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CHAPTER 1. INTRODUCTION TO THIS THESIS

1.1 Context

Science is organized knowledge. Wisdom is organized life.
– Immanuel Kant

The human brain contains a very complex network of fiber bundles that connect
different brain regions, allowing them to communicate. A little more than a decade
ago, dissection and histology studies on postmortem human brains or invasive stud-
ies on primates were the only way to acquire information on the neural architecture
[1–5]. However, recent advancements in magnetic resonance imaging (MRI) allow
virtual in-vivo dissection of major white matter (WM) bundles in the brain. In-
formation about the WM fibers is obtained by measuring the diffusion of water
molecules, using a technique called diffusion tensor magnetic resonance imaging
(DT-MRI) or diffusion tensor imaging (DTI) [6]. A virtual reconstruction of the
fiber network in three dimensions can then be derived from this diffusion informa-
tion using diffusion tensor tractography (DTT) [7, 8].
Since DTI is capable of accurately describing the underlying architecture of the
WM microstructure in a non-invasive way, i.e. by placing a subject for a few
minutes in an MRI scanner, it has a lot of potential for unraveling the human brain
connectivity in healthy subjects and in patients with neurological and psychiatric
disorders. Nowadays, a lot of research is done to reveal the relationship between
DTI measures and the underlying microstuctural alterations that are induced by
a pathology. DTI is already used in the daily clinical routine of many hospitals
for the presurgical planning of patients with a brain tumor. In addition, DTI has
the potential of being applied in the hospitals as a diagnostic tool for patients with
neurological symptoms. To this end, large scale group studies that compare patient
and healthy subject DTI data sets need to be performed.
The goal of this thesis is to optimize the post-processing of DTI data sets of the
human brain for a reliable detection of WM altering pathologies. In addition,
the post-processing of spinal cord DTI data sets is examined for the detection of
neurological spinal cord affecting disorders.

1.2 Manuscript organization

Oh, how much is today hidden by science! Oh, how much it is expected
to hide!
– Friedrich Nietzsche (1844-1900)

This thesis is subdivided in three parts:

Background: In the first part, an introduction to the central nervous system
(Chapter 2) and to the diffusion tensor imaging technique (Chapter 3) is

– 4 –



1.2. MANUSCRIPT ORGANIZATION

provided. The anatomy of the central nervous system is thereby briefly de-
scribed on a cellular as well as a functional level. Thereafter, an overview of
brain imaging techniques is given. In Chapter 3, the fundamentals of the DTI
technique, from the Brownian motion of water molecules to the virtual re-
construction of three-dimensional (3D) fiber tracts and clinical applications,
are elucidated. Subsequently, different approaches for the post-processing of
DTI data sets are introduced.

Diffusion Tensor Image Processing of the human brain: In the second
part of this thesis, some new techniques for the post-processing of DTI data
sets are explained.

In Chapter 4, a non-rigid coregistration method based on a viscous fluid
model and mutual information is presented. This image alignment algorithm
is specifically designed for the coregistration of the multi-valued DT images.
The goal of coregistration is to transform one image to another so that the
corresponding anatomical structures are aligned and that the image informa-
tion can be compared objectively in the same spatial framework. Although
the different anatomical structures of the brain are present in all persons,
they can significantly differ in size and/or shape. Therefore, in order to
map images from different subjects to each other, non-rigid transformations,
in which the deformation fields can be adapted locally, are necessary. In
contrast to other medical images, such as computed tomography (CT), ultra-
sound (US), or anatomical magnetic resonance (MR) data sets, which contain
a scalar value in each voxel, DTI data sets contain a multi-valued tensor in
each voxel. Coregistration algorithms therefore need to be adapted in order
to include this multi-valued image information.

The construction of an atlas allows the mapping of individual brain images to
a common reference frame. Subsequently, image properties can be compared
on a voxel-by-voxel level between healthy subjects and patients with a certain
pathology. In Chapter 5, a population specific DTI atlas is constructed and
compared with a subject based atlas method using simulations and real data
sets.

After all DTI data sets of a subject group are transformed to the atlas space,
the diffusion properties of these images can be analyzed on a voxel level. To
this end, statistical tests are performed in each voxel in order to detect dif-
ferences between healthy subject and patient data sets. This post processing
approach is referred to as a voxel based analysis (VBA). In VBA, the whole
brain is tested for control-patient differences without any a priori hypothe-
sis of the expected spatial location of the abnormalities. This VBA method
has many advantages compared to other post-processing approaches, such as
the region of interest (ROI) method. However, correspondence between the

– 5 –
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Hospitals

?
Hospitals

?

Diffusion Tensor Imaging (DTI)
Knowledge about pathologies

Diffusion Tensor Imaging (DTI)

Standardized post‐processing methods 
for large‐scale group studiesfor large‐scale group studies

Chapter 4: non‐rigid DTI coregistration Chapter 7: DTI post‐processing

Chapter 5: DTI atlas construction Chapter 8: DTI of multiple sclerosis patients

Chapter 6: DTI group analysis

Section 6.1: Ground Truth DTI data sets

Section 6.2: Smoothing in a DTI group analysisSection 6.2: Smoothing in a DTI group analysis

Section 6 3 DTI of multiple sclerosis patientsSection 6.3: DTI of multiple sclerosis patients

Figure 1.1. A schematic overview of this thesis.

findings is not always observed, such as for example in the study of patients
with schizofrenia [9–22]. The subject group and disease heterogeneity across
the different studies, including confounding factors such as age, sex, handed-
ness, disease state, etc., can partially explain these observed discrepancies.
However, methodological differences in implementation of VBA are possibly
even more decisive for explaining the variances in the VBA results of different
studies [17, 23, 24].

In Chapter 6 simulated DTI data sets are constructed, which allows for mod-
eling of anomalies in the diffusion properties in a predefined location. These
simulated DTI data sets can be used to investigate the sensitivity and speci-
ficity of a VBA or ROI analysis to detect pathologies. In addition, the effect
of the different parameters and post processing steps that are involved in the

– 6 –
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pipeline of a VBA analysis can be examined, which will lead to a more reli-
able, standardized, and consistent post-processing of DT images for studying
different pathologies. As a first application of these simulated DTI data sets,
the effect of different smoothing approaches, i.e. isotropic vs. anisotropic,
and different smoothing kernel widths on the sensitivity and specificity of the
pathology detection is examined in Chapter 6.

Finally, the new post-processing techniques (i.e. coregistration, atlas con-
struction, and anisotropic smoothing) were applied in the analysis of cognitive
decline in patients with multiple sclerosis (MS).

Diffusion Tensor Image Processing of the human spinal cord: The third
part of this thesis is focussed on the post-processing of spinal cord DTI data
sets. Several factors, such as physiologic and respiratory movement of the
subject and the relative motion of the spinal cord itself due to the pulsation
of the surrounding cerebro spinal fluid (CSF), hamper a robust DTI study
of the spinal cord. In addition, the relatively small diameter of the spinal
cord (12 mm on average) and the restricted resolution of the diffusion ten-
sor images further impede a quantitative study. In Chapter 7, a standardized
and robust segmentation technique for the analysis and interpretation of DTI
spinal cord data based on diffusion tensor tractography is introduced. This
new post-processing is then applied to analyze the DTI data of MS patients
with and without spinal cord lesions (Chapter 8).
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CHAPTER 2. THE CENTRAL NERVOUS SYSTEM

Overview

Although the human brain only weights about 1.4 kg and consists of very small and
simple entities, it endows a person with an immense number of abilities. The brain
operates in the background of every action, sensation, and thought and makes it
possible to laugh, cry, communicate, etc. All of this is achieved by one hundred
billion nerve cells, which communicate by a hundred trillion interconnecting axons.
For more than 2000 years, scientists are fascinated by the complexity of the brain.
Despite the interest in the working of the human brain and the accelerating pace
of discovery in neuroscience, scientists often face the limitations of our intellect
to understand our intellect. We are a long way from a complete physical and
functional understanding of the healthy and impaired human brain. However, new
functional imaging techniques can provide an additional insight into the complexity
of the brain.
In this chapter, a short overview is provided of more than 2000 years of brain re-
search. Additionally, the human brain anatomy is discussed and different methods
of macroscopic brain imaging are introduced.

2.1 A brief history of the human brain

The seat of the soul and the control of voluntary movement - in fact, of
nervous functions in general - are to be sought in the heart. The brain
is an organ of minor importance.
– Aristotle (384− 322 BC)

Hippocrates (460−370 bc) is usually referred to as being the first to argue that the
brain is the most important organ for sensation, thought, emotion, and cognition.
However, Aristotle (384−322 bc), who lived a hundred years later, stated that the
heart was the ruler of the body. He considered the brain to be a secondary organ
that served as a cooling agent for the heart. For centuries, this was the generally
accepted view.
Since Claudius Galenus of Pergamum (131−201 ad), better known as Galen, was a
physician at a school for gladiators in Rome, he had access to a lot of ‘patients’ with
open skulls and different brain lesions. Based on his observations, he agreed with
Hippocrates that the brain is the most important organ of the body for sensation,
thought, emotion, and cognition [1]. Galen also stated that fluid from the ventricles
in the brain was distributed to the muscles and organs. In the centuries after the
death of Galen, the study of the human brain was ceased, because of a church ban
on the study of the human anatomy using dissections.
In 1543, the anatomist Andreas Vesalius publishes ‘De humani corporis fabrica’ (On
the workings of the human body), one of the first known neuroscience textbooks
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[2]. According to Vesalius, the brain functions are not regulated by the fluid in the
ventricles, as Gales stated. The 17th century French philosopher, René Descartes
(1596−1650), reformulated the brains functioning and compared the brain with the
working of a complex machine, controlled by hydraulic systems [3]. According to
the Englishman Thomas Willis (1621−1675), the solid cerebral tissue has important
functions that are responsible for the working of the brain. He stated that the brain
functioning depends on the flow of blood to this cerebral tissue. This idea forms
the basis of the functional magnetic resonance imaging (fMRI) technique, in which
local increases in blood flow are associated with the activation of nerve cells.
In the 18th century, Luigi Galvani (1737 − 1798) and Alessandro Volta (1745 −
1827) discovered the importance of electrical signals to the brain functioning. The
German physiologist Du Bois-Reymond (1818− 1896) demonstrated in the middle
of the 19th century that nerves can indeed generate electrical signals. The relation
between the discrete cells at the microscopic level and the working of the brain, was
first recognized by the Spanish neuroanatomist Santiago Ramon y Cajal (1852 −
1934). Cajal furthermore proposed that information flows between different neuron
cell bodies along the axons. The ideas of Cajal were confirmed towards the end
of the 19th century by the Italian anatomist Camillo Golgi (1843 − 1926), who
developed a technique to highlight few neurons in any particular region of the
brain. By the end of the 20th century, a more or less complete understanding of
how neurons generate electrical and chemical signals was achieved.

2.2 Anatomy of the central nervous system

I don’t think there’s anything unique about human intelligence. All the
neurons in the brain that make up perceptions and emotions operate in
a binary fashion. We can someday replicate that on a machine. Earthly
life is carbon based and computers are.
– Bill Gates

The central nervous system (CNS) consists of the brain and the spinal cord. The
nerves that emanate from them, and connect the nerve fibers with the rest of our
body, constitute the peripheral nervous system.

2.2.1 The cellular level

Neural information processing is conducted by neurons, cells that process and trans-
mit information using electrochemical signals. The cell body of the neuron inte-
grates information from other neurons, while the function of the axons is to transmit
this information to other neurons (see Fig. 2.1). When a neuron receives input
from other neurons, an electrical action potential is produced, which travels down
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cell body

oligodendrocyte

cell body

axon
myelin

nodes of Ranvier

dendrite

Figure 2.1. The neuron consists of a cell body and dendrites. The axon is the long fiber

extending from the neuron cell body. It contains myelin sheaths that are interrupted by

nodes of Ranvier. The oligodendrocyte is a glial cell that plays a supportive role.

myelin
neurofilament

axon
microtubule

axonalaxonal 
membrane

Figure 2.2. The axon is surrounded by myelin and contains several structures, such as

neurofilaments, microtubuli, and the axonal membrane.

the axon to the synapses with other neurons. Neurotransmitter is then released at
the synapses, and the postsynaptic neuron may depolarize. The velocity of the ac-
tion potential is increased by an insulating process called myelination. Supporting
glial cells wrap layers of myelin around the axon, periodically leaving open small
regions called nodes of Ranvier (see Fig. 2.2).

When observing a post-mortem brain, as shown on as a coronal slice in Fig. 2.3, a
natural division based on the color can be made: the white matter (WM) and the
gray matter (GM). The GM primarily contains the cell bodies of neurons, dendrites,
glial cells, and capillaries. The WM contains myelinated axons that travel together

– 16 –



2.2. ANATOMY OF THE CENTRAL NERVOUS SYSTEM

Gray Matter White Matter

Figure 2.3. On this coronal post-mortem brain slice, a color difference can be observed

between the gray matter, which is mainly situated on the outside of the brain, and the

white matter [4].

and are called WM bundles or fiber tracts. WM is colored white because of the
presence of lipids in the myelin. As can be seen on the coronal post-mortem brain
slice of Fig. 2.3, the GM is located around the outside of the human brain and in
internal brain structures such as the basal ganglia and the thalamus. In addition to
the WM and GM regions, there are two important fluid systems in the brain: CSF,
which fills the ventricles and spaces around the brain, and a vasculature system.
In summary, these are the important cellular components of the central nervous
system:

Neurons or nerve cells are the basic functional units of the nervous system. They
vary in size from 4 microns (0.004 mm) to 100 microns (0.1 mm) in diameter.
In the brain, neurons are responsible for information processing. A neuron
consists of a compact cell body, many long branched extensions (dendrites)
and a long fiber (the axon) with branching extensions at its end. A single
neuron can receive signals from thousands of other neurons, and its axon can
branch repeatedly, sending signals to thousands more.

Dendrites form the branched extensions of a neuron that receive nerve impulses
from other nerve cells and carry them toward the cell body.

Glial cells support and feed neurons, outnumbering them 10 to one. They play
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an important supportive role in maintaining efficiency along the brain nerve
network.

Axons are long, unbranched fibers extending from a neuron that carry nerve im-
pulses to other cells. Axons are cylinders with a diameter from 1µm to 30µm.
It consists of microtubule, neurofilaments, and the axonal membrane. Most
axons are surrounded by myelin sheets (see Fig. 2.2).

Myelin is a material composed of lipids and proteins that forms a protective
sheath around axons and helps facilitate the transmission of electrical signals.
The abnormal breakdown of myelin, such as in MS, is called demyelination,
and seriously disrupts normal communication between neurons.

2.2.2 Functional anatomy of the brain

The brain consists of two hemispheres, which are connected by a fiber bundle called
the corpus callosum. Each side of the brain consists of three main areas:

The brain stem is the extension of the spinal cord within the brain and consists
of the midbrain, medulla, and pons. Neurological functions of the brain stem
are associated with survival, such as the control of breathing, digestion, heart
rate, blood pressure, etc.

The cerebellum is located at the lower back of the brain. It is regarded as a
structure that can help motor as well as non-motor regions to do their work
effectively.

The cerebrum is the largest area of the brain, containing four lobes. The frontal
lobe is associated with a persons personality and thought. Within the parietal
lobe are areas that control pain and sensations. The temporal lobes are
involved in speech, memory, and hearing. The occipital lobe is responsible
for interpreting visual information.

The different functional regions of the brain are interconnected by WM fiber bun-
dles. The WM contains three types of fiber bundles: commissural, association,
and projection bundles. In the next paragraphs, the different fiber bundles are
visualized using diffusion tensor tractography.

2.2.2.1 Commissural fiber bundles

A commissure is a crossing site for fibers which connect similar areas of the two
cerebral hemispheres.
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Corpus Callosum: The corpus callosum is the largest fiber bundle in the nervous
system and connects left and right cerebral hemispheres, allowing them to
communicate with each other (see Fig. 2.4 (a)). It can be divided into an
anterior (i.e. genu, see Fig. 2.4 (b)), a central (i.e. body, see Fig. 2.4 (c)),
and a posterior portion (i.e. splenium, see Fig. 2.4 (d)). The corpus callosum
allocates each kind of processing to the area of the brain which is programmed
for the job. It plays an important role in motor, perceptual and cognitive
functioning [5–7].

2.2.2.2 Association fiber bundles

Association fibers connect regions in the same hemisphere, primarily have anterior-
posterior trajectories.

Cingulum: The cingulum is a tract of association fibers that encircles the corpus
callosum and lies within the cingulate gyrus and connecting the callosal and
hippocampal convolutions of the brain (see Fig. 2.5) [8]. The cingulum is
part of the limbic system and is involved in attention, memory and emotions
[9, 10].

Inferior longitudinal fasciculus: The inferior longitudinal fasciculus connects
the occipital lobe with the temporal lobe (see Fig. 2.6). The exact function
of the inferior longitudinal fasciculus has not been clearly demonstrated, but
it is involved in face recognition, visual perception, reading, visual memory
[11–18].

Arcuate fasciculus: The arcuate fasciculus is an association bundle that links
Brocca’s and Wernicke’s area. It is composed of long and short fibers con-
necting the frontal, parietal, and temporal lobes (see Fig. 2.7). The arcuate
fasciculus links key language areas in the human brain. [18–20].

Uncinate fasciculus: The uncinate fasciculus connects the frontal and temporal
lobes of the cerebrum (see Fig. 2.8) [24]. This fasciculus is probably involved
in language, memory, and emotional recognition functions [17, 18, 25].

Inferior fronto-occipital fasciculus: The inferior fronto-occipital fasciculus is
a fiber bundle that connects the occipital lobe and the frontal cortex (see
Fig. 2.9). The functions of the inferior fronto-occipital fasciculus are poorly
understood, although it is possible that it participates to reading, attention
and visual processing [9, 13, 16, 18, 21].
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(a)

(b)(b)

( )(c)

(d)

Figure 2.4. The corpus callosum (a) and the genu (b), body (c), and splenium (d) of

the corpus callosum
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Figure 2.5. The cingulum

Figure 2.6. The inferior longitudinal fasciculus

2.2.2.3 Projection fiber bundles

Projection fibers connect the cortex and subcortical structures such as the thala-
mus, basal ganglia, and spinal cord. The connections to and from the cerebellum
are also called projection tracts.

Sensory and motor cortico spinal tracts: The corticospinal or pyramidal tract
contains fibers that originate in the sensorimotor areas of the cerebral cor-
tex and descend through the brain stem to the spinal cord and fibers that
ascend from the spinal cord to the cerebral cortex. The corticospinal tract is
responsible for transmitting motor and sensory impulses [26].

Fornix: The fornix is a projection bundle that connects hippocampus to the mam-
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Figure 2.7. The arcuate fasciculus

Figure 2.8. The uncinate fasciculus

millary bodies (see Fig. 2.12). The fornix belongs to the limbic system and
is involved in emotion and memory functions [17, 25].

Cerebellar peduncles: The cerebellar peduncle carries many types of input and
output fibers that are mainly concerned with integrating sensory input with
motor functions such as balance (see Fig. 2.13).

2.2.3 Spinal Cord

The spinal cord is a long bundle of nerves located inside the vertebral canal, ex-
tending from the base of the brain running along the inside of the spine (backbone).
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Figure 2.9. The inferior fronto occipital fasciculus

Figure 2.10. The sensory cortico spinal tracts

The spinal cord is composed of 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5
sacral, and 1 coccygeal. Like the brain, the spinal cord contains both GM and WM.
The GM lies in the center of the spinal cord and consists of cell bodies of the motor
neurons that pass signals to body muscles. A thick layer of WM surrounds the GM
as can be seen in Fig. 2.14. WM is made up primarily of axons and contains the
nerve fibers that pass signals to and from the brain. The spinal nerves comprise
the sensory nerve roots, which enter the spinal cord at each level, and the motor
roots, which emerge from the cord at each level.
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Figure 2.11. The motor cortico spinal tracts

Figure 2.12. The fornix

2.3 Brain imaging

Strange coincidence, that every man whose skull has been opened had a
brain!
– Ludwig Wittgenstein

Traditional methods for examining the brain, including post-mortem visual inspec-
tion and chemical tracer methods are invasive and time-consuming, and therefore
limited in application. To address these problems, imaging methods for studying
neuroanatomy were pioneered at the end of the 19th century.

X-ray imaging: The foundations of the medical specialty of radiology were laid
when German physics professor Wilhelm Roentgen (1845 − 1923) presented
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Figure 2.13. The cerebellar peduncles

G

White Matter

Gray Matter

Figure 2.14. A cross-sectional view of the spinal cord [27]

his preliminary report, ‘On a New Kind of Rays’, on December 28, 1895,
announcing the discovery of X-rays, for which he would later receive the
first Nobel Prize in physics. Roentgen discovered accidently that shimmers
of light were produced on a nearby fluorescent screen while experimenting
with cathode ray tubes. This mysterious phenomenon was called X radiation
or X-rays. Further experiments revealed that X-rays produces an image on
photographic plates and penetrates many materials such as paper, wood,
certain metals, and living tissue.

Nuclear imaging: Nuclear imaging studies were first done in the 1950’s using
special gamma cameras. These studies require the introduction of very low-
level radioactive chemicals into the body. These radionuclides are taken up
by the organs in the body and subsequently emit faint radiation signals which
are measured or detected by the gamma camera.

Ultrasound imaging: In the 1960’s, the principals of sonar were applied to di-
agnostic imaging, resulting in the ultrasound imaging technique. In this
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method, a part of the body is exposed to high-frequency sound waves. Ul-
trasound exams do not use ionizing radiation (such as X-rays). Because ul-
trasound images are captured in real-time, they can show the structure and
movement of the body’s internal organs, as well as blood flowing through
blood vessels.

Computed tomography imaging: Digital imaging techniques were implemented
in the 1970’s with the first clinical use and acceptance of the Computed To-
mography or CT scanner, invented by Godfrey Hounsfield. Hounsfield used
gamma rays (and later X-rays) and a detector that was placed on a rotat-
ing frame. The resulting data was reconstructed with a computer to create
detailed cross sectional images of objects. The CT scanners for clinical use
were first installed in 1975. During its 25-year history, CT has made great
improvements in speed, patient comfort, and resolution. The new scanners
provide excellent images of diagnostic quality at low doses of radiation.

Magnetic resonance imaging: MR principals were initially investigated in the
1950’s showing that different materials resonated at different magnetic field
strengths. MR imaging was cleared for commercial and clinical availability by
the Food and Drug Administration (FDA) in 1984. Over the next few years,
MRI became a supplementary modality to CT specially for investigating the
brain and spinal cord. Today MRI is the imaging modality of choice for many
parts of the body.
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Water is the driving force of all nature.

– Leonardo Da Vinci
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CHAPTER 3. DIFFUSION TENSOR IMAGING AND ANALYSIS

Overview

In this chapter, the diffusion tensor magnetic resonance imaging technique is intro-
duced. In the brain WM, the diffusion of water molecules is hindered by various
tissue components, such as for example the cell membrane, the axon sheath and
myelin. Based on the measurement of the diffusion of water molecules in the cen-
tral nervous system, information regarding the WM connectivity is derived. In
this chapter, the theoretical underpinnings of DTI are introduced, including the
acquisition of the images and the visualization of the tensors. In addition, some
possible applications of DTI are discussed. Finally, a short overview of the different
methods for a DTI group analysis is provided.

3.1 Introduction

Take your dead hydrogen-atoms, your dead nitrogenatoms, your dead
phosphorus-atoms, and all the other atoms, dead as grains of shot, of
which the brain is formed. Imagine them separate and sensationless, ob-
serve them running together and forming all imaginable combinations.
This, as a purely mechanical process, is seeable by the mind. But can
you see, or dream, or in any way imagine, how out of that mechanical
act, and from these individually dead atoms, sensation, thought, and
emotion are to arise?
– John Tyndall (1820− 1893)

In 1946, Felix Bloch and Edward M. Purcell independently published their findings
that an atomic nucleus with unpaired protons, when placed in a strong magnetic
field, rotates with a frequency that depends on the strength of the magnetic field
[1, 2]. After applying a radio frequency (RF) field of this particular frequency, which
is called the resonance frequency, the atomic nucleus absorbs energy. Subsequently,
when the RF field is stopped, this energy is emitted through an electromagnetic
wave of the resonance frequency. This discovery laid the foundation for MRI.
In 1952, Bloch and Purcell were awarded the Nobel Prize for this research. In
1950, Hahn discovered that the amplitude of the observed signal is reduced in
the presence of a magnetic field inhomogeneity when the spins undergo a random
thermal motion [3]. This discovery was fundamental in the development of DTI.
In 1972, Paul Lauterbur developed the idea of using magnetic field gradients to
examine the human body. He published the first MR image in Nature in 1973
[4]. Peter Mansfield proposed a new ultrafast acquisition method, known as the
echo-planar imaging (EPI) technique, by studying the mathematical properties of
the MRI signal [5, 6]. In 2003, Paul C. Lauterbur and Sir Peter Mansfield were
awarded the Nobel price for their work within this field.
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(a) (b)

Figure 3.1. The statistical activation map, obtained by fMRI, is superimposed on a

sagittal (a) and coronal (b) slice of the anatomical MRI scan.

In the early 1980s, there were 12 MR machines worldwide, and since then the use
of MR scanners has rapidly increased. At this moment, there are 98 MR scanners
in Belgium, and more than 25000 worldwide (http://www.emrf.org/). Compared
with other imaging modalities, MRI has many advantages. First of all, since mag-
netic fields are used instead of ionizing radiation for the image acquisition, MRI
is a non-invasive technique. In addition, it provides an amazingly strong imag-
ing contrast between different soft tissues which is not feasible with other imaging
modalities. Finally, the MR image acquisition can be adapted to display other
physical phenomenons, such as for example the blood flow (a method called MR
angiography), brain activation (functional MRI) or brain connectivity (diffusion
tensor MRI).

Today, the most frequently used MRI method in medicine is the anatomical MRI
scan, which is designed to differentiate various tissues, and can be applied to ex-
amine any part of the body. Another, more recent imaging method is functional
MRI (fMRI). Since this technique maps activation patterns in the brain, it is an
important modality for better understanding the function of different regions in
the brain of healthy subjects and subjects with various pathologies. The fMRI
method is based on the idea that, when a brain region is activated, new energy
must be transported to this region, which leads to an increased blood flow in this
part of the brain. This can be imaged by repetitive MR scans and detected by
appropriate signal processing methods. In Fig. 3.1, fMRI results are superimposed
on an anatomical MRI scan. Since fMRI indirectly maps activation signals from
neurons, it is a technique that is focused on the brain GM.

– 31 –



CHAPTER 3. DIFFUSION TENSOR IMAGING AND ANALYSIS

In this thesis, we will focus on another MRI modality, i.e. diffusion tensor imaging.
This imaging method, introduced in 1994, maps the movement of water molecules
in the brain. Since this motion of water molecules is related to the WM architecture,
DTI provides a useful insight into the neural connectivity.

3.2 From Brownian motion to diffusion tensor images

White matter may provide liars with the tools necessary to master the
complex art of deceit.
– Adrian Raine

3.2.1 Diffusion

3.2.1.1 Brownian Motion and Diffusion

Molecules in an environment with a temperature above absolute zero (i.e., >
−273.15◦C) contain a certain thermal energy and are therefore in constant mo-
tion. This phenomenon was first described in 1828 by the English botanist Robert
Brown. He observed the random motion of grains of pollen, which were suspended
in water. In 1905, Einstein predicted the random motion of molecules in a liquid.
The molecular self-diffusion can be described as a random walk process of molecules
with a very complex distribution of step sizes and directions on a molecular scale.
The concept of diffusion can be considered as the transport of molecules due to the
Brownian motion.
The probability of finding a particle at position r’ after a time τ , given its initial
position r, can be described by the probability density function of the self-diffusion
Ps(r’|r, τ). The probability of finding a particle at position r’ at time τ is then
given by:

P (r′, τ) =
∫
ρ(r)Ps(r’|r, τ)dr,

�� ��3.1

where ρ(r) is the particle density at position r.
The classical phenomenological description of diffusion is based on the assumption
of concentration gradients of molecules. This is expressed in Ficks first law [7, 8].
When considering self-diffusion, there is no net concentration gradient, so instead
of using the concentration, the probability of self-diffusion, Ps can be used:

J = −D∇Ps,
�� ��3.2
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where J is the molecular flux density, D the diffusion coefficient (usually expressed
in mm2/s), and C is the concentration of molecules. The principle of the conser-
vation of mass can be expressed as:

δ

δτ
Ps = −∇J.

�� ��3.3

Fick’s second law is obtained by combining Eq. (3.2) and (3.2):

δ

δτ
Ps = ∇.(D∇Ps).

�� ��3.4

According to Einstein, the diffusion coefficient D can be found by [9]:

D =
1
6τ
〈RT ·R〉 ,

�� ��3.5

where R = r − r’. The displacement of the water molecules in time is thereby
considered over the ensemble of the water molecules, as reflected by 〈〉 in Eq. (3.5).
Because the diffusion is random and it was assumed that the molecules could move
freely, D is isotropic (i.e., directionally independent) and can be described by a
scalar value, i.e. D. The magnitude of D depends on the viscosity and temperature
of the medium, and the size of the molecules.
Ficks second law can be solved for the case of unrestricted diffusion, obtaining the
following relation for the probability density function of the self-diffusion:

Ps(r′|r, τ) =
1√(

4πtD(r)
) e−‖r′−r‖2

4τD(r) ,
�� ��3.6

3.2.1.2 The diffusion tensor

As aforementioned, the diffusion of water can be considered as a random walk
process. In biological tissues, however, the diffusion is additionally modulated by
the interactions with the cellular structures. The total diffusion is therefore a
mixture of intra- and extra-cellular diffusion, and the exchange between the two
sides of the cell membranes. Consequently, the diffusion coefficient is 2 to 10 times
lower in brain tissue than in pure water [10]. In contrast to the diffusion in an
isotropic environment, where the diffusion coefficient is the same for all directions
and can be described by a scalar value D, molecules undergoing Brownian motion
in biological tissues are displaced with greater magnitudes in directions parallel to
boundaries, and smaller magnitudes in directions perpendicular to boundaries [11].
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Figure 3.2. The Brownian motion process, the 2D diffusion probability, and the 3D

diffusion probability are presented for the case of isotropic and anisotropic diffusion.

Since the WM fiber bundles containing many axons are very organized, the diffusion
probability is much larger along the fiber bundles than perpendicular to them (see
Fig. 3.2). Consequently, information about the diffusion of water molecules can
provide an insight into the WM fiber architecture.
Diffusion is called ‘anisotropic’ when the displacement is directionally dependent.
An example of Brownian motion, 2D diffusion and 3D diffusion is presented in Fig.
3.2 for the isotropic and anisotropic situation. In order to describe anisotropic
diffusion, Einstein’s relation of Eq. (3.5) must be adapted to include the directional
dependency of the diffusion. It has been demonstrated that anisotropic, Gaussian
diffusion can be characterized by a second-order, symmetric, and positive definite
tensor, called the diffusion tensor [11–13]:

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . ,
�� ��3.7
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Since D is a symmetric and positive definite second-rank tensor, it can be decom-
posed in real eigenvalues and eigenvectors:

D = E ·Λ ·E−1 ,
�� ��3.8

with

E =
[
e1 e2 e3

]
and Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 �� ��3.9

defining the matrix of orthonormal eigenvectors ei and the diagonal matrix of
eigenvalues λi (with i = 1, 2, 3), respectively [14]. It has been demonstrated that
in CSF and GM, the diffusion properties are relatively independent of orientation
or isotropic [11]. Conversely, in fibrous tissues such as brain WM, the diffusion
properties vary with orientation.
In DTI, it is assumed that the average diffusion of water molecules follows a Gaus-
sian distribution. While the Gaussian assumption is adequate for voxels in which
only a single fiber orientation is present it is no longer valid for voxels that con-
tain fibers with more than one fiber orientation. This is an important limitation,
since resolution of DTI acquisition is between 1mm3 and 3mm3 while the physical
diameter of fibers can be between 1µm and 30µm [15, 16]. Hence, higher order
models that are able to describe non-Gaussian distributions are needed.

3.2.1.3 Quantitative measures of diffusion

In contrast to anatomical MR images, where a scalar gray value represents the
local tissue properties, a 3×3 matrix is derived in each voxel of a DTI data set (see
Eq. (3.7)). The interpretation of 3D image data that contain a 3 × 3 DT at each
voxel is not straightforward, especially, since the value of the different DT elements
depend on the spatial orientation of the laboratory frame. Therefore, rotationally
invariant diffusion measures were introduced, which have the same intensity for
the same anatomical location regardless of the orientation of the patient in the
scanner. Although these measures represent simplifications of the diffusion tensor
D, they are very useful for the visualization of the DT images and for the quanti-
tative assessment of tissue damage in patients. Many rotationally invariant scalar
measures have been defined in the literature [11, 17–27, 27–31]. Here, only those
that are used in this thesis are introduced: the eigenvalues, the mean diffusivity,
and the fractional anisotropy metric.
As aforementioned, in each voxel, the diffusion tensor can be decomposed in three
eigenvalues λ1, λ2, and λ3, which represent the magnitude of the diffusion along the
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corresponding three eigenvectors. Different rotationally invariant scalar measures
can be calculated from these eigenvalues.

(i) the longitudinal diffusivity λ‖ = λ1 [32–37];

(ii) the transverse diffusivity λ⊥ = λ2+λ3
2 [32–37];

(iii) the mean diffusivity (MD) is a measure of the average diffusion in a voxel,
and is calculated as:

MD =
λ1 + λ2 + λ3

3
,

�� ��3.10

(iv) The degree of diffusion anisotropy is commonly represented by the Fractional
Anisotropy (FA) measure [11]. Fibers that are strongly aligned (for example,
in compact WM structures) result in a high FA, whereas fibers that are more
weakly aligned (for example, in regions of the GM) have a relatively lower
FA.

FA =

√
3
[
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

]√
2(λ2

1 + λ2
2 + λ2

3)

�� ��3.11

3.2.2 Image acquisition

3.2.2.1 Diffusion weighted images

In 1950, Hahn observed that the random thermal motion of spins in the presence
of a magnetic field inhomogeneity result in attenuations of the acquired MR signal
[3]. The first MRI experiment that was designed to measure the diffusion was
performed in 1965 by Stejskal and Tanner and is known as the Pulse Gradient Spin
Echo (PGSE) [39]. The Stejskal-Tanner imaging sequence is used to measure the
diffusion of water molecules in a given direction g [39]. First, a 90◦ degrees RF is
applied to flip the magnetization in the transverse plane (see Fig. 3.3). Thereafter,
two gradient pulses g(t) in z-direction gz with magnitude ‖g‖ and duration time
δ are applied. They are symmetrically placed before and after a 180◦ degrees
refocusing pulse, with a time ∆ between both pulses. The first gradient pulse
induces a phase shift φ1 of the spin transverse magnetization:

φ1 = γ

δ∫
0

gz(t)z(t)dt = γδgzz1 .
�� ��3.12
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Figure 3.3. A schematic illustration of the diffusion-weighted imaging sequence [38].

The length of the colored vertical arrows indicates the strength of the magnetic field B,

which is non-uniform during the application of the gradients g. After the first gradient

application following the 90. RF pulse, signals lose their uniform phase (called dephasing,

i.e. the vector sum of the magnetic spin moments M decreases) because each proton starts

to precess at different rates ω depending on its position in space (the color-encoding repre-

sents the amount of this precession rate). After the second gradient application following

the 180◦ RF pulse, the system restores the uniform phase (called rephasing, i.e. M in-

creases). This rephasing is complete only when spins do not undergo a Brownian motion

(i.e., do not diffuse) during the time ∆ in between the two applications of the gradients

(||M1 ||>||M2 ||)

The spin position z(t) = z1 is thereby assumed to be constant during the short pulse
duration δ [40]. In this equation, γ represents the gyromagnetic ratio for hydrogen
nuclei (i.e. 42MHz/T ). The 180◦ pulse combined with the second gradient pulse
induces a second phase shift:

φ2 = −γ
∆+δ∫
∆

gzz(t)dt = −γδgzz2 .
�� ��3.13

For static spins (i.e. z1 = z2), this second pulse cancels the first phase shift,
resulting in a total phase-shift φ = φ1 +φ2 of zero. Spins that are displaced during
the time period ∆ separating the two pulses undergo different phase shifts by the
two gradient pulses, resulting in a net total phase-shift φ, which can then be written
as [41]:
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φ = φ1 + φ2 = γδg(z1 − z2) .
�� ��3.14

The measured phase-shift is proportional to the spin displacement and maps the
mean diffusion within a voxel in the direction g. When the spins are not completely
refocused due to a shift of the spins between the dephasing and rephasing magnetic
field gradients, the MR signal is attenuated. The signal loss at position r can be
written as:

S(r) = S0(r)〈eiφ〉 ,
�� ��3.15

with S(r) the measured spin-echo signal and S0(r) the MR signal without any dif-
fusion sensitizing gradients. 〈eiφ〉 represents the ensemble average of the different
phase shifts within a voxel, whereby the mean displacement within a voxel is con-
sidered as the expectation value. Stejskal and Tanner (1965) demonstrated that
the signal attenuation S(r) can be expressed as the 3D Fourier transform F of the
diffusion probability density function Ps(r′|r, τ) [39]:

S(r)
S0(r)

=
∫
Ps(r|r′, t)eiφ(r′−r)dr = F [Ps(r′|r, τ)] .

�� ��3.16

Finally, the Stejskal-Tanner relation can be obtained by combining Eq. (3.16) and
(3.6) [39]:

S(r) = S0(r) e−bD(r) ,
�� ��3.17

where the diffusion weighting factor b in Eq. (3.17), introduced by Le Bihan et al.
(1986), is defined as [42]:

b = γ2δ2∆‖g‖2 .
�� ��3.18

However, the effective diffusion time is τ = (∆− δ/3) instead of τ = ∆, where δ/3
is a correction due to the diffusion that occurs while the gradient is applied.
Since b can be derived from the acquisition parameters and since the non-diffusion
weighted image S0(r) and the diffusion weighted (DW) image S(r) are acquired
by measuring the signal with b = 0 and b 6= 0, respectively, the diffusion coefficient
D(r) can be calculated in each voxel using Eq. (3.17). This diffusion coefficient
model is based on the hypothesis that the diffusion is unrestricted and can therefore
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be modeled by a Gaussian distribution. Since, in biological tissues this assumption
is not correct, the diffusion coefficient is referred to as the apparent diffusion coeffi-
cient (ADC). Note that the resulting diffusion coefficient D(r) is dependent on the
direction of g, the gradient strength ‖g‖ and the time sequence parameters δ and
∆ and that the diffusion of water molecules is measured in a predefined direction
g, without detecting water diffusion in other directions.
At low diffusion weighting (low b values), the sensitivity to diffusion is minimal and
the image contrast will be determined predominantly by the anatomical MR scan.
At high b values, the image contrast is largely produced by the diffusion properties
of water molecules. Lesions with diffusion restriction appear bright on DW images
and dark on ADC maps. Structures with increased diffusion, such as CSF, will
appear dark on DW images and bright on ADC maps.

3.2.2.2 Acquisition of diffusion tensor images

In 1994, Basser et al. described the 3D diffusion process based on a series of diffu-
sion weighted images (DWIs) [17, 18]. In this approach, a second order symmetric
tensor is fitted to the diffusion data in every voxel. Since the DT is symmetric, only
six elements have to be estimated to characterize the full DT. Consequently, DW
images have to be acquired in at least six independent directions gk (k = 1, . . . , 6)
[11, 43]. In addition, a reference image S0(r) should be obtained without diffusion
weighting. In practice, more than six directions gk (k = 1, . . . , N) are often used
for a more reliable measurement of the diffusion tensor, with N the total number
of unique gradient directions [44].
The symmetric second-rank tensor D(r) is calculated for each voxel at position r

by solving the equation system

Sk(r) = S0(r) e−bĝ
T
k ·D(r)·ĝk with ĝk =

gk
‖gk‖

and k = 1, . . . , N ,
�� ��3.19

which can be considered as the generalized anisotropic form of the Stejskal-Tanner
relationship of Eq. (3.17). The distribution Ps(r|r′, τ) for isotropic media in Eq.
(3.6) can be extended for the general anisotropic case [39]:

Ps(r|r′, τ) = 1√
(4πτ)3|D|

e−
(r−r′)T ·D−1·(r−r′)

4τ ,
�� ��3.20

where |D| represents the determinant of the diffusion tensor D.

3.2.3 Visualization

Unlike conventional scalar MR images, DTI is fundamentally 3D, since 3D diffusion
information is measured in each voxel. This poses some visualization challenges.
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3.2.3.1 Scalar maps

Generally, the diffusion information in each voxel is represented by a scalar measure,
such as the FA, or the MD. Since the FA metric provides better contrast between
WM structures, it is used more often compared to the MD for visualizing DTI
data sets. In the FA image, the WM structures appear bright, whereas the GM
and especially the CSF have a darker color.

3.2.3.2 Color-encoded scalar maps

By using scalar measures to visualize the DT, a lot of diffusion information is
discarded. Therefore, an additional color encoding is sometimes introduced based
on the direction of the first eigenvector to include directional diffusion information.
The most commonly applied color scheme to represent the orientation of the major
eigenvector is as follows: blue is superior-inferior, red is left-right, and green is
anterior-posterior [45–52]. This directional diffusion information is then added to
the FA maps. In the resulting images, the color is encoded for the diffusion direction
and the image intensity is determined by the FA. In Fig. 3.4 (a), an axial slice
containing anatomical MR information is visualized. The non-diffusion weighted,
MD, FA, and color-encoded FA image of the same axial slice are depicted in Fig.
3.4 (b).

3.2.3.3 Glyphs

3D objects, called glyphs, are also used to display the diffusion tensor information.
These glyphs can be lines that represent the orientation of the first eigenvector,
ellipsoids that are related to the diffusion iso-probability surfaces [11, 27], and
other objects such as super-quadric tensor glyphs [53–55]. In Fig. 3.4 (c) the
diffusion ellipsoids of an axial slice are depicted. The ellipsoids of the splenium are
visualized in more detail in Fig. 3.4 (d). To include directional diffusion information
and facilitate the visual interpretation, the glyphs can be color-encoded, whereby
a blue, red, and green color represent superior-inferior, left-right, and anterior-
posterior diffusion, respectively. A detailed overview of visualization methods for
DTs fields can be found in the work of Masutani et al. (2003) and Vilanova et al.
(2006) [56, 57].
As can be seen in Fig. 3.5, the diffusion information, as visualized by color-encoded
ellipsoids, corresponds well to the anatomical fiber bundle information. Although
these glyphs contain much more information compared to the scalar maps, they
are often hard to interpret, due to the staggering amount of information that is
included in the visualization.
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( )(a)

(b)(b)

(c)

(d)

Figure 3.4. In (a), an axial slice of a T2 weighted MR image is shown. The same axial

slice of the non-diffusion weighted image, MD map, FA map, and color encoded FA image

is displayed in (b). In (c), the diffusion information of this axial slice color is visualized

using ellipsoids in (c). On the left, they are colored in yellow, on the right, they are color

encoded according to the diffusion direction. In (d), the diffusion ellipsoids of the splenium

of the corpus callosum are depicted in more detail in (d).
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Figure 3.5. The diffusion ellipsoids, color encoded for the diffusion direction, are su-

perimposed on a coronal slice of a post-mortem brain.

3.2.3.4 Diffusion tensor tractography

In order to obtain more global information about the WM architecture, the local
diffusion information needs to be integrated. This is done by fiber tractography or
fiber tracking, which is based on the assumption that the main direction of diffusion
in a voxel - as derived from the tensor model - corresponds to the longitudinal axis
of the fiber bundle [50, 58–68]. In Fig. 3.6 (a), a fiber tract that follows the main
direction of the diffusion tensors in the splenium is reconstructed. The fiber tracts
of the whole brain are visualized in Fig. 3.6 (b). Generally, the fiber tracts are
color encoded for the diffusion direction for a better visual interpretation of the
fiber bundles, as can be seen in Fig. 3.6 (c).

Currently, diffusion tensor tractography is the only non-invasive tool to obtain
information about the neural architecture of the human brain. Many methods
have been proposed in the literature for addressing this problem, and most produce
output which corresponds well to the known anatomy [15, 29, 30, 60, 63, 64, 66, 68–
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119].
A first category of algorithms, proposed by Basser et al. (2000,2002), uses a stream-
line propagation approach where fiber trajectories are generated in a stepwise fash-
ion [58–61]. Streamline tractography uses the first eigenvector of the diffusion
tensor as an estimate of local tract orientation. In other tractography methods, a
probability of the fiber orientation is estimated at each voxel based on the diffusion
information [95–98, 101, 104, 105, 110, 111, 120–130]. Instead of producing one
path from each seed point, a distribution of paths is produced by sampling this
probability model of the fiber orientation.

3.3 Clinical applications of DTI

It’s really critical that we find ways to prevent, or at least delay the onset
of, cognitive decline. Once the pathology is established in the brain, it’s
very difficult to treat. We need better ways to prevent the disease in the
first place, which could make a huge difference for the future.
– Neil Buckholtz

In DTI, information about WM fibers that pass within a voxel is obtained. This
WM consists of thousands of axons in each voxel, as well as myelin sheaths, mi-
crotubuli, neurofilaments, and glial cells. The diffusion signal that is measured
in DTI originates from contributions from all these structures. It is therefore not
straightforward to correlate diffusion signal alterations with changes of the under-
lying microstructure. However, since DTI measures the diffusion in the organized
WM, many researchers agree that DTI can provide an additional insight into a
wide range of pathologies. In this section, some clinical applications of DTI are
discussed.

Stroke: Moseley et al. (1990) were the first to observe hyperintensity on DW
images in the ischemic region [131–133]. By evaluating quantitative diffusion
measures, the severity of strokes can be assessed. Furthermore, acute ischemic
changes can be distinguished from chronic ischemic changes, a difference that
may affect treatment [134–138].

Development of the brain and aging: DTI has already proven to be useful in
the study of aging, [139–149], lateralization [48, 150–154], cognitive perfor-
mance and reading ability [155–158], and brain development in premature
infants, ‘normal’ infants, children, adolescents, and adults [160–170].

In general, DTI studies report age-related declines in WM FA and increases of
the WM MD in normal healthy adults [140, 142, 143, 146, 171]. The decline
is equivalent in men and women and appears to be linear from about age 20
years onwards [171–173].
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(a)(a)

(b)( )

(c)(c)

Figure 3.6. In (a) mathematical reconstruction of a fiber bundle is superimposed on the

diffusion information, as visualized by color-encoded ellipsoids. The whole brain diffusion

tensor tractography result, colored in yellow, is shown in (b). In (c), the same tracts,

color encoded for the diffusion direction, are displayed.
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Psychiatric disorders: A lot of DTI studies have demonstrated WM differences
in patients with psychiatric disorders, such as schizophrenia, alcoholism, de-
pression, etc. compared to healthy control subjects. For example, many
DTI studies reported an FA decrease in patients with schizofrenia compared
to healthy controls in a wide range of WM structures [174–188]. Exposure
to addictive drugs, such as alcohol, cocaine, methamphetamine, marijuana,
heroin, and nicotine has also been shown to alter the FA [189–192].

Multiple Sclerosis: Although it has been demonstrated that conventional MR
images are sensitive for detecting MS lesions, the T2 lesions reflect the clin-
ical manifestations only to a limited extent [193, 194]. Recently, more ad-
vanced imaging techniques, such as diffusion tensor imaging (DTI), have been
employed to examine MS [195]. Pathologically, MS is characterized by the
presence of areas of demyelination and axonal loss. Since myelin restricts dif-
fusion of water transverse to the axons, it is regarded as an important factor
that contributes to the anisotropic nature of the diffusion. However, Beaulieu
and Allen (1994) demonstrated that anisotropy in myelinated nerves and non-
myelinated nerves are similar and that myelination is therefore not a prereq-
uisite for diffusion anisotropy [196]. Other studies showed that anisotropy
measures are altered significantly when myelin is damaged or absent, either
in a demyelinating disease such as MS or in a pre-myelination condition at
different stages of neuronal development [159, 197–199]. Recently, Song et
al. (2003) examined the longitudinal and transverse diffusivities of white
matter in a mouse model of demyelination [33]. They observed that the ab-
sence of myelin appeared to increase the longitudinal diffusivity, but did not
significantly affect the transverse diffusivity.

Obviously, axonal loss will also have modulatory effects on the diffusion mea-
sures. Recent studies have suggested that the axial diffusivity may be a more
specific marker of axonal damage [34, 37].

Brain tumors: Diffusion tensor tractography is used to localize WM fiber tracts
that are important for critical brain functions and are located near a tumor
[82, 200–202]. This information can then be used by a neurosurgeon to plan
the surgical procedures that will minimize injury to these WM fiber bun-
dles. DTI has also been applied to characterize tumor tissues. In general,
it is assumed that increased cellular densities will decrease the MD and that
the MD will be significantly elevated in areas of tissue necrosis. A study
of pediatric tumor patients revealed relationships between MD and both tu-
mor grade and cellularity [203]. Another study demonstrated that the MD
was slightly or not elevated relative to normal-appearing tissue measured in
the contralateral hemisphere in lymphomas (with high cellularities) and that
the MD was significantly higher in high-grade astrocytomas [204]. Beppu
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et al. (2003, 2005) reported correlations between FA and cell density and
proliferation in both astrocytomas and glioblastomas, with higher FA values
corresponding to higher cell densities [205, 206].

3.4 DTI Group Analysis Methods

It all starts with an analysis of data.
– Ruth O’Dell

Since DTI is the only technique that can measure the WM integrity non-invasively,
it has a lot of potential to be of great diagnostic value in a wide range of WM
altering neurologic disorders. However, the relation between diffusion properties
alterations and changes of the underlying microstructure need to be well under-
stood. Additionally, large-scale, standardized group studies, comparing healthy
subject and patient DTI data sets, are necessary to evaluate the effect of specific
pathophysiologic damage of a certain neurologic disorder on the measured diffusion
properties. In the past years, different methods to compare diffusion properties of
control subjects and patients were introduced. The most frequently applied meth-
ods are discussed below: region of interest, tractography, and voxel based analysis
approaches.

3.4.1 Region of interest based approaches

In the ROI analysis, a 2D shape is manually drawn around a WM structure. Al-
ternatively, a geometrical shape, such as a box or a circle, can be placed within the
structure of interest. The diffusion values are then derived from the voxels that
are included in the segmented region. In most ROI studies, the WM structures of
interest are delineated for each subject independently, which makes this approach
very labor intensive. In addition, a relatively low reproducibility of the results is
sometimes observed, since the obtained diffusion properties depend on the manual
delineation or ROI placement that is done by an observer. Alternatively, the data
sets of all subjects can be initially transformed to a certain atlas space. Thereafter,
a single ROI can be used to delineate the same WM structure in all subjects, since
it is assumed that the data sets are aligned after coregistration.

3.4.2 Tractography based approaches

In this method, diffusion tensor tractography is applied to reconstruct and segment
a certain WM structure of interest. Thereafter, all the voxels contributing to the
tract are treated as a 3D ROI. This approach has the advantage of utilizing the
semi-automated nature of tractography, where the tract-selection regions can be
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defined more loosely compared to the ROI approach. The observer does not have
to precisely outline a structure of interest, but provide regions through which a
tract must pass. Obviously, this reduces the user dependence of the post process-
ing. Another advantage is that 3D structures can be defined easily, whereas the
delineation of 3D structures with 2D ROIs is far more complex. As with the ROI
approach, the investigator must choose the structures of interest in advance, and
therefore must have an a priori hypothesis regarding the location of the diffusion
changes.

3.4.3 Voxel based Analysis

3.4.3.1 Standard Voxel based Analysis

The analysis of each structure on each subject can be very laborious, especially
for large group studies. Alternatively, in a voxel based analysis, DTI data sets
from different subjects are transformed/coregistered/warped to a template or atlas.
Thereafter, statistical tests are applied in each voxel in order to detect differences
in the diffusion measures between a control group and a patient group. In this way,
the whole brain is tested for control-patient differences without any a priori hy-
pothesis of the expected spatial location of the abnormalities. Although the VBA
approach is computationally more intensive, it is far less laborious compared to the
ROI method or even the tractography based post processing approach. In addition,
the user-dependency of the ROI approach is replaced by a parameter-dependency
in VBA, making the subsequent quantitative analysis more reproducible and stan-
dardized. However, for example in the published DTI studies of patients with
schizofrenia, no general correspondence between the findings is observed [174–
177, 179–188]. The subject group and disease heterogeneity across the different
studies, including confounding factors such as age, sex, handedness, disease state,
etc., can partially explain these observed discrepancies. However, methodological
differences in implementation of VBA are possibly even more decisive for explaining
the variances in the VBA results of different studies.

3.4.3.2 Tract Based Spatial Statistics

In tract based spatial statistics (TBSS), the FA maps are aligned to a template.
A mean FA image is subsequently created and thinned to generate a mean FA
skeleton which represents the centers of all tracts common to the group. Then, a
skeleton map is created for each subject by projecting his/her FA maps onto the
skeleton in the standard space. Thereafter, voxel-wise statistics across subjects
can be performed on the skeleton. Similarly to VBA, significant differences are
highlighted. The disadvantage of this method is that it only analyzes a relatively
small proportion of all the available white matter, i.e. only those voxels with the
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highest local FA. Valuable information from a large number of voxels in several
WM structures is therefore lost in a TBSS analysis.
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Most of us have spent some time won-

dering how our brain works. Brain sci-

entists spend their entire lives ponder-

ing it, looking for a way to begin ask-

ing the question, How does the brain

generate mind? The brain, after all, is

so complex an organ and can be ap-

proached from so many different di-

rections using so many different tech-

niques and experimental animals that

studying it is a little like entering a bliz-

zard, the Casbah, a dense forest. It’s

easy enough to find a way in - an inter-

esting phenomenon to study - but also

very easy to get lost.

– Susan Allport 4
Coregistration of diffusion tensor images
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CHAPTER 4. DTI COREGISTRATION

Overview

A very important step in a voxel based analysis of DTI data sets is the coregistration
of all data sets to a template or atlas. In this way, the diffusion properties of the
corresponding voxels can be compared between the different data sets in the atlas
space. The goal of coregistration is thus to find a set of 3D deformation fields
that map the different data sets to the atlas space. The image alignment of DTI
data sets is particularly challenging compared to aligning scalar images, such as
anatomical MR images, CT images, etc., since each DTI voxel is represented by a
symmetric second rank tensor, i.e. the six components describing the 3D diffusion
process. This tensor information should be included in the coregistration algorithm
in order to align the DTI data sets more accurately. In this chapter, the concept of
image coregistration is briefly introduced. Thereafter, the image alignment method,
based on a viscous fluid model and mutual information, that is used in our work
to map DTI data sets to each other is elucidated.

The work in this chapter has been published in:
W. Van Hecke, A. Leemans, E. D’Agostino, S. De Backer, E. Vandervliet, P. M.

Parizel and J. Sijbers, Nonrigid Coregistration of Diffusion Tensor Images Using
a Viscous Fluid Model and Mutual Information, IEEE Transactions on Medical
Imaging, Vol. 26, Nr. 11, p. 1598-1612, (2007)

4.1 Image coregistration

The objective of coregistration or spatial normalization is to search for the spatial
transformations that map different images to a common reference space, in which
direct comparison of various image properties is possible [1, 2]. However, in prac-
tice, it is not feasible to coregister data sets from different subjects perfectly, due to
the lack of information in the images (given the restricted resolution), the limited
degrees of freedom of the deformable model that is used to align the data sets, the
inherent variability of brain structures of different subjects, etc. An optimization
procedure is therefore used to approximate the actual transformation of the differ-
ent images. The goal of image alignment is thus to find the deformation field T

that describes the transformation between a reference (also referred to as target or
template) image I1 and a source or floating image I2 in a way that the similarity
between both images I1 and I2 is maximized. To this end, there is a need for a:

Deformation model: defines the number of degrees of freedom and the possible
transformations of a coregistration algorithm;

Similarity measure: determines the correspondence between different images;
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Optimization strategy: selects the optimal transformation between the images.

These different coregistration features are discussed in more detail in the following
paragraphs. Reviews of different image coregistration techniques can be found in
[1–5].

4.1.1 Deformation Models

4.1.1.1 Rigid transformations

Rigid transformations only allow images to rotate and translate globally. As a
result, a rigid transformation in 3D is defined by six degrees of freedom: translations
in x, y and z directions, and rotations about the same three axes. The rigid body
transformation can be described by a rotation R followed by a translation t, and
maps voxel r = (x, y, z) to voxel r′ = (x′, y′, z′):

r′ = Rr + t .
�� ��4.1

This transformation of voxel r to r′ can also be written as:

x′y′
z′


︸︷︷︸
r′

=


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1


︸ ︷︷ ︸

T

xy
z


︸︷︷︸
r

,
�� ��4.2

with

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 and t =

txty
tz

 .
�� ��4.3

4.1.1.2 Affine transformations

In addition to rotations and translations, affine transformations include scaling and
shearing components in the deformation model. Equations 4.4 and 4.2 can then be
rewritten more generally as:

r′ = Ar′ + t .
�� ��4.4

and
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x′y′
z′


︸︷︷︸
r′

=


a11 a12 a13 tx
a21 a22 a23 ty
a31 a32 a33 tz
0 0 0 1


︸ ︷︷ ︸

T

xy
z


︸︷︷︸
r

,
�� ��4.5

In this case, matrix A contains rotation, scaling and shearing components and
can be described with 12 degrees of freedom. Although affine transformations are
able to align two images better compared to he rigid transformation, they are
restricted to global deformations. A typical example of an image transformation
whereby only a global deformation field can be used, is the coregistration of data
sets from the same subject, acquired on different time points or on different scan
modalities. Only a global transformation is needed in this case, since the internal
brain structures from the same subject usually have the same size and shape, except
when a pathology such as a tumor is present in the second image. However, since
brain images of different subjects do vary locally, non-affine transformations are
required.

4.1.1.3 Non-affine or non-rigid transformations

As aforementioned, it is generally assumed that global affine transformations are
inadequate for an inter-subject coregistration, since local morphological differences
between different subjects can then not be taken into account [6]. The trans-
formations that are needed for an accurate inter-subject coregistration require to
accommodate both complex, large, and locally-adaptive deformations. Non-affine,
also called non-rigid, coregistration techniques utilize local adaptive deformation
fields for the image alignment, and are thus, in theory, more adequate to correct
for inter-subject variations of different brain structures.
However, not all transformations are physically feasible or realistic. Additionally,
the intensity information that is present in the images may be insufficient to unam-
biguously define such a local transformation field. It is, for example in homogeneous
image regions, very hard to define the accurate deformation field that maps corre-
sponding voxels. A solution to this problem is to regularize the transformation field
in order to impose local consistency or smoothness on the transformation. Two
important regularization approaches are discussed here: splines based transforma-
tions and transformations based on a physical model.

4.1.1.3.1 Spline based transformations Spline-based registration techniques
typically require a set of corresponding control points or landmarks that have to
be identified in both source and target images.
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Thin plate splines: Thin plate splines are based on radial-basis functions and
refers to a physical analogy involving the bending of a thin sheet of metal.
The aim of thin plate spline based image coregistration is to minimize the
bending energy of the spline.

B-splines: When radial basis functions are used, every control point contributes to
the whole transformation. This hampers the modeling of local deformations,
and furthermore, prohibits the use of very large numbers of control points
due to the increased computational complexity. An alternative is provided
by free-form deformations based on B-splines, which are piecewise continuous
polynomials. B-splines are a generalization of the Bézier curve and were
introduced for medical image coregistration by Rueckert et al. (1999) [7, 8].
They are easy to construct and can approximate complex shapes through
curve fitting and interactive curve design [8].

4.1.1.3.2 Transformations based on a physical model

Elastic coregistration The idea of the elastic models is to treat the image as an
elastic material, such as rubber. This allow the transformations in different
regions of the image to be more independent of the transformation in the
surrounding regions. The external force of the elastic model is commonly
provided by the image similarity.

Viscous fluid coregistration The amount of deformation obtained using elastic
registration is proportional to the force. For this reason elastic deformations
cannot easily model highly localized deformations. This has led to interest in
fluid registration techniques which enable large as well as local deformations
(including corners) to be smoothly recovered. The basic idea is to treat the
image as a fluid, and then apply a viscous fluid model to drive and control
the deformation.

4.1.2 Similarity Metrics

The similarity measure calculates the spatial correspondence between both data
sets that are transformed to each other. In the iterative optimization approach,
this similarity measure is optimized to achieve a maximal image correspondence.
Different intensity based similarity measures can be calculated. Here, the correla-
tion coefficient, sum of squared differences, and mutual information are discussed:

4.1.2.1 Correlation Coefficient

In the correlation coefficient (CC), the product of the difference from the image
mean of corresponding intensity values is calculated. The correlation coefficient
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assumes a linear relationship between corresponding intensities in the images. To
reduce this dependency, the normalized cross-correlation can be used. If image
I1(r) is the reference image and I2(T (r)) the source image that is transformed to
I1(r), the normalized correlation coefficient of images I1(r) and I2(T (r)) can then
be written as:

CC =
∑

[(I1(r)− I1(r))(I2(T (r))− I2(T (r))]√∑
(I1(r))− I1(r))2

∑
(I2(T (r)− I2(T (r))2

,
�� ��4.6

whereby the sum is taken over all corresponding voxels of I1(r) and I2(T (r).
Thereby, I1(r) and I2(T (r) represent the mean of images I1(r) and I2(T (r) over
all corresponding voxels, respectively. The maximum correlation coefficient corre-
sponds to the strongest linear relationship between corresponding pairs of intensity
values [9].

4.1.2.2 Sum of Squared Differences

The sum of squared distance (SSD) between the target and the source image is
given by:

SSD =
∑

[(I1(r)− I2(T (r))]2 .
�� ��4.7

When both data sets are perfectly aligned and the corresponding voxels in both
images have exactly the same intensities, the SSD is zero. This similarity metric
assumes that corresponding voxels contain the same intensity after image align-
ment, except for Gaussian noise. Therefore, as with the CC metric, the SSD can
be strongly affected by a small number of voxels having large intensity differences.

4.1.2.3 Mutual Information

Information theory was developed out of Shannons pioneering work in the 1940s
at Bell Laboratories [10]. His work focused on characterizing information for com-
munication systems by finding ways of measuring data based on the uncertainty or
randomness present in the given system. Shannon proved that for probabilities pi,

−
∑
i

pilog(pi),
�� ��4.8

is the only functional form that satisfies all the conditions that a measure of uncer-
tainty should satisfy. For a discussion on this topic, I would like to refer to Hajnal
et al. (2001). Shannon named this quantity of Eq. (4.8) entropy because it shares
the same mathematical form as the entropy of statistical mechanics.
Mutual information (MI) was proposed as a similarity measure independently by
Collignon et al. (1995), Wells et al. (1996), and Maes et al. (1997) [11–13]. MI
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quantifies how much information one image provides about another image, instead
of comparing intensities directly. Maximizing mutual information involves maxi-
mizing the information contained in each image while minimizing the information
contained in the overlayed images. The marginal entropies of images I1 and I2
with intensities i1(r) and i2(r) are defined as follows:

H(I1) = −
∑
i1∈I1

p(i1)log(p(i1)) ,
�� ��4.9

H(I2) = −
∑
i2∈I2

p(i2)log(p(i2)) ,
�� ��4.10

where p(i1) and p(i2) are the probabilities of voxels with intensities i1 and i2
occurring in the corresponding image. The joint entropy of images I1 and I2 is
given by:

H(I1, I2) = −
∑
i1∈I1
i2∈I2

p(i1, i2)log(p(i1, i2)) ,
�� ��4.11

where p(i1, i2) represents the joint probability density function of the images I1
and I2. The mutual information is then given by:

MI(I1, I2) = H(I1) +H(I2)−H(I1, I2) = −
∑
i1∈I1
i2∈I2

p(i1, i2)log(p(i1, i2)) ,
�� ��4.12

Similarity measures borrowed from information theory are applicable in coregistra-
tions of images from the same modality as well as images from different modalities,
since MI makes no assumptions about the relationship between image intensity
maps. An overview of entropy based coregistration methods can be found in Pluim
et al. (2003).

4.1.3 Optimization Strategies

Transformation parameters are adjusted to improve the image similarity using an
optimization method. Optimization is a broad discipline in mathematics and a lot
of methods have been proposed for function optimization (finding the minimum or
maximum value of a function) [14–16]. Most methods are iterative, whereby the
correspondence between the images is improved at each iteration, until a maximum
is found. In order to reach the global optimum rather than a local optimum, the
gradient of the function is generally computed during the optimization. In other
methods, such as the conjugate gradient or quasi Newton approaches, the second
order derivative are computed. The functions should therefore be smooth and
differentiable. For noisy functions, statistical or randomized methods like simulated
annealing [56] or genetic algorithms [57] are adopted.
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4.2 Coregistration of diffusion tensor images using a

viscous fluid model and mutual information

All great deeds and all great thoughts have a ridiculous beginning.
– Albert Camus

4.2.1 Introduction

In the previous paragraphs, some general concepts about the coregistration of scalar
images were introduced. The coregistration of DT images is particularly challeng-
ing compared to aligning scalar images, since each DTI voxel is represented by a
symmetric second rank tensor, i.e. the six components describing the 3D diffusion
process. Consequently, scalar coregistration algorithms have to be adapted so that
they can deal with these multi-component data sets. In addition, the alignment
of the DT field with the underlying microstructure has to be preserved after the
coregistration process. For the latter, a tensor reorientation (TR) strategy has to
be performed [17]. Since Alexander et al. (2001) raised the TR problem, their
proposed TR strategies have been applied widely [17, 18]. The finite strain (FS)
method decomposes the transformation matrix in a deformation and a rotation
component, whereafter only the latter is used to reorient the tensors. However,
shearing, non-uniform scaling and stretching factors affect the orientation as well.
Together with the rotational component, they are taken into account in the preser-
vation of principal direction (PPD) strategy. In this study, the PPD algorithm is
implemented as described by the direct DT reconstruction approach of Leemans et
al. (2005) [19].
The most trivial approach to coregister DTI data is by registering scalar images as-
sociated with the DTI data sets, such as T2-weighted MR images, FA maps, or the
non-diffusion weighted images [20, 21]. Alexander and Gee proposed a multireso-
lution elastic matching algorithm and introduced similarity measures based on the
DT data [22]. Ruiz-Alzola et al. (2000,2002) optimized affine transformations in
certain restricted windows of the image domain, measuring image correspondence
based on DT data [23, 24]. Note that in [22] and [24], no TR was applied during
the optimization.
Park et al. (2003) and Guimond et al. (2002) extended the demons algorithm
to DTI data and applied an iterative TR strategy [25–27]. This iterative tensor
adaptation increases the algorithmic complexity and computation time drastically.
Furthermore, although the DT information is more exploited compared to [22] and
[24], errors caused by an imperfect TR can affect the alignment at each iteration.
In addition, no initial correction is performed for the presence of voxel intensity
differences in corresponding structures of different data sets or subjects, caused by
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a different brain morphology. This potentially results in a non-optimal starting
point of the SSD similarity measurement. Finally, Zhang et al. (2006) proposed
a local affine coregistration algorithm using DT data in the similarity measure in
order to optimize the tensor reorientation explicitly [28].

4.2.2 Multi-component viscous fluid coregistration

4.2.2.1 The viscous fluid model

The general goal of coregistration is to map a particular floating image φ(~x) to
a reference image τ(~x) in order to align both. In the following framework, the
images are modeled as a viscous fluid. Such a viscous fluid model, which imposes
constraints on the local deformation field during coregistration, can be described
by the free-form nonrigid coregistration algorithm of [29], in which a regularization
function from elasticity theory has been applied [29, 30]. D’Agostino et al. (2003)
replaced this elastic model with a viscous fluid regularization model of Christensen
et al. (1996) which allows the viscous fluid model to be described by the following
simplified Navier-Stokes equation [30–32]:

µ∇2~v + (µ+ λ)~∇(~∇ · ~v) + ~F (~x, ~u) = ~0,
�� ��4.13

with ~v the deformation velocity and ~F the force field, which depends on the local
deformation ~u and the deformation position ~x. The material parameters µ and λ

are set to 1 and 0, respectively [31]. At each iteration k of the gradient descent
optimizer of the coregistration algorithm, the new displacement ~u(k+1) is calculated
from the previous displacement ~u(k), taking into account the perturbation ~R(k) of
the deformation field and the time step parameter ∆t(k):

~u(k+1) = ~u(k) + ~R(k)∆t(k).
�� ��4.14

In (4.14), ~R(k) is defined as,

~R(k) = ~v(k) −
3∑
i=1

v
(k)
i

(δ~u(k)

δxi

)
,

�� ��4.15

with ~v(k) defined as the convolution of the force field ~F (k) and a Gaussian spatial
smoothing kernel Ψs with a width s [27, 30]:

~v(k) = Ψs ⊗ ~F (k).
�� ��4.16
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The force field ~F is defined in such a way that the viscous fluid deformation strives
at maximizing the MI between the deformed floating image φ(~x−~u) and the target
image τ(~x). To this end, the gradient of the MI with respect to an infinitesi-
mally changed deformation field ~u is required [29]. The joint intensity distribution
pφ,τ~u (i1, i2) of the deformed floating image and the target image is therefore modeled
as a continuous function using Parzen windowing, making it differentiable with re-
spect to the deformation field. Hereby, i1 and i2 represent the intensities of images
φ and τ . The MI between φ(~x− ~u) and τ(~x) can be defined as [11]:

MI(~u) =
∑
i1

∑
i2

pφ,τ~u (i1, i2) log
pφ,τ~u (i1, i2)

pτ (i2)pφ~u(i1)
.

�� ��4.17

Hereby, pτ and pφ represent the marginal intensity distributions of τ and φ, re-
spectively. The gradient of the MI with respect to a deformation field ~u that is
perturbed into ~u+ ε~h can be calculated and simplified to [29]:

∂MI(~u+ ε~h)
∂ε

∣∣∣∣∣
ε=0

=
∑
i1

∑
i2

((
1 + log

pφ,τ
~u+ε~h

(i1,i2)

pτ (i2)pφ
~u+ε~h

(i1)

)
·
∂pφ,τ
~u+ε~h

(i1,i2)

∂ε

∣∣∣∣
ε=0

)
.

�� ��4.18

Thereby, the joint intensity distribution pφ,τ~u (i1, i2) of the reference and deformed
floating image is estimated from the region of overlap v′ (with volume V ) using a
Parzen window kernel ψh(i1, i2) with width h:

pφ,τ~u (i1, i2) =
1
V

∫
v′
ψh(i1 − φ(~x− ~u), i2 − τ(~x))d~x.

�� ��4.19

The force field can now be written as [29, 30]:

~F (~x, ~u) = ~∇~uMI =
1
V

[δψh
δi1
⊗ L~u

](
φ(~x− ~u), τ(~x)

)
~∇φ(~x− ~u),

�� ��4.20

with

L~u(i1, i2) = 1 + log
pφ,τ~u (i1, i2)

pτ (i2)pφ~u(i1)
.

�� ��4.21

The force field, driving the deformation to maximize MI, is defined as the gradient
of MI with respect to ~u(~x), and can be calculated using the intensity gradient of
the deformed floating image φ(~x−~u), weighted by the impact on the MI of a voxel
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in φ at ~x − ~u being displaced in this direction [29, 30]. This force field is calcu-
lated at each iteration of the gradient-descent optimization procedure, until the MI
no longer increases or the Jacobian determinant of the total deformation becomes
negative. In this way, it is ensured that the transformation is homeomorphic. At
each time step during the deformation, the force field is constant such that the
modified Navier-Stokes equation can be solved iteratively as a temporal concate-
nation of linear equations [30]. A velocity field is obtained by solving the modified
Navier-Stokes equation (4.13). This velocity field is computed with (4.16), as in
Thirion et al. (1998) approximating the approach of Bro-Nielsen and Gramkow
[27, 33]. Thereafter, the perturbation to the deformation field is computed (4.15)
and used to obtain the displacement field at a given iteration (4.14).
At each iteration, the determinant of the Jacobian is constrained to reduce the
chance that the underlying anatomical microstructure is forced in a physical or
anatomical non-acceptable way [34]. When the determinant of the local Jacobian
becomes smaller than 0.5, a regridding of the deformed floating image is applied to
generate a new floating image, setting the incremental displacement field to zero
[32]. A width of h = 4 and s = 3 were used for the Gaussian Parzen windowing
kernel ψh and for the spatial smoothing kernel Ψs, as described in [30]. The time
step parameter ∆t in (4.14) is adapted each iteration and set to:

∆t(k) = max(||~Rk||)∆u,
�� ��4.22

with ∆u (in voxels) the maximal allowed voxel displacement in each iteration.
D’Agostino et al. (2003) demonstrated that an optimal balance between speed of
convergence and need for regridding is obtained for ∆u = 0.6.

4.2.2.2 Multi-component coregistration

In its simplest form, coregistration of DTI data sets is based on the alignment of
two scalar T2-weighted images. Thereafter, the resulting transformation is applied
to the DT images. Although T2-weighted images have a higher spatial resolution
compared to DTI, the coregistration result will be strongly affected by the severe
lack of white matter contrast in these images. Indeed, conventional MR protocols,
such as T1- or T2-weighted pulse sequences, represent the white matter as a rather
homogeneous region. Since nonrigid coregistration algorithms are mainly driven
by the contrast of different brain structures, low contrast regions, such as the
white matter on conventional MR images, will be poorly aligned. As a result, the
structural and particularly the orientation correspondence will be very low in the
white matter after coregistration [25].
In order to provide more structural information to guide the coregistration in white
matter regions, DTI features are used. For this purpose, the scalar FA map, con-
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taining a high white matter contrast, has demonstrated to be an appropriate feature
[20]. In this context, Guimond et al. (2002) introduced a multi-component nor-
malization method based on the DT eigenvalue images (λ1, λ2, λ3) [26]. As argued
by Alexander et al. (2001) to preserve the intrinsic information of the tensor, only
rigid transformations should reorient the tensors, independent of the nature of the
local transformation that is applied [17]. The scalar measures, such as the FA and
the eigenvalues, are invariant to rigid transformations, and therefore, TR is not re-
quired during coregistration. Park et al. (2003) demonstrated that the use of DT
elements improved the coregistration quality significantly [25]. They implemented
the demons algorithm and used the SSD as a similarity criterion [27].
When the DTI alignment is based on images that contain orientation information,
such as the DT components or the DW images, the coregistration problem becomes
more complex. In contrast to the voxel intensities of the images that are invariant
to rigid transformations, the voxel intensities of the DT components or the DW
images are dependent on the position of the subject in the scanner and on the
local morphology of the brain. For example, when a particular white matter tract
follows a different path in two subjects, its DT or DW intensity values can vary
significantly in corresponding voxels, whereas the FA can be similar. Since the
intensity variation in corresponding voxels has a local, spatial-dependent nature,
image intensity transformations, which are often used to deal with multi-modal
images, are not applicable under these circumstances. DTI coregistration, that
incorporates orientation information to align the images, is therefore one of the few
applications that has to accommodate both the alignment of inter-subject images
and the presence of non-linear inter-voxel intensity differences.
In a study of Park et al. (2003) a TR was applied iteratively during coregistra-
tion using the FS approach [25]. By iteratively adjusting the tensor orientation,
the accuracy of the image alignment may be increased. However, the necessity for
an iterative tensor adaptation increases the algorithmic complexity and computa-
tion time drastically. Furthermore, errors caused by an imperfect TR can affect
the alignment at each iteration. Note that, by implementing an iterative TR, no
initial correction is performed for the presence of voxel intensity differences in cor-
responding structures, potentially resulting in a non-optimal starting point of the
SSD similarity measurement. Moreover, FA or eigenvalue image data are known
to be non-Gaussian distributed, due to the non-linearity in the calculation of the
eigenvalue system [35]. Since, the widely used SSD similarity measure presupposes
similar voxel intensity values in various images that only differ from each other by
a Gaussian noise term, it can therefore not be used optimally for this purpose.
In an attempt to mitigate the aforementioned DTI coregistration issues, we propose
to use MI as a criterion for DT image similarity. By applying MI, the non-linear
inter-voxel intensity differences are taken into account without the need for an
explicit tensor reorientation during the optimization procedure. Consequently, the
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tensors are only reoriented after the application of the final deformation field. In
this study, three different coregistration approaches are evaluated using a different
number of components (L): FA map (L = 1), the DT elements (L = 6), and the
DW images (L = 60).

4.2.2.3 Mutual information and force field calculation for multiple com-
ponents

Generally, in the context of coregistration, MI is defined and studied between two
scalar images, measuring their statistical dependency. The concept of multivariate
MI was introduced as an extension of the bivariate case to multiple scalar images,
thereby constructing a multi-dimensional histogram [36]. Since the 6 DT element
images or the 60 DW images form multi-component data, the alignment of two DTI
data sets becomes a multivariate coregistration problem. In contrast to the gen-
eral multivariate problem, the data sets in the multi-component DTI coregistration
process can be subdivided in two groups φl and τk that represent multi-component
(DT or DWI) images of two different data sets (l = 1, . . . , L and k = 1, . . . ,K). Ap-
plying the general multivariate idea of evaluating statistical dependencies for each
image combination to this specific problem, would increase the computation time
dramatically. Therefore, some adjustments are introduced to adapt the general
multivariate space to the specific multi-component DTI problem.
First, only images that have the same number of components are coregistered
(L=K). Indeed, DT elements of data set φl are compared with DT elements of
data set τk (L=K=6), and the DW images of φl are compared with the DW images
of τk (L=K=60). Secondly, only cross-subject statistical dependencies are com-
puted. The different components of data set φl are not compared with each other
(and analogous for data set τk), thereby assuming that all image components of a
single subject are aligned. Thirdly, the corresponding components are evaluated
in parallel (l=k). For example, the first DT element image of data set φl (i.e., φ1)
is compared with the first DT element image of data set τk (i.e., τ1), and never
with another DT element image of data set τk. In this way, the general multivari-
ate space is simplified with respect to the specific multi-component coregistration
problem of DT images. Rohde et al. (2003) proposed a multivariate correlation
approach for the coregistration of multi-component images [37]. However, by using
correlation coefficients, the assumption is made that a linear relationship is present
between the intensity values of the different components of different subjects.
We propose two similarity metrics based on the statistical dependencies of the
multi-component DT images. Both represent a summary metric on the original
multivariate space, based on MI.

‘MI method 1’ In
In a first approach for the calculation of the multi-component MI, the bivari-
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ate MI is computed for all L corresponding components separately, assuming
them to be independent. A similar approach was adopted in Park et al.
(2003) using the sum of squared distances as a similarity metric [25]. A
global measurement of image similarity is proposed by averaging the MIl of
the different corresponding components: MI= 1

L

∑L
l=1MIl. This MI metric is

optimized in the iterative coregistration process. At each iteration, the force
field of (4.20) is calculated for all corresponding components separately:

~Fl(~x, ~u) =
1
Vl

[δψh
δi1
⊗ Ll,~u

](
φl(~x− ~u), τl(~x)

)
· ~∇φl(~x− ~u),

�� ��4.23

with Ll,~u based on the joint intensity histogram of corresponding image com-
ponent l. In this way, L force fields are calculated independently, based on
the gradient of its corresponding floating image component and weighted by
the effect on the MI between the corresponding floating and reference image
component. A final force field is calculated as an average force field of all
corresponding components: ~F= 1

L

∑L
l=1

~Fl. This force field ~F is then used to
calculate the velocity field (4.16), whereafter the perturbation to the defor-
mation field (4.15) and the displacement field (4.14) are computed at each
iteration. This deformation field is applied to all L components of the floating
image, φl, which is then used as the floating image in the next iteration.

‘MI method 2’ In
In a second approach, the global MI is calculated from a histogram that al-
ready contains all information of the different components simultaneously.
All components of a data set are concatenated to a single image. Thereafter,
the global joint intensity histogram can be calculated on both concatenated
images ~φ and ~τ , containing all information of the L components. The MI is
based on this global joint intensity histogram and can now be written as:

MI(~φ, ~τ) =
∑
i1

∑
i2

(
p
~φ~τ (i1, i2) · log

(
p
~φ~τ (i1, i2)

p~φ(i1)p~τ (i2)

))
,

�� ��4.24

with i1 and i2 representing the voxel intensities and

~τ ≡ [τ1, . . . , τL] ~φ ≡ [φ1, . . . , φL],
�� ��4.25
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denoting the collection of selected components of the floating image and the
reference image, respectively. In practice, the multi-component image infor-
mation is pooled into a single histogram, by adding the joint histograms of
all image components. This histogram is then less sparse and contains all
information of the histograms of the corresponding components. The MI of
(4.24), containing information of all image components, is optimized during
the iterative coregistration process. In (4.24), p~φ,~τ is the joint intensity distri-
bution of the images ~φ and ~τ , and p~φ and p~τ represent the marginal intensity
distributions of ~φ and ~τ , respectively. In this approach, they are calculated
as a sum of the histograms of the corresponding components:

p
~φ~τ (r, f) =

1
L

L∑
i=1

pφiτi(r, f),

p~τ (r) =
1
L

L∑
i=1

pτi(r),

p
~φ(f) =

1
L

L∑
i=1

pφi(f).
�� ��4.26

Analogous as in ‘MI method 1’, the force field of (4.20) is calculated for all
corresponding segments:

~Fl(~x, ~u) = 1
V

[
δψh
δi1
⊗ L~u

](
φl(~x− ~u), τl(~x)

)
·~∇φl(~x− ~u).

�� ��4.27

In contrast with ‘MI method 1’, the L~u is based on the total joint intensity
histogram of images ~φ and ~τ . Again, L force fields are calculated based on
the image gradient of each component. However, the force field weighting
factors are now driven by the global MI of (4.24). The global force field is
computed as an average of all L component force fields: ~F= 1

L

∑L
l=1

~Fl. This
force field is then used to calculate the velocity field (4.16), whereafter the
new deformation field ~u can be derived with (4.14) and (4.15). Finally, all
floating image components are iteratively updated by the application of the
deformation field.

4.2.3 Acquisition and evaluation methodology

In this section, the DTI acquisition parameters and the evaluation setup are first
described (paragraph 4.2.3.1 and 4.2.3.2). Then, the measures that are used to
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evaluate the coregistration method are presented in paragraph 4.2.3.3. Finally,
the statistical tests are introduced for the interpretation of the results (paragraph
4.2.3.4).

4.2.3.1 Acquisition

DTI measurements of the human brain were performed with a 1.5 T MR scanner on
40 healthy subjects (16 males and 24 females), with a mean age of 28 years (19−55
years). An informed consent was signed by all participants. Axial DT images were
obtained using a SE-EPI sequence with the following acquisition parameters: TR
= 10.4 s; TE = 100 ms; diffusion gradient = 40 mT.m−1; FOV = 256 × 256
mm2; number of slices = 60; image resolution = 2× 2× 2 mm3; b = 700 s.mm−2;
acquisition time = 12 min 18 s. Diffusion measurements were performed along 60
directions for a robust estimation of FA, tensor orientation, and MD [38]. All DTI
post processing, such as calculation of the eigenvalue system and the visualization,
was performed with the diffusion toolbox ‘ExploreDTI’ (http://www.dti.ua.ac.be)
[39].

4.2.3.2 General setup

All images are first coregistered to a randomly chosen single subject image with an
affine coregistration algorithm that is designed for DTI, thereby using the MIRIT
(Multimodality Image Registration using Information Theory) method [11, 40]. In
order to evaluate our proposed viscous fluid coregistration method, two approaches
are followed:

• The first evaluation approach, using 15 different nonrigid, predefined defor-
mation fields, can be summarized as follows (see Fig. 4.1):

– A predefined deformation field is applied to the DW images of an original
DTI data set. This original DTI data set is referred to as the reference
image (see Fig. 4.1(a), (b)).

– The DT field is calculated from the deformed DW images (see Fig. 4.1
(c), (d)).

– The DT are reoriented to preserve the alignment with the underlying,
deformed microstructure (Fig. 4.1 (e)).

– The DW images are recalculated from the reoriented DT field, resulting
in the deformed data set, also referred to as the deformed data or floating
image (Fig. 4.1 (f)).

– The deformed data set (Fig. 4.1 (f)) is coregistered spatially to the
reference data set (Fig. 4.1(a)), followed by a TR of the DT field and
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a recalculation of the DW images. Since the difference between the
deformed and the reference image is predefined, it can be regarded as
ground-truth to evaluate the subsequent coregistration.

• To examine the applicability of our coregistration technique for VBA studies
or the formation of a connectivity atlas, DT images of 40 different persons
are normalized, and an arbitrary chosen data set is used as a reference image.

Multiple DTI components and MI calculation methods are used in both coregis-
tration evaluation approaches, and are numbered as follows:

I Affine coregistration;

Viscous fluid coregistration using the:

II FA maps;

III DT elements and ‘MI method 1’;

IV DT elements and ‘MI method 2’;

V DW images and ‘MI method 1’;

VI DW images and ‘MI method 2’;

4.2.3.3 Evaluation measures

Only voxels with an FA value larger than 0.4 are considered in the quantitative
analysis. Although these selected voxels do not strictly form a WM segmentation,
they are referred to as the WM mask in the remainder of this paper. Both the
spatial coregistration result and the orientation correspondence are evaluated as
follows:

• When the theoretical deformation field is known, a quantitative value can
be assigned, comparing the final transformation after coregistration with the
ground-truth deformation for each voxel B:

CB =
||~sB − ~s′B ||
||~sB ||+ ||~s′B ||

.
�� ��4.28

Here, ~sB and ~s′B represent the theoretical and final deformation field, respec-
tively. The median of CB of all selected voxels, referred to as C, can then be
interpreted as an overall measure of the transformation field correspondence.
When C is 0, the final deformation field exactly equals the theoretical defor-
mation field, representing a perfect spatial alignment. On the other hand,
when C is 1, the final deformation field is the opposite of the theoretical
deformation field, resulting in the worst alignment.
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Figure 4.1. The DW images of a DTI data set (a) are deformed with a known defor-

mation field (b), resulting in a set of deformed DW images (c). The DT elements are

calculated from these deformed DW images (d). Thereafter a tensor reorientation is per-

formed to realign the deformed tensors with their underlying microstructure (e). Finally,

the DW images are recalculated from the realigned DT elements (f) to construct the de-

formed DT data set that is used as a floating image in the coregistration algorithm. The

DT maps are color encoded according to the diffusion direction.

– 80 –



4.2. COREGISTRATION OF DIFFUSION TENSOR IMAGES USING A
VISCOUS FLUID MODEL AND MUTUAL INFORMATION

• In order to evaluate the coregistration technique with respect to the orienta-
tion information, the angle aB between the first eigenvector of the reference
image ~nB and the transformed floating image ~n′B can be calculated for each
WM voxel B:

aB = cos−1

(
|~n′B · ~nTB |
||~n′B || · ||~nB ||

)
.

�� ��4.29

The median a of all selected voxels B is a measurement of the preservation
of orientation information after coregistration, since it represents a general
value of the first eigenvector alignment. The smaller this first eigenvector
angle difference, the better the orientation alignment between the images
involved. Another measure which we will apply in our evaluation method is
the overlap of eigenvalue-eigenvector pairs (OVL) between tensors [41]:

OV L =
1
NB

∑
B

∑3
i=1 λiλ

′
i(~ε′i · ~εTi )2∑3

i=1 λ
′
iλi

,
�� ��4.30

with NB the total number of selected WM voxels, and λ′i, λi, and ~ε′i, ~εi
eigenvalues and eigenvectors of the deformed floating image and the refer-
ence image, respectively. The minimum value 0 indicates no overlap and the
maximum value 1 represents complete overlap of the principal axes of the DT
field.

4.2.3.4 Statistics

The non-parametric Wilcoxon matched-pairs signed-rank test is applied to find the
potential statistical significant difference between the coregistration results. On the
other hand, a paired t-test is used to interpret the inter-subject alignment results.

4.2.4 Results

In paragraph 4.2.4.1, the orientation of the DT field after deformation of the DTI
data set is evaluated on synthetic DTI phantoms [42]. Next, paragraph 4.2.4.1.1
presents the viscous fluid coregistration results with respect to accuracy and as
a function of the amount of image noise. Additionally, a qualitative example is
provided. In order to investigate the effect of nonrigid deformation fields on the
subsequent TR, different TR methodologies, applied after the viscous fluid coregis-
tration, are evaluated (paragraph 4.2.4.1.2). In paragraph 4.2.4.1.3, the methodol-
ogy without an iterative TR is compared with a method that performs an iterative
TR. Finally, the effect of different thresholds for defining the white matter masks
for quantitative evaluation will be examined in paragraph 4.2.4.1.4.
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Figure 4.2. First, a straight, synthetic fiber bundle is deformed with a nonrigid, sinu-

soidally shaped deformation field. A tensor reorientation (TR) is subsequently performed,

using the FS (a) and the PPD (c) approach. Second, a sinusoidally shaped, synthetic fiber

bundle with exactly the same frequency and amplitude as the aforementioned deformation

field is defined (b). The orientation of these diffusion tensors can be regarded as ground-

truth. The white ellipsoids represent the ground-truth tensors and the first eigenvectors

after FS and PPD tensor reorientation are superimposed in green and red, respectively.

The first eigenvector angle difference between the ground-truth and the TR result is dis-

played in (d) for the FS TR, and in (e) for the PPD TR.
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4.2.4.1 TR evaluation using synthetic DTI data sets

In this section, the TR approaches are evaluated for the nonrigid coregistration
using a synthetic DTI phantom [42]. An estimation of the error caused by the
TR itself is important for the interpretation of the tensor correspondence after
coregistration.
The synthetic DTI data experiments for the evaluation of the TR techniques can
be summarized as follows:

• The DW images of a straight, synthetic fiber bundle d1 were deformed with
different nonrigid, sinusoidally shaped deformation fields, resulting in a de-
formed bundle d2 (analogous as in Fig. 4.1(a), (b), and (c)).

• The DT field was calculated from the deformed DW images of d2 (analogous
as in Fig. 4.1(d)).

• In order to realign the DT field with the deformed microstructure, a TR
was performed with the FS and the PPD method (see Fig. 4.2(a) and (c),
respectively).

• The DW images were recalculated from the reoriented DT field (analogous
as in Fig. 4.1(f)).

• In order to evaluate the TR approaches, a ground-truth is necessary. There-
fore, a new synthetic fiber bundle d3 was simulated (see Fig. 4.2(b)). This
bundle exhibits a sine function trajectory with exactly the same frequency
and amplitude as the aforementioned deformation fields that were used to
deform the first straight bundle. The DT field of d3 was regarded as ground-
truth, since it exactly follows the spatial pattern of the defined white matter
fiber bundle.

• The DT field of d2 after TR was then compared with the ground-truth DT
field of d3, as displayed in Fig. 4.2.

In order to quantify the tensor difference, the angle between the first eigenvectors
of the deformed and the ground-truth tensors was calculated in each selected WM
voxel. For the FS tensor reorientation method, the median angle was 7◦ ± 4◦.
Since the PPD TR technique clearly outperforms the FS method, with a median
angle of 1.6◦ ± 1.5◦, it was implemented to reorient the tensors a priori with a
predefined deformation field resulting in the ground truth data sets.
These deformed data sets are used in the following sections as the floating images
that are coregistered to the reference DTI data set. In order to align the DT field
with the underlying microstructure after coregistration to the reference image, both
FS and PPD strategies were applied. In this way, the effect of local coregistration
inaccuracies on the TR result is studied.
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Figure 4.3. Qualitative coregistration result of a synthetic DTI data set. The refer-

ence DT image, given in (b), is deformed with a predefined deformation field (see (f)),

resulting in the image as displayed in (a). For the following coregistration analysis, this

deformed data set is used as the floating image, whereas the data set in (b) is used as the

reference image. The coregistered image is shown in (c). In order to evaluate the image

correspondence visually, the FA intensity map of the reference image is given a red color,

whereas the FA intensities of the floating and coregistered images are given a green color.

Consequently, when the reference and floating image are overlapping, a yellow color is

indicated (d). Therefore, this can be used to visually detect the correspondence quality of

the coregistration. An analogous image is composed for the reference and the coregistered

images (e), demonstrating a better image alignment after coregistration. In order to get

a more detailed view of the alignment, the different vector fields are displayed in (f),

(g), and (h). In (f), the predefined, ground-truth deformation field used to deform the

reference image (b) to the floating image (a) is shown. The final deformation field after

coregistration of the floating image (a) to the reference image is displayed in (g). After

subtraction of these vector fields, the spatial coregistration error can be visualized in (h).
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4.2.4.1.1 Multi-component viscous fluid coregistration

(i) Qualitative coregistration results
An example of the alignment of a DTI data set, deformed with a predefined
deformation field, to the reference image is shown in Fig. 4.3. In Fig. 4.3(a),
4.3(b), and 4.3(c), the deformed data set, the ground-truth DT image, and the
coregistered image are displayed, respectively. In order to evaluate the image
correspondence before coregistration, the FA map of the reference image is
given a red color, and the FA map of the (deformed) floating image is given
a green color. Therefore, when both images are overlayed (see Fig. 4.3(d)),
corresponding voxels that contain similar intensity values in the reference and
floating image will appear yellow after overlaying both images. Similar maps
are shown after viscous fluid coregistration (see Fig. 4.3(e)). The theoretical
deformation field (between 4.3(a) and 4.3(b)) and the obtained deformation
field after coregistration (between 4.3(a) and 4.3(c)) are displayed in 4.3(f)
and 4.3(g), respectively. The difference between these deformation fields is
presented in Fig. 4.3(h), demonstrating a high vector field correspondence
and a sub-voxel mean vector field error.

An axial, coronal, and sagittal representation of the inter-subject coregistra-
tion result is given in Fig. 4.4. Again, the FA map of the reference image
was given a red color, whereas the FA map of the affine and nonrigid coreg-
istration result were both given a green color. Consequently, the overlay of
the reference image (red) with the affine and nonrigid coregistration maps
(green) will display a yellow color when correspondence is high, and a red or
green color when the correspondence is low.

(ii) Evaluation measures of the coregistration
Quantitative coregistration results of DTI data sets deformed with predefined
deformations are shown in Fig. 4.5(a), (b), and (c). The FS approach was ap-
plied to reorient the DT field after coregistration. In Fig. 4.5 (e) and (f), the
first eigenvector angle difference a and OV L are displayed for inter-subject
data. The quantitative results, displayed in Fig. 4.5, demonstrate that the
nonrigid coregistration method clearly outperforms the affine alignment re-
sults. In addition, the use of multiple components (methods III-VI) always
resulted in an improved alignment, compared to the FA coregistration. This
amelioration is furthermore statistically significant in the case of deformed
data with a predefined deformation field and in the case for inter-subject data
(see Fig. 4.5(d): II vs III). In Fig. 4.5(d) (III vs. V), it is demonstrated that
the coregistration based on the DT elements outperformed the DWI coregis-
tration outcome. It is furthermore shown that the calculation of the global
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Figure 4.4. At the top of this figure, an axial, coronal, and sagittal slice of the reference

data set are shown. The color is encoded according to the diffusion direction. In the bottom

part of this figure, 7 arbitrarily chosen images of different subjects are shown after affine

(left column) and a subsequent viscous fluid model based (right column) coregistration

with the reference image. In each column, the diffusion direction encoded axial slices of

the coregistered data set are shown on the left. The other images are composed of the red

colored FA intensity values of the reference image on the one hand, and the green colored

FA intensity values of the coregistered image on the other hand. The yellow color indicates

that similar FA intensities are present in corresponding voxels.

– 86 –



4.2. COREGISTRATION OF DIFFUSION TENSOR IMAGES USING A
VISCOUS FLUID MODEL AND MUTUAL INFORMATION

(a)C
C a OVL

II vs
III

II vs

def 0.043 0.001 0.001

p values (d)

II vs
III

III vs
V

III vs
V

III vs

def

in sub

in sub

< 0.001 < 0.001

< 0.001 < 0.001

0.045 0.001 0.001

(b)

II III IV V VI

a [degrees] (e)a [degrees]

III vs
IV

III vs
IV

def

in sub < 0.001 < 0.001

0.010.020.5

(c)

I II III IV V VI

OVL (f)

I II III IV V VI

OVL

I II III IV V VI I II III IV V VI

Figure 4.5. Quantitative coregistration results of deformed data sets with known de-

formation fields and inter-subject data are shown on the left and right, respectively. The

different coregistration methods are grouped on the horizontal axis. (I) represents the

affine result, (II) is the FA based coregistration, (III) uses DT components and iteratively

averages the mutual information during coregistration, and (IV) uses DT components and

calculates the global histogram from all DT elements. Method (V) and (VI) are analo-

gous to (III) and (IV), respectively, but use the DW images as information components.

Parameter C calculates the correspondence of the final deformation field after coregistra-

tion with the predefined deformation field (a). The angle difference a between the first

eigenvectors of corresponding voxels of different data-sets is displayed in the middle row

for the deformed (b), and inter-subject (e) DTI data. In (c), and (f) the OV L, measur-

ing the eigenvalue-eigenvector overlap of tensors in corresponding voxels, is given for the

deformed, and inter-subject data, respectively. Finally, in (d), the p-values between the

coregistration methods are shown for the quantitative parameters.
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MI on one histogram, containing all components, does not result in a better
alignment, compared to the iterative averaging of all component MIs. Es-
pecially in the case of inter-subject data, the latter difference is statistically
significant, whereas this is not always the case for the deformed data (see
Fig. 4.5(d): II vs IV).

(iii) Effect of noise
In order to study the effect of noise on the coregistration outcome, the ref-
erence and the DW images, deformed with a known deformation field, were
corrupted with different levels of Rician distributed noise (represented by σ).
Next, all DTI features were calculated from the noisy DW images. After
coregistration, a transformation is found for each voxel from the floating im-
age to the reference image. Instead of applying this deformation field to the
noisy floating image, it is used to transform the floating image without noise.
In this way, quantitative values described in paragraph 4.2.3.3, give insight
into the effect of noise on the alignment error itself.

In Fig. 4.6(a), (b), and (c), the alignment results are displayed in the presence
of different levels of noise. Notice that, even when very high noise levels are
added, the image alignment, and especially the orientation correspondence,
is still preserved. The upper part of Fig. 4.6 displays an axial DTI slice,
corrupted with different levels of noise. The signal to noise ratio (SNR)
measure is defined as the average intensity value of all diffusion weighted
images divided by the level σ of the Rician distributed noise that is added.

4.2.4.1.2 Tensor Reorientation after nonrigid coregistration

Comparison of FS and PPD tensor reorientation methods
In paragraph 4.2.4.1, we demonstrated that the PPD method outperformed
the FS approach when applied after the deformation with a smooth, known
deformation field. In contrast to what was expected, the FS technique outper-
formed the PPD approach when applied after coregistration, as can be seen in
Fig. 4.7. Furthermore, this difference is statistically significant (p < 0.001).
These results are obtained from the FA image coregistration of 10 data sets
that were first deformed with a predefined deformation field. Equivalently,
these findings were analogous to the other methods, in which other compo-
nents were used for the coregistration. In Fig. 4.7(a) and (b), a part of
the corpus callosum is displayed on an axial slice. Here, the white ellipsoids
represent the ground-truth tensors of the reference image. The first eigen-
vector, as obtained after FS and PPD reorientation are superimposed in Fig.
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Figure 4.6. Different levels of Rician noise, represented by σ are added to the DW

images. A visual presentation of the noise DTI data is given at the top. The color

is hereby encoded according to the predominant diffusion direction. At the bottom of the

figure, the spatial and orientation correspondence are given using the FA map (method (II)

of Fig. 4.5), the DT elements (method (III) of Fig. 4.5), and the DW images (method

(V) of Fig. 4.5) as coregistration components. C, a, and OV L represent the deformation

field correspondence, the first eigenvector angle difference, and the eigenvalue-eigenvector

overlap, respectively.
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Figure 4.7. In (a) and (b), a part of the corpus callosum as seen on an axial slice is

shown. The white ellipsoids represent the ground-truth tensors of the reference image. The

FS (in green) and PPD (in red) TR result after nonrigid coregistration are superimposed

by means of the first eigenvector in (a) and (b), respectively. The first eigenvector corre-

spondence with the ground-truth a and OV L of the the tensor reorientation approaches are

presented in (c), and (d), respectively. These results originate from the coregistration of

deformed data with a predefined deformation field, based on the FA maps, but are similar

when other components are used. Note the higher tensor correspondence, when no tensor

reorientation (in grey) is performed ((c) and (d)).
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4.7(a), and (b), respectively. In Fig. 4.7(c), and (d), the first eigenvector
angle difference a and OV L are compared between both TR techniques.

Another remarkable result was observed when no TR was performed after
coregistration. This method outperformed the FS and PPD tensor reorien-
tation methodologies with respect to the tensor alignment, as described by
a and OV L (see Fig. 4.7(c) and (d)). For the inter-subject coregistration,
the following results were derived for the FS approach, PPD method, and
without TR, respectively (for a random group of 15 persons, using the FA
maps): a = 26.3◦ ± 1.2◦, 29.4◦ ± 1.3◦, and 23.6◦ ± 1.2◦; OV L = 0.66 ±
0.01, 0.63 ± 0.02, and 0.68 ± 0.01. Similar results were found when other
DTI information components were used for the coregistration.

Effect of the coregistration inaccuracies on the tensor reorientation
Although, in theory, the PPD method outperforms the FS approach (see
paragraph 4.2.4.1), results turn out to be worse than the results of the FS
approach when applied after the nonrigid viscous fluid deformation field (see
Fig. 4.7). In addition, tensors are better aligned when no TR is applied.
These unexpected results can be explained by the fact that, because there
are less constraints on the local level of coregistration, small coregistration
inaccuracies, which hardly affect the spatial alignment result, can occur, hav-
ing a severe impact on the subsequent tensor reorientation. We hypothesize
that these alignment errors contain more skewness and scaling than rota-
tional components, thereby having a larger effect on the PPD than on the
FS TR approach. The latter is verified by decomposing the Jacobian of the
coregistration inaccuracies into a rotation component on the one hand, and a
deformation component – containing scaling- and skewness factors – on the
other hand.

The error Jacobian is constructed from the vector field difference between the
theoretical and the obtained deformation field after coregistration. The rota-
tion and the deformation component are calculated from the error Jacobian
as follows:

Re = (UeUTe )−1/2Ue Se = UeR
−1
e ,

�� ��4.31

with Re the rotation and Se the deformation component, and Ue = I + Je,
where I is the identity matrix and Je is the Jacobian, calculated on the
error field [17, 43]. Note that Ue, Re, and Se are 3 × 3 matrices that are
attributed to each voxel, describing the local transformation, rotation, and
deformation, respectively. In order to study the presence of rotation and
deformation components in the error Jacobian, the magnitude of Ue, Re, and
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Se is calculated. This is done by taking the following Frobenius matrix norms
NJ ≡ ‖Ue − I‖2 , NR ≡ ‖Re − I‖2, and NS ≡ ‖Se − I‖2 for each WM voxel.

For the deformed data with known deformation fields, the aforementioned
matrix norms averaged over all voxels within the WM mask, are NJ = 0.55
± 0.05, NR = 0.22 ± 0.03, and NS = 0.42 ± 0.05, for the transformation,
rotation, and deformation respectively. These results indicate that the con-
tribution of rotations is much smaller compared to the contribution of the
skewness and scaling factors in the Jacobian of the alignment inaccuracies.
Furthermore, they confirm the hypothesis that the PPD is more affected by
local, small coregistration errors compared to the FS approach, resulting in
a worse first eigenvector correspondence.

Deformation field regularization
In order to improve the TR, an isotropic Gaussian smoothing of the obtained
deformation field is performed. This regularization is performed after the
coregistration process and is only used to improve the accuracy of the Ja-
cobian matrices of the global deformation. It will therefore not affect the
spatial alignment of the images. The results after deformation field regular-
ization are presented in Fig. 4.8 both for the deformed data with a known
deformation field, and inter-subject data. It is clear that especially the PPD
results are improved by this regularization. In Fig. 4.8(a), and (b), the quan-
titative results for the regularization procedure of the data deformed with
a predefined deformation field are presented for both TR methods and dif-
ferent deformation field smoothing kernel widths, represented by s. In Fig.
4.8(d), and (e), the final vector field and the error field before smoothing are
displayed. The same vector fields are presented in Fig. 4.8(h), and (i), after
a Gaussian smoothing of the final deformation field with a kernel width of 3
voxels. In Fig. 4.8(f), and (g), a small part of the corpus callosum, similar
to that in Fig. 4.7, is displayed. Here, the white ellipsoids represent the
ground truth of the reference image and the first eigenvectors of the FS and
PPD method after coregistration are superimposed in green and red, respec-
tively. The large first eigenvector difference of the PPD approach with the
ground-truth in Fig. 4.8(g) is decreased when the final deformation field is
regularized, as can be seen in Fig. 4.8(k). In contrast to this, the FS re-
sult does not show a visual improvement in this restricted part of the corpus
callosum after deformation field regularization (see Fig. 4.8(j)). A similar
analysis is performed with 15 randomly chosen inter-subject data (Fig. 4.8(l),
and (m)). These quantitative and visual results confirm the hypothesis that
especially the skewness, and scaling factors will be regularized, thus particu-
larly improving the PPD results. Above a specific kernel smoothing width,
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Figure 4.8. The first eigenvector angle difference and OV L are given in (a) and (b),

respectively, for both the FS and PPD method, using different Gaussian smoothing kernels

for the deformation field regularization. In (c), the transformation NJ , rotation NR, and

deformation NS of the error field are displayed for different smoothing kernel widths. The

obtained deformation field before and after smoothing is given in (d) and (h), respectively.

The error field before and after filtering is displayed in (e) and (i), respectively. The

first eigenvector alignment for a part of the corpus callosum after FS and PPD TR are

shown in (f) and (g) before smoothing, and in (j) and (k) after smoothing. The white

ellipsoids represent the ground-truth orientations of the reference image. These results

are obtained from data deformed with predefined deformation fields. The first eigenvector

correspondence a and the tensor overlap with the ground-truth are given in (l) and (m),

respectively, for the inter-subject results.
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the PPD method outperforms the FS approach. The Frobenius norms of
the Jacobian, rotation, and deformation matrices of the error field further
validate this hypothesis. As can be seen in Fig. 4.8(c), NS is reduced up to
the level of NR during deformation field regularization with different kernel
widths.

While initially the results without TR were better compared to the results
after TR, the tensor reorientation methods outperform the approach without
the TR when a deformation field regularization is applied (see Fig. 4.7(c) and
(d), and Fig. 4.8(a) and (b) for the simulated data results). For the inter-
subject coregistration without TR, a and OV L were 23.4◦ ± 1.1◦ and 0.680
± 0.014, respectively. Results after final deformation field smoothing are
better compared with these results (see Fig. 4.8(l) and (m)). Furthermore,
the Wilcoxon matched-pairs signed-rank test demonstrates that the difference
between results with TR and without TR are statistically significant for both
the simulated and the inter-subject data (p < 0.05).

A similar deformation field regularization is performed on data sets containing
different levels of Rician noise. It is clear that the FS method outperforms
the PPD when no smoothing of the final deformation field is performed (Fig.
4.9(a), and (b)). For an arbitrary noise level of σ = 6, the effect of the
proposed regularization method is shown in Fig. 4.9(c), and (d). If the
kernel width is larger than 2 voxels, the PPD method outperforms the FS
approach. In Fig. 4.9(e), and (f), the coregistration results as a function of
different levels of Rician distributed noise are displayed, in which deformation
field smoothing has been performed with a kernel width of 3 voxels.

4.2.4.1.3 Iterative tensor reorientation When the DTI alignment is based
on images that contain orientation information, like the DT components or the
DWIs, voxel intensities of various data sets can have different values in corre-
sponding structures. Therefore, MI was used as an image similarity metric to take
into account the potential non-linear inter-voxel intensity relationship. In this con-
text, no TR was applied during the iterative optimization process, which results in
a reduced computational time. In order to evaluate the ability of MI to compare
the non-reoriented tensor data, the results are compared with a similar method in
which the TR is applied iteratively. In Fig. 4.10, the first eigenvector angle differ-
ence a, the OV L, and the computation time are shown for the method without an
iterative TR ((a) and (b)), a method with an iterative FS based TR ((c) and (d)),
and a method using an iterative PPD based TR ((e) and (f)). Figs 4.10 (a), (c),
and (e) represent the coregistration results of 10 deformed images with a predefined
deformation field, whereas Figs. 4.10 (b), (d), and (f) show the results of the 10
inter-subject coregistrations. All results of Fig 4.10 are derived after DT based
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(e) (f)

s [voxels]

Figure 4.9. Different levels of Rician noise, represented by σ are added to the DW

images. The orientation correspondence after coregistration is calculated for both TR

methods as a function of these different noise levels ((a) and (b)). At an arbitrary noise

level of σ = 6, the effect of deformation field regularization is shown ((c) and (d)). In (e)

and (f), the same noise study is performed, but now the deformation field, as obtained

after coregistration, is smoothed with a kernel width of 3 voxels.

coregistration, in which the MI and force field are calculated with ‘MI method 1’.
Furthermore, for all approaches, the FS method was used for the tensor reorienta-
tion on the final deformation field without applying a Gaussian smoothing on the
final deformation field.

4.2.4.1.4 The use of different WM masks All previous results are obtained
by only selecting FA mask voxels with an FA value above 0.4. In Fig. 4.11 (a),
and (b), the first eigenvector angle difference a, and the OV L, respectively, are
displayed as a function of the FA mask threshold. The blue line represents the
results without a final deformation field regularization. The results derived after
Gaussian smoothing of the final deformation field with a kernel width of 3 voxels
are displayed in purple. In Fig. 4.11(c), a scatter plot of the FA value and the first
eigenvector angle difference is shown. The scatter plot of the FA value and the
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no iterative TR FS iterative TR PPD iterative TR
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no TR FS PPD no TR FS PPD no TR FS PPD(b) (d) (f)no TR FS PPD no TR FS PPD no TR FS PPD(b) (d) (f)

Figure 4.10. The first eigenvector angle difference a ((a) and (b)), the OV L ((c) and

(d)), and the computation time ((e) and (f)) are displayed for different iterative tensor

reorientation approaches. Figures (a), (c), and (e) result from a coregistration of 10

deformed DTI data sets with a predefined deformation field, whereas figures (b), (d), and

(f) result from an inter-subject coregistration of 10 DTI data sets.

OV L is displayed in Fig. 4.11(d). The voxels used for this analysis were obtained
from a specific region around the corpus callosum within the coregistered data set.
Analogous scatter plots of the same data sets are displayed in Fig. 4.11 (e), and
(f), in which a deformation field regularization is applied with a kernel width of 3
voxels.

4.2.5 Discussion

The aim of this chapter was to explore the feasibility of a nonrigid viscous fluid
model for the alignment of inter-subject DTI data sets. First, we investigated the
use of multiple DTI information components with respect to the coregistration
accuracy. Second, different measures were introduced to calculate the MI and the
viscous fluid force field. Finally, a thorough investigation of the diffusion tensor
reorientation methods was performed.
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Figure 4.11. In (a) and (b), the first eigenvector angle difference a, and OV L are

displayed as a function of the threshold that defines the FA mask. To this end, a random

subgroup of 10 data sets of different subjects are coregistered based on the FA maps. The

FA mask refers to the minimum FA value in a voxel to be included in the quantitative

analysis. In blue, the results without smoothing are shown, whereas the purple lines rep-

resent the results after a Gaussian smoothing of the deformation field with a kernel width

of 3 voxels. In (c), (d), (e), and (f), scatter plots are displayed. They are obtained from

an inter-subject coregistration of two DTI data sets. Scatter plots of the FA and a (c)

and of the FA and OV L (d) are depicted, containing values of all voxels in a predefined

region (a total of 1400 voxels). In (e) and (f), the same scatter plots are displayed, but

now after the regularization of the deformation field with a kernel width of 3 voxels.

4.2.5.1 TR evaluation using synthetic DTI data sets

The errors that are found between the reoriented and the ground-truth tensors in
the synthetic DTI data analysis (see Fig. 4.2) are not affected by noise factors or
coregistration inaccuracies, since the deformation fields are perfectly known and the
sinusoidal fiber bundle matches the deformed straight bundle exactly. Alexander
et al. (2001) demonstrated that PPD tensor reorientation after application of a
known, affine deformation field to synthetic data, resulted in a mean angle difference
of 0◦±0◦ when compared with the ground-truth data set [17]. In contrast with these
results, we observed a small, but significant tensor difference. Therefore, even if two
images are spatially aligned in a theoretically perfect way, tensor orientation errors
will occur. These errors originate from the nonrigid nature of the deformation fields
and the accompanying interpolation artifacts. Note that the use of Log-Euclidean
metrics can further minimize these interpolation errors and potentially improve the
image similarity [44].
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4.2.5.2 Multi-component viscous fluid coregistration

Overall, the results of Fig. 4.3 and 4.4 indicate the potential of our proposed
coregistration technique to coregister inter-subject DTI data. In these figures,
it can clearly be observed that the alignment errors can be minimized using the
viscous fluid coregistration method as compared to the affine DT image alignment.
These coregistration results are confirmed by the quantitative analysis, as can be
seen in Figs. 4.5 and 4.8. Both for the synthetic data and the multi-subject brain
DTI data sets, the average angle between the first eigenvectors of the coregistered
and the reference image is relatively small. In addition, the DT correspondence,
as measured with the OV L, is relatively large, compared to the results of Park
et al. (2003) [25]. It should be mentioned, however, since they used a WM mask
derived from SPM on MR-images, in contrast to our FA value based WM mask,
this comparison should be considered with great caution.
Although all available information is present in the DWIs, the DT elements demon-
strated to provide the best result for inter-subject coregistration. In our opinion,
this can be explained by the reduction in dimensionality through the fitting of a
DT to the DW data. The DT data are more compact and still contain the orienta-
tional diffusion information. In addition, coregistration using the DT data is less
sensitive to noise than using the DW data.
Two image similarity measures, based on MI, are proposed that represent a sum-
mary metric on the multivariate space. The general multivariate space is simplified
to two multi-component data sets with the same length, whereby only correspond-
ing components of different data sets are compared, assuming alignment of the
components of each data set a priori. The first image similarity metric averages
the MI of the different components, which is done in a similar way with the SSD
measure as described in the work of Park et al. (2003) [25]. The second image
similarity metric pools all data into a single histogram, whereafter the MI is calcu-
lated on this histogram. This methodology can be seen as the histogram and MI
computation on two images that are composed of a concatenation of all compo-
nents in each data set. Since MI is a statistical measure, it can be biased by a lack
of data in the histogram. This bias of a sparse histogram is minimized by pool-
ing all multi-component image information into this single histogram. Our results
demonstrated that this methodology does not outperform the method of averaging
the MI of all components. However, when only a small number of data is available
for the histogram calculation, as in a window based coregistration of for example
Ruiz-Alzola et al. (2002) the methodology using the pooled histogram would be
favorable [24].
Since both proposed similarity metrics in the simplified multivariate space remain
ad-hoc, more research is planned to improve the similarity metric based on MI for
the multi-component DTI problem.
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When noise was added to the DW images, image alignment worsened. Note that
large noise levels were added, resulting in a small SNR. The DT based coregistration
outperformed the DWI based alignment after the addition of Rician noise to the
DWIs.

4.2.5.3 Tensor Reorientation after nonrigid coregistration

Alexander et al. (2001) studied the behavior of both TR methods under affine and
nonrigid conditions [17, 18]. When three different DTI data sets of a same person
were aligned affinely, both TR strategies showed almost identical results, since the
transformation mainly contained rigid components [17]. The PPD method just
outperformed the result without TR and the FS method, when two DTI data sets
were aligned with a nonrigid elastic matching algorithm [18]. In contrast to this
elastic model, the viscous fluid force field relaxes over time. Therefore, the viscous
fluid model is a very appropriate regularization method that can correct for the
large variations that occur during inter-subject coregistration.
Since there are less constraints on a local coregistration level, the Jacobian of
the viscous fluid coregistration will be overestimated, resulting in relatively large
deformation components. Several results in this paper indicate that small coreg-
istration inaccuracies can result in relatively large tensor orientational differences.
We hypothesized that the local coregistration errors will especially contain a de-
formation component, rather than a rotation factor, resulting in a worse PPD
outcome compared to the FS tensor reorientation results. Note that, due to the
high correspondence already existing after affine coregistration, the tensor corre-
spondence was still very high when no tensor reorientation was performed after
nonrigid alignment. These results appeared to be better than the FS and PPD
tensor reorientation results.
In order to tackle this problem and to reduce the effect of local alignment errors
on the TR result, a Gaussian regularization procedure was incorporated. As a re-
sult, the local alignment inaccuracies were diminished, and the tensor reorientation
methods outperformed the approach without a reorientation. Furthermore, since
especially the deformation component of the error field has been regularized, the
PPD method outperformed the FS approach. In future work, anisotropic filtering
methods will be applied to the final deformation field, to investigate the potential
improvement of the TR results. Another approach, which will be subject of further
research, is to make the TR approach dependent on the local Jacobian.

4.2.5.4 Iterative tensor reorientation

The results in Fig. 4.10 demonstrate that the use of MI without an iterative TR
is an effective method. Indeed, similar coregistration methodologies, in which an
iterative TR was applied, resulted in a worse tensor correspondence. These results
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agree with the findings of Fig. 4.7, demonstrating that the tensor correspondence
is higher when no TR is performed after coregistration. The tensor differences after
FS or PPD reorientation are explained by the effect of small alignment errors on
the local Jacobian. In this context, the application of an iterative TR increases
the computation time drastically and decreases the tensor correspondence after
coregistration.

4.2.6 Conclusion

In this chapter, we presented a multi-component viscous fluid model for the inter-
subject coregistration of DT images. In the proposed coregistration technique, MI
was implemented as an image similarity criterion. Our results demonstrated that
the use of orientation information during the coregistration significantly improved
the alignment results, compared to the FA based coregistration. A drawback of
the local image alignment was that small coregistration inaccuracies can have a
relatively large impact on the TR result. In an attempt to minimize these local
reorientation errors, we provided a regularization method based on a Gaussian
smoothing.
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CHAPTER 5. CONSTRUCTION OF A DTI ATLAS

Overview

As aforementioned, data sets of different subjects are aligned to an atlas or tem-
plate, whereafter the image properties can be compared between the subjects in
each voxel. The construction of an atlas thus allows the mapping of individual
brain images to a common reference frame. In addition, the creation of atlases
of different populations of subjects allows the comparison of typical anatomies for
each group. In this chapter, a study specific DT atlas is constructed whereby the
magnitude of the deformation fields that are needed to warp the different images to
the atlas are minimized. This atlas is unbiased towards a single subject topology,
since no single subject is selected as the initial reference data set. In addition, the
directional diffusion information is reliably present in the DTI atlas model.Since
it is very hard to objectively evaluate an atlas of a certain image group, a ground
truth methodology is introduced to evaluate both the accuracy and precision of
the spatial and orientational information in the atlas. In addition, inter-subject
atlases are constructed based on the data sets of 20 healthy subjects to evaluate
the different atlas frameworks in a realistic situation. Our results indicate that the
atlas construction method affects the accuracy and the precision of the diffusion
information in the final atlas.

The work in this chapter has been published in:
W. Van Hecke, J. Sijbers, E. Dagostino, F. Maes, S. De Backer, E. Vandervliet,
P.M. Parizel and A. Leemans, On the construction of an inter-subject diffusion
tensor magnetic resonance atlas of the healthy human brain, NeuroImage, (2008)

5.1 Introduction

Most VBA studies of diffusion tensor images utilize a standard reference image,
such as the Montreal Neurological Institute (MNI) atlas, which was constructed
from the affine transformation of 305 MR images of normal subjects to the stereo-
tactic space defined by Talairach & Tournoux (1988). The advantage of a standard
template such as the MNI atlas is that it contains coordinate, anatomic, and cy-
toarchitectonic labels and that the VBA results can be compared in a standard
way across many studies that employed the this atlas. However, since this atlas
is not study-specific, it might fail to provide a good representation of the given
population, thereby potentially resulting in alignment errors after coregistration of
the study group images to this reference space. Furthermore, since the MNI atlas
is an MR atlas, many DTI based VBA studies utilize only the T2 weighted image
information of different subjects to drive the coregistration to the MNI space. This
introduces WM alignment errors, because no DT information is considered during
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the warping procedure [1]. In some studies, the deformation field which was ac-
quired by the coregistration of anatomical MR images is subsequently applied to
the FA maps to create an FA template, whereto all data sets are warped [2].

In other VBA studies, a single subject data set of the image group is selected as
the reference or template image [3–5]. Although such an atlas is study-specific, it
might fail to be a good representative of the whole subject group. Furthermore,
the unique brain topology of this single subject can differ significantly from the
brain topology of the other subjects in the image group, especially when patients
with certain WM disorders are included in the analysis. Guimond et al. (2000)
introduced an atlas construction methodology based on the coregistration of all
subjects to a single subject data set which is selected as the initial reference image,
followed by the averaging of all these coregistered images in the space of this initial
reference image [6]. Finally, the resulting atlas is transformed with a deformation
field that is equal to the average deformation of the initial reference image to all
other images of the subject group. A previously reported disadvantage of this
atlas construction method is that the resulting atlas can inherently contain unique
features of the selected initial reference image, which results in a local topological
bias [7].

During DTI atlas construction, Jones et al. (2002) incorporated FA maps for the
affine coregistration of 10 subjects to a single subject image, which was previously
transformed to the SPM T2-weighted template [5]. Wakana et al. (2004) cre-
ated a WM and tractography atlas based on a high-spatial-resolution DTI data
set [8]. Dougherty et al. (2005) and Müller et al. (2007) used T2-weighted and
non-diffusion weighted images, respectively, for the image alignment during the
atlas construction [9, 10]. Goodlett et al. (2006) applied the methodology of Joshi
et al. (2004) to construct an atlas which was based on the alignment of scalar DT
images [11, 12]. In their atlas method, the most representative template image is
calculated as the data set that requires the minimum amount of transformation
to each of the anatomical images. At each iteration, the updated template esti-
mate is computed by the voxel-wise averaging of the deformed images. Ardekani
et al. (2006) extended the atlas methodology that was developed by Guimond et al.
(2000) to DT images, thereby using FA and MD images as information during the
image alignment [6, 13]. Park et al. (2003) incorporated all DT information in
their coregistration technique for the atlas construction, which was based on the
methodology of Guimond et al. (2000) [1, 6]. Other coregistration methods incor-
porate tensor reorientation as part of the image alignment optimization [14–16].
Zhang et al. (2007) incorporated tensor information during the image alignment
to construct an atlas based on the method of Joshi et al. (2004) [11, 17].
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5.2 Methods

5.2.1 Data Acquisition

Diffusion tensor images of the brain were acquired with an 1.5 T MR scanner
(Siemens, Erlangen, Germany) from 20 healthy subjects (8 males and 12 females),
with a mean age of 25 ± 3 years (19− 30 years). An informed consent was signed
by all participants.
Axial diffusion tensor images were obtained using an SE-EPI sequence with the
following acquisition parameters: TR: 10.4 s; TE: 100 ms; diffusion gradient: 40
mT.m−1; FOV = 256 × 256 mm2; number of slices = 60; voxel size = 2 × 2 × 2
mm3; b = 700 s.mm−2; acquisition time: 12 min 18 s. Diffusion measurements
were performed along 60 directions with 10 b0-images for a robust estimation of FA,
tensor orientation, and MD [18]. DTI post processing, tractography, and visualiza-
tion were performed with the diffusion toolbox ‘ExploreDTI’ [19]. In this toolbox,
the deterministic streamline fiber tracking approach is used for our purposes [20].

5.2.2 DTI coregistration

5.2.2.1 Global (affine) coregistration

In order to correct for global morphological differences, the DTI data sets were
aligned to MNI space using an affine coregistration methodology. In this method,
the FA images were used to estimate the affine transformation parameters, based
on the maximization of mutual information [21]. For the remainder of the article,
all images are considered to be aligned with an affine transformation to the MNI
space, including a preservation of the PPD based tensor reorientation to realign
the tensors with the underlying microstructure [22].

5.2.2.2 Local (non-rigid) coregistration

After affine coregistration, the different images of the subject group were aligned
using a recently developed non-rigid DTI coregistration technique [23]. In this
coregistration approach, the images are modeled as a viscous fluid, which imposes
constraints on the local deformation field during normalization [24]. At each it-
eration, the determinant of the Jacobian is constrained to reduce the chance of
forcing the underlying anatomical microstructure in an anatomically non-physical
way. This viscous fluid model was optimized for the coregistration of multiple DTI
information components [23].
As mentioned by several investigators, tensor reorientation inaccuracies might be
introduced after a non-rigid, high-dimensional transformation [22, 23]. These ori-
entational alignment inaccuracies are caused by local coregistration errors that
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hardly affect the spatial alignment result, but on the other hand can have a severe
impact on the accuracy of the subsequent tensor reorientation. In this context,
it is important that the atlas construction framework minimizes this effect of the
orientational alignment inaccuracies on the final atlas result.

5.2.3 DTI Atlas Construction

In the following sections, the multi-component DT images of the different sub-
jects are denoted as Ii (with i = 1, ..., NS , and NS the number of subjects). The
deformation field that warps image Ij to image Ii, is then defined as Tij . The
proposed atlas construction framework, referred to as the population based (PB)
atlas method, will be compared to the atlas construction framework of Guimond
et al. (2000) which is referred to as the subject based (SB) atlas method [6]. The
latter method was utilized in the work of Ardekani et al. (2006) and Park et al.
(2003) to construct a DTI atlas.

5.2.3.1 Subject based atlas method

The SB atlas methodology is based on the calculation of the non-rigid transforma-
tions Tij of all data sets Ij to a specific data set Ii of the subject group, which was
selected as the initial reference image. Thereafter, the mean deformation field of the
initial reference image Ii to all other data sets Ij of the group (with j = 1, ..., NS)
is computed as:

Ti =
1

NS − 1

∑
j

Tji.
�� ��5.1

This is the transformation of the initial subject space to the average space of the
population. Next, all images Ij of the subject group are transformed with one
deformation field – constructed as the consecutive application of the deformation
fields Tij and Ti, noted as Ti ◦ Tij – directly to the final atlas space. This concate-
nation of deformation fields includes an interpolation of the vector fields. However,
by combining the two non-rigid transformations, only one image interpolation and
tensor reorientation step is now included to construct the final atlas.

Ĩj = (Ti ◦ Tij)(Ij) (j = 1, ..., NS).
�� ��5.2

After transformation of the DWIs to the atlas space, a PPD based tensor reorien-
tation is performed to realign the tensors with the underlying microstructure [22].
Subsequently, the DWIs are recalculated from these reoriented diffusion tensors, in
order to obtain the correct diffusion signals in each voxel. Note that in this process
the b-matrix is not rotated. Also note that log-Euclidean metrics are preferred
when the interpolation is performed on the DTs [25]. Finally, the DWIs of the
images Ĩj are averaged to compose an SB atlas in the average space of population.
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Figure 5.1. A schematic overview of the subject and the population based atlas method-

ology is depicted for 5 DT images in I and II, respectively. In I(a) and II(a), the FA

maps, color-encoded for the main diffusion direction, are shown after the affine deforma-

tion to the MNI space. In the subject based atlas framework, a single subject image is

selected as the initial reference image (i.e., I1 in this Figure). The deformation fields of

all data sets to this reference image are calculated and denoted as T1j, with j = 2, ..., 5.

In addition, the mean inverse deformation field T1= 1
4

∑
j 6=1 Tj1 of the reference image to

all other images is computed, with NS the number of subjects. Subsequently, as shown in

(b), all images Ij are warped to the SB atlas space with a combined deformation field –

containing the deformation field to the reference image, T1j, and the mean deformation

field of the reference image to the final atlas space, T1. Finally the data sets in the SB

atlas space are averaged to construct the SB atlas, as displayed in (c). In the population

based atlas, non-rigid deformation fields are calculated between all images. Subsequently,

for every image Ii, the mean deformation field Ti is calculated as the average transforma-

tion to all other images. This mean deformation field is applied to the corresponding data

sets, including a tensor reorientation, resulting in the DT images of (b). The DW images

of these data sets are averaged, resulting in the population based atlas, as represented in

(c).

Since the DWI intensities are corrected to represent the diffusion signal in the atlas
space, and given the assumption that the coregistration performed well, averaging
the DWIs within a single diffusion gradient direction across different subjects is
allowed. Subsequently, the diffusion tensors of the atlas are estimated from these
averaged DWIs. This atlas construction framework is elucidated in Fig. 5.1 (I).

5.2.3.2 Population based atlas method

In the PB atlas framework, non-rigid deformation fields Tij need to be calculated
between all images Ii and Ij (with j = 1, ..., NS). Note that only NS(NS − 1)/2
non-rigid deformation fields are calculated, since the transformation of Ii to Ij
can be computed as the inverse transformation of Ij to Ii. Subsequently, all NS
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images Ii are transformed to the average space of the population with a specific
mean deformation field Ti that is calculated as the average deformation of this
data set Ii to all other images (as in equation (1)). After trilinear interpolation
of the DWIs, PPD based tensor reorientation, and recalculation of the DWIs, NS
images Ĩi are constructed in a way that each of them require the least amount of
deformation to all other images in the group. Finally, the DWIs of these data sets
Ĩi are averaged to compose the PB atlas [7, 26]. Notice that, in analogy of the
SB atlas framework, only one tensor reorientation and one interpolation step are
included in the PB atlas method, i.e. after the transformation of the NS images
Ii. The construction of the PB atlas is illustrated in Fig. 5.1 (II).

5.2.4 Atlas Evaluation Methodology

A general problem in the evaluation of an atlas is to find the optimal representation
of a certain group of images. When SB and PB atlases are constructed from the
same subject group, it is very difficult to interpret them visually and to compare
them quantitatively. The synthetic data sets that are constructed in this work are
based on a single subject DTI data set I, as elucidated in the following steps.

1. First, the DWIs of this single subject data set I are deformed with 10 pre-
defined sinusoidal deformation fields Ti (i = 1, ..., 10). All deformation fields
differ from each other in amplitude, frequency, and direction. The maximal
relative voxel displacement was 7 voxels.

2. The DTs are calculated from these deformed DWIs and reoriented using the
PPD technique [22]. It has been demonstrated on a synthetic DTI data set
that only a very small tensor reorientation error is made when these smooth,
non-rigid deformation field are applied [23, 27]. Therefore, it can be assumed
that the tensors of the deformed images are well aligned with their underlying
microstructure.

3. The DWIs are recalculated from these reoriented DTs. In this way, 10 new
DT images Ii are defined (i = 1, ..., 10).

4. Next, 10 deformation fields are defined as the inverse of the first 10 transfor-
mations (Tj=T−1

j−10, j = 11, ..., 20).

5. Analogously to step 2 and 3, 10 deformed DTI data sets Ij were constructed
(j = 11, ..., 20). As a result, the total vector sum over all deformation fields
equals zero in each voxel:

∑20
i=1 Ti=0.

Consequently, an atlas that is constructed based on these 20 deformed data sets
Ii (i = 1, ..., 20), should closely resemble the original single subject image, since
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the total vector sum of all deformation fields is zero in each voxel. In this way,
the original single subject image is representative for the 20 deformed images. It
will therefore be referred to as the ground truth or golden standard image. Notice
that, in deforming the single subject DTI data set with sinusoidal deformation
fields, the topology, or the architecture of WM connections, is not altered. The
potential bias that exists in the SB atlas methodology by selecting a certain initial
reference image with unique topological features will therefore not be present in
this evaluation method. Furthermore, the quantitative diffusion properties – such
as the FA – are the same in all simulated images. After this evaluation, atlases
are constructed based on the DTI data sets of 20 different healthy subjects. The
quantitative measures that are used for the evaluation of the atlases are expounded
in the following section.

5.2.5 Quantitative Evaluation Measures

The atlas methodologies are compared using both a framework with simulated
DTI data sets and actually measured human brain DTI data sets of different sub-
jects. The quantitative measures which are calculated to evaluate the atlases are
elucidated in the following paragraphs.

5.2.5.1 Deformation field difference C

When synthetic data sets are used to construct an atlas, the theoretical deformation
fields Si between the original data set I and the different data sets of the image
group are known. Therefore, a value C is computed for each voxel to compare
these predefined transformations Si with the deformation fields that are obtained
during coregistration to transform the simulated data sets to the final atlas space
for the different atlas frameworks:

C =
||S − T ||
||S||+ ||T ||

.
�� ��5.3

Here, S represents the predefined deformation field and T the deformation field that
is obtained to compute the DTI atlas. The latter equals the averaged deformation
field Tj in the PB atlas framework and the combination of deformation fields Tij
and Ti in the SB atlas framework, when image Ii was the initial reference image.
The median of values C across all voxels can then be interpreted as an overall
measure of the transformation field correspondence. When this median is 0, the
final deformation field exactly equals the theoretical deformation field, representing
a perfect spatial alignment. On the other hand, when the median of all C’s is 1, the
final deformation field is the opposite of the theoretical deformation field, resulting
in the worst alignment. This measure C is computed to compare all simulated
deformation fields Sj with the corresponding deformation fields that are used during
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the atlas construction, resulting in a quantitative measure of the deformation field
correspondence for the different atlas frameworks.

5.2.5.2 Error in FA

The absolute value of the FA difference between an atlas and the golden standard
data set is calculated and referred to as the FA accuracy of this atlas. In addition
to measuring the FA accuracy of the atlases, the FA precision is calculated for
each voxel as the standard deviation of the FA values across the images Ĩi that are
averaged to compose the atlases.
The FA accuracy and FA precision results of the SB and the PB atlas are compared
statistically, using a Wilcoxon matched pairs signed rank test. In order to exclude
voxels originating from deep GM and CSF in this statistical analysis, only voxels
with an FA> 0.25 are included in this analysis. Note that only the precision
measures can be calculated to compare the atlases of the real subject group. The
calculation of the FA accuracy and precision is elucidated in Fig. 5.2.

5.2.5.3 Error in overlap of eigenvalue-eigenvector pairs

In order to evaluate the orientational DT information of the atlases, the OVL
between tensors D(λ, ε) and D’(λ′, ε′) is calculated [28]:

OV L =
1
NV

∑
V

∑3
i=1 λiλ

′
i(εi · ε′i)2∑3

i=1 λiλ
′
i

,
�� ��5.4

with NV the total number of selected WM voxels, and λi, λ′i, and εi, ε′i eigenvalue-
eigenvector pairs of a corresponding voxel. The minimum value 0 indicates no
overlap and the maximum value 1 represents complete overlap of the DTs. In
contrast to the FA accuracy and precision, orientational information is included in
the OVL evaluation metric.
Analogously to the FA accuracy and precision, the OVL accuracy and OVL pre-
cision are defined. The OVL accuracy is calculated for each voxel as the OVL
between an atlas and the ground truth image. In order to measure the precision
of the orientational correspondence in each voxel, the OVL is calculated between
the final atlas result on the one hand and all the deformed images Ĩi that are av-
eraged to compose this atlas on the other hand. Since they already represent a
deviation from the atlas, these OVL measures are subsequently averaged for every
voxel to compute the OVL precision for each atlas framework. The OVL accuracy
and OVL precision results of the SB and the PB atlas are compared statistically,
using a Wilcoxon matched pairs signed rank test. The computation of the OVL
accuracy and the OVL precision is explained in Fig. 5.2.
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Figure 5.2. In (a), the same axial slice of 5 different simulated data sets are displayed.

These data sets are subsequently transformed to the SB and the PB atlas space with the

appropriate deformation fields, as shown in (b), and averaged to construct the SB atlas

and the PB atlas, as displayed in (c). The FA maps of the images in the SB and PB atlas

space are denoted as FAi,SB and FAi,PB, respectively (i = 1, ..., 5), and the FA maps of

the SB and the PB atlas are denoted as FASB and FAPB, respectively. An axial slice

of the golden standard data set is displayed in (d), and its FA map is denoted as FAGT .

The FA accuracy is calculated for each voxel as the absolute value of the FA difference

between an atlas and the ground truth image. The OVL accuracy is computed as the OVL

between an atlas and the ground truth image for each voxel, and denoted as OV LSB,GT

and OV LPB,GT for the respective atlases. The FA precision of the SB and PB atlases is

calculated as the standard deviation of the FA maps of the images in their respective atlas

space. Finally, the OVL is computed between all images in a specific atlas space and its

resulting atlas. This is denoted as OV Li,SB and OV Li,PB for the SB and the PB atlas,

respectively (i = 1, ..., 5). By averaging of OV Li,SB and OV Li,PB over the factor i, the

OVL precision of the SB and the PB atlases is obtained.
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5.2.5.4 Fiber tract correspondence

Since DT inaccuracies – caused by small, local coregistration errors – are propa-
gated along the fiber bundles, fiber tract correspondence can be used as a more
sensitive marker to assess DT atlas correspondence. According to Ding et al.
(2003), the similarity between a pair of fibers Fi and Fj can be defined as follows
[29]:

Sij = Rcse
−Dij/C .

�� ��5.5

Dij is the mean Euclidean distance between corresponding segments of the two
fiber tracts Fi and Fj [29]. Rcs represents the corresponding segment ratio, defined
as the ratio of the length of the corresponding segment Lcs to the overall length
of the pair of fibers [29]. Thereby, the corresponding segment Lcs is defined as
the part of a fiber Fi (i.e. Li) that has point-wise correspondence to the part of
another fiber Fj (i.e. Li).

Rcs =
Lcs

Li + Lj − Lcs
.

�� ��5.6

When the corresponding segment ratio is 0, there is no tract overlap. In the case
of a perfect overlap of the fiber tracts, the corresponding segment ratio is 1. The
coefficient C in equation (5.5) regulates a trade-off between D and Rcs. In our
work, C is chosen to be 1 voxel width, which is also the case in the article of Ding
et al. (2003). Note that similar tract similarity measures have been proposed in
other papers [30, 31]. In order to obtain a more objective interpretation of the
results, an upper limit for the tract similarity measure is created. To this end, the
simulated data sets are deformed with a deformation field that is exactly opposite
to the theoretical deformation field that was used to compose these images. In this
way, an atlas is constructed, using a perfect image alignment, but still including
partial volume effects caused by interpolation.

5.3 Results

In Table 1, the deformation field difference C, the FA accuracy and precision, and
the OVL accuracy and precision are presented for the SB and the PB atlas, which
were constructed from the simulated data sets.

Table 1: The median and interquartile range (IQR) of different quantitative evalu-
ation measures for different atlases as evaluated with the ground truth methodology.
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SB atlas PB atlas
median IQR median IQR

C 0.221 0.046 0.152 0.034
FA accuracy 0.094 0.089 0.067 0.061
FA precision 0.052 0.041 0.049 0.035

OVL accuracy 0.983 0.038 0.994 0.011
OVL precision 0.931 0.082 0.976 0.040

As can be observed, the deformation field difference is lower for the PB atlas
construction framework compared to the SB method (p < 10−6). The median and
the interquartile range (IQR) of the FA accuracy, FA precision, OVL accuracy, and
OVL precision are also displayed in Table 1. These results are also visualized in
Figs. 5.3 and 5.4.
An axial, sagittal, and coronal FA slice of the ground truth image, the SB, and
the PB atlas are depicted in Fig. 5.5 (a), (b), and (c), respectively. The image
correspondence can be evaluated visually, by overlaying the red colored FA intensity
map of the golden standard data set and the green colored FA intensity maps of
the atlases. As can be observed in Fig. 5.5, the highest spatial correspondence
with the ground truth image is obtained by the PB atlas.
In order to study the FA accuracy of the different atlases, the absolute value of the
FA difference between the atlases and the golden standard data set is calculated
for each voxel as explained in Fig. 5.2, and scaled between 0.1 and 0.2. The
FA accuracy of the SB and the PB atlas are displayed in Fig. 5.3 (a) and (b),
respectively. The highest FA accuracy or the lowest FA difference is detected for
the PB atlas, as shown qualitatively by the histograms and boxplots in Fig. 5.3 (c)
and (d), respectively. The Wilcoxon matched pairs signed rank test demonstrates
that this FA accuracy difference is statistically significant (p < 10−15). The FA
precision results of the SB and the PB atlas are displayed in Fig. 5.3 (e) and (f),
respectively. Analogously to the FA accuracy results, the PB atlas outperforms the
SB atlas with respect to the FA precision. Histograms and boxplots confirm these
findings (see Figs. 5.3 (g) and (h)), which are statistically significant (p < 10−10).
In order to evaluate the preservation of the orientational information during the
atlas construction, the OVL accuracy is measured at each voxel (see Fig.5.4). A
higher OVL accuracy is observed for the PB atlas compared to the SB atlas (see
Figs. 5.4 (a), (b), (c), and (d)). Analogously to the OVL accuracy results, the
highest OVL precision is observed for the PB atlas, as illustrated in Figs. 5.4
(e), (f), (g), and (h). These differences in the OVL accuracy and precision are
statistically significant (p < 10−10).
In Fig. 5.6 (a), the cortico-spinal tracts of the golden standard image are visualized.
The ROIs that are used to obtain these tracts are shown on an axial slice in Fig.
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Figure 5.3. The absolute value of the FA difference between the ground truth image

and the atlases is given. This measure of FA accuracy (i.e., low values represent high

accuracy) is visualized for the axial, sagittal, and coronal slice for the SB and the PB

atlas in (a) and (b), respectively. In (c) and (d), the FA accuracy histograms and boxplots

are displayed. The FA precision, calculated as the FA standard deviation of all images

that compose the atlas (i.e., high precision is reflected by low values), is shown in (e)

and (f) for the SB and the PB atlas, respectively. The histograms and boxplots of the FA

precision are depicted in (g) and (h), whereby the SB and PB atlas results are colored in

green and blue, respectively.
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Figure 5.4. The overlap of eigenvalue-eigenvector pairs between the DTs of the golden

standard image and the DTs of the atlases (high values represent a high accuracy) is

presented in each voxel for the SB and the PB atlas in (a) and (b), respectively. In (c)

and (d), the OVL accuracy histograms and boxplots are visualized. The OVL precision is

calculated as the mean OVL between all images that compose the atlas on the one hand and

the atlas itself on the other hand (high values represent a high precision). In (e) and (f),

the OVL precision of the SB and the PB atlas is depicted, respectively. The corresponding

histograms and boxplots are shown in (g) and (h).

5.6 (b). These ROIs are also utilized to define the fiber tractography seed points
of the atlases (see Figs. 5.6 (b) and (c)). In Fig. 5.6 (b) and (c), the cortico-spinal
tracts of the SB and the PB atlas are shown, respectively. An FA threshold of 0.25
and a maximal angle between consecutive points of 30◦ are used for fiber tracking
[20]. In order to allow a better visual comparison of the fiber pathways, the green
colored cortico-spinal tracts of the ground truth image and the red colored cortico-
spinal tracts of the different atlases are overlaid. The tract similarity measure
of Ding et al. (2003) is evaluated for several WM tracts to quantify the tract
correspondence (Fig. 5.7). The corresponding segment ratio R and the mean
Euclidean distance between corresponding segments D are presented in Fig. 5.7
(b) and (c), respectively. The quantitative tract correspondence measures confirm
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ground‐truth image
(a)

ground truth image

(b) (c)(b) (c)

SB atlas PB atlas

Figure 5.5. In (a), an axial, sagittal, and coronal slice of the ground truth image

are shown. The color is encoded for the diffusion direction and the image intensity is

proportional to the diffusion anisotropy. The same axial, sagittal and coronal slice of the

SB and the PB atlas, are visualized in (b) and (c), respectively. In order to evaluate

the image correspondence visually, the FA intensity map of the golden standard image is

given a red color, whereas the FA intensity map of the atlases are given a green color.

Consequently, after overlaying these images, a yellow color appears in the corresponding

voxels with similar FA values.
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the voxel based tensor correspondence results of Fig. 5.4 and the visual tract results
of Fig. 5.6, demonstrating the highest tract accuracy for the PB tracts.
In Fig. 5.8, the inter-subject FA precision results of the SB and the PB atlas
are superimposed on the axial, sagittal, and coronal FA slice of the PB atlas, as
presented in (a) and (b), respectively. Fig. 5.8 (c) and (d) shows the corresponding
histogram and boxplot. As can be seen in Fig. 5.8 (e), (f), (g), and (h), the OVL
precision of the PB atlas is higher compared to the OVL precision of the SB atlas
(p < 10−10).
The tractography results of the corpus callosum are shown for 20 subjects in Fig.
5.9 (a). The callosal fiber tracts reconstructed from the SB and the PB atlas are
visualized in Fig. 5.9 (b), (c), respectively.

5.4 Discussion

Recently, Jones et al. (2005, 2007) and Zhang et al. (2007) demonstrated the
dependence of VBA results on the selection of the smoothing kernel, coregistration
technique, and other choices in the in the pipeline of a VBA analysis. Furthermore,
it has been shown in the research of cortical atrophy that the VBA results depend
on the selection of the reference system [32, 33]. In order to enhance the reliability
of a VBA analysis of DT images, a study specific DTI atlas should be constructed
which can be regarded as a good representation of the subject group and which
contains the relevant diffusion information in a reliable way. Although, the problem
of atlas construction has been extensively studied and validated for scalar-valued
images, similar studies for DT images are lacking [7, 11, 34–38].
In many VBA studies of DT images, an affine atlas is utilized as the reference
image. However, since the data sets that are averaged to construct an affine atlas
are only globally aligned, relevant, local diffusion information can be partially lost.
In our work, the developed non-rigid atlases were also compared with an affine atlas
(results not shown). As expected, the non-rigid atlases outperformed the affine
atlas with respect to the accuracy and precision of the spatial and orientational
diffusion information.
Many of the DTI atlases in VBA studies are based on the coregistration of T2

weighted, non-diffusion weighted images, or FA maps. Consequently, the tensor
information is not reliably present in the atlas, since it is not fully taken into
account during the image alignment. As a result, this tensor information can not
be used during the image alignment of different data sets to such an atlas in a VBA
analysis.
In our work, the full DT was incorporated during the coregistration. However,
similar atlases were also constructed using FA based image alignment (results not
shown). We demonstrated using the simulated data sets that the accuracy and
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(a) (b)

(c) (d)

Figure 5.6. The cortico-spinal tracts of the ground truth image are visualized in (a).

An FA threshold of 0.25 and a maximal angle between consecutive points of 30◦ are used

during the fiber tracking. The seed ROIs are defined on an axial slice, as depicted in (b).

The same ROIs were used to define the seeding voxels for the tractography on the atlases.

The cortico-spinal tracts of the SB and the PB atlas are shown in (c) and (d), respectively.

For a better visual comparison of the tracts, the cortico-spinal tracts of the golden standard

data set are given a red color, whereas the cortico-spinal tracts of the different atlases are

given a green color. – 121 –
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Figure 5.7. The quantitative results of the tract correspondence are shown in (a), (b),

and (c). In (a), a general tract similarity metric is shown for different WM pathways. A

higher value of the tract similarity metric represents a better tract correspondence. The

corresponding segment ratio R and the mean Euclidean distance between corresponding

segments D are presented in (b) and (c), respectively. Note that an upper limit for the

tract similarity measure is added. This upper limit is created by deforming the simulated

images with a deformation field that is exactly opposite to the theoretical deformation field

that was used to compose these images. The error bars were very small, cluttered the

figure, and were therefore not added to the figure.
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Figure 5.8. The FA precision of the inter-subject SB and PB atlas are displayed in

(a) and (b), respectively. The FA precision is superimposed on an axial, sagittal, and

coronal slice of the PB atlas. In (c) and (d), the corresponding FA precision histograms

and boxplots are depicted. The inter-subject OVL precision is visualized for the SB and

the PB atlas in (e) and (f), respectively. In (f) and (g), the OVL precision histograms

and boxplots are presented.

precision of these atlases were significantly lower compared to the atlases that
were constructed using the full DT during coregistration. As expected, the OVL
accuracy and precision decreased when only FA information was used for coreg-
istration. Many VBA studies of DT images incorporate structural T2 weighted
or non-diffusion weighted images to drive the image alignment during the atlas
construction or the VBA analysis, thereby discarding valuable WM information,
which is reflected by the diffusion tensor.

In almost all VBA studies of DT images, the standard MNI atlas is utilized as the
reference system [39–41]. Since this is not a study-specific atlas, large deformation
fields might be necessary to warp the data sets of the subject group to this atlas.
Consequently, image alignment inaccuracies might be introduced, which can affect
the accurateness of the VBA results. In other studies, the reference system is
based on a detailed representation of a single subject’s anatomy, as is the case in
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(a)

(b) (c)( ) (c)

Figure 5.9. In (a), the corpus callosum tracts of 20 different subjects are displayed. The

corpus callosum tracts of the SB and the PB atlas, constructed from these 20 images, are

shown in (b) and (c), respectively.
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the SB method [1, 5, 42]. The chosen data set then acts as a template to which the
images of other subjects are coregistered. Subsequently, the transformed images
of all subjects in the group are averaged, resulting in an new atlas. Thereafter,
this atlas is transformed to a more representative atlas space, to minimize the
magnitude of the deformation fields between the data sets of the subject group and
the atlas. However, the choice of one image as a template unavoidably biases the
atlas topology because of the substantial inter-subject variations in brain anatomy
and WM morphology [7].
In this work, the optimal initial reference image for the SB approach was selected
by evaluating the image correspondence – as calculated by the MI – between all
data sets Ij of the image group and the golden standard data set. Obviously,
this way of selecting the optimal initial reference image is not possible in an inter-
subject setting, since no ground truth is available. One possible solution to this
problem is to use an iterative approach for the SB atlas construction, whereby
in the second iteration the atlas result of the first iteration is employed as the
reference image, as suggested by Guimond et al. (2000) [6]. This strategy was
also applied in this work, but did not lead to significant improvement of the final
atlas. Another possibility to find the most typical subject for a given image group
is to define the image that has a minimal mean distance to all other images – as
calculated from the averaged deformation fields of each data set to all other data
sets [4]. In this way, the amount of warping of all images of the subject group to
the initial reference data set is minimized. In order to calculate this mean distance
to all other image for every data set, all images have to be aligned to each other,
making this approach as computational intensive as the PB atlas method. Since,
in our study, all images were aligned to each other to construct the PB atlas, this
strategy of finding the optimal initial reference image was applied in the SB atlas
framework.
In contrast to the SB method, the PB framework is unbiased towards the brain
topology of a single subject. However, the PB atlas construction method is compu-
tational intensive, since deformation fields are calculated between all subjects. On
a Pentium(R) D CPU 3 GHz with 2 GB of RAM, and using a Matlab 7 platform
(MathWorks, Natick, Mass), the computation time for the PB atlas for 20 data
sets was approximately 12 hours. Computation time is approximately proportional
with the square of the number of subjects.
Recently, group-based atlas frameworks, which consider all subjects in the popula-
tion simultaneously, have been introduced to construct a population specific atlas.
These methods might be advantageous in terms of finding the global optimum,
since all data sets are iteratively optimized to minimize the discrepancies between
these images. In the work by Studholme et al. (2004), a cost function is optimized
with the aim of maximising the similarity between all images, while penalizing
displacement of the reference space from the average shape [37]. Christensen et
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al. (2006) present a method for synthesizing average 3D anatomical shapes using
deformable templates based on averaging transformations [38]. Joshi et al. (2004)
developed an algorithm for the simultaneous registration of subjects using large
deformation diffeomorphisms [11]. Goodlett et al. (2006) applied this framework
of Joshi et al. (2004) to scalar diffusion measures [12]. Lorenzen et al. (2006) also
adapted the large deformation diffeomorphism framework for group based coreg-
istration, but utilized a probabilistic segmentation of the images instead of the
images intensities [36].
An important limitation in the evaluation of atlases and image coregistration is
the lack of knowledge regarding the optimal representation of a given group of
subjects. One approach of evaluating image correspondence is to define landmark
points in different data sets. However, besides its labour-intensity, this method
has a restricted reproducibility due to the intra- and inter-observer variability in
the placement of the landmarks. In addition, it is hard to capture the complex
3D anatomical structures by the placement of landmarks on 2D slices. Moreover,
this validation analysis is restricted to the anatomical structures that are delin-
eated. Finally, this method can only provide information regarding the spatial
accuracy of the image alignment, and not regarding the accuracy and validity of
the orientational DT information in the atlas. Since recently developed coregistra-
tion techniques are incorporating multi-component DT information to obtain an
optimal image alignment, it is important that this DT information is accurately
represented in the atlas. In this context, the accuracy and precision of orientational
DT information needs to be evaluated as well.
In order to tackle the limitations of the landmark based evaluation approach, a
ground truth method was introduced, which allows one to evaluate the accuracy
and precision of the spatial and orientational DT information in every brain voxel.
Furthermore, since all data sets are constructed by deforming the same single sub-
ject image with different deformation fields, the unknown inter-subject variability
of the diffusion properties can not introduce a bias in this evaluation method. A re-
duced accuracy and precision of the spatial and orientational diffusion properties in
the atlases are therefore produced by spatial and orientational image alignment in-
accuracies, interpolation artifacts, or the atlas construction framework, and not by
variances in the topology and the diffusion measures across subjects. Consequently,
the higher FA accuracy and precision that were observed in the PB atlas reflect
the higher robustness of the PB atlas method against imperfect image alignment,
compared to the SB approach (see Table 1). This better spatial image alignment
in the PB method and the use of averaged deformation fields to transform the
data sets in the PB atlas framework, result in a higher OVL accuracy and preci-
sion in the PB atlas compared to the SB atlas. These averaged deformation fields
are less susceptible to tensor reorientation inaccuracies which are caused by small
spatial image alignment imperfections [23]. In this context, the DTI coregistration
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approaches of Cao et al. (2005,2006) and of Zhang et al. (2006), which incorpo-
rate the tensor reorientation as part of the image alignment optimization, might
improve the orientational accuracy and precision of the DTI atlas.
In order to validate the different atlas frameworks for acquired brain DTI data
sets, inter-subject atlases were constructed based on the data sets of 20 healthy
subjects. Obviously, the presence of inter-subject variability of the WM topology
and the diffusion properties complicate the evaluation of the inter-subject atlases.
In Fig. 5.9, the callosal fiber tracts of the atlases were compared visually with the
callosal pathways of the different subjects that compose the inter-subject image
group. Qualitatively, the tract results of the PB atlas appear to provide the best
expected averaged representation of the corpus callosum of these 20 subjects.

5.5 Conclusion

In summary, different strategies for constructing WM atlases from a set of DT
images have been compared in this chapter. To the best of our knowledge, this
work represents the first attempt at understanding the relative merits of two atlas
construction strategies which were previously developed for scalar-valued images.
The spatial and orientational diffusion information of these atlases were evaluated
using both simulated and real DTI data sets. Our results indicate that the PB atlas
provides the most robust representation for a group of subjects. We believe that
the use of the proposed study specific, population based DT atlas with a reliable
incorporation of all DT information, can reduce the image alignment inaccuracies
and thus increase the reliability of the statistical tests in a VBA analysis.
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The origin and the causes of disease are

far too recondite for the human mind to

unravel them.

– Giorgio Baglivi (1669− 1707)

The mind has great influence over the

body, and maladies often have their ori-

gin there.

– Molière (1622− 1673)
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Overview

A voxel based analysis of DTI data sets is an automated method to perform DTI
group studies. However, it has been recently demonstrated that the VBA approach
is less standardized than it promised to be, due to the effect of different parameter
settings in the algorithm on the final results. In the first section of this paragraph,
simulated DTI data sets are developed, which allows for modeling of anomalies
in the diffusion properties of a predefined location and in a predefined number of
voxels. These simulated DTI data sets can be used to investigate the reliability,
accuracy, and precision of different post-processing methods. In addition, the ef-
fect of the different parameters and post processing steps that are involved in the
pipeline of a VBA analysis can be examined, which could lead to a more reliable,
standardized, and consistent post-processing of DT images for studying different
pathologies. In the second section of this chapter, these simulated data sets are
used to evaluate the effect of image smoothing on the VBA results is examined.
To this end, the data sets are filtered with various isotropic, Gaussian smoothing
kernels with different widths. In addition, an advanced anisotropic smoothing ker-
nel is introduced and compared to the isotropic kernel. In the final section of this
chapter, a state-of-the-art VBA approach – including an optimized coregistration
algorithm, population specific atlas, anisotropic smoothing – is used to examine
the diffusion properties in patients with MS. In particular, the relation between
cognitive dysfunction and white matter damage is investigated.

The work in this chapter has been published in:

6.1 On the construction of a ground truth framework

for evaluating voxel-based diffusion tensor MRI

analysis methods

There is a foolish corner in the brain of the wisest man.
– Aristotle (384− 322 BC)

6.1.1 Introduction

In order to compare diffusion properties across subjects quantitatively, many stud-
ies perform a ROI analysis, in which these ROIs are marked on locations that
have been associated with abnormalities for a given pathology [1–9]. Although this
approach is straightforward and has gained its merits in earlier studies, several
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drawbacks prevent it from being the analysis tool of choice for large scale, stan-
dardized DTI studies. These drawbacks include the labor intensity of the method,
a restricted reproducibility due to the observer dependent ROI placement, difficul-
ties to outline the complex 3D WM architecture by 2D ROIs, and the dependence
of the results on the a priori hypothesis that is made regarding the spatial loca-
tion and extent of the differences. Combined with the subject group and disease
heterogeneity, including confounding factors such as age, sex, handedness, disease
state, etc., these aforementioned limitations can explain the inconsistency of the
published diffusion values that were derived by the ROI analysis, as for example in
the study of patients with MS [10–17].
To mitigate the limitations of the ROI approach, an automated VBA is increasingly
being used to study DT alterations for many diseases. In VBA, all data sets are
spatially normalized to a certain template, whereafter a voxel-by-voxel statistical
comparison between the control subjects and the patients is performed [18]. In
this way, the whole brain is tested for control-patient differences without any a
priori hypothesis of the expected spatial location of the abnormalities to be made.
Furthermore, although the VBA approach is computationally more intensive, it is
far less laborious compared to the ROI method. In addition, the user-dependency
of the ROI approach is replaced by a parameter-dependency in VBA, making the
subsequent quantitative analysis more reproducible and standardized. However,
for example in the published DTI studies of patients with schizofrenia, there is
no general correspondence between the findings [19–32]. Significant FA differences
between healthy subjects and schizophrenia patients were reported in a large range
of white matter structures, such as for example the cerebellar peduncle [29, 31],
cortico-spinal tracts with schizofrenia [28], internal capsule with schizofrenia [24,
26], genu of the corpus callosum with schizofrenia [21, 28], splenium of the corpus
callosum with schizofrenia [21, 28, 31], forceps major with schizofrenia [19, 31],
body of the corpus callosum with schizofrenia [28], superior longitudinal fasciculus
with schizofrenia [24, 26, 29, 31], and cingulum [24, 29]. The subject group and
disease heterogeneity across the different studies, including confounding factors
such as age, sex, handedness, disease state, etc., can partially explain these observed
discrepancies. However, methodological differences in implementation of VBA are
possibly even more decisive for explaining the variances in the VBA results of
different studies.
Jones et al. (2005, 2007) and Zhang et al. (2007) demonstrated that different VBA
results were obtained when different coregistration techniques, smoothing kernels,
statistics, etc. were implemented during the VBA analysis of the same subject
group. Since the location and extent of the underlying microstructural degrada-
tion was not known a priori in these studies, quantitative information regarding
the accuracy, precision, or reliability of the obtained VBA results can not be pro-
vided. As such, these studies clearly demonstrate the need for a gold standard for
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validating different post-processing methods and their relative merits.
To address the lack of ground truth knowledge regarding the underlying microstruc-
tural alterations, in this work, simulated DTI data sets are developed, which allows
for modeling of anomalies in the diffusion properties of a predefined location and
in a predefined number of voxels. In this context, an important requisite for the
validity of the simulated DTI data sets is to model the induced pathology by simu-
lating these diffusion properties accurately and realistically [33]. To the best of our
knowledge, this is the first framework that allows for constructing simulated DTI
data sets with ground truth information of pathology. These simulated DTI data
sets can be used to investigate the reliability, accuracy, and precision of a VBA or
ROI analysis. In addition, the effect of the different parameters and post processing
steps that are involved in the pipeline of a VBA analysis can be examined, which
could lead to a more reliable, standardized, and consistent post-processing of DT
images for studying different pathologies.

6.1.2 Methods

6.1.2.1 Ground truth framework

In this work, simulated DTI data sets are constructed that contain a ground truth
pathology with a predefined location, extent, and level of tissue degradation. In
Fig. 7.1, a general overview of the construction of these simulated DTI data sets
is presented and can be summarized as follows:

(a) H healthy subject and P pathology DTI data sets are acquired.

(b) The N (where N = H + P ) DTI data sets are transformed to the MNI space
with an affine transformation.

(c) Based on the N images in MNI space, a population specific atlas is constructed
for the H healthy subjects.

(d) The atlas forms the fundamental data set of the ground truth method and is
replicated N times.

(e) In P atlases, the diffusion properties are altered to introduce a pathology in
certain voxels.

(f) The diffusion properties are modified to include inter-subject variability.

(g) All data sets are transformed to their native space.

(h) Noise is added to the data sets.

In the following sections, these steps are described in more detail.
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Figure 6.1. A schematic overview of the ground truth method is presented. On the

left, the main steps of this method are displayed in (a)-(h), including the construction of a

population based atlas, the introduction of a pathology, inter-subject variability, and noise,

and the deformation of the images to native space. More specific information about the

different steps is provided in (i)-(p). All data sets Oi, Ii, Ai, A∗i, A′i, S′i, and Si contain

both the DW images and the diffusion tensor components. The healthy subject data sets

are colored in green, whereas the pathology subject data sets are colored in red.
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6.1.2.1.1 Native images The ground truth method is based on the acquisition
of H diffusion tensor data sets of healthy subjects and P diffusion tensor data sets
of subjects with a certain pathology (Fig. 7.1 (a)). These native healthy subject
and pathology data sets will be referred to as Oh (with h = 1, ...,H) and Op (with
p = H + 1, ...,H + P ), respectively. In general, the subject data of the entire
group will be denoted as Oi (i = 1, ..., N), with N the total number of subjects:
N = H + P . When not explicitly specified that the DW images or the diffusion
tensor components are used, the subject data Oi reflect both the DW images and
the diffusion tensor components.

6.1.2.1.2 Atlas Construction A first step in the framework of the simulated
data sets is the construction of a population specific DTI atlas based on the N
native images (Fig. 7.1 (b) and (c)). This process involves different steps, as
described in Van Hecke et al. (2008), and can be summarized as follows (see also
Fig. 7.1 (i), (j), and (k)):

• All subjects data Oi (with i = 1, ..., N) are spatially normalized to a custom
FA MNI template with an affine transformation using MIRIT, incorporating
the preservation of principal direction (PPD) tensor reorientation strategy
[34–36]. From the EPI MNI template, a custom FA based template was
constructed as described in Jones et al. (2002). The transformed images will
be referred to as Ih and Ip, or more generally as Ii (see Fig. 7.1 (b)).

• Non-affine deformation fields Tji of data set Ii to data set Ij (i, j = 1, ..., N ,
i 6= j) are calculated for each image of the subject group (see Fig. 7.1 (i) and
(j)). For the non-affine image alignment procedure, a coregistration algorithm
based on a viscous fluid model and mutual information is used, which has
been optimized to incorporate all DT information [37, 38].

• The deformation fields Tji (with j = 1, ..., N and j 6= i) are averaged for each
image Ii (Ti= 1

N−1

∑
j Tji), as described in Fig. 7.1 (k). The deformation

fields Ti characterize the anatomical variation between image Ii and all other
data sets of the subject group.

• The deformation fields Ti are applied to all diffusion weighted (DW) images
of data sets Ii. After estimating the diffusion tensor from the transformed
DW images, the PPD reorientation strategy is applied to obtain the correct
diffusion tensors (see Fig. 7.1 (k)) [34]. From these reoriented diffusion
tensors, the DW images that correspond to this new space in which the
DW images were transformed are recalculated by using the same equation to
estimate the diffusion tensors. In doing so, the DW images of each subject
have the same framework of diffusion weighted directions, and hence, can
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be averaged appropriately. The resulting DTI data sets in atlas space are
referred to as Ĩi (Ĩi=Ti(Ii)) (see Fig. 7.1 (i) and (k)). More specifically, the
healthy and pathology subject data sets in atlas space are referred to as Ĩh
and Ĩp, respectively.

• The atlas A is constructed by a voxel-wise averaging of the DW images of
the H healthy data sets in atlas space Ĩh followed by a recalculation of the
diffusion tensors (see Fig. 7.1 (i)). Note that the application of an iterative
estimation procedure to construct the population-based DTI atlas A did not
significantly improve the accuracy of the diffusion tensor atlas [39].

Notice that a healthy subject atlas is constructed, since only the H data sets of
the healthy subjects in atlas space Ĩh are averaged to compute this atlas. As such,
the diffusion properties of the pathology subjects are not included in the atlas.
However, notice that the data sets of these P pathology subjects are still used
during the atlas construction to calculate the deformation fields Ti (i = 1, ..., N).
Hence, an atlas is constructed that represents a structural averaged image of the
whole subject group, including the pathology subjects, but only containing diffusion
properties of the healthy subjects. This population specific atlas is regarded as the
fundamental image in our ground truth VBA methodology and will be referred to
as A (see Fig. 7.1 (c)). All simulated data sets will be constructed from this atlas
A. To this end, A is replicated N times, resulting in N times the same atlas data
set Ai = A (see Fig. 7.1 (d)).

6.1.2.1.3 Introducing pathology In DTI, a WM pathology can present itself
generally in two different ways: as a more global morphological anomaly on the
one hand and as local changes in diffusion properties on the other hand. In the
former case, WM structures are altered due to the presence of brain atrophy, the
growth of a tumor, or changes in ventricle size, etc. Commonly, these anomalies
can also be detected on conventional MR images. The resulting WM deviations
can be visualized with diffusion tensor tractography, a virtual reconstruction of the
WM fiber pathways [40–42].
Since the changes in local diffusion properties can be related to changes in orga-
nization of the underlying microstructure, they provide very specific information
regarding brain WM integrity, which is not always visible on a conventional MR
examination. These diffusion parameters can indeed quantify the underlying mech-
anisms leading to neurological dysfunction in WM disorders, such as demyelination
or axonal breakdown [43]. Because of this sensitive relationship between diffusion
of water molecules and WM integrity, most DTI studies of pathologies are fo-
cused on the examination of these diffusion discrepancies using an ROI or VBA
method. Therefore, in this framework, these diffusion alterations, which can be
associated with a neurologic disorder, are introduced in different WM structures of
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the ground truth data sets, which are subsequently regarded as belonging to the
pathology group.
Although further studies are needed, recent work suggests that demyelination and
axonal degeneration cause an increase of the average of the second and third eigen-
values (the transverse diffusivity, λA⊥) and a decrease of the first eigenvalue (the
longitudinal diffusivity, λA‖ ), respectively [44–49]. In our work, these measures are
therefore used to simulate axonal damage, myelin injury, or a combination of both
in the DTI data sets. Notice that, in addition to the location and extent of the
pathology, the level of tissue degradation, as reflected by the diffusion properties,
can also be controlled in the simulated pathology data sets.
For each pathology data set, the eigenvalue alterations are introduced in the lon-
gitudinal λA‖ and transverse λA⊥ eigenvalue images of the atlas data sets Ap (p =
1, ..., P ), which are subsequently regarded as the pathology group, resulting in the
eigenvalue images λ‖ and λ⊥ (see Fig. 7.1 (e) and (l)):

λ‖(r) = λA‖ (r) + ∆λ‖(r)
λ⊥(r) = λA⊥(r) + ∆λ⊥(r)

.
�� ��6.1

The magnitude of the microstructural breakdown that is simulated in the longi-
tudinal and transverse eigenvalue images is defined as ∆λ‖(r) and ∆λ⊥(r), re-
spectively, where r describes the location and size of the different voxel clusters
in which a pathology is introduced for the longitudinal and transverse eigenvalue
images. Note that ∆λ‖(r) and ∆λ⊥(r) can be defined for each data set separately.
The microstructural breakdown, represented by ∆λ‖(r) and ∆λ⊥(r), is introduced
as a percentage change of the original values λA‖ and λA⊥. Note that ∆λ‖(r) and
∆λ⊥(r) can be modeled more specifically to constrain changes in FA and MD. For
example, a FA decrease can be simulated while keeping the MD constant.
Since the purpose is to introduce eigenvalue alterations, and not to change the
main direction of diffusion, care has to be taken that the transverse diffusivity does
not become larger than the longitudinal diffusivity. The altered eigenvalue images
λ‖ and λ⊥ are subsequently used to redefine the new diffusion tensors, whereby
the diffusion eigenvectors are not modified. The resulting data sets A∗p represent
the atlas images with an additional simulated pathology in certain voxels (see Fig.
7.1 (e)). The data sets that are regarded as the simulated healthy subject images
are not altered during this step of the processing pipeline: A∗h = Ah.

6.1.2.1.4 Introducing inter-subject variability Even if data sets of differ-
ent healthy subjects are acquired in the same scanner and with the same acquisition
parameters, a significant inter-subject variance can be observed in these images.
Many variables, such as age, sex, handedness, etc. of the subjects are known to
contribute to this variability in the DT properties [50, 51]. Therefore, most VBA
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and ROI studies circumvent these sources of variation by a careful selection of the
subject groups. However, due to the inherent anatomical and physiological vari-
ability across subjects, the inter-subject variance is still present in the DTI data
sets. In order to create more realistic DT images in our ground truth framework,
this inter-subject variability should be integrated to both healthy A∗h (h = 1, ...,H)
and pathology A∗p (p = 1, ..., P ) data sets.
Analogously to the WM pathology, the inter-subject variability can present it-
self as a morphological WM variability or as variances of the diffusion properties.
Examples of the former are the shape variance of the corpus callosum and the dif-
ference in the frontal WM architecture across healthy subjects. The latter source
of inter-subject variability is more subtle, but will affect the statistics when differ-
ent diffusion properties are compared between subject groups. Simulation of this
type of inter-subject variance was obtained using a principal component analysis
(PCA) on the longitudinal and the transverse eigenvalue images, since they contain
all the information regarding the local diffusion properties. Variances in the local
directional diffusion information, which can be considered as morphological WM
variabilities, will be accounted for in a later step of the ground truth method. New
longitudinal and transverse eigenvalue samples are produced from an estimated
distribution, as explained as follows (see Fig. 7.1 (m)):

• First, the DT atlas A is masked by thresholding the FA map. An FA threshold
of 0.2 was used to suppress areas consisting of CSF and deep GM in the
analysis [52].

• K healthy subject DTI data sets are acquired to estimate the inter-subject
variance of the diffusion properties. These K data sets are coregistered non-
affinely to the DTI atlas A, resulting in the data sets Qk (k = 1, ...,K) (see
Fig. 7.1 (n)).

• Subsequently, a vector is constructed as a concatenation of the masked lon-
gitudinal and transverse eigenvalue images of all data sets Qk (k = 1, ...,K).
Hence, a 2V -dimensional vector is obtained for each data set Qk, with V the
number of voxels included in the mask.

• Let M represent a K × 2V matrix, containing all the data. This data was
made zero-mean by subtracting the mean 2V -vector for every row. Since
K � 2V , the K-dimensional subspace is used to generate new samples. For
this, the eigenvalue decomposition MMT = EΛET is calculated, with E

an orthogonal matrix containing the eigenvectors, and Λ a diagonal matrix
containing the eigenvalues of a (K ×K) matrix.

• A new random sample R is generated as a K × 1 vector which is defined
as zero-mean, unit variance, Gaussian distributed random variables. This
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sample is projected to the 2V -dimensional space using 1√
K
MTER.

• Finally, the mean vector is added to these samples, which are then distributed
according to the K original ones.

In this way, inter-subject variability is added to the longitudinal and transverse
eigenvalues of both the healthy and pathology data sets, followed by a recalculation
of the diffusion tensors. The resulting healthy and subject pathology data sets are
referred to as A′h and A′p, respectively.

6.1.2.1.5 Constructing the simulated data sets As described in the para-
graphs 3 and 4, the local diffusion properties were altered to include a pathology
and inter-subject variability in the simulated DTI data sets. However, the resulting
DT images are still situated in the atlas space of image A.
Realistic, simulated DTI data sets of different individuals are created by generating
non-affine deformation fields that warp the data sets A′h and A′p to their respective
subject spaces. These transformations are obtained by calculating the non-affine
deformation fields between the atlas A and the native data sets Ii in the affine
MNI space (see Fig. 7.1 (o)). Since realistic deformation fields, derived from
the coregistration of A to different healthy subjects Ih, are used to transform the
images A′h, the inter-subject variability of the WM structures in native space is also
taken into account appropriately. Structural WM pathologies and inter-subject
variability of the WM structures are also included in the transformed images A′p,
since P deformation fields are obtained from the coregistration of A to the DTI
data sets of the pathology subjects Ip.
In order to increase the accuracy of the inter-subject warps and to decrease the
dependency of the spatial information of the simulated data sets on a single coreg-
istration algorithm, three different image normalization methods are combined to
compute a more general deformation field (see Fig. 7.1 (p)):

1. The aforementioned viscous fluid model, including all DT information during
the image alignment, is used to obtain the deformation fields T 1

iA between
the atlas A and the native data sets Ii.

2. The deformation fields T 2
iA are computed using a coregistration approach

that is based on free-form deformations and B-splines, which is included in
software packages as IRTK (Image Registration Toolkit) and FSL (FMRIB
Software Library – www.fmrib.ox.ac.uk/fsl) [53].

3. The deformation fields T 3
iA are obtained by a linear combination of (7×8×7)

basis functions as is included in the SPM package [54].
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Note that T 1
iA is obtained by incorporating all DT information during the coreg-

istration, whereas FA maps are employed to obtain both T 2
iA and T 3

iA. The total
non-affine transformation of the atlas A to each native images Ii is calculated as the
average of the three deformation fields: TiA= 1

3

∑3
j=1 T

j
iA. These deformation fields

are applied to the DW images of the data sets A′h and A′p. The accordingly obtained
simulated DTI data sets will be referred to as S′h = ThA(A′h) (h = 1, ...,H) and
S′p = TpA(A′p) (p = 1, ..., P ), or as S′i (i = 1, ..., N) when referred to the simulated
data sets in general.

6.1.2.1.6 Introducing noise In order to obtain realistic, simulated DTI data
sets, a realistic amount of noise should be included in the images. To this end,
the noise level in the native images is estimated with the method described in
Sijbers et al., (2007). In their approach, a histogram of the Rayleigh distributed
background intensities of the DW images is used to estimate the noise level, which
will be referred to as σo. Hence, a similar noise level should be observed in the
simulated images. In addition, since the noise is Rice distributed in MRI, realistic
noise in the resulting simulated images also needs to be Rice distributed [55, 56].
The noise level is reduced in the simulated data sets due to the complete processing
pipeline that is used to construct these images.
In order to calculate the noise level that has to be added to the simulated DTI data
sets S′i, the noise reduction during the processing pipeline should be estimated.
To this end, extra Rician noise with variance σ2

n is added to the DW images of
the native data sets Oi. These data sets are subsequently used to construct the
simulated DTI data sets S

′n
i as described in the previous paragraphs. Thereafter,

the resulting noise variance is estimated from the difference between the original
simulated data sets S′i and the simulated data sets S

′n
i that were constructed from

original images Oi with extra noise:

σ2
f = E

[
(S
′n
i − S′i)2

]
,

�� ��6.2

in which the expectation E was replaced by a regional average. Finally, the noise
reduction factor of this processing pipeline is computed as ro = σn/σf .
To obtain simulated DW images with a similar noise standard deviation as in the
original images Oi (i.e. σo), the amount of noise that has to be added (σa) to the
simulated data sets, is given by:

σa =
√
σ2
o − (σo/ro)2.

�� ��6.3

However, it is important to note that the noise already present in S′i can be ex-
plained by the diffusion tensors, i.e., it completely adds to the variance of the
diffusion tensor estimates. Since in the further processing, the DTs and not the
DW images are of interest, the final noise level of the simulated DTs should be
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equal to the noise level of the DTs computed from the original images Oi. Since
the dimensionality in parameter space is reduced by estimating the DTs from the
DW images, a theoretical noise reduction rt is expected:

rt =
√
u/l,

�� ��6.4

with u the number of DW images and l the number of estimated DT parameters.
Taking into account the reduction factor rt, the noise standard deviation that has
to be added to S′i becomes:

σa =
√
σ2
o − (σo.rt/ro)2.

�� ��6.5

The resulting simulated healthy subject and pathology data sets, which contain a
realistic amount of noise, are referred to as Sh (h = 1, ...,H) and Sp (p = 1, ..., P ),
respectively, or as Si (i = 1, ...,H + P ) in general.

6.1.2.2 Subjects and Data Acquisition

In this work, 100 DTI data sets were acquired on a 1.5T MR system. 80 of these
images were obtained from a healthy subject group (age range: 18−65 years, 32 M,
48 F). In addition, 20 data sets were obtained from patients with MS (age range:
20− 42 years, 6 M, 14 F).
Axial diffusion tensor images were obtained using an SE-EPI sequence with the
following acquisition parameters: TR: 10.4 s; TE: 100 ms; diffusion gradient: 40
mT.m−1; FOV = 256 × 256 mm2; number of slices = 60; voxel size = 2 × 2 × 2
mm3; b = 700 s.mm−2; acquisition time: 12 min 18 s. Diffusion measurements
were performed along 60 directions with 10 b0-images and a nonlinear diffusion
tensor estimation procedure was used based on the Levenberg-Marquardt opti-
mization method [57]. DTI post processing and visualization were performed with
the diffusion toolbox ‘ExploreDTI’ [58].

6.1.2.3 Examining the effect of image alignment and tissue degradation
on VBA results

40 simulated data sets were generated with a specific level of noise and inter-subject
variability to investigate the effect of coregistration and level of pathology on the
sensitivity of the VBA results. Several levels of pathology (predefined increase
of the transverse eigenvalues λ⊥) were simulated in the splenium of the corpus
callosum (size: 54 voxels in 4 consecutive axial slices) for 20 data sets [21, 28, 31, 59–
61].
Two VBA analyses were performed demonstrating the subtle changes in outcome
of regions with a significant FA difference between healthy and diseased subjects
due to imperfections in coregistration:
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Analysis 1: The predefined deformation fields to transform the simulated data
sets to native space were applied to invert the data back to atlas space.
In doing so, perfect alignment is guaranteed taking into account the effects
of data interpolation, allowing for the computation the effective levels of
pathology (that is, prior to adding noise and inter-subject variability).

Analysis 2: The data sets in native space (as in Analysis 1, but with noise and
inter-subject variability added) are coregistered to the atlas using the non-
rigid coregistration approach [37].

For both analyses, the FA data were smoothed with a Gaussian kernel (3 mm
FWHM) and a parametric t-test (the data were normally distributed according to
the Lilliefors test) was used to compare the FA values between the healthy and the
pathology data sets, followed by the Benjamini-Hochberg post-hoc correction for
multiple comparisons [62]. To quantify the VBA results, the sensitivity - calculated
as the ratio of the number of true positives with the sum of the number of true
positives and false negatives - is computed for both analyses and repeated 10 times.

6.1.3 Experiments and Results

From the 100 (=H+P+K) acquired DTI data sets, 20 (=P) were obtained from
pathology subjects with MS. The 20 (=H) healthy subject data sets were age- and
sex-matched with the MS patient images. The remaining 60 (=K) healthy subject
data sets were used to construct the inter-subject variability maps.

6.1.3.1 Native images

To illustrate the processing pipeline of the ground truth method, axial FA slices of
six randomly selected native DTI data sets, color-encoded for the main diffusion
direction, are displayed in Fig. 7.2 (a). Three of these (left) were acquired from
healthy volunteers, whereas the other three (right) were obtained from MS patients.

6.1.3.2 Atlas Construction

A population specific atlas was constructed from the native DTI data sets, as
explained in the Methods section. As illustrated in Fig. 7.2 (b), these data sets
were warped affinely to MNI space, followed by the transformation to the atlas
space by the use of averaged deformation fields. Thereafter, an atlas was computed
with a minimal deformation to all images of the subject group, as shown in Fig.
7.2 (c) [39]. This DTI atlas, which is regarded as the fundamental data set of the
ground truth method, was reproduced 40 (=H+P) times (see Fig. 7.2 (d)).
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Figure 6.2. In (a), axial FA slices of six randomly selected native DTI data sets are

shown. Three of these images, O1, O2, and O3, are healthy subject DTI data sets. On

the other hand, images O4, O5, and O6, are obtained from MS patients. In (b)-(i), the

processing pipeline is illustrated using these data sets. Finally, in (i), the simulated images

in affine space are visualized. Notice that these should resemble the native DTI data sets

in affine space, as shown in (b). – 145 –
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6.1.3.3 Introducing pathology

Based on the reported results in the DTI literature, a predefined microstructural
breakdown was introduced in different voxel clusters of the simulated pathology
data sets (see Fig. 7.2 (e)). As can be seen in Fig. 7.3, these selected WM
structures and voxel clusters are coloured in white on different axial slices of the
atlas data set. References to DTI studies in which the diffusion measures in these
WM structures were observed to be significantly different between control subjects
and patients are added to this Fig. [21, 24, 26, 28, 29, 31, 59–61, 63–71]. In
addition, the number of voxels in which the diffusion properties are modified in
this example are also presented in Fig. 7.3.
An example of different levels of tissue degradation in the splenium of the corpus
callosum is given in Fig. 7.4 (a) and enlarged in Fig. 7.4 (b). The corresponding
tensors are displayed in Fig. 7.4 (c). The degree of microstructural breakdown is
here defined as a percentage of the original longitudinal and transverse eigenvalues
in each voxel.

6.1.3.4 Introducing inter-subject variability

Inter-subject variability was estimated from 60 (=K) healthy subject DTI data
sets. Examples of the images in atlas space that include inter-subject variability
of the diffusion properties are shown in Fig. 7.2 (f). In Fig. 7.5, the inter-subject
variance of the longitudinal and transverse eigenvalues is depicted, as reflected by
the coefficient of variation, which is the standard deviation map of an eigenvalue
image, normalized by the average of the different eigenvalue images. An axial,
coronal, and sagital slice of the FA map is shown in Fig. 7.5 (a). In Fig. 7.5
(b), the inter-subject variance of the longitudinal eigenvalues is depicted for the
same axial, coronal and sagital slices. Analogously, the inter-subject variance of the
transverse eigenvalues is visualized in Fig. 7.5 (c). A high inter-subject variance
is depicted in a bright colour, whereas a low inter-subject variance is depicted in a
dark colour.

6.1.3.5 Constructing the simulated data sets

After generating the simulated DTI data sets in atlas space, a predefined set of
deformation fields is applied to these data sets to transform them to native space.
(see Fig. 7.2 (g)). A qualitative example of the image correspondence between
the simulated and the native DTI data sets is shown in Fig. 7.6. In Fig. 7.6 (a),
axial FA slices of five randomly selected native DTI data sets are displayed. Axial
FA slices of the corresponding simulated data sets are visualized in Fig. 7.6 (b).
After overlaying the blue coloured native FA image and the red coloured simulated
FA map, corresponding voxels with similar FA values will be coloured purple, as
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Figure 6.3. On the left, different WM structures are displayed in which a simulated

pathology is introduced. For each WM structure, the number of voxels in which a pathology

is introduced is given for this example. In addition, references of studies are given that

found a significant difference of the diffusion properties in this specific WM structure. The

voxels in which the diffusion properties are altered are marked in white on the different

axial slices of the DTI atlas.
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(c)

level of tissue degradation

Figure 6.4. An example is provided of the introduction of a pathology in the splenium

of the corpus callosum. In (a), the axial slices are displayed for different levels of tissue

degradation. The splenium is shown in more detail in (b). In (c), the diffusion ellipsoids

of the splenium are visualized.

visualized in Fig. 7.6 (c), (d), and (e).
In order to obtain a quantitative measure of the spatial image correspondence
between the native and the simulated data sets, ROIs were manually drawn in
different WM structures on the both the native and the simulated data sets (see
Fig. 7.7). First, these ROIs, delineating the capsula externa, corpus callosum,
cerebellar peduncle, and posterior limb of the internal capsule, are drawn twice
on the native data sets to test the reproducibility. These ROIs are marked in
red and blue, as indicated in Fig. 7.7. Thereafter, the same WM structures are
delineated on the simulated data sets, and marked in green. Finally, the red and
blue voxels as well as the red and green voxels are overlaid. In the case that a voxel
is selected by the red and the blue ROI, it will be given a purple colour, describing
the reproducibility of the manual ROI delineation. Analogously, voxels appear
yellow when they are present in both red and green ROIs, describing the image
correspondence between the native and the simulated data sets. A quantitative
measure for the ROI correspondence is calculated as the percentage of voxels that
are present in both ROIs related to the total number of selected voxels in both ROIs.
This measure is computed for the aforementioned ROIs in all 40 corresponding
native and simulated data sets resulting in the boxplots of Fig. 7.7. The difference
between both overlap measures was not statistically significant, demonstrating the
high spatial correspondence between the simulated and the native DTI data sets
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Figure 6.5. In (a), an axial, sagital, and coronal slice of the FA map are displayed. A

measure of the inter-subject variability of the longitudinal and the transverse eigenvalues

is shown in (b) and (c), respectively. This measure is calculated as the standard deviation

of the eigenvalue images that result from the PCA analysis, weighted by the average of

these images. High and low inter-subject variances are represented by a bright and a dark

colour, respectively.

for these large well-defined WM structures.

In order to evaluate the tensor correspondence between the native and the sim-
ulated data sets, the OVL is computed [72]. This measure calculates the scalar
product between corresponding eigenvectors, weighted by the magnitude of the
corresponding eigenvalues. The minimum value 0 indicates no overlap and the
maximum value 1 represents complete overlap of the diffusion tensors. In Fig. 7.9
(a), the OVL measure between an native data set and its corresponding simulated
data set is calculated for four randomly selected data sets and overlaid on the FA
map of the native images. As can be observed in Fig. 7.9 (a), a high OVL is
found in the major WM structures. In Fig. 7.9 (b), a histogram of the OVL values
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Figure 6.6. The spatial image correspondence is represented visually for 5 randomly

selected native data sets and their corresponding simulated data sets. The axial FA slices

of these native and simulated data sets are visualized in (a) and (b), respectively. The

FA maps of the native and the simulated data sets are colour encoded in blue and red,

respectively. By overlaying these colour encoded images, the corresponding voxels with a

similar FA value will be purple as can be seen on the axial, coronal, and sagittal slices, in

(c), (d), and (e), respectively.
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Figure 6.7. ROIs are drawn twice in the capsula externa, the corpus callosum, the

cerebellar peduncle, and the posterior limb of the native data sets, as displayed in red

and blue. After overlaying these ROIs for each WM structure, voxels will appear purple,

when they are included in both ROIs. The percentage of overlap is given on the right.

Analogously, ROIs are delineated in the same WM structures of the simulated images,

and displayed in green. The voxels that are included in the ROI of the native data set

and of the simulated data set are then coloured yellow. Again, the percentage of overlap

of these ROIs are shown on the right for the different WM structures.

is displayed for these four data sets. All voxels with an FA value above 0.4 were
included in this histogram. Finally, a scatter plot of the OVL and the FA values
is displayed in Fig. 7.9 (c), demonstrating the high tensor correspondence in the
major WM structures with a high FA.

6.1.3.6 Introducing noise

After applying the method of Sijbers et al. (2007) to the 40 native DTI data sets
Oi, a noise level σo = 18 ± 1 was found. Extra noise with a σi of 7 was added to
the native images to estimate the observed noise reduction factor of the processing
pipeline. After processing these images, the reduced noise level in the simulated
data sets was observed to be σf = 1.6. Consequently, the noise reduction factor of
the processing pipeline to construct the simulated data sets is ro = σi/σf = 4.3.
In order to create simulated DT images that have the same noise level as the native
images, extra noise has to be added to the DW images of data sets Si. To obtain
simulated DWI images with a similar noise level as in the original images (i.e.
18±1), the noise that has to be added should have a σa =

√
σ2
o − (σo/ro)2 = 17.5.
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Figure 6.8. The overlap of eigenvalue and eigenvector pairs (OVL) is calculated between

4 native images and their corresponding simulated data sets. In (a), this OVL measure

is superimposed on the axial FA slices of the native data sets. A histogram of this OVL

is calculated including all voxels with an FA>0.4, as shown in (b). In (c), a scatter

plot of the OVL measure and the FA value is displayed, demonstrating the higher tensor

correspondence in WM structures with a high FA.

However, as explained in the previous section, only the noise on the estimated
diffusion tensors is important for the further processing and interpretation of the
data sets. The variance of the noise that should be added to the simulated images
therefore becomes σa =

√
σ2
o − (σo.rt/ro)2 = 12.2. Examples of simulated DTI

data sets that include a realistic level of noise are visualized in Fig. 7.2 (h).

6.1.3.7 Examining the effect of image alignment and tissue degradation
on VBA results

In Figure 6.9, the VBA results of Analysis 1 and Analysis 2 are displayed for
different levels of tissue degradation, expressed as a percentage of effective FA
change. One of the axial slices, in which the pathology was simulated, is shown
in Figure 6.9 (a). In Figure 6.9 (b), the VBA results of the splenium are shown
qualitatively for analyses 1 and 2 for different levels of simulated pathology. The
voxels, in which ground-truth pathology was introduced, are given a purple color.
The subgroup of these voxels that were found as statistically significant in the VBA
analysis are colored in blue. For an effective FA decrease of 7%, 10%, 13%, 16%,
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19%, and 21%, different results were obtained between both analyses: in Figure 6.9
(c), these differences in sensitivity are displayed for the different levels of simulated
pathology.

6.1.4 Discussion

In this work, a novel framework is presented for the construction of simulated
DTI data sets, which include a predefined pathology. An increasing number of
researchers apply VBA methods to analyse DTI data of control subjects and pa-
tients [21, 24–26, 28, 29, 31, 59–61, 63–71]. However, studies suggest that the
VBA results are not always accurate and disease specific, since they depend on the
parameter settings and implementations of the post processing method [27, 73–76].
In this context, our framework allows one to estimate the accuracy, precision, and
reliability of different post processing approaches for detecting changes in diffusion
properties with different predefined magnitudes and locations quantitatively.
The processing pipeline of the ground truth framework was based on the acquisition
of 80 (=H+K) healthy subject and 20 (=P) MS patient DTI data sets. The MS
patient data sets were included in the analysis in order to introduce morphological
anomalies, such as enlarged ventricles or a thinned corpus callosum in our simu-
lated data sets in order to increase the resemblance of the simulated study with
realistic situations. For example, the inclusion of simulated DTI data sets with a
morphological pathology in a VBA might hamper the coregistration accuracy, and
thereby the reliability of the statistical analysis. However, it should be mentioned
that the unknown alterations of the diffusion properties, which are present in the
native DTI data sets of the MS patients, were not included in the simulated data
sets. As such, the population specific atlas, which is considered as the fundamen-
tal image of our framework, only contains the diffusion information of the healthy
subjects, although it is located in the atlas space of all subjects (i.e., both healthy
subjects and MS patients).
As can be observed, for example, in Fig. 7.3, the population specific atlas partic-
ularly contains reliable information within the main WM structures. Since a large
variability of the peripheral WM and the GM structures exists in the DTI data
sets across different subjects, this information is less reliable in the atlas. This
large inter-subject variability is also illustrated in Fig. 7.5 (b) and (c), showing the
inter-subject variances, as calculated by a PCA analysis on 60 (=K) healthy sub-
jects, of the longitudinal and transverse eigenvalue maps, respectively. Since these
peripheral WM structures are not reliably present in the fundamental atlas data
set, no pathology diffusion alterations are introduced in the peripheral WM struc-
tures of the simulated DTI data sets. In this context, it should be mentioned that
in VBA studies of different pathologies, all results in the peripheral WM should be
interpreted very cautiously.
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Figure 6.9. VBA results for a ground truth pathology in the splenium of the corpus

callosum. In (a), the ground truth pathology is shown on an axial slice of the atlas FA

map. The VBA results after a simulated ’perfect’ alignment (Analysis 1) and after non-

rigid coregistration (Analysis 2) are visualized in (b). The voxels in which a ground truth

pathology is introduced are colored in purple, whereas the significant voxels are colored in

blue. In (c), the VBA sensitivity is displayed for different levels of tissue degradation, as

presented by the corresponding effective FA decrease.
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Examples of voxel clusters, in which microstructural breakdown is simulated by
changes in the diffusion characteristics, are visualized in Fig. 7.3. Obviously, the
magnitude, the spatial location and size of the pathology can be chosen differently
from this example and can be modified to address specific issues and validate
specific hypotheses. In addition, the nature of the pathology (for example, constant
MD and FA increase or MD and FA increase, etc.) can be modified to simulate
specific pathologies. Furthermore, it should be mentioned that the exact location
of the pathology can be varied across the pathology subjects to simulate more
complex configurations.
After including a pathology and inter-subject variability, the simulated DTI data
sets are still embedded in the population specific atlas space. In order to simu-
late a realistic situation, these DTI data sets should be located in a native space.
To his end, deformation fields were used to transform the simulated data sets to
their native space. Since, in this work, realistic deformation fields were adopted to
transform the atlas image to the individual space, the spatial correspondence of the
simulated data sets with realistic DT images will depend on the accuracy of these
deformation fields. Therefore, inaccuracies in the image alignment to the native
DT images are reduced by the use of a population specific DTI atlas as the funda-
mental DTI data set. The magnitude of the deformation fields from the atlas to the
native images is then minimized, thereby reducing potential coregistration errors.
To further minimize these image alignment inaccuracies, three different image nor-
malization techniques were applied to estimate the deformation fields between the
atlas and the native DTI data sets. These deformation fields were subsequently
averaged and used to transform the simulated data sets to their native space. In
addition, the use of averaged deformation fields prevents the generated transforma-
tions of being biased toward a family of deformations that can be generated by one
particular warping algorithm. Finally, the use of averaged deformation fields to
construct the simulated data sets enhances the tensor correspondence between the
native data sets and the simulated images, since the effect of tensor reorientation
inaccuracies is reduced [37, 39].
After the transformation of the DT images to an individual space and the sub-
sequent addition of a realistic amount of noise, simulated DTI data sets are con-
structed. The images can then be used to quantitatively evaluate different DTI
post processing approaches, since all the aspects of the pathology are known a
priori. In this way, different implementation issues and parameter settings of the
VBA methods can be examined separately. As shown by our example (Analysis
1 vs. Analysis 2), it is clear that the ground-truth framework can be applied to
investigate the effect of coregistration on the sensitivity of VBA results. Key to
comparing a specific aspect of the VBA pipeline using this simulation approach is
to keep all other predefined parameters and methods identical. In this example, for
instance, when investigating the adverse effects of coregistration, not only the levels
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of noise and inter-subject variability, the size of smoothing kernel, and the applied
statistical tests were the same, also the actual transformation steps were included to
consider the partial volume averaging artifacts due to interpolation, which are also
present during actual coregistration. With these simulated VBA analyses, coreg-
istration methods can be compared or even optimized by fine-tuning user-defined
parameters.

Conclusion

In this work, a framework for constructing simulated DTI data sets with a pre-
defined pathology is presented. These data sets can be employed in studies to
evaluate the accuracy, precision, and reproducibility of different VBA algorithms
quantitatively. We are convinced that this will lead to an improved understand-
ing of the reliability and shortcomings of these post processing methods to study
different WM altering pathologies.
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6.2 The effect of smoothing on the subsequent statis-

tics in a voxel based analysis of diffusion tensor

images: a study using simulated data sets

6.2.1 Introduction

Since patient-control differences are evaluated in every brain voxel, VBA is able
to recover unexpected areas of neuro-anatomical alterations. However, despite
this intuitively appealing approach, VBA results should be interpreted cautiously.
For example, since statistical tests are performed in each voxel, the chance of
statistical Type I errors is very high and a correction for multiple comparisons
should be applied. In addition, VBA is based on the assumption that corresponding
voxels of different subjects are perfectly overlaid after non-rigid coregistration of
all data sets to the template [75, 77]. However, due to a significant variability of
the WM topology across subjects, especially in the case of a pathology, residual
image alignment inaccuracies can be present. In order to reduce the effect of these
coregistration errors on the subsequent statistical analysis, the normalized data sets
are often smoothed with an isotropic Gaussian kernel. An additional advantage of
this smoothing is the increased SNR, since the matched filter theorem states that a
signal is detected with an optimal sensitivity if a convolution kernel that matches
the size and shape of the signal change is used [78]. Based on this matched filter
theorem, a ‘rule of thumb’ is often used in the analysis of fMRI and PET data sets,
stating that the full width at half maximum (FWHM) of the smoothing kernel
should be at least 2− 3 times the voxel dimension when analyzing data of a single
subject and even larger for a group analysis, since this FWHM corresponds to the
hemodynamic response that should be detected [79–81].
According to the matched filter theorem, the sensitivity of the pathology detection
in a DTI group study is enhanced when the data sets are smoothed with a kernel
that exactly matches the size and the shape of the expected pathology [78]. Since
the size of the pathology is rarely known a priori, it is very hard to determine
the optimal Gaussian kernel width to smooth the DTI data sets. Consequently, in
the VBA literature of DTI data sets, a large range of isotropic smoothing kernel
widths from 0 mm to as much as 16 mm is used, making the VBA method less
standardized than it promised to be (see Table 6.18 for an overview and references).
This large variability in the smoothing kernel width across studies is particularly
problematic since Jones et al. (2005) demonstrated that the reported VBA results
depend on the applied smoothing kernel width.
Besides the size, the matched filter theorem states that the shape of the smoothing
kernel should correspond to the expected signal differences. Although the shape
of a pathology is rarely known in advance, it will probably follow the affected
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Reference Voxel Size FWHM [mm3] FWHM [voxels]

Albrecht, 2007 1.8 x 1.8 x 3 mm3 10 x 10 x 10 mm3 5.6 x 5.6 x 3.3Albrecht, 2007 1.8 x 1.8 x 3 mm 10 x 10 x 10 mm 5.6 x 5.6 x 3.3 

Ardekani, 2003 1.8 x 1.8 x 5 mm3 0 x 0 x 0 mm3 0 x 0 x 0 

Barnea Goraly 2003 1 9 x 1 9 x 5 mm3 4 x 4 x 4 mm3 2 1 x 2 1 x 0 8Barnea‐Goraly, 2003 1.9 x 1.9 x 5 mm3 4 x 4 x 4 mm3 2.1 x 2.1 x 0.8

Barnea‐Goraly, 2004 1.9 x 1.9 x 5 mm3 4 x 4 x 4 mm3 2.1 x 2.1 x 0.8

Barnea‐Goraly, 2005 1.9 x 1.9 x 5 mm3 4 x 4 x 4 mm3 2.1 x 2.1 x 0.8

Borroni, 2007 1.7 x 1.7 x 5 mm3 10 x 10 x 10 mm3 5.9 x 5.9 x 2

Borroni, 2008 1.7 x 1.7 x 5 mm3 10 x 10 x 10 mm3 5.9 x 5.9 x 2

Bruno, 2008 2.5 x 2.5 x 5 mm3 15 x 15 x 15 mm3 6 x 6 x 3,

Burns, 2008 1.9 x 1.9 x 5 mm3 12 x 12 x 12 mm3 6.4 x 6.4 x 2.4

Chappel 2006 1 7 x 1 7 x 5 mm3 8 x 8 x 8 mm3 4 7 x 4 7 x 1 6Chappel, 2006 1.7 x 1.7 x 5 mm3 8 x 8 x 8 mm3 4.7 x 4.7 x 1.6

Eriksson, 2001 2.5 x 2.5 x 5 mm3 8 x 8 x 8 mm3 3.2 x 3.2 x 1.6
3 3Eriksson, 2001 2.5 x 2.5 x 5 mm3 10 x 10 x 10 mm3 4 x 4 x 2

Focke, 2008 1.9 x 1.8 x 2.4 mm3 8 x 8 x 8 mm3 4.2 x 4.4 x 3.3

Foong, 2002 2.5 x 2.5 x 5 mm3 6 x 6 x 6 mm3 2.4 x 2.4 x 1.2

Foong, 2002 2.5 x 2.5 x 5 mm3 16 x 16 x 16 mm3 6.4 x 6.4 x 3.2g

Gimenez, 2008 1.8 x 1.8 x 3.4 mm3 8 x 8 x 8 mm3 4.4 x 4.4 x 2.4

Golestani 2006 0 94 x 0 94 x 2 mm3 5 x 5 x 5 mm3 5 3 x 5 3 x 2 5Golestani, 2006 0.94 x 0.94 x 2 mm 5 x 5 x 5 mm 5.3 x 5.3 x 2.5

Kumar, 2008 1.8 x 1.8 x 2 mm3 10 x 10 x 10 mm3 5.6 x 5.6 x 5

H l f l 2006 1 9 1 9 5 3 4 4 4 3 2 1 2 1 0 8Holzapfel, 2006 1.9 x 1.9 x 5 mm3 4 x 4 x 4 mm3 2.1 x 2.1 x 0.8

Kyriakopoulos, 2007 1.9 x 1.9 x 2.5 mm3 4 x 4 x 4 mm3 2.1 x 2.1 x 1.6

Li, 2007 1.9 x 1.9 x 3 mm3 6 x 6 x 6 mm3 3.2 x 3.2 x 2

Man‐Cheuk, 2008 2.2 x 2.2 x 5 mm3 5 x 5 x 5 mm3 2.3 x 2.3 x 1

Menzies, 2008 2.3 x 1.9 x 4 mm3 8 x 8 x 8 mm3 3.5 x 4.2 x 2

Molko 2004 1 9 x 1 9 x 2 8 mm3 5 x 5 x 5 mm3 2 6 x 2 6 x 1 8Molko, 2004 1.9 x 1.9 x 2.8 mm 5 x 5 x 5 mm 2.6 x 2.6 x 1.8

Nagy, 2003 1.7 x 1.7 x 5 mm3 5 x 5 x 5 mm3 2.9 x 2.9 x 1

P d i 2007 1 7 1 7 5 3 10 10 10 3 5 9 5 9 2Padovani, 2007 1.7 x 1.7 x 5 mm3 10 x 10 x 10 mm3 5.9 x 5.9 x 2

Pagani, 2008 1.9 x 1.9 x 4 mm3 8 x 8 x 8 mm3 4.2 x 4.2 x 2

Park, 2004 1.7 x 1.3 x 4 mm3 3 x 3 x 3 mm3 1.8 x 2.3 x 0.8

Park, 2004 1.7 x 1.3 x 4 mm3 6 x 6 x 6 mm3 3.6 x 4.6 x 1.6

Park, 2004 1.7 x 1.3 x 4 mm3 9 x 9 x 9 mm3 4.8 x 6.9 x 2.4

Porto, 2008 2 x 2 x 2 mm3 9 x 9 x 9 mm3 4.5 x 4.5 x 4.5Porto, 2008 2 x 2 x 2 mm 9 x 9 x 9 mm 4.5 x 4.5 x 4.5

Rose, 2008 1.9 x 1.9 x 5 mm3 5 x 5 x 5 mm3 2.6 x 2.6 x 1

Sach 2004 3 3 3 mm3 6 6 6 mm3 2 2 2Sach, 2004 3 x 3 x 3 mm3 6 x 6 x 6 mm3 2 x 2 x 2

Sage, 2007 0.98 x 0.98 x 1.2 mm3 6 x 6 x 6 mm3 6.1 x 6.1 x 5

Seok, 2007 1.7 x 1.7 x 2 mm3 6 x 6 x 6 mm3 3.5 x 3.5 x 3

Shergill, 2007 2.5 x 2.5 x 2.5 mm3 4 x 4 x 4 mm3 1.6 x 1.6 x 1.6

Shin, 2006 1.7 x 1.7 x 4 mm3 10 x 10 x 10 mm3 5.9 x 5.9 x 2.5

Skelly, 2007 1.6 x 2 x 3 mm3 10 x 10 x 10 mm3 6.3 x 5 x 3.3Skelly, 2007 1.6 x 2 x 3 mm 10 x 10 x 10 mm 6.3 x 5 x 3.3

Snook, 2007 2.3 x 1.7 x 3 mm3 4 x 4 x 4 mm3 1.7 x 2.4 x 1.3

Thivard 2007 1 3 x 1 3 x 5 mm3 10 x 10 x 10 mm3 7 7 x 7 7 x 2Thivard, 2007 1.3 x 1.3 x 5 mm3 10 x 10 x 10 mm3 7.7 x 7.7 x 2

Vangberg, 20086 1.8 x 1.8 x 5 mm3 4 x 4 x 4 mm3 2.2 x 2.2 x 0.8

White, 2007 2 x 2 x 2 mm3 5 x 5 x 5 mm3 2.5 x 2.5 x 2.5

MEAN 1.9 x 1.9 x 3.9 mm3 7.6 x 7.6 x 7.6 mm3 3.9 x 4 x 2.2

ST. DEV. 0.4 x 0.4 x 1.2 mm3 3.2 x 3.2 x 3.2 mm3 1.7 x 1.7 x 1

Figure 6.10. In this table, an overview of the full width half maximum (FWHM) of

the isotropic smoothing kernels that is used in published VBA studies of DTI data sets is

provided. The voxel size of the acquired images and the FWHM of the applied smoothing

kernel (in mm) are displayed in the second and third column, respectively. In the right

column, the FWHM of the smoothing kernels as a function of the number of voxels is

presented.
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WM fiber bundle, without harming other WM structures or nearby GM tissues or
CSF. To the best of our knowledge, all published VBA studies of DT images use
an isotropic Gaussian smoothing kernel, which significantly increases the partial
volume averaging of the data. As a result, signal intensities from GM, WM, and
CSF are averaged prior to the application of the voxel-wise statistical testing.
Due to the anisotropic nature of most WM structures, isotropic smoothing of DT
images might potentially reduce the sensitivity and specificity of the pathology
detection. We hypothesize that the use of anisotropic filtering methods can increase
the robustness of the pathology detection in a VBA setting, since these methods
better preserve the WM boundaries.
In our work, the effect of different isotropic and anisotropic smoothing kernel widths
are evaluated in a VBA setting of DT images. In contrast to the study of Jones
et al. (2005), in which real DTI data sets of schizofrenia patients were used,
we evaluated the effect of smoothing on the VBA result in simulated DTI data
sets with a predefined pathology. Consequently, quantitative measures of VBA
sensitivity and specificity can be calculated for different smoothing kernel widths
and filtering approaches. This significantly improves the assessment of different
parameter settings in the voxel based analysis of DTI data sets.

6.2.2 Methods

6.2.2.1 Constructing simulated DTI data sets

The framework of simulating DTI data sets that is used in this study is based on
the acquisition of 20 healthy subject DTI data sets and 20 DT images of Multiple
Sclerosis (MS) patients (Fig. 6.11 (a)). These data sets were obtained on a 1.5 T
MR scanner using an SE-EPI sequence with the following acquisition parameters:
TR: 10.4 s; TE: 100 ms; diffusion gradient: 40 mT.m−1; FOV = 256× 256 mm2;
number of slices = 60; voxel size = 2 × 2 × 2 mm3; b = 700 s.mm−2; acquisition
time: 12 min 18 s. Diffusion measurements were performed along 60 directions
with 10 b0-images for a robust estimation of the diffusion tensors [57].
Based on our previous work, 20 simulated DTI data sets are constructed, containing
pathologies in different WM structures with a predefined level of tissue degradation
and a known location [82]. In addition, 20 simulated healthy subject DTI data sets
without a pathology are constructed. The framework of the DT image simulation
can be summarized as follows [82]:

• All 40 DTI data sets are transformed to the MNI space with an affine trans-
formation based on the FA maps (Fig. 6.11 (b)).

• A population specific DTI atlas was constructed from these affinely aligned 40
data sets by transforming the data sets non-rigidly to the population specific
atlas space (Fig. 6.11 (c) and (d)) [39].

– 159 –



CHAPTER 6. DTI GROUP ANALYSIS

native images images in atlas space(a) (h) (i)g

healthy 
subjects

patholhogy
subjects

g p

healthy 
subjects

pathology 
subjects

VBA Analysis 1

affine coregistration introduction noise
displace images in a 
random direction

images in MNI space

healthy 
bj

patholhogy
bj

images in atlas space

healthy 
bj t

pathology 
bj

displaced images

healthy 
bj t

pathology 
bj

(b) (g) (j)

subjects subjects

non‐rigid deformation introduction
inter‐subject 

subjects subjects subjects subjects

non rigid deformation

images in population atlas space images in atlas space

introduction
variability

(c) (f) (k)

healthy 
subjects

patholhogy
subjects

atlas pathology 
subjects

VBA Analysis 2

averaging healthy subject 
images

reproduction tl

introduction pathology

(d) (e)

atlas

reproduction

atlas

atlas

atlas atlas

(d) (e)

atlas

Figure 6.11. In the construction framework of the simulated data sets, native images

of healthy and pathology subjects (a) are transformed to the MNI template using an affine

transformation (b). Thereafter a DTI atlas is constructed from these images (c,d). This

atlas is reproduced 40 times (e) and a simulated pathology is added in half of these atlas

data sets (f). Subsequently, inter-subject variability (g) and noise (h) are added to all

images. The resulting data sets are used in the VBA Analysis 1 (i). In VBA Analysis 2,

these data sets are displaced in a random direction by different distances (j,k).

• The resulting atlas is regarded as the fundamental image and is copied 40
times (Fig. 6.11 (e)).

• In half of these 40 atlases, the diffusion properties are altered in a known WM
location to simulate a pathology (Fig. 6.11 (f)). In this work, the transverse
diffusivity, i.e. the average of the second and third eigenvalues, is increased
by six different levels to simulate a microstructural breakdown of the WM.
These six levels of pathology correspond with an FA decrease of 7%, 10%,
13%, 16%, 19%, and 22%. In Fig. 7.3, the location, size, and extent of
the 19 simulated WM pathologies is displayed, whereby every pathology is
given a different color. Diffusion alterations have been reported in these WM
structures in various studies. As can be seen in Fig. 7.3, the pathologies
differ in size, ranging from 24 to 187 voxels in which the diffusion properties
are altered. In order to study the effect of the pathology size on the VBA
results for different smoothing kernels, the group of pathologies is divided in
three subgroups: small (i.e. number of voxels smaller than 50), medium (i.e.
number of voxels between 50 and 65), and large (i.e. number of voxels larger
than 65) pathologies.
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• Inter-subject variability of the diffusion properties is introduced in all atlas
images, i.e. in the 20 original atlases and in the 20 atlases with a pathology
(Fig. 6.11 (g)). The inter-subject variability of the eigenvalues was estimated
from 75 healthy subject DTI data sets based on a PCA analysis (see [82] for
more information).

• A realistic amount of Rician noise is added to the resulting simulated data
sets (Fig. 6.11 (h)).

6.2.2.2 Smoothing methods

In this work, isotropic and anisotropic smoothing approaches for filtering the FA
maps before applying voxel based statistical tests are evaluated.

Isotropic smoothing: To the best of our knowledge, all VBA studies of DT im-
ages apply an isotropic, Gaussian smoothing kernel before performing the
voxel-wise the statistical tests. To evaluate the effect of the isotropic smooth-
ing kernel size on the sensitivity and the specificity of the VBA analysis, the
data sets are smoothed with kernels of different full width at half maximum
(FWHM): 3 mm, 6 mm, 9 mm, and 12 mm (σ of 1.27, 2.54, 3.81, and 5.08),
corresponding with 1.5, 3, 4.5, and 6 voxels.

Anisotropic smoothing: Anisotropic smoothing has already been applied to de-
noise diffusion tensor images [83]. In this work, an edge and corner pre-
serving filter for magnitude MR data was constructed using an anisotropic
Gaussian smoothing kernel shaped by the eigenvalues and eigenvectors of a
local gradient tensor and applied to the FA maps [84]. During smoothing,
the Rice distribution of the magnitude MR data was taken into account as
to minimize possible bias in the estimation of the noiseless, underlying sig-
nal. Analogously as in the isotropic smoothing approach, the effect of the
smoothing kernel width on the VBA results is evaluated by smoothing the
data sets with a similar range of FWHMs: 3 mm, 6 mm, 9 mm, and 12 mm.

6.2.2.3 Analyses of smoothing methods using simulated DTI data sets

The effect of smoothing on the VBA results is evaluated in two conditions.

Analysis 1: 20 simulated healthy and 20 pathology data sets are constructed ac-
cording to the steps (a)-(h) of Fig. 6.11. The FA maps of these data sets
are subsequently smoothed before the statistical tests are performed in each
voxel. Since all images are located in the atlas space, no residual misalign-
ment is present. The VBA results can thus be interpreted as the significant
differences between the healthy and the pathologic subjects under perfect
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Figure 6.12. The simulated pathology is visualized on 30 axial FA slices. The various

pathology clusters are thereby given a different color: (a): cortico-spinal tract; (b) and (c):

cerebellar peduncle; (d) and (e): inferior longitudinal fasciculus; (f): cerebral peduncle;

(g): anterior limb of the internal capsule; (h): posterior limb of the internal capsule; (i):

genu of the corpus callosum; (j): forceps minor; (k): forceps major; (l): capsula externa;

(m): splenium of the corpus callosum; (n): anterior region of the corona radiata; (o):

superior region of the corona radiata; (p): body of the corpus callosum; (q): superior

longitudinal fasciculus; (r): cingulum; (s): superior region of the corona radiata.
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coregistration (see Fig. 6.11 (i)). In this setting, the validity of the matched
filter theorem and the effect of different smoothing kernel widths and filter-
ing approaches on the sensitivity and specificity of the pathology detection is
examined.

Analysis 2: Since smoothing is also performed to correct for residual misalign-
ment errors, coregistration inaccuracies are simulated. To this end, each of
the 40 DTI data sets, which were derived in Analysis 1, are displaced by
a certain distance in a random direction. This approach of simulating im-
age misalignment was previously applied by Ashburner and Friston (2000).
In their work, probability maps were translated in a fixed direction (left-
right). To examine the effect of residual misalignment on the VBA results,
the 40 DTI data sets are displaced by a distance dki in a random direction
θi (i = 1, ..., 40) (see Fig. 6.11 (j)). The distances dki are thereby calculated
as a Gaussian distribution around a given displacement k (k = 2, 4, 6, 8 mm,
σ = 0.65 mm). The FA maps of the deformed data sets are subsequently
smoothed and statistical tests are executed in each voxel(see Fig. 6.11 (k)).

After filtering all the data sets with the appropriate smoothing method and ker-
nel width, a non-parametric Mann-Whitney U test is performed at every voxel to
compare the FA values of the healthy and the pathologic subjects. In this work,
only the FA is compared, since this is the diffusion measure that is most frequently
reported in the literature. A correction for multiple comparisons needs to be incor-
porated subsequently to reduce the chance of Type I errors. In this work, the false
discovery rate controlling method of Benjamini and Hochberg was used to correct
the p-values for multiple comparisons [62]. A false discovery rate bound of 0.05
was thereby applied.

6.2.2.4 Measures of VBA accuracy

Since the location, size and extent of the WM pathology is predefined in the sim-
ulated data sets, the VBA results can be compared with this ground truth quan-
titatively. A very simple measure describing the accuracy of the VBA approach is
to count the number of pathologies that is detected by the VBA study. This is the
most important quantitative measure since it determines if this pathology would
be reported in the results of the VBA study.
In addition, the sensitivity and specificity of the statistical VBA results are calcu-
lated. The sensitivity is defined as the ratio of the number of true positive voxels
and the sum of the number of true positive and false negative voxels. The speci-
ficity is calculated as the ratio of the number of true negative voxels and the sum
of the number of true negative and false positive voxels. A receiver-operating char-
acteristic (ROC) plot, displaying the true positive rate (=sensitivity) as a function
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of the false positive rate (=100−specificity), can then be drawn. The closer the
points in the ROC plot are located to the upper left corner, the higher the overall
accuracy of the analysis [85].

6.2.3 Results

The effect of isotropic and anisotropic smoothing on an FA image is visualized for a
random axial slice in Fig. 6.13 for different smoothing kernels with a FWHM rang-
ing from 0 mm to 12 mm. As can be observed, the different WM structures that
can be discriminated on the original FA map are blurred after isotropic smoothing
with larger FWHM. In addition, the overall FA intensity of the WM is decreased
after isotropic smoothing due to the averaging of WM with GM and CSF, which
contain much lower FA values. Since the image boundaries are preserved during an-
isotropic smoothing, a filtered signal is observed in the WM, without the inclusion
of GM or CSF intensities. As can be seen in Fig. 6.13, the different WM structures
can be discriminated even after anisotropic smoothing with a large FWHM.
The VBA results of Analysis 1 are displayed on 10 axial slices for both smoothing
approaches and different smoothing kernel widths in Fig. 6.14. A level of pathology
corresponding with an FA decrease of 19% was thereby introduced. The voxels that
contain a ground truth pathology are colored in green, whereas the VBA results are
colored in red. Consequently, the voxels in which the VBA results and the ground
truth overlap, are colored in yellow. A green, red, and yellow color on the axial
slices of Fig. 6.14 thus represent the presence of false negative, false positive, and
true positive results, respectively. Voxels in which the background FA values are
displayed correspond with true negative results. It can be seen in Fig. 6.14 that
the number of false positive and false negative results increase and the number of
true positive results decrease for increasing isotropic smoothing kernel width. On
the other hand, a relatively high number of yellow true positive voxels are observed
at larger anisotropic smoothing kernel widths.
Since the smoothing is performed principally to meet the matched filter theorem,
the validity of this theorem is analyzed using the simulated data sets. To this end,
the FWHM that produced the highest sensitivity to detect a certain pathology is
mapped against the size of this pathology, as can be seen in Fig. 6.15. This is
done for different levels of pathology, corresponding with an FA decrease of 10%,
13%, 16%, and 19%. In order to obtain more continuous results, smoothing kernel
widths from 1 mm to 12 mm were used in this analysis. As can be observed in
Fig. 6.15, a significant correlation is found between the optimal FWHM and the
size of the pathologies when the data was smoothed with an anisotropic kernel.
The correlation was measured statistically by the Spearman correlation coefficient
ρ, which varied between 0.485 and 0.697 for the anisotropic smoothing results.
It can also be observed in Fig. 6.15 that no correlation was found between the
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Figure 6.13. In (a), an axial FA slice is shown after different levels of isotropic and

anisotropic smoothing. The FA histograms after smoothing with different kernels are dis-

played in (b), using an FA threshold of 0.2 to only include the WM information. In (c),

the effect of smoothing on the FA values of different WM structures is demonstrated.
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Figure 6.14. VBA results are visualized using different smoothing methods and various

smoothing kernel widths. The voxels that contain a ground truth pathology and the VBA

results are displayed in green and red, respectively. When both overlap, a yellow color is

assigned to that voxel. False positive, false negative, and true positive results are therefore

colored in red, green, and yellow, respectively. The voxels in which the background FA

map is shown can be regarded as containing true negative results.
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optimal FWHM and the size of the pathologies in the case of isotropic smoothing
(i.e. Spearman correlation coefficient ρ between 0.122 and 0.18, and a p>> 0.5).
An isotropic smoothing kernel with a FWHM of 3 mm almost always resulted in
the highest sensitivity to detect the pathologies of various sizes.
In Fig. 6.16, the percentage of detected pathologies by the VBA analysis is dis-
played for different levels of simulated residual misalignment, for the two smoothing
methods, and for different smoothing kernel widths. In addition, the analysis was
performed for three groups of pathologies with different sizes. In the left column,
the results are displayed for the pathologies that contain less than 50 voxels. In
the middle and the right column, the results are shown for the pathologies with a
number of voxels between 50 and 65 and with a number of voxels larger than 65,
respectively. In the upper row, the results of the Analysis 1 are displayed, when
no residual misalignment was added to the data sets. In the second, third, and
fourth row of Fig. 6.16, results are shown after displacing the data sets with a
mean distance of 2 mm, 4 mm, and 6 mm, respectively. All results were derived for
a specific level of transverse diffusivity increase, which corresponded with a mean
FA decrease of 22%. A pathology was assigned as detected when at least 1 voxel of
this pathology was significant after the Benjamini-Hochberg correction for multiple
comparisons. As can be observed in the upper row of Fig. 6.16, all pathologies
were detected in the VBA analysis using anisotropic smoothing when no residual
misalignment was present. The pathology detection rate obviously decreased for
an increasing level of residual misalignment, especially for the smaller lesions, as
can be seen in the left column. Additionally, a lower detection of pathologies was
observed when the data sets were smoothed isotropically, with a FWHM > 3 mm.
In particular, the smaller pathologies were detected less frequently. The pathology
detection rate after isotropic and anisotropic are compared statistically using a non-
parametric Mann-Whitney U-test. In Fig. 6.16, ‘*’ denotes statistical significance
at the 0.05 level, ‘**’ at the 0.01 or lower level.
The sensitivity and the specificity of the VBA results are displayed in an ROC
graph in Fig. 6.17 for the different smoothing approaches, various kernel widths,
and different levels of pathology. In Fig. 6.17 (a), an ROC curve is visualized
for perfectly aligned data sets. In Fig. 6.17 (b)-(d), the true positive and the
false positive rate are displayed for the simulation of different levels of residual
misalignment. The true positive and false positive rate were calculated for six
levels of pathology, as reflected by an FA decrease of 7%, 10%, 13%, 16%, 19%,
and 22%.

6.2.4 Discussion

The idea of performing a voxel-wise analysis of medical images originates from the
study of fMRI and PET data sets [86–89]. In recent years, this method is increas-
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Figure 6.16. The effect of isotropic and anisotropic smoothing kernel widths on the

percentage of detected pathologies is examined. In the upper row, the results of VBA anal-
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results are separately displayed for three pathology groups, depending on the size of the

pathology.
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ingly being applied to examine DTI data sets of subjects with various pathologies.
In VBA, the whole brain is checked for patient-control differences. This is done
in a standardized, automatic way, including a coregistration of the data sets to a
template and a subsequent smoothing of the transformed images, followed by a
voxel-wise statistical analysis and a post-hoc correction for multiple comparisons.
Although this approach to analyze a group of data sets has many advantages com-
pared to the ROI based method, recent studies suggest that its results are not
always accurate and disease specific, because they depend on the parameter set-
tings and implementations of the analysis [27, 73, 74]. Since fMRI, PET, and DT
images are different in nature, there is no reason to assume that the optimal im-
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plementation and parameter settings to analyze fMRI and PET images should also
be applied to examine DTI data sets. For example, the image resolution of fMRI
(3− 6 mm) and PET (5− 7 mm) data sets is significantly larger compared to DTI
(2 mm in this study, see Table 6.18 for the image resolution in other studies). Since
fMRI and PET aim to trace hemodynamic responses, which are representative for
functional activation in the brain and are expressed on a scale of 5− 8 mm, a ‘rule
of thumb’ was introduced, stating that the FWHM of the applied smoothing kernel
should be at least be 2− 3 times the voxel dimension. Obviously, since DTI is to-
tally unrelated to the hemodynamic response, there is no reason to apply this ‘rule
of thumb’ in the analysis of DTI data sets. In order to fulfil the requirements of the
matched filter theorem in DTI, a smoothing kernel should be used that matches
the size and the shape of the underlying WM pathology. Since this depends on the
specific pathology that is studied and on the size and shape of the specific WM
structure in which the pathology is situated, it is very hard to postulate a ‘rule of
thumb’ for the smoothing kernel width in the voxel based analysis of DT images.
As aforementioned, this is reflected by the large range of isotropic smoothing kernel
widths from 0 mm to as much as 16 mm that is reported in the DTI literature,
making the VBA method less standardized than it promised to be (see Table 6.18).
This large variability in the smoothing kernel width across studies is particularly
problematic since Jones et al. (2005) demonstrated that the reported VBA results
depend on the applied smoothing kernel width. In their work, Jones et al. (2005)
compared the DTI data sets of healthy subjects and schizofrenia patients using a
voxel based analysis with different smoothing kernels. No significant results were
reported when the data sets were smoothed with a FWHM smaller than 7 mm.
For a FWHM larger than 7 mm, a first cluster of significant voxels appeared and
for a FWHM larger than 9 mm, a second cluster appeared. Although this study
demonstrated the dependency of the VBA results on the smoothing kernel width,
no conclusions could be drawn regarding the optimal smoothing kernel width for
the analysis of these DTI data sets, since the underlying pathology was not known.
The two clusters that appeared at larger smoothing kernels could indeed be as-
signed as true positive as well as false positive results. In addition, no conclusions
could be drawn regarding the presence of true and false negative results.

After reviewing the VBA literature of DTI data sets, it can be concluded that all
voxel based studies of DTI data sets use an isotropic Gaussian smoothing kernel,
analogously as in the analysis of fMRI and PET data sets (see Table 6.18). An
isotropic Gaussian smoothing method is applied in the VBA analysis of DTI data
sets, since it is available in software packages, such as SPM. The use of this isotropic
smoothing approach also helps to ensure the assumptions underlying the theory of
Gaussian random fields, because smoothing renders the data more Gaussian dis-
tributed. The Bonferroni adjustment to control for false positive rate is generally
considered to be excessively conservative since test statistics on neighboring vox-
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els are correlated, and therefore the actual number of independent comparisons is
less than the number used for correction. Since the assumptions of the Gaussian
random field theory are not met when the data sets are smoothed anisotropically,
a correction for multiple comparisons based on the false discovery rate method of
Benjamini and Hochberg was used after the nonparametric statistics were applied
in each voxel [62, 90]. In contrast to fMRI and PET, which investigate image in-
tensity alterations in the GM, DTI examines the highly structured and anisotropic
WM bundles. The application of an isotropic filter therefore averages information
from different WM structures, from WM and GM or from WM and CSF, which
can reduce the sensitivity and specificity of the VBA results. Due to the aniso-
tropic nature of the WM, WM pathologies will also be rarely isotropic. Therefore,
although the size of the pathologies is rarely known in advance, the shape of the
pathology is likely to follow the shape of the corresponding WM structure.

In this study, simulated DTI data sets with a predefined pathology (i.e. a known
size, shape, location, and level of diffusion alterations) were used to evaluate the
sensitivity and specificity of the pathology detection in a VBA analysis involving
isotropic as well as anisotropic smoothing with different FWHM. Our results of
Fig. 6.15 indicate that the requirements of the matched filter theorem are satisfied
when the data are filtered with an anisotropic smoothing kernel, since a significant
correlation was found between the size of the pathology and the smoothing kernel
size with the highest sensitivity. As can be observed in Fig. 6.15, the isotropically
smoothed data are not in agreement with the matched filter theorem, due to the
difference in shape between the isotropic smoothing kernel and the pathologies, and
the reduced sensitivity of pathology detection at higher FWHM. The percentage
of detected pathologies decreased for increasing FWHM of the isotropic smoothing
kernel, since signal from other structures and tissues is included in the analysis
of a WM voxel after isotropic smoothing (see Fig. 6.16). As observed in Fig.
6.16, especially the detection rate of the smaller pathologies decreased when larger
smoothing kernels were used to filter the data. On the other hand, the percentage
of pathology detection was not reduced for increasing FWHM of the anisotropic
smoothing kernel. For a FWHM larger than 3 mm, the VBA results after aniso-
tropic smoothing were significantly better in detecting the pathologies compared to
the VBA results after isotropic smoothing. Besides a lower sensitivity, the speci-
ficity was also reduced for increasing FWHM of the isotropic smoothing kernel,
as was observed in the ROC curves of Fig. 6.17. The difference in sensitivity and
specificity between the smoothing approaches was lower for increasing levels of sim-
ulated residual misalignment, due to an overall decrease in the VBA sensitivity and
specificity. In this context, note that a simulated coregistration error of 4 mm or 6
mm (or 2− 3 voxels) is much larger compared to the observed misalignment after
non-rigid coregistration of real data sets. In addition, the simulation of residual
misalignment is limited because a uniform displacement is applied to every voxel of
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each data set. In practice, however, misalignment is spatially dependent and thus
not uniform.
In conclusion, our results indicate that the sensitivity as well as the specificity of
the pathology detection are significantly reduced when the data sets are smoothed
isotropically with a FWHM larger than 3 mm in a VBA study. DTI researchers
should therefore be careful in adopting parameter settings that are accepted for use
in fMRI or PET studies to the group analysis of DTI data sets. In this work, we
propose to apply an anisostropuic smoothing approach in the DTI group studies to
increase the SNR and preserve the WM boundaries. Using simulated DTI data sets,
we demonstrated that the use of anisotropic smoothing kernels can significantly
increase the sensitivity and the specificity of detecting a pathology in a VBA study.
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6.3 A voxel based diffusion tensor study of patients

with multiple sclerosis

6.3.1 Introduction

Although it has been demonstrated that conventional MR images are sensitive
for detecting M) lesions, the T2 lesions reflect the clinical manifestations only to
a limited extent [91, 92]. Recently, more advanced imaging techniques, such as
DTI, have been employed to examine MS [93]. DTI provides in vivo information
about the WM fiber architecture. It is therefore increasingly being applied to
study neurological disorders, such as MS [94]. Diffusion measures that are often
used to quantify WM damage include the FA, which is a normalized measure of
the diffusion anisotropy, and the MD, which is the averaged diffusion in a voxel.
Recent studies suggest that the longitudinal and the transverse diffusivities λ‖ and
λ⊥ can provide additional information about demyelination and axonal loss in MS
patients [44–49].
Different post-processing approaches can be used to compare the DTI data sets of
MS patients and healthy control subjects. In a first method, ROIs are drawn to
delineate different corresponding WM structures in the DTI data sets of all subjects
separately. Subsequently, the diffusion measures of healthy and MS subjects that
were derived from these ROIs are compared [10–12, 14–17, 95, 96]. Other studies
use diffusion tensor tractography to select the WM bundles of interest and compare
the diffusion measures of these specific fibers between different subjects [97–102].
A more automated approach to analyze groups of DTI data sets is provided by
VBA. In this method, all DTI data sets are transformed to a template, followed
by a smoothing of the images and a statistical analysis in every voxel. In this
way, the whole brain is evaluated for group differences, without the need for an
a priori hypothesis regarding the spatial location of the pathology. This VBA
method was recently applied to examine DTI data sets of MS patients [103–105].
In a similar automated approach, called TBSS, diffusion data are projected onto
a tract representation, or skeleton, whereafter the statistical analysis is restricted
to the voxels on this skeleton [52]. Recently, this method was applied by Dineen
et al. (2008) and Roosendaal et al. (2008) to evaluate differences between control
subjects and MS patients [106, 107].
Cognitive deterioration is commonly reported in MS patients, and can present itself
as an impairment of recent memory, sustained attention, verbal fluency, conceptual
reasoning, and visual-spatial perception [108, 109]. The Paced Auditory Serial Ad-
dition Test (PASAT) and its visual analogue, the Paced Visual Serial Addition Test
(PVSAT) are commonly used experimental paradigms to evaluate sustained atten-
tion, working memory and speed of information processing in MS [110]. It has been
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suggested that cognitive disabilities in MS patients may be related to white matter
lesions and normal appearing brain white matter (NAWM) in frontal, temporal, as
well as parietal regions, although the exact correspondence of cognitive dysfunc-
tion with the underlying neuropathology remains unclear [108, 111–119]. Since
DTI provides measures of WM integrity, it is therefore an interesting technique to
investigate the correlation of WM damage with cognitive function in MS patients.
Previous studies investigated the relation between WM injury and cognitive per-
formance in patients with MS [106, 112, 113, 120]. Rovaris et al. examined the
relationship between DTI and cognition in relapsing-remitting (RR) MS patients
using a whole brain histogram analysis [114]. They found moderate correlations
between the MD and neuro-psychological test scores that measured memory, speed
of information processing and verbal fluency. Lin et al. found that the MD of
the corpus callosum correlated with the PASAT score [121]. More recently, Dineen
et al. examined the whole brain for correlations of FA and cognitive dysfunction
[106]. They reported significant correlations of PASAT and FA in the body and
splenium of the corpus callosum, the forceps major, the left cingulum, the right
inferior longitudinal fasciculus, the left superior longitudinal fasciculus, the arcuate
fasciculus. In their study, Mesaros et al. (2009) observed correlations of PASAT
and FA in the corpus callosum [105].
The aim of this study was to examine differences in FA, λ‖, λ⊥, and MD between
healthy subjects on the one hand and mildly and moderately affected MS patients
on the other hand. In addition, the relationship between the PASAT and PVSAT
tests of cognitive decline and microstructural WM breakdown, as assessed by the
DTI measures, was studied in an automated whole brain analysis. To this end,
an optimized VBA approach was used to compare the diffusion properties of all
subjects in every brain voxel and to correlate them with PASAT and PVSAT scores.

6.3.2 Methods

6.3.2.1 Subjects

Twenty patients with definite multiple sclerosis according to the recently revised
McDonald criteria were included [122, 123]. Enrolled subjects did not have a relapse
for at least 30 days before entry into the study, did not use sedatives, and had a
visual acuity above 20− 40, as measured on a Snellen chart. Ten patients with an
expanded disability status scale (EDSS) between 0 and 3, referred to as MS group
1, and ten patients with an EDSS between 4 and 7, referred to as MS group 2,
were selected [124]. MS patient group 1 contained 9 relapse-remitting MS patients
and 1 secondary-progressive patient, whereas 4 relapse-remitting and 6 secondary-
progressive MS patients were included in group 2. A control group of ten healthy
volunteers was matched to both patient groups for age, gender and educational
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number of subjects 10 10 10

gender (f/m)

MS2controls MS1

5/5 5/5 4/6gender (f/m)

MS type (RR/SP)

age (year, mean ± sd) 42 ± 10 43 ± 9 41 ± 7

education (year, mean ± sd) 14 ± 2 14 ± 2 13 ± 2

PASAT (mean ± sd) 53 ± 5 49 ± 9 46 ± 13

5/5 5/5 4/6

na 9/1 4/6

EDSS (mean ± sd) na 2 ± 1 6 ± 1

disease duration (mean ± sd) na 12 ± 7 11 ± 5

Figure 6.18. Study information.

level. Volunteers using medication, having a first or second degree relative with
MS, or having visual impairment were excluded. The demographics, educational
level, EDSS, and PASAT scores for the three subject groups are presented in Fig.
1. All subjects were right handed. The study was approved by the hospital ethics
committee and all subjects gave written informed consent before entering the study.

6.3.2.2 Cognitive tests

During the PASAT, subjects were presented with 61 numbers between 1 and 9,
at a rate of one per three seconds. After each stimulus, starting with the second,
subjects had to calculate the sum of the two last stimuli, and vocalize their answer.
During PVSAT the same task was performed. Numbers however, were presented
on a computer screen [110]. Both procedures were explained and practiced. The
PASAT and PVSAT tests were performed before as well as during scanning. Pa-
tients were asked not to vocalize their answers when tested in the scanner, in order
to minimize motion and susceptibility artifacts. Instead, they were asked to acti-
vate a pneumatic switch with their right hand when the answer was ten or higher.
This procedure was adapted from Mainero et al. (2004), and used for both PASAT
and PVSAT responses.

6.3.2.3 Image acquisition

DTI data sets were obtained on a 1.5 T MR scanner using an SE-EPI sequence with
the following acquisition parameters: TR: 10.4 s; TE: 100 ms; diffusion gradient:
40 mT.m−1; FOV = 256× 256 mm2; number of slices = 60; voxel size = 2× 2× 2
mm3; b = 700 s.mm−2; acquisition time: 12 min 18 s. Diffusion measurements
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were performed along 60 directions with 10 b0-images for a robust estimation of the
diffusion tensors [57]. In the same scanning session a T1-weighted magnetization
prepared rapid acquisition gradient recalled echo image (MPRAGE, 1×1×1 mm3,
TE/TR 3.76/1700 ms) and a T1-weighted spin echo image (SE, 1 × 1 × 1.5 mm3,
TE/TR 15/700) were also obtained.

6.3.2.4 Image processing

DTI data sets were processed as follows:

• From the EPI MNI template, a custom FA based template was constructed
as described in Jones et al. (2002). All DTI data sets are transformed to this
custom FA atlas with an affine transformation using MIRIT based on the FA
maps [36]. The PPD tensor reorientation strategy was thereby incorporated
[34, 35].

• A population specific DTI atlas was constructed from these affinely aligned
data sets by transforming the data sets non-rigidly using a viscous fluid model
and mutual information to the population specific atlas space [37, 39].

• All affinely coregistered data sets are transformed to this population specific
atlas using high dimensional coregistration algorithm that was adopted to
include all tensor information during the iterative alignment procedure [37].
Thereafter, the FA, λ‖, λ⊥, and MD images are calculated for all data sets
in atlas space.

• The resulting images are smoothed with an adaptive, anisotropic smoothing
kernel (FWHM = 3 mm). The spatially dependent, anisotropic kernel was
estimated from the FA maps and subsequently applied to the FA, λ‖, λ⊥,
and MD images. By using an adaptive, anisotropic smoothing kernel, the
WM boundaries are preserved. As a result, the partial volume averaging of
WM tissue with gray matter or cerebro spinal fluid is reduced, compared to
a generally applied isotropic filter method.

After this pre-processing of the data sets, two analyses were performed:

Analysis 1: the diffusion properties of the different subject groups, i.e. the control
group, MS patient group 1, and MS patient group 2, are compared using
an analysis of variance (ANOVA) in each voxel. A correction for multiple
comparisons based on the false discovery rate (FDR) (q-value threshold of 0.1)
was thereby applied [62]. In order to verify the specific differences between the
various groups, Mann-Whitney U-tests were subsequently applied between
the control group and the MS patient group 1, the control group and the MS
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patient group 2, and between both MS patient groups, including an FDR
based correction for multiple comparisons.

Analysis 2: Spearman correlation tests are performed in each voxel to quantify the
relation between the different diffusion properties and the various cognitive
test results. Again, an FDR based correction for multiple comparisons was
performed (q-value threshold of 0.1) [62].

6.3.3 Results

The three subject groups did not significantly differ in age, gender distribution,
disease duration or educational level (Table 1). MS group 2 contained significantly
more SP MS patients than RR MS patients, compared to MS group 1 (Chi square
test, p < 0.05). No significant correlation between EDSS and pre-scan PASAT
was found (Spearman’s ρ = −0.015, p = 0.949). In addition, cognitive perfor-
mance, assessed with the pre-scan PASAT, did not differ significantly between the
experimental groups (Table 1). However, the PASAT and PVSAT scores that were
acquired during scanning were significantly lower in the MS group 2 compared to
the control group (see Fig. 2). In an ANOVA model, a significant difference be-
tween the subject groups was found (p < 0.05). A Tukey HSD post hoc comparison
showed a significantly lower number of correct answers during the scan session for
MS patient group 2, compared to controls (p < 0.05). There was no significant
difference between the control group and the MS patient group 1 (p = 0.484), nor
between both patient groups (p = 0.239) in this post hoc comparison. It was also
observed that PASAT scores were significantly lower than PVSAT scores when ob-
tained during scanning (p < 0.001). PASAT and PVSAT behavioral scores during
the scan session were significantly correlated (ρ = 0.585, p = 0.001).
In Fig. 6.20, the significant voxels of the ANOVA test between the three subject
groups are colored in white and superimposed on different axial slices of the atlas
FA maps that were color-encoded for the diffusion direction. As can be seen in Fig.
6.20 (a), differences in FA between the subject groups are observed in the inferior
longitudinal fasciculus, the capsula externa, and the forceps major. Differences in
λ‖ are found in the inferior longitudinal fasciculus, the capsula interna, the body
of the corpus callosum, and the corona radiata (see Fig. 6.20 (b)). As can be
seen in Fig. 6.20 (c) and (d), the λ⊥ and MD are significantly different between
the subject groups in the inferior longitudinal fasciculus, the capsula interna and
externa, genu, body, and splenium of the corpus callosum, the forceps major, and
the corona radiata. After applying Mann-Whithney U tests to examine the specific
group differences, no significant voxels were found when comparing the control
group and the MS patient group 1 or both MS patient groups. The differences that
were observed in the ANOVA analysis thus originate from differences between the

– 178 –



6.3. DTI OF MS PATIENTS

90

60

70

80

30

40

50 PASAT
PVSAT

10

20

30

0
co MS1 MS2

Figure 6.19. Results of behavioral tests during scanning.

control group and MS patient group 2, as can be observed in Fig. 6.21 (a), (b),
(c), and (d).

The voxels in which the cognitive test scores are significantly correlated with the
diffusion measures are depicted in white and superimposed on axial slices of the
color encoded FA maps in Fig. 6.22. In Fig. 6.22 (a), (b), and (c), the correlation
results of the PASAT score with the FA, λ⊥, and MD are displayed, respectively.
Significant correlations between PASAT and FA are found in the left inferior longi-
tudinal fasciculus, the forceps minor, the capsula interna and externa, the genu of
the corpus callosum, the left cingulum, the superior longitudinal fasciculus, and the
corona radiata. As can be seen in Fig. 6.22 (b), similar regions contain significant
correlations between the PASAT and the λ⊥. Correlations between the PASAT
score and the MD were observed in the capsula interna and externa, the superior
longitudinal fasciculus, and the corona radiata (see Fig. 6.22 (c)). As can be ob-
served in Fig. 6.22 (d), correlations between FA and PVSAT were found in similar
WM locations as the correlations between PASAT and FA, except for the genu of
the corpus callosum and the cingulum, where no correlations between PVSAT and
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Figure 6.20. VBA results of the ANOVA group analysis.

FA were detected. Considerable less correlations were observed between PVSAT
and the λ⊥ and the MD, as demonstrated in Fig. 6.22 (e) and (f), respectively.
In Fig. 6.23, the Spearman correlation coefficients ρ are depicted in the voxels that
contain statistically significant correlations. The results are thereby superimposed
on the atlas FA map. The correlation coefficients ρ of the PASAT scores with
the diffusion measures are shown in Fig. 6.23 (a), (b), and (c). In Fig. 6.23 (d),
(e), and (f), the correlation coefficients between PVSAT and FA, λ⊥, and MD are
displayed, respectively.

6.3.4 Discussion

In this work, diffusion properties were compared between healthy subjects, and
patients with mild and moderate MS using an optimized VBA method. In addi-
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Figure 6.21. VBA of healthy subjects vs moderately impaired MS patients.

tion, correlations between the diffusion properties and cognitive test scores were
examined in each brain voxel.

In recent years, VBA is increasingly being used to compare DTI data sets of healthy
subjects and patients with a neurological and psychiatric disorders. Although
VBA has many advantages compared to other post-processing methods, such as
for example an ROI approach, it also has some important drawbacks. First, all the
images need to be aligned perfectly to an atlas, which is not straightforward. In
addition, the reported results depend on the selection of different parameter settings
in the coregistration algorithm, the image smoothing, the statistical tests, and the
post-hoc correction for multiple comparisons. As a result, the VBA technique
is less standardized as it promised to be [73, 74]. An alternative whole brain
analysis approach is provided by TBSS. In this method, however, only a relatively
small proportion of the WM voxels is analyzed, i.e. only those voxels with the
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Figure 6.22. VBA results of correlation between diffusion measures and cognitive tests.
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Figure 6.23. Spearman coefficients of correlation between diffusion measures and cog-

nitive tests.

– 183 –



CHAPTER 6. DTI GROUP ANALYSIS

highest local FA. Valuable information from a large number of voxels is therefore
lost. In this work, we opted for using an optimized VBA method to analyze the
data. To this end, a high-dimensional viscous fluid model was used to align the
DTs of different DTI data sets using mutual information as a similarity measure
[37]. It is already been demonstrated that the residual misalignment is very small
after applying this coregistration approach [37]. In addition, a population specific
DTI atlas was constructed from our 30 data sets, in order to minimize the spatial
deformations that are needed to align the different data sets to the template [39]. As
a result, less residual misalignment is observed after the coregistration of the data
sets to this atlas [39]. Finally, an anisotropic smoothing kernel was applied to filter
the DTI data sets. It has been recently demonstrated that the use of anisotropic
filtering methods, which better preserve the WM boundaries after smoothing, can
increase the sensitivity and specificity of the pathology detection in a VBA study
of DTI data [125].

Many of the published DTI studies that examined MS patients used ROIs or dif-
fusion tensor tractography to delineate and evaluate the WM structures of interest
[10–12, 14–17, 95–102, 126]. More recently, VBA and TBSS methods were applied
to analyze DTI data sets of MS patients [103–107]. Similar as well as dissimilar
results are reported in these DTI studies of MS patients. The subject group and
disease heterogeneity across the different studies, including confounding factors
such as age, sex, handedness, disease duration, MS type etc., can partially explain
these observed discrepancies. MS is indeed a very heterogeneous condition, poten-
tially involving different WM structures in the disease process, and microstructural
breakdown can vary with the disease subtype, duration, etc. Additionally, differ-
ent post processing methods (ROI vs. tractography vs. VBA vs. TBSS) and
implementation choices (smoothing kernel, coregistration algorithm, placement of
ROIs, statistics, etc.) can cause the observed discrepancies in the reported re-
sults. Differences of the diffusion between control subjects and MS patients were
detected in various parts of the corpus callosum [10, 12, 16, 95, 105–107, 126],
different parts of the cortico-spinal or pyramidal tracts [12, 98, 105–107, 126, 127],
the frontal WM [127], the forceps major [12, 106, 107], the forceps minor [12],
the inferior longitudinal fasciculus [106, 107], the fornix [107, 126], the cingulum
[126], the superior longitudinal fasciculus [126], and the uncinate fasciculus [126].
Our findings overlap to a certain degree with these results, since differences in
the corpus callosum, inferior longitudinal fasciculus, cortico spinal tracts, forceps
major, superior longitudinal fasciculus, and cingulum were observed between the
control subjects and the patients with MS in the ANOVA analysis. Our results
indicate that these group differences were mainly caused by differences between
the control subjects and the moderately impaired MS patients. In contrast to the
studies of Ceccarelli et al. (2008) and Mesaros et al. (2009), no differences were
found between the control subjects and the mildly affected MS patients. As can be
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observed in Figs. 6.20 and 6.21, especially differences in λ⊥ and MD were found
between the subject groups, as was also observed in Oh et al. (2004) and Pagani
et al. (2005). Although further studies are needed, recent work suggests that de-
myelination and axonal degeneration cause an increase of the transverse diffusivity
λ⊥ and a decrease of the longitudinal diffusivity λ‖, respectively [44–49]. However,
results from other studies indicate that an increase of λ⊥ is not only associated
to demyelination but also to axonal loss [128]. Since no ground truth about the
underlying microstructural damage is known for our population, it is very hard to
correlate the observed changes in the DTI measures with the exact pathology.
It has been reported in other studies that cognitive dysfunction in MS patients
might involve changes in different areas, including white matter lesions, normal
appearing brain tissue on conventional MRI, cortical and deep gray matter [111,
113, 116–119]. Rao et al. proposed that cognitive impairment is caused by a disrup-
tion of the cortico-subcortical circuits, connecting the frontal cortices to thalamus
and basal ganglia. However, other studies reported that posterior brain regions
and the corpus callosum are equally affected [105, 129]. In addition, it has been
suggested that a slowing of processing speed might also be related to sensory-motor
disturbances [130]. In a recent study, Turken et al. examined the correlation of
FA and processing speed, as assessed by the DigitSymbol subtest from WAISIII
in healthy subjects and patients with stroke [131]. They found significant correla-
tions in parietal, frontal, and temporal regions, involving the corona radiata, the
forceps minor, and the inferior longitudinal fasciculus. Another recent study inves-
tigated the correlations between the FA and cognitive test scores in patients with
MS [106]. In this studies, significant correlations were observed in the genu, body
and splenium of the corpus callosum, the forceps major, the cingulum, the inferior
longitudinal fasciculus, the superior longitudinal fasciculus, the corona radiata, and
the capsula externa.
In our study, the PASAT and PVSAT tests were used to evaluate the cognitive
functioning of the MS patients. PASAT and PVSAT scores that were acquired
before scanning did not significantly differ between experimental groups (Table
1). On the other hand, PASAT and PVSAT scores that were obtained during
scanning were significantly lower in the MS group 2 than in the control group
but not different between MS patient group 1 and controls or between both MS
groups. One possible explanation for this is the noise during the MRI scanning,
which may place higher demands on the subject’s concentration. It has indeed
been demonstrated that the difference in performance of a working memory task
between MS patients and controls increased for increasing task difficulty [132, 133].
Significant correlations between PASAT scores and diffusion measures were found
in the inferior longitudinal fasciculus, the inferior fronto-occipital fasciculus, the
capsula interna and externa, the genu and body of the corpus callosum, the forceps
minor, the superior longitudinal fasciculus, the corona radiata, and the cingulum.
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Diffusion measures of similar WM structures were correlated with PVSAT scores,
except for the body of the corpus callosum and the cingulum. We also found
that especially FA and λ⊥ were correlated with PASAT and PVSAT scores. Less
correlations were found between the cognitive tests and the MD. Compared to
PASAT, significantly less PVSAT correlations with λ⊥ and MD were observed.
Since stimuli are presented visually in the PVSAT, the effect of the noise in the
MR scanner on the test performance is presumably lower compared to the PASAT
test, making the PVSAT task more easy to perform. As aforementioned, task
difficulty is an important factor in finding differences between control subjects
and MS patients [132, 133]. In correspondence with previous studies, our results
indicate an involvement of parietal, frontal, and temporal regions, as well as the
corpus callosum in cognitive dysfunction. In addition, voxel based correlation tests
between the diffusion measures and the EDSS scores was performed. Although
group differences were found when subdividing the MS group based on the EDSS
score, no significantly different correlations with the EDSS score was observed.
Oh et al. (2004) also found no significant correlations with EDSS in MS patients
with RR and SP type. On the other hand, Cader et al. (2007) found correlations
with EDSS in the corpus callosum, which corresponds to the observations in our
group study. The EDSS is limited, since it only measures motor performance.
Spinal cord lesions, that are not detected in a brain group analysis, can therefore
significantly affect the EDSS outcome. In addition, our subjects were recruited
with low or moderate EDSS, which made the available EDSS scores discrete rather
than continue. These factors can explain the fact that EDSS was not significantly
correlated with the diffusion measures in this study.
In conclusion, state-of-the-art VBA techniques were used to track diffusion dif-
ferences between control subjects and patients with MS. The MS patients were
subdivided in a mild and moderate MS group, based on the EDSS score. We
demonstrated that differences were found between control subjects and moderate
MS patients, which are consistent with previously published studies. In addition,
the diffusion properties were correlated in a whole brain analysis with tests that
measure cognitive dysfunction. These results indicated the involvement of parietal,
frontal, and temporal WM regions in the cognitive deterioration. We acknowledge
that our findings are by no means conclusive and that our results should be in-
terpreted cautiously, given that our study may have been limited by the relatively
small number of subjects.

– 186 –



BIBLIOGRAPHY

Bibliography

[1] N. Molko, S. Pappata, J. Mangin, C. Poupon, K. Vahedi, A. Jobert, D. LeBihan,

M. Bousser, H. Chabriat, Diffusion tensor imaging study of subcortical gray matter in

CADASIL, Stroke 32 (9) (2001) 2049–2054.

[2] O. Abea, S. Aokia, N. Hayashia, H. Yamadaa, A. Kunimatsua, H. Moria, T. Yoshikawaa,

T. Okubob, K. Ohtomoa, Normal aging in the central nervous system: quantitative MR

diffusion-tensor analysis, Neurobiol Aging 23 (3) (2002) 433–441.

[3] F. Wang, Z. Sun, X. Du, X. Wang, Z. Cong, H. Zhang, D. Zhang, N. Hong, A diffusion

tensor imaging study of middle and superior cerebellar peduncle in male patients with

schizophrenia, IEEE Trans Med Imaging 23 (8) (2004) 930–939.

[4] M. Kubicki, C.-F. Westin, S.-E. Maier, M. Frumin, P. Nestor, D. Salisbury, R. Kikinis,

F. Jolesz, McCarley, M. Shenton, Uncinate fasciculus findings in schizophrenia: a magnetic

resonance diffusion tensor imaging study, Am J Psychiatry 159 (5) (2002) 813–820.

[5] S. Kumra, M. Ashtari, M. McMeniman, J. Vogel, R. Augustin, D. Becker, E. Nakayama,

K. Gyato, j. Kane, K. Lim, P. Szeszko, Reduced frontal white matter integrity in early-onset

schizophrenia: a preliminary study, Biol Psychiatry 55 (12) (2004) 1138–1145.

[6] M. Kubicki, C.-F. Westin, P. Nestor, C. Wible, M. Frumin, S. Maier, R. Kikinis, F. Jolesz,

R. McCarley, M. Shenton, Cingulate fasciculus integrity disruption in schizophrenia: a

magnetic resonance diffusion tensor imaging study, Biol Psychiatry 54 (11) (2003) 1171–

1180.

[7] R. Westerhausen, C. Walter, F. Kreuder, R. Wittling, E. Schweiger, W. Wittling, The

influence of handedness and gender on the microstructure of the human corpus callosum:

a diffusion-tensor magnetic resonance imaging study, Neurosci Lett 351 (2) (2003) 99–102.

[8] L. Snook, L.-A. Paulson, D. Roy, L. Phillips, C. Beaulieu, Diffusion tensor imaging of

neurodevelopment in children and young adults, NeuroImage 26 (4) (2005) 1164–1173.

[9] L. Snook, C. Plewes, C. Beaulieu, Voxel based versus region of interest analysis in diffusion

tensor imaging of neurodevelopment., NeuroImage 34 (1) (2007) 243–252.

[10] K. Hasan, R. Gupta, R. Santos, J. Wolinsky, P. Narayana, Fractional diffusion tensor

anisotropy of the seven segments of the normal-appearing white matter of the corpus cal-

losum in healthy adults and relapsing remitting multiple sclerosis, Journal of Magnetic

Resonance Imaging 21 (2005) 735–743.

[11] O. Ciccarelli, D. J. Werring, G. J. Barker, C. M. Griffin, C. A. M. Wheeler-Kingshott,

D. H. Miller, A. J. Thompson, A study of the mechanisms of normal-appearing white

matter damage in multiple sclerosis using diffusion tensor imaging – Evidence of Wallerian

degeneration., J Neurol 250 (3) (2003) 287–292.

[12] M. Cercignani, M. Bozalli, G. Iannucci, G. Comi, M. Filippi, Intra-voxel and inter-voxel

coherence in patients with multiple sclerosis assessed using diffusion tensor MRI., J Neurol

249 (7) (2002) 875–883.

[13] A. Pfefferbaum, E. V. Sullivan, M. Hedehus, E. Adalsteinsson, K. O. Lim, M. Moseley,

In vivo detection and functional correlates of white matter microstructural disruption in

chronic alcoholism., Alcohol Clin Exp Res 24 (2000) 1214–1221.

[14] R. Bammer, M. Augustin, S. Strasser-Fuchs, T. Seifert, P. Kapeller, R. Stollberger,

F. Ebner, H. P. Hartung, F. Fazekas, Magnetic resonance diffusion tensor imaging for char-

acterizing diffuse and focal white matter abnormalities in multiple sclerosis., Magn Reson

Med 44 (4) (2000) 583–91.

[15] C. M. Griffin, D. T. Chard, O. Ciccarelli, B. Kapoor, G. J. Barker, A. I. Thompson, D. H.

Miller, Diffusion tensor imaging in early relapsing-remitting multiple sclerosis., Mult Scler

7 (5) (2001) 290–297.

– 187 –



CHAPTER 6. DTI GROUP ANALYSIS

[16] Y. Ge, M. Law, G. Johnson, J. Herbert, J. S. Babb, L. J. Mannon, R. I. Grossman, Pref-

erential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor

imaging., J Magn Reson Imaging 20 (1) (2004) 1–7.

[17] C. S. Yu, C. Z. Zhu, K. C. Li, Y. Xuan, W. Qin, H. Sun, P. Chan, Relapsing neuromyelitis

optica and relapsing-remitting multiple sclerosis: differentiation at diffusion-tensor MR

imaging of corpus callosum., Radiology 244 (1) (2007) 249–256.

[18] J. Ashburner, K. Friston, Voxel-based morphometry – the methods, NeuroImage 11 (2000)

805–821.

[19] I. Agartz, J. Andersson, S. Skare, Abnormal brain white matter in schizophrenia: a diffusion

tensor imaging study, NeuroReport 12 (10) (2001) 2251–2254.

[20] J. Foong, M. R. Symms, G. J. Barker, M. Maier, D. H. Miller, M. A. Ron, Investigating

regional white matter in schizophrenia using diffusion tensor imaging., NeuroReport 13 (3)

(2002) 333–6.

[21] B. A. Ardekani, J. Nierenberg, M. J. Hotman, D. C. Javitt, K. O. Lim, MRI Study of White

Matter Diffusion Anisotropy in Schizophrenia., NeuroReport 14 (16) (2003) 2025–2029.

[22] J. Burns, D. Job, M. Bastin, H. Whalley, T. Macgillivray, E. Johnstone, S. Lawrie, Struc-

tural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study,

British Journal of Psychiatry 182 (2003) 439–443.

[23] P. R. Szeszko, B. A. Ardekani, M. Ashtari, S. Kumra, D. G. Robinson, S. Sevy, H. Gunduz-

Bruce, A. K. Malhotra, J. M. Kane, R. M. Bilder, K. O. Lim, White matter abnormalities

in first-episode schizophrenia or schizoaffective disorder: a diffusion tensor imaging study.,

Am J Psychiatry 162 (3) (2005) 602–605.

[24] M. Kubicki, H. Park, C.-F. Westin, P. Nestor, R. Mulkern, S. Maier, M. Niznikiewicz,

E. Connor, J. Levitt, M. Frumin, R. Kikinis, F. Jolesz, R. McCarley, M. Shentona, DTI

and MTR abnormalities in schizophrenia: analysis of white matter integrity, NeuroImage

26 (4) (2005) 1109–1118.

[25] B. A. Ardekani, A. Bappal, D. D’Angelo, M. Ashtari, T. Lencz, P. R. Szeszko, P. D. Butler,

D. C. Javitt, K. O. Lim, J. Hrabe, J. Nierenberg, C. A. Branch, M. J. Hoptman, Brain

morphometry using diffusion weighted MRI: Application to schizophrenia., NeuroReport

16 (13) (2005) 1455–1459.

[26] M. S. Buchsbaum, J. Friedman, B. R. Buchsbaum, K. Chu, E. A. Hazlett, R. Newmark,

J. S. Schneiderman, Y. Torosjan, C. Tang, P. R. Hof, D. Stewart, K. L. Davis, J. Gorman,

Diffusion tensor imaging in schizophrenia., Biol Psych 60 (11) (2006) 1181–1187.

[27] D. K. Jones, X. A. Chitnis, D. Job, P. L. Khong, L. T. Leung, S. Marenco, S. M. Smith,

M. R. Symms, What happens when nine different groups analyze the same DT-MRI data

set using voxel-based methods?, Proc. ISMRM 15th Annual Meeting, Berlin (2007) 74.

[28] G. Douaud, S. Smith, M. Jenkinson, T. Behrens, H. Johansen-Berg, J. Vickers, S. James,

N. Voets, K. Watkins, P. M. Matthews, A. James, Anatomically related grey and white

matter abnormalities in adolescent-onset schizophrenia., Brain 130 (2007) 2375–2386.

[29] J. H. Seok, H. J. Park, J. W. Chun, S. K. Lee, H. S. Cho, J. S. Kwon, J. J. Kim, White

matter abnormalities associated with auditory hallucinations in schizophrenia: A combined

study of voxel-based analyses of diffusion tensor imaging and structural magnetic resonance

imaging., Psychiatry Res. 156 (2) (2007) 93–104.

[30] K. H. Karlsgodt, T. G. M. van Erp, R. A. Poldrack, C. E. Bearden, K. H. Nuechterlein,

T. D. Cannon, Diffusion tensor imaging of the superior longitudinal fasciculus and working

memory in recent-onset schizophrenia., Biol Psych 63 (5) (2007) 512–518.

[31] M. Kyriakopoulos, N. S. Vyas, G. J. Barker, X. A. Chitnis, S. Frangou, A diffusion tensor

imaging study of white matter in early-onset schizophrenia., Biol Psychiatry 63 (5) (2007)

519–523.

[32] T. White, A. T. K. Kendi, S. Lehricy, M. Kendi, C. Karatekin, A. Guimaraes, N. Davenport,

– 188 –



BIBLIOGRAPHY

S. C. Schulz, K. O. Lim, Disruption of hippocampal connectivity in children and adolescents

with schizophrenia - a voxel-based diffusion tensor imaging study., Schizophr Res 90 (1–3)

(2007) 302–307.

[33] A. Leemans, J. Sijbers, M. Verhoye, A. Van der Linden, D. Van Dyck, Mathematical frame-

work for simulating diffusion tensor MR neural fiber bundles, Magn Reson Med 53 (4) (2005)

944–953.

[34] D. Alexander, C. Pierpaoli, P. Basser, J. Gee, Spatial Transformations of Diffusion Tensor

Magnetic Resonance Images, IEEE Transactions on Medical Imaging 20 (11) (2001) 1131–

1139.

[35] A. Leemans, J. Sijbers, S. De Backer, E. Vandervliet, P. Parizel, Affine coregistration of

diffusion tensor magnetic resonance images using mutual information, Lect Notes Comp Sci

3708 (2005) 523–530.

[36] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens, Multimodality image

registration by maximization of mutual information, IEEE Transactions on Medical Imaging

16 (2) (1997) 187–198.

[37] W. Van Hecke, A. Leemans, E. D’Agostino, S. De Backer, E. Vandervliet, P. M. Parizel,

J. Sijbers, Nonrigid coregistration of diffusion tensor images using a viscous fluid model and

mutual information, IEEE Trans Med Imaging. 26 (11) (2007) 1598–1612.

[38] E. DAgostino, F. Maes, D. Vandermeulen, P. Suetens, A viscous fluid model for multimodal

non-rigid image registration using mutual information, Medical image analysis 7 (4) (2003)

565–575.

[39] W. Van Hecke, A. Leemans, E. D’Agostino, F. Maes, S. De Backer, E. Vandervliet, J. Si-

jbers, P. M. Parizel, On the construction of an inter-subject diffusion tensor magnetic

resonance atlas of the healthy human brain., NeuroImage 43 (1) (2008) 69–80.

[40] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, A. Aldroubi, In vivo fiber tractography using

DT-MRI data, Magnetic Resonance in Medicine 44 (2000) 625–632.

[41] S.-K. Lee, D. I. Kim, J. Kim, D. J. Kim, H. D. Kim, D. S. Kim, S. Mori, Diffusion-

Tensor MR Imaging and Fiber Tractography: A New Method of Describing Aberrant Fiber

Connections in Developmental CNS Anomalies., RadioGraphics 25 (1) (2005) 53–68.

[42] M. Catani, Diffusion tensor Magn Reson Imaging tractography in cognitive disorders., Curr

Opin Neurol 19 (6) (2006) 599–606.

[43] C. Beaulieu, The basis of anisotropic water diffusion in the nervous system - a technical

review, NMR in Biomedicine 15 (7–8) (2002) 435–455.

[44] S. Song, S. Sun, M. Ramsbottom, C. Chang, J. Russell, A. Cross, Dysmyelination revealed

through MRI as increased radial (but unchanged axial) diffusion of water, NeuroImage

17 (3) (2002) 1429–1436.

[45] S.-K. Song, S.-W. Sun, W.-K. Ju, S.-J. Lin, A. Cross, A. Neufeld, Diffusion tensor imaging

detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal

ischemia, NeuroImage 20 (3) (2003) 1714–1722.

[46] S. Song, J. Yoshino, T. Le, S. Lin, S. Sun, A. Cross, R. Armstrong, Demyelination increases

radial diffusivity in corpus callosum of mouse brain, Neuroimage 21 (2005) 132–140.

[47] M. D. Budde, J. H. Kim, H.-F. Liang, R. E. Schmidt, J. H. Russell, A. H. Cross, S. S-K.,

Toward accurate diagnosis of white matter pathology using diffusion tensor imaging., Magn

Reson Med 57 (4) (2007) 688–695.

[48] E. D. Schwartz, E. T. Cooper, Y. Fan, A. F. Jawad, C. L. Chin, J. Nissanov, D. B. Hackney,

MRI diffusion coefficients in spinal cord correlate with axon morphometry., NeuroReport

16 (1) (2005) 73–76.

[49] L. A. Harsan, P. Poulet, B. Guignard, J. Steibel, N. Parizel, P. L. de Sousa, N. Boehm,

D. Grucker, M. S. Ghandour, Brain dysmyelination and recovery assessment by noninvasive

in vivo diffusion tensor Magn Reson Imaging., J Neurosci Res 83 (3) (2006) 392–402.

– 189 –



CHAPTER 6. DTI GROUP ANALYSIS

[50] R. Huster, R. Westerhausen, F. Kreuder, E. Schweiger, W. Wittling, Hemispheric and

gender related differences in the midcingulum bundle: A DTI study., Hum Brain Mapp (In

Press).

[51] J.-L. Hsu, A. Leemans, C.-H. Bai, C.-H. Lee, Y.-F. Tsai, H.-C. Chiu, W.-H. Chen, Gender

differences and age-related white matter changes of the human brain: A diffusion tensor

imaging study., NeuroImage 39 (2) (2008) 566–577.

[52] S. M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. E. Nichols, C. E. Mackay,

K. E. Watkins, O. Ciccarelli, M. Z. Cader, P. M. Matthews, T. E. Behrens, Tract-based

spatial statistics: voxelwise analysis of multi-subject diffusion data., NeuroImage 4 (31)

(2006) 1487–1505.

[53] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, D. J. Hawkes, Nonrigid

registration using free-form deformations: application to breast MR images., IEEE Trans

Med Imaging 18 (8) (1999) 712–721.

[54] J. Ashburner, K. J. Friston, Nonlinear spatial normalization using basis functions., Hum

Brain Mapp 7 (4) (1999) 254–266.

[55] R. M. Henkelman, Measurement of signal intensities in the presence of noise in MR images.,

Med Phys 12 (2) (1985) 232–233.

[56] H. Gudbjartsson, S. Patz, The Rician distribution of noisy MRI data., Magn Reson Med

34 (1995) 910–914.

[57] D. Jones, The effect of gradient sampling schemes on measures derived from diffusion tensor

MRI: a Monte Carlo study, Magnetic Resonance in Medicine 51 (2004) 807–815.

[58] A. Leemans, J. Sijbers, P. Parizel, A graphical toolbox for exploratory diffusion tensor

imaging and fiber tractography, in: 14th Annual Meeting - Section for Magnetic Resonance

Technologists, Miami, USA, 2005.

[59] N. Barnea-Goraly, S. Eliez, M. Hedeus, V. Menon, C. White, M. Moseley, A. Reiss, White

matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor

imaging, Am J Med Genet 118 (1) (2003) 81–88.

[60] H.-J. Park, C.-F. Westin, M. Kubicki, S. Maier, M. Niznikiewicz, A. Baer, M. Frumin,

R. Kikinis, F. Jolesz, R. McCarley, M. Shenton, White matter hemisphere asymmetries in

healthy subjects and in schizophrenia: a diffusion tensor MRI study, NeuroImage 23 (1)

(2004) 213–223.

[61] T. J. Simon, L. Ding, J. P. Bish, D. M. McDonald-McGinn, E. H. Zackai, J. Gee, Volumetric,

connective, and morphologic changes in the brains of children with chromosome 22q11.2

deletion syndrome: an integrative study., NeuroImage 25 (1) (2005) 169–180.

[62] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful

approach to multiple testing., J. Roy. Statist. Soc. Ser. B (57) (1995) 289–300.

[63] M. Anjari, L. Srinivasan, J. M. Allsop, J. V. Hajnal, M. A. Rutherford, A. D. Edwards,

S. J. Counsell, Diffusion tensor imaging with tract-based spatial statistics reveals local white

matter abnormalities in preterm infants., NeuroImage 35 (3) (2007) 1021–1027.

[64] M. Sach, G. Winkler, V. Glauche, J. Liepert, B. Heimbach, M. A. Koch, C. Bchel, C. Weiller,

Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral scle-

rosis., Brain 127 (Pt.2) (2004) 340–350.

[65] C. A. Sage, R. R. Peeters, A. Grner, W. Robberecht, S. Sunaert, Quantitative diffusion

tensor imaging in amyotrophic lateral sclerosis., NeuroImage 34 (2) (2007) 486–499.

[66] D. Hubl, T. Koenig, W. Strik, A. Federspiel, R. Kreis, C. Boesch, S. E. Maier, G. Schroth,

K. Lovblad, T. Dierks, Pathways that make voices: white matter changes in auditory

hallucinations., Arch Gen Psychiatry. 61 (7) (2004) 658–668.

[67] B. Borroni, S. M. Brambati, C. Agosti, S. Gipponi, G. Bellelli, R. Gasparotti, V. Garibotto,

M. Di Luca, P. Scifo, D. Perani, A. Padovani, Evidence of white matter changes on diffusion

tensor imaging in frontotemporal dementia., Arch Neurol. 64 (2) (2007) 246–251.

– 190 –



BIBLIOGRAPHY

[68] S. Xie, J. X. Xiao, G. L. Gong, Y. F. Zang, Y. H. Wang, H. K. Wu, X. X. Jiang, Voxel-

based detection of white matter abnormalities in mild Alzheimer disease., Neurology 66 (12)

(2006) 1845–1849.

[69] Z. Nagy, H. Westerberg, S. Skare, J. L. Andersson, A. Lilja, O. Flodmark, E. Fernell,

K. Holmberg, B. Bohm, H. Forssberg, H. Lagercrantz, T. Klingberg, Preterm children have

disturbances of white matter at 11 years of age as shown by diffusion tensor imaging.,

Pediatric Research 54 (8) (2003) 672–679.

[70] N. Molko, A. Cachia, D. Rivière, J.-F. Mangin, M. Bruandet, D. Le Bihan, L. Cohen,

S. Dehaene, Brain anatomy in turner syndrome: Evidence for impaired social and spatial-

numerical networks., Cereb Cort 14 (8) (2004) 840–850.

[71] A. Padovani, B. Borroni, S. Brambati, C. Agosti, M. Broli, R. Alonso, G. Scifo, P. Bellelli,

A. Alberici, R. Gasparotti, D. Perani, Diffusion tensor imaging and voxel based morphom-

etry study in early progressive supranuclear palsy., J Neurol Neurosurg Psychiatry 77 (4)

(2006) 457–463.

[72] P. Basser, S. Pajevic, Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by

background noise, Magnetic Resonance in Medicine 44 (1) (2000) 41–50.

[73] H. Zhang, B. B. Avants, P. A. Yushkevich, J. H. Woo, S. Wang, L. F. McCluskey, L. B.

Elman, E. R. Melhem, J. C. Gee, High-dimensional spatial normalization of diffusion ten-

sor images improves the detection of white matter differences: An example study using

amyotrophic lateral sclerosis, IEEE Trans. Med. Imaging 26 (11) (2007) 1585–1597.

[74] D. Jones, M. Symms, M. Cercignani, R. Howarde, The effect of filter size on VBM analyses

of DT-MRI data, NeuroImage 26 (2) (2005) 546–554.

[75] F. L. Bookstein, Voxel-based morphometry should not be used with imperfectly registered

images., Neuroimage 14 (6) (2001) 1454–1462.

[76] C. Davatzikos, Why voxel-based morphometric analysis should be used with great caution

when characterizing group differences., NeuroImage 23 (1) (2004) 17–20.

[77] J. Ashburner, K. Friston, Why voxel-based morphometry should be used, NeuroImage 14 (6)

(2001) 1238–1243.

[78] A. Rosenfeld, A. C. Kak, Digital Picture Processing 2, Academic Press, Orlando, FL, 1982.

[79] K. J. Worsley, A. C. Evans, S. Marrett, P. Neelin, A three-dimensional statistical analysis

for CBF activation studies in human brain, Journal of Cerebral Blood Flow and Metabolism

12 (6) (1992) 900–918.

[80] K. J. Friston, J.-B. Holmes, A.and Poline, C. J. Price, C. D. Frith, Detecting activations in

PET and fMRI: Levels of inference and power, NeuroImage 4 (3) (1996) 223–235.

[81] K. M. Petersson, T. E. Nichols, J. B. Poline, A. P. Holmes, Statistical limitations in func-

tional neuroimaging II. Signal detection and statistical inference, Phil. Trans. R. Soc. Lon-

don B 354 (1999) 1261–1281.

[82] W. Van Hecke, J. Sijbers, S. De Backer, D. Poot, P. M. Parizel, A. Leemans, On the

construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI

analysis methods., NeuroImage, In Revision .

[83] Z. Ding, J. C. Gore, A. W. Anderson, Reduction of Noise in Diffusion Tensor Images Using

Anisotropic Smoothing, Magnetic Resonance in Medicine (53) (2005) 485–490.

[84] J. Sijbers, A. den Dekker, M. Verhoye, A. Van der Linden, D. Van Dyck, Adaptive aniso-

tropic noise filtering for magnitude MR data, Magn Reson Imaging 17 (10) (1999) 1533–

1539.

[85] M. H. Zweig, G. Campbell, Receiver-operating characteristic (ROC) plots: a fundamental

evaluation tool in clinical medicine, Clinical Chemistry (39) (1993) 561–577.

[86] P. T. Fox, M. A. Mintun, E. M. Reiman, M. E. Raichle, Enhanced detection of focal brain

responses using intersubject averaging and change-distribution analysis of subtracted PET

images, Journal of Cerebral Blood Flow and Metabolism 8 (1988) 642–653.

– 191 –



CHAPTER 6. DTI GROUP ANALYSIS

[87] P. T. Fox, M. A. Mintun, Noninvasive functional brain mapping by change-distribution

analysis of averaged PET images of H15
2 O tissue activity, J Nucl Med. 30 (2) (2006) 141–

149.

[88] K. J. Friston, C. D. Frith, P. F. Liddle, R. J. Dolan, A. A. Lammertsmaa, R. S. J. Frack-

owiak, The relationship between global and local changes in PET scans, Journal of Cerebral

Blood Flow and Metabolism 13 (6) (1990) 1038–1040.

[89] K. J. Friston, C. D. Frith, P. F. Liddle, R. S. J. Frackowiak, Comparing functional (PET) im-

ages: the assessment of significant change, Journal of Cerebral Blood Flow and Metabolism

11 (4) (1991) 690–699.

[90] C. R. Genovese, N. A. Lazar, T. Nichols, Thresholding of Statistical Maps in Functional

Neuroimaging Using the False Discovery Rate, NeuroImage (15) (2002) 870–878.

[91] M. Filippi, M. A. Horsfield, H. J. Adr, F. Barkhof, P. Bruzzi, A. Evans, J. A. Frank, R. I.

Grossman, H. F. McFarland, P. Molyneux, D. W. Paty, J. Simon, P. S. Tofts, J. S. Wolinsky,

D. H. Miller, Guidelines for using quantitative measures of brain magnetic resonance imag-

ing abnormalities in monitoring the treatment of multiple sclerosis., Annals of Neurology

43 (4) (1998) 499–506.

[92] D. H. Miller, R. I. Grossman, S. C. Reingold, H. F. Mcfarland, The role of magnetic

resonance techniques in understanding and managing multiple sclerosis., Brain 121 (1)

(1998) 3–24.

[93] M. Filippi, M. A. Rocca, G. Comi, The use of quantitative magnetic-resonance-based tech-

niques to monitor the evolution of multiple sclerosis., Lancet Neurol 2 (6) (2003) 337–346.

[94] P. C. Sundgren, Q. Dong, D. Gomez-Hassan, S. K. Mukherji, P. Maly, R. Welsh, Diffusion

tensor imaging of the brain: review of clinical applications., Neuroradiology 46 (5) (2004)

339–350.

[95] J. Oh, R. G. Henry, C. Genain, S. J. Nelson, D. Pelletier, Mechanisms of normal appearing

corpus callosum injury related to pericallosal T1 lesions in multiple sclerosis using direc-

tional diffusion tensor and 1H MRS imaging., J Neurol Neurosurg Psychiatry 75 (9) (2004)

1281–1286.

[96] A. M. Saindane, M. Law, Y. Ge, G. Johnson, J. S. Babb, R. I. Grossman, Correlation of

diffusion tensor and dynamic perfusion MR imaging metrics in normal-appearing corpus cal-

losum: support for primary hypoperfusion in multiple sclerosis., AJNR Am J Neuroradiol.

28 (4) (2007) 767–772.

[97] M. Wilson, C. Tench, P. Morgan, L. Blumhardt, Pyramidal tract mapping by diffusion ten-

sor magnetic resonance imaging in multiple sclerosis: improving correlations with disability,

J Neurol Neurosurg Psychiatry 74 (2) (2003) 203–207.

[98] E. Pagani, M. Filippi, M. Rocca, M. Horsfield, A method for obtaining tract-specific dif-

fusion tensor MRI measurements in the presence of disease: application to patients with

clinically isolated syndromes suggestive of multiple sclerosis, NeuroImage 26 (1) (2005)

258–265.

[99] F. Lin, C. Yu, T. Jiang, K. Li, P. Chan, Diffusion tensor tractography-based group map-

ping of the pyramidal tract in relapsing-remitting multiple sclerosis patients., AJNR Am J

Neuroradiol. 28 (2) (2007) 278–282.

[100] M. A. Rocca, E. Pagani, M. Absinta, P. Valsasina, A. Falini, G. Scotti, G. Comi, M. Filippi,

Altered functional and structural connectivities in patients with MS: a 3-T study., Neurology

69 (23) (2007) 2136–2145.

[101] B. Audoin, M. Guye, F. Reuter, M. V. Au Duong, S. Confort-Gouny, I. Malikova, E. Soulier,

P. Viout, A. A. Chrif, P. J. Cozzone, J. Pelletier, J. P. Ranjeva, Structure of WM bundles

constituting the working memory system in early multiple sclerosis: a quantitative DTI

tractography study., NeuroImage 36 (4) (2007) 1324–1330.

[102] X. Lin, C. R. Tench, P. S. Morgan, C. S. Constantinescu, Use of combined conventional

– 192 –



BIBLIOGRAPHY

and quantitative MRI to quantify pathology related to cognitive impairment in multiple

sclerosis., Journal of Neurology, Neurosurgery and Psychiatry 79 (4) (2008) 437–441.

[103] S. A. Patel, B. A. Hum, C. F. Gonzalez, R. J. Schwartzman, S. H. Faro, F. B. Mohamed,

Application of voxelwise analysis in the detection of regions of reduced fractional anisotropy

in multiple sclerosis patients., J Magn Reson Imaging 26 (3) (2007) 552–526.

[104] A. Ceccarelli, M. A. Rocca, E. Pagani, A. Ghezzi, R. Capra, A. Falini, G. Scotti, G. Comi,

M. Filippi, The topographical distribution of tissue injury in benign MS: a 3T multipara-

metric MRI study., NeuroImage 39 (4) (2008) 1499–1509.

[105] S. Mesaros, M. A. Rocca, G. Riccitelli, E. Pagani, M. Rovaris, D. Caputo, A. Ghezzi,

R. Capra, A. Bertolotto, G. Comi, M. Filippi, Corpus callosum damage and cognitive

dysfunction in benign MS., Human Brain Mapping .

[106] R. A. Dineen, J. Vilisaar, J. Hlinka, C. M. Bradshaw, P. S. Morgan, C. S. Constantinescu,

D. P. Auer, Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis,

Neurology 132 (Pt. 1) (2008) 239–249.

[107] S. D. Roosendaal, J. J. Geurts, H. Vrenken, H. E. Hulst, K. S. Cover, J. A. Castelijns, P. J.

Pouwels, F. Barkhof, Regional DTI differences in multiple sclerosis patients., NeuroImage .

[108] S. M. Rao, G. J. Leo, L. Bernardin, F. Unverzagt, Cognitive dysfunction in multiple scle-

rosis. I. Frequency, patterns, and prediction., Neurology 41 (1991) 685–691.

[109] L. Leocani, G. . Comi, Neurophysiological investigations in multiple sclerosis., Curr Opin

Neurol 13 (2000) 255–261.

[110] G. Nagels, L. Geentjens, D. Kos, L. Vleugels, D. M. B., P. Van Asch, K. Vuylsteke, P. P.

De Deyn, Paced visual serial addition test in multiple sclerosis., Clin Neurol Neurosurg 107

(2005) 218–222.

[111] S. M. Rao, G. J. Leo, V. M. Haughton, P. St Aubin-Faubert, L. Bernardin, Correlation of

magnetic resonance imaging with neuropsychological testing in multiple sclerosis., Neurol-

ogy 39 (1989) 161–166.

[112] J. Foong, L. Rozewicz, G. Quaghebeur, C. A. Davie, L. D. Kartsounis, A. J. Thompson,

D. H. Miller, M. A. Ron, Executive function in multiple sclerosis. the role of frontal lobe

pathology, Brain 120 (1997) 15–26.

[113] M. Rovaris, M. Filippi, M. Falautano, L. Minicucci, M. A. Rocca, V. Martinelli, G. Comi,

Relation between mr abnormalities and patterns of cognitive impairment in multiple scle-

rosis, Neurology 50 (1998) 1601–1608.

[114] M. Rovaris, G. Iannucci, M. Falautano, F. Possa, V. Martinelli, G. Comi, M. Filippi,

Cognitive dysfunction in patients with mildly disabling relapsingremitting multiple sclerosis:

an exploratory study with diffusion tensor MR imaging, J Neurol Sci 195 (2) (2002) 103–109.

[115] E. A. DeSousa, R. H. Albert, B. Kalman, Cognitive impairments in multiple sclerosis: a

review., Am. J. Alzheimers Dis. Other Dement. 17 (2002) 23–29.

[116] M. R. Piras, I. Magnano, E. D. Canu, K. S. Paulus, W. M. Satta, A. Soddu, M. Conti,

A. Achene, G. Solinas, I. Aiello, Longitudinal study of cognitive dysfunction in multiple

sclerosis: neuropsychological, neuroradiological, and neurophysiological findings, Journal of

Neurology, Neurosurgery and Psychiatry 74 (7) (2003) 878–885.

[117] G. Gainotti, Measures of cognitive and emotional changes in multiple sclerosis and under-

lying models of brain dysfunction, Journal of the Neurological Sciences 245 (2006) 15–20.

[118] M. Filippi, C. Tortorella, M. Rovaris, M. Bozzali, F. Possa, M. P. Sormani, G. Iannucci,

G. Comi, Changes in the normal appearing brain tissue and cognitive impairment in multiple

sclerosis, Journal of Neurology, Neurosurgery and Psychiatry 68 (2000) 157–161.

[119] S. G. Edwards, C. Liu, L. D. Blumhardt, Cognitive correlates of supratentorial atrophy on

MRI in multiple sclerosis, Acta Neurol Scand 104 (2001) 214–223.

[120] P. A. Arnett, S. M. Rao, L. Bernardin, J. Grafman, F. Z. Yetkin, L. Lobeck, Relationship

between frontal lobe lesions and wisconsin card sorting test performance in patients with

– 193 –



CHAPTER 6. DTI GROUP ANALYSIS

multiple sclerosis, Neurology 44 (1994) 420–425.

[121] X. Lin, C. R. Tench, P. S. Morgan, G. Niepel, C. S. Constantinescu, Importance sam-

pling in MS: use of diffusion tensor tractography to quantify pathology related to specific

impairment., J Neurol Sci 237 (1–2) (2005) 13–19.

[122] W. I. McDonald, A. Compston, G. Edan, D. Goodkin, H. P. Hartung, F. D. Lublin, H. F.

McFarland, D. W. Paty, C. H. Polman, S. C. Reingold, M. Sandberg-Wollheim, W. Sib-

ley, A. Thompson, S. van den Noort, B. Y. Weinshenker, J. S. Wolinsky, Recommended

diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the

diagnosis of multiple sclerosis., Ann Neurol 50 (2001) 121–127.

[123] C. H. Polman, S. C. Reingold, G. Edan, M. Filippi, H. P. Hartung, L. Kappos, F. D. Lublin,

L. M. Metz, M. H. F., P. W. O’Connor, M. Sandberg-Wollheim, A. J. Thompson, B. G.

Weinshenker, J. S. Wolinsky, Diagnostic criteria for multiple sclerosis: 2005 revisions to the

”McDonald Criteria”., Ann Neurol 58 (2005) 840–846.

[124] J. F. Kurtzke, Rating neurologic impairment in multiple sclerosis: an expanded disability

status scale (EDSS)., Neurology 33 (1983) 1444–1452.

[125] W. Van Hecke, A. Leemans, S. De Backer, B. Jeurissen, P. M. Parizel, J. Sijbers, Comparing

isotropic and anisotropic filtering for voxel based DTI analyses: a simulation study., Human

Brain Mapping, In Revision .

[126] M. A. Rocca, P. Valsasina, A. Ceccarelli, M. Absinta, A. Ghezzi, G. Riccitelli, E. Pagani,

A. Falini, G. Comi, G. Scotti, M. Filippi, Structural and functional MRI correlates of Stroop

control in benign MS., Human Brain Mapping 30 (1) (2009) 276–290.

[127] R. Bammer, F. Fazekas, M. Augustin, J. Simbrunner, S. Strasser-Fuchs, T. Seifert, R. Stoll-

berger, H. Hartung, Diffusion-weighted MR imaging of the spinal cord, Am J Neuroradiol.

21 (2000) 587–591.

[128] S. Cader, H. Johansen-Berg, M. Wylezinska, J. Palace, T. E. Behrens, S. Smith, P. M.

Matthews, Discordant white matter n-acetylasparate and diffusion mri measures suggest

that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis,

NeuroImage 36 (2007) 19–27.

[129] J. T. Brassington, N. V. Marsh, Neuropsychological aspects of multiple sclerosis, Neuropsy-

chol Rev 8 (1998) 43–77.

[130] J. M. Peyser, C. M. Poser, Neuropsychological correlates of multiple sclerosis. Handbook

of clinical neuropsychology, vol. 2, Willey, New York, 1986, pp. 364–397.

[131] A. Turken, S. Whitfield-Gabrieli, R. Bammer, J. V. Baldo, N. F. Dronkers, J. D. Gabrieli,

Cognitive processing speed and the structure of white matter pathways: convergent evidence

from normal variation and lesion studies., NeuroImage 42 (2) (2008) 1032–1044.

[132] H. A. Wishart, A. J. Saykin, B. C. McDonald, A. C. Mamourian, L. A. Flashman, K. R.

Schuschu, Brain activation patterns associated with working memory in relapsing-remitting

multiple sclerosis, Neurology 62 (2004) 234–238.

[133] S. Cader, A. Cifelli, Y. Abu-Omar, J. Palace, P. M. Matthews, Reduced brain functional

reserve and altered functional connectivity in patients with multiple sclerosis, Brain 129

(2006) 527–537.

– 194 –



IV

DIFFUSION TENSOR 
IMAGE PROCESSING 

OF THE HUMAN 
SPINAL CORD





The spine is a series of bones running

down your back. You sit on one end of

it and your head sits on the other.

– Anonymous
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CHAPTER 7. DTI OF THE SPINAL CORD

Overview

The work in this chapter has been published in:

7.1 Introduction

It is generally known that during aging nerve cells die, and that the amount of
nerve tissue gradually reduces [1]. Other age-related changes in the central nervous
system are the swelling of the axons, the subsequent diminishing of myelin, and
a decreasing quantity of the cytoskeleton [2]. Although conventional MRI can
detect morphological WM changes, it can not reflect the tissue quality with respect
to the WM microstructure coherence [3, 4]. These microstructural alterations
will especially affect the local diffusion and are therefore measurable with DTI.
This relatively new MRI technique measures the diffusion of water molecules and
provides insight into the WM structure of the central nervous system [5]. Local
quantitative measures can be derived from the diffusion tensor, such as the FA,
which is a normalized measure for the degree of anisotropy, and the mean diffusivity
(MD), i.e. the averaged diffusion. Recent DTI studies of different pathologies
are starting to use these quantitative measurements, demonstrating the potential
of this in vivo and non-invasive imaging technique for detecting microstructural
pathological alterations [6, 7].
The spinal cord, a clinically important part of the central nervous system containing
motor-and sensory pathways, is an interesting anatomical WM structure, because
degeneration of its microstructure has been reported in many diseases [8, 9]. Due
to its specific nature of measuring microstructural WM alterations, DTI can be
seen as an exquisite diagnostic technique for a spinal cord examination. The spinal
cord is surrounded by CSF where, in contrast to the brain, the GM is situated on
the inside of the WM. Although there exists a great potential for studying spinal
cord with DTI, only a limited number of papers has been published regarding this
topic [10–17].
It is known that several factors hamper a robust DTI study, such as physiologic
and respiratory movement of the subject and the relative motion of the spinal cord
itself due to the pulsation of the surrounding CSF. Furthermore, small susceptibility
variations are present in the proximity of the cervical vertebrae. In addition, the
relatively small diameter of the spinal cord (12 mm on average) and the restricted
resolution of the diffusion tensor images (in this study 2×2×2mm3) further impede
a quantitative study. Indeed, it is known that a large number of voxels suffer from
a partial volume effect (PVE), i.e. a combined signal originating from both the
spinal cord and the CSF [18].
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Previously reported DTI spinal cord studies generally employ a ROI based approach
to segment the spinal cord tissue [10–12, 17, 19, 20]. In 1999, the first in vivo report
of the diffusion properties of the human spinal cord was published in which only
apparent diffusion coefficients and not the full diffusion tensor were calculated [19].
In a subsequent DTI study of the spinal cord, diffusion information was extracted
from only two diffusion weighted images [10]. In the work of Ries et al. (2000),
a DTI study of the spinal cord was performed with a large in-plane resolution,
resulting in highly anisotropic voxels [20]. In their approach, the full diffusion
tensor was calculated. Apparent diffusion coefficients were obtained from ROIs that
were delineated in the middle of the sagittal spinal cord plane, in order to avoid
contamination by the surrounding CSF. The first axial DTI study of the spinal
cord was published by Wheeler-Kingshott et al. (2002), in which they segmented
the whole spinal cord cross-section with ROIs to obtain FA, MD, and eigenvalues
along the spinal cord [12]. In the work of Valsasina et al. (2005), a DTI acquisition
with highly anisotropic voxels was implemented [21]. Only voxels originating from
the central slice of the sagittal slab were incorporated in the further analysis and no
ROIs were used. Mamata et al. (2005) investigated age-related spinal cord changes
using DTI and reported both an FA decrease and an MD increase as a function of
age [17].

To the best of our knowledge, almost all previously reported DTI studies of the
spinal cord utilize a ROI based approach to delineate the tissue of interest. Be-
cause a ROI delineation method is based on the manual selection of voxels, it is
highly labor-intensive and user-dependent. Moreover, to avoid PVE contaminated
voxels in the analysis, other researchers proposed drawing very small ROIs to eval-
uate only the central sagittal slice of the spinal cord, thereby strongly reducing
the number of data [21]. The aim of this chapter is to introduce a more stan-
dardized and robust segmentation technique for the analysis and interpretation
of DTI spinal cord data based on diffusion tensor tractography (DTT) [22]. We
demonstrate that the proposed segmentation approach outperforms the ROI based
method in terms of reproducibility and sensitivity. In order to verify the proposed
methods, alterations of diffusion properties - that can occur due to morphological
changes with normal aging - were studied in the human spinal cord. We believe
that a profound understanding of the aging process on the one hand, and of the
quantitative spinal cord DTI results on the other hand, are of major importance
for future studies that aim to detect diffusion related spinal cord changes in the
case of different pathologies.
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7.2 Methods

7.2.1 Data Acquisition

Diffusion tensor measurements of the cervical spinal cord (C1–C5) were performed
with a 1.5T MR scanner (Siemens, Erlangen, Germany) on 45 healthy subjects (23
male and 22 female persons), with a mean subject age of 45 with a SD of 16 years
(19–87 years). An informed consent was signed by all participants. All subjects
had a normal appearing spinal cord on conventional T2-weighted MR images and
none had pathological spinal cord symptoms as reviewed by a radiologist A severe
signal dropout due to ghosting or susceptibility artifacts, caused by the movement
of the subject or the use of an echo-planar sequence was observed in data sets of 3
subjects. These data sets were excluded from the analysis. All diffusion-weighted
images were analyzed visually to check the presence of distortions in the data. Data
sets were included in the analysis without the use of a specific distortion correction
algorithm, when the geometric distortions were smaller than approximately 1 voxel.
For the analysis of the diffusion properties along the spinal cord length the subject
are split up into three groups: age < 35 years (number of subjects: 12), 35 < age
< 50 years (number of subjects: 15), age > 50 years (number of subjects: 15).
Axial diffusion tensor images were obtained using a SE-EPI sequence with the fol-
lowing acquisition parameters: TR: 10.4s; TE: 100ms; diffusion gradient: 40mT/m;
FOV = 256× 256mm2; matrix size: 128× 128; number of slices = 30; image reso-
lution = 2 × 2 × 2mm3; b = 700s/mm2; acquisition time: 12 min 18 s. Diffusion
measurements were performed along 60 directions (+ 10 non-diffusion weighted
(b0) images) for a robust estimation of FA, tensor orientation, and MD [23]. A
combination of 2 elements of the CP (circular polarization) spine coil and 1 element
of the neck coil was used. Diffusion tensor estimation, tractography, visualization,
and quantitative analysis, was performed with the graphical toolbox ‘ExploreDTI’
(http://www.dti.ua.ac.be) [24]. No specific distortion correction was applied.

7.2.2 Quantitative Diffusion Parameters of Interest

Several quantitative diffusion parameters were analyzed for all subjects, using dif-
ferent segmentation methods (which are described in the following paragraphs).
The FA and MD were calculated and averaged over all selected voxels for all sub-
jects and segmentation methods. In addition, the three eigenvalues (λ1, λ2 and
λ3), the ratio of the first and the second eigenvalue (λ1/λ2), and the ratio of the
first and the third eigenvalue (λ1/λ3) were also computed, since there has been
suggested in [25] that these ratios can better differentiate between healthy and
diseased subjects.
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7.2.3 Spinal Cord Segmentation

Three segmentation techniques were investigated and their results were compared.
First, the generally used ROI analysis was implemented. Second, a fiber tracking
based segmentation technique was developed, in which the results were derived
from the tracts [26]. Third, a hybrid segmentation approach was developed, incor-
porating information from both the tracts and the underlying voxels.

ROI Based Segmentation: Due to the PVE of spinal cord tissue and CSF, it is
very hard to identify the edge voxels of the spinal cord. Three different ROI
based segmentation approaches referred to as ’b0-ROI’, ’L-ROI’, and ’S-ROI’
are introduced that aim for an optimal selection of the spinal cord voxels. In
Fig. 1(a), a mid-sagittal slice of the spinal cord is depicted. An axial slice
is selected to illustrate the three ROI based segmentation approaches, which
are visualized in Fig. 1(b), (c), and (d). The border voxels are included in
the analysis, when their center is situated inside the polygonal.

b0-ROI: In a first approach, ROIs are manually drawn around the spinal
cord on the axial slices of the b0 image (see Fig. 1(b)). The b0 image
provides a contrast that is independent of the quantitative diffusion
properties that are evaluated in the subsequent analysis.

L-ROI: Since FA maps provide a better contrast between the spinal cord
tissue (high FA) and the surrounding CSF (low FA), large ROIs are
manually defined on axial FA slices, in this second ROI approach (see
Fig. 1(c)).

S-ROI: When large ROIs are used to select the spinal cord, PVE contami-
nated voxels are included in the analysis. In an attempt to select voxels
that contain only spinal cord information and no PVE with CSF, small
ROIs are manually placed on the axial FA maps in this third ROI based
segmentation method (see Fig. 1(d)).

All ROIs are drawn manually on each slice by the use of a polygonal. This was
done by two observers, in order to evaluate the inter-observer reproducibility.

Tracking Based Segmentation (TS): In order to diminish the user-dependent
factor of the ROI based method, diffusion tensor tractography (DTT) was
performed on the spinal cord that was preparatory delineated by large ROIs,
including WM, GM, and the voxels that suffer from a PVE with CSF. A
standard deterministic streamline-based fiber tracking approach was applied
with only one seed point per voxel in which the step size was 1mm [27].
Subsequently, all quantitative diffusion parameters of interest are selected on
the tracts [28]. Note that the results of this DTT based analysis are dependent
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on the interpolation technique to build the tracts, the step size, and a possible
seed point interpolation factor. In the remainder of this paper, we will refer
to this technique as ‘Tract based Segmentation’ (TS). Compared with the
ROI delineation methods, the user-dependent factor is replaced by a DTT
parameter-dependency in the TS approach. It is therefore very important to
choose the appropriate DTT parameters. The maximal angle between two
consecutive tract points was set to 20◦. Since the spinal cord is cylindrically
shaped, the maximal angle between two consecutive points on the tract of
20◦ will not create any bias, and prevents tracts to leave the spinal cord
and propagate through surrounding tissue. This was confirmed visually. On
the other hand, by enforcing the tracts to have a minimal length of 5mm,
the very small tracts only covering one or two voxels are filtered out. In
the case of a low FA threshold during tracking, tracts will appear in voxels
containing CSF or a PVE of spinal cord tissue with CSF. Since all tract data
is included in the further analysis, this PVE contaminated information will
bias the results. Moreover, the reproducibility of the method will be worse,
since less restriction is imposed by the DTT algorithm, increasing the effect
of the ROI delineation on the results. On the other hand, when high FA
values are chosen for the tracking procedure, only the very high anisotropic
part of the spinal cord is selected. In this way, again a bias can be introduced,
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because a degenerative or an older spinal cord, containing lower FA values,
will not be fully taking into account and the FA will be overestimated. This
bias is always present when FA thresholds are used, independent of their
value, but their effect is much larger in the case of high FA thresholds. In
Fig. 2, the tracts and their FA histograms of a randomly chosen 46 year old
subject are presented for different DTT FA thresholds. In our study, a value
of 0.3 was observed to be optimal as a minimal FA for seed point selection
and a minimal FA to stop tracking in the TS approach. When using FA
thresholds lower than 0.3, the results are biased by an important presence
of CSF contaminated voxels. This FA threshold analysis was also performed
on all other subjects, demonstrating analogous results as in Fig. 2. Note
that this optimal FA threshold of 0.3 can depend on the data and the study
protocol.

Hybrid Segmentation Approach (HS): This segmentation approach also em-
ploys DTT to select the spinal cord. Hereby, lower FA thresholds can be used
in the DTT algorithm as compared with the TS method, since only voxels
containing 8 tracts - referred to as the tract threshold - are subsequently
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included in the analysis. In the remainder of this paper, this method is re-
ferred to as ‘Hybrid Segmentation’ (HS). The term ‘Hybrid’ originates from
the fact that this method combines properties of the previous two methods.
Indeed, DTT is performed as in the TS approach, but the diffusion param-
eters are evaluated on the selected voxels as in the ROI approach and not
on the tracts. The HS approach is based on the idea that when many fiber
tracts run through a voxel, this voxel is more reliable for the analysis. The
method basically consists of two steps:

1. The spinal cord is preparatory delineated by large ROIs, including the
spinal cord and the PVE with CSF. Thereafter, DTT is performed on
all selected voxels, using only one seed point per voxel. Tracts with a
length of 5mm and smaller are excluded from the analysis. The maximal
angle between two consecutive tracking segments is set to 20◦. An FA
threshold of 0.2 is used in the DTT algorithm.

2. In a second step, only voxels containing a predefined number of tracts
- referred to as the tract threshold - are analyzed, instead of examining
all quantitative fiber tracking results, like in the TS approach (see Fig.
3).

When a high FA for seed point selection and a high FA to stop tracking
are used, a bias can be introduced, like stated similarly in the TS approach.
Since only voxels containing a significant amount of tracts are considered in
the subsequent analysis, the effect of PVE contaminated voxels on the results
will be reduced. Therefore, a lower FA threshold could be implemented in
the DTT algorithm of the HS approach, compared to TS. The optimal tract
threshold obviously depends on the FA threshold that was used in the DTT
algorithm. No FA threshold or an FA threshold of 0.1 resulted in a similar
number of fiber tracts in the CSF voxels, the PVE contaminated voxels, and
the spinal cord tissue voxels. In this case, applying a low tract threshold
will result in the incorporation of many voxels containing CSF or a PVE
with CSF. On the other hand, a high tract threshold will create a bias in
the results by excluding spinal cord voxels from the analysis. An optimal FA
threshold of 0.2 was found. This value was high enough to prevent too much
tracking in PVE contaminated voxels and low enough to restrict the potential
bias of a high FA threshold, especially in data sets of older subjects. A study
was performed, concerning the optimal tract threshold when an FA threshold
of 0.2 was used. When the tract threshold was high (> 16), spinal cord voxels
with a high FA were excluded and the number of selected voxels was reduced,
thus increasing the standard error of the FA histogram of the selected voxels
and creating a bias (see Fig. 4). In the case of a small tract threshold,
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Figure 7.3.

more voxels containing PVE with CSF are retained, again increasing the
standard error of the FA histogram. An optimal tract threshold of 8 was
found in the analysis. This value excludes many PVE contaminated voxels
and retains as many spinal cord tissue voxels as possible. Furthermore, these
thresholds resulted in the lowest standard error in the FA histogram of the
selected voxels. In the case of higher FA thresholds during tracking or higher
tract thresholds, this standard error rises because less voxels are selected.
On the other hand, this standard error will increase with lower FA-and tract
thresholds, since more PVE contaminated voxels are included in the analysis.
In Fig. 4, FA histograms and scatter plots of the number of tracts in the
selected voxels (denoted as t) and the FA value of these voxels are displayed
for different FA-and tract thresholds. To summarize, the tract threshold is
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obtained by a qualitative analysis (a visual inspection of the tractography
results), as well as a quantitative analysis (evaluation of the standard error
of the FA). Again, it is important to note that the optimal parameters for a
HS analysis can depend on the data and the study protocol.

7.2.4 Statistical Analysis Procedures

Statistical tests were performed with the SPSS analysis package (http://www.spss.com).
The intra-and inter-subject reproducibility of the different segmentation methods
was tested using the intra-class correlation coefficient (ICC). This coefficient is
used to measure the inter-rater reliability for two or more raters and can be con-
ceptualized as the ratio of the between-groups variance to the total variance. A
measurement is deemed highly reproducible for ICC > 0.9. In the case of 0.7 <
ICC < 0.9 the reproducibility is considered acceptable. Finally, ICC < 0.7 was
interpreted as poorly reproducible. In order to investigate correlations between
the diffusion measurements and age, Pearson (r) and Spearman (ρ) correlation
tests were performed - depending on the data distribution as investigated by the
Kolmogorov-Smirnov test. Kolmogorov-Smirnov tests, checking normality, were
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applied in the case of the diffusion parameters for the different subjects and re-
sulted in p>> 0.05, suggesting a parametric approach for the correlation analysis.
However, the parametric Pearson correlation test is dependent on the presence of
outliers. In this study, outliers occurred and because they could be assumed as
genuine values, a Spearman correlation test was also applied. The DTI results of
male and female subjects were combined since a Mann-Whitney U-test showed no
differences of all the diffusion parameters between the sexes (p>> 0.05). Moreover,
the age distribution was not significantly different for both sexes (p>> 0.05, with
21 males vs 19 females). In the figures, ‘*’ denotes statistical significance at the
0.05 level, ‘**’ at the 0.01 level.

7.3 Results

7.3.1 Reproducibility

The ICC values are shown in Table 1 for the different DTI parameters, demon-
strating that the tracking based methods are highly reproducible with ICC values
above 0.9. ROI based delineation of the spinal cord on the FA maps was observed
to have a lower reliability. When ROIs were defined on the non-diffusion weighted
images, the reproducibility was even lower. Note that an intra-rater as well as an
inter-rater reproducibility is measured.
figure

This result is superimposed on an axial, sagittal, and coronal FA slice of the ground truth image. In order to
evaluate the preservation of the orientational information during the atlas construction, the OVL is measured at
each voxel between the ground truth image on the one hand and the different atlases on the other hand. The
OVL between the ground truth image on the one hand and and the affine atlas, the SB-FA atlas, the SB-DT
atlas, the PB-FA atlas, and the PB-DT atlas on the other hand are shown in Figure 1 IV (A), (B), (C), (D),
and (E), respectively. The OVL is hereby scaled between 0, 97 and 1. A high OVL represents a large tensor
correspondence and thus a high orientational accuracy of the atlas with the ground truth image. In Figure 1 V,
the OVL precision is visualized for the SB-FA atlas and PB-FA atlas, respectively. The OVL is hereby scaled
between 0, 9 and 1.

In Figure 1 VI (A), the cortico-spinal tracts of the ground truth image are visualized. The ROIs that were
used to obtain these tracts are shown on an axial slice of the ground truth image in Figure 1 VI (F). These
ROIs were also used to define the seed points during the tractography algorithm on the atlases. In Figure 1 VI
(B), (C), (D), and (E), the cortico-spinal tracts of the SB-FA, SB-DT, PB-FA, and PB-DT atlases are shown,
respectively. In order to allow a better visual comparison of the tracts, the cortico-spinal tracts of the ground
truth image are given a green color, whereas the cortico-spinal tracts of the different atlases are given a red color.
Thereafter, the ground truth tract results are overlayed on the different tract results of the atlases.

New or breakthrough work to be presented In this work, a DTI atlas is created with a minimal bias
towards any individual data set. Furthermore, all DT information is used during coregistration in order to
incorporate the orientational information in the atlas. Results demonstrated that the population based atlas
method is more robust to include the orientational information correctly (see Figure 1). The atlases were
evaluated using a ground truth evaluation methodology.

Conclusions A subject independent population based DT atlas, with a minimal bias towards any individual
data set, is constructed and evaluated with a ground truth method. This atlas contains all available orientational
information and can be used in future VBM studies as a reference system.

b0-ROI L-ROI S-ROI TS HS
intra inter intra inter intra inter intra inter intra inter

FA 0.36 0.28 0.67 0.62 0.69 0.66 0.96 0.91 0.97 0.96
MD 0.40 0.31 0.72 0.70 0.73 0.71 0.97 0.92 0.98 0.93
λ1 0.54 0.40 0.75 0.72 0.70 0.68 0.97 0.93 0.98 096
λ2 0.36 0.30 0.70 0.65 0.74 0.68 0.98 0.94 0.99 0.95
λ3 0.30 0.28 0.70 0.65 0.70 0.66 0.98 0.92 0.99 0.96

Statement of originality This work is not being, nor has been, submitted for publication or presentation
elsewhere.
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figure

7.3.2 Correlation Analysis

In this section, the correlation results, depicted in Figs. 5, 6, 7, and 8, are described.
Only in the case of a statistically significant correlation, a trendline is drawn.

ROI Based Segmentation: It is clear that MD, λ1, λ2, and especially λ3 are
higher, for the ‘L-ROI’ compared to the ‘S-ROI’ approach. On the other
hand, the FA is lower in the case of ‘L-ROI’. These results mark the presence
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Figure 7.5.

of CSF or voxels contaminated with a PVE of CSF in the ‘L-ROI’ results.
Pearson and Spearman correlation tests revealed that the results derived with
a large and a small ROI are positively correlated (p< 0.001 and ρ and r values
of approximately 0.5), indicating similar relative results. The DTI properties
that are derived with the ‘b0-ROI’ approach are positively correlated (p<
0.001) with both the ‘L-ROI’ and the ‘S-ROI’ results. Although the diffusion
tensor eigenvalues indicate some tendencies as a function of age, only λ1 is
significantly correlated in the case of ’b0-ROI’ and ‘L-ROI’, as shown in Fig.
5. In Fig. 5 (a), the eigenvalues from the ‘b0-ROI’ delineation are displayed.
Figs. 5 (b) and (c) show the results of the ‘L-ROI’ and ‘S-ROI’ segmentation
methods, respectively. In Fig. 6, the correlation of FA, MD, λ1/λ2, and
λ1/λ3 as a function of age is shown. No statistically significant correlations
were found.

The results obtained by the ‘S-ROI’ analysis contain less PVE contaminated
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voxels with CSF compared with the ‘L-ROI’ analysis. To further reduce the
PVE in the results, Valsasina et al. (2005) selected only voxels coming from
the central slice of the sagittal images [21]. However, this strongly reduces the
number of data. Furthermore, the diffusion properties of the central spinal
cord voxel can differ. On the one hand, a decreased FA was observed in the
central spinal cord voxels of different subjects, indicating a possible PVE of
WM and GM. In some data sets, on the other hand, central voxels with a
relatively high FA in the middle were noted (Fig. 7).

Tracking Based Segmentation: The DTI parameters FA, MD, λ1, λ2, λ3, and
λ1/λ3 were found to be significantly correlated with age, when using the
TS approach. λ1/λ3 tends to decrease with age, but not on a statistically
significant basis. These results are shown in Fig. 8.
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Hybrid Segmentation Approach: The correlation of all DTI parameters is sta-
tistically significant with age, and often at a p < 0.01 level with 0.3 < r,ρ
< 0.5. Results are displayed in Fig. 8. The HS approach is the only seg-
mentation method that detects statistically significant correlations for all
parameters. In Fig. 8 (e) and (f) it is shown that, although all three eigen-
values increase during aging, λ2 and especially λ3 will have a stronger effect
than λ1.

7.3.3 Diffusion Parameters along the Cervical Spinal Cord

Length

In Fig. 9, the diffusion properties are evaluated along the length of the spinal cord.
Hereby, the HS method with the above mentioned parameters is used to select
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the spinal cord voxels of the different slices. The subject group was subdivided in
three groups: under 35 years, between 35 and 50 years, and above 50 years. In
Fig. 9 (a)-(e), the averaged diffusion parameters of the selected voxels with the HS
method are calculated for each slice. Since the HS method is based on the number
of tracts that run through a voxel, a small bias can be created at the edges of the
image. This is due to the fact that tracts can penetrate a voxel in the middle of the
image from both sides of that voxel, whereas a voxel that is situated at the edge of
the image can only be penetrated along on side. A small decrease of selected voxels
with the HS method was observed at the edges along 3 to 4 slices. The results of
these slices are therefore deleted from the Figs. 9 (a)-(e). The trends observed in
Figs. 9 (a)-(e) are confirmed by a ROI analysis, as shown in Figs. 9 (f)-(j). An FA
increase was found at higher cervical levels, for all age groups (see Figs. 9 (a) and
(f)). A decrease of MD, λ1, λ2, and λ3, was found for the youngest group at higher
cervical levels (see Fig.s 9 (b)-(e)). In contrast to this, these diffusion values were
increasing at the higher spinal cord slices for the middle-aged and the older group
(see Figs. 9 (b)-(e)). These results are confirmed by the ROI analysis (see Figs. 9
(f)-(j)).
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Figure 7.9.
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7.4 Discussion

In this work, all subjects had a normal cervical spinal cord and no pathological
spinal cord symptoms. The FA, MD, λ1, λ2, λ3, λ1/λ2, and λ1/λ3 were studied
as a function of age, indicating that the ROI based segmentation method is less
sensitive to age related effects compared to the proposed tract or hybrid based
approaches. In the tracking based segmentation methods (TS and HS), the user-
dependent factor is negligible, but replaced by a DTT parameter-dependence. Only
the proposed methodology using DTT results and the underlying voxel data (HS)
demonstrated a statistically significant correlation of all diffusion parameters with
age. The drawback of the semi-automated approaches is that the absolute, quanti-
tative results depend on certain parameters. The validity of the proposed methods
still has to be confirmed in studies of different pathologies, which is the subject of
future work. A lot of valuable research is performed regarding the optimization of
the DTI acquisition with respect to bulk motion and pulsatile flow artifacts from
the surrounding CSF [16, 29–32]. Other studies use cardiac gating to reduce mo-
tion artifacts, or interleaved echo-planar diffusion imaging to reduce the scan time
[33, 34]. Line scan imaging is a fast technique that relies on the acquisition of
columns [30, 35]. However, in this work, a standard acquisition scheme was used
with isotropic voxel sizes, to reduce the PVE in the slice direction. Optimized and
adapted DTI acquisition schemes might improve the image quality and therefore
the reliability of the subsequent analysis.
Fig. 3 demonstrates that the ‘S-ROI’,‘L-ROI’, and the ‘b0-ROI’ segmentation tech-
niques strongly suffer from a low intra-and inter-subject reproducibility. The two
experts that performed the segmentation were equally instructed on the ROI de-
lineation and had no prior knowledge about the age or sex of the subjects. The
lack of inter-and intra-subject reproducibility is therefore originating from a dif-
ferent interpretation of the data and can be seen as an indicator for the sensitive
operator-dependency of the ROI definition. It is clear that, when examining the
spinal cord with DTI, this problem will be manifested, due to the combination of
the small spinal cord size, the limited resolution, and the PVE. TS and HS result
have shown to be highly reproducible (high ICC values, see Fig. 3). The ROI def-
inition is less stringent for TS and HS, compared to the ROI based method, since
ROIs are only used to mark out the spinal cord, including the PVE with CSF,
from the surrounding vertebrae and other tissues. Furthermore, only the voxels
with significant a priori information, i.e. containing a predefined number of tracts
with certain anisotropy values, are evaluated in the analysis of the HS approach.
The ‘b0-ROI’, ‘L-ROI’, and ‘S-ROI’ methods demonstrate correlation trends be-
tween the different DTI parameters and age (Figs. 4 and 5), but this is never
considerably statistically significant. The user-dependency, the small spinal cord
diameter, and the PVE result in a low reliability of the ROI segmentation method,
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especially when ROIs are drawn on the non-diffusion weighted images. As seen
in Fig. 4 (a) and (b), the ‘b0-ROI’ and ‘L-ROI’ approaches found a statistically
significant Pearson correlation coefficient. However, this result is not confirmed by
a statistically significant Spearman correlation coefficient. Therefore, the Pearson
correlation significance is probably affected by the presence of outliers. Since the
ROIs are defined on the FA maps as in the ‘L-ROI’ and ‘S-ROI’ approaches, a
potential bias can exist when studying the FA. This bias originates from the fact
that FA maps are used for a ROI based segmentation of the spinal cord on the one
hand, and that the FA is compared between subjects on the other hand. Spinal
cord voxels with a lower FA value, for example in the case of a pathology, can
therefore potentially be excluded from the analysis since they are interpreted as
non-spinal cord voxels or PVE contaminated voxels during the ROI delineation on
the spinal cord FA map. More succinctly, the dependent variable is used to define
the independent variable in the analysis, which is statistically not correct. How-
ever, when an unrelated image contrast such as the non-diffusion weighted image
(b0) is used for the ROI delineation, results are biased by a lack of reproducibility
(see Fig. 3). We therefore believe the FA map presents a more adequate image
contrast for an accurate ROI definition, when DT images are acquired with the
acquisition parameters of this study. Furthermore, the possible bias caused by
the ROI delineation on the FA maps will not affect the quantitative results in the
’L-ROI’ method, since all spinal cord tissue and the PVE with CSF is included
in the analysis. The results obtained by the ’S-ROI’ analysis contain less PVE
contaminated voxels with CSF compared with the ’L-ROI’ analysis. Valsasina et
al. (2005) selected only voxels coming from the central slice of the sagittal images
in order to reduce this PVE with CSF [21]. As shown in Fig. 7, the DT properties
of the central spinal cord voxel can vary. A possible explanation is the variation
in spinal cord diameter between different subjects. Indeed, a smaller spinal cord
diameter might result in a more important PVE of WM and GM, thus reducing
the anisotropy values in certain voxels. Since it is reported that the spinal cord
narrows and the spinal cord diameter decreases with age, only interpreting these
central voxels, might affect the age-related results [36]. In addition to the aging
effects on the spinal cord diameter, cervical cord atrophy is a frequent finding in
different pathologies [37].

The tractography results were observed to be more reproducible, since the manual
ROI segmentation is only required to differentiate the spinal cord tissue and CSF
roughly from the surrounding vertebrae and other tissues (see Fig. 3). Although
results can be biased by the DTT parameter selection, when using tractography
to select the spinal cord voxels, no such bias was observed in our study. A visual
inspection confirmed that tracts were observed along the spinal cord region of inter-
est (C1–C5). Diffusion measures were compared in the case of three different DTT
parameter sets for all subjects. A correlation analysis and an ICC measurement
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was performed comparing the results of the TS segmentation approach under dif-
ferent DTT parameters. Pearson and Spearman correlation coefficients were larger
than 0.85 and an ICC > 0.9 was found, demonstrating the high reliability of the
TS approach and the rather high insensitivity of the diffusion results to the DTT
parameter selection. In the case of all DTT parameter sets, a statistically signif-
icant correlation with age was observed for the diffusion parameters λ1, λ2, λ3,
and MD. However, when subject groups, suffering from certain degenerative spinal
cord pathologies, are studied, the DTT parameter selection has to be approached
very cautiously. Nevertheless, we believe that, because of the much higher stan-
dardization of the tractography based method - each data set is treated in exactly
the same way - its results are more reliable compared to the results of the manual
ROI based segmentation.
In the hybrid segmentation approach, only voxels containing 8 tracts - referred
to as the tract threshold - were analyzed. The results of the HS segmentation
method are, similar to those of the TS approach, parameter-dependent instead of
user-dependent. Analogous as in the TS segmentation, the quantitative diffusion
results were compared in the case of three different FA and tract thresholds for all
subjects. Again, a correlation analysis and an ICC measurement was performed
comparing the results of the HS method under different threshold values. Pearson
and Spearman correlation coefficients were larger than 0.82 (p< 0.001) and an ICC
> 0.9 was found. These results indicate a high reliability of the HS approach and
the rather insensitivity of the diffusion results to the threshold selection. In the
case of all DTT parameter sets, a statistically significant correlation with age was
observed for all the diffusion parameters λ1, λ2, λ3, MD, FA, λ1/λ2, and λ1/λ3.
We postulate that the HS approach is a segmentation method that retrieves the
available spinal cord information in the most reproducible and robust way.
A drawback of all implemented approaches to select the spinal cord voxels of inter-
est, is the fact that the diffusion properties are averaged along the cervical spinal
cord (C1–C6). Wheeler-Kingshott et al. (2002) demonstrated that these diffusion
values (FA, MD, eigenvalues) could vary along the spinal cord [12]. They used a
ROI analysis on four subjects. In Fig. 7, the FA, MD, and the eigenvalues are eval-
uated along the spinal cord (C1–C6). The HS method was used to select the spinal
cord voxels of the different slices. The healthy subject group was subdivided in
three groups according to the age. In contrast to the results of Wheeler-Kingshott
et al. (2002), high FA values were observed at C1. Many factors can attribute
to these contradictory results. First of all, Wheeler-Kingshot et al. (2002) used
anisotropic voxels and a different acquisition scheme compared to our study. Also,
the analysis of Wheeler-Kingshot et al. (2002) was based on 4 subjects, which can
affect the results. Furthermore, in their study the most superior slices were at the
level of the pons where different conditions arise, i.e. less mono-directional oriented
fibers in comparison with the spinal cord. The HS method is based on the number
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of tracts that run through a voxel. Therefore, a small bias can be created at the
edges of the image, due to the fact that tracts can penetrate a voxel in the middle
of the image from both sides of that voxel, in contrast to voxels at the edges of
the image. Therefore, the results of the three outermost slices at both edges, are
withdrawn from this analysis. In contrast to the work of Wheeler-Kingshott et al.
(2002), we subdivided our healthy population into three age groups. As Figs. 7
(b)-(e) demonstrate, the MD, λ1, λ2, and λ3 decreased at higher cervical levels in
the youngest age group, whereas these values increased in the other two age groups.
These results are confirmed by a ROI analysis along the spinal cord (see Fig.s 7
(f)-(j)). A higher penetration of CSF through the spinal cord in older subjects can
explain these findings, although other factors, such as a broadening of the spinal
cord diameter at the upper levels in the younger subject group compared to the
older groups, might also explain the decrease of the MD and the eigenvalues at the
upper spinal cord levels in the youngest group. However, no statistically signifi-
cant correlation was observed between the number of selected voxels in the different
segmentation approaches and the age (p> 0.6 for all segmentation approaches).

The DTI results of the different segmentation methods should be interpreted with
care, since no histological and thus no ground-truth data of the examined persons
is available. This stresses the importance of animal studies, where the measure-
ment of diffusion properties can be correlated with histological findings [38]. It
is therefore im-possible to consider one of the segmentation techniques as a per-
fect match with the real, underlying situation. Consequently, the objective in this
study was not to determine the absolute, quantitative spinal cord DTI parameters,
but to find the most reliable and robust segmentation method that can extract the
relevant information, given the mentioned problematic nature of spinal cord DTI.
When the tendencies of the different DTI parameters are compared for the different
segmentation methods, a certain similarity can be observed (see Figs. 4, 5, and
6). This suggests that, independent of the segmentation approach that was used,
the diffusion parameters indeed evolve as a function of age. The fact that these
underlying trends of the diffusion characteristics are only detected on a statistically
significant basis by the proposed HS approach, reflect the high reproducibility, sen-
sitivity and robustness of this segmentation method. In addition, our DTI results
are confirmed by the histological findings in literature of spinal cord degeneration
with aging [39]. Furthermore, these tendencies are validated by the available DTI
literature of both brain and spinal cord [17, 40–43]. Ota et al. (2006) detected
a statistically significant increase of MD, λ2, and λ3 values and a decrease of the
FA in function of age in most parts of the corpus callosum [40]. They did not
observe a significant increase of λ1. Another age-related DTI study of the brain
demonstrated a decreased FA, and an increased MD as a function of age in frontal
fiber systems, whereas only small differences were detected in the posterior regions
of the brain [41]. Salat and colleagues presented analogous results [42]. Yoshiura
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et al. (2005) discovered an FA increase in younger adults, whereas no age-related
changes were observed in indices derived from mean diffusivity maps [43]. In their
study, Mamata et al. (2005) detected an FA decrease (r = 0.244) and an apparent
diffusion coefficient increase (r = 0.242) as a function of age in cervical spondylosis
patients with a normal spinal cord at the C2–C3 level [17]. The data were derived
after a ROI based delineation, whereby only the strictly central part of the spinal
cord was delineated in an attempt to exclude any CSF. In conclusion, different
spinal cord DTI segmentation methods are compared in this study. We can con-
clude that the tendencies that were observed match with the expected evolution
of the diffusion characteristics during normal aging. We demonstrate an increase
of λ1, λ2, λ3, MD, and a decrease of FA, λ1/λ2, and λ1/λ3 as a function of age.
HS is the only segmentation method that traces the tendencies of all considered
diffusion properties on a statistically significant basis. We postulate that the HS
approach retrieves the available spinal cord information in the most reproducible
and robust way, given the specific problematic nature of the spinal cord DTI data.
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CHAPTER 8. DTI OF THE SPINAL CORD IN MS PATIENTS

8.1 Introduction

MS is a chronic demyelinating disease of the central nervous system, which is
characterized by both inflammatory and neurodegenerative processes. Nowadays,
MR imaging is increasingly used in the diagnosis of MS patients with spinal cord
involvement [1]. In addition, MR can also be useful in patients who do not have
clinical spinal cord involvement, because asymptomatic spinal cord lesions are com-
mon in MS and uncommon in other WM disorders [2]. However, the spinal cord
lesion information as obtained by a conventional MR examination does not always
correlate well with the clinical disability of the patient and/or with histological
information [3–5]. It has been demonstrated that the WM regions that appear
normal on conventional MR images, referred to as NAWM, are also involved in the
MS disease process [6, 7]. In this context, DTI can provide complementary diagnos-
tic information regarding the microstructural WM organization in MS lesions and
NAWM [8]. This technique is based on the fact that water molecules have a larger
probability to diffuse along the axonal structures than perpendicular to them [8].
Recent studies demonstrate the potential of quantitative DTI parameters, such as
the FA, which is a normalized measure of the degree of anisotropy, and the MD, i.e.
the averaged diffusion, for detecting WM alterations in patients with MS [9–13].
Since the spinal cord is frequently involved in MS, DTI can be regarded as a
valuable technique to examine WM alterations in the spinal cord of patients with
MS. However, in contrast to the potential of such a DTI study of the spinal cord,
only a limited number of papers are published regarding this topic [1, 14–20]. In
this context, it is known that several factors hamper a robust DTI study of the
spinal cord, such as restricted DT image resolution, the small size of the spinal
cord, and artifacts related to cardiac and respiratory motion, and magnetic field
inhomogeneities [21, 22]. As a result, a relatively large number of voxels contain a
combined signal originating from both the spinal cord and the CSF, which is also
known as a PVE [23].
In a preliminary study of three MS patients, Clark et al. (2000) demonstrated a
significant FA decrease and MD increase in MS cord lesions using a ROI based
approach [14]. In order to increase the robustness and the reproducibility of the
image processing, Valsasina et al. (2005) and Agosta et al. (2005) performed a
histogram analysis on the central slice of the sagittal images [15, 16]. In these
studies, a significant FA decrease was observed in the cervical spinal cord of MS
patients, compared to healthy subjects. This histogram analysis approach was also
adopted by Benedetti et al. (2006) in a DTI study of MS patients and patients with
neuromyelitis optica [17]. Hesseltine et al. (2006) reported a significant FA decrease
in the NAWM of patients with MS in the lateral, central, and posterior regions of
the spinal cord at the C2-C3 level compared to healthy subjects [18]. Their image
processing method was based on the manual placement of circular ROIs on a single
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axial slice. Ohgiya et al. (2007) demonstrated a reduced FA in lesions and NAWM
regions of MS patients compared to healthy subjects by manually placing small,
ovoid ROIs at the C2-C3, C3-C4, and C4-C5 level [19]. Recently, Ciccarelli et al.
(2007) demonstrated that the FA is reduced in MS patients compared to normal
controls, using diffusion tensor tractography [20].
Previous DTI studies of the spinal cord in MS patients focused on the examination
of diffusion measures in spinal cord lesions or in NAWM near these lesions using
ROIs. We hypothesize that the spinal cord can also be involved in the disease when
no lesions are reported on the conventional MR scans. In addition, we hypothesize
that a tractography based spinal cord segmentation method is more reliable and
sensitive to detect diffusion alterations in the normal appearing spinal cord of MS
patients compared to the generally applied ROI approach [24]. The aim of this
work was therefore to examine the spinal cord diffusion properties of MS patients
without T2 spinal cord lesions using diffusion tensor tractography. To the best of
our knowledge, this is the first quantitative DTI study of the cervical spinal cord
that appears entirely normal on a conventional MR examination in patients with
MS.

8.2 Methods

8.2.1 Subjects

Diffusion tensor measurements of the cervical spinal cord (C1–C5) were acquired
with a 1.5T MR scanner (Siemens, Erlangen, Germany) from 21 MS patients (age:
38 ± 9 years; 8 males, 13 females). 21 sex- and age-matched healthy subjects were
additionally scanned (age: 40 ± 10 years; 8 males, 13 females). All healthy subjects
had a normal appearing spinal cord on conventional T2-weighted MR images. An
informed consent was signed by all participants. In 11 of the MS patients, which
we will refer to as MS patient group 1, one or more lesions were detected in the
spinal cord on conventional MR images. In the other 10 MS patients, which will
be referred to as MS patient group 2, no spinal cord lesions were detected on the
conventional MR scan. Twelve patients had relapse-remitting MS (6 in MS patient
group 1 and 6 in MS patient group 2), 9 patients had secondary progressive MS
(5 in MS patient group 1 and 4 in MS patient group 2). There was no clinical
suspicion of an acute MS attack in any of the patients at the time of imaging.

8.2.2 MRI Acquisition

The acquisition parameters can be summarized as follows: TR: 10.4 s; TE: 100 ms;
diffusion gradient: 40 mT/m; FOV = 256× 256mm2 matrix size: 128× 128; num-
ber of slices = 60; image resolution = 2 × 2 × 2mm3; b = 700s/mm2; acquisition
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Figure 8.1. A contour that delineates the spinal cord is drawn in red on a sagittal slice

of all diffusion weighted images and the FA map

time: 12 min 18 s. Diffusion measurements were performed along 60 directions
(+ 10 non-diffusion weighted (b0) images) for a robust estimation of FA, tensor
orientation, and MD [25]. A combination of 2 elements of the CP (circular polar-
ization) spine coil and 1 element of the neck coil was used to obtain the data. A
severe signal dropout due to ghosting, susceptibility, or respiratory artifacts, was
observed in data sets of 2 subjects. These data sets were excluded from the analy-
sis. All diffusion-weighted images were analyzed visually to check for the absence
of distortions in the data. Data sets were included in the analysis without the use
of a specific distortion correction algorithm, when the geometric distortions were
smaller than approximately 1 voxel. An example of the diffusion weighted images
is provided in Fig. 1. A contour that delineates the spinal cord is drawn on a
sagittal slice of the FA map. Exactly the same contour is also placed on the same
sagittal slice of all DW images to demonstrate the acceptable spatial correspon-
dence between the different DW images. Diffusion tensor estimation, tractography,
visualization, and quantitative analysis, was performed with the diffusion toolbox
’ExploreDTI’ (http://www.ExploreDTI.com) [26].
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8.2.3 Diffusion Parameters of Interest

Multiple quantitative diffusion parameters were analyzed in all subjects. FA and
MD were calculated and averaged over all selected voxels for all subjects. In ad-
dition, the longitudinal (λ‖) and transverse (λ⊥) diffusivities, and the ratio of the
longitudinal versus transverse diffusivities (λ‖/λ⊥) were also computed, since it
has been suggested that this ratio can better differentiate between healthy and
diseased subjects [27–30].

8.2.4 Image Analysis

It is generally known that it is difficult to determine spinal cord diffusion measures,
because many voxels at the edge of the spinal cord contain a signal of both the
spinal cord tissue and CSF. In a first image analysis approach, ROIs were manually
placed on each axial slice, thereby carefully delineating the spinal cord to avoid the
inclusion of PVE contaminated voxels in the analysis. All ROIs were defined on
the axial slices of the FA maps, color encoded for the diffusion direction, since they
provided the best contrast between the spinal cord tissue and the surrounding CSF
(see Fig. 2 a,b).
In a second image analysis method, also referred to as the tract based segmentation
approach, diffusion tensor tractography was performed on the spinal cord that was
first manually delineated by ROIs (see Fig. 2 c) [24]. A standard deterministic
streamline-based fiber tracking approach was applied with only one seed point per
voxel in which the step size was 1 mm [31]. The maximal angle between two
consecutive tract points was set to 20◦ and an FA threshold of 0.3 was used during
tractography, as in [24, 32, 33]. Subsequently, all quantitative diffusion parameters
of interest are selected on the tracts. The tractography parameters were defined
as in Chapter 7, and a careful visual inspection was performed to make sure that
the whole spinal cord was covered by fiber tracts without any interruptions in all
subjects c. Diffusion tensor tractography is thus used to further segment the spinal
cord tissue, using the orientational diffusion information that is present in each
voxel. The spinal cord was thereby initially separated from the background noise
by drawing an ROI on every axial slice. Multiple ROIs were used to make sure the
whole cervical spinal cord was included in the analysis.
The diffusion properties of the MS lesions and the NAWM in the patients with MS
lesions were also evaluated. The MS lesions were identified on the anatomical MR
images that were acquired at exactly the same cord levels as the diffusion tensor
data sets. The ROIs that were used to delineate the lesions on the anatomical
MR images were transferred to the DTI data set to obtain the diffusion properties.
Analogously, ROIs were drawn on the conventional MR images to delineate the
NAWM tissue and subsequently transferred to the DTI data set. As in the work of
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Figure 8.2. In (a), a sagittal slice of the spinal cord is shown. The color is encoded for

the diffusion direction, and the intensity is proportional with the diffusion anisotropy. In

the ROI based segmentation method, ROIs are drawn on all axial slices, as demonstrated

for three axial slices in (b). In the tractography based segmentation method, diffusion

measures are derived from the tracts. In (c), the tactography result of a healthy subject an

MS patient with T2 spinal cord lesions and an MS patient without T2 spinal cord lesions

are visualized.

Filippi et al. (2000), spinal cord tissue was assigned to be normal appearing when
no lesion was found in the adjacent slices [34].

8.2.5 Statistical Analysis Procedures

Statistical tests were performed with the SPSS analysis package (http://www.spss.com).
Male and female data sets were combined since a t-test showed no difference in
any of the diffusion parameters between both sexes (p¿¿0.05, with 16 males vs
26 females). Moreover, the age distribution in the three subject groups was not
significantly different for both sexes (p>> 0.05, with 16 males vs 26 females). An
analysis of covariance (ANCOVA) was employed to compare the cervical cord dif-
fusion properties from the control subject group with both MS patient groups.
Kolmogorov-Smirnov tests demonstrated that a parametric approach could be ap-
plied (p>> 0.05). Potentially confounding factors, such as the subject’s age and
the cross-sectional area of their cervical spinal cord - measured as the number of
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Table 1: Average A FA MS λ|| λ and λ||/λ are displayed using three different spinal cordTable 1: Average A, FA, MS, λ||, λ⊥, and λ||/λ⊥ are displayed using three different spinal cord
segmentation approaches in control subjects, MS patients with plaques in the spinal cord, and
MS patients without plaques in the spinal cord.

control subjects MS patients with plaques 
in the spinal cord

ROI TS ROI TS

MS patients without 
plaques in the spinal cord

ROI TS

Average 
(Standard 
Deviation) ROI TS ROI TS ROI TS

A 80.3 89.2 70.7 79.9 75.4 82.0

)

FA 0.58 0.53 0.54 0.48 0.55 0.48

MD
x10‐3 mm²/s

1.09 1.21 1.23 1.31 1.18 1.24

λ||
x10‐3 mm²/s

1.89 2.02 2.04 2.18 1.97 2.10

λ⊥
x10‐3 mm²/s

0.69 0.86 0.83 0.96 0.79 0.92

λ||/λ⊥ 2.76 2.38 2.47 2.21 2.51 2.23

Abbreviations:Abbreviations:
A: cross‐sectional spinal cord area; FA: fractional anisotropy; MD: mean diffusivity; λ||: longitudinal diffusivity;
λ⊥: transverse diffusivity; ROI: region of interest; TS: tract based segmentation method

selected voxels - were included in the ANCOVA model. Although the age and the
cross-sectional area were not differently distributed in the different subject groups,
both factors were included in the analysis of covariance. Differences in diffusion
measures between groups could therefore be attributed to an intrinsic difference
between the diffusion properties of the subjects groups. In this context, the cer-
vical spinal cord cross sectional area A was calculated separately for both image
analysis approaches as the number of selected voxels for analysis. In addition, the
statistical results were adjusted in order to correct for multiple comparisons using
Fisher’s least significant difference approach. The intra-observer reproducibility of
the different image analysis methods was tested using the ICC. To this end, the
ROIs were drawn a second time by the same observer. A measurement is deemed
highly reproducible if ICC > 0.9. In the case of 0.7 < ICC < 0.9, the reproducibil-
ity is considered acceptable. Finally, results with an ICC < 0.7 are interpreted as
poorly reproducible.

8.3 Results

Using the ROI approach, a mean cross sectional surface A of 80.3mm2, 70.7mm2,
and 75.4mm2 was observed for the control group, the MS patient group with le-
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sions, and the MS patient group without spinal cord lesions, respectively (see Table
1 and Fig. 3). Although larger cross sectional areas of 89.2mm2, 79.9mm2, and
82.0mm2 were found for the different subject groups using the tractography based
image analysis method (see Table 1 and Fig. 3), Pearson correlation tests demon-
strated a significant correlation between the cross sectional areas of the ROI and
the tractography based approach (p<< 0.001, r> 0.9, results not shown). These
results suggest that a smaller cross sectional area of the spinal cord can be observed
in the MS patient groups compared to the control group. However, this difference
was not found to be statistically significant, as can be observed in Table 2.
The cervical spinal cord diffusion metrics of the different subject groups are pre-
sented for the ROI and the tractography based image analysis approaches in Table
1. The distribution of these diffusion measures is visualized using boxplots in Fig.
3, whereby the boxplots of the control group, the MS group with spinal cord le-
sions, and the MS group without known spinal cord lesions are colored in green,
red, and orange, respectively. The results of ANCOVA tests, which compare the
diffusion measures across the different subject groups, thereby taking into account
the subject age and the cross-sectional spinal cord area, are displayed in Table 2.
It can be observed that the FA, the transverse diffusivity λ⊥, and the ratio of the
longitudinal and transverse diffusivities (λ‖/λ⊥) are significantly lower for the MS
patients with spinal cord lesions compared to the control subjects using the ROI
method (p = 0.014, p = 0.028, and p = 0.039, respectively) and the tractography
based approach (p = 0.006, p = 0.037, and p = 0.012, respectively). Although
the visual results of Fig. 3 suggest an increased MD in the MS patient group with
spinal cord lesions, no statistically significant difference in MD was found (Table
2).
The FA and the λ‖/λ⊥ values were significantly different between the control group
and the MS patient group without spinal cord lesions. These FA differences are sta-
tistically significant with a p-value of 0.013 for both image analysis methods (Table
2). For λ‖/λ⊥, a p-value of 0.018 and 0.020 was found for the ROI and the tractog-
raphy based method, respectively. The diffusion values of the MS patients without
spinal cord lesions were not observed to be different from the diffusion measures of
the MS patients with spinal cord lesions (see Fig. 1, statistical results not shown).
In addition to the study of the NAWM of MS patients without spinal cord lesions,
the NAWM diffusion measures of MS patients with spinal cord lesions are exam-
ined. To this end, the lesions and the NAWM were separated manually by ROIs.
As can be observed in Table 4, all diffusion measures are significantly different in
the spinal cord plaques compared to the measures of the control subjects.
Finally, the reproducibility of image processing methods is examined using the
intra-class correlation coefficient. As can be observed in Table 3, the ICC is very
high for the tractography based method. Since the ROI approach is more user de-
pendent due to the manual delineation of the ROIs, lower ICC values were observed
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healthy subjects MS patient group 1 MS patient group 2

A

FA

MD 
[s/mm2][s/mm ]

λ||||
[s/mm2]

λ⊥
[s/mm2]

λ|| /λ⊥

Tractography basedROI based Tractography based 
segmentation

ROI based 
segmentation

Figure 8.3. Boxplots are shown for the cross-sectional spinal cord area A, the fractional

anisotropy, the mean diffusivity, the longitudinal and the transverse diffusivities, and for

the ratio of the longitudinal and transverse eigenvalues. Results of both segmentation

methods are displayed for the control subjects, the MS patients with T2 spinal cord lesions

(MS patient group 1), and the MS patients without T2 spinal cord lesions (MS patient

group 2).
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Table 2: Statistical results (p‐values) of the comparision of the diffusion measures
between the control group and both the MS patient groups The statistically

control subjects vs MS patients 
i h l i h i l d

control subjects vs MS patients 
h l h l d

between the control group and both the MS patient groups. The statistically
significant values are marked in red.

without plaques in the spinal cord

ROId

with plaques in the spinal cord

ROIc TS ROIc TSROId

0.283 0.0900.174 0.168Aa 0.114 0.078

0.014FAb 0.0130.006 0.0130.119 0.058

MDb 0.063

λ b 0 192

0.138 0.353

0 350 0 607

0.584

0 930

0.235

0 385

0.461

0 681λ||b 0.192

0 028λ b

0.350 0.607

0 037 0 258

0.930

0 155

0.385

0 209

0.681

0 371

0.039λ||/ λ⊥b

0.028λ⊥b

0.0180.012

0.037 0.258

0.020

0.155

0.139

0.209

0.111

0.371

0.039λ||/ λ⊥ 0.0180.012 0.020

a ANOVA analysis, corrected for multiple comparisons using Fisher’s least significant difference
method

0.139 0.111

b ANCOVA analysis, corrected for the cross sectional area of the spinal cord and for age, including a
multiple comparisons correction based on Fisher’s least significant difference method
c Results of the first ROI delineation analysis
d Results of the second ROI delineation analysis by the same observer as the first ROI analysisd Results of the second ROI delineation analysis by the same observer as the first ROI analysis
Abbreviations:
A: cross‐sectional spinal cord area; FA: fractional anisotropy; MD: mean diffusivity; λ||: longitudinal
diffusivity; λ⊥: transverse diffusivity; ROI: region of interest; TS: tract based segmentation method

(see Table 3). Although these ICC values (0.66 − −0.85) represent an acceptable
reproducibility, the observer-dependency affects the statistical results of the ROI
analysis (see Table 2).

8.4 Discussion

Conventional MR is used in daily clinical routine to detect spinal cord lesions in
patients with MS. However, it has been demonstrated that findings on conventional
MR scans do not always correlate well with the clinical status of the MS patients
[35, 36]. In addition, previous studies did not find a correlation between the clinical
disability of MS patients and the number and extent of the spinal cord lesions
that were detected on MR [3, 37–39]. Since DTI provides information about the
microstructural WM organization, the resulting diffusion metrics are potentially
more sensitive to detect spinal cord involvement in MS patients than conventional
MR is.
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Table 4: On the one hand, diffusion measures
h l f hin the plaques of the MS patients are

compared with diffusion measures of the
control subjects. On the other hand, the
diffusion metrics of the control subjects are
compared with these of the NAWM in the MS
patients with spinal cord plaques. ROIs were

control vs 
plaques

used for this analysis.

control vs 
NAWM

FA 0.001 0.012

plaques NAWM

MD
x10‐3 mm²/s

0.017 0.175
x10 mm /s

λ||
x10‐3 mm²/s

0.035 0.761
/

λ⊥
x10‐3 mm²/s

0.005 0.071
/

λ||/λ⊥ 0.011 0.035

Abbreviations:
FA: fractional anisotropy; MD: mean diffusivity; λ||:
longitudinal diffusivity; λ⊥: transverse diffusivity;
NAWM: normal appearing white matter

In this work, the spinal cord of MS patients without any lesions on the conventional
MR scans is studied with DTI. To the best of our knowledge, all DTI studies of
the spinal cord in MS patients evaluated the diffusion metrics in spinal cord lesions
or in NAWM in the proximity of lesions. Our results suggest that the FA and
the ratio of the longitudinal and transverse eigenvalues are significantly reduced
in the spinal cord of MS patients without lesions (see Fig. 3 and Tables 1-2).
These results were confirmed by the analysis of the NAWM in the spinal cord with
lesions (see Table 4). In concordance with the literature, the FA was found to
be significantly reduced in the MS patients with spinal cord lesions compared to
the FA of the age- and sex-matched control subjects [1, 14–20]. In addition, a
significant increase of the transverse eigenvalues and decrease of the ratio of the
longitudinal and transverse eigenvalues was observed in the spinal cord of these
MS patients compared to the control subjects. Within the spinal cord lesions, the
FA and the ratio of the longitudinal and transverse eigenvalues were decreased and
the MD, the longitudinal, and transverse eigenvalues were increased, compared to
the diffusion measures of the healthy spinal cord tissue of the control subjects.
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Table 3: Intra‐class correlationTable 3: Intra‐class correlation
coefficients (ICC) measure the
intra‐rater reproducibility of the
different diffusion measures

ROI TS

different diffusion measures

ICC

FA 0.79 0.96

MD
x10‐3 mm²/s

λ

0.79 0.97

0 85 0 97λ||
x10‐3 mm²/s

λ

0.85 0.97

0 83 0 98λ⊥
x10‐3 mm²/s

λ /λ

0.83 0.98

0 66 0 96λ||/λ⊥ 0.66 0.96

Abbreviations:
FA: fractional anisotropy; MD: meanFA: fractional anisotropy; MD: mean
diffusivity; λ||: longitudinal diffusivity;
λ⊥: transverse diffusivity; ROI: region of
interest; TS: tract based segmentation
method

In agreement with the literature, our results suggest that the FA and the ratio of the
longitudinal and transverse diffusivities are the most sensitive diffusion measures
to detect microstructural alterations that are induced by the MS disease process.
These differences were observed in the NAWM and the lesions of MS patients with
T2 spinal cord lesions and in the NAWM of MS patients without T2 spinal cord
lesions (see Table 2 and 4). Additionally, an increased MD, longitudinal diffusivity,
and transverse diffusivity was observed within the spinal cord lesions. A recent
post-mortem study, which correlated diffusion measures with the myelin content
and the axonal count, suggested that an FA decrease and a MD increase is primary
correlated with loss of myelin [40]. Recent studies using animal models further
demonstrated that a loss of axons is represented by a decreased longitudinal diffu-
sivity and a normal transverse diffusivity, whereas myelin breakdown is represented
by an increased transverse diffusivity and a normal longitudinal diffusivity [27–30].
Another post-mortem study demonstrated a strong correlation of the axonal den-
sity and loss of myelin with the diffusion anisotropy and a weaker correlation with
the MD [41]. As also proposed by Agosta et al. (2005), astrocytic proliferation, cell
debris, fibrillary gliosis, and inflammatory infiltrates can result in a normalization of
the MD values and can therefore prevent the MD differences to be statistically sig-
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nificant, as observed in our study [1, 16, 42]. Some studies report differences in the
diffusion measures between relapse-remitting, primary-progressive and secondary-
progressive MS patients [1, 15]. In our study, the diffusion properties were not
found to be statistically different between the subjects with relapse-remitting MS
and secondary-progressive MS, which might be explained by the low statistical
power due to the limited number of patients in our study.
The magnitude of the quantitative diffusion measures that were found in this study
(see Table 1), are within the range of the previously reported values (see Table 5).
Notice that a large variability exists in the FA and MD measures across differ-
ent studies [14–20]. This is probably due to disease heterogeneity in the different
groups (different age range, disease state, ), the use of different image acquisi-
tion and analysis methods, and the relatively low reproducibility of some of these
methods. All previous DTI studies of the spinal cord of MS patients reported a
statistically significant FA difference between the control group and the MS patient
group, whereas MD was only found to be different in some studies. In addition to
the group and disease heterogeneity and the use of various image analysis meth-
ods, the application of different statistical methods and post-hoc tests, and the
incorporation of various co-factors in the statistics can explain the differences in
the reported p-values. Different co-factors, such as the age of the subjects and the
cross-sectional area of the spinal cord were incorporated in the statistics since it is
known that these factors can affect diffusion values of the spinal cord [24].
Since many spinal cord voxels are affected by different degrees of partial volume
averaging with CSF it is not straightforward to reliably select the relevant spinal
cord voxels of interest in the different subjects. Some studies evaluate histogram
information originating from the central part of the spinal cord [15–17]. In this
approach, a lot of valuable information is discarded. In addition, the sensitivity
to find differences between control subjects and MS patients can be reduced, since
Hesseltine et al. (2006) demonstrated that only minor differences were found in the
central part of the spinal cord, which mainly consist of grey matter [18]. Most of
the studies utilize an ROI based approach to obtain diffusion data. However, it has
been demonstrated that the reproducibility of this method can be very low [24].
Although the ICC values that were found in this study were acceptable (see Table
3), the statistical results and conclusions differed significantly when the ROIs were
drawn a second time by the same observer (see Table 2). In this context, there
is a need for a standardized approach for analyzing spinal cord DTI data, which,
in our opinion, is provided by diffusion tensor tractography based segmentation.
In contrast to studies that incorporated diffusion tensor tractography results of
the spinal cord to provide qualitative information regarding the fiber architecture,
tractography was applied in this study to provide quantitative diffusion informa-
tion regarding the WM damage induced in the spinal cord of patients with MS
[33, 43–47]. Compared to the ROI method, an observer dependency is replaced by
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Table 5: Comparison of FA and MD values across different DTI studies of the

control subjects MS patients

FA MD

spinal cord in MS patients

FA MDreference FA MD 
x10‐3 mm²/s

Van Hecke et al.  0.58 1.09 0.55 1.21

FA MD 
x10‐3 mm²/s

reference

V H k t l 0 53 1 21 0 48 1 28Van Hecke et al.  0.53 1.21 0.48 1.28

Valsasina et al. (15) 0.43 1.22 0.36 1.28

Agosta et al. (16) 0.42 1.20 0.38 1.28

Benedetti et al. (17) 0.42 1.22 0.37 1.32

Hesseltine et al. (18) 0.60 0.82 0.52 0.88

Ohgiya et al (19) 0 74 0 64 0 56 0 72Ohgiya et al. (19) 0.74 0.64 0.56 0.72

Cicarelli et al. (20) 0.47 0.71 0.42 0.73

Abbreviations:
FA: fractional anisotropy; MD: mean diffusivityFA: fractional anisotropy; MD: mean diffusivity

a parameter dependency of the tractography algorithm, resulting in a more repro-
ducible and standardized measurement of the diffusion characteristics (see Table
3).

A standard acquisition scheme was used, which is available on most scanners in a
clinical setting, without the need of specific hardware. In addition, isotropic voxels
were acquired to reduce the PVE of spinal cord tissue with the surrounding CSF
in the slice direction. However, due to the limited in-plane resolution, it was hard
to separate WM and GM. In addition, other reported modifications of the DTI
acquisition scheme might improve image quality and therefore the reliability of the
subsequent analysis. For example, studies have focused on the optimization of the
DTI acquisition with respect to bulk motion and pulsatile low artifacts from the
surrounding CSF [48–52]. Other studies employed cardiac gating and interleaved
echo-planar diffusion imaging to reduce motion artifacts and scan time, respectively
[53, 54]. Line scan imaging is a fast technique that relies on the acquisition of
columns [50, 55]. The advantage of our work is that it uses a standard, widely
available acquisition scheme with isotropic voxels. 60 diffusion directions were
used to increase the SNR and the reliability of our estimated diffusion measures
in order to perform tractography reliably [25]. Another limitation of our study
is that no correlation was made of the diffusion metrics with clinical symptoms,
as measured for example by the EDSS [56]. However, the primary aim of our
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study was to demonstrate the feasibility and potential of the tractography based
segmentation approach to evaluate the spinal cord damage of MS patients and to
investigate the diffusion measures of MS patients without T2 spinal cord lesions.
The correlation of the diffusion metrics with the clinical status of the patients is
already thoroughly reported in earlier studies [15–17, 20]. We believe that our
results demonstrate that diffusion tensor tractography has the potential to be used
a standardized segmentation tool of spinal cord DT images for the interpretation
of NAWM results in MS patients. We also acknowledge that our findings are by no
means conclusive and that our results should be interpreted cautiously, given that
our study may have been limited by the relatively small number of subjects.
In conclusion, diffusion measures of the normal appearing white matter were eval-
uated in MS patients without spinal cord lesions. A reduced FA and ratio of the
longitudinal and the transverse eigenvalues was observed in the spinal cord of MS
patients without any detected spinal cord lesion on a conventional MR scan. These
results therefore suggest that the spinal cord is not preserved in MS when lesions
are only detected in the brain. Furthermore, this confirms previous findings, which
demonstrated that DTI is more sensitive compared to conventional MR imaging
in assessing the tissue damage in MS patients. In addition, we demonstrated that
diffusion tensor tractography is a robust tool to analyze the spinal cord of MS pa-
tients and that the use of tractography is more reproducible and reliable compared
to an ROI analysis to evaluate the diffusion measures of the spinal cord.
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Context

De menselijke hersenen bevatten een complex netwerk van vezelbundels die verschil-
lende delen van de hersenen met elkaar verbinden, zodat communicatie ertussen
mogelijk is. Iets meer dan 10 jaar geleden waren dissecties en histologie studies op
post-mortem hersenen of invasieve onderzoeken op primaten de enige manier om
informatie over de hersenvezelstructuur te verkrijgen. Recente ontwikkelingen in
de magnetische resonantie beeldvormings (MRI) techniek laten echter toe om de
witte materie (WM) bundels van de hersenen virtueel te reconstrueren in levende
mensen. De informatie over de WM bundels wordt verkregen door de diffusie van
water moleculen te bestuderen met de diffusie tensor beelvormings (DTI) techniek.
Een virtuele 3D reconstructie van de hersenvezelbanen kan dan worden verkregen
door gebruik te maken van tractografie.

DTI maakt het mogelijk om de vezelarchitectuur van de WM microstructuur te
beschrijven door een persoon voor enkele minuten in een MRI scanner te plaatsen.
Daardoor bezit DTI een groot potentieel om de menselijke hersenconnectiviteit
te onderzoeken in gezonde personen en in patiënten met verschillende neurologis-
che of psychiatrische aandoeningen. Tegenwoordig wordt dan ook veel onderzoek
gedaan naar het uitklaren van het verband tussen de gemeten diffusie waarden en
de veranderingen in de onderliggende microstructuur door de aanwezigheid van een
pathologie. DTI wordt reeds gebruikt in de dagelijkse klinische routine van vele
ziekenhuizen voor de pre-operatieve planning van patiënten met een hersentumor.
DTI heeft echter ook veel potentieel om te worden gebruikt in ziekenhuizen als een
diagnostische techniek voor patiënten met neurologische symptomen. Daaryoe zijn
grootschalige groepstudies noodzakelijk die de DTI resultaten van gezonde mensen
en patiënten met een bepaalde pathologie vergelijken.

Het doel van dit doctoraat is het optimaliseren van de DTI dataverwerking van
de menselijke hersenen om aldus tot een meer betrouwbare detectie van WM aan-
tastende pathologieën te komen. Verder werd eveneens de DTI dataverwerking
van het ruggenmerg onderzocht voor de detectie van neurologische ruggenmerg
aandoeningen.
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Overzicht van het manuscript

Deze doctoraatsthesis is onderverdeeld in drie delen:

Achtergrond: In het eerste deel worden een het centrale zenuwstelsel (Hoodstuk
2) en de diffusie tensor beeldvormingstechniek (Hoodstuk 3) gëıntroduceerd.
De anatomie van het centrale zenuwstelsel wordt kort beschreven op een
cellulair en een functioneel niveau. Daarna wordt een overzicht van hersen
beeldvormingstechnieken gegeven. In Hoodstuk 3 worden de basisprincipes
van de DTI techniek uitgelegd, van de Brownse beweging van water moleculen
tot de virtuele reconstructie van de drie dimensionele hersenverbindingen en
klinische toepassingen. Daarna worden de verschillende DTI beeldverwerk-
ingsmethodes gëıntroduceerd.

Diffusie Tensor Beeldverwerking van de Menselijke Hersenen: In het
tweede deel van deze thesis worden nieuwe technieken voor de DTI beeld-
verwerking voorgesteld.

In Hoodstuk 4 wordt een niet-affiene coregistratie methode gebaseerd op een
viskeus vloeistofmodel en mutuele informatie gepresenteerd. Dit algoritme
werd specifiek ontworpen voor de coregistratie van de meerwaarduge DTI
beelden. Het doel van coregistratie is het transformeren van een beeld naar
een ander, zodat de corresponderende anatomische structuren met elkaar
gealigneerd zijn. Indien dit het geval is kan de beeldinformatie objectief
vergeleken worden in het zelfde ruimtelijke kader. Hoewel de verschillende
anatomische structuren meestal in verschillende personen aanwezig zijn, kun-
nen ze sterk verschillen in vorm en grootte. Om medische beelden van ver-
schillende personen naar elkaar te transformeren, zijn daardoor niet-affiene
vervormingen, die lokaal kunnen worden aangepast, noodzakelijk. In tegen-
stelling tot andere medische beelden, zoals anatomische magnetische reso-
nantie, ultra-sound of tomografie data sets, die een scalaire waarde in elke
voxel bevatten, bezitten DTI data sets meerwaardige informatie in elke voxel.
Coregistratie algoritmes moeten daarom aangepast worden zodat deze meer-
waardige diffusie informatie in rekening kan worden gebracht.

Het maken van een atlas laat toe om beelden van verschillende personen
naar een gemeenschappelijk referentiekader te transformeren. Daarna kunnen
de beeldeigenschappen vergeleken worden tussen data sets van gezonde en
zieke personen op een voxel-niveau. In Hoofdstuk 5 wordt een populatie-
specifieke atlas gemaakt en vergeleken met een ‘subject’-gebaseerde atlas,
gebruik makend van simulaties en reë beelden.
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Ziekenhuizen

?
Ziekenhuizen

?

Diffusie Tensor Beeldvorming (DTI)
Kennis over neurologische

d iDiffusie Tensor Beeldvorming (DTI) aandoeningen

Gestandaardiseerde
beelverwerkingsmethodes voorbeelverwerkingsmethodes voor
grootschalige groepsstudies

Hoodstuk 4: non‐affiene DTI coregistratie Hoodstuk 7: DTI beeldverwerking

Hoodstuk 5: DTI atlas constructie Hoodstuk 8: DTI van multiple sclerosis patienten

Hoodstuk 6: DTI groupsanalyse

Sectie 6.1: “Ground Truth” DTI data sets

Sectie 6.2: Smoothing in een DTI groupsanalyseSectie 6.2: Smoothing in een DTI groupsanalyse

Sectie 6 3 DTI van multiple sclerosis patientenSectie 6.3: DTI van multiple sclerosis patienten

Figuur 8.4. Een schematisch overzicht van dit doctoraat.

Nadat alle DTI data sets van een groep getransformeerd werden naar de
atlas ruimte kunnen de diffusie-eigenschappen van deze beelden vergeleken
en geanalyseerd worden op een voxel-niveau. Daartoe worden statistische
testen toegepast in elke voxel om de verschillen tussen de gezonde perso-
nen en de patiënten te detecteren. Deze beeldverwerkingstechniek wordt
een voxel gebaseerde analyse (VBA) genoemd. In VBA worden de hele
hersenen getest voor controle-patiënt verschillen zonder de noodzaak aan
een a priori hypothese over de ruimtelijke locatie in de hersenen van de
verwachte verschillen. Deze VBA methode bezit vele voordelen vergeleken
met andere beeldverwerkingstechnieken, zoals de regio van interesse (ROI)
gebaseerde methode. Overeenkomsten tussen resultaten van verschillende
studies worden echter niet altijd waargenomen, zoals bijvoorbeeld het geval
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is in de studies van patiënten met schizofrenie [1–14]. De heterogeniteit van
de patiëntgroepen en van de ziekte zelf kunnen deze tegenstrijdigheden deels
verklaren. Methodologische verschillen in de VBA beeldverwerkingsmethode
tussen de verschillende studies, zijn mogelijk echter nog meer bepalend om
de variabiliteit in de resultaten te verklaren [9, 15, 16].

In Hoodstuk 6 worden gesimuleerde DTI data sets gemaakt. Deze laten toe
om een bepaalde pathologie te modeleren in een gekende WM lokatie. De
gesimuleerde DTI data sets kunnen dan ook gebruikt worden om de sensi-
tiviteit en specificiteit om een pathologie te vinden met een VBA of ROI
analyse te onderzoeken. Ook het effect van verschillende parametersettings
en beelverwerkingsstappen die gekozen dienen te worden in een VBA ana-
lyse, kunnen onderzocht worden. Dit zal uiteindelijk leiden tot een meer
betrouwbare, gestandaardiseerde en consistente DTI beeldverwerking voor
het onderzoek naar verschillende pathologieën. Als een eerste toepassing van
de gesimuleerde DTI data sets, werd het effect van beeldsmoothing op de
sensitiviteit en specificitiet van de VBA analyse onderzocht (Hoodstuk 6).

In het laatste deel van Hoofdstuk 6 worden de nieuwe beeldverwerkingsmeth-
odes voor de analyse van DTI beelden van de menselijke hersenen toegepast
in een studie naar het cognitieve achteruitgang bij patiënten met multiple
sclerose.

Diffusie Tensor Beeldverwerking van het Menselijke Ruggenmerg: Het
derde deel van dit doctoraat handelt over de DTI beelverwerking van ruggen-
merg data. Verschillende factoren, zoals fysiologische en ademhalingsbeweg-
ing van de persoon in de scanner en relatieve beweging van het ruggenmerg
zelf door de nabije aanwezigheid van pulserend cerebor spinaal vocht, belem-
meren een robuuste DTI studie van het ruggenmerg. Bovendien heeft een
ruggenmerg een beperkte diameter (gemiddeld 12 mm) en is ook de DTI beel-
dresolutie beperkt, waardoor een betrouwbare kwantitatieve DTI analyse van
het ruggenmerg moeilijk wordt. In Hoofdstuk 7 wordt een gestandardiseerde
en robuuste segmentatie techniek, gebaseerd op tractografie, voor de analyse
en interpretatie van ruggenmerg data voorgesteld. Deze nieuwe beeldverwer-
kingsmethode wordt daarna toegepast voor de analyse van DTI data sets van
patiënten met multiple sclerose (Hoofdstuk 8.)
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The human brain contains a very complex network of fiber bundles that
connect different brain regions, allowing them to communicate. A little more
than a decade ago, dissection and histology studies on postmortem humang , gy p
brains or invasive studies on primates were the only way to acquire
information on the neural architecture.
However, recent advancements in magnetic resonance imaging (MRI) allow
virtual in‐vivo dissection of major white matter bundles in the brain.
Information about the white matter fibers is obtained by measuring the
diffusion of water molecules, using a technique called diffusion tensor
magnetic resonance imaging (DT‐MRI) or diffusion tensor imaging (DTI) Amagnetic resonance imaging (DT MRI) or diffusion tensor imaging (DTI). A
virtual reconstruction of the fiber network in three dimensions can then be
derived from this diffusion information using diffusion tensor tractography.

Since DTI is capable of accurately describing the underlying architecture of
the WM microstructure in a non‐invasive way, i.e. by placing a subject for a
few minutes in an MRI scanner, it has a lot of potential for unraveling the
h b i ti it i h lth bj t d i ti t ithhuman brain connectivity in healthy subjects and in patients with
neurological and psychiatric disorders. Nowadays, a lot of research is done to
reveal the relationship between DTI measures and the underlying
microstuctural alterations that are induced by a pathology. DTI is already
used in the daily clinical routine of many hospitals for the presurgical
planning of patients with a brain tumor. In addition, DTI has the potential of
being applied in the hospitals as a diagnostic tool for patients with
neurological symptoms. To this end, large scale group studies that compare
patient and healthy subject DTI data sets need to be performed.

The goal of the work in this book is to optimize the post‐processing of DTI
data sets of the human brain for a reliable detection of WM altering
pathologies. In addition, the post‐processing of spinal cord DTI data sets is
examined for the detection of neurological spinal cord affecting disorders.g p g




