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Summary

Context

X-ray transmission computed tomography (CT) is a non-destructive imaging tech-
nique providing 3D structural information of an object under examination. The
desired 3D image is computed from a set of X-ray projections of the object, that
are recorded by the X-ray CT scanner at different orientations. CT has many im-
portant applications such as medical diagnostics and small animal imaging, which
supports pre-clinical drug testing. Other applications are found in the industry
(diamond, packaging, construction), where CT scanners are employed for non-
destructive testing.

Accurate image reconstruction requires that the detector measures the projection
data of the complete object in all directions such that the recorded X-ray projec-
tions are not truncated. However, in a practical setup, this requirement is often
not met. As a consequence, significant cupping artifacts are observed in the recon-
structed images, hindering accurate segmentation and quantitative analysis of the
reconstructed attenuation values. In addition, the reconstruction of the object re-
gions outside the detector field-of-view provides only vague structural information.
This thesis concerns the problem of the accurate recovery of a two-dimensional
object slice from one-dimensional projections that are transaxially truncated.

Truncation of the projections is often present in medical X-ray CT. The diameter
of the gantry is relatively small (typically 70 cm), and the scanning field-of-view
diameter even smaller (±50 cm). These small dimensions inevitably lead to trun-
cated data if the examined patient is obese, incorrectly placed on the scanning bed,
or if a scan at shoulder level is aimed at.
Alternatively, adequate truncation artifact reduction would allow X-ray beam col-
limation such that only the desired body volume is exposed to the radiation and
the dose can be reduced significantly.

xvii



xviii SUMMARY

For biomedical and industrial applications, often µCT systems are used, which
provide high resolution images of small objects. The resolution of a small region-
of-interest (ROI) in the object can be increased by translating the object towards
the source of the X-ray cone beam such that the ROI covers a larger part of the
detector. However, this inevitably causes the detector to miss transmission data
from the other parts of the object in certain directions.
In µCT, one also frequently faces the problem where the object is too large to
be covered by the detector in each projection direction. Some applications, such
as diamond optimization, require accurate reconstruction of the complete object,
rather than only in the detector field-of-view.

Outline

This thesis is subdivided into four parts:

Part I. Background: The first chapter provides a general introduction to X-
ray transmission computed tomography, covering the production of X-rays,
X-ray imaging, and the most commonly used reconstruction methods. Also,
some artifacts are discussed that are encountered in practice. Two groups
or artifacts are considered: artifacts caused by degraded data, such as beam
hardening, and artifacts caused by incomplete data.

Part II. Reduction of truncation artifacts in standard 2D X-ray CT:
This part concerns the accuracy enhancement in images reconstructed from
truncated projections. In particular, the focus is put on accurate reconstruc-
tion in the field-of-view (FOV), which is the object region that is covered by
the detector in all projection directions. Chapter 2 shows that traditional
reconstruction methods fail at obtaining an accurate image from truncated
projections for any level of truncation, and describes how this problem can
be partially alleviated by using an alternative analytical Radon inversion for-
mulation. Subsequently, the most recent data sufficiency conditions are sum-
marized that determine the object regions for which a unique solution exists.
The corresponding methods that recover this unique solution are briefly de-
scribed. Finally, an overview is provided of the available data completion
methods, and of empirical, approximating reconstruction techniques that are
currently available.
In Chapter 3, a new approximating method (ConSiR) for the reduction of
truncation artifacts is presented. This technique exploits the sinogram con-
sistency to extrapolate the missing sinogram data. The algorithm is applied
to simulated and real X-ray data and its performance is compared to that of
several other methods proposed in the literature.
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Part III. Reconstruction of piecewise uniform objects from truncated
data: In recent years, interesting reconstruction results have been obtained
for a variety of limited data problems by incorporating certain prior knowl-
edge of the object. Examples of such prior knowledge are sparseness, such as
in angiography where blood vessels are imaged, and piecewise uniformity of
the object, which is frequently the case in non-destructive testing. Part III
investigates the possibility of recovering accurate images of piecewise uniform
objects from truncated projections, not only in the FOV such as in Part II,
but in the complete object support.
In Chapter 4, it is proved that a binary star shaped phantom is uniquely
determined from its interior data, which represents the most severe type
of truncation. The stability is discussed and a numerical algorithm is pro-
posed, which transforms the 2D inverse problem into a set of 1D problems
along radial lines. This reconstruction method is quantitatively evaluated in
simulation experiments considering noise-free and noisy data. Chapter 5 in-
vestigates whether algorithms that treat a 2D image as a whole are valuable
compared to the line-per-line technique proposed in Chapter 4. In addi-
tion, the aim of Chapter 5 is to experimentally indicate the extent of object
complexity for which the inverse Radon transform from truncated data can
be recovered. To this end, we investigated the new application of DART
(discrete algebraic reconstruction technique) on truncated data of non-star
shaped piecewise uniform objects containing one or multiple densities.

Part IV. Reconstruction of piecewise uniform objects in practice: For
real X-ray data, the techniques from Chapters 4 and 5 frequently do not lead
to accurate reconstructions. The main reason is that non-linear physical ef-
fects such as beam hardening invalidate the assumption of constant densities.
Therefore, Part IV concerns beam hardening correction for piecewise uniform
objects, which is a necessary step before applying the previous methods de-
signed for truncated data.
In Chapter 6, the literature on beam hardening reduction is summarized, and
a novel beam hardening correction algorithm for piecewise uniform objects
is presented that does not require information on the source spectrum or on
the energy dependent attenuation coefficients of the present materials. The
method is applied on real non-truncated polychromatic X-ray data of several
physical phantoms, and the resulting reconstruction images are quantitatively
evaluated. The ultimate goal is to provide accurate images from truncated
data, or other types of limited data, even if the data are degraded by beam
hardening artifacts. To this end, the beam hardening correction method is
combined with iterative approaches that are specifically developed for limited
data. The resulting combination methods are then applied on real X-ray CT
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data for several cases of limited data problems (Chapter 7).
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Context

X-stralen transmissie computer tomografie (CT) is een niet-destructieve techniek
voor de 3D beeldvorming van objectstructuren. De beelden worden berekend va-
nuit een set X-stralen projecties van het object, die opgenomen worden door de
CT scanner onder verschillende orientaties. CT heeft een hele waaier aan belan-
grijke toepassingen gaande van medische diagnostiek en beeldvorming van muizen
en ratjes voor het preklinisch testen van geneesmiddelen, tot het niet-destructief
testen in, bv., de diamant-, verpakkings-, en constructie-industrie.

Accurate beeldreconstructie vereist, voor de klassieke CT acquisitie geometrieën,
dat de volledige projectie van het object gekend is voor elke bron-detector oriëntatie.
In de praktijk zijn de projecties echter vaak getrunceerd. De daaruit voortvloeiende
reconstructies zijn typisch gecontamineerd met een additieve, niet-constante, object-
afhankelijke bias, die accurate segmentatie en kwantitatieve analyse van de beelden
verhindert. Meer nog, in het gebied rondom het gezichtsveld van de detector (‘field
of view’ (FOV)) kan met de klassieke methodes slechts beperkte structurele in-
formatie verkregen worden. Dit proefschrift heeft tot doel een accuratere beeld-
reconstructie te bekomen van een tweedimensionale (2D) object snede vanuit 1D
projecties die transaxiaal getrunceerd zijn.

Truncatie van projecties komt niet zelden voor in medische X-stralen CT. De di-
ameter van de opening rond dewelke de bron en de detector draaien, is relatief
klein (typisch 70 cm), en de radius van het gezichtsveld van de detector is zelfs
nog kleiner (ongeveer 50 cm). Deze kleine dimensies veroorzaken onvermijdelijk
getrunceerde data wanneer de patient obees is, slecht gecentreerd ligt op het CT
bed, of bij scans op schouderhoogte.
In het kader van dosisreductie kan truncatie ook intentioneel plaatsvinden door de
belichting te reduceren tot het gebied van interesse (bv. enkel het hart), in plaats
van de volledige doorsnede van het lichaam.

xxi
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In µCT, waarbij hoofdzakelijk hoge-resolutie beelden worden nagestreefd, kan de
resolutie van een kleine regio in het object verbeterd worden door het object dichter
bij de bron te plaatsen, zodat de projectie van deze kleine regio een groter gedeelte
van de detector bedekt. Dit zorgt echter onvermijdelijk voor truncatie van de pro-
jecties van de omliggende regio’s in het object.
Anderzijds past in µCT, net zoals in medische CT, het object vaak niet voor
elke projectierichting in het gezichtsveld van de detector. Sommige toepassingen
vereisen ook in deze situatie een accurate reconstructie van het volledige object,
eerder dan enkel van het gebied in het gezichtsveld van de detector. Diamantopti-
malisatie, een toepassing die aan bod komt in Hoofdstuk 5 van dit proefschrift, is
hier een voorbeeld van.

Overzicht

Deze thesis is onderverdeeld in vier delen.

Achtergrond: Het eerste hoofdstuk geeft een algemene inleiding tot X-stralen
transmissie tomografie, waarbij de productie van X-stralen, X-stralen beeld-
vorming en de standaard reconstructiemethodes aan bod komen. Verder wor-
den enkele artifacten besproken die in de praktijk vaak voorkomen. Twee
klassen van artefacten worden daarbij beschouwd: degene afkomstig van ver-
stoorde data, of veroorzaakt door een tekort aan data.

Reductie van truncatie artefacten in standaard 2D X-stralen CT: Deel
II streeft accuratere reconstructie na van beelden die gereconstrueerd worden
uit getrunceerde projecties. De focus wordt in het bijzonder gelegd op accu-
rate reconstructie van het gebied dat zich voor alle projectierichtingen in het
gezichtsveld van de detector bevindt. Hoofdstuk 2 toont dat de traditionele
standaard methodes falen in het verkrijgen van accurate beelden voor elke
graad van projectie truncatie. Verder wordt ook beschreven hoe dit probleem
gedeeltelijk opgelost wordt door het gebruik van een alternatieve analytische
formulering van de inverse Radon transformatie. Vervolgens worden de meest
recente uniciteitsvoorwaarden voor de projectiedata beschreven. Tenslotte
volgt een overzicht van de beschikbare datavervolledigingsmethodes en van
de empirische benaderende reconstructiemethodes die momenteel beschikbaar
zijn.
In hoofdstuk 3 wordt een nieuwe methode (ConSiR) gepresenteerd voor de
reductie van truncatie-artefacten. Deze techniek vervolledigt de ontbrekende
data door het optimaliseren van de sinogram consistentie. Het algoritme
wordt toegepast op gesimuleerde en reële data en de resulterende reconstruc-
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tiebeelden worden kwantitatief vergeleken met die van verscheidene methodes
uit de literatuur.

Reconstructie van stuksgewijs uniforme objecten vanuit getrunceerde
data: Recent werden nieuwe reconstructie resultaten bekomen voor diverse
gelimiteerde-data problemen door het inbrengen van specifieke voorkennis.
Zulke voorkennis is in verscheidene toepassingen voorhanden. In angiografie
bijvoorbeeld, zijn de af te beelden bloedvaten typisch spaars, en in indus-
triële toepassingen kan vaak aangenomen worden dat het object stuksgewijs
uniform is. Deel III onderzoekt de mogelijkheid om accurate beelden van
stuksgewijs uniforme objecten te reconstrueren vanuit een set getrunceerde
projecties, waarbij reconstructie beoogd wordt in het volledige domein van
het object, en dus niet enkel in de FOV, zoals in Deel II.
In Hoofdstuk 4 wordt aangetoond dat een binair stervormig object uniek
bepaald wordt door getrunceerde data, zelfs wanneer de FOV zich volledig in
het inwendige van het object bevindt, wat overeenkomt met het meest ernstige
type van projectietruncatie. De stabiliteit wordt onderzocht en een numeriek
algoritme wordt voorgesteld dat het 2D inverse problem transformeert naar
een set van 1D problemen langsheen radiale lijnen. Deze reconstructieme-
thode wordt geëvalueerd in simulatie-experimenten voor data zonder en met
ruis. Hoofdstuk 5 onderzoekt of algoritmes die een 2D beeld als geheel re-
construeren, te verkiezen zijn boven de lijn-per-lijn techniek die voorgesteld
werd in Hoofdstuk 4. Verder heeft Hoofdstuk 5 tot doel om experimenteel af
te tasten voor welke graad van objectcomplexiteit reconstructie nog mogelijk
is in de praktijk. Hiervoor onderzoeken we de toepassing van DART (discrete
algebraische reconstructie techniek) op getrunceerde data van niet-stervomige
stuksgewijs-constante objecten bestaande uit een of meerdere densiteiten.

Reconstructie van stuksgewijs uniforme objecten in de praktijk: Voor
reële X-stralen data leiden de technieken die gebruikt werden in Hoofdstukken
4 en 5 vaak niet tot accurate reconstructies. De belangrijkste reden is dat niet
lineaire fysische effecten zoals bundelverharding (‘beam hardening’ (BH)) de
aanname van constante grijswaarden ongeldig maken.
Hoofdstuk 6 vat de literatuur over de reductie van BH-artefacten samen, en
presenteert een nieuw BH-correctie-algorithme voor stuksgewijs uniforme ob-
jecten dat geen informatie vereist over het bronspectrum of over de energie-
afhankelijke attenuatiecoefficienten van de aanwezige materialen. De me-
thode wordt toegepast op reële niet-getrunceerde polychromatische X-stralen
data van verscheidene fysische fantomen, en de resulterende reconstructie-
beelden worden quantitatief geëvalueerd. Het uiteindelijke streefdoel is om
accurate beelden van stuksgewijs uniforme objecten te bekomen vanuit ge-
trunceerde projecties of andere types van gelimiteerde data, zelfs als de data
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verstoord is door bundelverharding. In Hoofdstuk 7 wordt het BH-correctie-
algoritme gecombineerd met enkele iteratieve methoden die de weinige beschik-
bare data optimaal benutten. De resulterende combinatiemethodes worden
vervolgens toegepast op reële X-stralen CT data voor verscheidene gelimiteerde-
data problemen.



Part I

Background

1





Chapter 1

Introduction to Computed

Tomography

This chapter provides a general introduction to computed tomographic imaging.
The first section explains how X-rays are produced, how they interact with matter,
and how the X-ray intensity decays when traversing matter. Section 1.2 describes
how the properties of X-rays can be exploited for 3D tomographic imaging. The
Radon transform, which is a linear mathematical model for X-ray attenuation, is
introduced in Section 1.3, and a few standard methods are described for the re-
covery of the object function from its Radon transform. Section 1.4 consists of
examples of artifacts that are encountered in practice.

For more introductory information, we refer to the work of Kak and Slaney [1],
and the more recent books of Hsieh [2], Kalender [3] and Buzug [4]. A thorough
theoretical study on tomographic image reconstruction is found in Natterer [5] and
Natterer and Wübbeling [6].

1.1 Fundamentals of X-rays

1.1.1 Production of X-rays

X-rays are electromagnetic waves with a wavelength λ varying between 10 nm and
10−3 nm. These wavelengths correspond to energies from E = 1.24× 10−1 keV to
1.24× 103 keV conform following expression:

E =
hc

λ
, (1.1)

3
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where h represents Planck’s constant, and c the speed of light.

X-rays are generated in a vacuum tube containing a cathode and an anode. By
thermal excitation, electrons are freed from the cathode. Subject to the electric
voltage between the cathode and the anode, these electrons accelerate and even-
tually hit the anode at very high speed. Three possible types of interaction take
place (see Fig. 1.1):

• A high-speed electron collides with an outer-shell electron, while transferring
part of its energy towards the second electron. The energy of both electrons
is then dissipated into heat. Collisions with outer-shell electrons (not shown
in Fig. 1.1) represent the majority of the interactions, which explains why
anode cooling is very important.

• A high-speed electron interacts with an inner-shell electron, which is then
ejected from the atom, leaving an unoccupied lower energy level. This gap
is filled by an outer-shell electron striving to the lowest energy position, and
simultaneously a photon is released with an energy corresponding to the
difference of energy levels of the two shells. Such photons take up only discrete
energy values and are therefore called “characteristic radiation”.

• A high-speed electron is suddenly decelerated when it passes near the nucleus
of the atom, and emits a photon containing the excess energy. The amount
of deceleration (and consequently the energy of the emitted photon) is deter-
mined by the distance of the electron to the nucleus. If the distance is large,
the electron path undergoes a small deflection and deceleration, causing a
low-energy photon to be emitted. When the electron collides directly onto
the nucleus, it decelerates completely, and a high energy photon is released.
The radiation emitted by this type of interaction, called “Bremsstrahlung”,
has a continuous spectrum.

1.1.2 Interaction with matter

X-rays interact with both electrons and atomic nuclei, and can be absorbed or
(in)elastically scattered. The most important processes in the diagnostic energy
range are the photo-electric effect, Compton scattering.

• The photo-electric effect (Fig. 1.2a) occurs when a bounded electron is hit by
an X-ray photon with an energy larger than the electron’s binding energy,
and entirely absorbs the photon energy. Consequently, the electron is ejected
from the atom and the excess photon energy is converted into kinetic energy.
When an electron from a higher energy shell fills the gap on the lower energy
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Figure 1.2: X-ray-matter interactions in the diagnostic range.
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shell, a so called “characteristic photon” is released. This X-ray photon is
usually soft and has very small penetration capacity.
The probability of the photo-electric interaction is inversely proportional to
the third power of the excess photon energy. For materials with a low atomic
number Z, the binding energy of the K-shell electrons is small (e.g. roughly
500 eV for soft biological tissue) compared to the energy of the diagnostic X-
rays, causing it to be almost transparent to the X-rays. Calcium has a slightly
higher K-shell binding energy (approx. 4 keV), but the cubic probability re-
lation provides a much higher attenuation so that calcium is significantly less
transparent. Hence, the photo-electric effect yields a large contrast between
materials with only slightly different atomic numbers.

• Compton scattering (Fig. 1.2b) occurs when an X-ray photon interacts with
a bounded electron at a much higher energy than the electron’s binding en-
ergy. During the collision, the incident photon gives up part of its energy to
eject the electron from the atom. The incident photon then continues with
reduced energy on a path deflecting from its original path conform the law
of momentum conservation. Low energy photons are preferentially backscat-
tered (angle from 90 to 180 degrees) and thus not detected, while the high
frequency photons have a high probability to be scattered in the forward
direction (angle 0 to 90 degrees). These high energy photons, which might
undergo several of such collisions, lose the spatial information of the interac-
tion with the electrons, and therefore lead to artifacts (see Section 1.4.1.1)
when they finally are detected. The occurance rate of the Compton scatter is
proportional to the density of electrons in the material and not on the atomic
number.

X-rays with an energy lower then 10 keV are considered as soft and of less value
for diagnostic imaging since their penetration length is small, which results in low
contrast ratios on the imaging device. Hard X-rays (E > 140 keV) have large
penetration lengths in bone and tissue, and since that results in low contrast rates,
they are also less valuable for medical diagnostics as well. For industrial imaging,
however, X-rays of 100 keV to 300 keV are frequently used, e.g. for metal objects.

1.1.3 X-ray attenuation

The interactions described in Section 1.1.2 result in a gradual intensity loss or
attenuation of an X-ray beam that enters a material. Consider a monochromatic
X-ray beam with intensity I propagating through a homogeneous material. The
absorption of the beam with respect to the traversed distance is described by the
law of Beer-Lambert, stating that each layer of equal thickness dt absorbs an equal
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fraction dI
I of the intensity of the beam that traverses it:

dI

I
= −µdt, (1.2)

with constant coefficient µ. Integration yields

I(t) = I0e
−µt (1.3)

where I0 is the incident intensity. Let T be the total intersection length between
the object and the straight ray path. The measured intensity of the beam after
passing through the object is then

I = I0e
−µT (1.4)

Defining the attenuation A as

A = − ln
(
I

I0

)
, (1.5)

then the combination with Eq. (1.4)

A = µT (1.6)

shows that the ‘measured’ attenuation A is linear with respect to the thickness of
the object. The material dependent coefficient µ is called the linear attenuation
coefficient. It mainly consists of contributions from the Compton effect µσ and the
photo-electric effect µτ so that µ ' µτ + µσ.

When X-rays are traveling through inhomogeneous matter, µ depends on the po-
sition t along the ray, and the expressions for the intensity and attenuation are
generalized as:

I = I0e
−
∫ T
0 µ(t)dt (1.7)

A = − ln
(
I

I0

)
=
∫ T

0

µ(t)dt. (1.8)

In general, X-ray beams are not monochromatic and the linear attenuation coeffi-
cients depend on the energy of the rays. Consequently, formula Eq. (1.7) has to be
adapted for polychromatic X-rays:

I =
∫ E0

0

I0(E)e−
∫ T
0 µ(t)dtdE (1.9)

This non-linear relation will be neglected until Chapter 6, which concerns the
reduction of beam hardening artifacts.
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Figure 1.3: X-ray photo of the hand of Wilhelm Conrad Röntgen’s wife [7].

1.2 X-ray imaging

As explained in the previous section, the output intensity that is measured after
an X-ray beam passed through an object, depends on the material distribution of
the object along the ray. Consequently, the complete illumination of an object by
an X-ray beam yields a 2D intensity image in which the contrast is induced by
the varying structures and attenuation properties in the object. Such an intensity
image, which basically represents a projection of a 3D object onto a 2D plane, is an
X-ray photo or projection. Note that the term “X-ray projection”, depending on
context, also refers to the corresponding attenuation image that is acquired using
Eq. (1.5). Fig. 1.3 shows the X-ray photo of the hand of Wilhelm Conrad Röntgen’s
wife, recorded shortly after he discovered X-rays in 1896.

X-ray projections are used widely, especially in medical applications because they
offer high-contrast images of important substances in the body such as air, bone,
tissue, fat, etc.

One limitation of X-ray photos is that they do not provide depth information,
since the measured intensity of the beam that traversed the object is independent
of the material order along the ray (Eq. (1.7)). However, when X-ray projections
of the object are acquired at many different orientations, a complete 3D attenua-
tion map of the object can be reconstructed. This technique, called Tomographic
imaging, is widely used as a medical diagnostic tool, but has also various industrial
applications.

Fig. 1.4 shows a typical setup of a clinical CT scanner: a source-detector pair ro-
tates around a patient that is lying on a bed. Medical setups typically generate 3D
reconstructions with 1 mm3 resolution. Alternative X-ray CT systems exist that
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(a) (b)

Figure 1.4: (a) Philips clinical CT scanner [http: // www. healthcare. philips. com ];

(b) SkyScan 1172 micro CT scanner [http: // www. skyscan. be ]

generate images of small objects at micrometer resolution. Such µCT systems are
used for research on small animals (e.g. mice, rats) or in industrial applications
(e.g. for quality study of metal foam). µ-CT systems for industrial applications
often have a different scanning setup: the source and detector are fixed, while the
sample is placed on a rotating sample holder (Fig. 1.4(b)).

(a)

2γ

(b)

Figure 1.5: 2D tomographic setup: (a) fan beam; (b) parallel beam.

Several scanning geometries can be considered such as parallel beam, fan beam and
cone beam geometry. The parallel (Fig. 1.5(a)) and fan-beam (Fig. 1.5(b)) geome-
try were typically used in early generations of commercial X-ray CT systems. Both
geometries record the attenuation data slice-by slice. In a parallel beam geometry,
the X-rays travel along parallel paths. In a fan beam geometry, characterized by
opening angle 2γ, the X-rays are emitted from a single focal point for each projec-
tion.

http://www.healthcare.philips.com
http://www.skyscan.be
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z

s

Figure 1.6: 3D cone beam tomographic setup.

Opposed to parallel and fan beam, cone beam CT or multislice CT (Fig. 1.6) is
essentially three dimensional. The X-ray point source, emitting a cone beam, illu-
minates the entire object or a stack of slices at each orientation, which results in
2D projections on the detector. Note that the signal on the detector line for z = 0
corresponds to a fan beam geometry. The corresponding illuminated object slice
is referred to as the central slice.

Although the majority of current X-ray tomography systems uses a cone beam
geometry, research for fan and parallel beam remains highly relevant since the
standard 3D reconstruction algorithms basically perform a set of weighted 2D re-
constructions along tilted planes. Throughout this thesis, we will consider a 2D
parallel geometry, unless indicated otherwise.

1.3 Image reconstruction

In this section, standard methods are described for the reconstruction of a 2D
object slice from its set of one-dimensional projections.

1.3.1 Radon transform

Consider a 2-dimensional function f(x, y), representing the position dependent
attenuation coefficient in an object slice, in a fixed coordinate system (x, y), see
Fig. 1.7. Define a second coordinate system (s, t), which is a rotated version of (x, y)
with orientation angle θ. The coordinate transforms between the two systems are
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x

y

1θ

2θ

Figure 1.7: Schematic figure for 2 projections with θ = θ1 and θ = θ2 of an object func-

tion f(x, y). The variables (x, y) and (s, t) represent the fixed and the rotating coordinate

system, respectively.

given by: [
x

y

]
=
[

cos θ − sin θ
sin θ cos θ

] [
s

t

]
(1.10)

and [
s

t

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x

y

]
. (1.11)

Consider a straight path L(θ, s) at angle θ and signed distance to the center of
rotation s. The line integral of f along the ray L(θ, s) is given by

p(θ, s) =
∫
L(θ,s)

f(x(s, t), y(s, t))dt, (1.12)

or, alternatively,

p(θ, s) =
∫ ∞
−∞

f(sα + tα⊥)dt, (1.13)

with α = (cos θ, sin θ) and α⊥ = (− sin θ, cos θ).
The transform R that maps the object function f(x, y) onto its complete set of

line integrals
(Rf)(θ, s) = p(θ, s) (1.14)

is known as the Radon Transform (RT), named after Johann Radon who published
an inversion formula in 1917. For instance, Fig. 1.8(b) depicts the Radon transform
of a certain function f(x, y), shown in Fig. 1.8(a). From now on, the indication of
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(a)

s

θ

(b)

Figure 1.8: Illustration of the sinogram (b) of a certain object function f(x, y) depicted

in (a).

the (θ, s) axes in images of the Radon Transform are omitted. The RT of a 2D slice
is often called sinogram since the support 1 of the RT of a Dirac delta function
corresponds to a sine. The Radon Transform has following properties :

• p(θ, s) is periodic in θ with period 2π

p(θ, s) = p(θ + 2π, s), (1.15)

• p(θ, s) is symmetric in θ around π

p(θ, s) = p(θ ± π,−s). (1.16)

Assuming a monochromatic X-ray beam, note that the attenuation of an X-ray
beam traversing an object along a straight line corresponds to the Radon trans-
form. Hence, the problem of reconstructing the attenuation coefficient µ(x, y) is
equivalent to the problem of finding an object function f(x, y) from its Radon
transform. In this thesis, except in Chapter 6, we will use the more general term
object function f(x, y) to represent the attenuation coefficient distribution µ(x, y).

The set of line integrals for s ∈ [−∞,∞] at a fixed angle θ, illustrated in Fig. 1.7
is called a parallel projection, or briefly projection, and corresponds to a projection
in a parallel beam imaging setup as shown in Fig. 1.5 (a). Note that the Radon
transform is completely determined by the set of parallel projections p(θ, s) cover-
ing the angular range θ ∈ [0, π). In a fan beam setup (Fig. 1.5(b)) with fan angle

1The support of a function f(x, y) is defined as the set of coordinates (x,y) for which the

function f(x, y) is nonzero.
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Figure 1.9: Fourier slice theorem

2γ, two fan beam projections recorded in the opposite directions do not represent
the same line integrals. For fan beam, minimally a projection range of π + 2γ,
called a ‘short scan’ is required to represent the complete Radon transform. Note
that by re-arranging the ray paths, fan beam data can be converted into a parallel
sinogram, which is called rebinning.

1.3.2 Analytical reconstruction

1.3.2.1 Fourier Slice Theorem

The Fourier Slice theorem plays a fundamental role in image reconstruction, since
it relates the Fourier transform of the projections to the 2D Fourier transform of
the object function.
To derive the Fourier Slice Theorem, define the two-dimensional Fourier transform
F (ξ, η) of the object function f(x, y) as

F (ξ, η) = F2Df(x, y) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2π(xξ+yη)dxdy. (1.17)

On the other hand, working in the (s, t) coordinate system (Eq. (1.10) and Eq. (1.11)),
consider a projection p(θ, s) with fixed θ

p(θ, s) =
∫ ∞
−∞

f(s, t)dt, (1.18)
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and its one-dimensional Fourier transform P (θ, σ) with respect to s

P (θ, σ) = F1Dp(θ, s) =
∫ ∞
−∞

p(θ, s)e−i2πσsds. (1.19)

Subsituting Eq. (1.18) in Eq. (1.19) yields

P (θ, σ) =
∫ ∞
−∞

∫ ∞
−∞

f(s, t)e−i2πσsdsdt (1.20)

which, using a coordinate transform to the (x, y) system (Eq. (1.10)), is equivalent
to

P (θ, σ) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2πσ(x cos θ+y sin θ)dxdy. (1.21)

The right-hand-side of this equation corresponds to the Fourier transform of the
object function along one radial line (ξ, η) = (σ cos θ, σ sin θ) (Eq. (1.26)):

P (θ, σ) = F (σ cos θ, σ sin θ). (1.22)

This expression is known as the Fourier Slice theorem. It states that the Fourier
transform of a parallel projection with orientation angle θ coincides with the 2D
Fourier transform of the object function along a radial line with orientation angle
θ (see Fig. 1.9). Hence, each radial line of the 2D Fourier transform of the object is
known by Fourier transforming the corresponding measured projection. In case of
an infinite number of projections, the 2D frequency space of the object function can
be filled completely. A 2D inverse Fourier transform then yields the reconstructed
object function.
In practice, only a finite number of projections is available from the measure-
ments, yielding a sampling of the frequency space as shown in Fig. 1.10. Suppose
N projections p(θ, s) with equal angular spacing were measured. The following
reconstruction strategy could then be applied:

1. Calculate the 1D Fourier transform of the measured projections

P (θ, σ) = F1Dp(θ, s) (1.23)

with respect to the second variable.

2. Arrange the Fourier transformed projections onto a 2D radial grid. The 2D
frequency space of the object function is now radially sampled:

F (σ cos θ, σ sin θ) = P (θ, σ). (1.24)

3. Resample the data points to a rectangular grid (ξ, η) by interpolation.
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ξ

η

Figure 1.10: Sampling of the Fourier space of the 2D object function.

4. Perform a 2D inverse Fourier transform of F (ξ, η) to recover the object func-
tion

f(x, y) = F−1
2DF (ξ, η) (1.25)

The main disadvantage of the above method is located in step 3. For higher values
of σ, F (σ cos θ, σ sin θ) is only coarsely sampled, which causes a regular interpola-
tionto be less accurate for higher frequencies. Therefore, complicated interpolation
procedures (cfr. gridding [8]) are necessary to avoid high-frequency artifacts.

1.3.2.2 Filtered Back Projection

A reformulation of the Fourier Slice theorem in polar coordinates yields a 2-step re-
construction method consisting of a projection filtering and a backprojection onto
the image domain. Advantageous in this Filtered Back Projection (FBP) method,
derived below, is that the difficult interpolation problem that was encountered in
the Fourier Slice reconstruction method, is confined to a linear interpolation in the
image domain.

The 2D inverse Fourier transform of F (ξ, η) is

f(x, y) = F−1
2DF (ξ, η) =

∫ ∞
−∞

∫ ∞
−∞

F (ξ, η)e2πi(xξ+yη)dξ dη. (1.26)

Expressing this equation in a polar coordinate system (θ, σ) with

ξ = σ cos θ (1.27)

η = σ sin θ (1.28)

dξ dη = σ dσ dθ (1.29)
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σ

Figure 1.11: Solid line: the Ram-Lak filter frequency response. Dashed line: resulting

frequency response of the Ram-Lak filter multiplied by the Hamming function

yields

f(x, y) =
∫ 2π

0

∫ ∞
0

F (θ, σ)ei2πσsσ dσ dθ. (1.30)

with s = x cos θ + y sin θ (Eq. (1.11)). Splitting the outer integral into θ ∈ [0, π)
and θ ∈ [π, 2π), and using F (θ, σ) = F (θ + π,−σ) yields

f(x, y) =
∫ π

0

[∫ ∞
−∞

F (θ, σ)|σ|ei2πσs dσ
]
dθ, (1.31)

Following the Fourier Slice theorem, the 2D Fourier transform F (θ, σ) along the
radial line with orientation θ is given by the Fourier transform of the projection
P (θ, σ), which yields

f(x, y) =
∫ π

0

[∫ ∞
−∞

P (θ, σ)|σ|ei2πσsdσ
]
dθ. (1.32)

In this integral, two operations can be distinguished: a projection filtering

q(θ, s) =
∫ ∞
−∞

P (θ, σ)|σ|ei2πσsdσ = F−1
1D [F1D (p(θ, s)) |σ|] , (1.33)

followed by the backprojection of the filtered projections

f(x, y) =
∫ π

0

q(θ, x cos θ + y sin θ)dθ. (1.34)

The filtering procedure is basically a multiplication of the projections with the ker-
nel |σ| in Fourier space. This high-pass filter compensates for the inhomogeneous
sampling density in the frequency space (Fig. 1.10). For a discrete implementa-
tion, the filter, also called the ‘Ram-Lak’ filter or the ‘ramp’ filter, is cut off at
the Nyquist frequency, as shown in Fig. 1.11 (solid line). Often, a smoothing win-
dow function such as the Hamming window (dashed line in Fig. 1.11) is used that
suppresses the highest spatial frequencies, to reduce the high-frequency noise and
aliasing artifacts in the reconstruction image.
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The reconstructed image is obtained after backprojection of the filtered projec-
tions. During the backprojection, illustrated in Fig. 1.12, the filtered projections
are ‘smeared out’ onto the image plane. For each angle θ and each coordinate value
s, the filtered projection value q(θ, s) is added to all image pixels on the line of
constant s.

q(θ2,s)

q
(θ
4
,s
)

Figure 1.12: Illustration of the backprojection procedure using 4 filtered projections q(θ, s)

of an ellipse.

In subsection 1.3.3 iterative methods are discussed. Compared to these methods,
the analytical FBP reconstruction method is very fast. Mainly for this reason, the
use of the FBP method and its variants such as, e.g., the Feldkamp-Davis-Kress
(FDK) algorithm for cone beam (see [1]), is standard practice for tomographic im-
age reconstruction. The major drawback of the analytical reconstruction methods
is the difficulty to incorporate prior knowledge such as a positivity constraint, or a
sophisticated imaging model.

1.3.3 Iterative reconstruction

An entirely different approach to image reconstruction is offered by iterative re-
construction methods. Using a discretized representation of the image space, the
unknown object function is found by iteratively solving a system of linear equations,
each representing one measured value as a linear combination of the unknowns.

Consider the object function f(x, y) superimposed on the image grid (Fig. 1.13).
The unknown function values in the 2D grid can be ordered in a one-dimensional
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f1 f2 f3

fN

fj

fN-1

Figure 1.13: Image grid for iterative reconstruction methods. The grey area denotes the

area of pixel j that contributes to projection value pi

array f = (f1, f2, ..., fj , fj+1, ...fN ) with N the number of pixels on the reconstruc-
tion grid. Consider measurements p = (p1, p2, ..., pi, pi+1, ...pM ) with M the total
number of projection values, i.e. the number of detector pixels multiplied by the
number of projections. The system of linear equations is then given by

pi =
N∑
j=1

aijfj , (1.35)

where element aij of the M × N system matrix A represents the contribution of
pixel j to the ith ray sum pi. Many system models can be used, each yielding
different noise properties in the reconstruction image; for an overview, see [9]. In
the example of Fig. 1.13, the matrix element aij is represented by the intersection
surface of the pixel j and the ith ray strip.
Typically, the system matrix is huge (in the order of 1012 elements for a 1000×1000
pixel image), which turns direct matrix inversion infeasible. Alternatively, a wide
range of algebraic and statistical methods exist that calculate the object function
iteratively. An overview can be found in [10]. For example, the Simultaneous
Iterative Reconstruction Technique (SIRT) iteratively computes an image update
f

(k+1)
j from a previous guess f (k)

j using the following recurrence equation:

f
(k+1)
j = f

(k)
j +

∑
i

[
aij

(
pi −

∑
h aihf

(k)
h

)/∑
h aih

]
∑
i aij

. (1.36)
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This formula basically represents a backprojection of the projection difference

pi −
∑
h

aihf
(k)
h , (1.37)

which is the difference between the measured projection value pi and the forward
projection along the ith ray. Let R be the diagonal matrix of which the diagonal
elements are defined as rii = 1/

∑
j aij . Define the residual error E of an image f

as
E(f) = ‖p−Af‖2R, (1.38)

where ‖p−Af‖2R = (Af −p)TR(Af −p) (see, e.g., [11]). It is well known that the
iterative SIRT method converges to the solution of the least squares problem

ffinal = arg min
f

(E(f)). (1.39)

Note that, if the number of equations M is smaller than the number of unknowns
N, the solution is not uniquely determined. In that case, SIRT converges to the
solution that is the closest to the initial guess f0 [1], i.e.

ffinal = arg min
f
|f0 − f |. (1.40)

Compared to analytical reconstruction methods, iterative techniques have the ma-
jor advantage that prior knowledge is relatively easily incorporated using penalty
functions. Moreover, iterative reconstructions easily deal with various acquisi-
tion geometries, as long as the ray path corresponding to each measured value is
known. In addition, in case of incomplete or irregularly sampled data, the iterative
reconstruction methods are able to find the least squares solution of Eq. (1.39), as
opposed to the FBP method.
However, analytical methods such as FBP strongly outperform iterative recon-
struction methods when it comes to computation time. Consequently, iterative
methods are found infeasible for most practical applications. Exceptions are PET
(Positron Emission Tomography) and SPECT (Single Photon Emission Computed
Tomography), where typically low-resolution images are reconstructed, and where
the low photon count requires a statistical approach.

1.4 Artifacts in tomography

This section discusses some of the most important artifacts encountered when re-
constructing CT images. An artifact can be defined as any discrepancy between
the reconstructed image and the true attenuation coefficient, that affects the quan-
titative or qualitative analysis of the image. We consider two groups of artifacts:
those caused by degraded CT data and those caused by limited CT data.
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1.4.1 Artifacts caused by degraded data

Standard tomographic reconstruction techniques use the Radon transform to model
the logarithm of the intensity decay when an X-ray beam traverses an object. This
simplified model, however, is not adapted to address artifacts caused by scatter-
ing, beam hardening, detector deficiency, afterglow, object motion, etc. [2]. This
subsection discusses two of these artifacts, namely scatter and beam hardening,
which both have a potentially large impact on the image quality in both medical
CT and the area of non-destructive testing. Beam hardening artifact reduction will
be discussed in Part IV of this dissertation.

1.4.1.1 Scatter

CT reconstruction methods assume that the measured intensity is exclusively re-
lated to the attenuation along the incident ray path. This assumption is violated
by high energy photons that are inelastically scattered (Compton scattering) in the
forward direction along deflected paths (see section 1.1.2). Alternatively, a (typi-
cally low-energy) photon can be scattered elastically during an interaction with a
bounded electron, which causes a change in the direction of the photon without a
change in its wavelength or energy.
If a scattered photon penetrates through the entire object, it contributes to a de-
tector pixel that is not related to the original ray path. As a result, scattering
induces an additional slowly varying object-dependent background intensity onto
the intensity signal of the primary photons, which is illustrated in Fig. 1.14(a).
Scattering has a larger impact on lower intensity measures, which correspond to
rays through highly absorbing materials. The resulting reconstructions suffer from
a reduced contrast and signal to noise ratio, and from shading between highly at-
tenuating structures. Fig. 1.14(b) shows a phantom (upper) and its reconstruction
(lower) from data contaminated by scattering. The scattering in the latter image is
simulated by adding a constant value to the intensity sinogram I(θ, s). Scattering
artifacts can be reduced by placing a collimator or scatter grid before detecting the
signal, to prevent the detection of scattered photons with a large deflection angle.

1.4.1.2 Beam hardening

When a monochromatic X-ray beam traverses a homogeneous object, the attenu-
ation is linearly related to the thickness of the object along that ray (Beers law).
In general, however, CT X-ray sources are polychromatic (see Eq. (1.9)). Since
the low energy (soft) X-rays are more easily absorbed than high energy (hard)
X-rays, the beam hardens when propagating through matter. Consequently, the
attenuation-thickness relation becomes a non-linear curve, deflecting from the ex-
pected linear line. This is illustrated for a homogeneous material in Fig. 1.15(a),
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Figure 1.14: (a) Simulated effect of scattering on the measured intensity values (picture

based on a picture of Hsieh [2]). (b) the lower image represents a reconstruction of the

phantom that is shown in the upper image, from data contaminated by simulated scattering:

a first order simulation is performed by adding a constant value to the intensity sinogram

I(θ, s). Notice the shadowing artifacts close to the highly absorbing structures, and the

decreased contrast between the structures.

where the shaded line, representing the nonlinear beam hardening curve, deflects
from the monochromatic straight line (solid). If the energy dependence of the ab-
sorption is not taken into account, reconstructions are contaminated by cupping
and streak artifacts [1], as shown in Fig. 1.15(c), which depicts a reconstruction of
the phantom in (b) from polychromatic data. In Chapter 6, the beam hardening
problem is described in more detail, a literature overview is given and a new beam
hardening reduction method is proposed for piecewise uniform objects.

1.4.2 Artifacts caused by incomplete projection data

The artifacts discussed above are inherent to the nature of X-rays. Other artifacts
are encountered in case of incomplete data. For example in a medical setup, pa-
tients do not always fit in the FOV of the detector, and consequently, line integrals
are missing in some directions. In transmission electron tomography, which is a
technique that uses a transmission electron microscope and an electron beam to
measure projections at a resolution of 5− 20 nm, practical limitations restrict the
tilt angle θ of the sample holder typically to a range of 120 degrees.
To determine whether or not to classify an inverse problem as incomplete or in-
sufficient, the well-posedness of the problem needs to be analysed. A problem of
finding an object function f given a Radon transform g so that Ag = f is called
“well-posed” [12] if it has a unique solution and if the solution continuously de-
pends on the input data.
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Distance
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Polychromatic

(a) (b) (c)

Figure 1.15: (a) Attenuation-thickness relation in case of a monochromatic beam (solid

line) and a polychromatic beam (dashed line). (b) the Mega Mindy phantom. (c) Filtered

Backprojection reconstruction of the Mega Mindy phantom from data with simulated beam

hardening using the model proposed in Chapter 6. Notice the large cupping artifact, i.e. the

decrease of the grey value towards the center, and the streaks between the highly attenuating

structures.

We consider three types of incomplete data problems :

• Small number of projections. Here, projections are known for only a small set
of angles θ distributed over [0, π). In this case, the solution is not unique and
the problem is severely ill-posed. Note that the problem of reconstructing
an object from a large but finite number of projections is also essentially
underdetermined (see Theorem II.3.7 in [5]), but for well behaved functions
and a sufficient number of projections, this indeterminacy is dissolved (see
Theorem VI.2.2 in [5]).

• Limited angular range. Here, the projections are only given for a limited an-
gular interval θ ∈ [0,Θ], where Θ < π. This problem is uniquely determined,
but reconstruction is highly unstable (see Chapter 6 in [5]).

• Interior problem. In this special category of truncation problems, only the
set of line integrals through a region of interest (ROI) that is embedded in
the interior of the object, is measured. This is the case when the Radon
transform p(θ, s) is only known for |s| ≤ w with w the radius of a centered
circle in the interior of the object.
It is well-known that the desired ROI of the object function is not uniquely
determined by these data, which means that one cannot exactly reconstruct
the attenuation map of the object function even when assuming that the data
is given over a continuous set of lines without measurement errors (see also
Section 2.1).
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In Fig. 1.16, FBP reconstructions of the Shepp-Logan phantom 2 are shown for
each of the discussed limited data problems. Fig. 1.16(a) represents the FBP re-
construction from a (complete) sinogram, consisting of 360 views equally sampled
in [0, π) and 512 radial samples per view. Fig. 1.16b illustrates the FBP reconstruc-
tion from a sinogram containing only 18 (equally sampled in [0, π/2) views; (c) is
reconstructed from a Radon transform with limited angular range θ ∈ [0, π/2]; (d)
represents the reconstruction from interior data with |s| ≤ 128.

The uniqueness or well-posedness of the reconstruction problem from limited data
can be restored, provided adequate prior knowledge is included. For example in
digital subtraction angiography, where blood vessels are imaged by using contrast
agents, one can assume that the images are sparse, i.e. that they contain only a
small number of non-zero pixels.
Reconstruction methods for limited data problems can be subdivided into two
classes: iterative reconstruction methods and data completion for analytic recon-
struction. Iterative methods have the advantage that prior knowledge is relatively
easily incorporated in the algorithm by adding a penalty function. For example,
for the blood-vessel example, an `1-norm penalty function is often added to the
cost function in Eq. (1.39):

ffinal = arg min
f

{
‖p−Af‖2R + ‖f‖1

}
, (1.41)

with ‖f‖1 =
∑
h |fh|, which typically results in sparse images. The drawback of

iterative methods is, however, their reconstruction speed. Analytical methods, on
the other hand, are much faster, but have large difficulties with incorporating prior
knowledge. Therefore, the data are often completed in a preprocessing step by
using prior knowledge such as the object support, consistency conditions, previous
scans, etc.
Alternatively, for the limited angular range and the truncation problem, recent
results have shown that some parts of the object can accurately be reconstructed
using only knowledge of the object support. For a more thorough overview of
correction methods for the truncation problem, see Chapter 2.

2The Shepp-Logan phantom, proposed by L.A. Shepp and B.F. Logan [13] represents a sim-

ulation of a human head section, and is standardly used for the comparison of the quality of

reconstruction techniques.
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(a) (b) (c) (d)

Figure 1.16: (a) Shepp-Logan (SL) phantom [13]. (b) Reconstruction of the SL-phantom

from 18 projections. (c) Reconstruction of the SL-phantom from a limited angular range

([0, π/2). (d) Reconstruction of the SL-phantom from interior data.
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Chapter 2

Region-of-interest

tomography: state of the art

2.1 Introduction

Region of interest (ROI) tomography considers the problem of reconstructing a
certain area in the object from a set of truncated projections, i.e. data that con-
sists solely of the integrals along the complete set of lines that intersect this area.
A schematic example of ROI tomography for a parallel beam geometry is shown
in Fig. 2.1. In this example, the circular field of view (FOV) is covered by the
detector in all directions; each point of the remaining area in the object support is
not covered by the detector in at least one projection direction.

Figure 2.1: Illustration of a truncation problem. The circle represents the field of view

(FOV), covered by the detector in each projection direction.

29
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Since the attenuation integrals are measured along all lines through the FOV,

w1 w2-w2 -w1

w1 w2-w2 -w1

3.10-3

-2.10-3

1

0

(a) (b)

(d)(c)

Figure 2.2: Illustration of the non-uniqueness of the solution from interior data. (c)

sinogram composed of identical 1D projections h(s) (shown in (a)). (d) unique solution

from sinogram (c); a radial cross section is plotted in (b).

intuitively one expects that the FOV can be completely recovered. Note, however,
that the measured projection values are contaminated by the attenuation of the
surrounding object region, sometimes with important consequences. For example,
in case of an interior problem, i.e. if the FOV is completely embedded in the
object support, this contamination destroys the uniqueness of the solution. This
non-uniqueness is illustrated in Fig. 2.2. Fig. 2.2(a) shows an even one-dimensional
infinitely differentiable function h(s) that is zero for all |s| 6∈ (w1, w2). It is proven
(see Section VI.4 in Natterer [1]) that the 2D function q(θ, s), constructed by
q(θ, s) = h(s) for all θ ∈ [0, 2π), represents a consistent sinogram, and has a unique
solution, which is depicted in Fig. 2.2 (d). A plot of the reconstruction value along
a radial line (red) through the reconstructed image, shows that the solution is
non-zero in the centered circle with radius w1. Note, however, that the truncated
sinogram, acquired by measuring q(θ, s) only for |s| < w1, is zero everywhere.
Hence, the truncated sinogram also represents the truncated Radon transform of
a second function: f(x, y) = 0 for (x, y) ∈ R2. This illustrates the non-uniqueness
of the solution from interior Radon data.

After a short introduction to data truncation in Section 2.2, Section 2.3 consid-
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ers the use of FBP for the reconstruction of an image from truncated data, and
discusses the problems associated with this approach. In Section 2.4, a recently ob-
tained alternative formulation for the Radon inverse is described, and it is shown
how this new formulation partly alleviates these non-locality problems. Section
2.5 consists of recent results describing the area in which the solution to the recon-
struction problem is uniquely determined, for various types of truncation problems.
Also, reconstruction methods to obtain this unique solution are mentioned. An
overview of empirical truncation artifact reduction methods is provided in Section
2.6.

2.2 Data truncation

A schematic example of a scanning acquisition is shown in Fig. 2.3. In this figure,
the dashed line describes the object support Ω; the FOV is assumed to be circular.
Define r as the minimal radius of the FOV that is necessary to cover the complete
object in all projection directions. The dataset is called truncated if the FOV has
a radius w with w < r. The corresponding truncated sinogram (Rwf)(θ, s) is then
measured only for s ∈ [−w,w] .
Two disjoint regions A ⊂ Ω and B = Ω\A in the object support Ω are distinguished
(see Fig. 2.3). The region A (light grey) describes the intersection of the object
support with the FOV. The region B (dark grey) is the complement of region A

with respect to the object support. For all points in B, line integrals are missing
at least in some directions. This corresponds to a limited angle problem and the
measured angular range becomes smaller for points at larger distance from region A.
Therefore it can be expected that no part of region B can be recovered accurately
[2].

2.3 FBP reconstruction from truncated projections

For a long period of time, the mainstream idea was that accurate and stable re-
construction of any region of interest in the object requires a complete set of line
integrals of the whole object. This idea partly stems from the non-uniqueness re-
sult for the interior problem, and partly from the formulation of the standard FBP
reconstruction method (see Eq. (1.34) and Eq. (1.33)):

f(x, y) =
∫ π

0

q(θ, x cos θ + y sin θ)dθ. (2.1)

with

q(θ, s) =
∫ ∞
−∞

P (θ, σ)|σ|ei2πσsdσ = F−1
1D (P (θ, σ)|σ|). (2.2)
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Figure 2.3: Schematic example of a truncated scanning acquisition. The dashed line

represents the object support Ω; the circle with radius w represents the field of view (FOV)

of the detector in case of truncation. The dark grey area reflects region B, the lighter grey

area denotes region A. The large circle with radius r represents the FOV for a non-

truncated case.

This FBP formula shows that a local measurement distortion in a single projection
contaminates the complete projection after filtering. During the subsequent back-
projection (Eq. (1.34)), every filtered projection contributes to the reconstruction
of a single point (x, y). Hence, even a tiny data contamination prohibits accu-
rate FBP recovery of the object function f(x, y) in any point (x, y) of the object
support. This is illustrated in Fig. 2.4 for the reconstruction of the Shepp-Logan
phantom from a complete sinogram in which a single pixel is severely distorted; the
difference image is everywhere non-zero. Note, however, that the distortion mainly
affects the neighbourhood of the line along which the distortion is backprojected.
At larger distance from this line, the reconstruction quality improves.

Hence, the FBP reconstruction from a truncated sinogram (Fig. 2.5 (a)), in which
basically the unknown sinogram values are replaced by zeros , is never exact. It
typically suffers from cupping artifacts as observed in Fig. 2.5(c). The FBP ramp
filtering of projections with an abrupt transition between measured values and
zeros, caused by the truncation, induces large artifacts at the boundary of the FOV,
where a bright rim is noticed. The cupping artifact decreases towards the center
of the FOV, but the bias is nowhere zero. For this reason, quantitative analysis is
prohibited, but structural information can still be recovered in the FOV. Note also
that the FBP from truncated projections offers only severely distorted density and
structural information in the region surrounding the FOV.
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Figure 2.4: Illustration of the non-local behaviour of the FBP algorithm. (a) Sinogram

of Shepp-Logan phantom (see Fig. 1.16(a)) with one distorted pixel (indicated with white

arrow). (b) reconstruction from the distorted sinogam shown in (a). (c) absolute value of

the difference image with respect to the true Shepp-Logan phantom. This figure illustrates

how the complete 2D reconstructed image is contaminated by a one-pixel distortion in the

sinogram.

(a) Truncated sino-

gram

(b) FBP reconstruc-

tion from a complete

sinogram

(c) FBP reconstruc-

tion from a truncated

sinogram (a)

(d) Absolute value of

(b)-(c)

Figure 2.5: Illustration of the FBP reconstruction from truncated data. (a) truncated

sinogram; (b) reconstruction of a ROI from complete data; (c) reconstruction of the same

ROI from sinogram (a); (d) difference image

2.4 DBP reconstruction from truncated projec-

tions

For decades, FBP and its variants were the only closed-form analytic expressions to
recover a 2D object function from its parallel projections. In 2004, a new analytical
reconstruction method, relating the differentiated backprojection of the projections
to the Hilbert transform of the object function, was proposed for a parallel beam
geometry by Noo et al. [3], for a fan beam geometry by Noo et al. [3] and Zou et al.
[4], and by Zhuang et al. [5] for a cone beam geometry. The 2-step inverse Hilbert
method of Noo et al. [3] directly leads to new insights and sufficiency conditions
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for 2D parallel beam tomography. We refer to this method as the differentiated
backprojection method (DBP). In this section, the Hilbert transform and the DBP
method are introduced, and it is shortly discussed how the DBP method partially
circumvents the problem of non-locality encountered by the FBP method.

2.4.1 Hilbert transform

The Hilbert transform of a one-dimensional function f(t) is defined as its convolu-
tion with kernel 1

πt :

Hf(t) = p.v.

∫ ∞
−∞

f(t− t′)
πt′

dt′. (2.3)

where “p.v.” denotes that the singularity at t′ = 0 is handled in the Cauchy prin-
cipal value sense (see, e.g, p. 191 in [6]). In the derivation below, the notation p.v.
is omitted. The Fourier representation of the Hilbert transform is given by:

Hf(t) =
∫ ∞
−∞
−i sgn(τ)F (τ)ei2πtτdτ, (2.4)

where F (τ) = F1Df(t) =
∫∞
−∞ f(t)e−i2πτtdt denotes the Fourier transform of func-

tion f , and where −i sgn(τ) is the well known Fourier response of the Hilbert kernel.
Using the Hilbert transform, the expression of the FBP filtering in Eq. (1.33) can
be rewritten as

q(θ, s) =
∫ ∞
−∞
−i sgn(σ) [P (θ, σ)iσ] ei2πσsdσ =

1
2π
H∂p(θ, s)

∂s
, (2.5)

since multiplication with 2πiσ in the Fourier domain corresponds to differentiation
in real space.
Now consider a 2-dimensional function f(x) with x = (x, y). The one-dimensional
Hilbert transform of f along the x-axis, denoted as H0f , is given by

H0f(x) =
∫ ∞
−∞

f(x− t′, y)
πt′

dt′ =
∫ ∞
−∞

f(t′, y)
π(x− t′)

dt′. (2.6)

Let F (ξ) =
∫∞
−∞

∫∞
−∞ f(x)e−i2πξ·xdξdη represent the 2D Fourier transform of f(x),

with ξ = (ξ, η). The Fourier representation of Eq. (2.6) is then:

H0f(x) =
∫ ∞
−∞

∫ ∞
−∞
−i sgn(ξ)F (ξ)ei2πξ·xdξdη. (2.7)

More generally, the one-dimensional Hilbert transform Hφ(f) 1 along lines with
direction β = (cosφ, sinφ) and a fixed angle φ with respect to the x-axis is given
by

Hφf(x) =
∫ ∞
−∞

f(x− t′β)
πt′

dt′, (2.8)

1Notice the difference with the definition of Noo et al., whereHφ denotes the Hilbert transform

along lines with the perpendicular direction (− sinφ, cosφ).
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where β = (cosφ, sinφ).
The corresponding Fourier representation of this formula is written

Hφf(x) =
∫ ∞
−∞

∫ ∞
−∞
−i sgn(ξ · β)F (ξ)ei2πξ·xdξdη. (2.9)

Consider the coordinate system (s, t), rotated with respect to the system (x, y),
such that s = x · β⊥, t = x · β, β⊥ = (sinφ,− cosφ), and x = sβ⊥ + tβ. The
Hilbert transform along angle φ can then be rewritten as

Hφf(sβ⊥ + tβ) =
∫ ∞
−∞

f(sβ⊥ + (t− t′)β)
πt′

dt′ =
∫ ∞
−∞

f(sβ⊥ + t′β)
π(t− t′)

dt′. (2.10)

The following characteristics of the Hilbert transform are relevant for the remainder
of the derivation:

• Convolution with the Hilbert kernel 1/(πt) of a function with compact sup-
port results in a function of unbounded support. This is particularly true for
object functions, which are positive within their support, and zero elsewhere.
The 1D Hilbert transform of f(x) has therefore infinite extent in the direction
of the transform φ. In the perpendicular direction, the extent is unchanged
and thus finite. As an illustration, the Hilbert transform of a uniform ellipse
along vertical lines is shown in Fig. 2.6.

• From Eq. (2.4) it is seen that

H2
φf = −f. (2.11)

Consequently, by switching the sign, Eq. (2.3)-(2.10) can also be used for the
inverse Hilbert transform.

2.4.2 Differentiated Backprojection and the Hilbert trans-

form

In this section, we essentially follow the derivation in the paper of Noo et al. [3]
to show the relation between the differentiated backprojection and the 1D Hilbert
transform of the object function.
Consider a 2D image gφ(x) that is the result of differentiating the projections p(θ, s)
along direction s, followed by a backprojection, with θ ∈ [φ− π

2 , φ+ π
2 ], i.e.

gφ(x) = −1
2

∫ φ+π
2

φ−π2

∂p(θ, s)
∂s

dθ, (2.12)
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Figure 2.6: Illustration of 1D Hilbert transform of a 2D object function. (a) uniform

ellipse phantom. (b) Hilbert transform of the ellipse along the vertical direction.

where s = x · α and α = (cos θ, sin θ). For now, φ denotes a constant angle. The
choice of φ is important and will be discussed in Section 2.4.5. Recall the Radon
transform property that p(θ, s) = p(θ+π,−s), and thus that ∂p(θ,s)

∂s = −∂p(θ+π,−s)∂s .
Eq. (2.12) can then be rewritten as:

gφ(x) = −1
2

∫ π

0

sgn(cos(θ − φ))
∂p(θ, s)
∂s

dθ. (2.13)

We will show that the object function is related to image gφ through the Hilbert
transform in direction φ.
The Fourier representation of the differentiated projection p′(θ, s) is

∂p(θ, s)
∂s

= 2π
∫ ∞
−∞

iσP (θ, σ)e−i2πsσdσ, (2.14)

where P (θ, σ) = F1Dp(θ, s) is the 1D Fourier transform of p(θ, s) with respect to
the second variable. Substituting Eq. (2.14) in Eq. (2.13) yields

gφ(x) = −π
∫ π

0

∫ ∞
−∞

iσ sgn(cos(θ − φ))P (θ, σ)e−i2πσ(x·α)dσdθ (2.15)

= −π
∫ π

0

∫ ∞
−∞

i sgn(cos(θ − φ)σ)P (θ, σ)e−i2πσ(x·α)|σ|dσdθ. (2.16)

Note that cos(θ − φ) = α · β.
In the next step, the Fourier Slice theorem P (θ, σ) = F (σα) is applied, which
relates the 1D Fourier transform of the projections to the 2D Fourier transform of
the object function (see Eq. (1.22)):

gφ(x) = −π
∫ π

0

∫ ∞
−∞

i sgn(σα · β)F (σα)e−i2πσ(x·α)|σ|dσdθ. (2.17)
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Finally, the polar coordinates are transformed into cartesian coordinates ξ =
(ξ, η) = σα, yielding

gφ(x) = −π
∫ ∞
−∞

∫ ∞
−∞

i sgn(ξ · β)F (ξ)e−i2π(ξ·x)dξdη. (2.18)

The comparison of Eq. (2.18) with Eq. (2.9) shows that the differentiated back-
projection from the measured projection data corresponds to the Hilbert image
Hφf(x) scaled by π:

gφ(x) = πHφf(x). (2.19)

Note that the Hilbert transform angle φ can be selected arbitrarily by rearranging
the projections p(θ, s) using the Radon transform symmetry (p(θ, s) = p(θ+π,−s))
such that θ ∈ [φ− π/2, φ+ θ/2) (see Eq. (2.12)).

Fig. 2.7 illustrates the differentiated backprojection procedure. Fig. 2.7(a) depicts
the used phantom, and (b) represents its corresponding Radon data. Fig. Fig. 2.7(c)
shows the differentiated sinogram for a preselected Hilbert transform angle φ. The
Hilbert image that is obtained after backprojection of this differentiated sinogram,
is depicted in (d).

2.4.3 Finite Hilbert inverse

Following Eq. (2.19), the object function can be recovered from the differentiated
backprojection gφ(x) by a 1D inverse Hilbert transform along parallel lines with
direction β for fixed s. Along each line L with direction β, this problem is equiv-
alent with recovering a 1D function u(t) from Hφu(t), where Hφu(t) corresponds
to the slice of gφ(x) along the line L.
Recovering u(t) using u(t) = H−1

φ (Hφu(t)) = −H2
φu(t) (see Eq. (2.11)), requires

Hφu(t) to be known in its complete support. This condition is not met, since
Hφu(t) has infinite extent and is only known from the measurements in a finite
interval t ∈ [L,U ] (see Fig. 2.8), where L and U are determined by the intersection
of the ray path with the FOV.

An alternative formula, called finite inverse Hilbert transform (Tricomi [7]), re-
quires Hφu(t) only to be known in a finite interval that covers the support of
u(t) with an excess of ε > 0 at each side. This formula basically represents a
weighted version of the Hilbert transform of Hφu(t). Suppose u(t) is zero outside
some interval [L + ε, U − ε] and Hφu(t) is known in interval [L,U ]. Then, for all
t ∈ [L+ ε, U − ε], u(t) can be recovered using:

u(t) = − 1
π
√

(t− L)(U − t)

(∫ U

L

√
(t′ − L)(U − t′)Hu(t′)

(t− t′)
dt′ + C

)
, (2.20)
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Figure 2.7: Illustration of the differentiated backprojection. (a) uniform ellipse phan-

tom. (b) attenuation sinogram of the ellipse phantom in (a). (c) shows the differentiated

sinogram for a certain preselected Hilbert transform angle φ. The Hilbert image that is

obtained after backprojection of this differentiated sinogram, is depicted in (d).

with
C =

∫ ∞
−∞

u(t)dt. (2.21)

The 2D reconstruction of the object function is thus obtained by an inverse Hilbert
transform using Eq. (2.20) along separate lines with direction β:

f(x) = f(sβ⊥ + tβ) = − 1
π
√

(t− Ls)(Us − t)
(2.22)

×

(∫ Us

Ls

√
(t′ − Ls)(Us − t′)

Hf(sβ⊥ + t′β)
(t− t′)

dt′ + Cs

)
(2.23)

where t = x · β and s = x · β⊥. Since the required line integrals in Eq. (2.20) are
known from the projection data, the constant Cs is given by

Cs = p(φ, s). (2.24)
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Figure 2.8: (a) Differentiated backprojection gφ(x) from a complete dataset, such that

the complete object support (green ellipse) is covered by the FOV. Hφf(x) is known in the

complete FOV. (b) plot of Hφu(t), which is a one dimensional section of Hφf(x) along the

line L, which has direction β. Along this line, Hφu(t) is known from the measurements

in the interval t ∈ [L,U ].

2.4.4 DBP reconstruction method: summary

The DBP reconstruction technique is initialized by selecting the direction φ. This
can be done by rearranging the projections using the Radon symmetry (p(θ, s) =
p(θ + π,−s)) such that the angular range is situated within the interval θ ∈ [φ −
π/2, φ+π/2]. The importance of a good selection of φ is discussed in Section 2.4.5.
The DBP algorithm then basically consists of two steps:

1. Differentiated backprojection: the projections are first differentiated and then
backprojected using Eq. (2.13), yielding an image gφ(x) = πHφf(x).

2. Inverse Hilbert transform: perform a finite inverse Hilbert transform using
Eq. (2.23) and Eq. (2.24).

In a practical implementation, it is convenient to align the direction φ to the
orientation of the pixels, whenever possible. The singularity in Eq. (2.23) is cir-
cumvented by sampling the differentiated backprojection Hf in step 1 at half-pixel
shifted samples.

2.4.5 DBP and truncation

The DBP method described above represents an alternative for the standard FBP
method. A major advantage of the DBP method is that the DBP formulation
is less restrictive in the amount of data that is needed to reconstruct the object
function in a single point (x, y).



40 2.4. DBP RECONSTRUCTION FROM TRUNCATED PROJECTIONS

The calculation of ∂p(θ,s)
∂s

∣∣∣
s=s0

requires p(θ, s) to be known in a small neighborhood

surrounding s0, i.e. for s ∈ [s0 − ε, s0 + ε] with ε infinitesimally small. Conse-
quently, the differentiated backprojection gφ(x) of a truncated sinogram Raf(θ, s)
can be calculated in the complete FOV, except for a strip of width ε along its
boundary.
The inverse Hilbert transform H−1

φ , on the other hand, is a non-local 1D operation
along the line s = x · β⊥ for constant s. The inversion formula 2.23 requires the
DBP to be known in an open interval embedding the object support along that
line. If this condition is met, the object function can be reconstructed along the
whole line. Otherwise, the reconstruction is not exact along the complete line.
Therefore, if a certain area in the sinogram is distorted, it is important to choose
φ in such a way that the distortion affects the DBP gφ(z) in a minimal number of
lines with direction β. In case of truncated projections, φ should be chosen such
that the interval [Ls, Us] covers the object support for as many lines with direction
β as possible. After all, along these lines, the object function can accurately be
recovered. A new data sufficiency condition for truncated projections can therefore
be derived, which is discussed in Section 2.5.

As an example, Fig. 2.9 depicts the DBP reconstruction from a complete sinogram
in which a single pixel is distorted. When the direction of the inverse Hilbert trans-
form β is optimally chosen, i.e. parallel to the backprojected line of the distortion,
the differentiated sinogram is given by Fig. 2.9(e), and the resulting DBP recon-
struction in Fig. 2.9(f) is obtained. As opposed to the FBP method (see Fig. 2.4),
for this choice of β, the DBP method localizes the distortion along a strip with
width 2ε. This can clearly bee seen in the difference image Fig. 2.9(g), that is cal-
culated with respect to the DBP reconstruction from the true sinogram.
If the choice of β is suboptimal, larger parts of the image are distorted. Fig. 2.9(b)
shows the differentiated sinogram for the extreme case in which the direction of the
inverse Hilbert transform is perpendicular to the backprojected line of distortion.
The resulting DBP reconstruction is shown in Fig. 2.9(c). Its difference image with
respect to the reconstruction from the true sinogram, is nowhere zero. However,
the image accuracy of the reconstruction improves further away from the backpro-
jected line of the distortion.

In Fig. 2.10, the reconstruction (c) from a truncated sinogram (a) is compared
with the reconstruction (f) from complete data (c), both using the DBP recon-
struction method. Fig. 2.10 (b) and (e) depict the area in which the DBP bφ(x) is
accurately obtained from the sinograms in (a) and (c), respectively.
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Figure 2.9: Illustration of the non-local behaviour of the DBP algorithm. (a) Sinogram

of Shepp-Logan phantom (see Fig. 1.16(a)) with one distorted pixel (indicated with white

arrow). (b) and (e) represent the differentiated sinograms with preselected Hilbert angles

that are chosen perpendicular (b) and parallel (e) to the backprojected line of the distortion.

(c) and (f) denote the DBP reconstructions based on the differentiated sinograms in (b)

and (e), respectively. (d) and (g): absolute value of the difference image with respect to the

true Shepp-Logan phantom for images (c) and (f), respectively. Note that the difference

image (d) is nowhere zero, while difference image (g), which corresponds to the optimal

Hilbert angle, is zero everywhere except along the white area.

2.5 Uniqueness results and exact reconstruction

Before 2002, it was generally believed that exact 2D reconstruction requires com-
plete sinogram data. This idea changed drastically from the moment that whole
series of reconstruction techniques and sufficiency conditions were proposed, trig-
gered by new results on the reconstruction problem for 3D helical cone beam CT.
In this section, an overview of the recent uniqueness results for reconstruction from
truncated projections is given.

The first breakthrough for reconstruction of 2D tomographic images from incom-
plete data was achieved for a set of non-truncated projections, covering an incom-
plete angular range. Fig. 2.11 depicts a circular object and two fan beam source
trajectories. The short scan trajectory λ1 → λ2 covers an angular range π+ fan
angle 2γ, which is the necessary range to determine the complete Radon transform
of the object. The second trajectory λ′1 → λ2 is a so called ‘super short scan’
trajectory covering an angular range smaller than that of the short scan. The
projections are considered to be non-truncated, i.e. the complete object support
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Figure 2.10: DBP reconstruction from truncated (top row) and complete (bottom row)

sinograms. Left column: sinograms; center column: the area in which the DBP bφ(x) is

accurately obtained from the corresponding sinogram. Right: reconstruction in a ROI with

radius w, obtained after inverse Hilbert transform of the DBP.

is covered in each projection. Inspired by the algorithms for cone-beam spiral CT
proposed by Katsevich [8], Noo et al. [9] found that in case of a super short scan,
some object regions can still be reconstructed accurately. They proved that com-
plete (non-truncated) fan beam projections provide sufficient information for the
reconstruction of an ROI when every line passing through the ROI intersects the
vertex path in a non-tangential way. Furthermore, they proposed a filtered back-
projection formula for reconstruction from super short scan data. In Fig. 2.11, the
shaded area corresponds to the region that can be reconstructed according to this
uniqueness theorem.

Clackdoyle et al. [2] extended the result of Noo et al. for truncated parallel pro-
jections. They noticed that an ROI in the object can be recovered accurately,
provided that the truncated parallel data can be converted into non-truncated fan
beam data corresponding to a virtual trajectory that obeys the 2D fan beam data
consistency condition of Noo et al [9]. In Fig. 2.12, it is illustrated for a non convex
object and four truncation scenarios, which object area (shaded) can be recon-
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Figure 2.11: Example of a limited angle fan beam geometry. The inner circle represents

the object support. The trajectory from λ1 to λ2 (full line) represents a ‘short scan’, which

enables accurate reconstruction in the complete hatched region. The trajectory λ′1 → λ2

(dashed line) represents a ‘super short scan’; its corresponding fan beam data uniquely

determines the object function in the shaded area.

structed according to this new data sufficiency condition of Clackdoyle et al. [2].
In each scenario, the circle denotes the FOV. Fig. 2.12(d) represents an interior
problem in which a small part (hatched region) is known a priori.

(a) (b) (c) (d)

Figure 2.12: Different scenarios of truncation, depicted for a non-convex object support

(solid line) and a circular FOV. In each scenario, the grey area shows the reconstructable

region, based on the data sufficiency condition obtained by Clackdoyle et al. [2]. In (a),

the optimal source trajectory is drawn that leads to the maximal reconstructable region

that is shown.

The following important step was achieved by Noo et al. [3] and Zou et al. [4],
based on the relationship between the differentiated backprojection (DBP) and the
one-dimensional Hilbert transform along certain lines of the object function. This
relationship is a particular case of the results of Gelfand and Graev [10], and com-
bined with a finite untruncated Hilbert transform inversion formula [7], it leads
to the new inversion formula discussed in Section 2.4, and a new data sufficiency
condition for 2D tomographic reconstructions.
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Figure 2.13: Different scenarios of truncation, depicted for a non-convex object support

(solid line) and a circular FOV. In each scenario, the grey area shows the reconstructable

region, based on the data sufficiency condition obtained by Noo et al. [3] and Zou et al.

[4].

The data sufficiency condition can be summarized as follows. Let Ω′ be the support
of the object that is enlarged with a margin of thickness ε with ε infinitesimally
small, and B′ its corresponding B-region. The sufficiency condition for 2D to-
mography based on the DBP reconstruction formula, can then be summarized as
follows : A region of interest (ROI) inside region A can be reconstructed if the ROI
lies within the union of infinite lines that do not contact region B′ [3].
Fig. 2.13 depicts the same non-convex object and truncation scenarios as in Fig. 2.12.
For each scenario, the grey area depicts the region that can be recovered based on
this sufficiency condition. Notice the enlarged reconstructable region for the cases
in Fig. 2.13(a) and (b) compared to Fig. 2.12; in Fig. 2.13(c) and Fig. 2.13(d), the
reconstructable areas remain the same as in Fig. 2.12.

Several other one-step FBP-type methods were proposed that accurately recover
parts of the object function for specific data truncation problems, such as [11, 12].
They have the advantage that the reconstruction of a certain ROI from complete
data requires the computationally intensive backprojection only to be calculated
in the ROI.

Building on the results of Noo et al. [3], Defrise et al. [13] analysed the prob-
lem of recovering a 1D real function from its Hilbert transform that is known on
a finite segment covering the object boundary only at one side (instead of the re-
quired two sides in previous sufficiency condition), which lead to a new sufficiency
condition. Recall that Ω′ represents the object support that is enlarged with a
margin of thickness ε, with ε > 0, and B′ is its corresponding B-region. In analogy
with Noo’s sufficiency condition, the sufficiency condition of Defrise et al. [13] can
then be summarized as follows : A region of interest (ROI) inside region A can
be reconstructed if the ROI lies within the union of infinite segments that contact
region B′ at most at one side [3]. As an illustration, Fig. 2.14 depicts the non-
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convex object support and truncation scenarios of Fig. 2.12. For each scenario,
the grey area represents the region that can be recovered based on Defrise’s suf-
ficiency condition. Notice the significant enlargement of the reconstructable area
in Fig. 2.14(a), (b) and (c) compared to Fig. 2.12 and Fig. 2.13. For Fig. 2.14(d),
again, no part can be reconstructed.

(a) (b) (c) (d)

Figure 2.14: Different scenarios of truncation, depicted for a non-convex object support

(solid line) and a circular FOV. In each scenario, the grey area shows the reconstructable

region, based on the data sufficiency condition obtained by Defrise et al. [13].

Very recently, Ye et al. [14] and Kudo et al. [15] independently extended the pre-
vious uniqueness results. By following a similar approach as Defrise et al. [13] and
using less restrictive assumptions on the knowledge of the Hilbert transform, they
showed that the interior problem can be solved if a tiny a priori knowledge on the
object f(x, y) is available in the form that f(x, y) is known on a small region located
inside the region of interest [15]. In [16], the uniqueness results are extended to
the whole space, and a rigourous stability estimate is performed. As a consequence
of these recent uniqueness results, the interior problem in Fig. 2.15 (d) with known
object function in the hatched pentagon, that remained unsolved in the previous
sufficiency conditions, can now completely be solved. Recall that Fig. 2.14(a), (b)
and (c) were already solved using the uniqueness theorem of Defrise et al. [13].

No closed form analytic inversion formula is yet derived for reconstruction of the
area that can be accurately determined based on the uniqueness results in [13–16].
Instead, a DBP-POCS method was introduced by Defrise et al. [13] and extended
by Kudo et al. [15]. Alternatively, a Maximum a posteriori (MAP) method [13] and
Maximum Likelihood Expectation Maximization(ML-EM) method [17] are success-
fully applied for the reconstruction of a ROI from truncated data. Such algorithms
have the advantage that they are applicable to various types of truncation problems
in a unified way.
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(a) (b) (c) (d)

Figure 2.15: Different scenarios of truncation, depicted for a non-convex object support

(solid line) and a circular FOV. In each scenario, the grey area shows the reconstructable

region, based on the data sufficiency condition obtained by Ye et al. [14] and Kudo et al.

[15].

2.6 Empirical truncation artifact reduction meth-

ods

Section 2.5 discussed the uniqueness results that were obtained recently to recover
an ROI from truncated data, and summarized the reconstruction techniques that
were proposed to obtain accurate reconstruction of the ROI. This section consists
of a literature overview of data completion methods and empirical approaches for
truncation artifact reduction.

2.6.1 Data completion methods using extra scans

Several techniques have been proposed that complete the missing data by perform-
ing additional measurements in an adapted acquisition geometry.

Cho et al. [18] shift the insufficiently large detector along the detector plane (see
Fig. 2.16a)) to reduce the problem to one-sided truncation for fan beam and cone
beam, respectively. The missing attenuation values are then estimated using the
measured lines in the opposite direction, obtained from a full 360◦ scan. The
sinograms are merged using a so-called iterative reconstruction-reprojection (IRR)
method (see Section 2.6.2). Hooper et al. [19] use a rebinning method for the
fusion of multiple sinograms acquired from two or more scans with a repositioned
patient. By blocking redundant X-rays, the patient dose can be maximally limited.

In microtomography, one often strives to optimal resolution of a small part of the
object. An optimal resolution is acquired by scanning the object positioned at
a small distance from the source so that the area of interest covers a larger part
of the detector (see Fig. 2.16b). As a result, some line integrals from other parts
of the object are not measured. Several authors [21, 22] worked on a technique
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(a)

ROI

(b)

Figure 2.16: Acquisition schemes for 2nd scan sinogram completion methods. (a) the

completion technique of Nassi et al. [20] and Cho et al. [18], who shifted the insufficiently

large detector along the detector plane (see Fig. 2.16a)) to reduce the problem to one-sided

truncation. The missing attenuation values are estimated using the measured lines in the

opposite direction, obtained in a full 360◦ scan. (b) the second scan method of [21, 22]

sometimes used to enhance resolution in microtomography [23, 24].

involving a second full scan at lower resolution after translating the object towards
the detector until it completely fits in the field of view of the detector. From these
data, a complete low resolution reconstruction can be computed, and a forward
projection of this image estimates the line integrals that were missing in the high
resolution scan. This technique provides relatively accurate reconstructions of the
ROI, and is applied in practical experiments, for example in small-animal imaging
[25]. Several authors [22, 24] reported that an additional coarse sampling of the
truncated part of the sinogram suffices for accurate reconstruction of the ROI.

In another approach, the truncated sinogram is decomposed using appropriate
wavelets or related multiresolution models of which the support remains more or
less local after ramp filtering; see, among others [23, 26, 27]. Since locality is not
completely preserved, additional low resolution information of the truncated part
of the sinogram is used. This approach was criticized by Tisson [28] stating that
the major part of the improvement is provided by the additional data and not by
the local behaviour of the wavelet technique.
Alternative multiresolution methods that do not use prior knowledge have been
proposed for the reconstruction of the object discontinuities, for the case when
accurate edge detection is aimed at rather than the accurate reconstruction of the
attenuation map [29, 30].
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2.6.2 Sinogram extrapolation

In many situations, it is not possible to complete the missing data via extra scans,
due to practical or dose limitations. The missing line integrals are then typically
estimated using a mathematical extrapolation function that incorporates any avail-
able prior knowledge. The main aim of the extrapolation function is the restoration
of smoothness at the truncation transition in the sinogram to reduce the high fre-
quency artifacts that appear as a bright rim in the reconstructed image. Moreover,
the hope is that by using an appropriate model and by exploiting prior knowledge,
the unknown sinogram values can be approximated sufficiently accurately to yield
a significant reduction of the cupping artifacts, which is important for accurate
segmentation of the reconstructed images.

Suppose (Rwf)(θ, s) is a truncated sinogram, measured for s ∈ [−w,w] and let
[sext1(θ), sext2(θ)] represent the estimated support of the projection identified with
angle θ. If the sinogram support is unknown, a constant interval defined by
sext1 = −sext and sext2 = sext is used, where sext is the radius of the estimated
object support circle.
For convenience, the extrapolated sinograms below are described for s ∈ [−∞, 0]
only; the extrapolation for s ∈ [0,∞] is similar. The completed sinogram pc(θ, s)
is then obtained as follows:

pc(θ, s) =


0 s < sext1

pext(s) sext1 ≤ s < −w
p(θ, s) −w ≤ s ≤ 0

, (2.25)

with pext a smooth function such that pext(w) = p(θ, w) and pext(sext1) = 0. Vari-
ous extrapolation functions pext are used in literature, such as a polynomial [31], or
cos2 [28]. The Simple Extrapolation Method (SEM) of Lewitt and Bates [32] uses
projection data of a physical shape, in this case a circle, as extrapolation function.
This function, multiplied by a polynomial, is fitted to the outer extremities of the
sinogram. Explicitly, this extrapolation function is written as:

pext(s) =

√
1−

(
s

sext1

)2(
c0 + c1

s

sext1

)
w < s ≤ sext1, (2.26)

where the coefficients c0 and c1 are found by fitting the above function to at least
two outer samples of the measured data. In the method of Ohnesorge et al. [31],
the unknown part of the sinogram is estimated by a weighted mirroring of the
measured data:

pext(s) = (2p(θ, w)− p(θ, 2w − s))
(

cos(
s− w
sext1 − s

)
)0.75

w < s ≤ sext1,

(2.27)
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Fig. 2.17 plots a single truncated projection together with various projection ex-
tension curves, corresponding to the above described extrapolation methods.

The above extrapolation methods fit a smoothing function to each projection
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Figure 2.17: Plot of different extrapolation functions for projection completion.

separately. Another approach is to perform a global fit for all projections simulta-
neously by taking into account that a complete sinogram obeys a set of consistency
conditions. This idea was introduced for limited angle problems by Lewitt and
Bates [32], Peres [33], Louis [34], Natterer[1], and Prince and Willsky [35].

For truncation problems, however, the prior knowledge of the consistency condi-
tions alone is not sufficient to find a unique sinogram extrapolation [32]. Therefore
extra assumptions of the object shape are often taken into account. For example,
Sourbelle et al. [36], proposed a method where 2 consistency conditions were used
to estimate the parameters of a uniform ellipse of which the projection data is used
as sinogram extrapolation. Hsieh et al. [37] extrapolate each projection separately
using the projection data of a water cilinder, but stretch the extrapolation interval
to satisfy the first consistency condition. In Chapter 3, a new sinogram extrapola-
tion method is developed that uses sinogram consistency methods to estimate the
missing sinogram data.

Several approaches are proposed to recover the sinogram iteratively. One such
method is iterative reconstruction reprojection (IRR), which estimates missing line
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integrals by iteratively switching between sinogram and object space and each time
imposing prior knowledge. This approach was originally developed for the reduc-
tion of artifacts in soft tissue caused by neighboring highly attenuating structures
[38, 39], and is frequently applied for the reduction of truncation artifacts [18, 20]
and other types of incomplete data, e.g. in [40, 41].
Related to this IRR is the method of projection on convex sets (POCS) [42]. If the
unknown function can be considered as an element of an appropriate Hilbert space,
POCS can be used to find a solution that satisfies a set of constraints, provided that
each constraints restricts the possible solution onto a convex set. By projecting a
guess sinogram consecutively onto the convex sets, a solution in the intersection of
the convex sets is found, provided the intersection is not empty. Several authors
[43, 44] explored this technique for sinogram restoration in general. Kudo and
Saito [45] proposed a POCS method for the recovery of truncated sinograms, using
constraints such as the measured data, nonnegativity, the support of the sinogram,
a predescribed reference image, and consistency conditions.

2.7 Conclusions

This chapter discussed the reconstruction of a ROI from truncated data in 2D
CT. Firstly, it is shown that the standard FBP reconstruction method distributes
sinogram distortions over the complete reconstruction domain. Hence, the FBP
reconstruction from truncated data systematically yields images contaminated by
cupping artifacts. Together with non-uniqueness results for the interior problem,
these observations contributed to the general belief that complete data are required
for the reconstruction of any ROI. Recently, however, a new formulation of the in-
verse radon transform using the differentiated backprojection of the projections
(see Section 3) was proposed, showing that accurate reconstruction is possible in
some areas of the ROI. The most recent uniqueness results and corresponding re-
construction methods were discussed in Section 2.5.

Section 2.6 provided an overview of existing data completion methods and em-
pirical extrapolation methods. This latter class can be subdivided in very simple
approaches, mainly aiming at a reduction of the high-frequency artifacts, and more
advanced methods, aiming at a reduction of the low-frequency bias, by, for exam-
ple, incorporating information on the consistency of sinograms.
In the next chapter, a new sinogram extrapolation method is developed that uses
sinogram consistency methods to estimate the missing sinogram data.
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Chapter 3

Sinogram extrapolation

based on consistency

conditions

3.1 Introduction

In this chapter, a sinogram recovery method is presented that uses a set of con-
sistency conditions for the data extrapolation. The approach is similar to the
methods in [1–4] that are used in SPECT/PET to estimate the unknown attenua-
tion map for accurate reconstruction of the emission map. We estimate the object
function in the region outside the FOV using a set of uniform ellipses. The miss-
ing sinogram data can be completed using the corresponding data of the ellipses.
The unknown ellipse parameters are obtained by optimizing a cost function based
on the Helgason-Ludwig consistency conditions for transmission Radon data. Our
method differs from the methods in [1–4] by the definition of the cost function
which favours continuity of the extrapolation, by the complexity of the extrapola-
tion function, and by the optimization approach.

This chapter is outlined as follows. In Section 3.2, the Helgason-Ludwig con-
sistency conditions are introduced. Section 3.3 describes the proposed ConSiR
method. In Section 3.4, reconstructions of ConSiR extrapolated sinograms are
shown for simulated and real µCT data. The reconstruction images are compared
to reconstructions using the SEM and the DBP method (see Chapter 2). Finally,
conclusions are drawn in Section 3.5.

55
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3.2 Consistency Conditions

Consider an object function f(x) with compact support Ω. Theoretically, the two-
dimensional Radon transform (RT) obeys a set of consistency conditions, known
as the Helgason-Ludwig (HL) conditions. These conditions state that the function
Hn(θ), described by

Hn(θ) =
∫ ∞
−∞

sn(Rf)(θ, s)ds (3.1)

is a homogeneous polynomial in sin(θ) and cos(θ) of degree n for any integer n ≥ 0.

For example, the first condition (n=0) describes that the total attenuation should
be equal for all directions. The second condition describes the consistency of the
’center of mass’, which, in Radon space, corresponds to the first moment of the
projections. The location of the center of mass, which is a point in image space,
describes a sinusoid in the radon space and therefore the result of the integral also
needs to be sinusoidal. For a truncated sinogram, these consistency conditions are
in general not fulfilled.

An alternative formulation of the HL-conditions [5] is given by:

Hn,k(Rf) =
∫ π

0

∫ ∞
−∞

sneikθ(Rf)(θ, s)dsdθ = 0 (3.2)

for integers k > n ≥ 0 and k − n even. If the sinogram (Rf)(θ, s) is inconsistent,
the Hn,k(Rf) values differ from zero and can therefore be used as a quantitative
measure of inconsistency.
Define r as the minimal FOV radius that covers the entire object support Ω such
that (Rf)(θ, s) = 0 for all θ ∈ [0, π] and |s| > r. The Hn,k(Rf) values can then be
written as:

Hn,k(Rf) =
∫ π

0

∫ r

−r
sneikθ(Rf)(θ, s)dsdθ (3.3)

3.3 Consistent sinogram recovery method

Suppose a truncated sinogram (Rw)f(θ, s) of f(x) that is measured in the limited
interval s ∈ [−w,w] with w < r. The corresponding region B (see Chapter 2) is
given by B = Ω\FOV , where the FOV is a circle with diameter 2w.

In the proposed sinogram completion approach, region B is modeled by a set
of superposed uniform ellipses. Each of the me uniform ellipses e(x,pm) with
m = 1...me, is characterized by 6 parameters pm = (µm, am, bm, xm,0, ym,0, φm)
representing the density, the semi major and minor axis, the position of the center
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and the angle between the major axis and the x-axis, respectively 1. The object
function in region B is then approximated by

fB(x) ≈
me∑
m

e(x,pm). (3.4)

In the next step, the missing data are estimated by the corresponding Radon data
of the ellipses (RfB)(θ, s), yielding an extrapolated sinogram (Ref)(θ, s).

(Ref)(θ, s) =
{

(Rwf)(θ, s) for |s| ≤ w
(RfB)(θ, s) for |s| ≥ w (3.5)

A schematic overview of this procedure is depicted in Fig. 3.1.

θ

s

θ

s

θ

s

Guess ellipse

Measured data

Ellipse sinogram

Extrapolate measured data 

with ellipse sinogram data

Figure 3.1: Schematic overview of the sinogram extrapolation.

The aim is to find an extrapolated sinogram with optimized consistency and with
a smooth transition between measured data and extrapolated data, to avoid high-
frequency artifacts induced by the FBP ramp filter. Therefore, we determine the
initially unknown parameters p = (p1, ...,pN ) by minimizing a cost function Φ(p)
defined as the weighted sum of an inconsistency penalty I and a discontinuity
penalty D

p = arg min
p
{Φ(p)}, (3.6)

with
Φ(p) = I(p) + αD(p), (3.7)

where the weight parameter α is determined empirically at α = 1
100 (see subsection

‘Inconsistency’, below). The penalties I and D are defined below.
1Note that the formulation of the algorithm is not restricted to uniform ellipses, which is specif-

ically interesting when some information on the shape of the object is available. The expected

object boundary is then fitted to the truncated sinogram using affine operations, represented by

parameters p = (µm, am, bm, xm,0, ym,0, φ).
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3.3.0.1 Inconsistency

The inconsistency penalty I is constructed using the Helgason-Ludwig valuesHn,k(Ref)
Eq. (3.3). Each consistency condition is considered equally important. To this end,

the different Hn,k are weighted with a factor
(
β
r

)n
, where β is a constant. The

values of β and α (see Eq. (3.7)) were simultaneously determined by maximizing,
for a few examples of truncated sinograms, the correlation between the cost Φ(p)
of the extrapolated sinogram and the inaccuracy of the resulting reconstruction im-
age, which is quantified by the Mean Absolute Difference (see Section 3.4.2). The
weight factor β is set at β = 4, and remains fixed throughout all the experiments in
this chapter. The inconsistency penalty I is then defined as the weighted squared
L2 norm of the HL-consistency integrals :

I(p) =
1
nc

∑
(k,n)∈I

[(
β

r

)n
Hn,k(Ref)

]2

(3.8)

with nc the number of used consistency conditions, and I the set of (k, n) represent-
ing the different consistency conditions. We use only a small set I of conditions,
namely

I = {(k, n) : n = 0, 1, 2; k = n+ 2, n+ 4, n+ 6}. (3.9)

3.3.0.2 Discontinuity

The discontinuity penalty D reflects the magnitude of the sinogram discontinuity at
|s| = w, i.e. at the transition between the measured and the extrapolated part of the
sinogram. Therefore, two discontinuity measures d−(θ) and d+(θ) are calculated
for each projection angle θ, at s = −w and s = w, respectively. To determine
d+(θ), two parabolas q+

f (θ, s) and q+
e (θ, s) are fitted over a small number of pixels

2, respectively at the measured side and at the extrapolated side of the transition
(see Fig. 3.2). The shift between values of the two parabolas in s = w then yields
d+(θ). The same procedure is used to determine d−(θ) such that

d+(θ) =
∣∣∣q+
f (θ, w)− q+

e (θ, w)
∣∣∣ (3.10)

d−(θ) =
∣∣∣q−f (θ,−w)− q−e (θ,−w)

∣∣∣ (3.11)

The discontinuity penalty D is then given by

D =
1
nθ

nθ∑
n=1

(d−(θ)2 + d+(θ)2), (3.12)

with nθ the number of projections.
2In this work we fitted the parabola on 3 pixels, but in case of very noisy data, it may be

preferable to use more.
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Figure 3.2: Definition of d+, the shift at the transition between a parabola fitted to the

measured side and a parabola fitted to the extrapolated side for s = w.

3.3.0.3 Optimization

In our experiments we found that the cost function contains many local minima,
and consequently, the optimum found by a gradient based optimization algorithms
will be very dependent on the choice of the initialization parameters for the opti-
mization. Instead, we used a Differential Evolution (DE) [6] optimization approach,
which is an iterative population-based global minimization algorithm for continu-
ous functions. This optimization technique is initialized by generating a population
of k random vectors or ‘parents’; the number of components equals the number of
parameters to optimize, which is 6 ×me. At each iteration (called ‘generation’),
k child vectors are created by combining two random parents and a third specific
strategy vector through a weighted vector sum. A child replaces the ‘worst’ parent
when its cost Φ(p) is lower than that of the worst parent.

Note that, using this method, there is no guarantee that the global optimum is
found. In particular for the case of a large number of ellipses, a high-dimensional
cost function is to be optimized with an ill-conditioned optimum. This problem is
partly alleviated by limiting the number of ellipses.
Because of the slow convergence and the large number of function evaluations per
iteration, DE methods are very time consuming. Therefore, we perform only a
relatively small number of iterations, enough to roughly determine the area con-
taining an interesting minimum. An additional speed-up is obtained by performing
the optimization using a downsampled sinogram. Afterwards, the minimum value
found by the DE method is used as start value for a gradient based method that
rapidly converges to the corresponding local minimum.

3.3.0.4 Sinogram smoothing

Using the optimized parameters p, the extrapolated sinogram Ref(θ, s) can be
calculated using (3.5). Although the cost function that is minimized contains a
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discontinuity penalty, the extrapolated sinogram is not necessarily continuous at
transition |s| = w, since the extrapolation consisting of multiple ellipses is in gen-
eral not perfectly adapted to the truncated sinogram. We smooth the remaining
discontinuities, reflected by the shifts d−(θ) and d+(θ), by ‘smearing them out’
over the extrapolation width using a cos2 function:

(Ref)(θ, s) =


(Rwf)(θ, s) for s ∈ [−w,w]
(Ref)(θ, s) + d−(θ) cos2( s−w

r−(θ)−s ) for s ∈ [r−(θ), w]
(Ref)(θ, s) + d+(θ) cos2( s−w

r+(θ)−s ) for s ∈ [w, r+(θ)]
(3.13)

where s = r−(θ) and s = r+(θ) delimit the projection support of the extrapolated
projections. Note that the smoothing results in a slightly decreased consistency of
the extrapolated sinogram.
In a final step, the image is computed by performing an FBP reconstruction from
the extrapolated sinogram.

3.3.0.5 Summary

In summary the ConSiR method contains the following steps:

1. Initialise the ConSiR optimization by considering guess parameters pm =
(µm, ambm, xm,0, ym,0, φm) for each of the me uniform ellipses. Complete the
truncated sinogram (using Eq. (3.5)) with the Radon transform of the ellipses.
This yields an extrapolation sinogram (Ref)(θ, s).

2. Find the ellipse parameters that minimize the cost function Φ(p) (Eq. (3.7)).
To this end, compute the Radon transform (RfB)(θ, s) of the current-guess
ellipses, and complete the measured truncated sinogram with (RfB)(θ, s)
for |s| > w (see Eq. (3.5)). One optimization iteration basically consists of
evaluating the cost function for this extrapolated sinogram, proposing a new
guess for the ellipse parameters, and computing the updated extrapolated
sinogram.
The optimization strategy is subdivided in two steps. Firstly, a small number
of Differential Evolution iterations is performed to obtain a rough estimate
of the optimal ellipse parameters. Secondly, the parameters are finetuned by
optimizing the cost function using a gradient based optimization method.

3. Smooth the optimally extrapolated sinogram at the transitions |s| = w using
a cos2 function (see Eq. (3.13)).

4. Reconstruct the completed sinogram using FBP.
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3.4 Results and discussion

3.4.1 Objects consisting of uniform ellipses

We consider a phantom consisting of a few uniform ellipses (see Fig. 3.3(a)). The
truncated Radon transform of such an object function has a consistent solution
for the extrapolation using a small number of uniform ellipses. We aim to verify
whether the ConSiR method finds this consistent extrapolated sinogram.

A complete parallel sinogram, consisting of 1000 radial samples and 300 equally
spaced angular views and depicted in Fig. 3.3(b), is simulated for the phantom in
Fig. 3.3(a). A truncation problem is simulated by setting the data outside an in-
terval s ∈ [−w,w] to zero, with w = 250 the radius of the FOV. The object and
sinogram support are considered unknown.

The truncated sinogram, extrapolated using the ConSiR method with 2 ellipses, is
shown in Fig. 3.3 (c); the white lines indicate the transition between the measured
and the extrapolated data. It can be observed that the extrapolation is quasi iden-
tical to the missing data, which is confirmed by the FBP reconstruction from this
extrapolated sinogram, depicted in Fig. 3.3(d).

(a) (b) (c) (d)

Figure 3.3: ConSiR extrapolation for an object consisting of ellipses: (a) phantom, (b)

complete sinogram, (c) sinogram extrapolated with ConSiR, the 2 white lines delimit the

measured data. (d) the reconstruction from the ConSiR extrapolated sinogram. The white

circle represents the FOV.

3.4.2 The Bean Phantom

In this section, the performance of the ConSiR method is discussed for a non-
elliptical phantom of which the object region surrounding any FOV cannot be
described in an exact manner using a small set of ellipses. We consider the Bean
phantom, depicted in Fig. 3.4(a), which is asymmetrical and has a non-convex
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and elongated support. This allows the study of multiple types of truncation by
decreasing the radius of a circular FOV.
The Beam phantom (3× 1cm) consists of plexiglass containing two small air holes
and one larger hole filled with white spirit, which has an intermediate density
between that of plexiglass and air. Real X-ray CT data for this phantom is acquired
at 100 kV and 100 µA in a SkyScan 1172 scanner with a circular cone beam
geometry. The X-ray CT scan is complete in the sense that the FOV of the source-
detector pair covers the complete object support in all views. To reduce artifacts
from beam hardening, the X-rays are pre-filtered through a thin aluminium and
copper plate. We consider only the fan beam data from the central slice, which
is rebinned to a parallel beam sinogram ([7]). The resulting sinogram, depicted
in Fig. 3.4(b) has 1000 radial samples at 300 equally spaced angular views. The
reconstruction from this non-truncated sinogram will be used as ground truth.

(a) (b)

Figure 3.4: (a) The Bean phantom. The white circle superposed on the phantom denotes

the FOV of the experiments in Fig. 3.6. (b) The complete sinogram of the Beam phantom.

We consider the truncation problem corresponding to a FOV with a diameter of
400 pixel units; the corresponding truncated sinogram is shown in Fig. 3.5(a). The
object and sinogram support are considered to be unknown. Fig. 3.5(b) depicts the
FBP reconstruction from the truncated sinogram in Fig. 3.5(a). The sinogram that
is extrapolated using the ConSiR method with 3 ellipses, is depicted in Fig. 3.5(c).
It can be observed that the ConSiR extrapolation provides a good estimation of
the sinogram support. The corresponding reconstruction Fig. 3.5(d) shows that
the image is well-restored in the FOV. Moreover, it can be observed that the
ConSiR extrapolation provides much more structural information than the FBP
reconstruction in the region surrounding the FOV.
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(a) (b) (c) (d)

Figure 3.5: ConSiR extrapolation for a non-elliptical object: (a) truncated sinogram, (b)

FBP reconstruction from the truncated sinogram, (c) sinogram extrapolated with ConSiR,

the 2 white lines delimit the measured data. (d) the reconstruction from the ConSiR

extrapolated sinogram. The white circle represents the FOV with a diameter of 500 pixel

units.

To quantify the accuracy of the ROI reconstructions, we use the mean absolute
error (MAE):

MAE =
1
M

M∑
i=1

|Iref(i)− IRec(i)| (3.14)

with M the number of pixels inside the FOV, Iref the reference reconstruction and
Irec the reconstructions from the (extrapolated) truncated sinogram.

In figures 3.6, the reconstruction accuracy of the ConSiR method from truncated
projections is compared with several other methods. A FOV with a diameter of
400 pixel units is considered. The left column displays the sinograms that are
extrapolated using various methods. In the middle column, the corresponding re-
constructions are depicted. The right column shows the difference images of the
reconstructions with respect to the reconstruction from complete data. The first
row shows the FBP reconstruction from the truncated data. The second row de-
picts the results obtained using the Differentiated Back Projection (DBP) method
of Noo et al. (see Section 2.4 and [8])(second row). Although the sinogram support
is unknown, we consider the optimal direction for the inverse Hilbert transform to
be known (in this case along vertical lines), because it can roughly be estimated
if at least some projections are not truncated, which is the case for this example.
The DBP difference image in the right column is obtained with respect to the DBP
reconstruction from complete data.
The third row presents results for the Simple Extrapolation Method (SEM) of Lewitt
et al. [9], which basically fits weighted projection data of a circle to each truncated
projection separately. In the presented examples, it is assumed that the range of
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Figure 3.6: Results of various reconstruction methods for the Bean phantom and trun-

cated data with FOV diameter 2w = 400 pixel units. Left column: extrapolated sinogram;

middle column: reconstruction image; right column: difference image with reference re-

construction. From top to bottom: FBP and DBP without extrapolation (first and second

row), SEM without and with sinogram support knowledge (third and fourth row), and

ConSiR extrapolation using 2 and 3 ellipses (fifth and sixth row).
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the extrapolated projection corresponds to the detector range of a full scan (1000
pixels). In addition, the SEM reconstruction is shown for the case when the object
support is known (SEMS) (fourth row); the extrapolation range is then projection
dependent. Finally, the truncated sinograms are extrapolated with ConSiR using
2 ellipses (fifth row) and 3 ellipses (sixth row).
Note that the displayed gray scales are arbitrary and do not correspond to Hounsfield
units, which is the commonly used quantitative scale to express the reconstructed
attenuation coefficients.

Figure 3.7 plots the MAE for each of the considered methods as a function of
the cross-section of the field of view.
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Figure 3.7: Mean absolute error of the reconstructions performed with various truncation

artifact reduction methods, as a function of the FOV diameter for the Bean phantom.

It can be observed in Fig. 3.7 that the three-ellipse ConSiR extrapolation typi-
cally results in more accurate reconstruction images than the two-ellipse extrapo-
lation. This is intuitively expected although it cannot be guaranteed by the ConSiR
method. After all, the ConSiR method optimizes the consistency, which gives an
indication of, but is not directly related to the image accuracy.

Fig. 3.6 shows that the ConSiR method provides a good sinogram support esti-
mation, which can be seen by comparing the ConSiR extrapolated sinograms (in
subfigures (m) and(p)) with the SEMS extrapolated sinogram (displayed in subfig-
ures (j)), which uses the real sinogram support .

The graphs in Fig. 3.7 suggest that the ConSiR method improves the image accu-
racy compared to the SEM method, but the difference in reconstruction accuracy
between both methods is relatively small compared to the magnitude of the cup-
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ping reduction already achieved by the SEM method. In case the object support is
known a priori, no significant accuracy difference is observed between the ConSiR
and SEMS reconstructions.

Note that, since the ConSiR method and SEM extrapolation methods use FBP
reconstruction, accurate reconstruction of the attenuation coefficient is not guar-
anteed, which prohibits its quantitative interpretation. In contrast with the FBP
method, the formulation of the DBP method does allow for accurate reconstruc-
tion in specific parts of the FOV for certain types of truncation (see Chapter 2 and
[8]), which is confirmed in our experiments (second row in Fig. 3.6). The accurate
image recovery in this part of the FOV, however, does not necessarily result in a
small MAE-value since the remaining part of the FOV has a poor reconstruction
quality. In this remaining part, the ConSiR and SEM extrapolation methods seem
to outperform the DBP method with respect to image accuracy.

Comp. time (s)
FBP reconstruction 13
DBP reconstruction 21
SEM (incl. FBP) 22
SEMS (incl. FBP) 22
ConSiR 2 ell. (incl. FBP) 115
ConSIR 3 ell. (incl. FBP) 169

Table 3.1: Computation times for our implementation of the various methods that were

applied for the example in Fig. 3.6.

Table 3.1 presents the computation times on a single CPU for our implementation
of the various methods that were applied for the example in Fig. 3.6. The most
computationally expensive step in the FBP method, is the backprojection, which
has time complexity N2nθ, where N is the number of pixels per projection, and nθ
is the number of projections. In this particular example, N = 400 and nθ = 300.
The computation times of the SEM and DBP method are similar in this example,
although, apart from the backprojection which they share, the underlying processes
are completely different. The computation time of the SEM extrapolation, which
basically fits a 3-parameter function to a few measured samples at the outer ex-
tremities of the truncated sinogram, scales with the number of projections nθ. The
DBP method consists of a backprojection and a convolution. The time complexity
in our explicit implementation of the convolution is (O(N3)), but, if the convolu-
tion is executed in the Fourier domain using the Fast Fourier Transform (FFT),
it can be reduced to O(N2 log(N)), which corresponds to the complexity of the
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Ramp filter in the FBP method.
The ConSiR method optimizes a certain cost function to find the optimal ellipse
parameters for the sinogram extrapolation. Recall that me denotes the number
of ellipses, and define Nr as an estimation of the number of detector pixels that
is required to cover the complete object (in this example Nr = 1000). Each eval-
uation of this cost function consists of three steps: analytical calculation of the
ellipse sinogram (O(Nrnθme)), the calculation of the discontinuity (O(nθ)) and
that of the consistency (O(N2

r )). The computation time of one function evalua-
tion is actually very small, but the number of function evaluations that is required
for the global and local optimization critically depends on the behavior of the cost
function. In this particular example, the number of required function evaluations is
large, which causes the total processing time for the ConSiR method to become sig-
nificantly larger than that of the SEM method. However, the computation time of
ConSiR remains in the order of minutes, which seems reasonable for the additional
image accuracy that is obtained.

3.4.3 The Thorax phantom

(a) (b)

Figure 3.8: (a)The Thorax phantom. The white circle superposed on the phantom de-

notes the FOV of the experiments in Fig. 3.5. (b) the complete sinogram of the Thorax

phantom.

In this section, the experiments of Section 3.4.2 are repeated for the computer sim-
ulated Thorax phantom, which is depicted in figure Fig. 3.8(a). The corresponding
complete sinogram is shown in Fig. 3.8(b). The Thorax phantom represents a slice
through the human body at shoulder height, and contains various low and high-
contrast structures. Truncated data for this phantom represents the frequently
posed problem in medical CT systems where the detector is too small to detect
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X-rays through the full width of the patient in all directions. Similar to the Bean
phantom, the Thorax phantom is asymmetrical and has a non-convex and elon-
gated support, which allows the study of multiply types of truncation by decreasing
the radius of a circular FOV. A complete parallel sinogram with 1000 radial sam-
ples and 300 equally spaced angular views is simulated. As for the Bean phantom,
the reconstruction from the complete parallel sinogram is used as reference.

We consider a truncation problem corresponding to a FOV with a diameter of 400
pixel units. Fig. 3.9, similarly organized as Fig. 3.6, depicts the reconstruction im-
ages using the FBP (first row), DBP (second row), SEM (third and fourth row
for unknown and known support, respectively), and the ConSiR method (fifth and
sixth row for the 2- and 3-ellipse optimization).

In addition, in Fig. 3.10, the MAE for the various methods is plotted with re-
spect to the diameter of the FOV (expressed in pixel units).

The reconstructions for the Thorax phantom confirm the results obtained for the
Bean phantom. Again, it can be observed that the 3-ellipse ConSiR optimization is
favourable above the 2-ellips ConSiR reconstruction. The results suggest also that
the ConSiR method typically leads to more accurate images compared to the SEM
method if the object support is unknown. An important limitation to the ConSiR
method is that, although it often yields images with small MAE, the method can-
not guarantee a good image accuracy in the parts that can be recovered in an exact
manner using the DBP method. However, in the remaining parts of the FOV, the
ConSiR reconstruction generally yields significantly better image accuracy than
the DBP method.

3.5 Conclusions

In this chapter, a new sinogram extrapolation method (ConSiR) is proposed that
uses sinogram consistency methods to estimate the missing sinogram data. This
sinogram recovery method extrapolates the truncated sinogram with data of one or
more ellipses of which the parameters are determined by optimizing the consistency
and the continuity of the extrapolated sinogram. The ConSiR method is compared
to a variety of ROI reconstruction algorithms. The experimental results suggest
that this approach often yields more accurate reconstructions than the Simple
Extrapolation Method(SEM) [9], but that the difference of image accuracy resulting
from both methods is relatively small compared to the magnitude of the cupping
reduction already achieved by the SEM method.
Since the ConSiR and SEM methods are essentially based on FBP reconstruction,
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Figure 3.9: Results of various reconstruction methods for the Thorax phantom and trun-

cated data with FOV diameter 2w = 400 pixel units. Left column: extrapolated sinogram;

middle column: reconstruction image; right column: difference image with reference re-

construction. From top to bottom: FBP and DBP without extrapolation (first and second

row), SEM without and with sinogram support knowledge (third and fourth row), and

ConSiR extrapolation using 2 and 3 ellipses (fifth and sixth row).
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Figure 3.10: Mean absolute error of the reconstructions performed with various trun-

cation artifact reduction methods, as a function of the FOV diameter for the Thorax

phantom.

the accuracy of the reconstructed attenuation coefficient is not guaranteed, which
prohibits its quantitative interpretation. As opposed to the FBP method, the
formulation of DBP reconstruction does allow accurate reconstructions in a certain
region of the FOV, described by the uniqueness theorem of Noo et al. (see 2.4
and [8]), which was confirmed in our experiments. However, we found that the
extrapolation methods ConSiR and SEM outperform the DBP method with respect
to image accuracy in the remaining parts of the FOV. We conclude that data
extrapolation methods are still relevant since they can be applied regardless of the
type of truncation and they can be used in combination with the existing scanning
software.
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Chapter 4

Reconstruction of a uniform

star object from interior

x-ray data: uniqueness,

stability, algorithm.

4.1 Introduction

This chapter concerns the problem of reconstructing an object with uniform density
from x-ray projections. In particular, we consider the reconstruction of star-shaped
objects from limited projection data, where the detector only covers an interior-
field-of-view. Figure 4.1a shows an example of such a star-shaped object, along
with a single projection collected by a detector that is significantly smaller than
the diameter of the object. We will show that a 2D star-shaped object of uniform
but unknown density is determined by its parallel projections sampled over a full
π angular range with a detector that only covers an interior field-of-view.

In a slightly different form, this chapter has been published as:

G. Van Gompel, M. Defrise and K.J. Batenburg, Reconstruction of a uniform star
object from interior x-ray data: uniqueness, stability, algorithm, Inverse Problems
(25), ID 65010, 2009

75
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4.2 Context

We consider the reconstruction of star-shaped objects from limited projection data,
where the detector only covers an interior-field-of-view. A broad class of similar
problems have been analyzed in the past, all aiming at characterizing objects with
constant or piecewise constant densities from tomographic data, with applications
mainly for non-destructive testing. These problems differ by the nature of the data,
by the data sampling and by the class of objects in which a solution is sought. In
particular, the problem considered in this chapter belongs to the field of Geometric
Tomography, which focuses on the reconstruction of geometric objects from their
sections, orthogonal projections or both [1, 2].

Consider the case where the data consist of x-ray projections: an x-ray projec-
tion is the set of integrals of the object along a fan (in 2D) or a cone (in 3D) of
lines diverging from a vertex, which corresponds physically to the anode of the
x-ray source in CT. Volčič [3] showed for instance that a convex 2D object with
known uniform density is determined by x-ray projections measured from any set
of three non-collinear vertices not contained within the object. For this result,
and most other results in the literature on Geometric Tomography, it is assumed
that the density of the object is known beforehand and that the projections are
not truncated in the sense that the integral of the object is measured (or known
to be zero) for all lines diverging from the vertex. In CT however the density
represents the linear attenuation coefficient for x-rays, and an accurate estimate of
that quantity can be obtained only if both the nature of the material and the in-
cident x-ray spectrum are known. In addition, especially with micro-CT scanners,
the detector is sometimes too small to cover the whole sample and in that case
the projections are necessarily truncated. This observation motivates the present
study of the interior problem for an object with uniform but unknown density. In
the interior problem, the integral of the object is measured only for those lines that
intersect a circular field-of-view (FOV) contained within the support of the object.
This corresponds to CT data acquired with a short detector and a 2π rotation of
the assembly x-ray source-detector. We assume that these data are parameterized
as parallel projections. This choice of the parametrization does not restrict the
generality of the uniqueness theorem in Section 4.5.

In medical tomography, the density to be reconstructed is an arbitrary function
and in that case the solution of the interior problem is not unique (see Theorem
6.5 in [4] and the singular value analysis in [5]). Uniqueness however can be re-
stored if strong prior knowledge is available. For instance, it was shown recently
(see Chapter 2 and [6, 7]) that interior data determine the density function in a
unique and stable way within the measured FOV, as soon as this function is known
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a priori in a subset of that FOV. This chapter follows a similar approach based
on the DBP to show in Section 4.5 that the interior problem also allows unique
reconstruction provided the object is known to be uniform and star-shaped (in the
sense that each half-line diverging from the center of the FOV has one and only
one intersection with the boundary of the object support). A stability estimate is
obtained in Section 4.7 using the Cramer-Rao bound.

The major goal of this chapter is to prove these new uniqueness and stability
results for the reconstruction of a star object from interior data. Interestingly how-
ever, the proof leads directly to a reconstruction algorithm, denoted as the DBP
algorithm and described in Section 4.8. As discussed above, this algorithm requires
that the object has a uniform density. This assumption is restrictive, not only be-
cause it prevents the application to piecewise uniform samples containing different
materials but also because of confounding physical effects such as beam-hardening.

4.3 Notation and concepts

Let R>0 = {x ∈ R : x > 0}. Let J be the class of finite and integrable functions
f : R2 → R with a compact support for which the Radon transform

p(s, θ) = (Rf)(s, θ) =
∫ ∞
−∞

f(s cos θ − t sin θ, s sin θ + t cos θ) dt, (4.1)

is defined almost everywhere in s ∈ R × 0 ≤ θ < π, with the symmetry p(s, θ) =
p(−s, θ+π). The variables s and θ are the usual sinogram variables: s is the signed
distance between the line and the origin of the coordinate system, and θ defines
the line orientation as shown in figure 4.1.
Let O = (0, 0). A set S ⊂ R2 is called star-shaped at O if every line through O that
meets S does so in a line segment. By S, we denote the collection of nonempty,
compact sets that are star-shaped at O and for which O is an interior point. Let
S ∈ S. The radial function ρS : R2 → R>0 of S is defined by

ρS(x, y) = max{h : (hx, hy) ∈ S}. (4.2)

The radial function is often restricted to the unit circle. Switching to polar coordi-
nates, it can then be represented by a periodic function uS : R→ R>0 with period
2π, such that for r > 0 and 0 ≤ φ < 2π:

(r cosφ, r sinφ) ∈ S ⇐⇒ r ≤ uS(φ). (4.3)

We call a star-shaped set S a star object if uS is a continuous function. Let S be
a star object and let c ∈ R. Define a star object of density c by

fS,c(r cosφ, r sinφ) = f̃S,c(r, φ) =
{
c r ≤ uS(φ)
0 r > uS(φ)

, (4.4)
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where f̃S,c corresponds to the polar coordinate representation of fS,c. Note that
the term star object will be used to refer to either the star-shaped set or its repre-
sentation as a function, depending on context. The set of all functions fS,c, where
S is a star object and c ∈ R is denoted by F . From now on, we omit the index S, c
and S for the functions f and u.
It is well-known that under very general assumptions (theorem 1.7 in [8]), any func-
tion in J is uniquely determined by its Radon transform. This chapter concerns
the problem of reconstructing a star object from only part of its Radon transform,
corresponding to a detector for which the field of view covers only part of the in-
terior of the object. The following uniqueness theorem is proved:

Uniqueness Theorem Let w > 0. Every function f ∈ F is uniquely determined,
among all g ∈ F , by the value p(s, θ) of its Radon transform on the set |s| ≤ w,
0 ≤ θ < π.

Note that no central symmetry is assumed, i.e. the radial function u is not as-
sumed to satisfy u(φ) = u(φ + π). This uniqueness theorem will be proved in
Section 4.5. As the proof is constructive, it also leads to an algorithm for solving
the following reconstruction problem:

Problem 1. (Reconstruction problem for unknown density). Let w > 0. Suppose
that the Radon transform p(s, θ) of f ∈ F is given for |s| ≤ w and 0 ≤ θ < π.
Compute f from this partial Radon transform.

In Section 4.7, it is shown that the solution of Problem 1 can be quite unsta-
ble. Stability can be significantly improved if the density of f is known a priori.
This leads to the following reconstruction problem, which fits perfectly in the do-
main of geometric tomography:

Problem 2. (Reconstruction problem for known density). Let S be a star object,
let f be the indicator function of S and let w > 0. Suppose that the Radon transform
p(s, θ) of f is given for |s| ≤ w and 0 ≤ θ < π. Compute f from this partial Radon
transform.

4.4 The differential backprojection and the Hilbert

transform

We recall in this section the differential backprojection (DBP), see Chapter 2. Let
f ∈ J be a finite and integrable function with a compact support, and let p(s, θ)
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be its Radon transform. Consider a fixed direction 0 ≤ φ < π and the central
line Lφ = {(z cosφ, z sinφ), z ∈ R}. For each point z along this line, define the
backprojection of the derivative of the Radon transform Eq. (2.13):

gφ(z) =
−1
2

∫ π

0

sgn(cos(θ − φ))
∂p(s, θ)
∂s

∣∣∣
s=z cos(θ−φ)

dθ . (4.5)

This function is defined almost everywhere in z ∈ R because the derivative ∂p/∂s
of the Radon transform of f ∈ J can be defined almost everywhere. If necessary,
it can be defined as a distribution (see Chapter 10 in [9] for the definition of the
Radon transform of distributions and section 4.1 in [10] for the definition of the
DBP and Hilbert transform of functions in L2

0(R2)).
Noo et al [11] and Zou et al [12] have shown that the DBP function in Eq. (4.5) is
related to the Hilbert transform of f along Lφ by

gφ(z) = (Hfφ)(z) = p.v.

∫ ∞
−∞

1
z − z′

fφ(z′) dz′ z ∈ R, (4.6)

where p.v. denotes the Cauchy principal value and fφ is the restriction of f to Lφ:

fφ(z) = f(z cosφ, z sinφ) =
{
f̃(|z|, φ) z ≥ 0
f̃(|z|, φ+ π) z < 0

. (4.7)

with f̃ the polar coordinate representation of f . To simplify notations, this def-
inition (Eq. (4.6)) of the Hilbert transform H differs from the standard definition
(Eq. (2.3)) by a factor π. Note that the DBP separates the 2D problem into a set
of independent 1D problems along a family of central lines Lφ. The usefulness of
the DBP stems from the existence of a closed form expression (equation 12 p. 175
in [13]) for the inverse finite Hilbert transform, which allows recovering a function
fφ(z) that vanishes outside the interval (−1, 1) from its Hilbert transform gφ(z) on
z ∈ [−1, 1].

4.5 Uniqueness for star objects

In this section we prove Theorem 1 in a constructive manner. The proof will also
provide the basis of a reconstruction algorithm, described in Section 4.8.
We will show that for any w > 0 the star object (4.4) can be reconstructed in
a unique way from its Radon transform p(s, θ), measured over the region |s| ≤
w, 0 ≤ θ < π. The line integrals of f in (4.1) are measured for all lines that
intersect a circular field-of-view of radius w centered at x = y = 0, where the
parameter w is determined by the size of the detector. Note that the field-of-view
can be centered at any point such that each half line diverging from this point
has only one intersection with the boundary of the support of f . Without loss of
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w

z=-u( )=a

z=u( )=b

Figure 4.1: Left: A star object with the interior field-of-view of radius w. The line

integrals p(s, θ) of this object are measured for all lines intersecting the field-of-view, i.e.

all lines with |s| ≤ w and 0 ≤ θ < π. Middle: The data derivative ∂p/∂s is backprojected

along a central line Lφ through the origin to obtain the DBP gφ(z) on the segment −w ≤
z ≤ w. Right: the radius b = u(φ) and −a = u(φ + π) of the star object along Lφ and

its density c are determined by fitting Eq. (4.8) to the DBP gφ(z), here illustrated for

a = −2, b = 3 and w = 1.5.

generality we assume that u(φ) > w for 0 ≤ φ < 2π, the problem is then referred
to as an interior problem. This assumption is not restrictive since w can always be
decreased until an interior problem is obtained.
To prove Theorem 1, we use the differential backprojection (DBP). For the specific
case of the star object, inserting (4.7) into (4.6) and using (4.4) yields

gφ(z) = −c log(u(φ)− z) + c log(z + u(φ+ π)) − w < z < w

= −c log(b− z) + c log(z − a) , (4.8)

where we have defined the end points a = −u(φ+ π) and b = u(φ) of the support
of fφ (i.e. the support of f along the line Lφ) and we omit the dependence of a
and b on φ to simplify notations. Note that a < −w and b > w because the interior
field-of-view of radius w is contained within the support of f .
In practice one would estimate the three parameters a, b, c using typically a least-
square fit of the RHS of (4.8) to the DBP gφ(z) on the segment z ∈ [−w,w] where
it can be recovered from the interior data. To prove uniqueness however, we are
not concerned by stability, and we simply consider the first and second derivatives
of the Hilbert transform,

g′φ(z) =
dgφ(z)
dz

=
c

b− z
+

c

z − a
,

g′′φ(z) =
d2gφ(z)
dz2

=
c

(b− z)2
− c

(z − a)2
, (4.9)

which are continuous on −a < −w ≤ z ≤ w < b, with g′φ(z) > 0. An additional
equation is given by the integral of f along Lφ, which is measured because that
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central line intersects the field-of-view. This integral is equal to p(0, φ − π/2) =
c(b− a). Using (4.9), one obtains

a+ b =
−p(0, φ− π/2) g′′φ(0)

(g′φ(0))2
, (4.10)

ab =
−p(0, φ− π/2)

g′φ(0)
. (4.11)

If the data are consistent the system (4.10,4.11) has a unique solution such that
b > 0 and a < 0. The object density is then recovered as

c = p(0, φ− π/2)/(b− a). (4.12)

This concludes the proof of Theorem 1.

4.6 Generalizations

Theorem 1 has been obtained for the parallel-beam parametrization of the 2D
Radon transform, Eq. (4.1). Extension to the 2D fan-beam parametrization is
straightforward by resampling the fan-beam data into parallel-beam data, as is
often done in CT. Alternatively, it is possible to avoid this resampling by exploiting
instead of Eq. (4.5) a similar equation that directly relates the Hilbert transform
of f to the backprojection of its differentiated fan-beam data (see [14] and Eq. (24)
in [15]). That relation also holds for the 3D x-ray transform and could therefore
be applied for a spiral data acquisition with a multi-row CT scanner.

The uniqueness theorem for the interior problem with star objects can also be
extended to more general classes of objects. Note first that Eq. (4.5) and (4.6)
are valid for arbitrary density functions in J . Applying the same approach as
in the previous section to a class of objects which can be described along each
line Lφ by J parameters aj,φ, j = 1, . . . , J , the interior problem is reduced to
estimating these parameters by fitting the function gφ(z) that has been recovered
on z ∈ [−w,w] using the DBP. Uniqueness should then be verified for each type of
parametrization. More generally, we conjecture that a uniqueness theorem might
be obtained for general binary objects by using the analyticity lemma 2.1 of [16]. It
is likely however that the stability with respect to measurement noise will rapidly
degrade with objects of increased complexity. Chapter 5 aims to indicate the
extent of object complexity for which the inverse problem from truncated data can
be recovered in practice. In this chapter, the attention is restricted to star objects.
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4.7 Stability

The stability of the inverse problem in the previous section can be analyzed by
calculating for each radial line Lφ the Cramer-Rao lower bound (see e.g. section
13.3.5 in [17]) for the variance of an unbiased estimator of the parameters a =
−u(φ+π) and b = u(φ). Recall that an estimator â of the parameter a is unbiased
if its expectation E(â) is equal to a. We derive this Cramer-Rao lower bound under
the following assumptions:

• The DBP gφ(z) calculated using (4.5) is a white Gaussian stochastic process
on −w ≤ z ≤ w, with mean value given by (4.8) and with uniform variance
σ2,

• The ray-sum p(0, φ−π/2) along Lφ is a Gaussian random variable with mean
value c(b− a) and with variance σ2

p.

• There is no correlation between the noise on p(0, φ− π/2) and on gφ(z).

The logarithm of the likelihood function is then

L(g, p|a, b, c) =
−1
2σ2

p

(p(0, φ− π/2)− c(b− a))2 (4.13)

− 1
2σ2

∫ w

−w
(gφ(z) + c log(b− z)− c log(z − a))2

dz . (4.14)

The Fisher matrix for the three parameters a, b, and c is

F =

 Fa,a Fa,b Fc,a
Fa,b Fb,b Fc,b
Fc,a Fc,b Fc,c

 , (4.15)

with

Fa,a = −E
(
∂2L

∂a2

)
=
c2

σ2
p

+
1
σ2

∫ w

−w

c2

(z − a)2
dz =

c2

σ2
p

+
2c2w

σ2(a2 − w2)
,

Fa,b = −E
(
∂2L

∂a∂b

)
=
−c2

σ2
p

+
1
σ2

∫ w

−w

c2

(z − a)(b− z)
dz

=
−c2

σ2
p

+
c2

σ2(a− b)
log
{

(a+ w)(w − b)
(w − a)(b+ w)

}
,

Fb,b = −E
(
∂2L

∂b2

)
=
c2

σ2
p

+
1
σ2

∫ w

−w

c2

(b− z)2
dz =

c2

σ2
p

+
2c2w

σ2(b2 − w2)
,
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Fc,c = −E
(
∂2L

∂c2

)
=

(b− a)2

σ2
p

+
1
σ2

∫ w

−w
(log(b− z)− log(z − a))2

dz,

Fc,a = −E
(
∂2L

∂c∂a

)
=
c(a− b)
σ2
p

+
1
σ2

∫ w

−w
(log(b− z)− log(z − a))

c

z − a
dz,

Fc,b = −E
(
∂2L

∂c∂b

)
=
c(b− a)
σ2
p

+
1
σ2

∫ w

−w
(log(b− z)− log(z − a))

c

b− z
dz,

(4.16)

where E() denotes the expectation value. The variance of any unbiased estimator
â, b̂, ĉ of the three parameters is then bounded below by the diagonal elements of
the inverse Fisher matrix,

Var â ≥ (F−1)a,a, Var b̂ ≥ (F−1)b,b, Var ĉ ≥ (F−1)c,c. (4.17)

When the density c is known beforehand, the lower bound on the variance of â and
b̂ is obtained by calculating the inverse of the 2× 2 Fisher matrix

F =
(
Fa,a Fa,b
Fa,b Fb,b

)
, (4.18)

with the same matrix elements as in Eq. (4.16).
As an illustration, figure 4.2 shows the lower bound for the variance of â as a
function of the radius w of the field-of-view, when the true values of the parameters
are a = −2, b = 3 and c = 1, and the variances are σ2 = σ2

p = 1. For this
example, the variance increases dramatically when the radius of the field-of-view,
w, is small, which could be expected. In contrast, the variance bound is small when
w → |a| = 2: in that limit the field-of-view approaches the corresponding boundary
of the support of f along the line Lφ. The localization of that boundary (a in this
example) is easy to determine in this limit because the Hilbert transform is singular
at w = −a. This can also be seen by noting from Eq. (4.16) that Fa,a →∞ when
w → |a|. Another expected observation in figure 4.2 is that the variance bound is
much better when the density c is known a priori.
Figure 4.3 shows the value of F−1

b,c /
√
F−1
b,b F

−1
c,c as a function of σp. This quantity is

equal to the asymptotic value of the correlation coefficient between the maximum-
likelihood estimators of b and of c. Intuitively one expects this correlation coefficient
to be negative, i.e. one expects that the estimated density tends to increase when
the estimated object shrinks. However, when the variance σ2

p on the measured
value of the ray-sum is large, figure 4.3 reveals the counter-intuitive result that the
correlation coefficient is positive.
To conclude this section, we stress that the stability estimates above have been
obtained by considering separately each radial line Lφ. Intrinsically the problem
is two-dimensional and it is therefore likely that better variance bounds could
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Figure 4.2: Cramer-Rao lower bound for the variance of an unbiased estimator of the

boundary â, assuming a Gaussian distribution with variance 1 for the Hilbert transform

data gφ(z) and for the ray sum p(0, φ− π/2). Logarithmic vertical scale for the Cramer-

Rao variance bound. Horizontal axis: the radius of the field-of-view w. The true values

of the parameters are a = −2, b = 3 and c = 1. The lower curve corresponds to the

case where the density c is known. The upper curve corresponds to the case where c is

unknown.

be obtained by handling the full interior data set {p(s, θ), |s| ≤ w, 0 ≤ θ < π}
simultaneously. Another limitation is our assumption of white noise on the DBP
gφ(z): this is at best an approximation because noise correlations are introduced
when calculating the DBP (4.5) from the measured data p(s, φ).

4.8 The DBPS algorithm for Problem 1 and Prob-

lem 2

The Cramer-Rao bound suggests that the reconstruction of a star object from
interior data can be rather unstable. To improve the stability, we propose a two-
step reconstruction, which is not optimized but at least partially alleviates the
sub-optimality due to the separate handling of each radial line: in a first step an
estimate of the density c is obtained for each radial line Lφ by using Eq. (4.10),
(4.11) and (4.12), with values of g′φ(0) and g′′φ(0) estimated by fitting a polynomial
to the DBP gφ(z) on −w ≤ z ≤ w. The estimated density is then averaged over
all radial lines, and that average value is used as a known density during a second
step in which only the boundaries a and b are to be determined. If the Gaussian
noise assumptions made when deriving the Cramer-Rao bound are valid, and if the
variances σ2 and σ2

p are known, maximum-likelihood estimates can be obtained by
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σp

CR Correl(b,c)

Figure 4.3: Asymptotic Cramer-Rao value for the correlation coefficient between the

estimator of b̂ and of the density ĉ, assuming a Gaussian distribution with variance 1

for the Hilbert transform data gφ(z) and with variance σ2
p for the ray sum p(0, φ− π/2).

Horizontal axis: the value of σp. The true values of the parameters are a = −2, b = 3

and c = 1, and the width of the FOV is w = 1.

maximizing the log-likelihood function (4.14):

(â, b̂) = arg max
a<0,b>0

L(g, p|a, b, c) . (4.19)

Noting that the statistical properties of gφ(z) are unknown and probably complex,
we have implemented instead the following weighted least square method, which is
simpler and avoids the non-linear optimization of L(g, p|a, b, c). Using the known
value of the density c, we define the function

hφ(z) = e−gφ(z)/c, (4.20)

with gφ the DBP computed from the measured projections p(θ, s) using Eq. 4.5,
and estimate the parameters a and b by minimizing

Ψφ(a, b) =
∫ w

−w

(
hφ(z)− b− z

z − a

)2

(z − a)2 dz

+
∫ w

−w

(
h−1
φ (z)− z − a

b− z

)2

(b− z)2 dz

+
2w
c2

β (p(0, φ− π/2)− c(b− a))2
. (4.21)

This is a least-square fit with weighting factors (z−a)2 and (b−z)2. These weights
are not optimal in terms of noise but are chosen for simplicity because they lead
to a quadratic cost function (4.21), and therefore to a closed form solution. The
parameter β ≥ 0 in Eq. (4.21) determines the weight given to the ray-sum data
p(0, φ− π/2). Typically one would select a small value of β when the uncertainty
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on p(0, φ− π/2) is large compared to the uncertainty on the DBP gφ(z) (i.e. when
the parameter σp in the stability study of section 6 is large). The parameters â
and b̂ that minimize Ψφ(a, b) are the solutions of the 2× 2 linear system

∫ w
−w(h2

φ(z) + 1) dz + 2w β
∫ w
−w(hφ(z) + h−1

φ (z)) dz − 2w β

∫ w
−w(hφ(z) + h−1

φ (z)) dz − 2w β
∫ w
−w(h−2

φ (z) + 1) dz + 2w β

( â

b̂

)
=
(
qa
qb

)
,

(4.22)
with

(
qa
qb

)
=


∫ w
−w z (h2

φ(z) + 1 + hφ(z) + h−1
φ (z)) dz − 2w

c β p(0, φ− π/2)

∫ w
−w z (h−2

φ (z) + 1 + hφ(z) + h−1
φ (z)) dz + 2w

c β p(0, φ− π/2)

 .

(4.23)
In summary, the DBP based algorithm for star shaped objects (DBPS method),
applied in Section 4.9 for Problem 1 consists of the following steps:

1. Estimate the derivative ∂p(s, θ)/∂s (we use a two-point difference estimate
with a half-sample shift).

2. Using (4.5), backproject on a family of radial lines to obtain the DBP gφ(z), |z| ≤
w, 0 ≤ φ < π.

3. For noisy data, smooth gφ(z) by applying a Gaussian filter along the angular
variable φ.

4. For each radial line Lφ:

• Fit a polynomial to gφ(z) to estimate g′φ(0) and g′′φ(0) (we empirically
found that a polynomial of degree 5 is sufficient to accurately describe
gφ(z) for |z| ≤ w).

• Apply Eq. (4.11) and (4.12) to obtain an estimate ĉφ of the object
density.

5. Calculate the average density estimate ĉ = 1/π
∫
ĉφ dφ.

6. Using ĉ as the true density, calculate the function hφ in (4.20) and solve for
each radial line the system (4.22) to obtain an estimate of a = −u(φ+π) and
b = u(φ).

For Problem 2, the density is known beforehand and the same algorithm is used,
skipping steps 4 and 5.
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4.9 Numerical examples with simulated data

Figure 4.4: The simulated star object.

Figure 4.5: DBPS reconstructions from noise-free data using the algorithm of Section

4.8. The object density is unknown. The first three columns correspond from left to right

to FOV diameters Nz = 60, 40, 20, with estimated densities equal to ĉ = 1.006, 0.997 and

0.892 respectively, using β = 0. In the fourth column, Nz = 20 and ĉ = 0.892 are the

same as in the third column, but β = 0.2. The interior FOV used for reconstruction is

shown as a superimposed white circle. Upper row: the reconstructed star object. Bottom

row: difference between the reconstruction and the true object of figure 4.4.

The star object in figure 4.4 has a density c = 1 and a radial function

u(φ) = 40 (2 + 0.4 cos(2φ) + 0.3 sin(3φ+ π/3)− 0.33 cos(7φ− π/6)) . (4.24)
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We generated a digital image of this object on a 1024×1024 matrix with pixel size
0.25. Parallel projections p(s, θ) were calculated for 256 uniformly spaced angular
samples over [0, π) and with radial sampling ∆s = 1.0, by forward projecting the
1024 × 1024 image using Joseph’s algorithm with linear interpolation [18]. The
object was reconstructed on a 256× 256 matrix with pixel size 1.0. We considered
both the case of unknown and of known density. The accuracy of the reconstruc-
tions was quantified by the ratio of the area of the symmetric difference between
the estimated object and true object, and the area of the true object

ε =
Area {supp(f̂)4 supp(f)}

Area {supp(f)}
, (4.25)

where supp(f) denotes the support of object function f . The error ε varies in the
range [0,∞), where ε = 0 represents the ideal case and ε = 1 the case when f̂ is
zero everywhere.
For the DBPS algorithm, gφ(z) was calculated for the same 256 uniformly spaced
angular samples over φ ∈ [0, π), and for Nz values of z uniformly sampled over
[−w,w], with sampling distance ∆z = 1.0 so that w = Nz/2.

4.9.1 Problem 1: unknown density

The object with unknown density is reconstructed using the 2-step DBPS algo-
rithm. The first three columns in figure 4.5 show the reconstructed images for
different values of the FOV diameter, Nz = 60, 40, 20, using β = 0 and without
angular filtering. The FOV circular boundary has been superimposed on the recon-
struction. The difference with the true object illustrates the expected degradation
of the algorithm accuracy with a decreasing FOV. Even though the simulated data
were noise-free for this example, discretization as well as numerical round off errors
have an effect similar to that of random noise, and the results in figure 4.5 illustrate
the poor stability of the DBPS algorithm when the FOV is small. The density c

estimated by the algorithm was respectively ĉ = 1.006, ĉ = 0.997 and ĉ = 0.892 for
Nz = 60, 40 and 20. The ratio ε was respectively equal to 0.019, 0.047 and 0.233.
From the images in third column of figure 4.5, one notices that the values −â and
b̂ are underestimated if ĉ is underestimated. For an explanation we refer to figure
4.3 and the corresponding discussion in Section 4.7, which show that there is a
positive correlation between −â and b̂ on one hand, and ĉ on the other hand when
σp is large, which, as noticed above, corresponds to small values of β. To illustrate
the impact of the parameter β, the images in the fourth column of figure 4.5 show
the reconstruction for Nz = 20 with β = 0.2. In this case, the underestimation of
ĉ = 0.892 is paired with an overestimation of −â and b̂, as expected from the fact
that the correlation in figure 4.3 is negative for small σp.
To illustrate the stability of the algorithm, pseudo-random Poisson noise was added
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Figure 4.6: DBPS reconstructions from noisy data using the algorithm of Section 4.8.

The density is unknown. The columns correspond to FOV diameters Nz = 60, 40 with

estimated densities equal to ĉ = 0.973 and 0.812 respectively. Upper row: the reconstructed

star object (FOV superimposed). Bottom row: difference between the reconstruction and

the true object of figure 4.4.

to the sinogram, corresponding to a total of one million photons; this resulted in
a relative standard deviation of 0.005 for the largest sinogram sample. Figure 4.6
shows the reconstructions for Nz = 60 and Nz = 40, done with a filtering of the
DBP data with an angular Gaussian filter of FWHM equal to 10 samples and
with β = 0.05. The error ratio is ε = 0.076 and 0.120 for Nz = 60 and Nz = 40
respectively. For the small FOV (Nz = 20) the DBPS reconstruction with noisy
data and unknown density failed.

With the examples in figures 4.5 and 4.6, the density c was underestimated by the
DBPS algorithm when the field-of-view was small or when the data were noisy. The
bias is due to the non-linearity of the system of Eq. (4.10,4.11,4.12). The sign of the
bias is determined by the curvature of the solution ĉ = C(g′φ(0), g′′φ(0), p(0, φ−π/2))
to Eq. (4.10,4.11,4.12). In our example the dominant eigenvalues of the Hessian
matrix of the function C are negative for most lines Lφ, leading to the observed
negative bias.
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Figure 4.7: DBPS reconstructions from noise-free data using the algorithm of Section

4.8 with prior knowledge of the density, for the FOV diameter Nz = 20. Left: the recon-

structed star object (FOV superimposed). Right : difference between the reconstruction

and the true object of figure 4.4.

Figure 4.8: DBPS reconstructions from noisy data using the algorithm of Section 4.8

with prior knowledge of the density, for the FOV Nz = 20. Left: the reconstructed star

object (FOV superimposed). Right : difference between the reconstruction and the true

object of figure 4.4.

4.9.2 Problem 2: known density

We reconstructed the same data sets as above, now assuming that the density c is
known beforehand. The knowledge of c significantly improves the stability in the
presence of noise, as expected from the analysis in Section 4.7. Results are only
shown for the smallest FOV (Nz = 20). The DBPS reconstruction from noise-free
data with β = 0 is shown in figure 4.7. The error ratio ε = 0.064 is much smaller
than the ratio 0.233 found when the density is unknown. The DBPS reconstruction
from noisy data with β = 0.05 is shown in figure 4.8, with error ratio ε = 0.145.
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4.10 Conclusion

We have shown that a star-shaped 2D object with uniform but unknown density is
determined by its integrals along all lines intersecting an interior field-of-view. To
the best of our knowledge this uniqueness theorem is new. The uniqueness proof
is based on the relation between the backprojection of the derivative of the data
and the Hilbert transform of the object along a family of central lines. This proof
is constructive and leads to a numerical algorithm, which handles each radial line
independently.

This algorithm was applied to simulated and measured x-ray projections to illus-
trate how the stability of the reconstruction depends on the size of the interior
field-of-view and on the presence of noise. One limitation of this work is that only
a single noisy data set was studied, but this case-study shows a dramatic degra-
dation of the stability as the radius of the interior field-of-view decreases. This
degradation is predicted by the Cramer-Rao lower bound for the variance of the
estimated density and shape of the star-object, but a more systematic study will
be needed to verify and quantify this property. Stability was improved to some
extent by using a two-step algorithm and by filtering the noisy data in the angular
variable. Additional regularization might be achieved, for instance by improving
the calculation of the data derivative in the first step of the algorithm. However an
optimal stability requires a global two-dimensional approach, which avoids separat-
ing the reconstruction into a set of one-dimensional reconstructions along central
lines. This is illustrated in chapter 5 using the Discrete Algebraic Reconstruction
Technique (DART).

The uniqueness result in Section 4.5 is derived and illustrated for a 2D star-shaped
object, but the approach could be extended by noting that the DBP reduces the
reconstruction problem to the inversion of the truncated Hilbert transform along
a family of central lines. This reduction is valid for arbitrary objects and also for
the 3D x-ray transform, and we therefore conjecture that uniqueness might also
hold for uniform objects with more complex shapes. Stability, however, is likely
to worsen with increasing complexity, which will be illustrated in Chapter 5. A
thorough investigation of these generalizations will be the subject of future work.
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Chapter 5

Reconstruction of piecewise

uniform objects from

truncated data

5.1 Introduction

The differential backprojection method for truncated data proposed in Chapter 4
transforms the 2D inverse problem into a set of 1D problems along radial lines Lφ.
This separation is numerically efficient but does not optimally exploit the data,
especially in the presence of noise. This limitation is only partially overcome by
the two-step approach in the DBPS algorithm of Section 4.8.

Algorithms that treat the 2D inverse problem as a whole, instead of transform-
ing it into a set of 1D lines are expected to yield a better stability in the presence
of noise. An example of such a method that exploits the 2D information is the
iterative discrete algebraic reconstruction technique (DART) [1]. In each iteration,
DART thresholds the image and then updates solely the pixels at the boundaries
of the piecewise constant areas. This approach requires the attenuation values or
the ‘densities’ to be known in advance.
Alternatively, some approaches encourage rather than strictly enforce piecewise
uniformity. This can be done using penalized maximum-likelihood algorithms for
image reconstruction, with various types of penalties that favor sparse solutions
in some appropriate basis. For instance Candes et al [2], Sidky et al [3] and Her-
man and Davidi [4] have shown that the total-variation penalty allows accurate
reconstructions of fairly complex piecewise objects from a very small number of
projections.
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5.2. THE DISCRETE ALGEBRAIC RECONSTRUCTION TECHNIQUE

(DART)

In the first part of this chapter, the stability of the reconstruction from star-shaped
objects using such an approach that handles the whole dataset simultaneously, is
experimentally investigated. The experiments are performed using the DART re-
construction technique, and it is assumed that the object density is known before-
hand.

In Chapter 4, it was suggested that the uniqueness result for binary star shaped
objects from interior data can be generalized to more complex objects. The DBPS
method, proposed in Chapter 4, cannot be applied for such objects since it explicitly
assumes star-shaped object functions. The 2D approaches described above, how-
ever, do not make any specific assumption about the shape of the reconstructed
object, although the obtained accuracy is expected to depend on the type of object
and the noise. The second part of this chapter aims to experimentally indicate the
extent of object complexity and number of densities for which the inverse truncated
Radon transform from truncated data can be recovered in practice. The study is
performed using DART as reconstruction method, considering the densities as prior
knowledge.

This chapter is organized as follows. In Section 5.2, the DART algorithm is de-
scribed and discussed. In Section 5.3, DART is applied and compared with the
proposed DBPS method for star-shaped phantom data and real X-ray data of a
diamond. Section 5.4 contains experiments in which DART is applied for non-
star shaped objects containing one or multiple densities, and discusses the results.
Finally, conclusions are drawn in Section 5.5.

5.2 The discrete algebraic reconstruction technique

(DART)

DART is an iterative algebraic reconstruction method for the reconstruction of
piecewise uniform objects. It was originally designed for the reconstruction of
piecewise uniform objects from data consisting of a very small number of pro-
jections and/or a limited angular projection range [1], and has been successfully
applied for several reconstruction problems, for example in material science [5–7].
In this chapter, we investigate the new application of DART for the reconstruction
of piecewise uniform objects from interior data.
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5.2.1 Approach

Consider the problem of reconstructing a binary 2D object function f(x) such as the
phantom in Fig. 5.1(a) from a very small number (six) of projections. This corre-
sponds to solving a system of linear equations with a large number of unknowns (the
pixel values) and an insufficient number of equations. Since the solution from this
set of linear equations is not uniquely determined, SIRT converges to the solution
closest to the initial guess (see Eq. (1.40)), which most likely does not correspond
to the true object function. This SIRT reconstruction is shown in Fig. 5.1(b).
Assume that the density c of the binary object is known beforehand such that
f(x) ∈ {0, c} for all x. An intuitive approach to enforce a piecewise uniform
reconstruction could be the successive application of a SIRT reconstruction alter-
nated with an image thresholding operation, which we call the SIRT-t method.
The SIRT-t method is initialized with a SIRT reconstruction f (1) from the limited

(a) phantom (b) f (0) (c) t(1)

(d) f (1) (e) t(2) (f) t(3)

Figure 5.1: Overview of successive SIRT-t steps for the reconstruction of the binary

phantom in (a) from 6 complete projections.

data. In each iteration n = 1, 2, . . . of the SIRT-t method, the following steps are
executed:
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(DART)

1. The current reconstruction f (n) is segmented using a simple threshold method,
forming the image t(n):

t(n)(x, y) =
{
c ∀(x, y) ∈ Ω : f (n)(x, y) ≥ c

2

0 ∀(x, y) ∈ Ω : f (n)(x, y) < c
2

. (5.1)

2. The thresholded image is used as the input for a new SIRT reconstruction,
yielding an updated image f (n+1)(x, y).

Fig. 5.1 shows successive steps in the SIRT-t method: (b)-(f) denote the func-
tions f (0), t(1), f (1), t(2) and t(3), respectively. Consider the residual error E(t(1))
(Eq. (1.38)) of the thresholded image t(1). If the majority of the pixels in the image
t(1) is assigned the correct value, as is the case in Fig. 5.1(c), this residual error
is typically small. During the subsequent SIRT update, this small residual error
is then redistributed over all pixels in the image domain. Consequently, the pixel
values in the resulting image f (2) (Fig. 5.1(d)) have only slightly changed compared
to the thresholded image t(1) (Fig. 5.1(c)), typically insufficiently to induce a switch
of the assigned density value by the following thresholding operation. Indeed, by
comparing Fig. 5.1 (c), (e) and (f) it can be observed that the thresholded image
remains equal throughout successive iterations, and that iterative alternation be-
tween a SIRT update and a threshold operation is not useful.

(a) (b) (c)

Figure 5.2: Subsequent steps in the DART method. (a) SIRT reconstruction on boundary

pixels using the thresholded SIRT image in Fig. 5.1 (c) as input image; (b) image acquired

after merging image (a) with the non-boundary pixel image, and thresholding. (c) final

image after 30 DART iterations

Instead of redistributing the small residual error of the thresholded image t(n) over
the complete image, the key idea of DART is to redistribute this error only on the
pixels at the boundary of a segment. Using this approach, the number of unknowns
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for the linear system with small number of equations, is reduced. Intuitively, this
means that the residual error is concentrated at the boundary pixels, rather than
being diffused over all pixels (such as in the SIRT-t method). Consequently, the
subsequent thresholded image typically differs at the boundary pixels from the
thresholded image in the previous iteration. In the subsequent DART iteration,
all pixels are re-classified in boundary and non-boundary pixels, and the whole
procedure is repeated again. Fig. 5.2 illustrates one iteration of the DART proce-
dure. Fig. 5.2 (a) depicts the SIRT update of the boundary pixels, using Fig. 5.1
(c) as start image. This updated boundary is then merged with the image of the
non-boundary pixels, and thresholded afterwards, yielding the image Fig. 5.2 (b).
After 30 iterations, the reconstructed image, shown in Fig. 5.2 (c), is identical to
the true object.

Note that if the estimation of the non-boundary pixels is incorrect, which is often
the case (also in the shown example), the system of linear equations, where only
the boundary pixels are assumed unknown, does not necessarily have a solution,
and convergence of the algorithm is not guaranteed. Nevertheless, the heuristic
algorithm proves to be very valuable in practical situations.

5.2.2 Method

We describe our implementation of DART. For other variants of this algorithm and
more details on the underlying algorithmic ideas we refer to [1].

A high level flow chart of DART is shown in figure 5.3. DART relies on an underly-
ing reconstruction algorithm for continuous tomography, which is repeatedly used
as a subroutine. In our implementation, SIRT (see e.g. section 5.3 in [8]) is used
as the continuous method. For simplicity’s sake, the DART method is described
below for binary objects, but it is trivially extensible to general piecewise uniform
objects containing multiple densities.

First, an initial reconstruction f (1) is computed using SIRT. Subsequently, several
DART-iterations are performed. In each iteration n = 1, 2, . . ., following steps are
executed:

1. The current reconstruction f (n) is segmented using a simple threshold method,
forming the image t(n):

t(n)(x, y) =
{
c ∀(x, y) ∈ Ω : f (n)(x, y) ≥ c

2

0 ∀(x, y) ∈ Ω : f (n)(x, y) < c
2

. (5.2)

2. The imaging region Ω is divided into two disjoint subregions: boundary and
non-boundary pixels. Let M(x, y) denote the set of pixels that are completely



98
5.2. THE DISCRETE ALGEBRAIC RECONSTRUCTION TECHNIQUE

(DART)

Compute an initial 
SIRT reconstruction

Segment the 
reconstruction

Identify non-
boundary pixels N

Identify boundary 
pixels B

Apply to the pixels in B new 
SIRT iterations while keeping 

the pixels in N fixed

Stop 
criterion 

met ?

Final 
reconstruction

Smooth pixels in B

Threshold image

Figure 5.3: Flow chart of the DART algorithm.

contained within a circle of radius rn centered at (x, y) ∈ Ω 1. The set B(n)
1

of boundary pixels is defined as the set of all pixels (x, y) such that the
segmented image t(n) is not constant within the neighbourhood M(x, y) of
(x, y):

B
(n)
1 =

{
(x, y) ∈ Ω | ∃(x′, y′) ∈M(x, y) : t(n)(x′, y′) 6= t(n)(x, y)

}
. (5.3)

To increase robustness for noise data inconsistencies, and to ensure that po-
tential holes in the object function are found, the set of boundary pixels is
extended by the set B(n)

2 which consists of a certain percentage ς of randomly
selected pixels in the area Ω\B(n)

1 . The eventual set of boundary pixels B(n)

is then defined as B(n) = B
(n)
1

⋃
B

(n)
2 . The set of non-boundary pixels is

defined as N (n) = Ω\B(n).

3. The boundary and non-boundary pixels are now processed separately:

• The non-boundary pixels are kept fixed at their thresholded values,
yielding an image t(n)

N(n)(x, y) = t(n)(x, y) 1N(n)(x, y), where 1N(n)(x, y)
denotes the indicator function of N (n).

• Exclusively on the set of boundary pixels, several SIRT iterations are
performed. To this end, the 2D Radon transform of t(n)

N(n)(x, y) is calcu-
lated and subtracted from the projection data p which yields modified
projection data p(n)(s, θ) = p(s, θ)− (Rt(n)

N(n))(s, θ) for |s| ≤ w, 0 ≤ θ <

π. The boundary pixel values are then updated by applying SIRT to
the data p(n), yielding an image h(n)

B(n) with support in the region B(n).

The image h(n)

B(n) is merged with the image t(n)

N(n) , forming the image h(n).

1Typically, this radius is set rn = 3
√

2/2 pixel units such that M(x, y) consists of the eight

neighbouring pixels to pixel (x, y)
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4. As a means of regularization, the image h(n) is blurred using a simple weighted
sum, forming f (n+1):

f (n+1)(x, y) = b h(n)(x, y) + (1− b)
∑

(x′,y′)∈M(x,y)

h(n)(x′, y′)
|M(x, y)|

, (5.4)

with weight factor b such that 0 < b < 1, and with |M(x, y)| the cardinality
of M(x, y). The accuracy is not very dependent on the choice of b. It mainly
affects the smoothness of the boundary. In our work, typically b = 0.7 is
selected.

After T = 1000 DART-iterations, the algorithm terminates and the current recon-
struction f (1001) is thresholded, forming the binary constant reconstruction t(1001).

The importance of an additional random selection of boundary pixels is illustrated
in Fig. 5.4 for the DART reconstruction from 10 projections of a phantom con-
taining small holes. Two DART reconstructions were performed, with ς = 0%
(Fig. 5.4(b)) and ς = 2% (Fig. 5.4 (c)), respectively. The images show that the
small holes, which are not detected if ς = 0%, are recovered if random pixels are
selected. Note that DART ultimately becomes equivalent to the SIRT-t method if
ς = 100%. In this chapter, ς is systematically set at ς = 2%.

(a) phantom (b) ς = 0% (c) ς = 2%

Figure 5.4: DART reconstructions from 10 projections of a phantom containing small

holes.
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5.3 Results for star-shaped objects

5.3.1 Reconstruction from simulated data

We re-use the digital image and the simulated Radon data introduced in Section
4.9. We consider only the case of known density, since this knowledge is required by
the DART algorithm. The accuracy ε of the reconstructions is given by Eq. (4.25).
The truncated data consist of Nz values of z uniformly sampled over [−w,w], with
sampling distance ∆z = 1.0 such that w = Nz/2.

The DART reconstructions from noise-free and noisy data with Nz = 20 are shown
in figures 5.5 and 5.6. The accuracy ε of the DART and DBPS reconstructions
is listed in Table 5.1. Note the considerable improvement compared to the DBPS
algorithm in the presence of noise.

ε DBPS DART
No noise 0.014 0.013
Noise 0.026 0.020

Table 5.1: Comparison of the image error ε for reconstructions using the DBPS and

DART, from noise-free and noisy data.

Figure 5.5: DART reconstruction from noise-free data (see 4.9) of the star-shaped phan-

tom shown in Fig. 4.4, with prior knowledge of the density and a FOV Nz = 20. Left: the

reconstructed star object (FOV superimposed). Right : difference between the reconstruc-

tion and the true object.
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Figure 5.6: DART reconstruction from noisy data (see 4.9) of the star-shaped phantom

shown in Fig. 4.4, with prior knowledge of the density and a FOV Nz = 20. Left: the re-

constructed star object (FOV superimposed). Right : difference between the reconstruction

and the true object.

5.3.2 Application to real X-ray CT data of diamonds

DiamCad (Antwerp, Belgium), a diamond processing company that performs a
detailed study of rough stones, scans rough diamonds to retrieve detailed informa-
tion on their shapes. Recently, DiamCad encountered the problem that one of the
diamonds was too large to be covered by the field of view of the detector, which
resulted in truncated projection data for some of the slices. Since diamonds consist
of only one material (apart from the impurities) and their shape is fairly simple,
the truncated data problem forms a nice application for the proposed uniqueness
theorem and DBPS algorithm.

(a) Slice A (b) Slice B

Figure 5.7: FBP reconstructions from non-truncated X-ray data of a diamond.

A diamond was scanned at 70 kVp in a Scanco µCT 40 (Scanco Medical,
Brüttisellen, Switzerland) with a circular cone beam geometry. The data were
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Figure 5.8: Reconstructions from truncated X-ray data of diamond Slice A with a FOV

diameter of Nz = 70. The columns correspond from left to right to the DBPS recon-

struction with unknown density, and the DBPS and DART reconstructions with known

density. The estimated density in the left reconstruction is ĉ = 0.2048. Upper row: the

reconstructed diamond slice (FOV superimposed). Bottom row: difference between the

reconstruction and our “ground truth” FBP reconstruction image from complete data in

figure 5.7.

ε Slice A Slice B
DBPS without density knowledge 0.198 0.126
DBPS with known c = 0.346 0.057 0.032
DART with known c = 0.346 0.033 0.032

Table 5.2: Error ratio values ε of slices A and B using the DBPS method without known

density, and using the DBPS and DART method with known c = 0.346.

recorded at 256 angles in [0, π) using a 1024 × 56 (transaxial× axial) pixel detec-
tor. To cover the full axial length of the object, 500 circular cone beam scans
were performed at equally spaced axial positions. The data were linearized using
the manufacturer’s software to avoid data inconsistencies due to beam hardening.
Afterwards, the data were rebinned to parallel beam, yielding a 1024 × 256 sized
sinogram per slice, and then downsampled to 256× 256 sinograms. For this results
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Figure 5.9: Reconstructions from truncated X-ray data of Slice B with a FOV diameter

of Nz = 70. The columns correspond from left to right to the DBPS reconstruction with

unknown density, and the DBPS and DART reconstructions with known density. The

estimated density in the left reconstruction is ĉ = 0.276. Upper row: the reconstructed

diamond slice (FOV superimposed). Bottom row: difference between the reconstruction

and our “ground truth” FBP reconstruction image from complete data in Fig. 5.7.

section, a star shaped slice A and a nearly star shaped slice B of the diamond
are selected of which the full sinograms are available. The FBP reconstructions of
these slices are shown in figure 5.7. The accuracy of the interior reconstructions is
evaluated with respect to ground truth uniform images obtained by performing the
histogram based segmentation procedure of Otsu [9] of these FBP reconstructions.
This segmentation also yields the density value c = 0.346.

The measured sinograms of slices A and B were artificially truncated so as to
obtain an interior FOV with diameter Nz = 70. Both truncated datasets are re-
constructed using the DBPS method without prior knowledge of the density c, and
using the DBPS and DART methods assuming that the density c is known before-
hand. Figure 5.8 shows the respective reconstructions and their difference images
for diamond slice A. Figure 5.9 shows the corresponding reconstructions for slice
B. The DBPS reconstructions are performed using β = 0.05. The error ratios of
the reconstructions are given in table 5.2 for both slices A and B.
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Similar to the observations for the simulated data, the DBPS reconstruction where
the density c is known outperforms the DBPS reconstruction method with un-
known c for both slices. For slice A, the DART reconstruction with known density
provides the smallest error ratio, while for Slice B, the error ratios of the DBPS
and DART methods with known density are similar.

5.4 Non-star shaped objects

In Section 4.6, it was suggested that uniqueness is still valid for non-star shaped
objects, but the stability will worsen with increasing level of object complexity.
In this section, non-star shaped object functions are reconstructed from truncated
data. As opposed to the proposed DBPS method, which exclusively reconstructs
star-shaped objects, DART does not restrict the class of object shapes on which
it can be applied, though the obtained accuracy is likely to depend on the noise
and the type of object. To enable proper comparison between the various DART
reconstructions, the parameters of DART are kept fixed throughout the whole
section.

5.4.1 Uniform non-star shaped objects

Fig. 5.10 (a) and (b) depict two uniform but non-star shaped phantoms, Phantom
1 and Phantom 2, respectively. The phantoms are defined on a 300 × 300 grid.
Sinograms are simulated using 300 radial and 180 angular samples. Note that this
‘full’ dataset actually already contains an insufficient number of equations to de-
termine a unique solution.

(a) Phantom1 (b) Phantom 2

Figure 5.10: Presentation of two uniform non-star shaped phantoms.
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Nz = 140 Nz = 80 Nz = 60 Nz = 50
ε = 0.0012 ε = 0.0037 ε = 0.0093 ε = 0.2019

Figure 5.11: DART reconstructions from simulated data of Phantom 1, for varying

degrees of truncation. The white circle, imposed on each image, represents the FOV; Nz
denotes the diameter of the FOV.

Truncation is simulated by using exclusively Nz radial samples at the center of each
projection. The upper row in Fig. 5.11 and Fig. 5.12 depicts DART reconstructions
from truncated data for varying FOV’s, for Phantom 1 and Phantom 2, respec-
tively. The second row in Fig. 5.12 and Fig. 5.11 represents the difference images
of the DART reconstructions with the ground truth phantom images (Fig. 5.10).
Fig. 5.11 and Fig. 5.12 illustrate that accurate reconstructions of uniform non-star
objects can be obtained from interior data.

To illustrate the robustness for noise, the previous experiments are repeated
using truncated noisy data as the input for DART. These data were obtained by
applying Poisson noise (assuming a total of 50000 photon counts) on the intensity
image that corresponds to the attenuation sinogram. This represents a significant
amount of noise, as demonstrated in Fig. 5.13, where the FBP reconstructions from
the noisy data are shown for Phantom 1 and Phantom 2, respectively.

Fig. 5.14 depicts graphs representing the DART reconstruction error ε as a func-
tion of the FOV radius w for Phantom 1 and Phantom 2, for noise-free and noisy
data, respectively. The error curves appear to behave very similar for noise-free
and noisy data. Apparently, the considered noise level, which is of the same order
of magnitude as the noise encountered in X-ray CT images, does not significantly
affect the accuracy of the reconstruction image, although the image accuracy will
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Nz = 140 Nz = 80 Nz = 60 Nz = 50
ε = 0.0018 ε = 0.0075 ε = 0.0274 ε = 0.0191

Figure 5.12: DART reconstructions from simulated data of Phantom 2, for varying

degrees of truncation. The white circle, imposed on each image, represents the FOV; Nz
denotes the diameter of the FOV.

Figure 5.13: FBP reconstructions of Phantom 1 and Phantom 2 from a non-truncated

dataset to which Poisson noise was added.

inevitably decrease above a certain level of noise.

5.4.2 Objects consisting of two materials

In this subsection, DART reconstructions from truncated data of objects contain-
ing two densities are discussed.

The error ε as defined in Eq. (4.25) cannot directly be applied for objects with
multiple densities. Say d(x, y) = f̂(x, y)− f(x, y), with f̂ the DART estimation of
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Figure 5.14: Graphs representing the image pixel error of the DART reconstruction with

respect to the FOV radius for both phantoms, for noise-free (left) and noisy data (right).

Phantom 3 Phantom 4 Phantom 5

Figure 5.15: Two-density phantoms with densities t = 0, 0.5, 1 (t = 0 corresponds to the

background).

the object function. The accuracy for the reconstruction of objects consisting of
multiple known densities is quantified as:

εd =
Area {supp(d)}
Area {supp(f)}

, (5.5)

where supp(f) denotes the support of object function f . Note that the definition
of εd becomes identical to the definition of ε in Eq. (4.25) when considering uniform
objects with known density.

Three phantoms are considered: Phantom 3, Phantom 4 and Phantom 5, shown
in Fig. 5.15. The DART reconstructions of these three phantoms for varying lev-
els of truncation are shown in Fig. 5.16 for Phantom 3, Fig. 5.17 for Phantom 4,
and in Fig. 5.18 for Phantom 5. For Phantoms 3 and 4, it can be seen that the
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Nz = 140 Nz = 120 Nz = 100 Nz = 80
εd = 0.0580 εd = 0.1344 εd = 0.1778 εd = 0.3749

Figure 5.16: DART reconstructions from simulated data of Phantom 3, for varying

degrees of truncation. The white circle, imposed on each image, represents the FOV; Nz
denotes the diameter of the FOV.

reconstruction quality quickly degrades for a decreasing FOV diameter. Clearly,
the presence of the second material has a large impact on the image accuracy. On
the other hand, although the difference with the one-material is still significant,
the reconstruction quality seems reasonably well preserved for Phantom 5.

Below, an intuitive explanation for this different behaviour is given.
Consider an object pixel (x, y) that is classified as a boundary pixel in iteration
n such that (x, y) ∈ B(n). Assume that this pixel has true value f(x, y) = 1,
but was assigned value f (n−1)(x, y) = 0 in the previous iteration. The next step
in the DART method is a SIRT reconstruction that is performed exclusively on
the set of boundary pixels. Suppose that the image is binary, with two densities
(c0, c1) = (0, 1). Hence, it is sufficient that the value of the SIRT reconstruction
h(n)(x, y) is larger than 0.5 to obtain the correct thresholded value t(n)(x, y) = 1.
However, suppose that an additional intermediate density c1 = 0.5 is present in
the object slice. In that case, it is necessary that h(n)(x, y) > 0.75 to obtain the
correct value after thresholding. Recall that SIRT, when the system of equations
is underdetermined, finds the solution which is the closest to the initial guess (see
Eq. (1.40)). The norm in Eq. (1.40) favours smooth solutions with a large number
of pixels having small values. Hence, in case of an additional intermediate density,
more stringent conditions (and thus more data) are required. This problem is less
prominent if the additional density is non-intermediate. In Phantoms 3 and 4, the
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additional density is intermediate for the majority of the pixels. The opposite is
valid for Phantom 5, which explains the difference in image accuracy.

The experiments were repeated for noisy data of the 2-density phantoms. Pois-

Nz = 140 Nz = 120 Nz = 100 Nz = 80
εd = 0.1689 εd = 0.2837 εd = 0.3395 εd = 0.3656

Figure 5.17: DART reconstructions from simulated data of Phantom 4, for varying

degrees of truncation. The white circle, imposed on each image, represents the FOV; Nz
denotes the diameter of the FOV.

son noise corresponding to a total number of 5× 104 photon counts was added to
the data. Fig. 5.19 plots the relation of the image pixel error ε versus the FOV
radius for the three phantoms. The left graph represents reconstructions from the
clean sinogram data, while the right image corresponds to the noisy data. These
graphs confirm the observations in the previous section, namely that the DART
reconstructions are not significantly affected by the noise level that is considered
here, although the image accuracy will inevitably decrease if a certain noise level
is exceeded.

5.5 Conclusion

This chapter concerns the problem of reconstructing general piecewise uniform ob-
ject functions from truncated data. In the first part of the chapter, we suggested
that a reconstruction method that handles the whole truncated data set simultane-
ously, is preferred above approaches that subdivide a 2D reconstruction in a set of
1D problems as in the DBPS method for star-shaped objects proposed in Chapter
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Nz = 140 Nz = 80 Nz = 60 Nz = 50
εd = 0.0031 εd = 0.0182 εd = 0.5662 εd = 0.6120

Figure 5.18: DART reconstructions from simulated data of Phantom 5, for varying

degrees of truncation. The white circle, imposed on each image, represents the FOV; Nz
denotes the diameter of the FOV.
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Figure 5.19: Graphs representing the image pixel error of the DART reconstruction with

respect to the FOV radius for both phantoms, for noise-free(left) and noisy data (right).

4. As an illustration, the discrete algebraic reconstruction method DART was im-
plemented, and the experiments for the star-shaped phantom from noise-free and
noisy data from Chapter 4 were repeated using DART. The results show that the
stability improves for noisy data if DART is used. Moreover, it was demonstrated
for real X-ray data of a diamond that both with the DBPS and the DART method,
accurate reconstructions were obtained from significantly truncated sinograms.

The second part of this chapter aims at accurate reconstruction of objects with
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more complex shapes and multiple densities. In Chapter 4 it was suggested that
the uniqueness result for binary star shaped objects from interior data could be
generalized to more complex objects. Since the DBPS method that was proposed in
Chapter 4 explicitly assumes star-shaped object functions, it cannot be applied for
the more complex objects. However, several approaches that treat the 2D inverse
problem as a whole, such as DART, do not make any specific assumptions on the
shape of the reconstructed object. Experiments were performed using the DART
reconstruction technique, aiming at indicating the extent of object complexity for
which the inverse problem from truncated data can be recovered in practice. The
experiments suggest that also binary objects with relatively complex shapes can
still stably be reconstructed from interior data. However, for objects consisting of
multiple materials, the stability of the DART reconstruction from interior data is
reduced drastically. An interesting direction for future work is to repeat these ex-
periments for other iterative approaches for the reconstruction of piecewise uniform
objects from limited data, such as `1-minimization [2, 3]. In particular, with these
methods, the stability can be investigated for the case the densities are unknown
beforehand.
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Chapter 6

Beam hardening artifact

reduction for piecewise

uniform objects

6.1 Introduction

The algorithms that were used in Chapters 4 and 5 for reconstruction of piecewise
uniform objects require that the object has one (or few) uniform densities. This
assumption is restrictive because of confounding physical effects such as beam-
hardening. This motivates the study in this chapter, in which a new method is
presented for the reduction of beam hardening artifacts for piecewise uniform ob-
jects. In Chapter 7, the proposed beam hardening method will be applied for
limited data problems such as truncation.

This chapter is organized as follows. Section 6.2 consists of a short literature
overview on beam hardening reduction methods, and puts the proposed method
into its context. A detailed description of the proposed iterative correction pro-
cedure is presented in Section 6.3. Section 6.4 contains results after applying the
beam hardening correction method on real X-ray CT data of 2- and 3-material
hardware phantoms. This section also includes a comparison with the method of
Krumm et al. [1], which was simultaneously and independently developed, and
plays a similar approach. In Section 6.6, the results are discussed, and conclusions
are drawn.

115
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6.2 Context

When a monochromatic X-ray beam traverses a homogeneous object, the attenua-
tion is linearly related to the thickness of the object along that ray (Beer’s law). In
general, however, CT X-ray sources are polychromatic. The linear relation does not
hold for polychromatic beams, since lower energy photons are more easily absorbed
than higher energy photons, which causes the beam to ‘harden’ as it propagates
through the object. This non-linear effect is referred to as beam-hardening (BH). If
the energy dependence of the absorption is not taken into account, reconstructions
are contaminated by cupping and streak artifacts [2]. Beam hardening correction
is important in both medical and industrial CT applications to improve the visual
quality of the images and to obtain more accurate segmentations, which is neces-
sary for quantitative image analysis.

Beam hardening artifacts have been a subject of research for decades, resulting in
a broad variety of artifact reduction strategies. Beam hardening correction meth-
ods can roughly be subdivided into four classes : hardware filtering, dual energy,
statistical polychromatic reconstruction, and linearization.

• Hardware filtering is a common method to narrow the broad source spectrum.
Thin metal plates that are placed between the source and the object absorb
the lower energy photons of the beam before the beam enters the object.
Although hardware filters reduce the beam hardening artifacts in the resulting
image, the lower photon count also results in a decrease of the signal to noise
ratio.

• In dual energy methods [2–4], the energy-dependence of the attenuation coef-
ficients is described as a linear combination of two basis functions represent-
ing the separate contributions of the photo-electric effect and the scattering.
The coefficients of the two basis functions are needed for each image pixel.
Therefore, intensity measures from two scans at different source voltages are
required. After determining the coefficients, reconstructions of the linear at-
tenuation coefficient can be obtained at any energy within the diagnostic
range. The main drawback of the method is that it requires CT-scans at two
different, preferably non-overlapping [4], energy spectra. Another drawback
is that the spectra are often unknown and therefore accurate calibration ex-
periments are necessary to avoid artifacts in the reconstructions. For these
reasons, dual energy is limited to specific applications e.g. for measuring the
bone mineral density in the lumbar spine [5].

• Statistical reconstruction of polychromatic data is an approach explored by
several authors [6–8]. The statistical beam hardening reduction methods ba-
sically incorporate the polychromatic nature of the beam in a maximum likeli-
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hood expectation maximization (ML-EM) algorithm, yielding reconstruction
images with significantly reduced beam hardening artifacts. This approach
assumes that the object consists of N known base substances, and that the
energy dependence of the attenuation coefficient for each pixel can be de-
scribed as a linear combination of the known energy dependencies of the
base substances. Statistical methods are generally very flexible with respect
to various geometries, prior knowledge, noise statistics, etc. However, such
methods are computationally very intensive.

• Linearization methods, which are used standardly for beam hardening sup-
pression, aim at transforming the measured polychromatic attenuation data
into monochromatic attenuation data. For homogeneous objects, the beam
hardening curve, describing the attenuation-thickness relation of the mate-
rial, is acquired from a calibration scan or by estimating for each sinogram
pixel the corresponding object thickness based on a preliminary reconstruc-
tion. In a next step, a parametric model (e.g., polynomial, bimodal energy
[9]) is fitted to the beam hardening curve. Using this model, the measured
attenuation values can then be corrected for beam hardening.
For objects containing more than one material, linearization is performed iter-
atively using a so called iterative post reconstruction (IPR) method [2, 10–17].
In IPR methods, a preliminary reconstruction is performed. A segmentation
of this image then allows to determine the intersection length of each mate-
rial along each ray. Given these material thicknesses, a poly- and monochro-
matic sinogram can be calculated, and the difference between these simulated
sinograms is then used as an additive correction to the measured sinogram.
Finally, a new image is reconstructed from the corrected sinogram. This pro-
cedure is performed iteratively, resulting in an improved segmentation and
consequently in improved beam hardening correction. Similarly to the statis-
tical methods, the linearization techniques assume that the object consists of
a known number of materials with known energy dependence of the attenu-
ation coefficients. Some methods require uniform materials (e.g. [2, 12, 14]),
others allow for mixtures of these base materials (e.g. [15–17]).

An important drawback of the statistical and linearization methods is the large
amount of prior information that is required, which often consists of the knowledge
of the source spectrum and the material specific energy-dependent attenuation co-
efficients. In many industrial and non-standard medical applications, the exact
material composition is unknown, hence, the required prior knowledge is not avail-
able.

Recently, several linearization methods were developed that do not require prior
knowledge such as the spectrum and the attenuation coefficients of the materials.
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These methods only require the number of materials N to be known and assume
that the object consists of uniform materials. The methods of Van de Casteele
et al. [18], Gao et al. [19] and Mou et al. [20] offer nice results but have some
limitations. The first two methods are restricted to a very small class of objects,
while the third method is restricted to complete data and it uses a cost function
based on adapted Helgason-Ludwig consistency conditions, which are specific for
the used fan beam geometry.

In this chapter, an alternative IPR method is proposed that does not require prior
spectrum or material knowledge. By using a physical model with a small number
of parameters, the polychromatic sinogram is simulated. The source spectrum is
parameterized by discretizing the energy range using a small number of energy
bins. The unknown parameters, representing the fractional source spectrum inten-
sity for each energy bin and the corresponding attenuation values, are found by
minimizing the difference between the measured and the simulated polychromatic
sinogram.

6.3 Method

6.3.1 Notations and concepts

Assume a piecewise uniform object that consists of N materials with attenuation
coefficients µn(E) that depend on the energy E. Consider a ray path L(θ, s),
which is the straight line defined by the angle θ and the distance s to the center
of rotation. To enhance readability, we omit (θ, s) in the equations below. When
a monochromatic X-ray beam with intensity I0 and energy E0 passes through
uniform segments along a ray path L, the monochromatic exit intensity for that
specific ray is expressed by the Beer-Lambert law as

IM (L) = I0e
−
∑N
n=1 µn(E0)tn(L), (6.1)

where tn(L) denotes the intersection length between path L and material n. The
monochromatic attenuation AM is then defined as the logarithm of the ratio of the
input and output intensities, and behaves linearly with respect to the traversed
thickness:

AM (L) =
N∑
n=1

µn(E0)tn(L). (6.2)
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Note that AM (L) is the desired quantity used by analytic reconstruction algorithms
such as Filtered Back Projection (FBP).
In practice, the emitted X-ray photons have different energies E, where E ∈
[0, Emax] where Emax denotes the maximal energy of the photons emitted by the
source. The measured intensity of such a polychromatic beam along a path L

that traversed a piecewise uniform object can then be expressed as the sum of the
monochromatic contributions for each energy E:

Imeas
P (L) =

∫ Emax

0

I0(E)e−
∑N
n=1 µn(E)tn(L)dE, (6.3)

where I0(E) represents the intensity of the emitted source spectrum. The poly-
chromatic attenuation AP (L) along a path L is given by

Ameas
P (L) = log

(
I0

Imeas
P (L)

)
, (6.4)

with I0 the total incident beam intensity I0 =
∫ Emax

0
I0(E)dE.

6.3.2 Linearization of the sinogram

The beam hardening problem concerns the estimation of the monochromatic atten-
uation AM (L) from the measured polychromatic sinogram Ameas

P (L). We construct
a correction formula by noting that the required amount of correction is given by
the difference between AM (L) and AP (L). Hence, a corrected sinogram Acor

M (L) is
obtained using

Acor
M (L) = Ameas

P (L) + (Asim
M (L)−Asim

P (L)), (6.5)

where Asim
M (L) and Asim

P (L) denote a simulated mono- and polychromatic sino-
gram, respectively. These mono- and polychromatic sinograms can be simulated
using Eq. (6.2) and Eq. (6.4), given an estimate of tn(L) and provided that I0(E)
and µn(E) are known a priori. In IPR methods, the path lengths tn(L) are usually
estimated based on a segmentation of the preliminary reconstruction image that
is obtained from the uncorrected sinogram. Note that, in case of a poor segmen-
tation image and consequently a poor estimation of tn(L), the corrected sinogram
Acor
M (L) in Eq. (6.5) is not completely linearized. However, the the hope is that the

corrected sinogram will yield an improved reconstruction image and segmentation.
Hence, an improved estimate of tn(L) can be used for a new update of the corrected
sinogram Acor

M (L).

In this chapter, the material composition µn(E) and the source spectrum I0(E)
are considered to be unknown, which implies that Eq. (6.2) and Eq. (6.4) cannot be
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used directly to determine the correction term in Eq. (6.5). We model the X-ray
energy spectrum as a discrete set of J energy bins with corresponding intensities
{Ij}. As will be seen below, the corresponding energies {Ej} need not to be spec-
ified. Using this model, the output polychromatic intensity Isim

P for a path L is
given by

Isim
P (L) =

J∑
j=1

Ije
−
∑N
n=1 µn,jtn(L), (6.6)

with unknown attenuation coefficients µn,j = µn(Ej). The corresponding poly-
chromatic output attenuation Asim

P is

Asim
P (L) = − log

 J∑
j=1

IFj e
−
∑N
n=1 µn,jtn(L)

 , (6.7)

where IFj = Ij/I0 is the fraction of the total spectrum intensity corresponding to
the jth energy bin, with

∑
j I

F
j = 1. Given an estimate of the lengths t = {tn} for

each path L, and given the measured intensities Imeas
P (L), the unknown parameters

IF = {IFj } and µ = {µn,j} can be estimated by minimizing the following cost
function:

Φ(µ, IF , t) =
∑
L(s,θ)

log
(
Imeas
P (L)
I0

)
− log

( J∑
j=1

IFj e
−
∑N
n=1 µn,jtn(L)

)2

. (6.8)

The number of parameters K to be estimated is K = (N + 1)× J − 1. In our ex-
periments, we model the polychromatic behavior of the attenuation data Asim

P (L)
using J = 3 energy bins. We observed that a larger number of energy bins does
not significantly improve the fit.

The monochromatic linear attenuation Asim
M (L) can be written as

Asim
M (L) =

N∑
n=1

µntn(L), (6.9)

where {µn} is a set of reference attenuation coefficients which can be chosen, for
instance, using an arbitrary weighting of the attenuation coefficients µn,j . We
expect that the robustness of the method is optimized if the reference attenuation
coefficients µ = {µn} are selected by minimizing the magnitude of the correction
term in Eq. (6.5), i.e. by minimizing the following quadratic functional with respect
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to µ:

Ψ(µ, t) =
∑
L(s,θ)

(
Asim
M (L)−Asim

P (L)
)2

=
∑
L(s,θ)

 N∑
n=1

µntn(L) + log

 J∑
j=1

IFj e
−
∑N
n=1 µn,jtn(L)

2

. (6.10)

To solve this minimization problem, define a matrix B with elements

bn,n′ =
∑
L(s,θ)

tn(L)tn′(L) n, n′ = 1, ..., N, (6.11)

and a vector v as

vn =
∑
L(s,θ)

tn(L) log
( J∑
j=1

IFj e
−
∑N
n=1 µn,jtn(L)

)
n = 1, ..., N. (6.12)

The minimum of the functional in Eq. (6.10) is then given by

µ = B+v, (6.13)

where B+ denotes the Moore-Penrose generalized inverse of matrix B.
Characteristic to this method, shared with the method of Krumm et al.,

is that the optimized reference attenuation coefficients do not provide accurate
information on the Hounsfield numbers, which is the price to pay if I0(E) and
µn(E) are not known a priori.

6.3.3 Iterative beam hardening correction

The proposed iterative beam hardening correction (IBHC) method has a simi-
lar outline as a standard postreconstruction method. An overview is depicted in
Fig. 6.1. In each iteration w = 1, 2, . . ., the following steps are executed:

(i) Using FBP, reconstruct the image from the sinogram Acor,w−1
M (L), where

Acor,0
M (L) is given by the measured sinogram.

(ii) Segment the reconstruction. In our implementation, the simple histogram
based thresholding method of Otsu [21] was used.

(ii) Given this segmented image, estimate thickness sinogram twn (L) for each ma-
terial by forward projecting the indicator function of the corresponding ma-
terial area.
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(iv) Estimate the unknown parameters µw and IF,w by minimizing the cost func-
tion in Eq. (6.8):

(µw, IF,w) = arg min
(µ,IF )

Φ(µ, IF , tw), (6.14)

while imposing the extra constraint that the attenuation values decrease for
increasing energy Ej . This constraint is justified by the observation that the
attenuation coefficient decreases with increasing energy for most materials in
the typical experimental energy range.
We handle this non-linear optimization problem using a gradient based opti-
mization algorithm. The cost function Φ(µ, IF , tw) is non convex and there is
no guarantee that the solution to this optimization problem is unique. How-
ever, in our experiments we did not encounter convergence problems, and the
optima found in successive IBHC iterations gradually resulted in an improved
reconstruction quality.

(v) Simulate the polychromatic attenuation sinogram using Eq. (6.7).

(vi) Simulate the monochromatic attenuation sinogram using Eq. (6.9). The ref-
erence attenuation coefficients µw are determined by calculating the least
squares solution (Eq. (6.13)) of the cost function in Eq. (6.10).

(vii) Calculate the updated sinogram Acor,w(L) by adding the difference between
the simulated mono- and polychromatic sinogram to the measured data, as
formulated in Eq. (6.5).

Iterating this loop results in an improved estimate of the thickness sinograms and
the corresponding BH correction.

We define the polychromatic model error εw in iteration w as the minimum of
the cost function Φ(µw, IF,w) in Eq. (6.8) with respect to the beam hardening
parameters

εw = min
µw,IF,w

(
Φ(µw, IF,w)

)
. (6.15)

The algorithm, described by steps (i) to (vii) is highly non-linear and there is no
guarantee that it converges. However, the convergence of the algorithm can be
monitored by following the value of εw. We observe a decreasing trend for εw, and
we stop the iterations when

εw + εw−1

εw−2 + εw−3
> 0.99, (6.16)

where the averaging between pairs of successive iterations aims at improving the
robustness to the oscillations that often occur.
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Figure 6.1: Flowchart of the proposed beam hardening correction method.

6.3.4 Accelerated IBHC method

Several papers in the literature [1, 2, 10–14] present results for mild beam hard-
ening problems, and state that, although the post reconstruction approach is it-
erative, the number of iterations is very small in practice. However, in practical
applications, severe streaks often hinder proper segmentation and therefore the
linearization procedure requires many iterations. In Section 6.4, examples of chal-
lenging beam hardening artifacts are presented for which the number of iterations
that is required to meet condition (6.16), exceeded 30. Performing a large number
of reconstructions on a complete 3D data set is not desirable. We address this
problem by performing a preliminary fast iterative beam hardening correction on
a downsampled sinogram and image grid. In addition, we found that the number
of iterations can be reduced by smoothing the reconstructed image prior to the
segmentation, in each iteration.
In practice, we use the following automated algorithm, which we call the accelerated
IBHC (AIBHC) method.

(1) Downsample the measured sinogram. Perform IBHC iterations for the down-
sampled sinogram, until condition (6.16) is met. In each iteration, smooth
the reconstructed image using a Gaussian smoothing filter, preceding the
segmentation.

(2) Use the resulting sinogram of step (1) to initialize a new series of IBHC
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iterations without Gaussian smoothing, until condition (6.16) is met.

(3) Upsample the corrected sinogram resulting from step (2) to the size of the
original measured sinogram using bilinear interpolation. Finalize the algo-
rithm by performing two full-resolution iterations.

6.4 Experiments and results

6.4.1 Quality criterion

In Section 6.4, reconstructions with and without beam hardening correction are
shown. One way to compare the quality of two reconstructed images is visual
observation, but preferably, these observations are supported by a quantitative
measure. For beam hardening correction methods, the restored uniformity in the
corrected images can be quantified by measuring the variance in each material area.
Define the neighborhood Nm(x0, y0) as the set of pixels within a radius m from
pixel (x0, y0):

Nm(x0, y0) = {(x, y)|(x− x0)2 + (y − y0)2 < m2}, (6.17)

and define Sn as the set of pixels that belong to material n. The objects used in
this chapter are known, which allows us to obtain the ground truth sets Sn.
Consider Ωn ⊂ Sn to be the set of pixels (x, y) in Sn that are not in the neighbor-
hood of the material boundary:

Ωn = {(x, y)|Nm(x, y) ⊂ Sn}. (6.18)

The attenuation uniformity of the material classes is now determined by calculating
the variance σ2

n of the attenuation in each material class separately:

σ2
n =

1
|Ωn|

∑
(x,y)∈Ωn

(µ(x, y)− 〈µn〉)2
, (6.19)

where 〈µn〉 denotes the mean attenuation value for the set Ωn. Since the images
have varying noise properties, the variance measures are performed on smoothed
reconstruction images, to make sure that the variance mainly reflects slow varying
non-uniformities instead of noise. A uniform circular smoothing kernel was used,
with radius r. For noisy images (Barbapapa and Bean phantom), the parameters
are set at r = 10 and m = 12, which is large enough to avoid contributions of the
boundaries to the variance measures. For the low-noise images of Section 6.5, we
set r = 1 and m = 2.
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6.4.2 Beam hardening correction

In this subsection, beam hardening problems are considered in which the prelimi-
nary reconstruction yields a poor segmentation and therefore a poor estimate of the
material thicknesses tn. For our experiments, X-ray data were acquired at 60kV
using a SkyScan 1172 µCT scanner, which has a circular cone beam geometry.
Hardware filtering and the software beam hardening correction option are turned
off. Our implementation uses a 2D parallel back- and forward projector. Hence,
we selected only the fan beam data for the central slice, and rebinned it to a paral-
lel sinogram. The parallel beam sinogram contains 300 equally spaced views with
angular range [0, π), and 1000 radial samples. The images were reconstructed on
a 1000 × 1000 grid. The results are shown for two phantoms: the Barbapapa and
the Bean phantom, which are depicted in Figures (6.2a) and (6.2b), respectively.
The Barbapapa phantom consists of plexiglass and three aluminum cylinders; the
Bean phantom consists of three materials: plexiglass, white spirit, and water.

To correct beam hardening artifacts for the Barbabapa and Bean phantoms,

Aluminium

Air Plexiglass

(a) Barbapapa phantom

Air
Water

Plexiglass

White spirit

(b) Bean phantom

Figure 6.2: Pictures of the used hardware phantoms.

we followed the AIBHC strategy described in Section 6.3.4. The AIBHC method
was initialized using a downsampled sinogram of 250 radial by 150 angular samples,
and a Gaussian filter was selected with a standard deviation of 0.5 pixels. Table
6.1 lists the numbers of iterations that were executed to meet the stop condition
Eq. (6.16) in steps (1) and (2) of the AIBHC method, for the Barbapapa and the
Bean phantom.

The left image in Figure 6.3 shows the FBP reconstruction of the Barba-
papa phantom from the uncorrected measured sinogram. This image suffers from
severe cupping and streak artifacts which hinder an accurate segmentation. As an
illustration, Figure 6.4 (left) depicts the Otsu segmentation of this FBP reconstruc-
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AIBHC Barbapapa Bean
Step (1) 19 28
Step (2) 11 8

Table 6.1: Number of iterations that is executed in steps (1) and (2) of the AIBHC

method to meet condition (6.16).

tion. The center and right images of Figure 6.4 show the gradual improvement of
the segmentation image through successive iterations of the AIBHC method. The
right image in Figure 6.3 represents the reconstruction obtained with the AIBHC
method. In this image, the cupping and streak artifacts are strongly suppressed,
which is confirmed by the variance measures in Table 6.2.

Figure 6.3: Reconstructions from experimental data of the Barbapapa phantom. Left:

FBP reconstruction. Right: AIBHC reconstruction.

Variance (×10−2) Plexiglass Aluminum
No correction 8.9 0.34
AIBHC 0.08 0.014

Table 6.2: Variance per material segment in the reconstructed images for the Barbapapa

phantom.

Figure 6.5 shows the FBP and AIBHC reconstructions of the Bean phantom,
respectively. Similarly, these images and the variance measures that are listed in
Table 6.3, suggest that the AIBHC method is very effective in the reduction of
both cupping and streak artifacts. Although the Bean phantom consists of three
materials, only two material segments were considered during segmentation. The
reason is given by the fact that water and plexiglass have very similar attenuation
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Figure 6.4: Illustration of the the improved segmentation accuracy in successive itera-

tions of the beam hardening correction procedure. Left to right : iteration 1,6,20.

properties. As a result, the Otsu [21] segmentation classifies the two materials into
one segment and a false additional material class would be detected when using 3
material classes. Note that, despite the fact that the water is not segmented as
a separate material, it can still be distinguished from the plexiglass in the final
reconstruction. This is because the final image is reconstructed from the corrected
sinogram defined by Eq. (6.5), rather than directly from the simulated monochro-
matic sinogram Asim

M (L). The latter, being based on only 2 materials, would not
elicit the water region.

Figure 6.5: Reconstructions from real X-ray data of the Bean phantom. Left: FBP

reconstruction. Right: AIBHC reconstruction.

6.5 Comparison with the method of Krumm et al.

Simultaneously and independently, Krumm et al. [1] proposed an alternative IPR
method, in which the poly- and monochromatic sinograms are simulated by fit-
ting respectively a hypersurface and hyperplane to the data. Similar to the IBHC
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Variance (×10−2) Plexiglass White Spirit Water
No correction 3.1 0.53 0.15
AIBHC 0.072 0.12 0.098

Table 6.3: Variance per material segment in the reconstructed images for the Bean phan-

tom.

method, this approach does not require the spectrum or material properties to be
known a priori.

In this section, we compare the IBHC method with the beam hardening correction
method proposed by Krumm et al. [1] These methods differ mainly in the way
the polychromatic sinogram is simulated. In the IBHC method, the polychromatic
sinogram is simulated by evaluating Eq. (6.7) after estimating the unknown coef-
ficients by optimizing the cost function Φ in Eq. (6.8). Krumm et al. obtain the
simulated polychromatic sinogram by fitting a smooth N-dimensional hypersurface
to Ameas

P (t), which represents the measured attenuation as a function of estimated
thicknesses, where t = (t1, ..., tN ). For this fitting step, radial basis functions
are used, which allow to perform smooth fits. The radial basis approximation to
Ameas
P (t) is a function Asim

P (t) defined by

Asim
P (t) =

K∑
k=1

λkϕ
(
|t− tk|

)
, (6.20)

with ϕ the one-dimensional radial basis function [1], and where tk represents a set
of well-chosen thickness coordinates [1]. The unknown coefficients λ = (λ1, ..., λK)
can then be estimated by minimizing the cost function Φ̃(λ) given by

Φ̃(λ) =
∑
L(s,θ)

(
log
(
Imeas
P (t(L))

I0

)
−

K∑
k=1

λkϕ
(
|t(L)− tk|

))2

. (6.21)

This represents a linear optimization problem in which K parameters are to be
optimized. To maintain equal sampling density, the number of parameters K in-
creases exponentially with the number of materials N .

Due to the fact that the method of Krumm et al. is part of a commercial prod-
uct, its implementation details are not available to us. Therefore, we use the same
experimental data as in [1], and compare our IBHC reconstructions with recon-
structions provided by Krumm et al. As an illustration, we show results for real
X-ray CT data of an aluminium cylinder in which five steel pins were drilled. De-
tailed scan settings can be found in [1]. We used the central slice of the cone
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beam scan, and rebinned it to parallel beam. The beam hardening problem in
this dataset is rather mild in the sense that the first segmentation already largely
corresponds to the expected object shape. Hence, both algorithms found the final
reconstruction after 2 iterations.

Figure 6.6 shows the FBP reconstructions without BH correction, with the BH
correction of Krumm et al. and with IBHC correction, respectively. We observe
that both methods largely restore uniformity, which is confirmed by the variance
values in table 6.4. These results illustrate that the IBHC method achieves accurate
reconstructions by using a physical model using only K = 3(N + 1)−1 parameters
(in this case K=8). This is an important advantage compared to the method of
Krumm et al., where the number of parameters exponentially increases with the
number of materials N (for a 2 material object, Krumm et al. used K = 400).

Figure 6.6: Reconstructions of the central slice of the aluminum-steel phantom of Krumm

et al. Left: FBP reconstruction from non-linear data. Center : FBP reconstruction after

beam hardening correction with the method of Krumm et al. Right: FBP reconstruction

after beam hardening correction using IBHC.

Variance (×10−2) Aluminum Steel
No correction 0.85 0.74
method of Krumm et al. 0.040 0.0168
AIBHC 0.0361 0.0182

Table 6.4: Variance measures of the attenuation coefficients in each material segment of

the reconstructions shown in Figure 6.6.

Note that the optimization problem in Krumm’s method is linear, hence it
can be solved by direct matrix inversion, which has a very small computational cost.
The cost function in the IBHC method, on the other hand, is non-quadratic, and
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therefore a gradient based optimization method is used to determine the unknown
parameters, which is computationally more expensive. In our implementation, the
optimization in one iteration of the example in Fig. 6.6, required approximately
6 s. This represents a relatively small contribution to the computation time of a
complete IBHC iteration (involving FBP, thresholding, optimization, etc) which
used 30 s for this example.

6.6 Discussion and Conclusion

In this chapter, an new iterative method is described for beam hardening correction
for objects consisting of multiple, uniform materials. The number of materials is
considered to be known beforehand, but no information on the source spectrum or
on the energy dependent attenuation coefficients of the materials is used. This is
a significant practical advantage compared to most other beam hardening correc-
tion methods, which often require additional calibration experiments. The price to
pay is that the obtained reconstructions do not provide accurate quantitative in-
formation on the Hounsfield numbers. The method, however, successfully reduces
the cupping artifacts caused by the beam polychromaticity in such a way that the
reconstruction of each homogeneous region has a low variance. The method is de-
scribed for a 2D parallel geometry, but it is readily extensible to any acquisition
geometry because the beam hardening correction is performed ray per ray, and the
segmentation step can be applied independently of the 2D or 3D algorithm used
to generate the image. Moreover, the IBHC method can be combined with any
reconstruction algorithm that yields adequate segmentation images, which will be
illustrated in Chapter 7.
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Chapter 7

Beam hardening correction

for insufficient data problems

7.1 Introduction

The IBHC beam hardening correction method, proposed in Chapter 6, essentially
uses a ray per ray approach in the sense that each data point in the sinogram
is corrected independently. In addition, the segmentation step can be applied in-
dependently of the 2D or 3D algorithm that is used to generate the image. An
important advantage of such an approach is that it can trivially be extended for
any scanning geometry, provided that the corresponding ray paths are known.
Moreover, it can be combined with any reconstruction algorithm that yields accu-
rate segmentation images. This chapter aims to demonstrate that such a combined
approach can result in an advantageous synergy between the IBHC method and
the reconstruction algorithm in terms of reconstruction accuracy.

7.2 Beam hardening correction for insufficient data

problems

Recall that FBP reconstruction from incomplete data results in severely degraded
reconstructed images (see Section 2.3). Because segmentation is an essential step
in the IBHC method (and iterative post reconstruction methods in general), beam
hardening correction fails when FBP is used as reconstruction method.
Data insufficiency problems require specific reconstruction methods that exploit
the available data and incorporate certain assumptions about the objects to re-
store uniqueness. For example, algorithms that minimize the total variation such

133
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as the TVmin method of Sidky et al [1], assume that objects are relatively constant
over larger volumes. The Discrete Algebraic Reconstruction Technique (DART)
[2], on the other hand, assumes that the object is piecewise uniform and that the
attenuation values are known. Such algorithms can be very powerful and yield
accurate reconstructions from very small amounts of data. However, like FBP,
these algorithms are based on the assumption that the data are line integrals of
the attenuation coefficients. A violation of this assumption, caused by beam hard-
ening, may have a negative impact on the accuracy of the reconstructions. In this
section, three data insufficiency problems are considered in combination with beam
hardening: a small number of projections, a limited angular range, and truncated
projections. We demonstrate that the IBHC method can be applied on incomplete
data, and that the combined approach of the beam hardening correction procedure
and the specific limited data reconstruction methods (DART and TVmin) results
in an improved object recovery, notwithstanding the poor quality of the prelimi-
nary segmentation.

The experiments are performed on the real X-ray CT data of the Barbapapa phan-
tom (see Section 6.4.2), which is significantly affected by beam hardening. This
dataset, consisting of 300 projections with 1000 radial samples, is downsampled to
a sinogram of 250 radial and 150 angular samples. The corresponding reconstruc-
tions are computed on a 250× 250 grid.

7.2.1 Small number of projections.

Recall from Section 5.1 that methods minimizing the total variation (TV) allow for
accurate reconstructions of fairly complex piecewise uniform objects from a very
small number of projections (see Candes et al [3], Sidky et al [1] and Herman and
Davidi [4]). We implemented the heuristic iterative TVmin algorithm of Sidky
et al. [1], in which each iteration basically consists of a general iterative recon-
struction (e.g. SIRT), followed by a steepest descent TV minimization. This TV
minimization method is incorporated into the IBHC algorithm by replacing the
FBP reconstruction step. A schematic overview of the resulting method, further
referred to as the IBHC-TVmin method, is shown in Fig. 7.1. The grey rectangle
indicates the step that was altered, compared to the IBHC method (Fig. 6.1).

Consider the dataset of the Barbapapa phantom, of which only 10 projections,
uniformly sampled in [0, π), are used. Figure 7.2 depicts several reconstructed im-
ages from this limited dataset. From left to right, the three images represent the
FBP, TVmin and the IBHC-TVmin reconstructions, respectively. The left and
central image yield poor structural information of the phantom in the sense that
in larger areas, the object cannot be distinguished from the background, and the
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Figure 7.1: Flowchart of the IBHC-TVmin method.

air holes are not detected. As opposed to these images, the IBHC-TVmin recon-
struction, obtained after 60 iterations, shows that the object is largely recovered
and beam hardening artifacts are well suppressed.

(a) FBP reconstruction (b) TVmin reconstruction (c) IBHC-TVmin reconstruc-

tion

Figure 7.2: Reconstructions from 10 X-ray projections of the Barbapapa phantom.

7.2.2 The limited angular range problem.

A limited angular range dataset is created by using only the 75 projections in
the angular range θ ∈ [0, π/2). Figure 7.3 shows the resulting reconstructions for



136
7.2. BEAM HARDENING CORRECTION FOR INSUFFICIENT DATA

PROBLEMS

the limited angular range problem. The left and center figures represent the FBP
and TVmin reconstruction, respectively. The right image results from applying
18 IBHC-TVmin iterations. Only one of the two air-holes is recovered. However,
it can be observed that the object boundary is much better defined in the right
image.

(a) FBP reconstruction (b) TVmin reconstruction (c) IBHC-TVmin reconstruc-

tion

Figure 7.3: Reconstructions from limited angle X-ray data of the Barbapapa phantom.

The angular range for this example is θ ∈ [0, π/2).

7.2.3 The truncated projection problem.

Consider a piecewise uniform object, consisting of K materials with unknown den-
sity, and corresponding projections, which are affected by beam hardening and
truncation. For this problem, to maintain the analogy with Chapter 5, the IBHC
method is combined with the iterative DART reconstruction method (see Section
5.2).

The DART method is incorporated in the IBHC method by replacing the FBP
reconstruction and the segmentation step. Preceding each DART reconstruction,
the unknown densities are estimated in two steps:

1. Perform a SIRT reconstruction from the updated truncated sinogram. The
reconstructed image obtained in the previous IBHC iteration serves as the
input image for SIRT. An exception is made for the first iteration, in which
the measured data and a blanc input image are used.

2. Determine K threshold values uk with k = 1, ...,K by applying the method
of Otsu [5] exclusively on the FOV area of the SIRT reconstruction. Let
u0 and uK+1 be the minimum and maximum value in the FOV area of the
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Figure 7.4: Flowchart of the IBHC-DART method.

SIRT image, respectively. The unknown densities (ck) are estimated using
ck = uk+1

2 for k = 1...K.

A schematic overview of the IBHC-DART method is depicted in Fig. 7.4, where the
grey rectangle indicates the steps that are altered with respect to the IBHC method.

Recall that the complete dataset consists of 250 radial samples in each of the
150 projections. Projection truncation of this data is simulated by restricting the
projection data to the Nz = 124 radial samples at the center of each projection.
Fig. 7.5 depicts reconstructions from these truncated projections. The superim-
posed white circle indicates the FOV. From these images, it can be observed that
the FBP reconstruction (Fig. 7.5 (a)) is clearly distorted by truncation and beam
hardening artifacts. The DART reconstruction in Fig. 7.5(b) also offers very little
structural information of the object. The reconstructed image (Fig. 7.5(c)) that is
obtained after 95 iterations of the IBHC-DART method, however, nicely illustrates
the advantageous synergy between the IBHC and the DART method in terms of
image accuracy.

7.3 Conclusion

This chapter focusses on the correction of beam hardening artifacts for limited data
problems, which require specific reconstruction methods that incorporate prior
knowledge about the objects. Since the non-linearity caused by beam harden-
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(a) FBP reconstruction (b) DART reconstruction (c) IBHC-DART reconstruction

Figure 7.5: Reconstructions from truncated non-linear data of the Barbapapa phantom

with with Nz = 124.

ing violates the assumptions made by those algorithms, we proposed to combine
these iterative reconstruction approaches with the IBHC beam hardening correc-
tion method. Three incomplete data problems (few projections, limited angular
range, and truncation) and two specific iterative reconstruction methods (TVmin
[1] and DART [2]) were considered. The results illustrate that beam hardening
artifacts can be significantly reduced, or in some cases be removed completely, by
using a combined iterative approach of a beam hardening reduction and a limited
data reconstruction method.
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Conclusions and original contributions

An important issue faced in computer tomography is the accurate reconstruction
of an object slice from incomplete data. We considered the problem in which the
projections are transaxially truncated, for instance when the detector is too small
to cover the projection image of the object in all projection directions.

Traditional analytical reconstruction methods, such as Filtered Backprojection
(FBP), distribute a sinogram distortion over the complete reconstruction. In case
of truncated projections, the FBP method typically provides an image with ac-
curate structural information in the area inside the Field Of View (FOV) of the
detector, but the grey values are contaminated by a slowly varying bias, which
hinders accurate segmentation and quantitative gray value analysis. In the area
outside the FOV, only severely distorted structural information is available.

In this thesis, we proposed and discussed several methods for the reconstruction of
(parts of) an object from its truncated data, each accounting for a different sort of
prior knowledge about the object.

Part II. In this part, we considered truncation problems for which no prior knowl-
edge about the object is available. In this case it can be expected that no
part of the region surrounding the FOV can be reconstructed accurately,
since each point in the area outside the FOV is not covered by the detector
at least in one projection direction. Therefore, we focussed on the accuracy
enhancement of the reconstruction in the FOV-region only. Note, however,
that even within this region the solution is not always uniquely determined
(cfr. the interior problem).

We proposed a new empirical algorithm that extrapolates the missing data
by exploiting the consistency between projections. This consistent sinogram
extrapolation method (ConSiR) is used as a preprocessing step for the FBP
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reconstruction method. Our experimental results suggest that this algorithm
often yields more accurate reconstructions than the empirical Simple Ex-
trapolation Method (SEM) [1] which is commonly used in literature. Note,
however, that ConSiR is an approximating method for the estimation of the
missing data, which hinders quantitative analysis on the grey values.
Alternatively, for some types of truncation, algorithms were proposed in lit-
erature, that accurately recover specific parts within the FOV from trun-
cated projections. One example is the analytical differentiated backprojec-
tion method (DBP)[2]. In our experiments, we indeed found that the DBP
method provides very accurate reconstructions of certain areas in the FOV.
However, in the remaining parts of the FOV, the empirical methods ConSiR
and SEM seem to outperform the DBP method with respect to image accu-
racy.
We conclude that in case accurate segmentations are aimed at, data extrap-
olation methods such as the ConSiR method are still relevant for truncation
artifact reduction since they can be applied regardless of the type of trunca-
tion.

Part III. Methods such as SEM, ConSiR and DBP focus on the reconstruction of
(parts of) the FOV from truncated projection data, and not on the recovery
of the object region outside the FOV, since this reconstruction problem is
severely underdetermined. In recent years, it was shown for several limited
data problems that such underdeterminacy can be alleviated or solved by
incorporating certain prior knowledge of the object. In many applications,
some assumptions on the object can be made, for instance that an object is
piecewise uniform. In part III, we investigated the possibility of recovering a
complete object from its truncated data in case the object can be assumed
to be piecewise uniform.

Initially, we considered a small subset of piecewise uniform objects: uniform
star-shaped objects. We proved that a star-shaped object with uniform but
unknown density is uniquely determined by its truncated projections, even
in case the truncated data corresponds to an interior problem. To the best
of our knowledge this uniqueness theorem is new. The proof resulted in a
new reconstruction algorithm, the differentiated backprojection method for
star-shaped objects (DBPS), that handles each radial line of the star object
independently. In experiments with simulated data, a severe degradation of
the stability was observed as the radius of the FOV is decreased in the pres-
ence of noise. However, if the density is known beforehand, accurate image
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reconstructions can still be obtained for significantly reduced FOV’s.
Optimal stability, however, requires a global two-dimensional approach, which
avoids separating the reconstruction into a set of one-dimensional reconstruc-
tions along central lines. An example of such an approach is the discrete alge-
braic reconstruction technique (DART) [3], which is an iterative technique as-
suming piecewise uniformity of the objects with known densities. We adopted
the DART algorithm, which was originally proposed for few-projections and
limited-angular-range problems, for the application on truncated data of uni-
form star-shaped objects and we observed an increased stability compared to
the DBPS method.

The proof of the uniqueness theorem for star-shaped objects suggested that
the uniqueness result for binary star shaped objects from interior data could
be generalized to more complex objects. Since the DART algorithm does not
make any explicit assumptions on the shape of the considered objects, we
applied it for the reconstruction of more general piecewise uniform objects to
indicate the extent of object complexity for which the inverse problem from
truncated data can be recovered in practice. The experiments suggest that
binary objects with relatively complex shapes can still be reconstructed sta-
bly from interior data. However, for objects consisting of multiple materials,
the reconstruction accuracy of the DART reconstruction from interior data
is reduced drastically.
This research for piecewise constant objects was motivated by a specific
question from DiamCad, a diamond processing company that scans rough
diamonds to retrieve detailed information on their shapes. We received a
truncated dataset of a diamond that was too big to fit in the field of view
of the detector. Based on the above mentioned study, we were able to accu-
rately recover the complete diamond from the truncated data. Alternative
applications can potentially be found in industrial CT, where often very large
but uniform objects (such as engines) are scanned.

Part IV. In the study of Part III, we found that the underdeterminacy caused
by the truncation of projections, can be alleviated or dissolved by exploiting
prior knowledge such as the piecewise uniformity of the object. It is very
important that the assumptions are valid to a good approximation. In prac-
tical situations, the assumption of piecewise uniformity is often invalidated
because of confounding physical effects such as beam-hardening. Beam hard-
ening is the phenomenon that takes place when the incident X-ray beam is
polychromatic. Since the absorption properties of materials vary with the
energy of the X-ray photons, the spectrum of the beam changes as the beam
penetrates deeper into the object, which violates the assumption of the stan-
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dard reconstruction methods that the attenuation is linearly related to the
thickness of the traversed material. The resulting reconstructions typically
suffer from cupping and shadowing artifacts, which hinder an accurate image
segmentation.

In Part IV, we presented a new iterative beam hardening correction (IBHC)
method for piecewise uniform objects from complete data. The IBHC method
does not require additional prior knowledge such as the material dependent
attenuation coefficients or the source spectrum. This is a significant practi-
cal advantage compared to most other beam hardening correction methods,
which often require additional calibration experiments. Our experiments for
several physical phantoms show that the IBHC method successfully reduces
the cupping artifacts caused by the polychromatic beam, in such a way that
the reconstruction of each uniform region is to good accuracy homogeneous.

An important advantage of the IBHC method is that it can be combined
with any reconstruction technique, provided that this reconstruction algo-
rithm leads to an accurate segmentation in the monochromatic case. There-
fore, the IBHC method can also be applied for limited data problems provided
that the reconstruction is done using an appropriate algorithm, for instance
DART. The results for a physical phantom illustrate that the combination of
the IBHC method with several limited data reconstruction method leads to
a satisfactory recovery of the object function that is virtually free of beam
hardening artifacts.

Future work

The work presented in this thesis focussed on the reconstruction of a 2D object
slice from a set of 1D parallel X-ray projections. Since modern X-ray scanners
typically use a 3D cone beam geometry, the next step is to extend the methods
and experiments to this geometry. Whereas this extension is rather straightfor-
ward for DART and the beam hardening correction method, it is much harder for
the ConSiR method. The consistency conditions for 3D tomography essentially re-
quire four-dimensional data [4], which are not provided by a circular 3D cone beam
scan. Note, however, that the standard 3D reconstruction method for a circular
cone beam acquisition such as the Feldkamp-David-Kress (FDK) algorithm, actu-
ally performs a weighted 2D reconstruction along tilted planes, assuming that the
vertical cone angle is sufficiently small. A similar approach could be considered for
the extension of the consistency conditions, which would enable the use of ConSiR
for a cone beam geometry.
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Chapter 5 consisted of experiments of DART reconstruction for piecewise uniform
object functions from truncated data. We found that the reconstruction accuracy
quickly degrades as the number of densities increases. Although a decreasing rela-
tion is expected, it is unclear whether the obtained results are specifically related
to the properties of DART or whether they indicate that the prior knowledge is
optimally exploited. Therefore, similar experiments could be performed using iter-
ative approaches that encourage, rather than strictly enforce piecewise uniformity
of the solution, such as `1-minimization [5, 6]. This is particularly interesting since
these methods do not require the densities of the objects to be known in advance.

The beam hardening method presented in Chapter 6 proved to recover the ho-
mogeneity of regions up to a good accuracy. The phantoms used in this study,
however, contained large uniform regions. For objects with more detailed struc-
tures, partial volume effects will be more prominently present. To alleviate artifacts
caused by this partial volume, one could allow mixtures of materials in the pixels
at boundaries of segments, instead of classifying pixels in strictly separate material
classes. In addition, the adaption of the IBHC to take other physical phenomena
such as scattering into account, is a subject for future work.
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