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Optimal Experimental Design for Diffusion
Kurtosis Imaging

Dirk H. J. Poot*, Arnold J. den Dekker, Eric Achten, Marleen Verhoye, and Jan Sijbers

Abstract—Diffusion kurtosis imaging (DKI) is a new magnetic
resonance imaging (MRI) model that describes the non-Gaussian
diffusion behavior in tissues. It has recently been shown that DKI
parameters, such as the radial or axial kurtosis, are more sensitive
to brain physiology changes than the well-known diffusion tensor
imaging (DTI) parameters in several white and gray matter struc-
tures. In order to estimate either DTI or DKI parameters with
maximum precision, the diffusion weighting gradient settings that
are applied during the acquisition need to be optimized. Indeed,
it has been shown previously that optimizing the set of diffusion
weighting gradient settings can have a significant effect on the pre-
cision with which DTI parameters can be estimated. In this paper,
we focus on the optimization of DKI gradients settings. Commonly,
DKI data are acquired using a standard set of diffusion weighting
gradients with fixed directions and with regularly spaced gradient
strengths. In this paper, we show that such gradient settings are
suboptimal with respect to the precision with which DKI param-
eters can be estimated. Furthermore, the gradient directions and
the strengths of the diffusion-weighted MR images are optimized
by minimizing the Cramér–Rao lower bound of DKI parameters.
The impact of the optimized gradient settings is evaluated, both on
simulated as well as experimentally recorded datasets. It is shown
that the precision with which the kurtosis parameters can be esti-
mated, increases substantially by optimizing the gradient settings.

Index Terms—Diffusion gradient settings, diffusion kurtosis
imaging (DKI), diffusion-weighted (DW) magnetic resonance
imaging (MRI), experimental design, optimization.

I. INTRODUCTION

D IFFUSION-WEIGHTED (DW) magnetic resonance
imaging (MRI) is the only method available that mea-

sures noninvasively diffusion properties of tissues. Knowledge
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of these diffusion properties allows the characterization of
intrinsic features of tissue microdynamics and microstructure,
such as cell permeability [1], [2]. The diffusion of water
molecules within a voxel is characterized by a statistical distri-
bution describing the random displacement of these molecules
during a fixed-time diffusion process. A popular model to
describe this distribution is the Diffusion tensor (DT) model,
which assumes the diffusion distribution to be Gaussian.

Previously, it has been reported that the diffusion distribu-
tion in the human brain is generally non-Gaussian [2]–[4], due
to diffusion restriction by cell membranes and compartments of
different sizes present in the neural tissue. Since the DT imaging
(DTI) model is limited to Gaussian diffusion only, the model can
generally not describe these diffusion profiles accurately. Diffu-
sion kurtosis imaging (DKI) was recently proposed as an exten-
sion to the Gaussian DT model. It was shown that DKI allows a
better detection and characterization of changes in various white
and gray matter structures [5]. In addition to the second cen-
tral moment of the diffusion distribution, DKI also measures
the kurtosis excess of that distribution. The kurtosis excess is
defined as the fourth central moment of the distribution divided
by the square of the variance minus 3 [6]. The “minus 3” term
is often explained as a correction to make the kurtosis zero for
a Gaussian distribution. Hence, compared to a DTI model, the
inclusion of the kurtosis excess allows a more accurate descrip-
tion of the diffusion properties of neural tissues [3], [7].

Commonly, DKI data are acquired using a standard set of dif-
fusion-weighting gradients with fixed directions and with reg-
ularly spaced gradient strengths. As shown in this paper, such
imaging settings are suboptimal with respect to the precision
with which DKI parameters can be estimated from the DW MR
images. This precision strongly depends on the directions and
strengths (b-values) of the diffusion-weighting gradients during
the DW MR acquisition. A lower bound on the variance (pre-
cision) of any unbiased estimator is given by the Cramér–Rao
lower bound (CRLB) [8]. In this paper, the gradient settings of
the DKI experiments are optimized by minimizing the CRLB of
DKI parameters of interest.

Previously, several studies were published that optimized DW
MRI settings for estimating DTI parameters such as the frac-
tional anisotropy (FA) and the mean diffusivity (MD) [9], [10].
In [9], e.g., the CRLB of various DT parameters was minimized
with respect to the b-values of the DW MR images. In this paper,
the study is extended to the optimization of DKI gradient set-
tings. Furthermore, since the DKI model has significantly more
parameters than the DTI model, a new numerical optimization
strategy is developed. Extensive simulation experiments vali-
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dated with real experiments show that using the optimized gra-
dient settings allows estimation of DKI parameters with a sub-
stantially higher precision.

The paper is organized as follows. Section II describes
the DKI signal model, the DKI parameters, the CRLB for
estimating these parameters, and the optimization method.
Next, in Section III, simulations and real experiments are pre-
sented, which investigate the robustness and improvement of
the performance of the optimized gradient settings, compared
to the traditional gradient settings. Finally, in Section V, the
conclusions are drawn.

II. METHODS

To obtain the most precise DKI parameter estimates, the di-
rections and b-values of the diffusion-weighting gradients need
to be optimized. First, in Section II-A, the kurtosis imaging
model is explained. Next, Section II-B describes the compu-
tation of the CRLB for estimating kurtosis estimators. In Sec-
tion II-C, various kurtosis parameters are introduced. After that,
Section II-D elaborates on the optimization of the gradient set-
tings. Finally, Sections II-E and II-F describe an efficient opti-
mization strategy.

A. Diffusion Kurtosis Imaging

The diffusion of hydrogen atoms in a voxel can be charac-
terized by a 3-D symmetric probability density function (PDF)

, where the random variable denotes the random dis-
placement of molecules during a diffusion process in a time in-
terval . It depends on the microstructure of the voxel, which is
generally different for each voxel.

The DW MRI does not measure the diffusion PDF directly.
The gradients that are applied during the diffusion weighting
introduce a change in the phase of the precessing and diffusing
hydrogen atoms, which leads to a reduction of the magnitude of
the DW image when compared to the unweighted image. The
magnitude of a DW image depends on the diffusion in the direc-
tion of the applied diffusion-weighting gradient, specified by .
The direction of the q-space vector is given by the unit length
gradient direction vector , and its magnitude is given by

(1)

where � is the gyromagnetic ratio, is the duration
of the pulsed gradients, and is the magnitude of the
applied diffusion-weighting gradient. To take the duration of
the diffusion gradient pulses into account, the -value is usually
defined as [11]

(2)

where in which is the time separation
between the leading edges of the diffusion gradient pulses [11].

Let be the component of a displacement vector
in the direction of . The PDF of in the direction of is then
given by

(3)

That is, is integrated over the two dimensions
orthogonal to .

The diffusion coefficient in the direction of the gradient ,
which is the variance of the diffusion in that direction, is given
by

(4)

where is the expectation operator with respect to . The
excess kurtosis of the diffusion in the direction is given by
[6]

(5)

The phase shift induced by the diffusion-weighting gradients
along the direction is a linear function of and . There-
fore, the magnitude of the noise-free MR signal after diffusion
weighting with the gradient is given by

(6)

where is the non-DW signal intensity. Note that (6) is equal
to the characteristic function of , multiplied by .

An approximate parametric model of (6) can be derived from
a Taylor series expansion around of the natural logarithm
of [7]

(7)

in which is the th component of , is the th element
of the second-order DT , and is the th element of
the fourth-order kurtosis tensor . A detailed derivation of (7)
can be found in the Appendix. The elements and are
defined as

(8)

and

(9)
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respectively, where is the expectation operator with re-
spect to and with the th component of [7]. Note that both

and are fully symmetric with respect to an interchange of
indexes.

From (7), the following approximate parametric DKI model
of the magnitude of the noise-free DW MR signal can then be
obtained as

(10)

where the diffusion and kurtosis tensors and are replaced
by the apparent diffusion and kurtosis tensors and ,
respectively [12]. It is known that, for short duration of the
diffusion gradient pulse, the apparent diffusion and kurtosis ten-
sors approach the true diffusion and kurtosis tensors given by
(8) and (9), respectively [7]. In (10), denotes a 22 1 param-
eter vector composed of the following scalar valued parameters:

, 6 parameters representing the independent elements of the
symmetric tensor , and 15 parameters representing the in-
dependent elements of the fully symmetric tensor .

B. CRLB of the Kurtosis

The goal of this paper is to optimize the experimental design
of a diffusion-weighting acquisition scheme such that diffusion
kurtosis parameters can be estimated as precisely as possible.
For this purpose, we will employ the CRLB framework. The
CRLB provides a lower bound on the variance of any unbiased
estimator of the parameters of a statistical model of measure-
ments. It is well known that the maximum-likelihood (ML) esti-
mator is asymptotically unbiased and efficient [8], [13]. Hence,
its variance will attain the CLRB asymptotically, i.e., for an in-
creasing number of observations. Experiments showed that the
number of observations available in typical DKI measurements
is sufficient for the asymptotic properties of the ML estimator
to be valid.

Suppose that the joint PDF of a set of measurements is
given by , which is parametric in . Then, the Fisher
information matrix of these measurements is given by

(11)

where is the true value of . Then, the Cramér–Rao inequality
is given by

(12)

where is the covariance matrix of . The right-hand side
of (12) is known as the CRLB.

For a model , of independent Rician
distributed data with the same noise parameter , such as corre-

sponding voxels in magnitude DW MR images, this matrix
is given by

(13)

where is the Fisher information of a Rician distributed vari-
able. This is given by [14] and[15]

(14)

where and are modified Bessel functions of the first kind of
order 0 and 1, respectively. The integral in (14) cannot be solved
analytically. However, since essentially only depends on

, it can easily be tabulated for fast evaluation. We use a
lookup table with polynomial interpolation to obtain values with
high accuracy.

Let be a kurtosis parameter, given as function of the
DKI model parameters . Then, the CRLB of is given by

(15)

where is given by

(16)

The gradient settings of the DW MR images can be optimized
by minimizing the CRLB of a well-chosen parameter .

C. Kurtosis Parameters

In this section, the kurtosis parameters that will be considered
in the experimental design and analysis are described.

1) Mean Kurtosis: The mean kurtosis is given by

(17)

where is the parameterized excess kurtosis given by

(18)

integrated over the unit sphere , with .
The derivation of (18) is given in the Appendix. Note that the
definition of the mean kurtosis in (17) differs from a previous
definition in [16, eq. (2)], where the is computed by av-
eraging the kurtosis in the sampled gradient directions. This re-
quires the same gradient directions to be sampled at multiple
b-values. We prefer the definition in terms of the integral since
this allows free selection of the gradient directions and b-values
and allows accurate mean kurtosis values, even when the gra-
dient directions are not uniformly distributed on .
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2) Radial Kurtosis: The radial kurtosis is the mean of the
kurtosis in the directions orthogonal to the direction of main
diffusion

(19)

where is the th eigenvector of the DT , sorted by decreasing
eigenvalue. This definition differs slightly from the radial kur-
tosis defined in [16], where the kurtosis along the second and
third eigenvectors is averaged. The radial kurtosis is an inter-
esting parameter, since the diffusion is restricted mainly in the
radial direction. Therefore, it can be expected that the kurtosis,
which is nonzero due to the restricted diffusion, is most pro-
nounced in the radial direction.

3) Kurtosis Anisotropy (KA): In [16, eq. (8)], the KA was
defined as

(20)

with and , the mean
of the kurtosis in the DT eigenvector directions. This definition
is in direct analogy to the FA in DTI. The original motivation
for the diffusion FA was that it is a coordinate system invariant,
dimensionless characterization of the differences between dif-
fusion in the different directions. However, in contrast to the
diffusion eigenvalues, the kurtosis itself is dimensionless and
thus does not need to be normalized to obtain a dimensionless
value. In our opinion, a KA parameter should not scale with the
mean kurtosis, which might be zero, but should only be based on
the variability in the kurtosis. Also, note that (20) only uses the
kurtosis in the three directions specified by the diffusion eigen-
vectors. Since the kurtosis is specified by a higher order tensor,
this might not capture all kurtosis variability.

We propose a different KA parameter, which, in our opinion,
is more in line with the important characteristics of the FA. This
new KA parameter is given by the standard deviation of the
kurtosis

(21)

D. Optimization of the Gradient Settings

Let the settings of all diffusion weighting gradients during
a DKI experiment, in which DW MR images are acquired,
be defined by . Here each specifies the
gradient settings, i.e., the b-value and the direction of the diffu-
sion-weighting gradient, of a DW MR image. Then, can be
optimized by minimizing the CRLB of the model parameters,

. However, optimization methods need a scalar function
to optimize. Therefore, a scalar objective function of the CRLB
of the model parameters is required. This scalar objective func-
tion should evaluate the overall quality of the gradient settings

. Our objective function is the CRLB of a kurtosis parameter,
, given in (16). This function depends on the actual

tissue properties . These properties are generally different
in each voxel. Since the brain images contain many voxels and
different tissues in which one might be interested, the acquisi-
tion scheme should be optimal for a distribution of , . The
optimal can then be found by minimizing the objective func-
tion, weighted with the prior distribution

(22)

In practice, the prior distribution can be approximated with
experimental data. However, it is difficult to evaluate the 22 di-
mensional integral in (22). Therefore, it often is much more con-
venient to approximate the integral by drawing M samples from
the prior distribution and evaluating the objective func-
tion on this set only. These samples from , which
should be fixed during the optimization, can be collected in a
set . Then, the integral in (22) can be ap-
proximated by

(23)

which is the mean CRLB of the kurtosis parameter of the ele-
ments of . The optimal gradient settings are then given by

(24)

E. Efficient Implementation of the Optimization

The optimal set is in principle given by (24). However, due
to the large number of DW images in a typical DKI experiment,
it is not trivial to find this optimum. The actual function to opti-
mize is a sum of scalar functions, each of which depends on the
CRLB of a parameter vector , which is a 22 22 matrix. Most
common optimization techniques for large problems use the an-
alytic or numerically computed derivatives of the function to be
optimized. However, the derivative of the inverse Fisher matrix

with respect to is difficult and computationally expensive to
compute. There are general optimization routines that do not use
the gradient of the function, e.g., fminsearch in MATLAB
(The MathWorks, Inc.), but they typically require a huge number
of function evaluations, and it was observed that the final gra-
dient set found by fminsearchwas not close to optimal. This
might be due to local minima and/or almost flat parts in the ob-
jective function. To be able to overcome local minima, simu-
lated annealing was chosen as alternative optimization method
[17]. The simulated annealing method iteratively updates the
diffusion-weighting gradients, one at a time. When a gradient
is modified, the Fisher information matrix needs to be up-
dated to evaluate the change in objective function. As follows
from (13), updating the magnitude and direction of one diffu-
sion-weighting gradient is only a rank two update of . There-
fore, the Woodbury identity [18]

(25)
can be used to efficiently update the inverse Fisher matrix.
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F. Efficient Integration on the Sphere

The integral in (17) and (21) over is numerically approxi-
mated by sampling the integrand on a weighted set of , approx-
imately uniformly distributed, sample points in .
The weights of the sample points are chosen
to maximize the accuracy of the approximation of the integrals.
For this, first note that any function on can be expanded in
the spherical harmonics basis. Since the integral of all nonze-
roth-order spherical harmonics is zero, integrating over deter-
mines the magnitude of the zeroth-order spherical harmonic of
the integrand, multiplied by the area of . As the zeroth-order
spherical harmonic is constant, accurate evaluation of the inte-
gral requires that . Smooth functions, such as the in-
tegrands considered in (17) and (21), generally have a decaying
spectrum, i.e., the energy of the functions is mainly concentrated
in low-order spherical harmonics. To avoid contamination of the
evaluated integral by the energy in these low-order spherical har-
monics, the weights are orthogonalized to a finite number of
spherical harmonics. To minimize the influence of energy of the
integrands in arbitrary higher order harmonics, the two-norm of

is minimized. It can be proven that the weight vector that
has these properties is the solution of a least squares problem
with only 1 nonconfound

(26)

where the components of are given by

(27)

where is the real-valued spherical harmonic of order
, and , . Usually, all unique com-

binations of have to be included, where is the
maximum order of spherical harmonics to which is orthog-
onal. However, when both the set of points and the integrand
are symmetric around 0, the odd and a symmetric half of the
points do not need to be included in the computations. The
integrands in (17) and (21) are symmetric around 0, so by se-
lecting a symmetric set of points, this property can be used.

III. EXPERIMENTS

As described in Section II-D, the gradient settings are opti-
mized by minimizing the CRLB of a kurtosis parameter, evalu-
ated on a set obtained from a prior distribution of DKI model
parameters. In practice, samples from this distribution are ob-
tained from prior DKI measurements. In this paper, the prior
DKI measurements were obtained from a human and small an-
imal DKI experiments of which the details are described in Sec-
tion III-A. In Section III-B, several aspects that are important for
the selection of are discussed. Then, in Section III-C, the sets

that were used for the optimizations are specified. Finally, in
Section III-D, traditional gradient settings are reviewed and the
settings of the optimized gradients are described.

A. Acquisition of DKI Data

Human DKI data were used for the construction of . These
data were acquired after approval of the Institutional Review
Board and after informed consent was obtained from the healthy
volunteer. The dual spin echo DW 2-D Echo Planner Imaging
(EPI) images were acquired with a Siemens 3.0-T MRI scanner.
The volume was recorded with 45 slices with an acquisition ma-
trix of 82 82. The voxel dimensions were 2.7-mm isotropic
and the echo time was . A 30-channel head coil
was used and the Generalized Autocalibrating Partial Parallel
Acquisitions (GRAPPA) acceleration factor was 2, with 24 ref-
erence lines. The bandwidth was 1356 Hz/pixel and the trans-
verse relaxation . The maximum b-value of the
set of recorded DW MR images was 2800 . The SNR
of the gray matter in the MR images with a b-value of zero was
12. To evaluate the performance and robustness of the optimized
gradient settings, a second volunteer was scanned with the opti-
mized settings on a different Siemens 3.0-T MRI scanner. This
dataset was recorded with 55 slices with an acquisition matrix
of 128 128. The voxel dimensions were 2.5-mm isotropic
and the echo time was . A 30-channel head
coil was used and the GRAPPA acceleration factor was 2, with
24 reference lines. The bandwidth was 1955 Hz/pixel and the

. The maximum b-value of the set of recorded
DW MR images was 2800 . Furthermore, DKI data of a
rat were acquired with a Bruker 7T small animal scanner. This
dataset was acquired with 50 slices with an acquisition matrix
of 96 64, reconstructed to an image size of 128 64. The
slice thickness was 0.37 mm, excluding the gap of 0.10 mm be-
tween slices. The in-plane resolution was 0.37 mm and the echo
time was . The bandwidth was 8333 Hz/pixel and
the . The images were recorded with two shot
EPI and mono polar diffusion-weighting gradients with a max-
imum b-value of 2800 , obtained with the diffusion times

and . From these datasets, the model pa-
rameters were estimated with a ML estimator [13].

B. Prerequisites for the Selection of Prior DKI Model
Parameters

There are several aspects that influence the selection of .
1) For elements of with a large positive kurtosis, the

magnitude of the DW MR images, predicted with the
DKI model (10), will grow strongly for large . This
is caused by the fourth power of inside the exponent
function and indirectly, it is a result of the finite region
in which the series expansion used for the DKI model is
accurate. The high SNR of these anomalously high pre-
dicted DW magnitudes reduce the CRLB of the kurtosis
parameters, which might cause the optimization proce-
dure to increase some gradients to unrealistically high
magnitudes. This can be avoided by limiting the max-
imum value that is allowed in the optimization or by
selecting elements for without large positive kurtosis.

2) The DKI parameters will depend on the tissue type under
study. Therefore, representative parameter vectors of the
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TABLE I
DIFFUSION EIGENVALUES FOR ��� IN �� �� AND FA VALUE

different tissues should be included in . When the set
is too small or does not contain elements from all rel-

evant tissue types, the optimized gradient settings might
be good for the kurtosis parameters in the test set, but
not for all the various brain tissue types.

3) The computation time required for the optimization
depends almost linearly on the number of elements in

. Therefore, to limit the computation time required
by the optimization, should not contain excessively
many elements. In our experiments, optimizations are
performed with several hundreds of test tensors in .

4) Some kurtosis parameters, such as the radial kurtosis,
depend on the intrinsic DT coordinate system. When
the optimization is performed with respect to these kur-
tosis parameters, the coordinate system should be well
defined for all elements of . This can be established by
selecting from sufficiently anisotropic tissues, such as
the white matter structures.

C. Selection of DKI Model Parameter Sets

This section describes the sets . These sets contain the
samples from the prior distribution that were selected for
the optimization experiments. Each element of a contains the
parameters of the DKI model, from which the kurtosis param-
eters can be evaluated. In order to investigate the sensitivity of
the optimization of the kurtosis parameters to different , the
optimization is performed for the following three sets.

To avoid unrealistically large b-values due to large
positive kurtosis, the set was constructed to have
zero kurtosis and a range of realistic DT eigenvalues.
The diffusion eigenvalues were typical for the gray
matter, white matter, and the cerebrospinal fluid
(CSF) present in the human DKI dataset. To avoid
indeterminacy of DT eigenvectors, the eigenvalues
were chosen sufficiently different. The DT eigenvalues
are given in Table I and were manually selected from
the DKI dataset (cf., Section III-A). Furthermore,
to make the gradient settings to be optimized
(approximately) rotationally invariant, 60 DTs were
generated from each set of eigenvalues by rotating
the first eigenvector (FE) toward the 20 corners of a
dodecahedron and subsequently rotating the second
eigenvector in steps of 120 .

The second set was obtained by randomly selecting
400 DK tensors from the white and gray matter
of the DKI dataset. The probability to be included
in the set was equal for each gray and white matter
voxel. Since the estimated parameter vectors are
noise corrupted, the diffusion eigenvalues might
occasionally be unrealistically low or the estimated
kurtosis might be large in some directions. Therefore,
the lowest diffusion eigenvalues were adjusted to be
at least , with and for all
directions in which the kurtosis was positive, the
kurtosis was decreased as long as , with

, with from (10).

The third set was obtained by randomly selecting
400 DK tensors from white matter only, ,
of the DKI dataset. The probability of a voxel to be
included in the selection was proportional to the FA
value of the voxel. The elements of were adjusted
with the same procedure as the elements of .

D. Optimized and Traditional Gradient Settings

The optimized gradient settings were compared with a “tra-
ditional” set T of diffusion gradient settings for DKI [3].

T Specifies DW MR images with diffusion
weighting gradients in 30 directions, with 5
different b-values, 500 to 2500 in steps
of 500 and 10 images with a b-value of
zero. So in total T specifies 160 DW MR images.

For fair comparisons, the optimized sets used the same number
of DW MR images as the traditional set T. The optimized sets
of gradient settings were as follows.

These DKI gradient settings were optimized
with , with a maximum b-value allowed
in the optimization, with
and . The optimization was
performed with respect to the CRLB of the mean
kurtosis of the elements of . The maximum
allowed b-value was limited to avoid the selection
of excessively large b-values due to the breakdown
of the DKI model for very high b-values.

The same as , but now optimized with respect
to the CRLB of the radial kurtosis obtained from

.

IV. RESULTS AND DISCUSSION

In this section, the results of the experiments are discussed.
First, in Section IV-A, the optimized and traditional gradient
settings are compared on kurtosis parameters of the sets . Next
in Section IV-B, a good optimized set of gradient settings is
reviewed. Finally, in Section IV-C, recorded DKI data are used
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TABLE II
NORMALIZED VALUE OF THE OBJECTIVE FUNCTION � OF THE (a) MEAN KURTOSIS, (b) RADIAL KURTOSIS, OR (c) KA. THIS OBJECTIVE

FUNCTION � IS THE AVERAGE CRLB OF THE MEAN OR RADIAL KURTOSIS OF THE GRADIENT SETS FOR THE DIFFERENT TEST SETS ��� .
NORMALIZATION WAS PERFORMED SUCH THAT THE LOWEST VALUE IN EACH COLUMN WAS 1

to compare the performance of the optimized gradient settings
with the traditional gradient settings.

A. Results of the Optimization

In this section, the performance of the different gradient set-
tings is compared.

Table II shows the relative (23). That is, Table II
shows the normalized mean CRLB of the mean [see Table II(a)]
or radial [see Table II(b)] kurtosis from the three sets , for
all gradient sets . The values are normalized by dividing with
the lowest in each column. This table clearly shows
that the gradient settings influence the precision with which the
kurtosis parameters can be estimated, as the normalized mean
CRLB of kurtosis parameters of the elements of is different
for each gradient set. Also, Table II shows that only the gradient
settings optimized for , i.e., and , have a low rel-
ative mean CRLB on kurtosis parameters computed from .
The relative mean CRLB of the other gradient settings and

on the estimation of kurtosis parameters of is much
larger.

Further inspection showed that these other gradient settings
had a substantially higher CRLB on the elements of that
modeled CSF. This is caused by the very high diffusivity of CSF,
which is not present in the gray or white matter from which
and were selected. Since one is usually not interested in the
CSF, this is not a problem for the use of the other optimized gra-
dient settings, but clearly shows the importance of the selection
of the elements of .

Furthermore, Table II shows that the traditional gradient set-
tings T has a higher mean CRLB, especially for , which con-
tains parameter vectors of white matter structures. The mean
CRLB of the radial kurtosis of T is 2.5 times larger than the
mean CRLB of the radial kurtosis of the best gradient settings.

Table II further shows that the gradient settings , opti-
mized for the mean kurtosis based on , generalizes well. That
is, the mean CRLB of the mean and radial kurtosis of and

is close to minimal, when the gradient settings are speci-
fied by . Since was randomly selected from the gray
and white matter, it contains mostly gray, but also white matter

voxels, which might explain the relatively low mean CRLB of
the kurtosis parameters on the white matter only set .

The sets of gradient settings were limited to a maximum
b-value of 2500 . When the performance of these sets
is compared to , it is clear that the mean CRLB for the
set , which they are optimized on is only slightly increased.
In particular, the mean CRLB of the mean kurtosis of is
only increased by 6.1% for , compared to . How-
ever, the mean CRLB of different kurtosis parameters or model
parameters is increased substantially by this lower b-value of
2500 . This can, e.g., be seen by comparing the relative
mean CRLB of the radial kurtosis of of the gradient settings

with that of , i.e., 1.758/1.379, which is larger than
the 6.1% increase in mean CRLB of the mean kurtosis of for
these gradient settings.

Summarized Table II(a) and (b) show the following.
1) The mean CRLB can be substantially decreased by op-

timizing the set of gradients.
2) For the optimization, it is important that the selection of

samples from a prior distribution of tensors matches the
diffusion and kurtosis properties found in the relevant
tissues under study.

3) Gradient sets with good performance for both gray and
white matter structures and for both the mean and radial
kurtosis can be found, such as our set .

B. Optimized Set of DW Gradients

From the results presented in the previous section, it can be
concluded that the optimized gradient set produced the
best results overall. Therefore, Fig. 1 shows the optimized gra-
dients , which are optimized with respect to the mean kur-
tosis of . Fig. 1(a) shows the sorted b-values of the optimized
gradient set. The b-values automatically separate in, more or
less, distinct levels. Fig. 1(c) shows the gradient directions and
magnitudes of the individual directions, plotted on a sphere. The
density of gradients is indicated by the gray level of the sphere.
As can be seen in Fig. 1(c), the gradient directions are approxi-
mately isotropically distributed, which is a result that is obtained
automatically by the optimization.
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Fig. 1. Magnitude and direction of optimized gradients � .

Fig. 2. (a) Mean kurtosis, (b) radial kurtosis, and (c) KA.

As in the acquired DKI dataset, the maximum b-value al-
lowed in the optimization was 2800 . Fig. 1(a) shows that
a substantial number of gradients are located at this maximum
b-value. This suggests that the precision might be improved by
increasing the maximum allowed b-value even further. How-
ever, as the model (10) is based on a series expansion, it is not
suited to extrapolate the magnitude of DW MR images acquired
with higher b-values.

C. Comparison of the Precision

This section compares the CRLB of kurtosis parameters of
the optimized gradient set with the traditional gradient set
T. Fig. 2(a) and (b) shows the mean and radial kurtosis of the

Fig. 3.
�
���� of the mean kurtosis, when estimated with T or � .

(a) ������ �. (b) ������ �.

human DKI dataset, respectively. As is clearly visible, the ra-
dial kurtosis is substantially larger in the white matter structures,
compared to the mean kurtosis. This indicates that the devia-
tions from the Gaussian distribution are strongest in the radial
direction. Fig. 3 shows the square root of the CRLB of the mean
kurtosis, evaluated with the traditional and the optimized gra-
dient sets, respectively. Thus, this figure displays a lower bound
on the standard deviation of the mean kurtosis. In Fig. 3, it is
clearly visible that the kurtosis parameters of the CSF cannot be
precisely estimated by both gradient settings, as the square root
of the CRLB of the mean kurtosis is high compared to the mean
kurtosis of the CSF. The CRLB of the other tissues is lower,
indicating more precise estimates. In Fig. 3, the differences be-
tween the CRLB of the mean kurtosis of the gradient sets are
difficult to see. Therefore, the precision of a kurtosis parameter
estimate obtained with the gradient sets T and was com-
pared by evaluating the logarithm of the ratio of the CRLB of
that kurtosis parameter

(28)

The value of is 0 when both gradient sets have an equal CRLB
of the kurtosis parameter in that voxel. Positive values indicate
that the CRLB of the kurtosis parameter obtained with gradient
settings T is larger than that obtained with the optimized gra-
dient set . Fig. 4 shows of the mean kurtosis, radial kur-
tosis, and KA parameters. It is clearly visible that the gradient
set improves the CRLB for all brain structures, except for
the CSF. It was observed that the median reduction of the CRLB
of the mean kurtosis in the gray matter was a factor 2.1. The
factor is even larger than the value obtained in the simulation
experiment with , which consists of a selection of gray and
white matter voxels. Fig. 5 shows for the diffu-
sion parameters. The median of the CRLB of the MD in the gray
matter is 12% larger for the traditional gradient settings com-
pared with . The precision of the FA and direction of the
FE is almost equal for these two sets of gradient settings. Fig. 4
also shows the difference in performance between the gradient
sets optimized with respect to the mean and radial kurtosis. As
could be expected, the CRLB of the mean kurtosis is higher for

than for . The median CRLB of the mean kurtosis in
the gray matter increases by 29%, the radial kurtosis is approx-
imately the same and the CRLB of the KA increases by 19%.
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Fig. 4. � (28) with (a), (d), (g) mean kurtosis; (b), (e), (h) radial kurtosis; and
(c), (f), (i) KA of the diffusion kurtosis tensors of a human DKI dataset. The
subparts (a), (b), and (c) are from a dataset recorded with the traditional gra-
dient settings, compared with � , ������ ��� �. In (d), (e), and (f), the
gradient settings optimized with respect to the mean kurtosis and radial kurtosis
are compared by ������� �� �, in terms of the precision of the mean kur-
tosis, radial kurtosis, and KA. The subparts (g), (h), and (i) are from a dataset
recorded with the optimized gradient settings � , compared with the tradi-
tional gradient settings ������ ��� �.

Fig. 5. ������ ��� � of the first dataset, for the (a) MD, (b) fractional diffu-
sion anisotropy (FA), and (c) direction of the FE. As is visible in this figure, the
precision of the DT parameters in the white and gray matter is not substantially
changed when the traditional gradient settings are replaced by the gradient set-
tings � .

This is a further indication that the gradient settings are
better than .

The last row of Fig. 4 shows of the second
dataset, recorded with the optimized gradient settings (ac-
cidently) rotated 90 in the slice direction. These figures are

Fig. 6. Subparts (a), (b), and (c) show the relative performance of the traditional
gradient set � , � and � for the mean kurtosis. For localization, an FA
map colored with the direction of the FE (FEFA) is provided in subpart (d).
(a) ������ ��� �; (b) ������ ��� �; (c) ������� �� �; and (d) FEFA
map.

Fig. 7. Subparts (a) and (b) show the relative performance of the optimized
gradient settings as function of the number of elements in the set��� that is used
during the optimization. All gradient settings were optimized with respect to the
mean kurtosis. The performance of each optimized settings � is measured with
������ ���� [(28)] for the (a) mean kurtosis and (b) radial kurtosis. For each set
of optimized gradient settings,� is computed for ��� of each of the 20 k voxels not
used in any optimization. The three curves, 20%, 50% �� median�, and 80%,
give the value of � for which the indicated percentage of tested voxels has a
larger value. The shaded areas indicate the 95% confidence interval of a single
optimization, obtained by repeating the selection of voxels and optimization ten
times for each number of voxels in the selection.

quite similar to the first row. This demonstrates that the opti-
mized gradient settings are robust to differences between sub-
jects and not very sensitive to changes in the acquisition parame-
ters and orientation, as the acquisitions differ substantially. The
median reduction of the CRLB of the mean kurtosis in the gray
matter of this dataset was a factor of 1.9, which, considering the
differences in acquisition, is close to the original improvement
factor.

To further study the influence of changing recording set-
tings, the DKI recording of a rat was made and the results
are presented in Fig. 6. This figure shows that the gradient
settings , which are optimized for the human brain,
improve the precision of the mean kurtosis, compared to the
traditional gradient settings . For the entire brain, the median

, while the gradient settings optimized
for this acquisition have a median . So
from these datasets, we find that the gradient settings specific
for the rat brain improve the CRLB of the median kurtosis by
27%, compared to the gradient settings found for the human
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brain. This relatively small difference, with respect to the sub-
stantially different MR system and subject, that the optimized
gradient settings can be applied to slightly different acquisi-
tions without substantial loss in precision of the diffusion and
kurtosis parameters.

Finally, Fig. 7 shows the performance, as measured by
, of the optimized gradient settings as function of

the number of elements in . The value of was computed
for each of the 20 k voxels from the first dataset that were not
used in any optimization. As is clearly indicated by this figure,
this performance quickly levels off and is essentially constant
above 350 elements. Hence, 400 elements are sufficient to
optimize the gradient settings.

V. CONCLUSION

In summary, this paper presents a novel method to optimize
the diffusion-weighting gradient settings. This method is based
on the minimization of the CRLB for estimating kurtosis param-
eters. The results show that the increase in precision that can
be obtained, compared to a traditionally used set of gradients,
is substantial. For the mean kurtosis estimated in gray matter
voxels, an improvement of the CRLB with a factor of 2.1 was
observed. Alternatively, when the required precision is already
achieved using standard gradient settings, optimizing the gra-
dient settings allows one to achieve the same precision from a
reduced number of DW MR images or from a set of DW MR
images with a reduced SNR (allowing a higher resolution).

The gradient settings are optimized using a prior distribution
of DKI model parameters. This prior distribution can be ob-
tained from DW MR images. In this paper, it was shown that
the prior distribution substantially influences the precision of
the kurtosis parameters. However, it was also shown that the per-
formance of the optimized gradient settings is not substantially
reduced when a different subject is scanned or other parameters
of the acquisition are (slightly) changed.

APPENDIX

DERIVATION OF A PARAMETRIC MODEL OF THE DW MR
IMAGES AND EXCESS KURTOSIS

This appendix gives a derivation of the expressions (7) and
(18). First, it is shown that the first terms of the Maclaurin series
(Taylor expansion around ) of the logarithm of the DW
image intensity (6) lead to simple expressions in terms of
the diffusion and kurtosis coefficients. Next, the formula that
computes the kurtosis in any direction from the diffusion and
kurtosis tensors is derived.

Since magnitude DW MR images are recorded, and by con-
struction , the magnitude is symmetric in .
With that, the following expression can be derived:

(29)

(30)

Furthermore, the fourth derivative gives

(31)

With these derivatives in terms of the diffusion and kurtosis co-
efficients, the series expansion of the logarithm of the DW signal
can be given by

(32)

In general, the 3-D second derivative of can be described
by a symmetric tensor of rank 2

(33)

from which the diffusion in the direction can be computed by

(34)

The 3-D fourth derivative of can be described by a fully
symmetric tensor of rank 4

(35)

With this fourth derivative and , the kurtosis in any direction
can be computed by

(36)

Note that, due to the division by the diffusion in the direction of
, the kurtosis itself cannot be represented by a rank 4 tensor.
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