performance of the NLS
if σc is underestimated. The same findings were observed for the MLE. Obviously,
the accuracy of the WLLS might exceed the accuracy of a badly initialized (σ̃c < σc)
CLS. Overestimation of σc, on the other hand, might be more harmful for the
performance of the CLS. Starting from an overestimation of 25%, the MSE in
estimates of FA and MD of the CLS might exceed the MSE of the WLLS and NLS.
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Figure 6.1: MD, FA and MK – FA, MD, and MK calculated from the average model
parameters (a-c), the standard deviation (SD) of the estimated diffusion parameters (d-f),
and MSE in the estimation of FA, MD, and MK (g-i) are shown as a function of the
SNR−1

b0
for WLLS, NLS, CLS and MLE.
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Figure 6.2: MD, FA and MK – calculated from the average diffusion(al) tensor(s) – and
the MSE in estimates of MD, FA, and MK are shown as a function of an incorrect noise
prior [%]. The red and pink dash-dotted lines in the upper graphs are the reflections of
the red and pink solid lines across the black reference line.

The CLS performs only better than WLLS w.r.t. the MSE in estimates of MK if
the noise offset is within the range: [−50%,+15%]. For MLE, similar conclusions
can be drawn, however, the performance drops slightly more rapidly. Third, we
quantified the effect of (not) applying the signal modulation to compensate for
voxel volume changes that occur when reversing the stretch or compressing induced
by the eddy currents on diffusion parameter estimation using WLLS, NLS, MLE,
and CLS. Keeping in mind the scale invariance of the noncentral χ distribution,
we also evaluated the need for accounting for the heteroscedasticity in the data,
which is inherently induced by the signal modulation. Following simulation settings
were chosen: 2500 trials, L = 1, SNRb0

= 15, maximal stretch for voxels was
±8% and ±15% for b = 1000 s/mm2 and b = 2500 s/mm2, respectively. In Fig. 6.3,
it can be observed that not modulating the diffusion-weighted signal after eddy
current correction will cause a significant bias in all estimators (blue). Intuitively,
one might expect the bias to reduce when applying the signal modulation (green).
However, our simulation results show that the bias can even increase (see Fig. 6.3(c))
when using NLS or WLLS. This is because the benefit of signal modulation can
be opposed by an inflated noise bias (top figures for which λ < 1). The difference
between the top and bottom (λ > 1) figures indicates that the quantitative effect
of signal modulation depends largely on the sign of λ− 1. When using estimators
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Figure 6.3: The bar plots show the effect of signal modulation (top: λ < 1, bottom: λ > 1)
on MD, FA, and MK: no signal modulation (blue), signal modulation (green), signal +
σc modulation (red). Height of the bars indicate the average diffusion parameter values,
while the black dots are the parameter values derived from the averaged diffusion(al)
tensor(s). The error bars span the interquartile range. The dashed horizontal black lines
are the ground truth values.

that account for the noise statistics, it is clearly beneficial to scale the noise level
accordingly (red). Taking the data’s heteroscedasticity into account does not change
the results for the WLLS and NLS significantly.

6.4.2.2 Whole brain simulations

The same simulated diffusion-weighted data sets were used to evaluate several
estimation approaches: (a) WLLS, (b) NLS, (c) CLS with noise prior, (d) MLE
with noise prior, (e) CLS without noise prior (CLS∗), and (f) MLE without noise
prior (MLE∗). For (c) and (d), the noise prior was obtained using our proposed
noise map estimator. For (e) and (f), the noise level was assumed to be unknown
and estimated simultaneously with the diffusion model parameters. We evaluated
the accuracy of all approaches in terms of commonly used diffusion parameters, i.e.
FA, MD, and MK. The experiments were repeated after performing a half-pixel shift
in both in-plane directions to introduce an interpolation effect, similar to the one
that occurs when performing motion/eddy current distortion prior to model fitting.
Both a DTI and DKI study was done. For the DTI study, the b = 2500 s/mm2 shell
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Figure 6.4: The DTI-estimators’ biases on MD ([mm2/s]) were shown. Following estima-
tors were compared: WLLS, NLS, CLS, MLE, CLS∗, and MLE∗. The ∗ indicates that
the noise map estimation was a part of the fitting procedure. Results were shown without
and with data resampling before model fitting in the top and bottom row, respectively

Figure 6.5: The DKI-estimators’ biases on MK were shown. Following estimators were
compared: WLLS, NLS, CLS, MLE, CLS∗, and MLE∗. Results were shown without and
with data resampling before model fitting in the top and bottom row, respectively

was excluded from the fitting procedure. Fig. 6.6 shows the bias on MD for all DTI
estimators, whereas Fig. 6.7 shows the bias on MK for the different DKI estimators.
Without data resampling, the MLE, MLE∗ and CLS with noise prior are nearly
unbiased, whereas the CLS∗ and NLS are clearly biased (top row). The bias of MLE,
MLE∗ and CLS are caused by of the limited number of diffusion-weighted images
in the study. Hence, the estimators cannot fulfill their asymptotic properties. Data
interpolation, however, clearly changes the performance of the MLE∗ (bottom row).
The central limit theorem dictates that the MLE without prior noise knowledge
tends to behave like the biased NLS. The MLE with given noise level appears only
minimally biased despite its less favorable properties. After data resampling, one
can clearly notice the highly intense bias-rim surrounding the cerebrospinal fluid
(CSF). Fortunately, similar errors are not (or much less) observed in other brain
regions. It’s worth noting the WLLS becomes less accurate in the estimation of
MD and MK after data resampling.
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Figure 6.6: MD (top row; [×10−3 mm2/s]) and MK (bottom row) maps obtained from the
real data with the DTI and DKI model, respectively, are shown. The maps were obtained
with different estimators: WLLS, NLS, CLS, MLE, CLS∗, and MLE∗. See Table 1 for
quantitative differences.

6.4.2.3 Real data experimens

A 27 year-old healthy volunteer underwent imaging on a Siemens Trio (3T) MR
scanner (Siemens AG, Siemens Medical Solutions, Erlangen, Germany), using a
12-channel receiver head coil. The body coil was used for transmission. A spin echo
(SE) DWI sequence was used in acquiring the dMRI data. Diffusion weighting was
applied along 60 isotropically distributed gradient directions with b = 1000 s/mm2

as well as b = 2500 s/mm2. Additionally, 12 images without diffusion sensitization
were acquired. Other imaging parameters were kept constant throughout the DKI
data acquisition sequences: TR/TE : 6100/118 ms, matrix: 96× 96, NEX: 1, slice
thickness: 2.5 mm, slices: 40, parallel imaging factor: mSENSE with acceleration
factor 2. diffusion-weighted data was corrected for motion and eddy current
distortions using exploreDTI [Leemans et al., 2009]. A DTI and DKI analyses were
done. For DTI in particular, the b = 2500 s/mm2 shell was additionally excluded.
Preceding the DKI fit, the Gibbs phenomenon was reduced by isotropic smoothing
of the diffusion-weighted data (FWHM = 3 mm). The quantitative differences
between the different estimators w.r.t. MD, FA, and MK were evaluated with
an ROI analysis. Fig. 6.6 shows the MD maps (top row) and MK maps (bottom
row), estimated with the DTI and DKI model, respectively, using the different
estimators. After manual delineation of the corpus callosum in a single slice, an
ROI analysis of the diffusion measures was performed (see Table 6.1). The paired
Wilcoxon signed rank test was applied to evaluate the pairwise differences between
the estimated diffusion measures. Besides a single exception, all differences were
statistical significant (p < 0.05). Only no statistical difference in terms of MD was
observed when comparing CLS and MLE (p = 0.39).
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Table 6.1: Real data ROI analysis of the diffusion parameters (FA, MD [×10−5 s/mm2],
and MK), based on a manual delineation of the corpus callosum.

WLLS NLS CLS MLE CLS∗ MLE∗

FA 0.68 0.68 0.69 0.69 0.70 0.68
MD 79.73 78.99 81.16 81.12 81.78 80.99
MK 1.10 1.10 1.00 0.99 0.95 1.09

6.5 Discussion

CLS v. MLE

The MLE has some desirable properties such as consistency, and asymptotic
normality. The desirable statistical properties of MLE stems from its basis on the
joint PDF of the data. Simulations showed that the same asymptotic properties
can be attained by the CLS, an estimator that does not require full knowledge
of the data’s joint PDF. The CLS only requires an analytical expression of the
first moments of the data distribution. Compared to MLE, CLS is easier to
implement and, more importantly, computationally far less intensive. From our
current MATLAB implementations, we observed that CLS is about 50× faster than
MLE. With CLS, the whole brain DTI analysis performed as part of the real data
experiment took less than 3 minutes on a 64-bit quad-core computer, each core
running at 2.80 GHz. An additional argument to prefer CLS to MLE roots in the
necessity of data correction prior to model fitting. The data correction (e.g. motion
and eddy current corrections) causes the MLE’s dependency on the joint PDF to
become a weakness because the altered data PDF can no longer be expressed in
closed form. So, theoretically, the MLE loses then its consistency, whereas the
CLS might keep that property as the expectation value of the distribution will not
alter during data processing in high SNR or homogeneous regions. In practice, the
MLE’s drop in accuracy is SNR dependent, but - for moderate SNR - it has been
shown that it is fairly limited if the native noise parameter is known in advance
(see Fig. 6.4 and Fig. 6.5).

CLS v. NLS

Basically, the CLS is a nonlinear least squares estimator, which recognizes a) the
actual difference between the model prediction and its expectation value and b)
the heteroscedasticity of the data due to the signal dependency of the variance of a
noncentral χ distribution. In the ordinary NLS (as described in [Koay et al., 2006]),
both (a) and (b) are neglected because of the assumption that a noncentral χ
distribution can be well approximated by a normal distribution centered around the
noise-free signal. That assumption, however, is violated at low SNR as a result of
which NLS lacks accuracy in dMRI analyses. An SNR dependent, systematic error
in the calculation of clinically relevant diffusion parameters is observed with the
NLS, while the CLS is asymptotically unbiased. At high SNR, both estimators are
identical. Difference in computation time between both strategies is minimal if a
lookup table is used for the evaluation of the hypergeometric function in Eq. (3.17).
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CLS v. WLLS

Some diffusion models, such as DTI and DKI, can easily be linearized by a log-
transformation, as a result of which fast linear LS estimators has become popular for
parameter estimation. Since Salvador et al. [2005] showed that the log-transformed
Rice distributed MR data (SNR > 2) can be closely approximated by a zero-centered
distribution with a variance equal to the reciprocal of the squared SNR, the WLLS is
expected to be more accurate than the NLS. For clinically relevant SNR values, the
WLLS was shown to be nearly as accurate as the CLS and MLE in the estimation
of DTI model parameters. However, bear in mind following remarks: (a) the
improved accuracy, compared to ordinary NLS, vanishes if magnitude operations
are applied prior to model fitting. Because of the changing data distribution, the
mathematical reasoning of Salvador et al. [2005] no longer holds; (b) Overall, the
MSE of the WLLS is high compared to CLS. Obviously, the WLLS outperforms all
other methods in terms of computational cost.

Data distribution

Aja-Fernandez and colleagues showed that in case of parallel imaging, the magnitude
MR data follows (approximately) a noncentral χ distribution with 2L degrees of
freedom, in which L is the effective number of receiver coils [Aja-Fernández et al.,
2011, Aja-Fernández and Tristán-Vega, 2012]. The Rice distribution is only a special
case (L = 1). The knowledge of L is essential, though often nontrivial because of its
dependency to the applied imaging technique, the actual number of receiver channels
and reconstruction filter. It is of utmost importance to grasp that L can only
readily be determined in following scenarios: (a) nonparallel imaging with negligible
coil correlations; L equals the actual number of receiver coils [Constantinides et al.,
1997], (b) parallel imaging with image-domain reconstruction; L equals 1 [Dietrich
et al., 2008], and (c) parallel imaging with a reconstruction filter such as spatially
matched filters or an adaptive reconstruction [Dietrich et al., 2008]. These filters
will create a single complex image by linearly combining the complex signals from all
receiver channels before calculating the magnitude. Again, L equals 1. Frequency
domain reconstruction (e.g. GRAPPA; [Griswold et al., 2002]) and nonparallel
imaging for which the coil correlations cannot be neglected, are far more difficult
to model after SoS reconstruction of the composite magnitude data [Aja-Fernández
et al., 2011, Aja-Fernández and Tristán-Vega, 2012]. In particular, the complex
data and internal reconstruction parameters are required for the estimation of L.
Therefore, the actual data distribution cannot be determined from magnitude MR
data only. The use of more advanced diffusion estimators thus remains challenging
in those cases, whereas their importance increases. The bias of the ordinary NLS
and WLLS is proportional to L (see Fig. 6.7). Note that we preferred to express
the MLE and CLS as a function of L for the purpose of generalization. Basically, if
L is known, the MLE and CLS can be used regardless the value of L or the applied
imaging technique.
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6.5. Discussion

Figure 6.7: MD, FA and MK – calculated from the average diffusion(al) tensor(s) – and
the MSE in estimates of MD, FA, and MK are shown as a function of the number of
receiver channels, L. During simulations (cfr. section 6.4.2.1) L varied from 1 to 32, while
σc was kept constant (SNRb0 = 15). The performance of estimators, which not properly
account for the actual data distribution (NLS, WLLS and estimators designed for Rice
distribution, such as CLS with L = 1) decreases with L.
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Physiological noise
The quest for accuracy will unceasingly be hindered by the presence of physiological
noise. Spatially and temporally varying artifacts, e.g. cardiac pulsation or system
instabilities, will perturb the diffusion-weighted signals in such a way they cannot
be modeled. More robust estimators, i.e. estimators that are less sensitive to the
presence of outliers, are needed to deal with those perturbations. A more robust
implementation of the CLS using the (informed) RESTORE approach is trivial
[Chang et al., 2005, 2012].

6.6 Summary

During the last decade, many approaches have been proposed for improving the
estimation of diffusion measures. These techniques have already shown an increase in
accuracy based on theoretical considerations, such as incorporating prior knowledge
of the data distribution. The increased accuracy of diffusion metric estimators is
typically observed in well-defined simulations, where the assumptions regarding
properties of the data distribution are known to be valid. In practice, however,
correcting for subject motion and geometric eddy current deformations alters the
data distribution tremendously such that it can no longer be expressed in a closed
form. The image processing steps that precede the model fitting will render several
assumptions on the data distribution invalid, potentially nullifying the benefit of
applying more advanced diffusion estimators. In this work, we present a generic
diffusion model fitting framework that considers some statistics of diffusion MRI
data. In this chapter, we introduced the CLS as a practical alternative to the MLE.
We demonstrated that the accuracy of that particular estimator can generally
be preserved, regardless the applied preprocessing steps, if the noise parameter
is known a priori. To fulfill that condition, we will propose an approach for the
estimation of spatially varying noise levels in Chapter 7.
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Chapter 7. Estimation of spatially variable Rician noise map

7.1 Introduction

The likelihood function or the expectation value of a Rice distributed variable
depend on the underlying Gaussian noise level, i.e. the standard deviation of
the real and imaginary parts of the complex signal σc. Although some methods
suggested estimating the Gaussian noise level as part of the model fit, the Gaussian
noise level is preferably estimated prior to model fitting because the accuracy
and precision of diffusion model parameter estimators will depend on the prior
knowledge of this noise level. Most of the existing noise estimation methods can
be classified as methods that use (a) background areas [e.g. Sijbers et al., 2007,
Chang et al., 2005, Koay et al., 2009b] or (b) the image object itself [e.g. Coupé
et al., 2010, Maximov et al., 2012, Landman et al., 2009, Manjón et al., 2010,
Koay and Basser, 2006] to estimate the noise variance. For a thorough overview,
see [Aja-Fernández et al., 2009]. The background-based methods often fail due
to the suppression of the background signal by the scanner or spatially varying
noise. The object-based methods often rely on (a) a Gaussian approximation of
the noise [e.g. Landman et al., 2009], (b) a sufficiently high spatial resolution such
that a (non)local set of voxels with similar neighborhoods can be found to fit a
noise distribution [e.g. Manjón et al., 2010], (c) repeated measurements [e.g. Sijbers
et al., 1998, Maximov et al., 2012, Landman et al., 2009, Koay and Basser, 2006],
or (d) a spatially uniform distribution of the noise level [e.g. Coupé et al., 2010,
Rajan et al., 2010]. dMRI, however, suffers from a restricted spatial resolution and
involuntary subject and/or brain motion causing misalignments between multiple
measurements. Furthermore, the noise is generally spatially varying due to the
use of parallel imaging techniques [Robson et al., 2008]. We here propose a new
strategy that allows for the voxelwise estimation of the noise level. The strategy
is a dMRI-specific extension of the work of Coupé et al. [2010], who combined
the Median Absolute Deviation (MAD) estimator in the wavelet domain with an
iterative correction scheme, as proposed by Koay and Basser [2006].

7.2 Noise level estimation

Coupé et al. [2010] showed that for stationary noise, a robust estimate of the
standard deviation of the magnitude MR signal, σ̂m, can be obtained:

σ̂m =
median (|y|)

0.6745
, (7.1)

with y the wavelet coefficients of the highest sub-band HHH, which is mainly
composed of the coefficients corresponding to the noise [Donoho, 1995]. An estimate
of σc can then be calculated as:

σ̂c =
σ̂m√
ξθ
, (7.2)

with

ξθ = 2L+ θ2 − β2
L

[
1F1

(
−1

2
, L,−θ

2

2

)]2

, (7.3)
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7.3. Experiments

a correction term that depends on the SNR, θ = ν
σc

[Koay and Basser, 2006].
Because the SNR is not known a priori, the correction term needs to be estimated
iteratively until convergence, initiated by both the mean, µm, and variance, σ2

m, of
the magnitude signal. An extension to the estimation of a 3D noise map, σc(x)
with x the 3D spatial location, relies on the observation that the median and
monotone functions, such as 1√

ξ(θ)
in Eq. (7.2), commute. More specifically, an

initial estimate of the magnitude noise map σ̂m,n(x) of the nth diffusion-weighted
volume is obtained as follows:

σ̂m,n(x) =
|yn(x)|
0.6745

. (7.4)

In Eq. (7.4), yn(x) denotes the coefficient at location x of the HHH sub-band of
an undecimated wavelet decomposition of the nth uncorrected diffusion-weighted
volume. Because σ̂m,n(x) will vary with n – due to the varying underlying diffusion-
weighted signals – one cannot instantly apply the median operator along n to
obtain a robust estimate of σ̂m(x). Next, the magnitude signal average at location
x, µ̂m,n(x), can be estimated by fitting a spherical spline model to a single b-valued
diffusion-weighted dataset composed of NB diffusion-weighted images using linear
regression [Koay et al., 2009a]. In case of severe head motion, the spherical spline
model is preferably fitted to the motion corrected diffusion-weighted images. The
reconstructed diffusion-weighted signals, µ̂m,n(x), should afterwards be resampled
to their native spaces. Given θ̂n =

µ̂m,n(x)
σ̂m,n(x) , ξθ,n(x) can be obtained using Eq. (7.3).

Finally, the 3D noise map can be calculated:

σc(x) = median

{
σ̂m,n(x)√
ξθ,n(x)

|n = 1 · · ·NB

}
(7.5)

Note that σ(x) is presumed to be spatially varying within each uncorrected diffusion-
weighted volume, but, for a given x, constant across the NB uncorrected diffusion-
weighted volumes.

7.3 Experiments

7.3.1 Simulation experiment
We simulated whole brain diffusion-weighted data, acquired with a 8-channel head
coil and reconstructed with mSENSE (acceleration factor R = 2) using PULSAR
[Jim et al., 2007]. Phantom images were derived from a hybrid diffusion atlas
[Dhollander et al., 2011]. In addition to 12 non-diffusion-weighted volumes, 2
q-shells were sampled from the atlas: Jones60 directions at b = 1000 s/mm2 and
b = 2500 s/mm2. DKI model errors were removed by fitting the DKI model to the
data and recalculating the diffusion-weighted volumes afterwards. Multichannel
k-space data was slice-by-slice calculated as the Fourier transform of each individual
coil image, which is the reconstructed diffusion-weighted image modulated by a
normalized coil sensitivity map. Complex, Gaussian noise was added to the k-space
data and all odd phase encoding k-space lines were suppressed before mSENSE
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reconstruction [Wang et al., 2001]. We used these simulated data sets to evaluate
the accuracy of our noise map estimator. The nonuniform reference noise map,
σsense, was derived from the geometry factor map [Pruessmann et al., 1999]. The
experiment was repeated for multiple SNRb0 values. The SNRb0 is here defined
as the ratio between the median nondiffusion-weighted signal and the median
σsense(x). The proposed noise map estimation approach was applied on either of
the b-value shells.

7.3.2 Real data experiment

A 27 year-old healthy volunteer underwent imaging on a Siemens Trio (3T) MR
scanner (Siemens AG, Siemens Medical Solutions, Erlangen, Germany), using a
12-channel receiver head coil. The body coil was used for transmission. A spin echo
(SE) DWI sequence was used in acquiring the dMRI data. Diffusion weighting was
applied along 60 isotropically distributed gradient directions with b = 1000 s/mm2

as well as b = 2500 s/mm2. Additionally, 2× 12 additional images were acquired:
(a) 12 images without diffusion sensitization and (b) 12 images with diffusion
sensitization (b = 3000 s/mm2) along a single gradient direction. Other imaging
parameters were kept constant throughout the DKI data acquisition sequences:
TR/TE : 6100/118 ms, matrix: 96× 96, NEX: 1, slice thickness: 2.5 mm, slices: 40,
parallel imaging factor: mSENSE with acceleration factor 2. diffusion-weighted
data was corrected for motion and eddy current distortions using exploreDTI
[Leemans et al., 2009].

Because of a lack of a ground truth, we had to define a bronze standard, i.e.
a heuristic reference map, on the real data to evaluate our noise map estimation
approach. As a bronze standard, we adopted the strategy proposed by Maximov
et al. [2012]. Their strategy relies on the acquisition of repeated measurements and
can, thus, be applied on the b = 0 s/mm2 as well as on the b = 3000 s/mm2 diffusion-
weighted images. Our method was subsequently applied on the b = 1000 s/mm2

and b = 2500 s/mm2 shell.

7.4 Results

7.4.1 Simulation experiment

The estimated noise maps were averaged over 50 trials and shown in Fig 7.1. A
slight positive bias can be observed. For the DTI set-up, i.e. using only the
b = 1000 s/mm2 shell was used for the noise map estimation, the bias was 3%,
2%, 1.6%, and 1.5% for SNRb0

=16, 12, 10, and 8, respectively. When using only
the b = 2500 s/mm2 shell for noise map estimation, the bias was 1.6%, 1.6%, 2%,
and 2.5% for SNRb0=16, 12, 10, and 8, respectively. The resulting noise maps are
clearly much more accurate than the noise maps estimated as part of the CLS∗
and MLE∗ fitting procedures (see Fig. 7.2)
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7.4. Results

Figure 7.1: In the left column, the reference noise maps were shown. The average
noise maps using the proposed estimator based on the diffusion-weighted images with
b = 1000 s/mm2 and b = 2500 s/mm2 were shown in the middle and right column,
respectively. Contrast was kept constant for visual comparison purposes.
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Figure 7.2: Noise map estimation as part of the CLS and MLE fitting procedures, with
(bottom) and without (top) preceding data preprocessing, was compared to the reference
noise map and the one obtained with our proposed method. The shown maps are average
noise maps, calculated over 50 simulation trials.

7.4.2 Real data experiment

In a first experiment, the assumption of a constant noise level across the diffusion-
weighted images was validated. For each diffusion-weighted image, the Gaussian
noise level was calculated in 10 predefined background regions (ν = 0), each
including 300 voxels using Eq. (3.17). Trends in the resulting curves (i.e. σ
as a function of the diffusion-weighted index) were detected with second-order
polynomial regression. The first- and second-order terms were centered around
0, and thus, justified the assumption (results not shown). Next, Fig. 7.3 shows
several noise maps. The maps are 2D noise maps, calculated as the average of ten
consecutive slices within the estimated 3D noise maps. The averaging was mainly of
importance to improve the precision of the bronze standard. Our proposed method
resulted in noise maps (Fig. 7.3(a,b)) that correspond well with the bronze standard,
both in terms of intensity and spatial distribution, especially if we compare our
results with the bronze standard calculated from the b = 3000 s/mm2 images
(Fig. 7.3(d)). The noise map derived from the b = 0 s/mm2 images (Fig. 7.3(c)) is
clearly affected by pulsation artifacts [Tournier et al., 2011]. This is mainly reflected
in an increased noise level in regions surrounding the CSF. Strong edges (i.e. high
frequent image information) in the diffusion-weighted images will show-through in
the HHH sub-band. The effect is less pronounced if low SNR images (e.g., with
high b-values) are used for noise map estimation. Compare, for instance, Fig. 7.3(a)
and Fig. 7.3(b), which are the noise maps estimated from the b = 1000 s/mm2 and
b = 2500 s/mm2 images, respectively. Although suppression of the high gradient
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Figure 7.3: Our proposed noise map estimator, applied to the b = 1000mm2/s images (a)
and b = 2500mm2/s images (b), was compared to a bronze standard, calculated from the
b = 0mm2/s repetitions (c) or b = 3000mm2/s repetitions (d). The noise map obtained
with MLE∗ (e) was shown for comparison.

regions is encouraged to minimize an artificial increase of noise level in those regions
[Coupé et al., 2010], entirely removing the effect remains challenging and might
require masking out of CSF regions. The noise map shown in Fig. 7.3(e) was
obtained with the DTI-MLE∗. The underestimated noise levels are in agreement
with the simulations.

7.5 Discussion

Key for data modeling is the noise parameter. Since estimating the noise level
as part of the fitting procedure appeared inaccurate, especially after applying
data correction, the development of a 3D noise map estimation strategy is a main
contribution of the work. For the real data experiments, the estimated noise map
corresponds very well with the bronze standard, which was constructed with a
recently proposed technique based on repeated measurements [Maximov et al.,
2012]. In a clinical setting, that approach, however, has two clear limitations: (a)
the acquisition of repeated measurements (preferably with high b-value) will further
lengthen the scan time, (b) misalignment between repeated measurements, which
will cause the bronze standard to become erroneous, is much more likely to occur
for a patient than for an instructed healthy volunteer. For noise map estimation,
the highest b-value shell is preferably used. In those images, the HHH sub-band is
the least corrupted with residual signal, which originates in high image gradients.
One might benefit from further suppressing the HHH sub-band’s residual signal.
Coupé et al. [2010] already suggested to threshold the gradient magnitude of LLL
sub-band to create a mask for high gradient regions. Note that the proposed noise
map estimator relies on the assumption of an identical Gaussian noise map for all
uncorrected diffusion-weighted images. This assumption is violated by frequency
domain reconstructions that are subsequently followed by SoS. The noncentral χ
distribution will then be parameterized by an effective noise level, which depends on
the underlying signal [Aja-Fernández et al., 2011, Aja-Fernández and Tristán-Vega,
2012]. However, the calculation of L provides the user already with the effective
noise map. Obviously, if the underlying noise level is spatially invariant, then robust
and precise background-based techniques might be preferred as the background
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will comprise many voxels sampled from the same distribution [Sijbers et al., 2007,
Chang et al., 2005, Koay et al., 2009b].
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Chapter 8. Constrained parameter estimation

8.1 Introduction

The least squares and maximum likelihood approaches for diffusion parameter
estimation ignore a priori information about the feasible values of the estimated
parameters. As diffusion of water molecules is a physical property of the tissue
being measured, diffusional tensor estimates must be physically and biologically
meaningful. Unfortunately, in many cases, diffusion and kurtosis values might lie
outside a physically acceptable range due to the presence of noise, imaging artifacts
such as Gibbs ringing, or misalignment of the diffusion-weighted images. In this
chapter, we will list the constraints that should be imposed during the estimation
of the DKI model parameters. For constraining the DTI fit, we refer to Koay and
Basser [2006]

8.2 Linear inequality constraints

8.2.1 Constraint #1: lower bound constraint on Dapp

To reconcile with the physical phenomenon of molecular diffusion, Dapp should be
positive along each possible gradient direction. Alternatively, one can state that the
diffusion tensorD should be positive definite. Its corresponding positive eigenvalues
will result in FA values ranged between 0 and 1, the theoretically expected range. In
practice, however, hyperintense voxels do show up in FA maps that are computed
with unconstrained estimators. Indeed, since diffusion-weighted signals might
exceed the nondiffusion-weighted reference values due to the presence of noise and
imaging artifacts, those conventional estimators might results in diffusion tensors
with negative eigenvalues. Typically, the radial eigenvalues are more likely to
take negative values. Because of possibly low diffusion coefficients in the radial
direction, noise or Gibbs ringing might dominate the expected signal attenuation.
Early brute force strategies to enforce positive definiteness of the diffusion tensors
included the rejection or reduction of the diffusion-weighted signals exceeding the
nondiffusion-weighted reference signal [Koay et al., 2006]. Alternatively, negative
eigenvalues were set to zero prior to calculation of the diffusion tensor parameters.
Koay et al. [2006] proposed a more elegant constrained estimation strategy by
representing the diffusion tensor by its Cholesky decomposition:

D = CTC, (8.1)

with C an upper triangular matrix with non-zero diagonal elements:

C =

C1 C2 C3

0 C4 C5

0 0 C6

 , (8.2)

All diffusion estimators can now be reformulated in terms of the parameter vector:

ρ = [C1, C2, C3, C4, C5, C6]
T
. (8.3)
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For example, the NLS can be written as:

β̂ = arg min
ρ
‖S̃ − exp (Bβ(ρ)) ‖22, (8.4)

with

β(ρ) =
[
C2

1 , C1C2, C1C3, C
2
2C

2
4 , C2C3 + C4C5, C

2
3 + C2

5 + C2
6

]T
. (8.5)

For the ML and (W)LLS estimators the same parameter substitution can be done
to guarantee positive definite diffusion tensors. However, note that the object
function is nonlinear in terms of ρ. So, no closed-form solution exists and iterative
algorithms need to be applied to solve the optimization problem.

8.2.2 Constraint #2: lower bound constraint on Kapp

There’s no doubt that there should be a lower bound on Kapp. The theoretical
minimal kurtosis value equals -2 [Evans et al., 2000]. However, in the context
of dMRI, -3/7 might be a more appropriate lower bound on Kapp as stated by
Jensen et al. [2005]. Indeed, Jensen et al. [2005] showed that given water molecules
confined to spherical pores, the kurtosis converges to -3/7 with the diffusion time
going to infinity. In that asymptotic case, diffusion would be fully restricted.
However, fully restricted diffusion is not expected in biological tissue. Indeed,
the CHARMED model suggests the presence of both restricted and hindered
compartments [Assaf and Basser, 2005]. Moreover, according to the CHARMED
model, the population fraction of the restricted components does not exceed 50%.
Therefore, it is generally assumed that Kapp should be positive. Empirical results
substantiate that assumption [Jensen et al., 2005]. Let us recall Eq. (2.39):

Kapp(ĝ) =
MD2

Dapp(ĝ)2

3∑
i,j,k,l=1

ĝiĝj ĝkĝlKijkl

=
1

Dapp(ĝ)2

3∑
i,j,k,l=1

ĝiĝj ĝkĝlK̃ijkl,

(8.6)

with K̃ijkl = MD2Kijkl, the modified kurtosis tensor owing to the linearized DKI
model. As MD2 and Dapp(ĝ)2 are always positive, Kapp(ĝ) is positive if

3∑
i,j,k,l=1

ĝiĝj ĝkĝlKijkl > 0, (8.7)

or
3∑

i,j,k,l=1

ĝiĝj ĝkĝlK̃ijkl > 0. (8.8)

As a result, a positive Kapp along each unit direction of a densely sampled sphere
can be enforced by imposing a set of linear constraints [Tabesh et al., 2011, Veraart
et al., 2011].

127



Chapter 8. Constrained parameter estimation

8.2.3 Constraint #3: upper bound constraint on Kapp

Assuming that the log-transformed diffusion-weighted signal along a fixed gradient
direction, lnS(b, ĝ), is a monotonically decreasing function of the b-value, then the
upper bound on Kapp(ĝ) can be derived as:

Kapp(ĝ) ≤ 3

Dapp(ĝ)b
, (8.9)

as a necessary condition for the validity of the DKI model [Lazar et al., 2008]. Only
then, the first derivative of

lnS(b, ĝ) ≈ lnS(0)−Dapp(ĝ)b+
1

6
Dapp(ĝ)2Kapp(ĝ)b2, (8.10)

with respect to b is negative within the range of acquired b-values. Since Dapp(ĝ)2

is positive along each gradient direction, inequality in Eq. (8.9) can be reformulated:

Kapp(ĝ)Dapp(ĝ)2 ≤ 3Dapp(ĝ)

b
, (8.11)

or
3∑

i,j,k,l=1

ĝiĝj ĝkĝlK̃ijkl −
3

b

3∑
i,j=1

ĝiĝjDij ≤ 0 (8.12)

One can see that the latter is a linear combination of the parameters of the linearized
DKI model. We enforce the constraint along the directions of a densely sampled
sphere by imposing a set of linear constraints [Tabesh et al., 2011, Veraart et al.,
2011].

8.2.4 Matrix notation
In general, a constrained diffusion parameter estimator can be written as:

β̂ = arg min
β
h(β), (8.13)

such that
Aβ̂ ≤ 0, (8.14)

with h an arbitrary function of parameter vector β and A a matrix representing
the linear (in)equality constraints [Tabesh et al., 2011]. Matrix A is defined as:

A =


0 −A(1)

D 0

0 0 −A(2)
K

0 − 3
bmax

A
(3)
D A

(3)
K

 , (8.15)

with

A
(1)
D =


n̂2

1x 2n̂1xn̂1y 2n̂1xn̂1z n̂2
1y 2n̂1yn̂1z n̂2

1z

n̂2
2x 2n̂2xn̂2y 2n̂2xn̂2z n̂2

2y 2n̂2yn̂2z n̂2
2z

...
...

...
...

...
...

n̂2
Nx 2n̂Nxn̂Ny 2n̂Nxn̂Nz n̂2

Ny 2n̂Nyn̂Nz n̂2
Nz

 ,
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with n̂i =
[
n̂ix , n̂iy , n̂iz

]
the unit-length vector denoting the ith out of N directions

of a densely sampled sphere. A(3)
D is defined analogously. The ith row of the N × 15

matrix A(2)
K is given by:[

n̂4
ix 4n̂3

ix n̂iy 4n̂3
ix n̂iz 6n̂2

ix n̂
2
iy 12n̂2

ix n̂iy n̂iz 6n̂2
ix n̂

2
iz 4n̂ix n̂

3
iy · · ·

12n̂ix n̂
2
iy n̂iz 12n̂ix n̂iy n̂

2
iz 4n̂ix n̂

3
iz n̂4

iy 4n̂3
iy n̂iz 6n̂2

iy n̂
2
iz 4n̂iy n̂

3
iz n̂4

iz

]
.

Again, A(3)
K is defined analogously.

8.3 Constrained parameter estimation

8.3.1 Constrained linear least squares estimators
Minimizing the linear least squares object function subject to linear equality and
inequality constraints (e.g. Eq. (8.14)) can be done with quadratic programming
(QP) [Gill et al., 1981]. A solution is given by the active set method. Initially,
the unconstrained closed-form solution is computed and checked on its feasibility.
An estimate is called feasible if none of the constraints is violated. If so, this
unconstrained estimate is the solution, i.e. the global optimum, of the constrained
optimization problem. However, if at least one constraint is violated, a feasible
initial guess will be computed using linear programming methods to initiate an
iterative process. So, basically, the active set method is an iterative method that
solves a sequence of equality-constrained quadratic subproblems during which the
set of active constraints are iteratively updated. The final solution always satisfies
all constraints.

8.3.2 Constrained nonlinear estimators
The constrained nonlinear least squares (ordinary and conditional) functions – as
well as the maximum likelihood function – form a well-behaved, twice differentiable,
constrained nonlinear programming problem that can be efficiently solved by
sequental quadratic programming (SQP) [Gill et al., 1981]. The optimizer requires
the gradients of both the objective and the constraint functions. As they can both
analytically be computed, the SQP algorithm is much faster at converging than the
heuristic Nelder-Mead scheme we initially used [Nelder and Mead, 1965, Veraart
et al., 2011].

8.4 Experiments

8.4.1 Single voxel simulations
Initially, Monte Carlo simulations (50000 trials) were done to evaluate the effect of
varying SNRb0 , i.e. the ratio between the noisefree nondiffusion-weighted signal
and the noise level, on the MSE of the constrained and unconstrained least squares
approaches for estimating FA, MD, and MK. Simulated Rice distributed data
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with varying SNR−1
b0

within a range of [10, 30] was simulated using Eq. (5.1). The
ground truth diffusional tensors D and W were in-line values observed in the
corpus callosum (cc) [Lätt et al., 2013]. The FA, MD, and MK were defined as
0.95× 10−3 mm2/s, 0.75, and 1.05, respectively. Diffusion-weighted signals with
b = 1000 s/mm2 and b = 2500 s/mm2 were sampled along 60 directions, isotropically
distributed over a unit sphere using Coulomb’s law of repulsion [Jones et al., 1999].
Five nondiffusion-weighted signals were added. Rice distributed diffusion-weighted
data were obtained by adding zero-mean complex Gaussian noise to the noise-free
diffusion-weighted signals and calculating their magnitudes afterwards.

8.4.2 Whole brain simulations

Rice distributed simulation data sets, representing the whole human brain white
matter were used for comparing the mean squared error (MSE) of the diffusion
parameters obtained by the unconstrained and constrained least squares estimators.
The simulated data sets were constructed as follows. First, ground truth tensors
were obtained by voxel-wise fitting the DKI model to a real data set (see section 8.4.3:
Data set 1). Second, a set of noise-free diffusion-weighted signals was reconstructed
from those diffusion tensors using the DTI and DKI model for the DTI and DKI
analyses, respectively. Gradient directions and b-values were in agreement with
the single-voxel experiments. Third, 5000 sets of noisy diffusion-weighted signals
with a uniform SNRb0

of 20 were generated by adding 5000 realizations of complex
Gaussian noise to the noise-free diffusion-weighted signals. From each set, the
diffusion tensors were estimated. From the 5000 trials, the MSE in the estimation of
FA, MD, and MK of the different estimators – constrained as well as unconstrained
– were evaluated.

8.4.3 Real data experiments

The unconstrained WLLS, NLS and CLS estimator were run on two human data
sets and the violations of either of the constraints was voxelwise examined. The
following diffusion-weighted data sets of different healthy volunteers were acquired:

Data set 1: A first diffusion-weighted data set was collected on a 3T Philips
Achieva MR scanner, using a 8-channel receiver head coil. Diffusion sensitizing
was applied along 60 isotropically distributed gradient directions with b =
1200 s/mm2 as well as b = 2500 s/mm2. Additionally, one image without
diffusion sensitization was acquired. Other imaging parameters were: TR/TE :
10265/107 ms; in-plane resolution: 1.75× 1.75 mm2; NEX: 1; slice thickness:
2 mm; axial slices: 70; and parallel imaging: SENSE with acceleration factor
2.

Data set 2: A third diffusion-weighted data set was acquired on a Siemens Trio
(3T) MR scanner, using a 12-channel receiver head coil. Diffusion weight-
ing was applied along 60 isotropically distributed gradient directions with
b = 1000 s/mm2 as well as b = 2500 s/mm2. Additionally, 10 nondiffusion-
weighted images were acquired. Other imaging parameters were: TR/TE :
6100/118 ms, in-plane resolution: 2.5 × 2.5 mm2; NEX: 1; slice thickness:
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2.5 mm; axial slices: 40; and parallel imaging: mSENSE with acceleration
factor 2.

The diffusion-weighted data were corrected for motion and eddy currents, including
signal modulation and b-matrix rotation [Leemans et al., 2009, Leemans and Jones,
2009]. For each voxel, constraints #2 and #3 were evaluated along 256 directions
that were isotropically distributed on a sphere. For constraint #1, the eigenvalues
were evaluated to determine constraint violations. Within white matter (WM) and
gray matter (GM) – segmented using FSL’s FAST algorithm [Zhang et al., 2001] –
the percentage of voxels for which the constraints are not satisfied were computed
and compared across both estimation strategies.

8.5 Results

8.5.1 Single voxel simulations

In Fig. 8.1, the constrained and unconstrained estimators are compared in terms of
MSE as a function of SNR−1

b0
. The graphs indicate that the constrained estimation

methods always outperform their unconstrained counterparts in terms of MSE in
the estimation of MD, FA, and MK. The difference in performance increase with
SNR−1

b0
.

8.5.2 Whole brain simulations

In Fig. 8.2, scatter plots show the relationship between the MSE in the estimation
of the diffusion model parameters of WLLS, NLS, and CLS against that of their
constrained counterparts, respectively. Each point in the scatter plot corresponds
to a single voxel of the simulated data set. The MSE in the estimation of FA,
MD and MK was significantly lower if the constraints were imposed during model
fitting. During these simulations, statistical significance (p < 0.01) was shown with
a paired Wilcoxon signed rank test.

8.5.3 Real data

In Fig. 8.3 and Fig. 8.4, MK and FA maps of the same axial slice, computed with
unconstrained as well as the constrained estimators, are shown for data set 1 and 2,
respectively. In the parameter maps estimated with the unconstrained algorithms
(Fig. 8.3(a-c, g-i) and Fig. 8.4(a-c, g-i)), one can visually detect several outliers,
which are related to constraint violations. On the one hand, the MK map is covered
with black voxels, while, on the other hand, hyper intense FA values, i.e. FA > 1,
can be observed . The former indicates negative kurtosis values (constraint #2); the
latter indicates negative eigenvalues of the estimated diffusion tensor (constraint
#1).

An overview of the spatial locations of constraint violations using unconstrained
WLLS estimators is given in Fig. 8.5. Similar maps were computed for unconstrained
NLS and CLS. However, the maps are not shown because of the high mutual
correspondence. Violations of constraint #1 are shown in Fig. 8.5(a, d). Most of
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Figure 8.1: MSE in the estimation of FA, MD, and MK (g-i) are shown as a function of
the SNR−1

b0
for the different constrained and unconstrained least squares estimators.
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Figure 8.2: Scatter plots show the relationship between the MSE in the estimation of
the diffusion model parameters of constrained against that of unconstrained parameter
estimation. The blue lines are unit-slope-lines.
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(a) WLLS (b) NLS (c) CLS

(d) CWLLS (e) CNLS (f) CCLS

(g) WLLS (h) NLS (i) CLS

(j) CWLLS (k) CNLS (l) CCLS

Figure 8.3: FA, scaled between 0 and 1, (a-f) and MK, scaled between 0 and 1.5, (g-l) maps
of the same axial slice, computed with unconstrained (a-c, g-i) as well as the constrained
(d-f, j-l) estimators, are shown for real data set 1.
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(a) WLLS (b) NLS (c) CLS

(d) CWLLS (e) CNLS (f) CCLS

(g) WLLS (h) NLS (i) CLS

(j) CWLLS (k) CNLS (l) CCLS

Figure 8.4: FA, scaled between 0 and 1, (a-f) and MK, scaled between 0 and 1.5, (g-l) maps
of the same axial slice, computed with unconstrained (a-c, g-i) as well as the constrained
(d-f, j-l) estimators, are shown for real data set 2.
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(a) Cosntraint #1 (b) Cosntraint #2 (c) Cosntraint #3

(d) Cosntraint #1 (e) Cosntraint #2 (f) Cosntraint #3

Figure 8.5: Spatial location of violations of constraint #1 (a,d), #2 (b,e), and #3 (c,f)
for real data set 1 (a-c) and real data set 2 (d-f).
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Figure 8.6: Directional dependency of prevalence of constraint #2 (a) and #3 (b) violations.
The angle α is the angle in degrees between the direction along which the constraint was
violated and the principal eigenvector the diffusion tensor. So, direction in the equatorial
plane have α = 90◦. The histograms were obtained from both real data sets.

the violations appeared in the deep WM structures such as the genu and splenum
of the cc. In Fig. 8.5(b, e), the voxels for which Kapp < 0 (constraint # 2 violations)
were observed in at least one diffusion-weighting gradient direction are colored.
Most voxels violating constraint #2 are within deep WM structures such as the cc.
Violations of constraint #3 are shown in Fig. 8.5(c, f). Note that in numerous voxels,
this condition was not satisfied. The DKI model resulted in too high kurtosis values
within many voxels of various WM regions. Moreover, we observed a directional
dependence of the prevalence. Indeed, constraints violations most often occur along
radial directions. The high kurtosis and the low signal attenuation along those
directions contribute to this observation. A more quantitative overview of the
number of constraint violations is given in Table 8.1. The percentages of voxels
violating constraint #1, #2 or #3 within WM and GM are tabulated. Note that
positive definiteness on the diffusion tensors was generally satisfied when estimating
the diffusion tensors with the DKI model. In less than 1.2% of the WM voxels,
the diffusion tensor showed negative eigenvalues. The constraints on the kurtosis
tensor, however, were violated in high percentages of the voxels within each tissue
class. The most violated constraint was clearly constraint #3, the upper bound on
the Kapp. Indeed, in more than 50% of the WM voxels the estimated tensors did
not satisfy the constraint. Negative kurtosis values were observed in > 30% and
> 55% of the WM voxels for Data set 1 and 2, respectively. More than 75% of the
WM voxels showed constraints violations and in more than 35% of the GM voxels,
physically irrelevant diffusional tensors were estimated.

8.6 Discussion

The simulation experiment as well as a real data study demonstrated that un-
constrained parameter estimators not always result in physically and biologically
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Table 8.1: The percentages of voxels violating constraint #1, #2 or #3 within WM and
GM, estimated with the unconstrained WLLS, NLS, and CLS estimator.

Data set 1
WLLS NLS CLS

Constraint WM GM WM GM WM GM
#1 0.56 0 0.58 0 0.69 0.19
#2 33.62 22.56 32.47 20.91 37.30 25.83
#3 54.16 17.90 54.75 18.30 52.43 17.44

#1 ∪ #2 ∪ #3 75.83 39.23 75.58 38.07 76.06 40.93
Data set 2

WLLS NLS CLS
Constraint WM GM WM GM WM GM

#1 1.11 3.22 1.00 2.99 1.59 4.15
#2 61.84 55.41 57.10 50.00 72.90 66.74
#3 63.59 46.25 65.01 47.79 61.36 45.28

#1 ∪ #2 ∪ #3 91.37 80.11 90.34 78.00 92.79 84.01

relevant tensor estimates as the diffusion model is fitted to noisy DWIs, often
corrupted with imaging artifacts. Therefore, diffusion and kurtosis parameters
might be inaccurate and unreliable, hampering statistical analyses in clinical studies.
Hence, constrained estimators are crucial in DKI analyses.

First, negative mean and directional kurtosis values were observed when using
one of the unconstrained estimators. Typically, negative kurtosis values are observed
in the deep WM structures, such as the cc. The genu and splenium of the cc as
well as the simulated diffusion-weighted data, are characterized by a low radial
diffusivity. Along low diffusivity directions, the noisy diffusion-weighted signal
might appear being a concave function of the b-value, yielding negative estimated
of directional kurtosis. In some extreme cases, the measured diffusion-weighted
signal intensity may even exceed the nondiffusion-weighted signal intensity. As a
result, negative estimate of diffusivity (violations of constraint #1) and extremely
negative kurtosis values (violations of constraint #2) arises. The latter can be
observed as black voxels in Fig. 8.4(g-i) and Fig. 8.4(g-i), while negative diffusivity
yields hyper intense FA values. Obviously, negative kurtosis values did also appear
within regions or along gradient directions with low kurtosis due to the variance of
the selected estimator. Indeed, many constraint violations (#1, #2, and #3) are
due to the expected variation of the estimator. Therefore, imposing the constraints
will affect the estimators properties such as accuracy or precision.

Improving the fidelity of DKI estimators has initially been studied by Ardekani
et al. [2010]. They imposed positive-definiteness on the diffusion kurtosis tensor by
rewriting the 4th order, 3D diffusion kurtosis tensor as a 2nd order, 6D symmetric
tensor with 15 unique elements. The Cholesky parameterization enables imposing
positivity on the diffusion tensor as well as on the diffusion kurtosis tensor to obtain
positive Kapp along each direction. The method, however, lacks an upper bound
on the kurtosis values as a result of which a monotonically decreasing DKI model
function is not guaranteed. As demonstrated in this study, the most often violated
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constraint (constraint #3) is not imposed in their strategy. However, Tabesh et al.
[2011] showed that by substituting MD2K by K̃, the linear least squares estimation
problem becomes a special case of convex quadratic programming. Moreover, after
substitution, all constraints on the model parameters are linear in terms of the
model parameters as well.

In this chapter, we described how the approach introduced by Tabesh et al.
[2011] can be adopted to constrain estimators with better performance than LLS
in terms of accuracy and/or precision, i.e. the WLLS, NLS, CLS, and MLE. For a
more detailed discussion of the constrained MLE, we would like to refer to Veraart
et al. [2011]. Simulation and real data experiments indicated that the constrained
estimation methods always outperform their unconstrained counterparts in terms
of MSE in the estimation of MD, FA, and MK.
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9.1 Introduction

Because of the rat’s ability to accurately predict the human response, the rat has
become the most widely studied experimental animal model for biomedical research,
which might involve microsurgical techniques, serial sampling of the cerebrospinal
fluid (CSF), and repetitive in vivo neuroimaging [Cenci et al., 2002, Cozzi et al.,
2008]. The rat exhibits physiological characteristics similar to those of humans and
therefore, several strains, substrains, and genetically modified rats are employed
to mimic various neurological disorders such as Huntington Disease [von Hörsten
et al., 2003], Amyotrophic lateral sclerosis [Vermeiren et al., 2006], and Alzheimer
disease [Liu et al., 2008].

Several atlases of the rat brain have been developed and provide invaluable
resources for a wide range of applications in various types of neuroscience studies,
including visualization, identification, and precise localization of specific brain areas,
stereotaxic surgery, delineation of brain regions of interest (ROI), and registration
of information such as gene expression locations. To date, the most widely used
rat brain atlases are the stereological, histology-derived atlases of the Wistar and
Sprague Dawley (SD) rat brain by Paxinos and Watson [1986, 2007] and Swanson
[1992, 1998, 2004], respectively. These atlases describe the brain in a series of
two-dimensional diagrams, indicating the names and boundaries of areas and nuclei.
Despite their widely use, the histology-based atlases have several limitations. First,
histology-based atlases are inherently two-dimensional and restricted to standard
section planes. Second, the procedures of specimen fixation, sectioning, and staining
involved in histological processing can deform the brain shape, which might be a
source of significant inaccurate localization of brain areas. During the last decade,
several average in vivo templates of the rat brain and atlases of its major structures
have been developed with magnetic resonance imaging (MRI), a non-invasive, three-
dimensional, and in vivo imaging technique, which enables accurate identification of
a large number of anatomical structures [Schweinhardt et al., 2003, Schwarz et al.,
2006, Hess et al., 2005]. However, all proposed atlases lack orientational information
about the white matter anatomy, which constitutes a complex network of axons
connecting different brain regions. This is conclusively due to the homogeneous
appearance of the white matter structures in conventional MRI and in histology
preparations. The lack of clear anatomical boundaries hampers identification and
delineation of specific white matter fiber bundles.

Magnetic resonance diffusion tensor imaging (DTI) is a widely explored, and
exceptional modality for quantifying the random walks of water molecules in
biological tissue [Basser et al., 1994]. Unlike other MR techniques, it offers the
possibility of characterizing and visualizing the structural connectivity of distinct
anatomical networks within the brain in vivo and non-invasively [Jones, 2008].
With DTI, the estimated displacement profile of the diffusing molecules can be
interpreted as an ellipsoidal iso-probability surface - described by a diffusion tensor
(DT). In the white matter, the first eigenvector of the DT, thus the preferred local
displacement direction of the water molecules, coincides with the orientation of
major fiber tracts, as a result of which DTI provides rich anatomical contrast highly
suitable for accurate delineation of white matter regions and subregions [Lin et al.,
2001, Kaufman et al., 2005, Dauguet et al., 2007].
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To provide a resource for efficient three-dimensional parcellation and analysis
of rat brain neuroimaging data, we here present an accurate three-dimensional
atlas of the normal adult SD rat brain constructed from precise, manually delin-
eated anatomical labels. Selected gray and white matter structures were manually
delineated in a high-resolution, diffusion weighted and anatomical MRI scan ob-
tained ex vivo with the brain in situ within the skull. To minimize bias due to
sample-specific features in the ex vivo sample, we nonlinearly mapped the ex vivo
atlas onto a population-averaged in vivo rat brain template. The construction
of that population-averaged template allowed studying the anatomical variation
within the sample population [Aggarwal et al., 2009]. The proposed atlas offers
an average anatomical template for accurate identification of the white and gray
matter structures, which could, for example, be used for ROI delineation of the rat
brain imaging data.

9.2 Materials and Methods

9.2.1 Animal samples and preparation

Animal procedures were approved by the local institutional animal welfare commit-
tee at the Universities of Oslo and Antwerp, and were in compliance with National
Institutes of Health and European Community guidelines for the use and care
of laboratory animals. For the construction of the in vivo population-averaged
template, nine inbred male SD aged ∼12 months were used, while for the ex vivo
atlas, one inbred male SD rat aged ∼18 months was used. The animals were bred at
the Franz-Penzoldt-Center, Experimental Therapy, Friedrich-Alexander-University
of Erlangen-Nürnberg, Germany.

Before ex vivo MR imaging, the specimen was prepared for active staining
according to [Johnson et al., 2002], with a contrast agent mixed with a fixative
to enhance the MRI signal. Following a brief inhalation induction with 4% isoflu-
rane (Abbott Laboratories, Illinois, USA), the animal was deeply anesthetized by
intraperitoneal injection of sodium pentobarbital (50 mg/kg) and transcardially
perfused with 120 ml of a mixture of 0.9% saline, ProHance® (10:1 v:v; gadoteridol,
Bracco Diagnostics, Inc, Princeton, NJ), and Heparin (5000 IE units / ml; Leo
Pharma A/S, Ballerup, Denmark), followed by 120 ml of freshly prepared 4%
paraformaldehyde with ProHance (10:1, v:v). The animal head was isolated and
stored in 0.9% saline with ProHance (10:1 v:v). During all procedures the brain
was left in situ within the cranium to limit physical distortions.

9.2.2 In vivo MR imaging

Diffusion weighted images (DWIs) were acquired at the Bio-Imaging Lab on a 9.4T
Bruker Biospec scanner (Ettlingen, Germany) using a fast spin echo sequence with
an encoding scheme of 6 diffusion weighting gradient directions using b = 800 s/mm2,
TR/TE= 2200/34 ms, δ = 5 ms,∆ = 18 ms, acquisition matrix = 256 × 128
(zerofilled to 256 × 256), FOV= 35 × 35 mm2, 28 slice with thickness 0.43 mm.
Additionally, one image without diffusion weighting (b0) was acquired. For each
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animal, diffusion weighted datasets were acquired for 7 repetitions (two averages
each), which resulted in a total scan time of ∼ 4h.

9.2.3 Ex vivo imaging

DWIs were acquired at the Duke Center for In Vivo Microscopy using a 7T Magnex
7.0 T/210 mm bore magnet controlled by GE EXCITE consoles. A Specimen was
imaged in a solenoid rf coil fabricated from a continuous sheet of high frequency
microwave substrate (Roger Corp, Rogers, Ct). A diffusion-weighted spin-echo
pulse sequence with extended dynamic range [Johnson et al., 2007] was used to
acquire 3D volume images (FOV = 45× 22.5× 22.5 mm3, TR/TE= 100/15.6 ms,
NEX=2). Diffusion encoding was performed using a pair of half-sine gradient
pulses (δ = 3.2 ms/∆ = 8.3 ms), using b = 800 s/mm2. A reduced encoding DTI
methodology [Jiang et al., 2004] was employed, such that the dataset consisted of a
fully encoded 512× 256× 256 (readout × phase × slice) matrix-size b0 (i.e., b ≈ 0)
and 12 reduced encoded (512× 128× 128) diffusion-weighted images sensitized in
each of an optimized set of 12 directions [Papadakis et al., 1999]. Each reduced
encoded diffusion-weighted image was reconstructed to 512 × 256 × 256 matrix
size by a corrected keyhole algorithm [Jiang and Hsu, 2005] with the b0 image as
the constraining reference, resulting in 88µm isotropic resolution. The acquisition
time for the complete DTI dataset was approximately 18h. A RF refocused spin
echo image with the same FOV and resolution was acquired with TR = 50 ms,
TE = 5 ms, and NEX=1. Active staining with Prohance reduces the T1 of all the
tissues to <100 ms so this sequence produces anatomical images similar to those
one would obtain with proton density weighting in unstained tissues.

9.2.4 DTI data analysis

The DTI model is given by:

lnS(b,θ) = lnS0 − b
3∑

i,j=1

gigjDij . (9.1)

In Eq. (9.1), gi is the ith component of diffusion weighted gradient direction
g and b probes the diffusion weighting strength. S(b) and S0 are the diffusion
weighted and non-diffusion weighted signal intensities, respectively. Dij is the ijth
element of the fully symmetric apparent diffusion tensor D. The DTI model is
parameterized by θ, which includes 7 parameters: S0 and 6 independent elements
of D, [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz].

The parameter vector θ was estimated voxelwise by fitting Eq. (9.1) to the
natural logarithm of the diffusion weighted data - corrected for motion and eddy
currents using the FSL toolbox [Jenkinson et al., 2002]- such that the sum of the
weighted squared differences was minimized (see Chapter 5). Several diffusion
parameters, such as the fractional anisotropy (FA), mean (MD), radial (D⊥)
and axial (D‖) diffusivity, were calculated voxelwise by means of the eigenvalue
decomposition of the related diffusion tensors [Le Bihan et al., 2001].
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Subject 1 Subject 2 Subject 3 Subject 9

(A)

(B)

(C)

Averaging

Figure 9.1: An overview of the in vivo population-averaged template construction. In (A),
the FA maps of the subjects, affinely aligned to an arbitrarily chosen subject, are shown.
The deformation field that maps subject j onto subject i is calculated and denoted as
Tij , with i < j, and j = 1 · · · 9. The calculation of the deformation fields was done with
a nonrigid registration algorithm based on a viscous fluid model. Next, for subject i,
an average mean deformation field is computed as the average deformation to all other
subjects: Ti =

∑9
j=1 Tji, with Tji the inverse of Tij . The average deformation fields, Ti,

are applied to the corresponding DTI datasets (B). The average of the deformed DTI
datasets resulted in the population based atlas (C). In (B) and (C), the DTI datasets are
represented by the FA maps.

9.2.5 Population-averaged brain template

All nine in vivo diffusion weighted datasets were used to create a population-
averaged DTI template that robustly preserves the orientational DT information
and contains a minimal bias towards any specific individual dataset. First, all
images were affinely aligned to a randomly chosen subject to correct for global
misalignments. The affine registration was performed with in-house ITK software
based on maximizing the mutual information between FA maps as they provide
high white/grey matter contrast [Maes et al., 1997]. Next, for each dataset, a mean
shape template, defined as a minimal deformation target (MDT) by [Kochunov
et al., 2001], was constructed by nonrigidly transforming a single image in a way
that the deformed image requires the least amount of deformation to all other
images in the group. An identical MDT brain should be obtained regardless of the
image from which it was constructed. Although, in practice, all MDTs were very
similar, some unresolved residual variations, explained by the topology preserving
property of the coregistration algorithm, were noticeable. Those variations were
reduced by a voxel-wise averaging over all MDTs, resulting in a template that is
called the population-averaged DTI template [see Fig. 9.1; Wang et al., 2005, Van
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(a) ex vivo T1 (b) ex vivo DEC

Figure 9.2: (a) A single horizontal slice of the ex vivo T1 image, and (b) the direction
encoded (DEC) FA map, with RGB-colors representing the orientation of the first eigen-
vector of the DTs and intensity values in proportion to the FA value, of a single ex
vivo sample are shown. The red, green and blue color correspond to the mediolateral,
dorsoventral, and anterioposterior orientations, respectively. These maps were used for
the manual delineation of the anatomical structures.

Hecke et al., 2008]. [Wang et al., 2005, Van Hecke et al., 2008].
This used nonrigid coregistration algorithm computes a fluid-model based

deformation field via voxel-by-voxel diffeomorphic mapping from a multichannel
floating image to a multichannel reference image [D’Agostino et al., 2003]. Mutual
information was used as a cost function. The calculation of the deformation field was
steered by all unique diffusion tensor elements to take full advantage of the relevant
information that was encoded in DTI data, particularly the tensor orientation, and
thus to reduce local misalignments in the white matter tracts [Van Hecke et al.,
2007]. Since all images acquired in this study included orientational information,
tensor reorientation (PPD) and recalculation of the DWIs was performed after the
deformation in order the preserve the alignment of the diffusion tensors and the
underlying structures [Alexander et al., 2001].

9.2.6 Manual delineation of brain structures on ex vivo MR
data

In the ex vivo DTI volume, a selection of white matter and gray matter regions were
manually segmented on basis of T1-weighted (Fig. 9.2a) and DTI contrast (FA and
principal eigenvector orientation; Fig. 9.2b), following a stepwise procedure to utilize
complementary information in the structural and diffusion data. Image processing
and anatomical delineations were performed using the ITK-SNAP (version 1.6;
[Yushkevich et al., 2006]; www.itksnap.org) and Amira® (Visage imaging, Inc.,
San Diego, CA) software packages. First, structures were delineated on basis of T1

white/grey matter contrast observed in coronal, sagittal, and horizontal image slices
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(Fig. 9.3(a,d)). Second, in regions where anatomical boundaries were ambiguous or
invisible in T1-weighted images, DTI maps were used to adjust boundaries (Fig.
9.3(b,e)). To this end, the orientation of the principal eigenvector was co-displayed
with the T1-images, in separate channels for anterioposterior (blue), mediolateral
(red), and dorsoventral (green) orientations. The observed diffusion orientations
were evaluated against anatomical landmarks visible in series of coronally and
sagittally oriented histological sections (Fig. 9.3(c,f); T.B. Leergaard, A.M. Dale,
and J.G. Bjaalie, unpublished work, see also [Leergaard et al., 2010]) stained
for myelin following a standard procedure modified from [Woelche, 1942]. Two
standard rat brain atlases were used as reference [Swanson, 2004, Paxinos and
Watson, 2007], and additional predefined anatomical criteria (see below) were
employed to close anatomical boundaries when these were not unequivocally visible
in T1 or DTI images. This particularly concerned locations where myelinated fibers
pass between white matter fiber bundles and GM, the transition from hyperintensive
to hypointensive T1 contrast is gradual and boundaries ambiguous. The lateral
ventricles and the associated ependymal layer were segmented from T1 images
[Swanson, 2004].

9.2.6.1 White matter

The corpus callosum (cc) consists of mediolaterally oriented commisural fibers
that continue in the external capsule (ec) underlying the cerebral cortex (Cx) [e.g.
Heimer et al., 1967, Sargon et al., 2003]. The cc and ec were here segmented as one
structure. The boundary of the ec and the overlying Cx is ambiguous due to the
high number of myelinated fibers passing between both structures (Fig. 9.3(a,d)).
Here, DTI maps provided excellent contrast between coherent fibers oriented along
the ec, and radial fiber orientations in the Cx (Fig. 9.3(b,e)). The cingulum (cg)
bundle lies dorsomedial to the ec, and contains anterioposteriorly oriented limbic
fibers [e.g. White, 1959, Swanson and Cowan, 1979]. The boundary between the cg
and ec is indistinguishable in T1 contrast (Fig. 9.3(a)), but readily segmented in
DTI images showing anterioposterior and mediolateral orientations associated to
the cg and cc/ec, respectively (Fig. 9.3(b,e)). Subcortically projecting corticofugal
axons pass through the striatum (giving rise to its characteristic striated texture)
and converge into the internal capsule (ic), which is continuous with the cerebral
peduncle (cp) and pyramidal tract (py) [e.g. Coleman et al., 1997]. We here
delineated the ic and cp as one structure. The ic was defined as a coherent region
of white matter (i.e. a continuous cluster of voxels with hyperintensive T1 contrast)
located in between the globus pallidus (GP ) and the thalamus, thus excluding the
dispersed and apparently solitary fiber bundles within the striatum. Obviously,
these discontinuities relate to the thickness of fiber bundles relative to the employed
voxel size. The further trajectory of the ic/cp was readily delineated in T1-weighted
images to the level of the pons, where DTI images were used to differentiate the cp
from the ascending medial lemniscus (ml). The anterior commissure (ac), which
decussates anterior of the fornix (f) columns, has an anterior part (aca) extending
anteriorly into the olfactory bulb (OB), and a posterior part (acp) extending
laterally into the striatum. Both the aca and acp were readily identified in both
T1 and DTI images. The optic tract (opt) contains fibers from the optic nerves
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Figure 9.3: Coronal ex vivo T1-weighted (a,d) and DEC-DTI (b,e) slices, shown together
with corresponding images (c,f) of a coronal, myelin stained section from a different
animal. White frames in (a-c) indicate the position of the enlarged images in (d-f).
Images were manually segmented on basis of T1, supplemented by DTI contrast in regions
where T1 contrast was insufficient. The detailed interpretation of DTI images was aided
by inspection of myelin fiber orientations in corresponding histological section images.
It is not possible to distinguish the cingulum (cg) and corpus callosum (cc) in the T1

images, but the anterioposteriorly oriented fibers of the cg (e, f) are standing out in
DT images (blue color in (b,e)). The dorsal boundary of the external capsule (ec) is
ambiguous in T1-weighted images (arrowheads in (d)), but readily identified mediolaterally
oriented diffusion orientations in DTI (red color in (b,e)). The dotted line in (a) indicates
the imaginary boundary between the dorsal caudate putamen (CPu) and the nucleus
accumbens, drawn as a line between the rhinal fissure and ventral tip of the lateral
ventricle. Scale bars, 1mm and 250µm.

and runs along the ventrolateral surface of the diencephalon from the optic chiasm
(och) to the lateral geniculate nucleus of the thalamus. It is difficult to distinguish
from neighboring fiber tracts in T1 images, but detectable in DTI maps showing
mediolateral and dorsoventrally oriented diffusion. The fimbria (fi) and fornix (f)
of the hippocampus contain the main output fiber bundles of the hippocampus, and
were mainly delineated from DTI images, aided by histological material showing
the corresponding orientations of myelinated fibers. The fi forms a band of white
matter along the lateral and rostral aspects of the hippocampus, and the f a
distinct flat bundle close to the midline below the cc [Amaral and Lavenex, 2007].
The boundary of the fi towards the lateral ventricle (LV ) and its ependymal lining
was delineated in T1 images.
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9.2.6.2 Subcortical gray matter

Most parts of the basal ganglia (the striatum, the globus pallidus (GP ), entopedun-
cular nucleus (EP ), and the substantia nigra (SN)) were segmented on basis of the
T1-weighted images. The striatum includes the caudate-putamen (CPu) complex
and the core of the nucleus accumbens (Acb) [Gerfen, 2004], and was dorsally
delineated along the ec, and ventrally along the relatively hyperintensive contrast
of the olfactory tubercle. Since the posterior limit of the striatum is ambiguous, it
was arbitrarily set at the most anterior level where the distinct CA3 field of the
hippocampus is visible in coronal slices. The striatum is usually divided into a
dorsal (CPu) and ventral (Acb) region on basis of hodology and neurochemistry
[Voorn et al., 2004]. As the boundary between the CPu and Acb is unclear in
histological and tomographical material, it is usually defined by an imaginary
line between the inferior tip of the LV and the rhinal fissure (rf) [Ingham et al.,
1998, Van de Berg et al., 2000, Voorn et al., 2004]. In our material, the following
subdivisions of the dorsal and ventral striatum were employed: Anterior of the
decussation of the ac, a line was drawn between the rf to the inferior tip of the
LV . In further anterior regions where the LV could not be distinguished in T1

images, the ventromedial tip of the cc was used as a substitute landmark. Posterior
of the decussation of the ac a line was drawn between the left and right rf .

9.2.7 Correction of ex vivo atlas

Because the ex vivo atlas is based on a single rat brain, it might be biased towards
subject-specific anatomical features. To minimize these effects, we mapped the
high-resolution, ex vivo images and parcellation map nonrigidly, i.e. using the
viscous fluid model, into the in vivo population-averaged space.

9.3 Results

9.3.1 Population-averaged DTI template

9.3.1.1 Registration quality

The construction of the population-averaged was initialized by the affine alignment
of each in vivo dataset to a single, arbitrarily chosen, reference in vivo dataset. After
affine registration, however, there was still a considerable amount of misregistration
noticeable as shown in Fig. 9.4(a). In the figure, the intersubject FA variance,
voxelwise calculated across all affinely aligned subjects, is visualized on top of
the corresponding average FA map. As shown in Fig. 9.4(b), the amount of
misregistration has been significantly reduced by applying the second step of
the construction of the population-averaged DTI brain template, which involved
nonrigid deformation of the datasets. Fig. 9.4(b) shows the FA variance, calculated
after warping each subject onto the population-averaged DTI template, on top of
the population-averaged FA map. One may in particular appreciate the clearly
decreased FA variance in all boundaries of the white matter structure, corresponding
to a sharper white/grey matter contrast.
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(a) (b)

Figure 9.4: (a) The average in vivo FA template (in gray color scale) of a single horizontal
slice after affine alignment of all subjects to a single, arbitrarily chosen, subject, overlaid
with the intersubject FA variance map (shown in spectral color scale). Blue regions indicate
low variability, while red indicate high variability. (b) Compared to (a), the FA variance
and average was calculated after warping each subject onto the population-averaged DTI
template.

To further quantify and compare the quality of the different registration steps,
we evaluated similarity between aligned DTI datasets - represented by their FA maps
- using the normalized correlation coefficient. We calculated the similarity between
pairs of DTI datasets, which were (I) not aligned (original data), (II) affinely
aligned, (III) nonrigidly aligned to a single subject, and (IV) nonrigidly aligned to
the population-averaged DTI brain template. Note that (I), (II), and (IV) were
steps included in the construction of the population-averaged DTI brain template,
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Figure 9.5: Similarity between pairs of DTI datasets (represented by the FA map), which
were (I) not aligned (original data), (II) affinely aligned, (III) nonrigidly aligned to a single
subject, and (IV) nonrigidly aligned to the population-averaged DTI brain template, was
evaluated with the normalized correlation coefficient. Each set of FA maps resulted in
36 pairwise calculated normalized correlation coefficients, of which the median value is
indicated by the red lines. The lower and upper edges of the boxes correspond to the 25th

and 75th percentiles, respectively.
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while (III) was only evaluated for comparison purposes. For each registration step,
a FA map was generated for all nine individual subjects. Each set of FA maps
resulted in 36 pairwise calculated normalized correlation coefficients, which could be
used to compare the image alignment across the different registration steps (see Fig.
9.5). Adding a nonrigid coregistration step during atlas construction resulted in a
significantly increase of pairwise normalized correlation coefficients. Furthermore,
the construction of a population-averaged template (IV) yielded significantly higher
correlation coefficients compared to the subject-based atlas construction approach
(III). Statistical difference between the consecutive steps was demonstrated with a
paired student t-test, with significance level set to 0.05.

9.3.1.2 Anatomical variability

To evaluate the degree of anatomical variability within the sample population, a
deformation field was computed for each single subject by warping the population-
averaged brain template to each subject using the nonrigid coregistration algorithm.
The deformation fields, i.e. the length of the deformation vectors, quantify the
anatomical differences among the individual brains and the average anatomy, repre-
sented by the population-averaged template in each voxel. By voxelwise averaging
the length of the deformation vectors over all studied rats, an anatomical variability
magnitude (AVM) map is obtained [Aggarwal et al., 2009]. The intensity levels
in the map denote distances in millimeters, and represent the average anatomical
variability in the adult rat brain across the sample population (see Fig. 9.6). The
average spatial variability in the whole brain was calculated to be 0.075±0.050mm.
The highest degree of variability across subjects, up to as 0.3mm, was seen in the
olfactory bulb. Tissues around the LV and central part of the cc also tended to
have large variability (up to 0.2mm).

Figure 9.6: A single horizontal slice of the in vivo population-averaged FA template (in
gray color scale) overlaid with the anatomical variability magnitude (AVM) map (shown in
spectral color scale). The intensity levels in the AVM map denote distances in millimeters,
and represent the average anatomical variability in the adult rat brain across the sample
population. Blue regions indicate low anatomical variability, while red indicate high
anatomical variability.
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Figure 9.7: 3D rendering images of the delineated brain structures: the nucleus accumbus
(Acb), caudate putamen complex (CPu), globus pallidus (GP ), entopeduncular nucleus
(EP ), substantia nigra (SN), external capsule (ec), corpus callosum (cc), internal capsule
(ic), fimbria of the hippocampus (fi), fornix (f), posterior (acp) and anterior part (aca)
of anterior commisure, optic tract (opt), cingulum (cg), and lateral ventricle (LV ) were
manually segmented with ITK-SNAP and visualized using AMIRA software®.

9.3.2 Manual delineation of ex vivo data

A selection of white matter and gray matter regions were manually segmented
on basis of T1-weighted (Fig. 9.2a) and a direction encoded (DEC) FA map that
more effectively visualizes the directional information embedded in the primary
eigenvector, i.e., the local fiber orientation (Fig. 9.2b). The boundaries of several
structures that are difficult to distinguish in anatomical images are well differentiated
in the colored DEC map. Two examples are visualized in Fig. 9.3. First, it is not
possible to distinguish the cg and cc in the T1 images, the DEC map however reveals
that the fiber orientation of the cg, as running anterioposteriorly (blue), is almost
perpendicular to the main direction of corpus callosum, which runs mediolateral
(red). Second, the dorsal boundary of the ec is ambiguous in T1-weighted images
(arrowheads in (9.3(d)), but readily identified mediolaterally oriented diffusion
orientations in DTI.

In Fig. 9.7, 3D rendering images of the delineated brain structures - Acb, CPu,
GP , EP , SN , cc/ec, ic, fi, f , acp, aca, opt, cg, and LV - were visualized using
AMIRA software®.

9.3.3 Correction of ex vivo data

A nonrigid coregistration algorithm was used to minimize the morphological differ-
ences between in vivo and ex vivo samples. In Fig. 9.8a, a horizontal and coronal
section of the FA maps of the in vivo population based atlas and the ex vivo subject,
respectively, are shown to indicate the accurate alignment of both datasets. In Fig.
9.8b, a 3D rendering of cc/ec, cg, and LV are superimposed onto Fig. 9.8a. The
proper alignment of the anatomical labels, the in vivo, and ex vivo data is evident
from Fig. 9.8. The corrected ex vivo atlas, i.e. the deformed ex vivo DTI and T1

data and the corresponding parcellation map, can be obtained by contacting the
corresponding author. Data are provided in Amira® and NifTi format.
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(a) (b)

Figure 9.8: A horizontal and coronal section of the FA maps of the in vivo population
based atlas and the ex vivo subject, respectively, are shown (a) to indicate the accurate
alignment of both datasets after applying a nonrigid coregistration algorithm to minimize
morphological differences between both samples. In (b), a 3D rendering of cc/ec, cg, and
LV are superimposed onto (a); Coloring in accordance to Fig. 9.7.

9.4 Discussion

In this study, we have proposed an anatomically labeled DTI atlas of the average
brain of the adult SD rat, the most widely used rat strain in laboratory animal
research. Furthermore, the SD rat is so far the preferred strain to produce transgenic
rat models of human neurodegenerative pathologies [e.g. Bugos et al., 2009, von
Hörsten et al., 2003, Vermeiren et al., 2006, Liu et al., 2008].

The construction of brain atlases has been a topic of intense research for the
last decades. Standard rat brain atlases consist of drawings based on histological
studies of a Wistar and SD rat brain by Paxinos and Watson [1986, 2007] and
Swanson [1992, 1998, 2004], respectively. The atlases describe the brain as a series
of 2D sections with boundaries of areas and nuclei indicated, and names assigned
to the delineated structures. Nevertheless, the use of such atlases for neuroimaging
studies are hampered by the 2D format, resulting in discontinuous 3D structures
after coarse alignment of the individual slices, as well as a lack of an analytical
power for comparison of atlas and image data. While the diagrams presented in the
atlases of Paxinos and Watson [1986, 2007] and Swanson [1992, 2004] are developed
from study of several animals, they do not systematically incorporate anatomical
variation across subjects within the given strain. Next, the lack of CSF pressure,
and skull encasement constraints inherent to histological processing affect the brain,
as a result of which morphological differences occur between the histology-derived
atlases and in vivo data acquired with, e.g., MRI [Schwarz et al., 2006].

It has long been appreciated that MRI can advance the construction of brain
atlases since it is a non-invasive, 3D and in vivo imaging technique, which enables
accurate identification of a large number of anatomical structures. Therefore,
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recently, some MRI templates of the rat brain and digital atlases of its major
brain structures have been developed. First, Schweinhardt et al. [2003] constructed
an MRI template that could be used to normalize subjects to the stereotaxic
space defined by Paxinos and Watson [2007]. They created an MRI template
based on high resolution T2-weighted images of five female SD rats. A large set of
anatomical landmarks were manually identified in each set of images and in the
atlas. For each animal, an affine transformation that maps the set of landmarks of
the corresponding image volume onto the atlas landmarks was estimated. These
transformation matrices were used to resample the individual volumes into the
stereotaxic space. Schwarz et al. [2006] constructed a stereotaxic T2 template
using 97 adult male SD rats. In addition, tissue classes were developed to guide
delineation of the brain parenchyma from CSF. The MRI template was spatially
normalized to the stereotaxic space of the Paxinos atlas by affine registration of
the MRI brain tissue class map to the outline contour atlas images, corresponding
to Paxinos’ figures 4 - 78 [Paxinos and Watson, 2007]. Furthermore, Hess et al.
[2005] aimed an automatic identification and structure assignment of activated
voxel groups from functional MRI by using a labeled standard atlas. Therefore,
they constructed a T2 atlas from 54 SD rats using an affine coregistration technique
to transform the individual subjects to the common reference template.

Our work distinguishes from the preceding studies concerning rat atlas construc-
tion since (I) a population-averaged brain atlas was constructed to obtain a template
that represents the unbiased average anatomy. (II) During the construction, a
nonrigid coregistration technique was used to avoid local misalignment inaccuracies,
and partial volume averaging of anatomically distinct structures, due to intersubject
morphological differences as shown in Fig. 9.4. (III) Accurate manual delineation
of brain white matter structures was conducted on high resolution ex vivo diffusion
weighted scans.

A high-resolution population-averaged MRI based atlas has a wide range of
potential use, for example, as a reference space for coregistration of brain image data
and for assigning anatomical labels to such data [Hjornevik et al., 2007]. Our DTI
atlas is particularly useful tool for quantitative DTI group analyses, often based on a
exploratory approach with voxel based statistical comparison or a hypothesis-driven
manual ROI analysis. For voxels based comparisons our atlas provides an excellent
spatial reference template for coregistration, while during ROI analyses, our atlas
can be used to guide the manual delineation of anatomical structures. We have
successfully conducted such analyses in studies on diffusion MRI changes in rats
transgenic for Huntington disease [Antonsen et al., 2010]. To allow even more
consistent and reproducible ROI delineations, one could use the DTI atlas to enable
automated atlas-based delineation. For such purposes, the atlas is warped to the
studied images by a spatial transformation, such that labels defined in the atlas are
accurately projected onto the anatomically corresponding structures in the images
under study. For ROI based comparisons of disease models, it is of importance
that disease related changes are not averaged out by warping the data to an atlas.
Therefore, we advise to apply the DTI atlas for standardized and automated ROI
delineation by first warping brain volumes to the atlas, and subsequently use the
inverse deformation field to map the atlas labels to the original data volume. An
important source of inaccurate atlas-based delineation of ROIs includes registration
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errors. Therefore, it is important to note that affine registrations often lead to
insufficient correlation between manual and automated ROI approaches due to
nonlinear intersubject anatomical or age dependent differences. Therefore, we
advise to use the atlas in combination with a nonlinear coregistration algorithm.
Although in-house coregistration software based on the viscous fluid model was
used in the study, many other algorithm - often freely distributed - might be
useful. Commonly used software packages are SPM and FSL in which the nonrigid
deformations are defined by a linear combination of 3D discrete cosine transform,
respectively, cubic B-spline basis functions [Ashburner and Friston, 1999, Smith
et al., 2004]. A more thorough overview and evaluation of the broad range of
nonrigid coregistration algorithms was given by Klein et al. [2009].

We would like to emphasize that the diffusion parameters that can be derived
from the atlas are not ground truth values that can be used as a reference in future
DTI studies. Although the diffusion of water molecules is a physical property of
the tissue being measured, the estimated diffusion coefficients depend on scanner
settings such as the b-value and, thus, the comparison between various DTI studies
get hampered [e.g. Horsfield, 2001]. Veraart et al. [2011] demonstrated that a more
accurate and b-value independent estimation of the diffusion parameters can be
obtained with diffusion kurtosis imaging (DKI), a recently proposed higher order
diffusion model [Jensen et al., 2005]. However, given a fixed acquisition time, an
equally precise parameter estimation with DKI requires a decreased resolution,
which might cause a lack of anatomical detail. Note that we preferred to put
emphasis on the anatomical detail instead of the quantification accuracy in this
study.

Future developments might include delineations of more anatomical structures
and establishment of a spatial reference coordinate system based on internal
anatomical landmarks, in line with the criteria used for defining the Waxholm
space in the adult, male C57BL/6 mouse brain [Hawrylycz et al., 2009, 2011,
Johnson et al., 2010]. This will further increase the application value of the atlas
for integration and comparison of different data modalities.
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Conclusion
In this dissertation, we studied and improved the performance – both in terms
of accuracy and precision – of diffusion MRI (dMRI) parameter estimators. To
date, accurate estimation of diffusion model parameters is challenging due to the
non-Gaussian distribution of magnitude MR data. Nonetheless, high accuracy can
be achieved, often even with the class of linear least squares (LLS) estimators that is
routinely used in DTI and DKI analyses. Note that the DTI and DKI models have in
common that they can be structured into a linear regression form depending on the
natural logarithm of the diffusion-weighted MR signals. However, the performance
of the LLS estimators will depend on the SNR of the diffusion-weighted data. It is
important to consider following properties:

1. If the measurement errors have expectation zero, then the LLS estimator is
unbiased.

2. If the measurement errors have expectation zero and known variance, then
the WLLS estimator for which the weight terms are the inverse of the variance
of the respective measurement is the best linear unbiased estimator.

3. If the measurement errors are normally distributed with zero expectation and
known variance, then the WLLS estimator for which the weight terms are
the inverse of the variance of the respective measurement is the minimum
variance unbiased estimator (MVUE).

First, in Chapter 5, we showed that property 1 only holds under some conditions.
If the acquired diffusion-weighted MR data are Rice distributed and the SNR is at
least two for all data samples, then the LLS estimators are unbiased. This property
does not hold for the ordinary nonlinear least squares (NLS) estimator, which fit
the diffusion models to the data in their native space. So, basically, the accuracy
of ordinary least squares estimators improves by the log-transformation.
Second, to meet the conditions stated in property 2, the weights of the WLLS
estimator should be the square of the noise-free diffusion weighted signals. Obviously,
the noise-free diffusion-weighted signals are not known and, as such, the weight
matrix needs to be estimated. In Chapter 5, we showed the importance of a well-
considered choice of the weight matrix. Most importantly, correlations between the
weights and the respective diffusion-weighted samples must be avoided. Otherwise,
the improved precision comes with a drop in accuracy.
Third, if the SNR of diffusion-weighted samples is low to moderate, then the error
term will not be normally distributed. This observation has some important limi-
tations w.r.t. the precision of the WLLS estimator. Indeed, the WLLS estimator
is generally not the MVUE. Moreover, the NLS estimator has typically an higher
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Conclusion

precision. As such, choosing between NLS and WLLS is often not trivial consid-
ering that accuracy and precision are both important properties of an estimator.
Theoretically, the maximum likelihood estimator (MLE) is a good alternative to
least squares estimation, irrespective of SNR. This nonlinear estimator has opti-
mal asymptotical properties regarding accuracy and precision, but it requires the
analytical expression of the data PDF. However, there are two practical concerns
regarding the use of MLE in the context of dMRI. First, the analytical expression of
the PDF is based on the noise level. Although some methods suggested estimating
the noise level as part of the model fit, we showed in Chapter 6 that the noise level
is preferably estimated prior to model fitting because the accuracy and precision
of diffusion model parameter estimators depend on the knowledge of this noise
level. Nowadays, the estimation of the noise level is challenging due to the use of
parallel imaging techniques. Indeed, the noise level has become spatially varying.
An algorithm to estimate such 3D noise map is proposed in Chapter 7. Second,
the necessity of data correction (e.g. motion and eddy current corrections) prior to
model fitting causes the MLE’s dependency on the data PDF to become a weakness
because the altered data PDF can no longer be expressed analytically. A practical
– potentially slightly less precise – alternative to the MLE, i.e. the conditional least
squares estimator, is introduced in Chapter 6.
Finally, due to noise and imaging artifacts, it is often necessary to constrain the
parameter estimation to guarantee biological and physical plausibility. In Chapter
8, we showed how the estimators, introduced/discussed in Chapters 5 and 6, can be
constrained. Moreover, we showed that constraining the parameter estimation yields
improved performance in terms of MSE in estimating the DKI model parameters.
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